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Abstract 
 
Insuring debt through credit default swaps (CDS) and collateralized debt obligations 
(CDO) has become increasingly more popular. Recent events such as the financial crisis 
of 2008 have shown that the credit models for these insurances have lacked severely in 
certain aspects. One commonly referred example of these ramifications that have ensued 
is the AIG, the largest insurance company in the United States, that were put into a 
serious liquidity crisis back in 2008 which prompted a large bailout by the U.S. 
government. The AIG incident made it evident that the instruments being used didn’t 
properly address a part of the credit exposure that is known as counterparty risk. 
Counterparty risk means the risk that the counterparty (in this case the insurance 
company) fails to meet its contractual obligations. 
  Several models that account for this type of risk have been introduced during the past 
two decades. The purpose of this thesis is to explore this idea of accounting for counter 
party risk in financial derivatives and how it affects the pricing adjustment of interest rate 
swaps. 
  We estimate the value of IRS agreements in the presence of counterparty risk by adding 
a credit value adjustment that is estimated using an intensity based approach. The 
intensity is assumed to be piecewise constant and is calibrated against observed market 
CDS–quotes using the bootstrapping method.  
  We find that a 5–year IRS with a low–risk counterparty with 95.4% survival probability 
during this period yields a credit adjustment of about 40 basis points whereas a 30–year 
IRS with a high–risk counterparty with 13.5% survival probability yields a credit value 
adjustment of almost 1000 basis points.  
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1 Introduction and overview 
 

The presence of counterparty credit risk in the trades of financial instruments has 
caught the attention since the aftermath of the credit crisis of 2008. The derivatives 
market is huge reaching over US$ 600 trillion by the end of 2010. They are popular 
because they have opened up for a way to easily reallocate and more efficiently 
manage different types of risk. The three most common risk types to hedge against 
using derivatives are interest rate risk, credit risk and currency risk. Before the credit 
crisis of 2008 a lot of loans, mortgages and corporate bonds with poor credit quality 
were issued which created a demand for credit insurances which were issued through 
what is called credit default swap agreements (also known as CDS agreements). At 
the end of 2008 the AIG which is the largest insurance company in the U.S was on 
the brink of bankruptcy and the blame was put on its vast portfolio of CDS 
agreements. This made it evident that one big element of the credit risk was not 
accounted for in this situation; the counterparty default risk. The framework of 
management of counterparty credit risk extends beyond adding some extra premium 
on the exchange rates and the prices of financial instruments. It also affects the 
collateralization and decision making process of a bank. It is outlined both in the 
Basel II and the Basel III accords which are the regulations for how a bank should 
conduct their business in a safe and sound manner. 
  In this thesis we intend to look at the valuation of interest rate swaps in the presence 
of counterparty credit risk. In order to account for counterparty credit risk we need to 
understand credit risk and how we use CDS agreements to continuously quantify this 
risk in a given counterparty. 
  The rest of this paper is organized as follows; in Section 1 we take a tour on the 
swaps and derivatives market, explore how they are used to manage different kinds of 
credit risk. This section is finalized by discussing counterparty credit risk–which is 
the focus of this paper–and how it affects the valuation of financial derivatives. In 
Section 2 we establish a modeling framework for valuation of interest rate swaps with 
counterparty credit risk. The end of the section presents a valuation model of an 
interest rate swap that is adjusted to account for counterparty credit risk, we test this 
model under different risk scenarios and examine how these scenarios affect the 
counterparty adjustment. 

 

1.1 Swaps and the Swap Market 
 

A swap is an agreement that lets two entities swap their cash flows with each 
other. This is done without any initial monetary transactions which makes it 
more viable as an instrument as no transaction fees or limitations due to bound 
capital have to be dealt with. 
 
Swaps can involve any kind of cash flows and the main idea is to let a floating 
cash flow where there is a risk that it can be either too high or too low be 
exchanged for a fixed cash flow or another floating cash flow which has a 
different risk profile. 
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When entering into such a contract it is set up so that both cash flows in the 
contract has the same expected net present value, i.e. the contract is set up so 
that it is fair to both parties. This basically means that the value of the contract 
is zero when being entered into but may change value over time depending on 
circumstances. 
 
From a risk–neutral1 perspective it is hard to see any reason for anyone to 
enter into a swap agreement since it is a fair game and there is no comparative 
advantage for either party to enter into such an agreement in an arbitrage free 
world. In the real world however, an institution or company may face 
limitations that can only be overcome by entering into such agreements. One 
party may have legally bound contracts that no longer match his risk profile 
due to changed circumstances or he may face any other type of institutional 
frictions. There may be tax differences between the two parties or information 
asymmetries may motivate a party to enter into a swap agreement with 
another. In other words the incentives behind entering into a swap agreement 
cannot be quantified by risk neutral measurements. 
 
Swaps are rarely traded directly between parties, unless the parties are 
financial institutions. In the case of financial institutions, trades are more 
direct and they generally know exactly with whom they enter their swap 
agreements. Otherwise swaps are usually traded over the counter through 
financial intermediaries and it is generally not known with whom one swaps 
one’s cash flows. These intermediaries serve the function of taking the 
opposite side of each transaction of the swaps and carry the responsibility of 
matching and covering for defaulting counterparties in the swap agreement. 
The spread inherent in the swap agreement is intended to cover for the default 
risk involved in the counterparties managed by the financial intermediary 
(Saunders, Cornett 2006, Bodie, Kane, Marcus 2008, Hull 2006). The 
financial intermediary may have a whole portfolio of entities that are in a 
swap agreement with each other and at his disposal he may have a set of tools 
for managing and mitigating the risk that any of the parties would default on 
his or her liabilities. 
 
The most popular type of swaps involves interest rate swaps (IRS) where one 
party exchanges a floating rate loan for a fixed rate loan. The net present value 
of the fixed cash flows of an IRS is called the fixed leg and the expected net 
present value of the floating cash flows is called the floating leg (Lando 
2004). If the fixed leg is paid and the floating leg is received we call the 
agreement a payer IRS whereas if the floating leg is received and the fixed leg 
is paid we call it a receiver IRS or receiver swap. A typical life time of a swap 
ranges from 2 to 15 years (Hull 2006). Each cash flow, be it annual, 
semiannual or quarterly can be represented by a forward contract that matures 

                                                 
1 In a complete and arbitrage–free market there is a measure of valuation that is independent of investor’s 
risk–aversion. An investor’s individual choice with regards to his risk aversion is then explained by 
Fischer’s separation principle (Copeland–Weston 2005). 
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at that date. Therefore during this lifetime the swap agreement can be seen 
(and therefore be valued) as a stream or portfolio of forward rate agreements 
(FRA) with different maturities up to the end of the swap period (Brigo, 
Mercurio 2008). The most popular floating interest rate is the LIBOR rate 
which is the London Interbank Offer Rate. It is estimated from the average 
rate at which banks lend and borrow unsecured funds in the London wholesale 
money market. It is widely accepted as a reference rate in the valuation of 
financial instruments such as interest rate swaps, foreign currency options and 
forward rate agreements. The LIBOR rate is estimated for 1, 3, 6 and 12 
months maturities only (Bodie, Kane, Markus 2008). So if we are dealing with 
instruments that have a longer life–span than that, other sources of reference 
would be needed. 
 
The second most popular type of swap is the credit default swap (CDS). In 
this case the swap acts as an insurance policy against default risk. We 
illustrate the roles of the parties within a CDS swap agreement in Figure 1.1. 
Let us say that one party A has a borrower, or reference asset C who may 
default on payments and therefore exposes the lending party A to credit risk. 
The lending party A may enter into a swap agreement with a protection seller 
B which generally is an investment bank or a financial institution. From this 
swap agreement, party A can exchange with B a fixed stream of cash flows 
(premium leg) which is the insurance premium, for a compensation (default 
leg) if the insured reference asset C would default on payments (Lando 2004). 

 

 
Figure 1.1: A CDS swap agreement that is established between a 
protection buyer A and a protection seller B where B insures against the 
credit risk inherent in a reference asset C (usually a borrower or a bond 
seller).  

Source: Lando 2004 
 
The protection seller has in this situation a better ability to diversify against 
this risk (over perhaps 1000 different clients) than the buyer of the insurance 
may have. So, in this situation it is easy to see the incentives for both parties 
to enter into such an agreement. As credit default swaps have become 
increasingly more popular over the past 10 years, they have become a useful 
tool in the assessment of the credit risk of a company. The premium rate of 
CDS contracts is denoted by their CDS spreads which are noted publicly for 

A B 

C 
payments 

default leg 

premium leg 
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banks and larger companies. As shown in Figure 1.2, a notable event in the 
history of CDS trades is that the spread of many of them were considerably 
higher than normal about half a year before the credit crisis of 2008. The 
CDS–spreads of four large banks (Barclays Bank, BNP Paribas, Deutsche 
Bank and Royal Bank of Scotland) started to move turbulently after July 2007 
and a peak around March 2008 came when Bear–Stearns was on the brink of 
bankruptcy and was offered to be acquired by J P Morgan (Roddy March 2008 
Fortune). The acquisition by J P Morgan was finalized on May 30. We also 
see that the stock market crash at October 2008 gave rise to a spike, especially 
for the Royal Bank of Scotland. So the CDS market gave clear indications that 
something bad was about to happen and that the financial industry were aware 
of it before it happened.  
 

 
Figure 1.2: The CDS–spreads of four large banks illustrating the 
turbulence prior to the crisis of 2008.  

Source: Reuters/GFI (Through Alexander Herbertsson’s lecture notes) 
 
There are other types of swap agreements such as currency swaps where two 
parties usually exchange fixed rate interest payments in one currency with the 
same interest rate payments in another currency. We also have commodity 
swaps which can be seen as a set of forward contracts on a certain commodity. 
They are most commonly used by airline companies on crude oil to hedge 
against sudden price increases. We also have equity swaps where a variable 
cash flow from equity is exchanged for cash flows from a debt with a fixed or 
floating interest rate. 
 
The Bank for International Settlements reports statistical data on swap trades 
semiannually and the chart in Figure 1.3 shows the total amount outstanding 
for the three most popular swaps. 
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Figure 1.3: Interest rate swaps is the most traded type of financial 
instrument in the derivatives markets reaching almost US$ 400 trillion by 
December 2010. The chart also shows that the trading in credit default 
swaps declined after the financial crisis of 2008.  

Source: Bank for international settlements (bis.org) 
 
We see in Figure 1.3 that the market for interest rate contracts and foreign 
exchange contracts (currency swaps) is expanding whereas the popularity for 
the credit default swaps has become a bit tainted since the financial crisis of 
2008 and AIG’s ensuing liquidity crisis stemming from its large portfolio of 
outstanding CDS agreements and collateralized debt obligations (CDO). Most 
swaps have historically been traded over the counter whereas some of them 
are also traded on public futures markets. In recent years however, regulations 
in the Basel III accords have forced swaps and particularly CDS swaps to be 
traded via so called central counterparty clearing houses or CCP’s (bis.org 
2010). So experience from the AIG incident shows that when trading in the 
OTC market, the credit quality of the counterparty is quite important. 
 

1.2 Introduction to Credit Risk 
 

Credit risk is defined as the risk that an obligor fails to meet obligations 
towards creditors. When this happens the obligor is said to default. A default 
happens for example when a company goes bankrupt, or fails to pay a coupon 
on one of its issued bonds in time or when a household fails to meet its 
amortization schedule. So credit risk and default risk are pretty much 
equivalent. 
  The credit worthiness or credit risk of an entity (be it an individual, a 
company, or even a whole country) is commonly assessed by a credit bureau 
or a rating agency which gives it a credit rating (Hull 2006). The agencies 
Moody’s and Standards & Poor classify their ratings into brackets starting 
from AAA/Aaa (Standard & Poor’s / Moody’s) which is the highest rating 
proceeding with AA/Aa, A/A, BBB/Baa, BB/Ba, B/B and CCC/Caa. Each 
bracket is associated with a probability of default where a higher rating 
implies a lower probability of default (S&P Whitepaper 2009). From this 
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rating a risk–premium is added to the interest rate of a loan or a bond that is 
issued by this entity. The scale of credit rating is rather coarse and the rating 
bureaus increase the granularity by dividing the lower brackets into 
subcategories (such as Aa1, Aa2, … or A+, A, A–, … ). The challenge is to 
get a good estimate of the probability of default. Credit risk is not static. It 
varies over time and what is interesting to note is that for a bond with a high 
credit rating the default probability tend to increase with time whereas the 
default probability tend to decrease over time for a bond with a poor credit 
rating (Bodie, Kane, Marcus 2008). The reason for this is that for poor rating 
bonds the first couple of years may be critical whereas for high rating bonds 
there is the possibility that the financial health will decline over time. There 
are several ways to estimate the credit worthiness. The credit bureaus 
commonly look at financial history and the balance of assets and liabilities 
(Hull 2006). The downside of this is that these ratings are revised quite 
infrequently. So, financial institutions who deal with credit derivatives that 
require a more continuous assessment use more sophisticated statistical 
methods in their assessments. 
  If we ignore the influences from external market factors we have the 
following elements to consider involving credit risk and the modeling thereof 
(Schönbucher 2003): 

 
• Arrival risk – This is also known as the probability of default within a 

given time–period. 
• Timing risk – There is an uncertainty of the precise time of default, i.e. 

to know the timing of a default. In order to know the time of default 
one also needs to know about the arrival risk for all possible time 
horizons. This type of risk involves this type of uncertainty and one 
can say that timing risk is more detailed and specific than the arrival 
risk.  

• Recovery risk – A default of an obligor doesn’t generally imply that 
the loss on the creditor’s behalf will be 100%. The amount the creditor 
can claim from a default or bankruptcy is called the recovery. The risk 
involved with the severity of a default given that it had occurred is 
therefore called recovery risk. 

• Default dependency risk – This is the risk that several obligors default 
together. It is also known as default correlation risk and time has 
proven it to be one of the most crucial elements to consider when it 
comes to credit risk. 

 

1.3 Credit derivatives and usage of swaps to 
manage credit risk 

 
Like one can have insurance for one’s car or one’s house it is possible to 
insure a loan or a bond. The most popular way of insuring loans and bonds is 
through what is called credit default swaps (CDS). When one enters into a 
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CDS agreement one agrees to pay a stream of payments to the insurer for 
lending money to someone or buying obligations. Should the obligor default, 
the CDS agreement will terminate and the insurer will compensate for (the 
insured part of) whatever losses that will be incurred from the default. In 
derivatives terminology, as a buyer of a CDS it is said that one is long the 
premium leg (i.e. one pays the premium for the contract) and short the default 
leg (i.e. one receives payments from the contract in the event of a default) 
(Lando 2004). Another way to manage interest rate risk is through interest rate 
swaps where one can exchange a floating interest rate for a fixed rate. 
Managers of credit portfolios can also manage credit risk within a portfolio by 
buying collateralized debt obligations (CDO) which is a more complicated 
type of credit protection connected to a whole portfolio of bonds, loans or 
mortgages (Kane 2008). There are different types of CDOs but the most 
common is the synthetic CDO which is constructed synthetically from a 
portfolio of underlying CDS agreements. So the risk exposure in a synthetic 
CDO is taken on credit default swaps rather than directly on the bonds that the 
CDS agreements apply to. The obligations in the credit portfolio can be 
divided into tranches of asset classes and there are different CDOs that cover 
different tranches in a credit portfolio. All these insurances are classified as 
credit derivatives. 

 

1.4 Counterparty Credit Risk and Credit 
Derivatives 

 
In the transaction of credit derivatives (and other OTC traded derivatives) 
there is also a risk that the issuer of the derivatives defaults on his part of the 
contract and fails to honor the agreements within that contract. This type of 
risk is called counterparty credit risk (CCR) and recent events such as the 
financial crisis have marked their importance when dealing with credit 
derivatives. For years it has been a standard practice in the industry to mark 
portfolios of credit derivatives to market without taking this type of risk into 
account (Pykhtin, Zhu 2007). In the early days of the credit derivatives 
markets, only the financial institutions with the highest credit rating were 
dealing with them. They were and are offered over the counter, i.e. on the 
OTC market. Institutions with lower credit–worthiness were excluded entirely 
or had to meet additional trading requirements such as paying substantial 
premiums or were bound to rigid collateral terms. This was and is done by 
what is called margin agreements (Algoritmics Whitepapers 2011). A margin 
agreement limits the potential exposure by means of collateral requirements 
should the unsecured exposure exceed a pre–specified threshold. Whenever 
this threshold is exceeded, the other counterparty must supply additional 
collateral that is sufficient to cover this excess (Cesari, 2009). This is very 
much like the margin calls in a futures contract. In the early 2000’s the trade 
with derivatives grew rapidly and the outstanding notional of derivatives 
transactions reached over $500 trillion by early 2008 and over $600 trillion by 
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the end of that year. When it grows to such immensely huge amounts, it has 
turned out that counterparty credit risk plays a crucial role. By that time it was 
neglected because the financial institutions could act as clearing houses and 
limit the exposure by netting positive and negative positions and offset them 
with respect to a defaulting counterparty. While netting when used properly is 
a useful tool for mitigating risk, it complicates quantitative measurements 
significantly. Accounting for counterparty credit risk in OTC transactions is 
done by correcting by applying credit value adjustments (CVA). While CVA 
practices for adjusting with respect to counterparty credit risk are specified 
within the Basel II accords (Basel Committee on Banking Supervision July 
2005) and in the IAS39 accounting standards, many institutions neglected this 
part before 2008 and therefore vastly underestimated the CCR since the 
exposure was with “too big to fail” counterparties. In fact, the American banks 
were still merely implementing the Basel I accords prior to the 2008 stock 
market crash. Events such as the bankruptcy of Lehman Brothers, the bailout 
of Bear Stearns and the AIG crisis have changed the attitude towards 
counterparty credit risk dramatically among investors according to a recent 
survey (Algorithmics Whitepapers 2011). It has been repeatedly called for an 
industry overhaul and stricter regulations have been pushed for in the Basel III 
accords since the swaps were blamed for being a chief contributor to the 
collapse of Lehman Brothers and the AIG. In the meantime an intensive 
research is done in this field and new models addressing this type of risk are 
being under heavy development.  
 
As has been discussed in e.g. Canabarro, Duffie (2003) and Cesari (2009) 
there are the following definitions involved with counterparty credit risk: 
 

• Current Exposure (CE) – This is the current value of counterparty 
credit exposure 

• Potential Future Exposure (PFE) – This is a statistical measure of 
future exposure generated from a stochastic simulation. E.g. a 95% 
PFE with value 100 means that the future exposure of the forecasted 
horizon will not exceed 100 with 95% confidence. 

• Expected Exposure (EE) – This is the expected value of the exposure 
up to the end of the forecasted period. It is in particular the expected 
positive exposure (EPE) that is looked at in the assessment of 
counterparty credit risk. 

 
These are the tools to assess future exposure. There are several different 
models to estimate these exposures that are calibrated against measures such 
as trades agreements, legal entities, opinions, collateral holdings, limits etc, 
and they are commonly estimated through Monte Carlo simulations. The 
shape of the models is also different depending on the time horizons. It is for 
example generally required to add jump–diffusion processes for shorter time 
horizons (Das, Sundaram 1999) whereas jump diffusion becomes less 
important for longer time–horizons. There are mainly three ways to mitigate 
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this type of exposure, some of which have already been mentioned in this 
paper: 

 
• Collateralization – A margin account is set up with the counterparty 

and is generally managed in a fashion that is similar to margin 
accounts for futures positions in the public exchange market. The 
counterparty receives margin calls should the value of the positions go 
below a certain threshold and generally the overdraw should exceed a 
certain amount to mitigate the number of transactions to this account. 
So, if the overdraw limit is set to say 500 000, an overdraw by 100 000 
will not generate a margin call but an overdraw of 1 000 000 will. The 
period that defines the frequency at which collateral is monitored and 
being called for is called the call period which is typically one day. 
The time interval necessary to close out the position with the 
counterparty and re–hedge its resulting market risk should the 
counterparty default is called the cure period. This is the period to cure 
the “wound” that is caused from the default of the counterparty. The 
total time interval from the last exchange until the defaulting 
counterparty is closed out is called margin period of risk which is the 
sum of the call period and the cure period. A collection of trades 
whose values should be added in order to determine the collateral to be 
posted or received with this collection is called a margin node. 

• Netting – The exposure can be greatly reduced by what is called 
netting agreements. This agreement is a legally binding contract 
between two counterparties to aggregate the transactions between them 
in the event of default. This means that negative exposure in one 
contract will be offset by a positive exposure in another which can 
greatly reduce the overall counterparty exposure. A collection of trades 
within a position that can be netted is called a netting node. 

• Credit Value Adjustment (CVA) – The premium or credit value is 
adjusted to cover the risks that are involved with the position. The 
adjustment can be either positive or negative depending on which 
party of the contract holds the highest risk. The CVA is generally 
calculated from PFE and/or EE estimations. The focus of this paper is 
on this adjustment.  

 
Pykhtin, Zhu (2007) identifies three main components in the calculation of 
counterparty exposure: 

 
• Scenario Generation – Future market scenarios are simulated for a 

given fixed set of dates using evolution models of the risk factors 
• Instrument Valuation – For each simulation date and each realization 

of the underlying market risk factors, the holder’s instruments are 
valued for each trade in the counterparty portfolio using the simulated 
scenarios. It should be noted that path dependent instruments such as 
American, Asian or Bermudan instruments require a different 
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approach than path independent instruments such as European 
instruments. 

• Portfolio Aggregation – For each simulation date and for each 
realization of the underlying market risk factors, counterparty level 
exposure is obtained by aggregating the portfolio according to the 
holders’ netting agreements 

 
There is also another element of risk involved with counterparty exposure 
called right–way risk and wrong–way risk. This type of risk is involved with 
the credit quality of the counterparty.  It is wrong way if the exposure towards 
the counterparty tends to increase when the credit quality of the counterparty 
worsens and it is called right way if the exposure tends to decrease with the 
credit quality of the counterparty. A typical wrong way risk scenario is when a 
bank enters into a swap contract with an oil producer where the bank receives 
a fixed rate whereas it pays the oil producer the floating crude oil price. 
Decreasing oil prices in this scenario will worsen the credit quality of the oil 
producer and increase the value of the swap to the bank. So the bank will be 
faced with a wrong way risk scenario as the swap goes the wrong way for the 
oil producer. A right way risk scenario will be faced by the bank if it instead 
takes the floating rate and pays the fixed rate to the oil producer. This will be 
beneficial to the oil producer (although his credit quality will worsen) as it 
goes the “right way” whereas it will be less beneficial for the bank. The 
emphasis with this type of risk is that in either way, the bank will be faced 
with a risk exposure within its swap position. There is no way for the bank to 
benefit from the increasing value of the swap if the oil producer defaults on 
his payments. 

 

2 Modeling framework 
 

Credit risk modeling is usually done by stochastic models that in one form or another 
use stochastic processes that capture the fluctuating nature of factors such as stock 
prices, interest rates etc. that influence the nature of the credit risk within a given 
entity. We discuss this further in Section 2.1. 
  The most common way of assessing credit risk is by using so called intensity models 
which we describe in Section 2.2. The results in intensity models often translate into a 
credit spread that can be put directly on top of a given interest rate in the valuation of 
financial instruments such as credit risk insurance policies of a given debt. 
  Interest rate swaps can be modeled in different ways depending on what factors that 
are to be taken into account. As we will see in Section 2.3, the idea is to identify the 
stream of payments within an interest rate agreement as a set or portfolio of more 
rudimentary forward rate agreements and value them according to what is a fair rate 
of the entire swap. 
  Section 2.4 discusses the how credit default risk is valued in general and Section 2.5 
describes how an interest rate swap is valued in the presence of counterparty credit 
risk with the framework of Section 2.4 in mind. By assuming that the counterparty 
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credit risk is stochastically independent from the underlying interest rate of an IRS 
agreement we can resort to a simplified framework that calculates the default 
probabilities and the expected cash flows from the IRS agreement separately using 
the basic Black–Scholes model for swaptions. 
  Section 2.6 introduces a few concepts to further enhance the valuation of the 
counterparty risk adjustment. We discuss an approach to accounting for when the 
interest rate and the default intensity follow a stochastic process and are correlated. 
We consider the case for when the interest rate follows a bivariate G2++ process and 
when the default intensity follows a CIR++ process. Calibration procedures for these 
models are also discussed and this Section is ended with a discussion about numerical 
methods for simulation which will see are required when there is a correlation 
between the interest rate and the default intensity. 

 

2.1 Stochastic modeling 
 

Credit risk is associated with a probability of default and we want to estimate 
this probability in such a way that we can find a premium to add on top of e.g. 
a lending rate. This is why so called intensity models have become popular. 
Using stochastic processes in the intensity models works very well but they 
add to the complexity of the calculations. The complexity of a credit risk 
model increases dramatically with the number of factors to be accounted for. 
The simpler models even have closed form expressions that one can use 
directly to calculate the credit risk. The more complex models don’t have such 
solutions and therefore require simulations. Stochastic models such as the CIR 
model have become popular to use because they have properties that have 
been recognized in observations of e.g. interest rate movements. The problem 
however is that they are difficult to fit to real world data and are not as 
flexible as one would want to wish for. 
 
Credit risk modeling in its traditional form generally assumes that there is a 
stock value representing the obligor that follows some form of stochastic 
process. The event of default is then defined as the point when this stock value 
dips below a certain threshold, usually representing the amount of debt held 
by the obligor. 
 
An important and ground breaking credit risk model is the so called Merton 
model (Lando 2004) where it simply looks at debt as a European put option 
and the stock as a European call option. It is easy to use simply because it has 
closed–form solutions which are found through the Black–Scholes formula. 
The downside of this is that the Merton framework is simplified and doesn’t 
account for all of the elements involved with credit risk, particularly default 
dependency risk. At the heart of this framework is the Wiener process which 
is a process where all increments are stochastically independent, i.e. they are 
not correlated. A way to make the Merton and the Black–Scholes model 
account for default dependency risk is to base it upon a process where the 
increments have some degree of correlation. This makes calculations more 
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complicated and in most cases there won’t be any closed form solutions. Also, 
some processes that in such calculations would replace the Wiener process in 
the Black–Scholes model don’t have finite variance (i.e. Var(Xt) = ∞) or 
second order moment (E[ 2

tX ] = ∞) which would complicate things even 
further. Such processes with infinite variance are called leptokurtic because 
their increments have a fat–tailed distribution which is a consequence of the 
infinite variance. The fat–tail nature of these distributions makes them 
appealing to use to capture unforeseeable events such as stock market crashes 
or other observed phenomena that are not mathematically well–behaved. 
 

2.2 Intensity Modeling 
 

In this Section we study the assessment of credit risk using intensity models. 
We begin by explaining stopping–times which is the foundation of intensity 
models. We then show how an intensity translates into a probability and how 
it can be applied e.g. in the valuation of a risky bond. Intensities are 
commonly assumed to be piecewise constant and are usually calibrated 
against CDS–quotes that are observed on the market. The method of 
calibrating a piecewise constant intensity against market CDS–spreads is 
called bootstrapping which is explained further at the end of this section. 
 
The time between the present and a given event of default is defined in 
stochastic calculus as the stopping–time (Klebaner 2005, Shreve 2008). 
Formally: A non–negative random variable t given a filtration Ft is called a 
stopping time if for each t the event { } ttt ≤ ∈F . The term filtration is a 
theoretical concept in stochastic processes which in layman’s terms means 
information, i.e. it is conditional on that a given series of events has happened 
up until time t. 
 
This means that given the information in Ft it can be decided whether {t ≤ t} 
has occurred or not. So if the filtration is generated by a stochastic process 
{Xt}, then by observing it up to time t, from the generated values X0, X1, …, Xt 
we can decide whether the event {t ≤ t} has or has not occurred.  
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Figure 2.1: The stochastic variable t is defined as the first time a given 
stochastic process Vt crosses the threshold D and is called a stopping time. 
A stopping time can be used to denote e.g. a default time which then is the 
time point when the value of a company goes below the value of its debt. 

 
As can be seen in Figure 2.1, the stopping time t is the time at which the 
stochastic process Vt hits the threshold D. If we look at a capital structure of a 
company, the stochastic process represents the market value of the company 
and the threshold is the amount of debt outstanding. In this framework the 
stochastic process is above the threshold and the default occurs at the point 
when the process intersects this threshold.  
 
A popular way of modeling credit risk is through what is called the intensity 
based approach (Schönbucher 2003, Lando 2004, Brigo, Mercurio 2006). The 
intensity is defined as a probability of default within a given (infinitesimal) 
time period ∆t, i.e. with respect to a given filtration Ft and a default timet > t. 
Given a stochastic process Xt and an mapping λt(Xt) of that process where 
( ) [ )0,tXλ ∈ ∞ , the default probability within an infinitesimal time period dt 

is 
 

[ ) ( )
0

lim P , t tt
t t t X dtt λ

∆ →
 ∈ + ∆ = F , on τ > t (2.1) 

 
and the stopping time t in the intensity modeling framework is defined as 
 

( ){ }00
inf

t

st
X ds Et λ

≥
= ≥∫  (2.2) 

 
for an exponentially distributed random variable E that is independent of Xt. 
The mapping λt(Xt) is also known as the intensity for the random variable τ. It 
should be noted that this intensity is a conditional parameter, i.e. it is a 
measure of default probability at time t conditional on no earlier default. So 
λ(t)∆t is the probability of default between time t and t + ∆t conditional on no 
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earlier default. In this framework it can be shown that the survival probability 
(the complement of the default probability) up to time t is 
 

[ ] ( )( )0
P E exp

t

st X dst λ > = −  ∫ . (2.3) 

 
The stochastic process Xs can be chosen arbitrarily and it can be designed to 
account for any type of risk involved with credit risk. Of course, the more 
factors that are involved, the more difficult it will be to make a sensible 
estimation. There is a lot more to say about this but that would reach beyond 
the scope of this paper. The beauty of this formula can be illustrated by 
assuming that the intensity is deterministic and constant with respect to time: 
Let ( )0,P t  be the present value (at time 0) of a risk–free bond with a constant 
continuously compounded interest rate r that pays one unit of a given 
numeraire at a future time t. Assuming that the interest rate is constant a risky 
bond ( )0,P t  with default probability [ ]P tt <  can then be valued as ( )0,P t  
= e–(r+λ)t since 
 

( ) ( ) { } ( )[ ] { }

( ) [ ] ( ) ( )[ ] ( )

0, 0, 0,

0, P exp E exp .
t t

r t

P t E P t E P t E

P t t rt t e
t t

λt λ
> >

− +

= =      
= > = − − =

1 1
 (2.4) 

 
In this case the intensity λ is a kind of a risk–premium over the risk–free rate 
that is estimated from credit risk assessments and P[t > t] is the survival 
probability of the risky bond, i.e. the probability that it will not default prior to 
t. One very common implementation of λ is letting it follow a piecewise 
constant function as it is easier to calculate, computationally less intensive 
than stochastic functions and easier to properly fit with real world data than 
for example CIR models. The usage of piecewise constant default intensities 
is very common in the financial industry when calibrating a default probability 
distribution from market quotes of CDS–spreads. 
 
The easiest way to arithmetically define a piecewise constant function is to 
formulate it using the indicator function2. So we have 
 

( ) { }

{ } { }( )
1

1

1

0 0
1

j j

j j

N

j T t T
j

N

j t T t T
j

tλ λ

λ

−

−

≤ <
=

− > − >
=

=

= ⋅ −

∑

∑

1

1 1

 

 

 (2.5) 

 

                                                 
2 An indicator function 1X is a function that has the value 1 if X (e.g. x < 5 or A ⊆ B) is satisfied and 0 
otherwise. A notable result is that the expected value of an indicator function is the probability for X to 
happen, i.e. E[1X] = P[X]. 
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for a set of N time intervals with N intensity values for each time–period. Let 
m = m(t) be the largest interval where [0, ]mt T∉  , i.e. m(t) = { }max [0, ]jj

t T∉  for 
( )0,t∈ ∞ . The situation is illustrated in Figure 2.2. 

 

 
Figure 2.2 The intensity function λ(t) as a piecewise constant function 
where mT  encloses the largest interval [0, ]mT  that does not contain t. 

 
From this we have the survival probability function  

[ ] ( ) ( )
( )

1 1
1

P exp
m t

j j j J J
j

t T T t Tt λ λ− +
=

 
> = − − − − 

 
∑     (2.6) 

 
which is a result from the integration in Equation (2.6). The use of a piecewise 
constant intensity has the obvious drawback of being discontinuous. Using 
instead a piecewise linear intensity has proven to sometimes yield strange 
results when extrapolating up to 20 years (in some cases also with negative 
probabilities) (Brigo, Pallavicini 2008). What we can observe from real world 
data is the CDS spreads on CDS contracts for different maturities. If we 
assume that a) the accrued premium term is ignored and b) at a default τ 
in the period 1

,
4 4

n n− 
   , the loss is paid at time tn = t/4, i.e. at the end quarter 

instead of immediately at τ, we have the following formula for calculating 
a CDS spread given the probability above using piecewise constant 
intensity 
 

( )
( ) ( ) ( ) ( )( )

( ) ( )( )

4

1
1
4

1

1

1 1
4

T

n n n
n

T

n n
n

D t F t F t
R T

D t F t

t t

t

φ −
=

=

− −
=

−

∑

∑
 (2.7) 

 
where φ is the recovery given default which is a percentage of the loss that can 
be recovered from the default should it happen, D(tn) is a discount factor and 

1T  2T  3T  mT  1mT +
  … t 

( )tλ  

λ1 

λ2 

λ3 

λJ+1 
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Fτ(tn) is the cumulative distribution function that represents the default 
probability which is 1 – P[t > t], i.e. Fτ(tn) = P[t ≤ t]. The cash–flows that are 
exchanged in a CDS–swap agreement is illustrated in Figure 2.3. 
 

 
Figure 2.3: Cash–flows between parties in a CDS–agreement. Here, the 
protection buyer A pays B a quarterly fee given that C has not defaulted. If 
C defaults which happens when τ < T, B pays A for the credit loss incurred 
by C which is N . 

Source: Alexander Herbertsson’s Lecture notes 
 
We can estimate the intensity parameters 1{ }N

j jλ =  by recursively finding 
intensity values that yield a CDS spread R(T) that matches the real world data, 
starting at the first time interval, moving on to the next and so on. This way of 
estimation is called bootstrapping. 
 
Bootstrapping is a method of calibrating the intensity towards observed 
market quotes of CDS spreads. The intensity is assumed to be deterministic 
and piecewise constant for different periods of time, see Figure 2.2. If we 
have observed CDS spreads for credit default swaps with J different 
maturities, the intensity is then given by 
 

( )

1 1

2 1 2

1 2 1

1

   if 0

   if 

 if 

   if 
J J J

J J

t T

T t T
t

T t T

T t

λ

λ
λ

λ

λ
− − −

−

 ≤ <


≤ <
= 
 ≤ <
 <



 



 



 (2.8) 

 
for some term–structure T = { }1,..., JT T   and a given set of constant values 
{ }1,..., Jλ λ . Starting with the lowest maturity we find a value λ1 for the 
intensity such that 1 1( ) ( )MR T R T=   as of Equation (2.7) for an observed CDS 
spread 1( )MR T  of a CDS agreement with maturity 1T . In the next step we find 
a value λ2 given the prior value λ1 that yields the same value as the observed 
market CDS spread for a CDS contract with maturity 2T , i.e. satisfies 

1
2 2 1 2( ) ( | ) ( )MR T R T R T

λ
λ= =   . Then we proceed in a recursive manner to 

estimate the rest of the intensity values from the J observed CDS spreads 

A B 

C 

( )  quarterly up to T
4

R T N
t∧  

, credit loss from C if  < N Tt  

 nominal insured
 credit loss in %
 default time for C

N

t

=
=
=
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given the prior estimations, i.e. in each iterative step we find a λj such that 
1 2 1( | , ,..., ) ( )j j M jR T R Tλ λ λ − =   until j = J. It should be noted that a CDS 

contract ( )M jR T  does not depend on { }1,...,j Jλ λ+ since it stops at maturity jT . 
 

2.3 IRS Valuation framework  
 

A forward interest rate agreement (FRA) is legally binding agreement where 
the interest rate of a given debt is fixed so that it is constant until maturity. At 
the time of maturity one receives an interest that is accrued between a future 
start date (Brigo calls it date of expiry) and the date of maturity. So an FRA is 
effectively a swap agreement where a floating rate interest payment is 
swapped for a fixed rate payment which is settled at the time of maturity. The 
situation is illustrated in Figure 2.4. 
 

 
Figure 2.4: Party A enters an agreement with party B to pay a fixed 
interest rate payment in exchange for a floating payment at maturity T. 
This type of agreement is called forward rate agreement or FRA in short.  

 
The difference between an interest rate swap and a forward interest rate 
agreement is that whereas a swap involves a stream of payments until maturity 
there is only one payment in a forward rate agreement which occurs at 
maturity. If we let T be the start date, S be the date of maturity, where T < S, 
τ(T, S) be a metric that measures the time between T and S in number of years 
(this metric is also known as year fraction) and let N be the nominal value of 
the contract, then the value of the contract is 
 

( ) ( )( ), ,N T S K L T St −   
 
where L(T, S) is the spot rate resetting at time T and maturing at time S, and K 
is an agreed upon fixed rate. The value of the contract is thusly the difference 
between the two rates accrued over a given time period τ(T, S). When entered 
into at some time t < T, the fixed rate K is usually set so that the expected 
value of the contract is zero and the value is discounted by a factor P(t, T). 
The function P(t, T) represents the value of a bond at time t < T that pays one 
unit of currency at time T. The floating rate L(t, T) is the simply compounded 
spot interest rate at time t for the maturity T (i.e. this rate may have a term–
structure) and is defined by the formula 
 

( ) ( ) ( )
( ) ( )

( )
( ) ( )

, , 1 ,
,

, , , ,
P T T P t T P t T

L t T
t T P t T t T P t Tt t

− −
= =  (2.9) 

A B 
Fixed interest 

   i   

Floating interest payment  
at maturity T 
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since P(T, T) = 1. This is the same formula as when calculating the return 
from a stock over time and converting it to the effective annual return by 
dividing it by a year–fraction term. The so called LIBOR rates are typically 
compounded this way which is why Brigo habitually denotes this rate by L 
(Brigo, Pallavicini 2008). 
 
For the forward contract to be rendered fair, its value should be set to zero. 
Thus if we set the rate K equal to the forward rate F that makes the forward 
rate agreement zero, we have for a forward rate agreement FRA(T, S) between 
T and S that 
 

( ) ( ) ( )( )

( ) ( )
( ) ( )

( ) ( )

FRA , , , 0

1 ,
,

, ,

1, 1 .
,

T S N T S F L T S

P T S
N T S F

T S P T S

N T S F
P T S

t

t
t

t

= − =

 −
= − 

  
 

= − + 
  

 
(2.10) 

 
The agreement is set up so that it is zero, both at the time of entry and at 
maturity. This is because the no–arbitrage argument implies that the payoff of 
the FRA is zero iff the current value is zero. If we consider the agreement in 
Equation (2.10) but at a future time point t where t < T, then we can define the 
discounted FRA(t,T,S) prevailing at t as 
 

( ) ( ) ( ) ( ) ( )FRA , , , , , ,t T S P t S N T S F P t T P t St= − + . (2. 11) 
 

( ) ( ) ( ), , , ,FRA t T S P t S FRA T S= . 
 
From the arbitrage argument (Brigo, Mercurio 2008) we can break up the 
discount factor P(t, S) such that 
 

( ) ( ) ( ), , ,P t S P t T P T S=  
 
which in (2. 11) yields 
 

( ) ( ) ( ) ( ) ( )FRA , , , , , ,t T S P t S N T S F P t T P t St= − + . (2.12) 
 

By setting Equation (2.12) to zero just like Equation (2.9), we have the simply 
compounded forward interest rate F(t, T, S) prevailing at time t with start date 
T, and maturity S defined as 
 

( ) ( )
( )
( )

,1, , 1
, ,

P t T
F t T S

T S P t St
 

= − 
  

. (2.13) 

 



COUNTERPARTY RISK AND INTEREST RATE SWAPS  
 

 25 
 

Mathematically, an interest rate swap can therefore be seen as a portfolio of 
forward rate agreements where the maturity of one FRA is the start date of 
another, i.e. we can formulate a payer IRS as 
 

( ) ( ) ( ) ( )( )1 1
1

PFS , , , , , , , ,i i i i i
i

t T T N K P t T N T T K F t T T
β

α β
α

t − −
= +

  = −  ∑  (2.14) 

 
where the effective period of the IRS is between Tα and Tβ. Hence, the fair rate 
at time t that sets the value of this swap agreement to zero is  
 

( ) ( )
( ) ( )
( ) ( )

,

1
1

, ,
; ,

, ,
a b

i i i
i

P t T P t T
S t S t T T

T T P t T

α β
α β β

α

t −
= +

−
= =

∑
. (2.15) 

 
This formula doesn’t say anything at all about the value of the contract within 
the duration of this agreement, it merely states that the value is zero at the 
time of entry and at the time of maturity. Since we cannot be sure that both 
parties will honor their commitments to such a swap agreement we want to 
know the potential credit loss that would be incurred for one of the parties at 
the default of the other. The continuous valuation of an established swap 
agreement can be done by looking at a swap as a swap option or swaption. 
 
A swaption is an option giving the buyer of it the right but not the obligation 
to enter into a swap agreement at a future time. We usually agree that it is 
European, i.e. that the option can only be exercised at the given date of 
maturity. Since there is no incentive for a swaption holder to exercise it if the 
net present value of the swap is negative, the payoff function is positive and 
we can treat it as a call option where we can value it using Black–Scholes 
formula. A payer swaption is then valued as 
 

( )( ) ( )( ) ( ), , , , ,
1

PS , , , Bl , , ,1 ,i i
i

t K S t N K S t T P t T
β

α β α β α β α β α β α
α

σ σ t
= +

= ∑  (2.16) 

 
where τi = τ(Ti-1, Ti) and Bl represents Black–Scholes formula 
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 (2.17) 

 
where Φ is a standard Gaussian cumulative distribution, K the strike price, and 
σα,β the volatility at the fair price ( ),S tα β  as given in Equation (2.15). The 
extra coefficient ω is mainly used to mark the sign of the strike part of the 
payer swaption where ω is +1 for a payer swaption and –1 for a receiver 
swaption. For a more thorough treatment, see Brigo, Mercurio 2008. 
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2.4 General valuation of counterparty risk 
 

The general procedure for valuing a cash flow in the presence of a 
counterparty default risk involves adding a premium term that represents this 
type of risk. We let the filtration Ft denote all observable market quantities but 
the default event up to time t. Moreover we let Ht = σ({t ≤ u} : u ≤ t) be the 
right–continuous filtration generated by the default event. From this we set Gt  
:= Ft ∨ Ht (so Ft is a sub–filtration of Gt, i.e. Ft ⊆ Gt) and [ ] [ ]E . : E .t t= G . If we 
let PD(t, T) (which we also abbreviate to PD(t)) be a discounted payoff 
function of a generic defaultable claim and CF(t, T) be the cash flows between 
time t and T from a contingent claim without counterparty risk, then the net 
present value of these cash flows at the default time t is defined as NPV(t) = 
Et[CF(t)] for the filtration Gτ at τ, and 
 

( ) { } ( )

{ } ( ) ( ) ( )( ) ( )( )( )
1 ,

1 , ,

D
T

t T

t CF t T

CF t D t NPV NPV
t

t t t φ t t

≥

+ +
≤ ≤

P =

 + + − − 
 

 
(2.18) 

 
where D(u, v) is a stochastic discount factor at time u with maturity v, 1A is an 
indicator function for the event A and φ is the recovery given default. The 
function x+ is the maximum of x and 0, i.e. x+ = max(0, x) and is commonly 
used to describe the payoff of a put or a call option. In this setting we assume 
that the counterparty default risk is unilateral, i.e. we assume that only one 
counterparty may default whereas the other counterparty is assumed to be 
risk–free. The rationale of this is that if the counterparty doesn’t default, then 
the cash flows will go as usual until maturity T. Should a default happen at a 
time prior to maturity, i.e. t < T, then the cash flows will stop at that point of 
time and if the net present value of the contract is positive, only a certain 
percentage of what is left of the counterparty will be recovered. If the net 
present value is negative, the entire value has to be paid to the counterparty if 
it defaults. 
 
In this framework it can be shown that the expected payoff of a defaultable 
claim is given by the following formula (Brigo, Mercurio 2008): 
 

( ) ( )[ ] { } ( ) ( )( )
Positive counterparty risk adjustment

E E E 1 ,D
t t GD t t Ttt L D t NPVt t t +

< ≤ PP = −    ))))))))))))(
 

 
(2.19) 

 
where LGD is loss given default which is the same as (1 – φ) which is assumed 
to be deterministic. This is a general model and it is not specified in the model 
how the default risk probability is constructed. In this thesis we construct the 
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counterparty default risk probability from default intensity models. The focus 
in this thesis is on this counterparty risk adjustment term. 
 

2.5 Counterparty Risk and IRS Valuation 
 

Let the value of a risk–free interest rate swap agreement be IRS(t). In the 
general framework of Equation (2.19) we can then express the value of a 
defaultable swap agreement IRSD(t) as 
 

( ) ( ) ( )IRS IRS DPD
GDt t L t= − ⋅ . (2.20) 

 
where the adjustment term DP(t) is defined as (Brigo, Masetti 2005) 
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 (2.21) 

 
where PS is the value of the payer swap as a swaption and K is the forward 
swap rate rendering the contract fair at t, i.e. K = S(t; Ta, Tb) as in Equation 
(2.15). Since we are going to express the values in terms of swap rates, the 
DP(t) adjustment will be in terms of a spread and not a net present value in the 
regular sense as in Equation (2.19). If we assume that the intensity and the 
cash–flows are independent, the calculations become straightforward. We can 
simplify further without notable loss of accuracy by assuming that defaults 
only occur at the points of payment Ti. In this setting we can either assume 
that the default occurs before the last payment (the payoff is then said to be 
postponed) or after the last default (Brigo denotes this as anticipated default). 
Under these assumptions we have for the postponed payoff (P) and the 
anticipated default (A) respectively that 
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where PSi,b(t;K,Si,b(t),σi,b) is defined as in (2.16) and 
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Here Qt is the conditional risk–neutral probability measure for the default 
probabilities of the counterparty, that is Qt(.)=Qt( . |Ft). These probabilities are 
computed from the bootstrapped piecewise constant intensity function and the 
payer swap is calculated using Black–Scholes formula for a European option 
with a payer swap payoff. For more details on the derivation of (2.22) and 
(2.23) see Brigo Masetti 2005. 

 

2.6 Enhancing counterparty risk valuation 
 

The methods presented previously for valuing counterparty risk are simplified 
and rather crude. In this section we will discuss methods for enhancing the 
valuation of this adjustment. One important enhancement is to account for 
stochastic dependence between the interest rate and default intensity. 
Accounting for this dependence tends to lead to complex calculations and a 
limited set of options if we seek to yield mathematically feasible expressions. 
We conduct a further discussion about this in Subsection 2.6.1. In [Brigo 
Pallavicini 2006] a valuation of the counterparty risk in the presence of 
correlation is assessed. There it is suggested to let the interest rate follow a 
G2++ process and the default intensity follow a CIR++ process. We consider 
these cases in Subsection 2.6.2 and 2.6.3 and discuss how they can get 
correlated in Subsection 2.6.4. Correlated processes do not generally lead to 
closed form solutions so we need to conduct numerical simulations to be able 
to assess the counterparty risk adjustment under these settings. In Subsection 
2.6.5 at the end of this section we therefore introduce some numerical 
methods such as the Euler–Maruyama method and the Milstein method for 
numerical simulation. 

 

2.6.1 Risk valuation under stochastic dependence 
 

We can enhance the counterparty risk adjustment term further in the IRS 
valuation by assuming that there is some degree of stochastic dependence 
between interest rates and the counterparty risk. This can be done by assuming 
that the stochastic process behind the interest rate and the stochastic process 
behind the counterparty risk intensity have some degree of correlation. In 
[Lando 2004] and [Brigo, Mercurio 2006] a modeling of a joint behaviour 
between interest rates and default intensities are suggested by incorporating 
correlated Brownian motions as drivers behind these processes. Two 
approaches are suggested to introduce this correlation. The first approach is to 
tie the correlation with the noise term. If we assume that the interest rate rt and 
the default intensity λt follow a mean–reversing process then the joint 
behaviour can be modeled as 
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( )

( ) ( )
1

1 2 21
t r t r r t

t t t t

dr r dt dW

d dt dW dWλ λ λ

κ θ σ

λ κ λ θ σ r r

= − +

= − + + −
 

where the correlation is introduced through the correlation term ρ and the 
independent Brownian motion processes 1

tW  and 2
tW . For each of these two 

processes, the mean–reversion parameter κ then determines how quickly the 
impact from the fluctuations of the diffusion term dissipates, the parameter θ 
determines the mean level or equilibrium value the process reverts towards 
and the parameter σ determines the sensitivity to the fluctuations or the 
Brownian motion processes above. The other suggested approach is to model 
the correlation through an affine dependence between the default intensity and 
the interest rate, i.e. as 
 

( )
( )

1
t r t r r t

t

dr r dt dW
t r

κ θ σ
λ α β

= − +

= +
 

 
When using such models one has to account for negative interest rates and 
intensities. Whereas a negative interest rate is consistent with the no–
arbitrage/risk–neutral assumption, a negative default intensity doesn’t make 
any sense at all. Lando suggests using an analytical approximation where the 
intensity is set to zero whenever the intensity process becomes negative. 
Another approach is to let the intensity follow a quadratic Gaussian process or 
use CIR–like specifications as CIR processes are nonnegative.  
 
If we revisit the credit value adjustment term in Equation (2.19) we have 
 

{ } ( ) ( )( ) { }{ }{ }[ ]

( ]{ }
{ }{ }

1 ,

,
GD t GD tt T

GD t

L E D t NPV L E

L E the condition that default time has occurred at t T

discount from t to NPV at

t t t

t

t t

+
< ≤

+

  = 
= 



I ΙΙ III

 (2.24) 

 
where the default time in I is commonly modeled through a default intensity 
and is strongly linked to the discount factor II. The net present value III of the 
underlying asset given default is the present value of the interest rate 
agreement from the default time until final maturity of the agreement. As we 
have stated before, the value of the agreement only has an impact on the 
adjustment term when it is positive, otherwise it is zero since there is no loss 
to recover in the counterparty risk adjustment. The net present value of an 
interest rate swap agreement is modeled as a so called swaption, i.e. a 
European option that gives the holder the right but not the obligation to enter 
the current swap agreement at time τ. The no–arbitrage assumption allows us 
to discount using zero–coupon bond valuations. The price P(t, T) at time t of a 
zero–coupon bond maturing at T with a unit face value and an interest rate 
following the G2++ process above can then be evaluated through 
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( ) ( )( ){ }, exp
T

tt
P t T E r s ds= −∫ F  (2.25) 

 
see [Brigo, Mercurio 2006; Section 4.2.2] for details. Note that this formula 
will be needed in the swaption formula below. If we consider a European 
swaption with strike rate X, maturity T and a nominal value N (that is 

( ), 0|tS tα β = in (2.16)) which at t0= T gives the holder the right to enter an 
interest rate swap agreement with payment times T = {t1, …, tn}, t1 > T, where 
he in exchange for a fixed rate gets a floating rate, then it can be shown that 
the arbitrage–free price at time t = 0 is given by the following formula for a 
European swaption 
 

( ) ( ) ( ) ( )
( )

1
ES , , , , , , 1 ,

n T
T

i i
i

t T N X NP t T E c X P t tω ω
+

=

   
= −   

    
∑T  (2.26) 

 
where ω is +1 for a payer swaption and –1 for a receiver swaption. In many 
concrete situations, a useful numeraire is the zero–coupon bond whose 
maturity T coincides with that of the derivative we want to price. In such a 
case, in fact ST = P(T,T) = 1 which we took advantage of in Equation (2.9), so 
that pricing the derivative can be achieved by calculating an expectation of its 
payoff (divided by one). The measure associated with the bond maturing at 
time T is referred to as T–forward risk–adjusted measure, or more briefly as T 
–forward measure, and is commonly denoted by QT. The related expectation is 
denoted by ET as we see in Equation (2.26).The pricing function P(t, ti) is 
given in (2.25). The coupons ci constitutes the remaining payments within the 
interest rate agreement, i.e. 
 

( ) ( )( )

( )( )
1

1

1

; ,
i

i

i i i i
t

i i t

c X F t t t X

r s ds X

t

t t
−

−

−

= −

= −∫



 
 

 
where it is the year fraction of the coupon payments and F is the forward rate 
for each time interval, which is the interest rate over that interval. Note that 
this formula is model independent, i.e. it doesn’t make any assumptions on the 
behaviour of the underlying interest rate. 
 
In the case where the default intensity and the interest rate are independent we 
assumed that the underlying asset followed a geometric Brownian motion and 
could therefore apply Black–Scholes formula on a replicating portfolio of 
forward agreements that constitutes the remainder of the swap payments until 
final maturity. So we ended up with a sum of Black–Scholes calculations 
where the payoff function is modified to represent the payoffs until the final 
maturity. If we assume that the underlying asset behaves in some other way 
than the geometric Brownian motion, we may still treat it as a swaption but we 
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can no longer use the Black–Scholes framework to evaluate it. In such case 
we have to find another way to evaluate the swaption. Even though we may 
have stochastic dependence between the default intensity interest rate it may 
be possible to make some simplifying assumptions so as to find a closed form 
solution to the swaption without considerable loss of precision in the 
valuation. One such assumption may be that the value of the swaption given 
default is independent of the default intensity. If we cannot find a closed 
expression we will have to resort to simulations using either Milstein or Euler 
methods. As we can see can see in Equation (2.24), the two drivers behind the 
adjustment are the default intensity and the interest rate so we shall give them 
a separate treatment given that they are correlated in the following sections. 
 

2.6.2 Using bivariate interest rate 
 

In [Brigo, Pallavicini 2006] it is suggested to use the G2++ model for the 
interest rates. In this subsection we will explore how incorporating this 
process with the interest rates will affect the valuation of the credit value 
adjustment while still assuming that the interest rate and the default intensity 
are stochastically independent. The G2 process is a bivariate Gaussian 
process. The “++” means that it is calibrated through a deterministic function 
( );tϕ α  against observations in the market which in this case is the term–

structure of interest rates. This function is well–defined over a time–interval 
[0, T*] or time–horizon T* which could be 10, 30 or 50 years. We will apply 
this process in the CVA evaluation by incorporating it with a European swap. 
We will also construct a pricing function P(t, T) from this process and show 
how it is used in the calibration process against observed market prices by the 
end of this subsection. 
 
So, in the G2++ framework, the interest rate is modeled as a bivariate process 
under the risk neutral measure Q and given by 
 

( ) ( ) ( ) ( ) ( ) 0; , 0r t x t y t t r rϕ α= + + =  (2.27)  
 

where α is a defined set of parameters and the stochastic processes x and y are 
adapted to the filtration Ft and satisfying the following SDE’s 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

2

, 0 0
, 0 0

dx t ax t dt dZ t x
dy t by t dt dZ t y

σ
η

= − + =

= − + =
 (2.28) 

 
where (Z1, Z2) is a two–dimensional Brownian motion with an instantaneous 
correlation  ρ1,2 ∈ [ –1, 1]  (i.e. the correlation of the Brownian increments) 
given as 
 

( ) ( )1 2 1,2dZ t dZ t dtr=  
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where r0, a, b, σ, and η are positive constants which together with the 
correlation ρ1,2 constitute the parameter set α as defined above. The function 
φ(t; α) can be set to a value that automatically calibrates against the initial zero 
coupon curve observed in the market where φ(0; α) = r0 [Brigo Mercurio 
2006]. By integrating (2.28) from 0 to t and inserting the results into (2.27) we 
get 
 

( ) ( ) ( ) ( ) ( ) ( )1 2
0 0

;
t t

a t u b t ur t e dZ u e dZ u tσ η ϕ α− − − −= + +∫ ∫ . 

 
For each s < t, the above equation becomes  
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )1 2 ;

a t s b t s

t t
a t u b t u

s s

r t x s e y s e

e dZ u e dZ u tσ η ϕ α

− − − −

− − − −

= +

+ + +∫ ∫
. 

 
The dynamics of the processes x and y can also be expressed in terms of two 
independent Brownian motions W1 and W2 such that  
 

( ) ( ) ( )

( ) ( ) ( ) ( )
1

2
1 21

dx t ax t dt dW t

dy t by t dt dW t dW t

σ

ηr η r

= − +

= − + + −
 

 
where 
 

( ) ( )

( ) ( ) ( )
1 1

2
2 1 21

dZ t dW t

dZ t dW t dW tr r

=

= + −
. 

 
We have seen that the credit value adjustment as is outlined in Equation (2.24) 
is evaluated as a payer swaption in Equation (2.21). As we shall see, the 
swaption formula can be extended to interest rates following G2++ processes. 
If we assume that the interest rate is independent of the default intensity just 
as in Subsection 2.3 and that the interest rate follows a G2++ process, we may 
evaluate Equation (2.26) by numerically computing the following expression 
(Brigo Mercurio 2006) 
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( ) ( )( ) ( ) ( ) ( )( )
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1 2
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 Φ − − Φ −  
∑∫
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where we set ω = +1 since we consider a payer swaption, i.e 
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( ) ( )2 2PS 0, , , , ES 0, , , , ,1G GT N X T N X++ ++=T T  
 
 (as in Equation (2.17)) and 
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( )y y x= is the unique solution to 
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respectively. The functions A(T,ti) and B(b,T,ti) constitutes the volatility and 
correlation structures in two–factor models in the Heath–Jarrow–Morton 
(1992) framework. The mean functions ( )0,T

xM T  and ( )0,T
yM T  will be 

detailed by the end of this subsection through Lemma 4.2.1 below which 
presents the mean and variance functions of a markovian process over a time 
interval [t, T]. We will also find an explicit formula for the pricing function 
P(t, T) that we will use in the calibration process against observed market 
prices PM(t, T). The deterministic function φ(t; α) in (2.27) is presented in 
Corollary 4.2.1 below which also outlines the proper calibration procedures 
for this function. 
 
Lemma 4.2.1 [Brigo Mercurio 2006]: For each t, T the random variable 
 

( ) ( ) ( )[ ],
T

t

I t T x u y u du= +∫  
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conditional to the filtration Ft (which is also known as a sigma–field) is 
normally distributed mean M(t, T) and variance V(t, T) respectively given by 
 

( )
( )

( )
( )

( )1 1,
a T t b T te eM t T x t y t

a b

− − − −− −
= +  

 
and 
 

( ) ( ) ( )
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2 2,

1 1 12
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e e eT t
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where 
 

( ) ( ) ( )22 1 3
2 2

T t T tT t e eξ ξξ
ξ ξ ξ

− − − −Ξ = − + − − . 

□ 
 
If we assume that the term–structure of discount factors that is observed on the 
market follows a sufficiently smooth function T   PM(0,T) and denote the 
instantaneous forward rate at time 0 for a maturity T by 
 

( ) ( )0,0,
M

M P Tf T
T

∂
= −

∂
 

 
then the following corollary applies in the calibration process for the 
deterministic function φ(t; α) in Equation (2.27): 
 
Corollary 4.2.1 [Brigo, Mercurio 2006]: The model in Equation (2.28) fits the 
currently observed term structure of discount factors if and only if for each 
time of maturity T 
 

( ) ( ) ( ) ( )
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M aT bT
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i.e. if and only if 
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( ) ( )[ ]{ }0, 1exp exp 0, 0,
0, 2

MT

Mt

P Tu du V T V t
P t

ϕ− = − −∫  (2.29) 



COUNTERPARTY RISK AND INTEREST RATE SWAPS  
 

36  
 

such that the corresponding zero–coupon bond prices at time t are given by 
 

( ) ( )
( )

( ){ }0,, exp ,
0,
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P TP t T t T
P t

= A  

( ) ( ) ( ) ( )[ ]
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− −
− −

A
. 

□ 
 
One important remark about the calibration is that we don’t need to derive the 
whole φ curve. What matters is the integral between two given instants which 
is computed in Equation (2.29). From this expression we see that the only 
curve that is needed is the observed market discount curve which don’t even 
need to be differentiated (which you do when estimating the instantaneous 
forward curve fM(0, T)), and we only need this at times corresponding to the 
maturities of the market discount rates that are observed through bonds or 
other desired interest rates which considerably limits the need for 
interpolation. 
 
Another important remark is that it can be shown that the risk–neutral 
probability of negative interest rates is negligible in the G2++ framework. A 
proof is found in [Brigo Mercurio 2006]. 
 
The functions A(T,ti) and B(b,T,ti) are then defined as 
 

( ) ( )
( )

( ) ( ) ( )[ ]{ }0, 1, exp , 0, 0,
0, 2

M

M

P TA t T V t T V T V t
P t

= − +  

( )
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z T teB z t T
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=  

 
so that we can write P(t, T) in (2.25)  as 
 

( ) ( ) ( ) ( ) ( ) ( ){ }, , exp , , , ,P t T A t T B a t T x t B b t T y t= − − . 
 
This can be used to understand which market–volatility structures can be fitted 
by the model. A more thorough treatment is conducted in [Brigo, Mercurio 
2006]. Finally by using Lemma 4.2.1 we can prove that ( ),T

xM s t  and 
( ),T

yM s t  are given by 
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We have now treated the credit value adjustment we stated in (2.24) as a payer 
swaption where the interest rate follows the bivariate G2++ process which is 
calibrated against observed market quotes via Lemma 4.2.1. This closed 
formula assumes that the payer swaption to be evaluated is independent of 
(and thusly not correlated to) the default intensity. 
 

2.6.3 Using CIR++ based default intensity 
 

The CIR++ process which is a CIR process that is calibrated against the credit 
default spreads through a deterministic function just like the G2++ is 
calibrated against the term–structure of zero–coupon bonds. A CIR model is 
chosen here because it is nonnegative. So we set 
 

( ); , 0,t ty t tλ y β= + ≥  (2.30) 
 

where ( ),ty β  is a deterministic function that depends on a parameter vector 
β and is integrable over some closed interval [0, T**]. The initial condition for 
this deterministic function is set such that it is congruent with the relation in 
Equation (2.30), i.e. 
 

( ) 0 00; yy β λ= − . 
 
The term yt is set to follow a Cox–Ingersoll–Ross (CIR) process, i.e. 
 

( ) ( )3t t tdy y dt y dZ tκ µ ν= − +  (2.31) 
 

where the parameter vector is β = (κ, μ, ν, y0) and κ, μ, ν, y0 are positive 
deterministic constants such that 2κμ > ν2 which ensures that the origin is 
inaccessible to yt so that we won’t have to worry about negative default 
intensities and the process remains positive. Here Z3(t) is a one–dimensional 
Brownian motion under the risk neutral measure just like the Brownian 
motion processes Z1(t) and Z2(t) in the G2++ model. The deterministic 
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function ψ is then calibrated against observed market CDS spreads. The 
calibration procedure that is introduced in [Brigo Pallavicini 2008] assumes 
that the intensity is piecewise constant and is calibrated through a 
bootstrapping method similar to what is discussed in Section 2.2 that is 
applied to closed form expressions. If we integrate the terms in Equation 
(2.30) over [0, t] we get 
 

( )
0 0 0

;
t t t

s sds y ds s dsλ y β= +∫ ∫ ∫  

 
or that 
 

( ) ( ) ( );t Y t t βΛ = +Y  
 
if the functions Λ(t), Y(t) and Ψ(t;β) are primitives of the terms λt, yt and ψ(t;β) 
respectively. If we assume that the default intensity is independent of the short 
rate r, it can be shown that the CDS valuation becomes model independent 
and is given by 
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for a given protection period [Ta, Tb] where R is a periodic premium rate that 
is paid to the protection seller until final maturity or the first Ti following 
default. Here LGD is the loss given default that is received by the protection 
buyer at the first Ti following default. It should be noted that the quoted 
market spread RM is such that CDSa,b(0,RM) = 0 while CDSa,b(t,RM) ≠ 0 for 0 < 
t < Tb. This model allows us to extract the default probabilities inherent in the 
observed CDS market quotes and so we need only to make sure that these 
probabilities are correctly reproduced by the CIR++ model. Since the survival 
probabilities in the CIR++ model are given by 
 

( ) ( ) ( ) ( );t t Y t
modelQ t E e E e βt −Λ −Y −> = =       , 

 
the CIR++ model is calibrated by setting Ψ(t; β) such that 
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i.e. 
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where the parameters β are chosen such that ψ is a positive function and PCIR 
is the closed form expression for bond prices in the time–homogeneous CIR 
model, i.e. 
 

( ) ( ) ( )( )0 00, , ; exp ; ;CIRP t y A t B t yβ β β= −  
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and 
 

2 22g κ ν= + . 
 
In [Brigo Pallavicini 2006] the market survival probability is simplified to 
 

( ) ( )expmarkett tt ζ> = −Q  
 
for a constant deterministic value of ζ. This assumption doesn’t yield precise 
CDS valuations but it is argued to suffice in qualitative analyses of the model. 
In a quantitative study it is desired to conduct a proper calibration as described 
above using a piecewise constant function like in (2.8). For more details see 
Part VII Credit in [Brigo Mercurio 2006]. 
 
This CDS calibration procedure assumes that the default risk and interest rates 
are stochastically independent and is therefore not applicable by principle on 
models that assumes a correlation between the default risk and interest rate 
movements. However, it has been shown in [Brigo Alfonsi 2006] that the 
impact of this correlation is negligible on CDS spreads which suggests that we 
can apply this calibration procedure even though the interest rates and the 
default risk are stochastically dependent. 

 

2.6.4 Introducing cross–correlation 
 

The stochastic dependence between the interest rate and the default intensity is 
introduced in the simulation of the noise terms if the interest rate process and 
the default intensity process by letting the Brownian motions Z1, Z2, Z3 that we 
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have defined in Sections 2.6.2 and 2.6.3 (Equations (2.27) and (2.30)) be 
instantaneously correlated according to 
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which can be rewritten as 
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which is equivalent to performing a Cholesky decomposition on the variance–
covariance matrices of the pairs (W1(t), W3(t)) and (W2(t),W3(t)). The 
correlation between instantaneous interest–rate and credit–spread can then be 
obtained by 
 

1,3 2,3

2 2
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σr ηr
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σ η σηr

+
=

+ +
 

 

2.6.5 Numerical simulation procedures 
 

When we do not have closed form solutions to a stochastic differential 
equation such as the one in Equation (2.28) or (2.31) that we use when 
evaluating the credit value adjustment in Equation (2.24) via Equation (2.25) 
or (2.26), we have to resort to numerical methods to solve them. The simplest 
approach is to use the Euler method that basically breaks up the continuous 
time into a fine mesh of discrete time–steps upon which the solution is iterated 
[Kloeden Platen 1995]. The Euler method is rather crude and prone to errors 
although we have a convergence in the solution. One can increase the 
convergence rate by looking at higher order terms in a so called Taylor–Itô 
expansion which is what is done when finding a numerical solution to an SDE 
using the Milstein method. The problem formulation is as follows; consider a 
stochastic differential equation of the form 
 

( ) ( )( ) ( )( ) ( )
( ) 0

, , , 0
0

dX t X t t dt X t t dB t t T
X X

µ σ= + ≤ ≤

=
 (2.33) 

 
where μ(x,t) and σ(x,t) are given and well–defined deterministic functions, B(t) 
is a Brownian motion process and X(t) is the unknown process to be found.  If 
the integrals 
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( )( )
0

,
t

X s s dsµ∫  and ( )( ) ( )
0

,
t

X s s dB sσ∫  

 
exist for all t > 0 then a process X(t) as defined by the following equation 
 

( ) ( ) ( )( ) ( )( ) ( )
0 0

0 , ,
t t

X t X X s s ds X s s dB sµ σ= + +∫ ∫  (2.34) 

 
is a so called strong solution to the SDE in Equation (2.33). The second 
integral is a so called Itô–integral which is also known as a Stieltjes integral 
[Evans 2011]. The Stieltjes integral is a generalization of the ordinary 
Riemann integral to make it applicable on stochastic processes. The Stieltjes 
Integral of f with respect to a monotone function g over an interval (a, b] is 
defined as 
 

( ) ( ) ( ) ( ) ( )( )10 1
lim

b b n
n n n
i i i

ia a

fdg f t dg t f g t g t
d

ξ −→
=

= = −∑∫ ∫ . 

 
where ( 1,

n n n
i i it tξ −∈   for all i and n (which follows of Cauchy’s mean value 

theorem on integrals) [Klebaner 2005]. If we set g(t) = t we see that we arrive 
at the ordinary Riemann integral. The Itô–integral is then defined using the 
Stieltjes framework as 
 

( )( ) ( ) ( )( ) ( ) ( )( )10 10

, lim ,
t n

n n n n
i i i i

i
X s s dB s X B t B t

d
σ σ ξ ξ −→

=

= −∑∫ . 

 
Sometimes it may simplify calculations to use the Stratonovich integral 
instead which is defined as follows [Evans 2011] 
 

( )( ) ( ) ( )( ) ( )

( )( ) ( )( ) ( ) ( )( )

0 0

1 1
10 1

, ,

, ,
lim

2

t t

n n n nn
i i i i n n

i i
i

X s s B s X s s dB s

X t t X t t
B t B t

d

σ σ

σ σ − −
−→

=

∂ =

+
= −

∫ ∫

∑



. 

 
To use the Milstein method we also need to use Itô’s formula which is a result 
of the following theorem [Klebaner 2005]: Let f(t) be a twice continuously 
differentiable function (i.e. a C2 function) and the stochastic process X(t) have 
a stochastic differential for 0 ≤ t ≤ T where 
 

( ) ( ) ( ) ( )dX t t dt t dB tµ σ= +  
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then the stochastic differential of the process Y(t) = f(X(t)) exists and is given 
by 
 

( )( ) ( )( ) ( ) ( )( ) [ ]( )

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )

2

2

1 ,
2
1
2
1
2

df X t f X t dX t f X t d X X t

f X t dX t f X t t dt

f X t t f X t t dt f X t t dB t

σ

µ σ σ

′ ′′= +

′ ′′= +

 ′ ′′ ′= + +  

 
(2.35) 

 
where d[X,X](t) is the quadratic covariation which is defined as 
 

[ ]( ) ( ) ( )( ) ( ) ( )( )
1

1 10 0
, lim

n
n n n n
i i i i

i
f g t f t f t g t g t

d

−

+ +→
=

= − −∑  

 
when the limit is taken over partitions { }n

it  of [0, t] with δn = maxi ( )1
n n
i it t+ − . 

This implies that we have the following integral representation for the process 
Y(t) (7.5) 
 

( )( ) ( )( ) ( )( ) ( ) ( )( ) 2

0 0

10
2

t t

f X t f X f X s dX s f X s dsσ′ ′′= + +∫ ∫  (2.36) 

 
which will be useful when defining the Milstein method. If we define a mesh 
where 
 

0 1 10 N Nt t t t T−= < < < < =  
 
and let hn = tn+1 – tn and h = max hn ≤ 1, then we have that the strong solution 
X(t) satisfies [Kloeden Platen 1995] 
 

( ) ( ) ( )( ) ( )( ) ( )
1 1

1 , ,
n n

n n

t t

n n
t t

X t X t X s s ds X s s dB sµ σ
+ +

+ = + +∫ ∫ . (2.37) 

 
For a mesh where N is large enough we can find an approximation Y(tn) where 
Y(0) ≈ X(0) and 
 

( ) ( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( )

1 1, ,

, ,

n n

n n

t t

n n n n n nt t

n n n n n n n

Y t Y t Y t t ds Y t t dB s

Y t Y t t h Y t t B t

µ σ

µ σ

+ += + +

= + + ∆

∫ ∫  (2.38) 

 
where ΔBn = B(tn+1) – B(tn). Equation (2.38) defines the so called Euler–
Maruyama method which is a more general variation of the ordinary Euler 
method. It can be evaluated simply by simulating the Brownian motion B(t). 
We can without loss of generality make the deterministic functions μ and σ 
independent of t, i.e. 
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( ) ( )( ) ( )( ) ( )dX t X t dt X t dB tµ σ= +  (2.39) 

 
so we have the representation 
 

( ) ( ) ( )( ) ( )( ) ( )
1 1

1

n n

n n

t t

n n
t t

X t X t X s ds X s dB sµ σ
+ +

+ = + +∫ ∫ . (2.40) 

 
If we integrate (2.35) from t0 to t we get 
 

( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )

( )( ) ( )( ) ( )

0

0

0 0

2
0

0 1

1
2

t

t

t

t

t t

t t

f X t f X t f X t t f X t t dt

f X t t dB t

L f X s ds L f X s dB s

µ σ

σ

 ′ ′′− = +  

′+

= +

∫

∫

∫ ∫

 (2.41) 

 
where L0 and L1 are the differential operators 
 

2
2

0 2

1

1
2

d dL
dx dx
dL
dx

µ σ

σ

= +

=
. 

 
If we set f(x) = x we get Equation (2.40) where L0f = μ and L1f = σ. We can set 
f(X(t)) = μ(X(t)) and f(X(t)) = σ(X(t)) to get an expression for each of the 
deterministic functions μ and σ in Equation (2.39). Making this ansatz and 
inserting the results in Equation (2.41) yields 
 

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )( ) ( )

( ) ( )( ) ( ) ( )

0 0 0

0 0 0

0 0

0 0 0 1

0 0 1

0 0 1 0,

t s s

t t t

t s s

t t t

t t

t t

X t X t X t L X u du L X u dB u ds

X t L X u du L X u du dB s

X t X t ds dB s R t t

µ µ µ

σ σ σ

µ σ

= + + +

+ + +

= + + +

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

 

 
where R1(t, t0) is 
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( ) ( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

( )( ) ( ) ( )

0 0 0 0

0 0 0 0

0 0

1 0 0 1

0 1

1

,
t s t s

t t t t

t s t s

t t t t

t s

t t

R t t L X u duds L X u dB u ds

L X u duds L X u dB u ds

L X u dB u dB s

µ µ

σ σ

σ

= +

+ +

+

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫

. 

 
This is the motivation for Eulers method where we neglect the higher order 
terms in R1(t, t0). Now, if we look at the last term of R1(t, t0), we can find an 
expression for it by making the ansatz f(x) = L1σ in Itô’s formula and insert the 
results in this term. From this we get 
 

( ) ( ) ( )( ) ( )

( )( ) ( )( ) ( ) ( ) ( )

0 0

0 0

0 0

0 0 2 0,

t t

t t

t s

t t

X t X t X t ds dB s

X t X t dB u dB s R t t

µ σ

σ σ

= + +

′+ +

∫ ∫

∫ ∫
 

 
where R2(t, t0) involves some higher order terms that is not relevant here. This 
is the motivation of Milstein’s method where we also account for the double 
Itô integral. To evaluate this integral we can apply Itô’s formula for a 
Brownian motion process such that 
 

( )( ) ( ) ( )( ) ( ) ( )( )
0 0

10
2

t t
f B t f f B s dB s f B s ds′ ′′= + +∫ ∫  

 
and take f(x) = xm, m ≥ 2 which yields 
 

( ) ( ) ( ) ( ) ( )1 2

0 0

1
2

t tm m mm mB t m B s dB s B s ds− −−
= +∫ ∫ . 

 
In particular, with m = 2 we have 
 

( ) ( ) ( )2

0
2

t
B t B s dB s t= +∫  

 
which can be rearranged to 
 

( ) ( ) ( )2

0

1 1
2 2

t
B s dB s B t t= −∫ . 

 
With this result we yield for the double Brownian integral 
 



COUNTERPARTY RISK AND INTEREST RATE SWAPS  
 

 45 
 

( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )( )
0 0 0

0

2
0 0

1
2

t s t

t t t
dB u dB s B s B t dB s

B t B t t t

= −

= − − −

∫ ∫ ∫
 

 
Thus we extend the formula in the Euler–Maruyama method with this integral 
such that 
 

( ) ( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )
1

21
2

n n n n n n

n n n n

Y t Y t Y t h Y t B

Y t Y t B h

µ σ

σ σ

+ = + + ∆

′+ ∆ −
 

 
where once again 
 

( ) ( )1 1,n n n n n nh t t B B t B t+ += − ∆ = − . 
 
This idea can be further extended to derive methods of even higher order but 
the coefficients will yield many times iterated integrals which are difficult to 
evaluate [Kloeden Platen 1995]. 
 
The CIR++ process must be evaluated using numerical methods such as the 
Milstein or Euler–Maruyama method if the background process is correlated 
[Brigo, Alfonsi 2005]. If we use the same parameters as before in the Euler–
Maruyama scheme but with the correlated process ( ) 21t tZ t W Wr r ′= + −  
where Wt and tW ′ are two stochastically independent Wiener processes, the 
Euler–Maruyama equation for simulating this process is then 
 

( ) ( ) ( )( ) ( )1i i i i i iy t y t y t h y t Zκ µ ν+ = + − + ∆     
 
and the Milstein equation for this process becomes 
 

( ) ( ) ( )( ) ( ) ( )22
1

1
4i i i i i i i iz t z t z t h z t Z Z hκ µ ν ν+  = + − + ∆ + ∆ −      

where  
 

( ) ( )1 1,i i i i i ih t t Z B t B t+ += − ∆ = −  
 
One major drawback with these numerical schemes is that they don’t ensure 
the positivity of ( )y t and ( )z t . This can be overcome by simulating a so 
called Brownian bridge on each interval [ti, ti+1] with a small enough time step 
to retrieve the positivity that is ensured by the relation 2κμ > ν2 for the 
continuous process (Brigo Alfonsi 2005). So whenever the value becomes 
negative, one simulates a Brownian bridge for that interval. Another drawback 
that is related to the aforementioned implementation is that the positivity 
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preserving property does not always apply when running the simulation 
above. This property is important since taking a positive initial condition 
normally ensures that the process stays positive during the simulation. A 
further discussion is covered in [Brigo Alfonsi 2005]. 
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3 Results and Computations 
 

Brigo, Masetti 2005 construct three risk scenarios; Low Risk, Medium Risk and High 
Risk for the credit quality of a given credit party. Each of these scenarios has a set of 
intensities and survival probabilities, for a given set of dates. It is assumed that the 
intensities follow a piecewise constant step function as defined in Equation (2.5). The 
values for these three risk profiles are given in Table 3.1. 
 

 Low Risk Medium Risk High Risk 
Date Intensity Survival Intensity Survival Intensity Survival 

10-mar-04 
12-mar-05 
12-mar-07 
12-mar-09 
12-mar-11 
12-mar-14 
12-mar-19 
12-mar-24 
12-mar-29 
12-mar-34 

0.0036 
0.0036 
0.0065 
0.0099 
0.0111 
0.0177 
0.0177 
0.0177 
0.0177 
0.0177 

100.00% 
99.64% 
98.34% 
96.38% 
94.24% 
89.31% 
81.64% 
74.63% 
68.22% 
62.36% 

0.0202 
0.0202 
0.0231 
0.0266 
0.0278 
0.0349 
0.0349 
0.0349 
0.0349 
0.0349 

100.00% 
97.96% 
93.48% 
88.57% 
83.71% 
75.27% 
63.05% 
52.80% 
44.23% 
37.05% 

0.0534 
0.0534 
0.0564 
0.0600 
0.0614 
0.0696 
0.0696 
0.0696 
0.0696 
0.0696 

100.00% 
94.70% 
84.47% 
74.78% 
66.03% 
53.42% 
37.53% 
26.36% 
18.51% 
13.01% 

 
Table 3.1: An estimation of intensities and survival probabilities Q[τ > T] at 
different dates (called intensities nodes) for the risk scenarios Low Risk, Medium 
Risk and High Risk for the credit quality of the counterparty. 

Source: Brigo, Masetti 2005 or Brigo, Mercurio 2007 
 
It is common practice to use the LIBOR rate as a discount rate of financial 
instruments such as interest rate swaps. A problem with these rates is that they are 
only specified for maturities of up to one year. It is possible to use different long–
term government bonds (such as Treasury bonds or Treasury Inflation–Protected 
Securities [TIPS] which offer maturities up to 30 years) as a risk free discount rate. 
The collected rates for usage as risk–free swap rates are presented in Table 3.2. 
 

Maturity 
(years) 

Risk–free 
swap rate 

5 
10 
15 
20 
25 
30 

3.249% 
4.074% 
4.463% 
4.675% 
4.775% 
4.811% 

 
Table 3.2: Risk–free implied swap rate for different maturities Tj to be used when 
discounting the cash flows in the interest rate swap agreements. 

Source: Brigo, Masetti 2005 
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The discount factors can be estimated recursively by solving for each maturity Tj 
starting at the lowest and working one’s way upwards using 
 

( ) ( )
1

1

10, 1 0,
1

j

j j j
ij

P T K P T
K

β
β

−

=

 = − +  
∑  (3.1) 

 
where Kj are the swap rates in Table 3.2 and β is the year–fraction (which is 5 years). 
From this formula we could estimate the discount rate rj by using 
 

( ) ( )ln 0,ln , j
j

j

P TP t Tr
T t T

= − = −
−

. (3.2) 

 
This rate varies over time and we could either let it be piecewise constant or 
piecewise linear with respect to t. We derived the following formula that 
automatically generates a piecewise linear function with respect to time, given the 
values rj:  
 

( ) ( ) ( ) ( ) ( )( )( )1
0 1 1

1 1

max min , ,
N

i i
i i i

i i i

y t y ty t y t t t t t
t t

−
− −

= −

−
= + −

−∑  (3.3) 

 
where y(ti) are given interest rates at maturities ti (where we set ri = r(ti) = y(ti)). We 
see a comparison between the piecewise constant interest rate and the piecewise 
linear function in Figure 3.1. We can see that for maturities below 5 years, the 
piecewise linear function tends to underestimate the real interest rate as it starts at 0% 
at time zero and linearly transitions to the rate at the lowest maturity at five years. For 
higher maturities the function tends to overestimate the real interest rate. 
 

 
 

Figure 3.1: A comparison between letting discount rate follow a piecewise 
constant function and a piecewise linear function. The piecewise linear function 
tends to underestimate the interest rate for maturities below 5 years and 
overestimate it at higher maturities, but overall seems to be a more sensible option 
than the piecewise constant function. 
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It is fully possible to tweak the formula and let it start at a positive interest rate at time 
zero but overall we find it a reasonable estimate as the short term underestimation 
counterweighs the long term overestimation. Now, we have all the background data 
required to estimate the counterparty credit adjustments as in Equations (2.22) and 
(2.23). 
 

 Low Risk Medium Risk High Risk 
Mty Antic. Postp. Antic. Postp. Antic. Postp. 

5 
10 
15 
20 
25 
30 

41.846 
67.758 
115.572 
170.248 
218.666 
257.691 

30.543 
52.943 
96.474 
149.574 
197.501 
236.552 

183.816 
248.775 
340.856 
434.015 
509.891 
566.757 

147.936 
209.076 
299.484 
394.046 
472.070 
531.082 

435.908 
557.582 
701.723 
829.879 
923.037 
985.443 

362.184 
482.079 
631.995 
768.778 
869.753 
938.411 

 
Table 3.3: Resulting calculations from Equation (2.22) and (2.23) for the 
counterparty default adjustments assuming anticipated default (DPA) and 
postponed payoff given default (DPP) for the maturities ranging from 5 to 10 
years. 

 
Our calculations from the three distinct risk scenarios are in Table 3.3. We see 
overall that the anticipated default assumption yields higher adjustments than the 
postponed payoff given default assumption. Figure 3.2 illustrates the difference 
between these two assumptions. 
 

 
 

Figure 3.2: The absolute and relative difference between the anticipated default 
assumption and the assumption of postponed payoff given default is bigger for 
lower maturities and for higher risk scenarios whereas it is lower for lower risk 
scenarios and at longer maturities. 

 
It is rather sensible that the difference is higher at lower maturities than at higher 
maturities and tends to zero at infinity. It also makes sense that the added risk in a 
high risk scenario also add to the difference between the two assumptions. A 
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visualization of the credit valuation adjustment with respect to risk and maturity 
assuming anticipated default is given in Figure 3.3. 
 

 
 

Figure 3.3: A 3D visualization of the credit value adjustment added to the spread 
of an IRS for different maturities and risk profiles linearly transitioned between 
the Low Risk, Medium Risk and the High Risk scenarios. 

 
In Figure 3.4  we have the following cross section plots from the meshplot in Figure 
3.3. 
 

 
Figure 3.4 Comparative cross–sections of the credit value adjustment to be added 
to the spread of an IRS for different risk profiles at different maturities (left) and 
for different maturities at different risk profiles (right). 
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4 Conclusion 
 

We see that accounting for counterparty risk adds to the risk premium in the valuation 
of the interest rate swap. At one extreme a survival probability of 13.5% at 30 years 
maturity demands a risk–adjustment by almost 1000 basis points. At the other 
extreme a survival probability of 96.38% at 5 years maturity demands a risk–
adjustment of around 40 basis points. The model yields a risk premium that is larger 
for high risk scenarios and longer maturities whereas it is rather small in lower risk 
scenarios and lower maturities which is in line with what we would expect from real 
world data.  
 

5 Final Thoughts 
 

There are several factors that are not accounted for in the model. The most important 
factor is the correlation between counterparty credit risk and interest rates. This 
requires that we assume that the default risk and the interest rates have some degree 
of stochastic dependence. In this scenario we need to find a stochastic model for the 
interest rates that is (partly) correlated with a stochastic model for the underlying 
intensities requiring a more complex valuation scheme for the interest rate swap 
agreement. So we have to ditch the assumption of stepwise constant intensity and 
model it with a stochastic process. A further treatment regarding this can be found in 
Section 2.6. Brigo, Pallavicini 2008 use what they call the CIR++ model. The major 
advantage of the CIR process in the intensity framework is that it is always positive 
so we don’t risk getting negative default probabilities in our estimations. The 
downside is that the CIR model is a lot more inflexible and complex than the 
piecewise constant deterministic function and it is more difficult to find a good fit 
with real world data. They overcome this limitation by calibrating it implicitly 
through an arbitrary deterministic function and call it the CIR++ process. The CIR++ 
process is still able to yield a satisfactory fit with the real world data, especially for 
the shorter term estimations which is why they add a jump diffusion process to the 
stochastic intensity. Their stochastic model for intensity values that involves jump 
diffusion is called the JCIR++ process. The interest rates are  modeled using a 
stochastic process which they call the G2++ process. It is a two factor Gaussian 
process that they calibrate against real–world interest rates using an arbitrary 
deterministic function in much the same way as they calibrate the CIR++ and the 
JCIR++ processes against the real–world CDS market data. The JCIR++ process is 
correlated with the G2++ process and the counterparty credit adjustment is calculated 
using Equation (2.21) through Monte–Carlo simulations since we no longer have 
closed form expressions. Also, we can no longer use the Black–Scholes model to 
value the swaption but use a more complex expression which is found in Brigo, 
Mercurio 2008 (which is shown in Theorem 4.2.3 in section 4.2.4). 
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Appendix 
 
Matlab code of the calculations performed in Section 3. The file dpcalcfun.m is the 
function that contains the core algorithms for the computations and it is used to run 
different scenarios in dprun1.m that also summarized the computations in a 3D mesh 
plot. The file dprun2.m analyzes the results further by producing additional comparative 
2D plots. 
 

- dpcalcfun.m - 
 
% 
% Counterparty risk and contingent CDS-valuation 
% 
% R, Axelsson 
% Handelshögskolan, Göteborg 
%  
% 
  
% +--------------------------------------------------------------------
---- 
% 
####################################################################### 
% ################################################################# 
% /////////////////////////////////////////////////////                 
| 
% //////////////////////////                                           
-+- 
% ///////                                                               
| 
% 
%           Definitions 
% 
  
% Additional information: 
% 
%  t = 0 since PS(t) is not defined at other time values 
 
function DPP = dpcalcfun(DEFPAR, MKTSWP, sigmaBS) 
  
% The inparameters for this function are: 
%  
%  DEFPAR.lambda  -  a vector of default intensities 
%  DEFPAR.prob    -  a vector of default probabilities 
%  DEFPAR.dT      -  a vector of interval lenghts for eact default 
%                    intensity/probability 
%  
%  sigmaBS        -  a sigma parameter for the B-S swaption valuation 
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%   
%  MKTSWP.R       -  a vector of observed swap spreads 
%  MKTSWP.Mt      -  a vector of maturities for the observed swap 
spreads 
% 
%  It is assumed that the vectors have the same lenght in the DEFPAR 
% parameter and in the MKTSWP parameter. 
  
% I want to find a way to construct a detection algorithm that matches 
the 
% elements in LR, MR, and HR with the proper year.Perhaps find(pT == 
Mt(i)) 
% to return those indices and then use them on LR, MR and HR where 
  
pT = cumsum(DEFPAR.dT); 
  
% The function for a fair strike price of a CDS agreement is 
% (WARNING: For valid S_ab the parameters a,b must be a < b) 
  
S_ab = @(P_0T,a,b, beta)((P_0T(a)-P_0T(b))./(beta*sum(P_0T(a+1:b)))); 
  
% This comes directly from equation (4.2). 
  
% So we need to use the Black-Scholes model for swaptions as 
implemented by 
% Brigo (eq 1.26 Brigo-Pallavicini) 
  
d_1= @(K, F, v)((log(F./K)+v.^2/2)./v); 
d_2= @(K, F, v)((log(F./K)-v.^2/2)./v); 
  
Bl = @(K, F, v, w)(F.*w.*normcdf(w.*d_1(K,F,v)) - ... 
                                           K.*w.*normcdf(w.*d_2(K,F,v)) 
); 
  
% The cumulative density function for a piecewise constant intensity is 
%  
  
F_tau = @(t, lambda)(1-exp(-lambda(:,1)'*(((t>lambda(:,3)).* ... 
                    (lambda(:,3)-lambda(:,2)))+((t<=lambda(:,3))- ... 
                    (t<=lambda(:,2)))*(t-
lambda(:,2)'*((t<=lambda(:,3))-... 
                    (t<=lambda(:,2))))))); 
  
% where  
% lambda = a matrix containing the parameters of the intensity which is 
%          assumed to be a step-function with respect to time. The 
first 
%          column of this matrix contains the intensity values, the 
second 
%          column contains the time points where each intensity value 



COUNTERPARTY RISK AND INTEREST RATE SWAPS  
 

 55 
 

%          starts and the third column contains the time points where 
%          each of them stop. So the second and third column defines 
the 
%          start and the end of each time step such that the entire 
%          intensity function can be defined as a sum of Heaviside step 
%          functions H(t), i.e. 
% 
%          lambda(t) = lambda(:,1)'*(H(t-lambda(:,2))-H(t-lambda(:,3))) 
%                    = lambda(:,1)'*((t > lambda(:,2))-(t > 
lambda(:,3))) 
%                    = lambda(:,1)'*((t <= lambda(:,3))-(t <= 
lambda(:,2))) 
% 
%         so the sums are expressed here as scalar products 
% 
% So in this case: lambda = [#R(:,1) pT [pT(2:end);100] ] where # is L, 
M  
% or H and Q(\tau > t) =  1 - F_tau(t, [#R(:,1) pT [pT(2:end);100]) 
  
% The risk-free discount functions are only defined on discrete points 
in  
% time. If we want to find out the values between these points we need 
to 
% interpolate: 
  
% This defines a discount function that follows a piecewise constant 
% interest rate 
  
P0c_t0 = @(t, R0T, Mt)(exp(-[R0T(1);R0T]'*[0 diff(t <= Mt)]'.*t)); 
P0c_t = @(t, R0T, Mt)(exp(-[R0T(1);R0T]'*... 
         [0*(1:length(t))' diff(meshgrid(t,Mt) <= 
meshgrid(Mt,t)')']'.*t)); 
  
% This defines a discount function that uses an interest rate that 
follows 
% a linearly interpolated continuous function. It is also adapted to 
accept 
% time as a vector. 
  
P0f_t = @(t, R0T, Mt)(exp(-(diff([0;R0T])'./diff(Mt))* ... 
                     (max(min(meshgrid(t, Mt(2:end))' , ... 
                     meshgrid(Mt(2:end),t)),meshgrid(Mt(1:end-1),t))- 
... 
                     meshgrid(Mt(1:end-1),t))'.*t)); 
  
% This is the interest rate function (for verification). I assume that 
this 
% is the interest rate with respect to maturity, i.e. that it is 
already 
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% integrated and I can apply it directly as a "fixed" rate with respect 
to 
% the given time-period. 
  
R0f_t = @(t, R0T, Mt)((diff([0;R0T])'./diff(Mt))*(max(min(meshgrid(t, 
... 
                      Mt(2:end))' , meshgrid(Mt(2:end),t)), ... 
                      meshgrid(Mt(1:end-1),t))-meshgrid(Mt(1:end-
1),t))'); 
  
% We also need to redefine the S_ab with respect to these 
interpolations 
  
S_abf = @(t, R0T, Mt)((P0f_t(t(1), R0T, Mt)-P0f_t(t(end), R0T, Mt))./ 
... 
                       (mean(diff(t))*sum(P0f_t(t(2:end), R0T, Mt)))); 
  
% We also redefine S_ab for use with a piecewise constant interest rate 
% function 
  
S_abf2 = @(t, R0T, Mt)((P0c_t(t(1), R0T, Mt)-P0c_t(t(end), R0T, Mt))./ 
... 
                        (mean(diff(t))*sum(P0c_t(t(2:end), R0T, Mt)))); 
  
% Note that the mean(diff) is put there because I assume that the time  
% points are 'monospaced'. If the time intervals are heterogeneous, all 
we 
% have to do is to remove the mean() and the sum() and change the 
% expression denominator to a scalar product, i.e. to 
% 'diff(t)'*P0x_t(t(2:end))'. 
  
% The following is for calculations straight off the table values and 
the 
% table time-grid (5 years) using piecewise constant interest rates 
  
ADPP.antpure = zeros(length(MKTSWP.Mt)-1, 1); 
  
% We also want to try the same evaluations for the interpolated values 
  
ADPP.antinterp  = zeros(length(MKTSWP.Mt)-1, 1); 
ADPP.postinterp = ADPP.antinterp; 
  
% Let's also try the same evaluations for the piecewise constant 
interest 
% rate but with a finer time-grid 
  
ADPP.antstep = zeros(length(MKTSWP.Mt)-1, 1); 
ADPP.poststep = ADPP.antstep; 
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% +--------------------------------------------------------------------
---- 
% 
#######################################################################
# 
% ########################################################## 
% /////////////////////////////////////////////////////         |  \ /   
/ 
% //////////////////////////                                   -+-  X   
/  
% ///////                                                       |  / \ 
/    
% 
%          Computations 
% 
  
% Computing the P(0, T_i) from the table values 
  
P0T = zeros(1,length(MKTSWP.R))'; 
for j = 1:length(MKTSWP.R) 
    P0T(j) = (1-5*MKTSWP.R(j)*sum(P0T))./(1+5*MKTSWP.R(j)); 
end 
  
R0T = -log(P0T(2:end))./MKTSWP.Mt(2:end)'; 
ADPP.R0T = R0T; 
  
% Here begins the big foor-loop that does all the necessary 
calculations.  
% The variable k is for the different maturities of the swaps where k = 
2 3 
% 4 5 6 7 (length(Mt)) which is from the table values. The for-loops 
below 
% basically use equations (1.28) and (21.41) in Brigo-Pallavicini. 
  
for k = 2:length(MKTSWP.Mt) 
     
    % Calculations of anticipated values done pretty much straigh from 
the 
    % table values 
     
    for i = 2:k 
        SabC = S_ab(P0T(i-1:k), 1, k-i+2, 5); 
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    % SabC(find(isnan(SabC))) = 0;  % This is in case SabC returns NaN 
    % (when inp arg a = b) 
        ADPP.antpure(k-1, :) = ADPP.antpure(k-1, :) + ... 
            (DEFPAR.prob(find(MKTSWP.Mt(i-1)==pT),:) ... 
           - DEFPAR.prob(find(MKTSWP.Mt(i)==pT),:)).* ... 
           Bl(MKTSWP.R(k),SabC,sigmaBS.* ... 
           MKTSWP.Mt(i-1).^.5,1).*5.*sum(P0T(1:k)); 
    end 
    for i = 1:MKTSWP.Mt(k) 
    % We now calculate the anticipated adjustments for the interpolated 
    % functions using annual time-grid 
     
        ADPP.antinterp(k-1) = ADPP.antinterp(k-1) + ... 
           (F_tau(i, [DEFPAR.lambda pT [pT(2:end);100]]) - ... 
           F_tau(i-1, [DEFPAR.lambda pT [pT(2:end);100]])).* ... 
           Bl(MKTSWP.R(k), S_abf(i-1:MKTSWP.Mt(k), R0T, MKTSWP.Mt), ... 
           sigmaBS.*(i-1)^.5, 1).* ... 
           sum(P0f_t(i-1:MKTSWP.Mt(k), R0T, MKTSWP.Mt)); 
  
        % We now calculate the anticipated adjustments for the stepwise 
        % constant interest rate functions but with an annual time-grid  
        % instead of the "quintoannual" (5 years) time-grid that was 
used  
        % for the table-based calculations above. 
  
        ADPP.antstep(k-1) = ADPP.antstep(k-1) + ... 
            (F_tau(i, [DEFPAR.lambda pT [pT(2:end);100]]) - ... 
            F_tau(i-1, [DEFPAR.lambda pT [pT(2:end);100]])).* ... 
            Bl(MKTSWP.R(k), S_abf2(i-1:MKTSWP.Mt(k), R0T, ... 
            MKTSWP.Mt), sigmaBS.*(i-1)^.5, 1).* ... 
            sum(P0f_t(i-1:MKTSWP.Mt(k), R0T, MKTSWP.Mt)); 
        if i < MKTSWP.Mt(k) 
            % The postponed adjustments for the interpolated functions 
are 
            % calculated here 
  
            ADPP.postinterp(k-1) = ADPP.postinterp(k-1) + ... 
            (F_tau(i, [DEFPAR.lambda pT [pT(2:end);100]]) ... 
            - F_tau(i-1, [DEFPAR.lambda pT [pT(2:end);100]])).* ... 
            Bl(MKTSWP.R(k), S_abf(i:MKTSWP.Mt(k), R0T, MKTSWP.Mt), ... 
            sigmaBS.*(i)^.5, 1).* ... 
            sum(P0f_t(i:MKTSWP.Mt(k), R0T, MKTSWP.Mt)); 
            % The same adjustments are calculated but for the stepwise 
            % constant interest rate function 
  
            ADPP.poststep(k-1) = ADPP.poststep(k-1) + (F_tau(i, ... 
               [DEFPAR.lambda pT [pT(2:end);100]]) - ... 
               F_tau(i-1, [DEFPAR.lambda pT [pT(2:end);100]])).* ... 
               Bl(MKTSWP.R(k), S_abf2(i:MKTSWP.Mt(k), R0T, MKTSWP.Mt), 
... 
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               sigmaBS.*(i)^.5, 1).* ... 
               sum(P0f_t(i:MKTSWP.Mt(k), R0T, MKTSWP.Mt)); 
        end 
    end 
end 
  
DPP = ADPP; 
 

- dprun1.m - 
 
% 
% Counterparty risk and contingent CDS-valuation 
% 
% R, Axelsson 
% Handelshögskolan, Göteborg 
%  
% 
  
% Maturities and rates for observed market swaps 
  
MKTSWP.Mt   = [0 5     10    15    20    25    30   ]; 
MKTSWP.R = [0 3.249 4.074 4.463 4.675 4.775 4.811]*.01; 
  
% Risk profiles with their intensities and probabilities 
  
% In this risk profile we assume that the first period starts at t = 0. 
This 
% is a qualified assumption since the survival probability is 1 at that 
time. 
% Alternatively we can assume a later time which then would be a matter 
of 
% adding a discount factor. The year differences are specified in the 
column 
% vector 'dT'. The first column in LR (Low Risk), MR (Medium Risk) and 
HR 
% (Human Resources) contains the intensities and the second column 
contains 
% the probabilities. 
  
% Since the probabilities already are computed we can use them directly 
% without further computations. 
  
LR.lambda = [  .0036 .0036 .0065 .0099 .0111 .0177 .0177 .0177 .0177 
.0177]'; 
LR.prob   = [ 1      .9964 .9834 .9638 .9424 .8931 .8164 .7463 .6822 
.6236]'; 
LR.dT     = [ 0     1     2     2     2     3     5     5     5     5     
]'; 
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MR.lambda = [  .0202 .0202 .0231 .0266 .0278 .0349 .0349 .0349 .0349 
.0349]'; 
MR.prob   = [ 1      .9796 .9348 .8857 .8371 .7527 .6305 .5280 .4423 
.3705]'; 
MR.dT     = [ 0     1     2     2     2     3     5     5     5     5     
]'; 
  
HR.lambda = [  .0534 .0534 .0564 .0600 .0614 .0696 .0696 .0696 .0696 
.0696]'; 
HR.prob   = [ 1      .9470 .8447 .7478 .6603 .5342 .3753 .2636 .1851 
.1301]'; 
HR.dT     = [ 0     1     2     2     2     3     5     5     5     5     
]'; 
  
sigmaBS = .17; 
  
  
DPPLR = dpcalcfun(LR, MKTSWP, sigmaBS); 
DPPMR = dpcalcfun(MR, MKTSWP, sigmaBS); 
DPPHR = dpcalcfun(HR, MKTSWP, sigmaBS); 
  
fprintf('My calculations of a payer swap using the Low, Medium and High 
risk\nscenarios\n\n') 
fprintf('Calculations of anticipated payer swaps using pure table 
values\n(columns: Maturities, LR, MR, HR):\n') 
  
[MKTSWP.Mt(2:end)' DPPLR.antpure DPPMR.antpure DPPHR.antpure] 
  
fprintf('Calculations of anticipated payer swaps using fully 
interpolated interest\nrates and manually calculated default 
probabilities:\n') 
  
[MKTSWP.Mt(2:end)' DPPLR.antinterp DPPMR.antinterp DPPHR.antinterp] 
  
fprintf('The same calculations but on postponed accruals:\n') 
  
[MKTSWP.Mt(2:end)' DPPLR.postinterp DPPMR.postinterp DPPHR.postinterp] 
  
fprintf('Calculations of anticipated payer swaps assuming piecewise 
constant interest\nrates and manually calculated default 
probabilities:\n') 
  
[MKTSWP.Mt(2:end)' DPPLR.antstep DPPMR.antstep DPPHR.antstep] 
  
fprintf('The same calculations but on postponed accruals:\n') 
  
[MKTSWP.Mt(2:end)' DPPLR.poststep DPPMR.poststep DPPHR.poststep] 
  
x_i = 0:.1:1; 
DR.prob = LR.prob; 
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DR.dT = LR.dT; 
DPMESH = zeros(length(MKTSWP.Mt)-1,length(x_i)); 
for i = 1:length(x_i) 
    DR.lambda = (HR.lambda - LR.lambda)*x_i(i) + LR.lambda; 
    DPPDR = dpcalcfun(DR, MKTSWP, sigmaBS); 
    DPMESH(:,i) = DPPDR.antinterp; 
end 
  
  
% Just a mockup of how the mesh plotter works: 
% mesh(1:3, MKTSWP.Mt(2:end), [DPPLR.antinterp DPPMR.antinterp  
% DPPHR.antinterp ]*10000); 
  
FIGS.fig1 = figure('Color',[1 1 1]); 
surf(x_i, MKTSWP.Mt(2:end), DPMESH*1e4); 
surface(x_i, MKTSWP.Mt(2:end), DPMESH*1e4); 
alpha .5 
shading interp 
material metal 
lighting phong 
camlight('right') 
  
% Note that the big font size is chosen so that the image can be scaled 
down 
% so as to compensate for the resolution limitations in the pixel based 
% z-buffer plot (only z-buffer can render 3D images with lighting 
effects 
% and it cannot make vector based images, at least not in Matlab 
2010a). 
  
zlabel('\fontsize{16}Premium (Basis points)') 
ylabel('\fontsize{16}Maturity(years)') 
xlabel('\fontsize{16}Risk profile') 
title('\fontsize{16}Default premium for different risk profiles') 
  
set(gca,'XTick',[0 .5 1]) 
set(gca,'XTickLabel',{'low', 'medium', 'high'}); 
  
% (1) A comparative graph to show how postponed vs anticipated affect 
the CVA 
% and (2) a comparative graph to show interpolated vs stepwise interest 
rate 
% would ba a good thing to add. 
% (3) The three risk profiles for anticipated and postponed would be 
good 
% to add 
% 
  

- dprun2.m - 



COUNTERPARTY RISK AND INTEREST RATE SWAPS  
 

62  
 

 
% 
% Counterparty risk and contingent CDS-valuation 
% 
% R, Axelsson 
% Handelshögskolan, Göteborg 
%  
% 
  
fprintf('Note that this should be run AFTER dprun1.m\n\n') 
  
FIGS.LineColors = [[0, 0, 123]; [75, 56, 138]; [127, 138, 199]; ... 
   [214, 229, 230]; [115, 115, 115]; [165, 169, 176]; [183, 202, 
211]]/255; 
  
FIGS.fig2 = figure('Color',[1 1 1]); 
plot(MKTSWP.Mt(2:end),100*(DPPHR.antinterp-DPPHR.postinterp)./ ... 
         DPPHR.antinterp, 'LineWidth', 2, 'Color', FIGS.LineColors(3, 
:)) 
hold on 
plot(MKTSWP.Mt(2:end),100*(DPPMR.antinterp-DPPMR.postinterp)./ ... 
         DPPMR.antinterp, 'LineWidth', 2, 'Color', FIGS.LineColors(2, 
:)) 
plot(MKTSWP.Mt(2:end),100*(DPPLR.antinterp-DPPLR.postinterp)./ ... 
         DPPLR.antinterp, 'LineWidth', 2, 'Color', FIGS.LineColors(4, 
:)) 
title('\fontsize{12}Relative diffence between DP^A and DP^P 
estimations') 
xlabel('\fontsize{12}Maturity (years)') 
ylabel('\fontsize{12}Percent (%)') 
legend('Low Risk', 'Medium Risk', 'High Risk') 
  
  
FIGS.fig3 = figure('Color',[1 1 1]); 
plot(MKTSWP.Mt(2:end),10000*(DPPHR.antinterp-DPPHR.postinterp), ... 
                        'LineWidth', 2, 'Color', FIGS.LineColors(3, :)) 
hold on 
plot(MKTSWP.Mt(2:end),10000*(DPPMR.antinterp-DPPMR.postinterp), ... 
                         'LineWidth', 2, 'Color', FIGS.LineColors(2, 
:)) 
plot(MKTSWP.Mt(2:end),10000*(DPPLR.antinterp-DPPLR.postinterp), ... 
                         'LineWidth', 2, 'Color', FIGS.LineColors(4, 
:)) 
title('\fontsize{12}Absolute diffence between DP^A and DP^P 
estimations') 
xlabel('\fontsize{12}Maturity (years)') 
ylabel('\fontsize{12}Basis points (bpp)') 
legend('Low Risk', 'Medium Risk', 'High Risk') 
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R0f_t = @(t, R0T, Mt)((diff([0;R0T])'./diff(Mt))*(max(min( ... 
                      meshgrid(t, Mt(2:end))' , meshgrid(Mt(2:end),t)), 
... 
                      meshgrid(Mt(1:end-1),t))-meshgrid(Mt(1:end-
1),t))'); 
R0c_t = @(t, R0T, Mt)([R0T(1);R0T]'*[0*(1:length(t))' ... 
                      diff(meshgrid(t,Mt) <= meshgrid(Mt,t)')']'); 
P0f_t = @(t, R0T, Mt)(exp(-(diff([0;R0T])'./diff(Mt))*(max(min( ... 
                      meshgrid(t, Mt(2:end))' , meshgrid(Mt(2:end),t)), 
... 
                      meshgrid(Mt(1:end-1),t))- ... 
                      meshgrid(Mt(1:end-1),t))'.*t)); 
P0c_t = @(t, R0T, Mt)(exp(-[R0T(1);R0T]'*[0*(1:length(t))' ... 
                      diff(meshgrid(t,Mt) <= meshgrid(Mt,t)')']'.*t)); 
  
FIGS.fig4 = figure('Color',[1 1 1]); 
plot(100*R0f_t(1:max(MKTSWP.Mt), DPPLR.R0T, MKTSWP.Mt), ... 
                            'LineWidth', 2, 'Color', FIGS.LineColors(3, 
:)) 
hold on 
CVx = 1:30; 
CVx(6)=5;CV(11)=10;CV(16)=15;CV(21)=20;CV(26)=25; 
CVy = 100*R0c_t(1:max(MKTSWP.Mt), DPPLR.R0T, MKTSWP.Mt); 
for i = 1:5:30; 
    plot(CVx(i:(i+4)), CVy(i:(i+4)),'LineWidth', 1, ... 
                                    'Color', FIGS.LineColors(2, :)) 
end 
ylim([5.6 6.6]); 
legend('Linearly interpolated', 'Piecewise constant') 
xlabel('\fontsize{12}Maturity (years)') 
ylabel('\fontsize{12}Discount Rate (%)') 
title('\fontsize{12}Linearly interpolated vs piecewise constant 
discount rates') 
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