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Abstract  
 
The role of material surface properties for the direct interaction with bacteria and the indirect 

route via host defense cells is not fully understood. Recently, nanostructured implant surfaces 

were suggested to possess antimicrobial properties. In the present study the adhesion and 

biofilm formation of Staphylococcus epidermidis and human monocyte adhesion and 

activation were studied separately and in co-culture in different in vitro models by using 

smooth (Au) and well defined nanostructured (AuNP) gold model surfaces. Two polystyrene 

surfaces were used as controls in the monocyte experiments. Fluorescent viability staining 

demonstrated a reduced viability of S. epidermidis close to the nanostructured surface, while 

the smooth Au correlated with more live biofilm. The results were supported by scanning 

electron microscopy observations, showing higher biofilm tower formations and more mature 

biofilms on Au compared to AuNP. Unstimulated monocytes on the different substrates 

demonstrated low activation as measured by chemiluminescence, gene expression of pro- and 

anti-inflammatory cytokines and cytokine secretion. In contrast, stimulation with opsonized 

zymosan or opsonized live S. epidermidis during 1 h, significantly increased the production of 

reactive oxygen species, the gene expression of tumor necrosis factor-alpha (TNF-α), 

interleukin-1beta (IL-1β), IL-6 and IL-10 and the secretion of TNF-α, demonstrating the 

ability of the cells to elicit a response and actively phagocytise the preys when present on all 

surfaces. In addition, cells on the smooth Au and AuNP showed a different adhesion pattern 

and a more rapid oxidative burst than on polystyrene upon stimulation. It is concluded that S. 

epidermidis decreased its viability initially when adhering to nanostructured compared to 

smooth gold surfaces, especially in the bacterial cell layers closest to the surface. On the other 

hand, material surface properties neither strongly promoted nor attenuated the activity of 

monocytes when exposed to zymosan particles or S. epidermidis.  

Keywords: nanotopography, staphylococci, host defense, bacteria, zymosan, macrophage 
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Introduction 
 
Biomaterial-associated infections (BAIs) are highly problematic for the patient, health care 

and society. The consequences of BAIs can be devastating and include potentially life-

threatening systemic infections, tissue injury, device malfunction and ultimately a need to 

remove the implant (1, 2). Under normal conditions microorganisms that enter the body are 

kept under control by the immune system. The first lines of defense comprise a variety of 

factors, e.g. epithelial barriers, complement proteins, acute phase proteins and cytokines, and 

phagocytic cells such as monocytes, macrophages and neutrophils. However, when a foreign 

material is present, the host defense becomes hampered and it has been suggested that an 

“immuno-incompetent” zone is formed around the implant (3). In addition, adherent bacteria 

may form a biofilm that protects them from phagocytic uptake, bactericidal and opsonizing 

antibodies as well as antibiotic treatment (3). In such case, removal of the implant may be the 

only option in the attempt to eradicate the infection. 

Staphylococcus species, especially S. epidermidis and S. aureus, are the predominant species 

found in BAIs, accounting for about 66% (1). Unfortunately, more and more bacteria acquire 

resistance against antibiotics (4), pushing further for preventive measures in order to reduce 

the infection rates.  

Materials with nanotopographic features have been explored with respect to adhesion and 

function of various cell types, e.g. fibroblasts, osteoblasts, mesenchymal stem cells and 

keratinocytes (5-10). Less literature is available on the activities of inflammatory cells on 

defined, nanostructured surfaces (11-13), even though these cells are among the first to 

encounter an implanted device and have a decisive role in the acceptance of the implant. 

Nanostructured materials have also been suggested to play a role in bacterial adhesion. 

Bacteria have, in contrast to eukaryotic cells, a rigid cell wall with limited capability to 

deform upon attachment, implying that they do not react to structures smaller than themselves 
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(14). However, some studies do show a decrease in bacterial adhesion when exposed to 

nanotextured surfaces (15-17), but the results are contradictory and the contribution from 

surface chemistry cannot always be excluded (14). 

In the present study we have investigated whether nanostructures 1) have an effect on 

bacterial adhesion and biofilm formation, and/or 2) have an influence on the behavior of 

immune cells in response to microbial stimuli. Selected for this purpose were very smooth 

gold sputtered silica wafers that can be modified with well-defined nanoparticles (35-40 nm) 

in a systematic manner using thiol-chemistry. These model surfaces possess the same 

chemical characteristics (18) and therefore enable a direct comparison of the role of surface 

nanotexture on the behavior of inflammatory cells and microorganisms. A strong biofilm-

producing strain of S. epidermidis as well as primary monocytes isolated from human blood 

donors were used in the study. Zymosan, a cell wall product from Saccharomyces cerevisiae, 

was used as a non-living microbial control stimulus. 
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Material and methods 
 
The material surfaces used in the study were a smooth Au surface (Au) and different 

nanostructured Au surfaces (AuND, AuNL, AuNP). Tissue culture plastic (TCP), the golden 

standard in cell culturing, and tissue culture treated Thermanox® plastic cover slips (Thx), 

that similar to the Au-surfaces can be transferred between wells, were used as control surfaces 

in the monocyte cell culture experiments.  

Surface preparation  
 
Synthesis of gold nanoparticles 

Gold nanoparticles were prepared by reduction of HAuCl4 (Sigma-Aldrich) by sodium citrate 

(Sigma-Aldrich) using a modification of a previously described protocol (19). In brief, 

particles with an average size of 38 nm were synthesized by heating the HAuCl4 (2.4 mM) 

solution to 60°C and adding 60°C tribasic sodium citrate solution (3.9 mM) (1:1). The 

synthesis was allowed for 1 h under stirring conditions. The particle stock solution was stored 

at 8°C until use. 

 
Preparation of nanostructured gold surfaces 

Gold sputtered silicon wafers (200 nm gold on a supporting layer of 10 nm of titanium) were 

purchased from Litcon AB, Sweden. The substrates were washed for 15 min at 80°C in basic 

piranha solution containing 3:1:1 MilliQ water, NH3 (24%) and H2O2 (30%) and washed in 

excess of MilliQ water before incubation in 20 mM aqueous solution of cysteamine (Sigma-

Aldrich) for 2 h. The surfaces were then rinsed with excess MilliQ water and incubated in the 

gold nanoparticle stock solution at room temperature overnight, resulting in nanostructured 

surfaces (AuNP). After incubation, surfaces were washed in excess of MilliQ water. 

Immediately before use, all surfaces (smooth and nanostructured) were cleaned in a 
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UV/ozone chamber for 15 min, washed in basic piranha for 10 min at 70°, rinsed with excess 

of water and finally blown dry in a gentle stream of N2 (g).  

In an initial subset of experiments, exclusively with S. epidermidis (live and dead 

fluorescence microplate readings), surfaces with high and low surface coverage of 

nanoparticles, Nano Dense (AuND) and Nano Light (AuNL), were prepared by controlling 

the electrostatic repulsion between the particles. The distance between colloids in an 

electrolyte depends primarily on the size of the electric double layer of counter ions 

surrounding the colloids. The inter-particle distance between gold nanoparticles suspended in 

an electrolyte can thus be controlled by changing the ionic strength of the electrolyte as 

described earlier (20, 21). Briefly, the gold nanoparticle stock solution was centrifuged at 

1000g for 90 min and the pellet re-suspended in MilliQ-water or 10 mM sodium citrate (tri-

basic) buffer at pH 4. Cysteamine functionalized gold substrates were then incubated in the 

nanoparticle solutions for 3 h and washed as described above prior to use. 

 
Surface analysis 

Surfaces were viewed in a Zeiss 982 Gemini digital scanning electron microscope (SEM, 

Oberkochen, Germany) in secondary electron mode, using the in-lens detector mode. 

Nanoparticle size and surface coverage (projected area) was calculated from SEM images 

through image analysis in the software ImageJ (National Institutes of Health, Bethesda, MD, 

USA); the images were thresholded to remove the background surface, and by assuming 

spherical particles, the average particle size and surface area coverage were calculated from 

pixel count. Additionally, surface roughness was evaluated using a Bruker Dimension 3100 

atomic force microscope (AFM) with an nsc 15 tip (MicroMash) in tapping mode in ambient 

air. Water contact angles were measured on the experimental substrates to assess surface 

wettability and to confirm efficacy of the washing protocol. A 5 µl ultra-pure water droplet 

(MilliQ, 18.2MΩ) was applied on the surface and a side view image of the droplet was 
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captured with high magnification macro photography. Contact angles were then measured 

using the angle tool in ImageJ software. 

Bacterial adhesion and biofilm formation on nanotopographic versus 
smooth surfaces  

Bacterial strains and culturing 
 
The biofilm producer strain Staphylococcus epidermidis ATCC 35984 obtained from the 

Culture Collection University of Göteborg (CCUG 31568) was used in this study. Single 

colonies from overnight cultures on Columbia horse blood agar plates (Media Department, 

Clinical Microbiology lab, Sahlgrenska University Hospital, Gothenburg, Sweden) were 

suspended in 4 mL RPMI 1640 medium containing GlutaMAX™ (Gibco) until OD (546 nm) 

of 0.25 (=108 CFU/mL). An inoculum suspension was prepared by diluting the OD 

suspension to 105 CFU/mL in pre-warmed RPMI medium. The RPMI medium was chosen 

since it was the most suitable medium to culture human monocytes and also supported the 

growth of S. epidermidis.  

Live and dead fluorescence microplate readings  
 
To examine the relative amount of adherent live and dead S. epidermidis after 24 h, an 

inoculum of 105 CFU/mL in RPMI medium was added to Au, AuND and AuNL surfaces (n = 

3). After 24 h of static incubation at 37°C, the surfaces were carefully washed with 0.9% 

sterile saline (3×1 mL) and incubated with 250 µL of a pre-mixed staining solution from the 

FilmTracer™ LIVE/DEAD® Biofilm Viability kit (Invitrogen) for 30 min in dark. The kit 

provides a two-color fluorescence assay (SYTO® 9 and propidium iodide) of bacterial 

viability where all cells will be stained fluorescent green and cells with damaged membranes 

will be counter-stained and fluoresce red. The surfaces were then washed, transferred to black 

24-well plates (lumox® multiwell, Sarstedt), and 500 µL saline was added to each surface. 

The microtitre plate was read by a FLUOstar Omega microplate reader (BMG Labtech, 
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Germany) for fluorescence, multichromatic, top optic reading, using excitation filter 485 nm 

and emission filter 520 nm. A scan matrix of 20x20 was used together with gains set to 1500 

for SYTO9 and 2000 for PI fluorofores. Non-stained surfaces served as blanks. The 

experiment was repeated four times. 

Viable counts  
 
In order to test the initial adhesion and biofilm formation capacity of S. epidermidis on AuNP 

and Au the following static adhesion experiment was performed twice. An inoculum of 105 

CFU/mL of S. epidermidis was prepared in RPMI medium and a total of 1 mL was added 

onto AuNP and smooth Au surfaces (n = 3). The surfaces and the bacterial suspension were 

incubated for 2 h, 24 h or 48 h at 37˚C under static conditions. After each time-point was 

reached, the surfaces were washed to remove non-adherent bacterial cells. The surfaces were 

transferred to new tubes containing 1 mL 0.9% saline + 0.1% triton-X, sonicated for 30 sec at 

40 kHz and hard vortexed for 1 min in order to dislodge the adherent bacteria and break 

aggregates. SEM analysis of the surfaces afterwards showed a good detachment procedure 

with most of the surface area cleaned from bacteria. The sonicated suspension was assessed 

by quantitative cultures on blood agar plates. The number of colony-forming units (CFU) per 

surface was quantified by adding 0.1 mL of the sonicated suspension to serial dilutions until 

10-6 in 0.9% saline + 0.1% triton-X. From the undiluted and the six dilutions CFU counting 

was performed (double measurements). 

Scanning electron microscopy  
 
Initial adherence and biofilm formation of S. epidermidis on AuNP and Au was assessed 

morphologically using SEM. Samples were washed with HBSS and fixated in 2% 

paraformaldehyde and 2.5% glutaraldehyde in 0.15 M sodium cacodylate buffer (pH 7.2) over 

night at 4°C. The samples were washed with 0.15 M sodium cacodylate buffer and post-

fixated with 1% osmium tetroxide in 0.1 M sodium cacodylate buffer for 2 h at 4°C. Contrast 
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enhancement was performed with 1% thiocarbohydrazide for 10 min at room temperature 

followed by incubation in 1% osmium tetroxide in 0.1 M sodium cacodylate buffer for 1 h at 

4°C. Dehydration was performed in a graded series of ethanol (70%-99.5%) and critical point 

drying by hexamethyldisilizane evaporation. The samples were mounted on stubs and 

sputtered with palladium before viewing in Zeiss 982 Gemini SEM operated at 3 kV.  

Confocal laser scanning microscopy  
 
To determine the capacity of S. epidermidis to form biofilm when growing onto AuNP and 

Au surfaces, 103-104 CFU/mL of S. epidermidis was incubated statically on the surfaces for 2 

h, 24 h and 48 h. After each adhesion time-point the surfaces (n = 1) were carefully washed to 

remove non-adherent cells. A total of 200 µl of FilmTracer™ LIVE/DEAD® staining solution 

was added to the biofilms for 30 min at room temperature under dark conditions. Thereafter 

the surfaces were carefully washed and placed in 60 mm petri plates covered in saline for in 

situ visualization under the Confocal Microscope LSM710 (Carl Zeiss AB, water objective 

20x/1.0). Gain settings for the 488 nm argon laser/561 nm DPSS laser at 2 h were set to 

721/752, at 24 h to 519/691 and at 48 h to 400/691. Five different equidistant random spots (4 

in the corners and 1 in the middle of the surface) were chosen to perform z-stacks every 3 µm. 

Three independent experiments were performed. Confocal biofilm images were analyzed 

using the COMSTAT2 (http://www.COMSTAT2.dk; Lyngby, Denmark) software that 

converts biofilm image stacks into three-dimensional outputs for quantitative analysis. The 

parameters analyzed were: biomass, maximum thickness and area occupied at the surface 

(z=0 µm) of live and dead cells (22). Biomass is how much of the image stack is covered by 

bacteria (live and dead); the maximum thickness represents the compacted thickness of the 

biofilm image stack; and the area occupied by bacteria in the layer closest to the surface is the 

area occupied by biomass (cells) in the first stack image (the substratum). The images were 

thresholded with a threshold of 30 for 2 h, 35 for 24 h and 40 for 48 h. 
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Monocyte co-culture experiments  

Monocyte isolation, characterization and culture  
 
Human monocytes were isolated from buffy coats obtained from six blood donors by using 

Ficoll separation followed by negative selection on a magnetic column (MACS, Miltenyi 

Biotec); viability 98.7±1.9%. For characterization, samples of 500.000 cells were stained with 

CD14-PE and CD45-FITC antibodies and analyzed using flow cytometry (BD 

FACSCalibur™, BD Biosciences), and the monocyte purity was estimated to 85.4±4.7%. The 

cells were seeded on nanostructured (AuNP) or smooth (Au) gold squares (8×8 mm), on cell 

culture treated Thermanox® (Thx) plastic coverslips (diameter 13 mm; Nunc™, Thermo 

Scientific, Denmark), and on tissue culture treated polystyrene (TCP) in 24- or 48-well plates 

(Falcon™, BD Biosciences, Bedford, MA, USA or Nunc™, Thermo Scientific, Denmark) to 

best fit the size of the different materials. The experimental procedure is outlined in Figure 1. 

One million cells in 1 mL RPMI medium supplemented with 5% fetal bovine serum were 

seeded in all wells and cultured in humidified air with 5% CO2 at 37°C. Monocytes were 

allowed to adhere to the surfaces for 18 h, after which the medium was removed, the surfaces 

were transferred to new wells and 1 mL fresh medium was added. After further 24 h culture, 

the cells were divided into three groups: 1) unstimulated cells, 2) zymosan-stimulated cells, or 

3) S. epidermidis-stimulated cells. Monocytes were stimulated by adding serum-opsonized 

zymosan A particles (final concentration 2×107 particles/mL; Sigma-Aldrich) or serum-

opsonized S. epidermidis (final concentration 108 CFU/mL) for 1 h, corresponding to a 

particle-to-cell ratio of 20 particles and 102 bacterial cells, respectively, per seeded monocyte. 

Zymosan was opsonized in active human serum in phosphate buffer solution (PBS) (1:1) for 1 

h at 37°C. From an overnight culture of S. epidermidis on blood agar, a colony was inoculated 

in Tryptic Soy Broth (TSB) and incubated at 37°C for 4 h under shaking (150 rpm) until 

exponential growth (in duplicate), and opsonized in 10% active human serum in Hank’s 
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Buffered Salt Solution (HBSS) for 5 min at 37°C. Triplicate or duplicate samples were used 

for all analyses and six independent experiments were performed.  

Figure 1: Scheme for co-culture experiments. 

 

Monocyte viability  
 
Cell viability was assessed by using the centrifuged cell medium for evaluation of lactate 

dehydrogenase (LDH) content (C-laboratory, Sahlgrenska University Hospital, Göteborg, 

Sweden). LDH is a marker of cell membrane injury that can be measured using a 

spectrophotometric evaluation of LDH-mediated conversion of lactate to pyruvate. The 

detection limit of the instrument was 0.17 µkatal/L. Values below the detection limit were set 

to 0.16 µkatal/L. 

Monocyte quantification  
 
Adhesion of monocytes on AuNP, Au, TCP and Thx was assessed 1) after 18 h and 2) after 

the 1 h stimulation period to compare cell adhesion of unstimulated, zymosan-stimulated, and 

S. epidermidis-stimulated samples. Cells in the supernatant and on the plastic (TCP) below 

the materials in the well were also counted separately. Quantification of cells was performed 

by using the Nucleocounter®-system (ChemoMetec A/S, Denmark). The samples were 
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treated with lysis buffer and stabilization buffer. Lysed samples were loaded in a 

Nucleocassette™ precoated with fluorescent propidium iodide that stains the cell nuclei and 

then quantified in the NucleoCounter®. 

Scanning electron microscopy  
 
Adherent monocytes with and without stimulation of zymosan or S. epidermidis on AuNP, Au 

and Thx were fixated and prepared as described previously. The surfaces were visualized by 

using a mixture of secondary and backscattered electrons in a Zeiss 982 Gemini SEM 

operated at 3 kV.  

Quantitative RT-PCR  
 
RNA was extracted from 137 samples in total, resulting in n = 8-15 for each group. Cells on 

AuNP, Au, TCP and Thx were lysed in 200 µL RLT lysis buffer (Qiagen, Germany) and 

frozen at -80°C prior to total RNA extraction using the NucleoSpin® RNA XS kit (Macherey-

Nagel, Germany), as described in the manufacturer’s instructions. The RNA quality and 

concentration were determined for selected samples using an Agilent 2100 Bioanalyzer 

(Agilent Technologies, Foster City, CA, USA) for pico profile, and a nanospectrophotometer 

(IMPLEN NanoPhotometer™ Pearl, Germany).  

Total RNA was converted to cDNA by using TATAA GrandScript cDNA Synthesis Kit 

(TATAA Biocenter AB, Sweden) in 10 µL reactions. The samples were diluted 15X and real-

time RT-PCR analysis was performed in duplicates in 10 µL reactions on the QuantStudio 

12K Flex platform (Life Technologies) using TATAA SYBR® GrandMaster Mix (TATAA 

Biocenter AB) and primers (final conc. 400 nM) for 10 target genes and two reference genes. 

The genes of interest were coding for interleukin 1beta (IL-1β), IL-6, IL-10, tumor necrosis 

factor alfa (TNF-α), integrin β1 (CD29), integrin β2 (CD18), integrin αv (CD51), integrin αm 

(CD11b), superoxide dismutase 2 (SOD2) and Nox2 (cytochrome b-245). Peptidylprolyl 

isomerase A (PPIA) and ribosomal protein large P0 (RPLP) was identified as the best 
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reference genes in the TATAA reference gene panel based on analysis in GenEx software 

(MultiD Analyses AB, Sweden) using the NormFinder and the geNorm algorithms. Raw data 

was analyzed in QuantStudio 12K Flex Software 1.1.2 (Life Technologies) and processed in 

GenEx using the relative comparative Cq method.  

Cytokine determination  
 
After centrifugation of medium from cells cultured on AuNP, Au, TCP and Thx surfaces with 

or without zymosan or S. epidermidis, the supernatant was analyzed with respect to IL-1β, IL-

6, IL-10 and TNF-α using commercial ELISA kits (Quantikine®, R&D Systems) according to 

the manufacturer’s instructions. The detection limits are less than 1 pg/mL, 0.7 pg/mL, 3.9 

pg/mL and 5.5 pg/mL, respectively. The optical density was measured with a microplate 

reader and translated to cytokine levels using the accompanied software.  

Reactive oxygen species measured by luminol-mediated chemiluminescence  
 
Monocytes/Macrophages cultured on AuNP, Au, TCP and Thx (n = 2-3) were evaluated for 

their ability to produce reactive oxygen species (ROS) upon stimulation with zymosan or S. 

epidermidis. The surfaces were transferred to white 24-well plates (Visiplate™ TC, 

PerkinElmer, USA) and HBSS++ (with Ca2+ and Mg2+) with zymosan or S. epidermidis 

stimulus was added to a final volume of 1.96 mL before insertion into a microplate reader 

(37°C) equipped with luminescence optics and a 3 mm light guide for increased sensitivity 

(gain 4000). A kinetic program was run for 80-90 cycles (1 min per cycle) where light 

emission from each well was measured every minute. In the fifth cycle, 40 µL of luminol was 

automatically injected (final concentration of 5×10-5 M; Fluka/Sigma-Aldrich (Cat No 

09253), Germany) followed by 5 seconds of shaking, for detection of reactive oxygen species 

formed in the samples. Non-stimulated samples were used as controls (n = 2). Upon 

termination of the experiment the cells were quantified. One well without seeded cells, but 

with HBSS and luminol, was used as a blank. The obtained data points were divided by the 
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total cell number in each well and the values were analyzed in MATLAB®, software version 

R2011a (MathWorks, Inc., MA, USA) where graphs were created using the Smoothing 

Spline-method (smoothing parameter 0.001). The curve for each sample was then analyzed 

for total chemiluminescence (CL) produced (integral under the curve), peak CL and time to 

peak CL, for x-values between 3 and 80 min.  

Focused ion beam scanning electron microscopy  
 
Samples prepared for morphological observations of interactions between 

monocytes/macrophages and zymosan and S. epidermidis, respectively, were analyzed in a 

dual beam focused ion beam (FIB) system (Strata DB 235, FEI, The Netherlands) operated at 

30.0 kV. When interesting cells were localized, a protecting layer of platinum was sputtered 

over the cell surface and cross sections of the cells were exposed by FIB-milling and then 

imaged by SEM. 

Statistics  
 
All results are presented as mean ± standard deviation. The data was statistically evaluated by 

one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test or independent 

sample t-test (2-tailed) using 95% confidence interval in PASW/Statistics 18.0 (SPSS Inc., 

Chicago, USA) or SPSS version 21 (IBM Corp., Armonk, NY, USA). Evaluation of gene 

expression data was based on the logarithmic Cq-values. Statistical differences in the graphs 

and tables are denoted by letters, where values/bars in the same table/graph that share the 

same letters are significantly different (P < 0.05).  
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Results 

Materials  

Material characterization 
 
Physicochemical properties of the experimental surfaces are summarized in Figure 2. Surface 

roughness was increased on the smooth gold substrates from 0.9 to 32 nm (rms) by the 

immobilized nanoparticles (AuNP). On TCP and Thx the roughness was expectedly low (1.9 

nm rms). Au, TCP and Thx had water contact angles in the same range, while AuNP 

demonstrated a considerably more hydrophilic surface. The lower contact angle on 

nanostructured surfaces is in accordance with Wenzel’s theory of increased wetting on 

nanostructured hydrophilic surfaces.(23) Average particle size and surface coverage of the 

AuNP surface was 31±6 nm and 38±4% respectively. On the AuND and AuNL surfaces the 

average particle size was 39±2 nm and the particle surface coverage 28% and 17%.

 

Figure 2: Material characterization of AuNP (A), Au (B), TCP (C) and Thx (D). Top panel: SEM. Middle panel: 
AFM. Bottom panel: Physicochemical properties 
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Bacterial adhesion and biofilm formation on nanotopographic versus 
smooth surfaces  

Live and dead fluorescence microplate readings  
 
After 24 h incubation, significantly more live bacteria (Figure 3) were detected on smooth Au 

surfaces compared to AuNL and AuND. No differences were seen in the amount of dead 

bacteria.  

 

 

 

 

 

 

 

 
Figure 3: Live and dead fluorescence staining of adherent Staphylococcus epidermidis on AuNP and Au after 
24h static incubation in RPMI-medium. Data represents mean ± standard deviation (n = 12). Significant 
differences between surfaces are indicated by letters (P < 0.05).  
 

Viable counts  
 
Similar amounts of viable S. epidermidis adhered to both AuNP and Au surfaces when 

recovered after 2, 24 and 48 h (Figure 4). The major increase in viable numbers occurred 

during the period from 2 to 24 h, when the formation of the biofilm and accumulation phase 

commonly take place. From 24 h to 48 h there was a small increase in viable numbers on both 

surfaces; this may be due to a lack of 

nutrients (no change of media) and/or 

dispersal events from the biofilm. 

Figure 4: Viable counts of adherent Staphylococcus 
epidermidis on AuNP and Au after 2, 24 and 48 h of 
static incubation in RPMI medium. Data represents 
mean ± standard deviation (n = 6). 
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Scanning electron microscopy  
 
SEM analysis of S. epidermidis on AuNP and Au revealed very few attached cells after 2 h on 

both surfaces. After 24 and 48 h the amount of bacteria had increased considerably and a 

general impression was that bacterial cells on smooth Au had an earlier onset of biofilm 

formation compared to AuNP. After 24 h the bacterial cells on smooth Au displayed 

intercellular slime connecting biofilm, while this was observed on AuNP after 48 h (Fig. 5). 

In addition, more mature biofilms with higher tower formations were observed on Au 

compared to AuNP after 48 h (Figure. 5).  

 

Figure 5: Staphylococcus epidermidis adherent on AuNP and Au after 24 and 48 h as visualized with SEM. 
After 24 h S. epidermidis on smooth Au surfaces (B) displayed more cell-connecting slime compared to 
nanostructured Au (A). A mature biofilm with high tower formations was seen on smooth surfaces (D) after 48 
h, while the bacteria on nanostructured Au (C) were more horizontally scattered.  
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Confocal laser scanning microscopy 
 
Figure 6 shows the results of the analysis of the confocal laser scanning microscopy (CLSM)  

images taken from biofilms. After 2 h of static adhesion of S. epidermidis to Au and AuNP 

surfaces, significantly more amount of dead biomass was found on nanostructured surfaces 

compared to smooth. 

 

 
 
Figure 6:  
CLSM analysis of Staphylococcus epidermidis 
biofilms grown on Au and AuNP surfaces for 2, 24 
and 48 h under static incubation in RPMI medium. 
The total biomass, the maximum thickness of the 
biofilm and the area occupied at the surface by live 
and dead cells were analyzed by COMSTAT2 
software.  
Data represents mean (n = 3). Significant 
differences between surfaces are indicated by 
letters (P < 0.05). 
 

Furthermore, the area occupied by dead cells in close contact to the surface was likewise 

greater on nanostructured than on smooth surfaces. Additionally, after 24 h of biofilm 

formation the area occupied by dead cells on nanostructured surfaces was also significantly 

greater (Figure 7). 
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Figure 7: Live and dead 
fluorescence staining of S. 
epidermidis at the surface 
interface (z=0-3 µm) on AuNP 
(A) and Au (B) surfaces after 24 h 
of static incubation in RPMI 
medium as analyzed by CLSM. 
Green indicates live cells; red 
indicates dead cells. 
 

 

Overall, thicker biofilms of both live and dead cells were formed on smooth compared to 

nanostructured surfaces after 24 h and 48 h.  

Monocyte co-culture experiments  

Monocyte viability  
 
The cell viability, as measured by LDH, was high on all materials, irrespective of zymosan- or 

S. epidermidis-stimulation, with average values between 0.2 and 0.4 µkatal/L. 

Monocyte adhesion  
 
Significantly more cells attached to TCP compared to all other materials, while Thx had 

significantly less adherent cells compared to all other materials (Figure 8). Interestingly, upon 

stimulation the adhesion pattern differed between the materials: cell attachment increased on 

TCP, while it decreased on both AuNP and Au when compared to non-challenged cells 

(Figure 8).  

 
Figure 8: Number of adherent monocytes per 
mm2 on AuNP, Au, TCP and Thx after 18 h 
primary adhesion followed by 24 h culture and 
1 h challenge with either opsonized zymosan 
particles or opsonized Staphylococcus 
epidermidis. Unstimulated cells were used as 
control. Data represents mean ± standard 
deviation (n = 11-15). Significant differences 
between treatments are indicated by letters (P < 
0.05). 
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Despite these differences in adherent cells, the number of supernatant cells increased with 

zymosan- and even more with S. epidermidis stimulation for all materials. 

Adherent cells on AuNP, Au and Thx were viewed in SEM with and without addition of 

stimuli (Figure 9).  

 

Figure 9: Monocytes on AuNP (A), Au (B) and Thx (C) surfaces in general demonstrated a rounded 
morphology with a moderate number of membrane ruffles/ridges with non-preferential directions. The cell-
material surface interaction was morphologically evident in areas with cytoplasmic extensions, either being in 
the form of distinct, thin, spikes of variable length (arrow in A) or as thin, spread extensions (arrows in B and C). 
Cells with a polarized morphology were also observed (examples in B and C), suggestive of being in the process 
of attachment, detachment or migration. Details of monocyte-zymosan particle interactions are observed 
morphologically in D-F.  Typically, oval shaped zymosan particles having finely, undulating ridges were clearly 
distinguishable. Several zymosan (z) particles were enveloped by pseudopods (arrows). A large number of S. 
epidermidis (being 0.5-1 µm round shaped cocci) were detected in close association with the monocyte 
membrane (G-I). Multiple bacteria (some of which are denoted b) were clustered and enveloped by large, thin-
walled pseudopods (arrows) in an apparent phagocytic process. Notes: z indicates zymosan particles; b indicates 
bacteria (S. epidermidis) 

The cells had a lot of contacts with the different preys, sometimes with extending filopodia 

reaching out for the preys. Many preys were also attached directly to the cell body-membrane 

and some of these were half way phagocytised into the monocyte/macrophage. A general 
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impression was that the cell-surface attachment tended to be more filopodia-dependent on the 

AuNP surfaces, while cells on the smooth Au and Thx surfaces had a much larger part of the 

plasma membrane in close contact with the surface. In addition, presumingly dead cells 

(apoptotic bodies) were seen free on the surface and in the process of being phagocytised by 

cells on all surfaces. Induction of apoptosis in monocytes/macrophages is normal in in vitro 

environments (24) and the process per se is crucial for proper maintenance of the immune 

system. 

Monocyte gene expression  
 
To explore whether the different material surfaces induced different gene expression, a panel 

of four cytokines was used (Figure 10). When comparing the different materials during 

unstimulated conditions, Thx showed significantly higher expression of TNF-α and IL-1β. 

However, AuNP did not induce a different response. After a 1 h stimulation period with either 

zymosan or S. epidermidis no differences were noted in the gene expression between any of 

the surfaces. Nevertheless, the stimulation provoked a significant increase of the pro-

inflammatory cytokines TNF-α, IL-1β and IL-6 upon stimulation with both zymosan and S. 

epidermidis, with higher levels for cells stimulated with S. epidermidis, on all materials. The 

anti-inflammatory IL-10 was significantly higher for S. epidermidis-stimulated samples on all 

materials, but not for zymosan. The data on gene expression of SOD2 and Nox2, relevant for 

cell oxidative metabolism, is found in Figure 11.  
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Figure 10. Gene expression (left panel) and cytokine secretion (right panel) of pro- and anti-inflammatory 
cytokines from monocytes on AuNP, Au, TCP and Thx. Gene expression of TNF-α (A), IL-1β (C), IL-6 (E) and 
IL-10 (G) was analyzed from adherent cells after 1 h stimulation with either opsonized zymosan particles or 
opsonized Staphylococcus epidermidis. Secretion of TNF-α (B), IL-1β (D), IL-6 (F) and IL-10 (H) proteins is 
presented as amount of cytokines per 10.000 total cells. Unstimulated cells were used as control.  
Data represents mean ± standard deviation (n = 8-15 and n = 11-18 for gene expression and protein data, 
respectively). Significant differences between stimulus or material surfaces are indicated by letters (P < 0.05). 
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Figure 11. Gene expression of oxidative burst-related enzymes SOD2 (A) and Nox2 (B) in adherent monocytes 
on AuNP, Au, TCP and Thx after 1 h stimulation with either opsonized zymosan particles or opsonized 
Staphylococcus epidermidis. Unstimulated cells were used as control. 
Data represents mean ± standard deviation (n = 8-15). Significant differences between stimulus or material 
surfaces are indicated by letters (P < 0.05). 
 

Unstimulated cells showed a significantly higher expression on Thx. This difference was 

however leveled out upon stimulation when the expression was significantly induced, both for 

zymosan and even more for S. epidermidis. Nox2 was, on the other hand, relatively stable for 

AuNP and Au, while a significant decrease in expression was noted for TCP and Thx when 

stimulated with S. epidermidis. 

Four different cell adhesion markers were analysed: integrin β1 (CD29), integrin β2 (CD18), 

integrin αv (CD51) and integrin αM (CD11b). Heterodimers of integrin β2 and integrin αM 

constitute the complement receptor 3 (CR3) which is implicated e.g. in the phagocytosis of 

serum opsonized microbes. However, gene expression data revealed a decrease in the 

expression of the CR3 subunits upon stimulation, with significant differences between 12). 

No significant differences were found for integrin β1 and integrin αv. unstimulated and S. 

epidermidis-stimulated samples for integrin β2 on all surfaces (Figure 12.) 
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Figure 12. Gene expression of integrin β1 (A), integrin αv (B), integrin β2 (C) and integrin αM (D) in adherent 
monocytes on AuNP, Au, TCP and Thx after 1 h stimulation with either opsonized zymosan particles or 
opsonized Staphylococcus epidermidis. Unstimulated cells were used as control. 
Data represents mean ± standard deviation (n = 8-15). Significant differences between stimulus or material 
surfaces are indicated by letters (P < 0.05). 
 

Monocyte cytokine secretion  
 
Cytokines detected in the supernatants of stimulated or unstimulated cells on different 

material surfaces are shown in Figure 10. Cells on all surfaces were induced to secrete 

significantly more TNF-α upon S. epidermidis stimulation. Zymosan also induced a small 

TNF-α increase, although not significantly different to unstimulated samples. A more 

pronounced production of IL-10 was noted for zymosan stimulated samples on AuNP. 

However, the amounts of IL-1β and IL-6 were similar for all surfaces and stimuli. 
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Monocyte oxidative response and phagocytosis 
 
Stimulation of the cells with opsonized zymosan particles or opsonized S. epidermidis 

resulted in a significant increase in ROS production (Figure 13), while the unstimulated cells 

had CL production in the same level as the HBSS blanks. The amount of CL produced 

showed to be linearly dependent on the number of cells, allowing for the use of CL per cell 

when comparing activity on different materials. Also, opsonization of zymosan and S. 

epidermidis caused a higher oxidative response than the use of non-opsonized preys (data not 

shown). Interestingly, cells challenged with zymosan always gave a significantly higher 

response than cells challenged with S. epidermidis, (both total ROS response and peak ROS) 

(Figure 13, Table 1).  

 

Figure 13. Representative graph of monocyte ROS production on AuNP, Au, TCP and Thx in response to 
opsonized zymosan particles and opsonized Staphylococcus epidermidis as measured by CL.  
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Table 1. Production of reactive oxygen species (as measured by chemiluminescence) in monocytes cultured on 
AuNP, Au, TCP and Thx surfaces in response to opsonized zymosan particles or opsonized Staphylococcus 
epidermidis. 

 Zymosan  S. epidermidis 
 Total ROS 

(RLU/cell, 
10-2) 

Peak ROS 
(RLU/cell, 

10-3) 

Time to 
peak 
(min) 

 Total ROS 
(RLU/cell, 

10-2) 

Peak ROS 
(RLU/cell, 

10-3) 

Time to 
peak 
(min) 

AuNP 205±59a 44±14b 56.7±6.2c  49±24e 10±4h 60.2±7.7k 
Au 226±62 48±14 55.7±6.0d  45±18f 9±3i 54.0±11.5l,m 
TCP 224±90 47±18 59.5±6.6  74±46 e,f,g 16±7 h,I,j 69.5±11.1k,l 
Thx 266±84a 57±20b 62.5±8.7c,d  47±29g 10±5j 67.1±9.6m 
Significant differences between material surfaces are indicated by letter superscripts (P < 0.05).  

 

The amount of total ROS response per cell (integral under the curve) differed between 

materials and preys (Table 1). Cells on Thx had the highest activity when stimulated with 

zymosan, while cells on TCP had the highest activity when stimulated with S. epidermidis. 

The time to peak was not consistent between the different stimuli, but was always faster for 

the two Au-surfaces compared to the two plastic surfaces. 

Increased ROS levels indicate interaction between the cells and zymosan/S. epidermidis, but 

to prove internalization of the preys the FIB-technique was employed. Although the cells did 

not always have visible contact with the preys on the cell surface, a cut through the cell 

revealed internalized particles and bacteria in the cell interior, irrespective of the surface used 

(Figure 14). S. epidermidis was clearly seen as small compact round cocci, while the zymosan 

was more structured and harder to discern. Unstimulated cells did not reveal similar structures 

in the cell interior. 
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Figure 14. Phagocytosis of opsonized zymosan particles and opsonized Staphylococcus epidermidis by 
monocytes. Internalization of zymosan particles (B) and S. epidermidis (C) was evident on all surfaces, 
exemplified here by monocytes on AuNP, after 1 h of stimulation. Unstimulated monocytes lacked presence of 
internal preys (A). The cell surface was protected by a thin platinum film before ion milling of the cell in a FIB-
SEM. Zymosan (B) and S. epidermidis (C), some of which are marked by arrows, are internalized by monocytes. 
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Discussion  
 
There are at least two possible mechanisms by which material surfaces can reduce the 

incidence of medical device-related infections. Firstly, the material surface may have direct 

effects on the microorganisms. Secondly, the surface may have indirect effects on 

microorganisms by promoting antimicrobial host defense mechanisms. In an in vivo situation, 

both of these components are likely to be present, as well as proteins and other cell types. In 

the present study we tried to model these events in vitro by exploring the behaviour of 

bacteria and monocytes/macrophages separately as well as in combination. We have chosen 

to evaluate one specific type of nanofeatures, i.e. 35-40 nm sized Au particles immobilised on 

smooth Au surfaces, and compare it to its smooth counterpart. Previous studies have shown 

that these surfaces have identical surface chemistry (18), thus ensuring that any influence on 

the bacteria or monocytes derives solely from the changes in surface nanotopography.   

Surface nanotopography influences bacterial adhesion and biofilm 
formation  
 
The results of live/dead fluorescence plate readings demonstrated that the total number of live 

cells was significantly lower on the nanostructured Au-surfaces (AuND and AuNL) compared 

to the smooth Au control surfaces after 24 h adhesion. This also correlated with the results 

obtained from CLSM where the live/dead cell biomass ratio was 9x higher at the substrate 

interface (2 h) on smooth surfaces compared to nanostructured. This is in accordance with 

previous observations of decreased biofilm formation and bacterial adhesion on 

nanostructured substrates. (17, 25, 26) 

For a given surface chemistry, the degree of hydrophilicity will be influenced by 

nanostructures. On a hydrophilic surface, the presence of nanostructures will lead to increased 

hydrophilicity (23). This is exemplified by the lower water contact angle for the 

nanostructured gold surface, as compared with the smooth ones. Hydrophobic bacteria, like S. 
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epidermidis are known to detach more easily and form less biofilm on a hydrophilic surface 

(27-29). We therefore suggest that the the increased hydrophilicity induced by 

nanotopography, is a factor contributing to the lower amounts of live bacteria seen on the 

nanostructured surfaces in our experiments. Furthermore, a small decrease in live bacteria was 

found when increasing the density of nanoparticles from 17 to 28%, in agreement with a 

previous study on titanium substrates where an increased surface nanoroughness was shown 

to decrease bacterial adhesion (17).  

We do not exclude that effects apart from nanotopography may have influenced the 

differences in bacterial behavior on the smooth and nanostructured gold surfaces. In the in 

vivo environment, protein adsorption is a crucial step in both eukaryotic and prokaryotic cell 

attachment/adhesion (30, 31). The impact of surface chemical properties such as 

hydrophilicity and surface charge, and of nanotopography on protein adsorption is commonly 

acknowledged and are known determinants of the proteins that adsorb to a surface and in 

which manner (32-34). However, in the present study S. epidermidis was cultured in protein 

free RPMI medium on the different experimental surfaces to exclusively study the impact of 

surface nanotopography on bacterial adhesion.  

 

Overall, higher tower formations and thicker biofilms were found on the smooth surfaces than 

on nanostructured as seen by scanning electron and confocal microscopy. In addition, the fact 

that greater surface area was covered by both live and dead bacterial cells on AuNP surfaces 

indicate that bacteria spread more in the horizontal plane on the AuNP surfaces, and in the 

vertical plane on smooth surfaces (thicker biofilms).  

The initial adhesion events are important since it is when the direct effects of the surface are 

more evident and restrictions from nutrients and oxygen are usually not an issue. The CLSM 

observation that a significantly greater area of the AuNP surface interface was covered by 
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dead cells suggests some type of bactericidal effect upon direct contact with the gold 

nanotopography. In support, the initial adhesion (2 h) of S. epidermidis to nano and smooth 

surfaces also resulted in a significantly larger dead biomass (429% higher) at the nano surface 

when compared to dead biomass on smooth surface. In contrast, there was a tendency towards 

more live biomass on the smooth surfaces. To the best of our knowledge, this is the first 

report of a bactericidal effect induced solely by nanoparticles immobilized on a surface, since 

gold is not bactericidal per se (35). 

 

 

Figure 15. Bacteria-surface interface on AuNP and Au as visualized after ion milling in a FIB-SEM.  
The attachment of Staphylococcus epidermidis to AuNP relies on a few, discrete attachment points between the 
bacterial cell wall and the immobilized nanoparticles (arrows in A), while the cell wall is in continuous contact 
with the smooth surface (arrow in B).  
 
We consider one important factor to be the smaller contact area between the rigid cell wall of 

the bacteria and the surface, as verified by FIB slice and view, resulting in fewer sites 

available for adhesion receptor-ligand connections on nanostructured surfaces. Figure 15. 

This may in turn lead to a different microenvironment that is formed in the confined volume 

under the bacterial cells and in between the nanoparticles, resulting in e.g. accumulation of 

waste products, change of pH, and limited flow of nutrients due to formation of a stagnant 

layer at the interface. Release of nanoparticles from the surface is highly unlikely to be the 

explanation for the lost bacterial viability due to the firm attachment to the substrate; in fact 

the nanoparticles are partly sintered to the underlying gold substrate, as seen in Hulander et al 
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(36). In addition, no visible signs of nanoparticle loss were seen in SEM when comparing the 

surfaces before and after culture. Based on these observations, a major question is if 

nanoparticles immobilized on a surface may directly interact with the bacterial cell wall and 

induce cell death. At present, such assumption has not been verified. The vertical dimension 

and aspect ratio of the present, immobilized particles may be too small in order to fulfil such 

mechanism. On the other hand, gold nanoparticles in suspension have shown bactericidal 

effects in some studies. Cui Y et al. studied the molecular mechanism of action of bactericidal 

NPs on Gram-negative bacteria and demonstrated that Au nanoparticles target energy 

metabolism and transcription of bacteria by collapse of the membrane potential, resulting in 

decreased ATP levels and inhibition of the ribosomal subunit from binding tRNA (37).   

Differential cell adhesion on gold versus plastic upon microbial stimulation  
 
Different adhesion patterns of the monocytes/macrophages were seen on Au and AuNP 

compared to TCP: stimulation with zymosan and S. epidermidis induced a loss of adherent 

cells on Au and AuNP, despite the fact that AuNP presented a more hydrophilic substrate for 

cells. One hypothesis is that this is related to the Au chemistry and its impact on the 

subsequent protein adsorption that occurs on all surfaces prior to cell attachment. Albeit 

speculative, an explanation can be the use of different adhesion receptors on Au versus 

polystyrene (TCP). For example, some receptors are used for both adhesion and 

phagocytosis(38), and if these events coincide it may result in a detachment from the surface. 

Previous in vitro studies have demonstrated an important role of integrin β2 receptors for the 

adhesion to material surfaces, NF-κB transcription factor activation and IL-1β, IL-8, MIP-1α 

and MIP-1β expression (39-42). Additionally, in vivo studies have revealed a significantly 

higher expression of integrin β2 in cells adherent to an implant surface with combined micro- 

and nano-scale surface texture than a relatively smooth surface (43). The present results show 

that the integrin β2 gene expression in adherent cells decreased markedly after stimulation 
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with zymosan and S. epidermidis, suggesting a relationship between reduced integrin 

expression and loss of adherence. On the other hand, a reduced integrin β2 expression after 

stimulation with the different preys was also observed for the polymer substrates, suggesting 

that the interaction between Au and monocytes involves other integrins and attachment 

factors than on the polymer substrates. No firm evidence for this assumption was found after 

analyzing the gene expression of integrin β1, αv and αm in adherent cells. Further studies, 

using markers for additional integrins along with blocking experiments with antibodies, 

would therefore be of interest. 

Monocyte activation in response to different substrates and microbial 
stimulation  
 
Next, we analysed the activity of the cells by measuring the luminol-mediated 

chemiluminescence (detecting both intra- and extracellular ROS) (44) and the gene and 

protein expression of selected pro- and anti-inflammatory cytokines. PMN and monocytes are 

among the first cell types that become adherent to the surface of implants after insertion in 

vivo. The oxidative response and secretion of molecules are influenced both by the properties 

of the material and the component of their microenvironment (45-47). The early involvement 

of these cells plays an important role for the inflammatory events and the repair and/or 

regeneration of soft tissues and bone in association with the implant (48, 49). In addition, 

when these implant-tissue interface cells encounter and interact with live bacteria, 

components of their cell walls and other molecules, it is of paramount importance that an 

efficient immune response is elicited. A major observation in this study was that the amount 

of CL was dependent on both the type of material surface and the stimulus presented to the 

monocytes. After stimulation with zymosan and S. epidermidis, the total ROS production was 

higher in cells on polystyrene surfaces than on Au and AuNP. On the other hand, both Au and 

AuNP surfaces caused a more rapid response in cells challenged with zymosan and S. 
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epidermidis, indicating that the material surface properties influence both the speed and 

magnitude of the mounted oxidative response. As noted for cell adhesion, chemistry seems to 

have a more important role than nanotopography. Similarly, chemistry also played the most 

decisive role when examining TiO-surfaces with 110/160 nm hemispherical protrusions with 

different surface densities/coverage, where most differences in monocyte/macrophage 

adhesion and cytokine production and secretion were noted between TiO and TCP, while 

structured vs. smooth TiO did not differ (50). 

In the present study, zymosan promoted a higher ROS production than S. epidermidis. This is 

in agreement with Wagner & Bryers who showed that both opsonized zymosan and 

exogenous LPS were more potent CL inducers in human monocytes than live S. epidermidis 

(51). Serum-opsonized zymosan elicited a higher total CL in macrophages than opsonized S. 

epidermidis and Pseudomonas aeruginosa. Further, opsonization of S. epidermidis caused a 

higher oxidative response than non-opsonized S. epidermidis, indicating that activation of the 

cells via complement and Fc receptors play a role. Moreover, the gene expression of both pro- 

and anti-inflammatory cytokines as well as superoxide dismutase (SOD) was significantly 

higher in S. epidermidis stimulated samples, indicating that the cells are more active when 

challenged with live opsonized bacteria than with opsonized zymosan.  

Possible S. epidermidis molecular candidates for eliciting the ROS-production in monocytes 

stem from the work of Martinez-Martinez et al(52), showing that S. epidermidis cell wall 

peptidoglycan is the crucial CL inducing component in human PMN cells. The mechanism of 

CL response induced by S. epidermidis may involve the toll-like receptor 2 (TLR2) in 

activation of NF-KB, as demonstrated for peptidoglycan and lipoteichoic acid from Gram-

positive bacteria (53). 

The live, opsonized S. epidermidis efficiently induced a gene expression of pro-inflammatory 

TNF-α, IL-1β and IL-6 and anti-inflammatory IL-10. This effect, in contrast to that observed 
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for ROS production, was higher than with opsonized zymosan. Since this effect was observed 

for cells on all types of material substrates, no specific role of chemistry and/or 

nanotopography was suggested. An exception was the Thx surface which promoted a higher 

expression of pro-inflammatory cytokines in unstimulated cells than the other surfaces. 

On the protein level, our results demonstrated a significantly increased secretion of TNF-α by 

cells stimulated by live, opsonized S. epidermidis. Again, no specific modulatory effect of 

substrate properties was noted. In contrast, the secretion of IL-β and IL-6 had not increased 

after stimulation. However, the 1 h stimulation period could be too short for detecting the 

secretion of IL-1 and IL-6. Previously, Gram-negative LPS stimulation of human whole blood 

induced different time patterns of secreted TNF-α and IL-6 proteins, with a somewhat delayed 

gene expression and protein secretion for IL-6 in comparison with TNF-α (54). Likewise, the 

storage of precursor IL-1 intracellularly in human monocytes is followed by a continuous 

release of IL-1β, starting 2 h after synthesis (55). Zymosan stimulation promoted significantly 

higher secreted levels of IL-10 in monocytes on AuNP, suggesting an anti-inflammatory 

potential of the nanofeatures. Tentatively, released Au-ions from the surfaces could result in a 

anti-inflammatory reaction (56), but measurements of Au in the media (data not shown) 

indicated low but equal levels in Au and AuNP samples, while elevated levels of IL-10 was 

only seen for AuNP, indicating that the effect is caused by the nanofeatures rather than 

leaking Au-ions from the surface. Other studies have found lower gene expression of IL-1β 

and TNF-α on nano-modified TiO-surfaces (rms 4.8) compared to smooth surfaces using a 

murine macrophage cell line (57), and less TNF-α protein as well as more rounded human 

monocytes on 20 nm pores compared to 200 nm pores (11), indicating that small surface 

nanofeatures may have a down-regulatory effect on monocytes/macrophages.  
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Taken together, the present data shows that under unstimulated conditions, the different 

chemistries and topographies of the surfaces did not result in major differences in monocyte 

viability, surface-induced CL, gene expression and secretion of pro- and anti-inflammatory 

cytokines. On the other hand, a role of both Au and AuNP substrates was detected in specific 

inflammatory events when exposed to phagocytic preys, i.e. adhesion, rapidity of CL 

induction and anti-inflammatory IL-10 secretion. 

 
 
Conclusion  
 
The difference in surface chemistry (Au vs. polystyrene) seems to have larger effect on the 

monocytes/macrophages than nanotopography, both for adhesion and activity, when 

comparing unstimulated cells to zymosan and S. epidermidis stimulated cells. The response 

levels of the cells were more determined by the stimuli origin. However, the amount of live S. 

epidermidis was shown to decrease on nanostructured surfaces compared to smooth ones. In 

addition, direct contact of S. epidermidis with the nanostructured surfaces correlated with a 

loss in bacterial viability. We therefore suggest that the smaller contact area of the bacterial 

cell wall with the nanostructured surface as well as the increase in hydrophilicity caused by 

the nanostructures are important factors for the reduced adhesion and biofilm formation on 

the nanostructured gold surfaces..  
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Abbreviation list  
 
Au smooth gold surface 
AuND nanostructured gold surface (Nano Dense) 
AuNL nanostructured gold surface (Nano Light) 
AuNP nanostructured gold surface (Nano Particles) 
TCP tissue culture polystyrene 
Thx tissue culture treated Thermanox® plastic cover slips 
 
AFM atomic force microscopy 
BAI biomaterial-associated infections 
CFU colony forming units 
CL chemiluminescence 
CLSM confocal laser scanning microscopy 
HBSS Hank’s Buffered Salt Solution 
IL-1β  interleukin 1beta 
IL-10  interleukin 10 
IL-6  interleukin 6 
LDH lactate dehydrogenase 
OD optical density 
PBS  phosphate buffer solution  
ROS reactive oxygen species 
SEM scanning electron microscopy 
TNF- α tumor necrosis factor alfa 
TSB tryptic soy broth 
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Populärvetenskaplig sammanfattning  
 
I dagens samhälle med en allt större aktiv åldrande befolkning samt en sjukvård som kan 

erbjuda allt fler avancerade ingrepp ställs allt större krav på densamma. Operationer såsom 

exempelvis höftledsproteser, knäproteser och tandimplantat blir allt vanligare. Proteser, 

implantat och katetrar är för kroppen främmande material som i den bästa av världar skall 

vara lämpade för ändamålet i form av funktion och hållfasthet men även lika viktigt är att de 

skall vara kompatibla till kroppens vävnader, de skall vara biomaterial.   

Den generellt sett mest fruktade komplikationen till användandet av biomaterial är en 

infektion. Det beror på att infektioner i anslutning till biomaterial är mycket problematiska för 

patienten, hälso- och sjukvården samt samhället i stort. Konsekvenserna av en sådan infektion 

kan vara förödande, bl.a. i regel ett behov av att avlägsna implantatet men även livshotande 

systemiska infektioner kan uppkomma.  

Under normala förhållanden kommer bakterier och andra mikroorganismer som kommer in i 

kroppen hållas under kontroll av immunsystemet. Den första linjen av vårt immunförsvar 

innefattar en mängd faktorer, ex. barriärer såsom vår egen hud och slemhinnor, proteiner som 

dödar bakterier samt signalsubstanser som aktiverar våra försvarsceller, de vita 

blodkropparna. När ett främmande material, tex en höftprotes eller urinkateter, är närvarande 

försvåras vårt försvar bland annat genom att bakterier kan fastna på ytan av materialet och 

bilda en så kallad biofilm vilken består av bakterier tillsammans med slime som bakterierna 

har producerat.  

Denna biofilm skyddar bakterierna från de vita blodkropparna samt mot antibakteriella 

antikroppar som kroppen kan bilda såväl som mot antibiotika som får betydligt svårare att 

avdöda bakterierna. Dessa orsaker i kombination med att fler bakterier utvecklar resistens mot 

antibiotika är viktiga skäl för förebyggande åtgärder i syfte att minska infektioner vid 

användandet av biomaterial.  
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Vår egen huds normalflora som består av arter ur den gram-positiva familjen Staphylococcus, 

särskilt Staphylococcus epidermidis och Staphylococcus aureus är de dominerande arterna i 

infektioner på biomaterial och står för ca 66 % av dessa infektioner.  

 

Material med nanotopografi har tidigare undersökts med avseende på vidhäftning och 

funktionen hos olika celltyper, t.ex. bindvävsskapande celler (fibroblaster) och benskapande 

celler (osteoblaster) och nanostrukturerade material har också föreslagits spela en roll i 

bakteriell vidhäftning. En nanometer (nm) är en miljarddels meter vilket är en oerhört liten 

enhet. Som jämförelse är ett hårstrå som vi har på huvudet ca 60 mikrometer i diameter vilket 

innebär att det är 60 000 nm brett samt att en bakterie av typen S. epidermidis är ca 500 nm 

stor. 

 

I denna studie har vi undersökt huruvida nanostrukturer har en effekt på bakteriell vidhäftning 

och bildning av biofilm och/eller har en inverkan på beteendet hos immunceller som svar på 

mikrobiella stimuli. För detta ändamål har vi valt att använda guldtäckta kiseldioxidplattor 

(8x8mm) på vilka vi har fäst guldnanopartiklar som har varit 35-40 nm stora. Som kontroll 

har vi dels använt släta guldytor, dels två olika plastytor för att se vilken eventuell inverkan 

som guldytan i sig själv har på bakterierna.  

 

Resultaten i studien visar att skillnaden i ytornas kemi (guld i jämförelse med plast) verkar ha 

större effekt på kroppens försvarsceller, monocyterna än vad nanotopografin har, både för 

vidhäftning och aktivitet, detta när man jämför ostimulerade celler med celler som har blivit 

stimulerade av bakterier. Emellertid var mängden levande S. epidermidis minskad på 

nanostrukturerade guldytor jämfört med släta guldytor. Dessutom när S. epidermidis kom i 

direkt kontakt med de nanostrukturerade ytorna visade det på en förlust i bakteriell 
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livsduglighet. Våra data visar att bakteriell vidhäftning på nanostrukturerade hydrofila ytor är 

nära förbunden med den ökade ytenergin (ökad hydrofilicitet) vilken orsakas av förekomsten 

av nanostrukturer, vilket i sin tur resulterar i bakteriedöd och minskad vidhäftning. 

 

Biomaterial för att användas i olika typer av implantat är en viktig del i sjukvårdens 

möjligheter för att kunna erbjuda såväl gamla som unga goda möjligheter till ett aktivt och 

hälsosamt liv. Samhället i stort behöver samtidigt vara mer restriktivt vid förskrivning av 

antibiotika för att vi i framtiden skall kunna erbjuda en säker sjukvård med stora möjligheter 

till bot.  

Forskning inom området är därför mycket viktig för utvecklingen av nya säkra biomaterial 

och våra resultat visar att nanotopografi kan inhibera bakterietillväxt och därmed kan vara en 

möjlig väg att gå för at få färre implantat-relaterade infektioner. Slutligen behöver det forskas 

mer på olika material och ytskikt innan vi når fram till att nya material kan användas inom 

den kliniska vardagen men förutsättningarna ser ut att finnas för att möta de utmaningar som 

står oss till mötes.  

 

 


