
i

Thesis for the Degree of Doctor of Philosophy

Software Defect Prediction
Techniques in Automotive

Domain: Evaluation, Selection
and Adoption

Rakesh Rana

Department of Computer Science and Engineering

University of Gothenburg

Gothenburg, Sweden 2015

ii

Cover illustration: Catharina Jerkbrant,
IT Faculty, University of Gothenburg

Software Defect Prediction Techniques in Automotive Domain: Evaluation,
Selection and Adoption
© Rakesh Rana 2015
rakesh.rana@gu.se

ISBN 978-91-982237-1-2

Technical Report no. 116D
Department of Computer Science and Engineering
Division of Software Engineering
University of Gothenburg
SE-412 96 Gothenburg, Sweden
Telephone + 46 (0) 31-772 1000

Printed in Gothenburg, Sweden 2015
Chalmers Reproservice

iii

To my family:

Mom: Bimla Devi
Dad: Jagdish Chand
Brother: Rajesh Rana
& Sister: Saroj Thakur

iv

v

ABSTRACT

Software is becoming an increasingly important part of automotive product
development. While software in automotive domain enables important functionality
and innovations, it also requires significant effort for its verification & validation to
meet the demands of safety, high quality and reliability. To ensure that the safety
and quality demands are meet within the available resource and time - requires
efficient planning and control of test resources and continuous reliability
assessment. By forecasting the expected number of defects and likely defect inflow
profile over software life cycle, defect prediction techniques can be used for
effective allocation of limited test resources. These techniques can also help with the
assessment of maturity of software before release.

This thesis presents research aimed at improving the use of software defect
prediction techniques within the automotive domain. Through a series of empirical
studies, different software defect prediction techniques are evaluated for their
applicability in this context. The focus of the assessment have been on evaluation of
these techniques, how to select the appropriate software reliability growth models
and the factors that play important role in their adoption in industry.

The results show that - defect prediction techniques (i) can be effectively used to
forecast the expected defect inflow profile (shape and the asymptote); (ii) they are
also useful for assessment of the maturity of software before release; (iii) executable
models can be used for early reliability assessment by combining fault injection with
mutation testing approach; and (iv) a number of factors beyond predictive accuracy
such as setup, running, and maintenance costs are important for industrial adoption
of machine learning based software defect prediction techniques.

The effective use of software defect prediction techniques and doing early reliability
assessment on executable models would allow (i) early planning and efficient use of
limited test resources; (ii) reduced development time/ market lead time; and (iii)
more robust software in automobiles which make them more intelligent, safe and
also highly reliable.

vi

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisor Assoc. Prof. Miroslaw Staron for his
invaluable support, guidance, encouragement and feedback which has helped me
pursue my PhD study. I am very grateful to Prof. Jörgen Hansson and Martin
Nilsson from Volvo Cars who have supported me and this project at all times.
Miroslaw, Jörgen and Martin besides your support, without your efforts the project
wouldn't even have existed and I am thankful to you all for giving me the
opportunity to work on this project.

Next, I would like to thank my co-supervisors Assist. Prof. Christian Berger and Dr.
Fredrik Törner for their advice, guidance and support throughout the project. Special
thanks to all my colleagues in the software engineering division for creating a
friendly and motivating work environment. Also, I would like to thank Prof. Andrei
Sabelfeld for his support and guidance throughout the time he has been my
examiner.

I am very grateful to all colleagues at Volvo Cars for helping with the research
studies. Same goes out to colleagues from other companies involved in the research
studies, especially Wilhelm Meding at Ericsson and Christoffer Höglund at SAAB. I
appreciate the time and effort you have put on this project and data provided.

My inexpressible appreciation goes to my family and friends that have always
supported me. Special thanks to my parents, brother and sister for their
unconditional love and support, you guys have always been and will be the main
source of motivation, love and support in my personal and professional life. I would
also like to thank Ann Veiderpass, Director of Graduate Studies, Prof. Martin
Holmen and everyone at Graduate School, Handelshögskolan, Göteborg for making
two years of my Master studies a wonderful experience.

The research presented in this thesis has been carried out in a joint research project
financed by the Swedish Governmental Agency of Innovation Systems (VINNOVA)
and Volvo Car Group. It has been supported under the FFI programme (VISEE,
Project No: DIARIENR: 2011-04438).

vii

INCLUDED PUBLICATIONS

The main contribution of this thesis is based on ten publications, included in
chapters 2 to 7. The chapters have been kept as close as possible to the original
publications (listed below). Minor modifications regarding language and layout have
been made.

I. R. Rana, M. Staron, J. Hansson and M. Nilsson, “Defect Prediction
over Software Life Cycle in Automotive Domain”, In the
proceedings of 9th International Joint Conference on Software
Technologies - ICSOFT-EA, Vienna, Austria, 2014

II. R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F.
Törner, “Comparing between Maximum Likelihood Estimator and
Non-Linear Regression estimation procedures for Software
Reliability Growth Modelling”, In the proceedings of 23rd
International Conference on Software Measurement, IWSM-
Mensura, Ankara, Turkey, 2013

III. R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, F. Törner,
and N. Mellegård, “Evaluation of standard reliability growth
models in the context of automotive software systems”, In the
proceedings of 14th Product-Focused Software Process
Improvement, PROFES, Paphos, Cyprus, 2013

IV. R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, F. Törner,
W. Meding, and C. Höglund, “Selecting software reliability growth
models and improving their predictive accuracy using historical
projects data,” Published in Journal of Systems and Software, vol.
98, pp. 59–78, Dec. 2014

V. R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and W.
Meding, “Analyzing Defect Inflow Distribution of Large Software
Projects”, Submitted to a Journal

-This paper is based (revised and extended) on paper “Analysing
Defect Inflow Distribution of Automotive Software Projects”,
Published in the proceedings of 10th International Conference on
Predictive Models in Software Engineering, PROMISE, Turin,
Italy, 2014

VI. M. Staron, R. Rana, W. Meding, and M. Nilsson, “Consequences of
Mispredictions of Software Reliability: A Model and its Industrial
Evaluation”, In the proceedings of 24nd International Conference

viii

on Software Measurement, IWSM-Mensura, Rotterdam, The
Netherlands, 2014

VII. R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F.
Törner, “Early Verification and Validation According to ISO 26262
by Combining Fault Injection and Mutation Testing,” Published in
Software Technologies, Springer, 2014, pp. 164–179.

VIII. R. Rana, M. Staron, J. Hansson, M. Nilsson, and F. Törner,
“Predicting Pre-Release Defects and Monitoring Quality in Large
Software Development: A Case Study from the Automotive
Domain”, Submitted to a Journal

IX. R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and W.
Meding, “A framework for adoption of machine learning in
industry for software defect prediction”, In the proceedings of 9th
International Joint Conference on Software Technologies, ICSOFT-
EA, Vienna, Austria, 2014

X. R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and W.
Meding, “The adoption of machine learning techniques for software
defect prediction: An initial industrial validation”, In the
proceedings of 11th Joint Conference On Knowledge-Based
Software Engineering, JCKBSE, Volgograd, Russia, 2014

ix

ADDITIONAL PUBLICATIONS

The following papers and technical report are not included in the thesis:

I. R. Rana, “Defect Prediction & Prevention in Automotive Software
Development”, Ph.D. Licentiate Thesis (Technical Report No
108L), Chalmers/ University of Gothenburg, Sweden, 2013

II. R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F.
Törner, “Evaluating long-term predictive power of standard
reliability growth models on automotive systems”, In the
proceedings of 24rd IEEE International Symposium on Software
Reliability Engineering (ISSRE), Pasadena, USA, 2013

III. R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F.
Törner, “Increasing Efficiency of ISO 26262 Verification and
Validation by Combining Fault Injection and Mutation Testing with
Model Based Development”, In the proceedings of 8th International
Joint Conference on Software Technologies, ICSOFT-EA,
Reykjavík, Iceland, 2013

IV. R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson and F.
Törner, “Improving Dependability of Embedded Software Systems
using Fault Bypass Modeling”, In the proceedings of Software-
Based Methods for Robust Embedded Systems (SOBRES)
Workshop at Informatik, Germany, 2013

V. R. Rana, M. Staron, C. Berger, J. Hansson and M. Nilsson,
“Analysing Defect Inflow Distribution of Automotive Software
Projects”, In the proceedings of 10th International Conference on
Predictive Models in Software Engineering, PROMISE, Turin,
Italy, 2014

VI. M. Holmén, E. Nivorozhkin, and R. Rana, “Do anti-takeover
devices affect the takeover likelihood or the takeover premium?”,
Published in The European Journal of Finance, vol. 20, no. 4, pp.
319–340, Jul. 2012

x

PERSONAL CONTRIBUTION

For all publications above, the first author is the main contributor. In all publications
appended in this thesis, I was the main contributor with regard to inception, planning
and execution of the research, and writing. The same applies for the additional
publications in which I am listed as first author.

For included publication number VI (“Consequences of Mispredictions of Software
Reliability: A Model and its Industrial Evaluation”), the contribution of first author
(M. Staron) and second author (R. Rana) were at equal level.

xi

TABLE OF CONTENTS

ABBREVIATIONS ... XVII

1 INTRODUCTION ... 3

1.1 Frame of Reference ... 4
1.1.1 Software Defect Prediction ... 4
1.1.2 Software Defect Prediction Techniques .. 6
1.1.2.1 Techniques for predicting number of defects 7
1.1.2.2 Techniques for defect classification .. 10
1.1.3 Software Development in Automotive Domain 11
1.1.4 Role of Evaluation, Selection and Adoption in Software
Engineering .. 15

1.2 Research Questions ... 17
1.2.1 Mapping of research questions to chapters and included papers 20

1.3 Contributions of the thesis .. 23
1.4 Research Methodology ... 26

1.4.1 Main research types used in this thesis ... 26
1.4.2 Research methods mapping to studies included in the thesis 28
1.4.3 Mapping research process to experience factory model 30

1.5 Related Papers ... 32
1.5.1 Papers included in the thesis ... 32
1.5.2 Papers not included in the thesis ... 34

1.6 Thesis outline .. 35

2 DEFECT PREDICTION OVER SOFTWARE LIFE CYCLE IN AUTOMOTIVE

DOMAIN: STATE OF THE ART AND ROAD MAP FOR FUTURE 39
2.1 Introduction ... 40
2.2 Background ... 40

2.2.1 Automotive Software Development Life Cycle 40
2.2.2 Methods for Software Defect Predictions (SDP) 41

2.3 Related Work .. 42
2.4 Defects Prediction over Automotive Software Life Cycle 42
2.5 Analysing defects data over software life cycle .. 45
2.6 Roadmap for increasing efficiency in combining defect prediction
methods with field data ... 46
2.7 Conclusions ... 47

3 COMPARING BETWEEN MAXIMUM LIKELIHOOD ESTIMATOR AND NON-
LINEAR REGRESSION ESTIMATION PROCEDURES FOR SOFTWARE RELIABILITY

GROWTH MODELLING ... 51
3.1 Introduction ... 52

xii

3.2 Background ... 53
3.2.1 SRGMs: Software Reliability Growth Models 53
3.2.2 Model Selection ... 53
3.2.3 Comparing between SRGMs ... 53
3.2.4 Parameter Estimation ... 54

3.3 Research Context and Method .. 55
3.3.1 Research Objectives .. 55
3.3.2 SRGMs and Data ... 55
3.3.3 Data Analysis Techniques ... 56

3.4 Results ... 59
3.4.1 Parameter estimation using MLE and NLR estimation 59
3.4.2 Predictive Accuracy using Predicted Relative Error (PRE) and
unbiased PRE (BPRE) ... 62
3.4.3 Which Estimators give better Fit to data and Predicted values 64
3.4.4 Working with un-grouped data .. 64

3.5 Conclusions ... 65

EVALUATION OF STANDARD RELIABILITY GROWTH MODELS IN THE CONTEXT

OF AUTOMOTIVE SOFTWARE SYSTEMS .. 67
3.6 Introduction ... 68
3.7 Related Work .. 68
3.8 Research context and method .. 69
3.9 Results and interpretation .. 70
3.10 Conclusions ... 73

SELECTING SOFTWARE RELIABILITY GROWTH MODELS AND IMPROVING THEIR

PREDICTIVE ACCURACY USING HISTORICAL PROJECTS DATA 75
3.11 Introduction ... 76
3.12 Background and Related Work ... 78
3.13 Case Study Design .. 80

3.13.1 Case and subjects selection ... 81
3.13.2 Data collection and analysis methods .. 85
3.13.3 Data collection ... 87
3.13.4 Metrics used for the evaluation of research questions in this study 88
3.13.5 Analysis methods for the research questions ... 90

3.14 Results and analysis .. 96
3.14.1 Case-1: Software Development Processes using V-model:
Automotive domain (Volvo Car Group) .. 96
3.14.1.1 Defect Inflow Profiles ... 96
3.14.1.2 Which SRGMs are the best to assist decisions for optimal
allocation of testing resources? .. 97
3.14.1.3 Which SRGMs are best for assessing the release readiness of
a software system? ... 99

xiii

3.14.1.4 Does using the information from earlier projects improve
release readiness assessment? .. 100
3.14.2 Case-B: Highly Iterative Software Development Processes:
Telecom domain (Ericsson) ... 101
3.14.2.1 Defect Inflow Profiles ... 101
3.14.2.2 Which SRGMs are the best to assist decisions for optimal
allocation of testing resources?.. 101
3.14.2.3 Which SRGMs are the best for assessing the release
readiness of a software system?... 102
3.14.2.4 Does using the information from earlier projects improve
release readiness assessment? .. 103
3.14.3 Case-C: Modified Waterfall Software Development Processes:
Defence Equipment’s (Saab Electronic and Defence Systems) 105
3.14.3.1 Defect Inflow Profiles ... 105
3.14.3.2 Which SRGMs are the best to assist decisions for optimal
allocation of testing resources?.. 105
3.14.3.3 Which SRGMs are best for assessing the release readiness of
a software system? ... 106
3.14.3.4 Does using information from earlier projects improve release
readiness assessment? .. 107
3.14.4 Cross Case Analysis .. 109
3.14.5 How to make the choice of SRGM more effective? 111
3.14.6 Threats to validity.. 116

3.15 Recommendations for applying SRGMs in industry for embedded
software development ... 118
3.16 Conclusions ... 119

3.16.1 Which SRGMs are the best to assist decisions for optimal
allocation of testing resources?.. 119
3.16.2 Which SRGMs are the best for assessing the release readiness of a
software system? ... 119
3.16.3 Does using information from earlier projects improve release
readiness assessment? .. 120
3.16.4 How to make the choice of SRGM more effective? 120

ANALYZING DEFECT INFLOW DISTRIBUTION OF LARGE SOFTWARE PROJECTS ... 121

3.17 Introduction ... 122
3.18 Background ... 124

3.18.1 Software Defects and Reliability Growth Models 124
3.18.2 Software Defect Inflow Distributions and Model Selection 125

3.19 Related Work .. 127
3.20 Research Methodology and Data .. 129

3.20.1 Case Units ... 130

xiv

3.20.1.1 Company A: Volvo Car Group, A company from the
automotive domain .. 130
3.20.1.2 Unit B: Ericsson, A company from the telecom domain 130
3.20.1.3 Unit C: Open source software projects 131
3.20.2 Data Collection and Analysis Methods ... 131

3.21 Results ... 134
3.21.1 Defect Inflow Profiles ... 134
3.21.2 Distribution parameters ... 137
3.21.3 Selecting the distribution with best fit ... 141
3.21.4 Threats to validity .. 146

3.22 Conclusions ... 147

4 CONSEQUENCES OF MISPREDICTIONS OF SOFTWARE RELIABILITY: A

MODEL AND ITS INDUSTRIAL EVALUATION .. 151
4.1 Introduction ... 152
4.2 Related work ... 153
4.3 Mispredicion consequence model ... 154

4.3.1 Mispredicting the asymptote ... 155
4.3.2 Mispredicting release readiness ... 157
4.3.3 Mispredicting the asymptote and the release readiness 158
4.3.4 Misprediction of the shape of the curve .. 158

4.4 Industrial evaluation .. 160
4.4.1 Case study design .. 160
Volvo Car Group (VCG): A company from the automotive domain 161
Ericsson: A company from the telecom domain .. 161
4.4.2 Data collection and analysis methods .. 161

4.5 Results ... 162
4.5.1 Summary of results form case unit A: VCG 162
4.5.2 Summary of results form case unit B: Ericsson 163

4.6 Interpretation and recommendations ... 163
4.7 Conclusions ... 164

5 PREDICTING PRE-RELEASE DEFECTS AND MONITORING

QUALITY IN LARGE SOFTWARE DEVELOPMENT: A CASE STUDY

FROM THE AUTOMOTIVE DOMAIN .. 167
5.1 Introduction ... 168
5.2 Background and Related Work ... 169

5.2.1 Software Defect Prediction .. 169
5.2.2 Automotive Domain and Embedded Software 170
5.2.3 Related Work ... 173

5.3 Research Methodology and Data .. 176
5.3.1 Case Study Design ... 176
5.3.1.1 Company Profile: Volvo Car Group .. 177

xv

5.3.1.2 Software Development Process ... 177
5.3.2 Data Collection and Analysis Methods ... 178
5.3.2.1 The Basic Data .. 178
5.3.2.2 The Analysis Methods ... 180

5.4 Results ... 182
5.4.1 Does small number of modules contain most of the defects found
in large automotive software projects? .. 183
5.4.2 Do defects found in current integration point strongly correlates to
defects found in next integration point? .. 184
5.4.3 Identification of sub-systems and features for further review 186
5.4.4 When in project timeline can we make useful pre-release defect
count predictions? .. 188

5.5 Recommendations and Threats to Validity ... 193
5.5.1 How to apply the prediction models: .. 193
5.5.2 Threats to validity.. 194

5.6 Conclusions ... 195

6 EARLY VERIFICATION AND VALIDATION ACCORDING TO ISO 26262 BY

COMBINING FAULT INJECTION AND MUTATION TESTING 199
6.1 Introduction ... 200
6.2 Background ... 201

6.2.1 Automotive Software Development & ISO 26262 201
6.2.2 ISO 26262 ... 204
6.2.3 Fault Injection ... 205
6.2.4 Mutation Testing ... 206

6.3 Related Work .. 206
6.4 Framework for Early Verification and Validation According to ISO
26262 .. 207
6.5 Case Study: Validation ... 210

6.5.1 Lessons learned ... 213
6.6 Conclusions ... 215

7 A FRAMEWORK FOR ADOPTION OF MACHINE LEARNING IN INDUSTRY FOR

SOFTWARE DEFECT PREDICTION .. 219
7.1 Introduction ... 220
7.2 Background and Related work .. 221

7.2.1 Software defect prediction using tradition approaches 221
7.2.2 Software defect prediction using ML techniques 221
7.2.3 Technology Adoption Framework .. 223

7.3 Study Design ... 224
7.4 Framework for adoption of ML techniques in industry 226
7.5 Adaptation of ML adoption framework for SDP .. 227

7.5.1 Characteristics of machine learning .. 227

xvi

7.5.2 Organizational characteristics ... 230
7.5.3 External environment .. 233

7.6 How to use the framework .. 233
7.6.1 Setting the research direction .. 233
7.6.2 Evaluating specific ML techniques by a given company 233
7.6.3 Improvising the tool and services by vendors 235

7.7 Conclusions and future work .. 235

THE ADOPTION OF MACHINE LEARNING TECHNIQUES FOR SOFTWARE DEFECT

PREDICTION: AN INITIAL INDUSTRIAL VALIDATION .. 237
7.8 Introduction ... 238
7.9 Related Work .. 239
7.10 Study Design ... 240

7.10.1 Case Study Context ... 241
7.10.2 Data collection and analysis methods .. 242

7.11 Factors affecting adoption of ML techniques in industry 243
7.11.1 Organizational and ML characteristics .. 243
7.11.2 Operationalization of factors ... 244

7.12 Findings ... 245
7.12.1 Information need and its importance for SDP 245
7.12.2 Current status of each case unit ... 246
7.12.3 Level of importance of factors .. 247
7.12.4 Specific challenges in adopting ML techniques in industry for SDP .. 250
7.12.5 Validity .. 251

7.13 Conclusions and future work .. 252

8 SUMMARY OF RESEARCH RESULTS ... 257

8.1 Conclusions ... 261
8.2 Future research .. 263

8.2.1 A comprehensive comparison of different software defect
prediction techniques within embedded domain using data from large set
of cross-company projects. .. 263
8.2.2 Defining and validating product metrics for behavioural models in
domain specific languages. .. 264
8.2.3 Industrial validation and further exploration of using fault
injections and mutation based approaches on behavioural models for
dependability evaluations. ... 264

REFERENCES .. 265

xvii

ABBREVIATIONS

SDP Software Defect Prediction

SRGMs Software Reliability Growth Models

VCG Volvo Car Group

ML Machine Learning

xviii

Rakesh Rana

1

Chapter 1:
Introduction

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

2

Rakesh Rana

3

1 INTRODUCTION

Finding and fixing defects is overall the most expensive activity in embedded
software development [1]. Given the size, complexity, time and cost pressures -
tracking and predicting quality is a major challenge in automotive software
development projects. To meet the demands of high quality and reliability -
significant effort is devoted on software V&V (Verification & Validation). Testing
the software is an important part of software V&V used for ensuring correct
functionality and reliability of software systems; but at the same time software
testing is also a resource intensive activity accounting for up to 50% of total
software development costs [2] and even more for safety critical software systems.
Thus having a good testing strategy is critical for any industry with high software
development costs.

Within about 30 years - amount of software in cars went from about zero to more
than 10 million lines of code [3]. Premium segment cars today carry about 30-70
ECUs [4], [5] realizing about 2000 individual functions communicating over five
different system buses. High use of software also have associated cost implications,
today about 50-70% of development costs [6] of software/hardware systems are
software costs and about 40% of vehicle development and production costs [3] of
modern cars are attributed to electronics and software.

Software defect prediction techniques offer one way of increasing the efficiency and
effectiveness of software testing. Predicting expected defect inflow and/or defect
prone files/modules allow effective management of limited testing resources.
Primarily software defect and reliability measures are used for [6] [7]:

 Software process improvement,
 Planning and controlling testing resources during software

development, and
 Evaluating the maturity or release readiness of software before the

release date.

In terms of size and complexity, the automotive domain is similar to other embedded
software domains - the amount and complexity of software has been growing
exponentially. Also with high proportions of development and production costs
incurred on software coupled with market competition largely determining the
prices, the need for efficient software development and testing process is apparent.
Defect prediction techniques can contribute toward the goal of making software
testing more effective and efficient.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

4

The purpose of this thesis is to evaluate techniques for software defect prediction in
the automotive domain. Further contributions are also made towards selecting the
right technique over the life cycle of software development, selection of appropriate
reliability models and identification of factors that are important for companies to
adopt machine learning based software defect prediction techniques.

Robert Graddy of Hewlett-Packard stated “software defect data is [the] most
important available management information source for software process
improvement decisions” and that “ignoring defect data can lead to serious
consequences for an organization’s business” [6]. The overall goal of this work is to
use the defect data to provide insights to software engineers, quality and project
managers and assist them in taking decisions on test resource allocations and
assessment of maturity of software system under development.

1.1 Frame of Reference
The research presented in this thesis is focused on the evaluation of applicability of
software defect prediction techniques in the automotive software domain. As
different software defect prediction techniques are based on different basic
assumptions, they require specific inputs and can be applied at/or perform best for
certain granularity levels. In the frame of reference we describe different techniques
commonly used for defect prediction during software development and maintenance
and also provide the context of software development specific to automotive
domain.

1.1.1 Software Defect Prediction
Software defect, commonly also referred to as bug can be defined as an issue or
deficiency in the software product which causes it to perform unexpectedly [8].
IEEE standard 1044, Classification for Software Anomalies provides common
vocabulary for terms useful in this context, according to the standard [9]:

 Defect: An imperfection or deficiency in a work product where that
work product does not meet its requirements or specifications and
needs to be either repaired or replaced.

 Error: A human action that produces an incorrect result.
 Failure: (A) Termination of the ability of a product to perform a

required function or its inability to perform within previously
specified limits Or (B) An event in which a system or system
component does not perform a required function within specified
limits.

 Fault: A manifestation of an error in software.

Rakesh Rana

5

 Problem: (A) Difficulty or uncertainty experienced by one or more
persons, resulting from an unsatisfactory encounter with a system
in use or (B) a negative situation to overcome.

Since defects in software can lead to malfunctioning of the entire embedded
software system, which could in some cases also pose serious risk to health/life (in
case of safety critical systems), most organizations developing software aim to
release software with no known defects. All defects discovered during V&V
activities are reported (documented) in the defect database.

Most organizations maintain defect databases, which can be local to a team,
project/product or specific section of an organization. All defects found during
verification and validation activities are reports in these databases in a pre-defined
format - often with the sole purpose of facilitating their resolution. The database
usually provides the platform where different stakeholders within and outside of an
organization can:

 Access the information about defect(s) of their interest,
 Add, edit, or update the information related to a given defect,
 Comment, provide expertise or guidance to help resolve the defect, and
 Track the progress of reported defect(s) and monitor defect statistics.

To facilitate the documentation and exchange of information, various attributes are
recorded for each reported defect. Some of these attributes are mandatory aimed at
providing the basic information pertaining to given defect, while others are optional
that provide additional details. The overall goal is to provide information from actor
(usually tester) who discovered the defect to actor(s) who will resolve or help
resolve it (usually developers). Table 1 provides an example of basic attributes that
are usually documented when reporting defects in such a database. Most defect
databases contain more attributes and information than listed in Table 1. Other
attributes are generally customized for given industrial domain, software
development process, and needs of testers and developers for effective exchange of
information.

Table 1: Defect attributes available for analysis (usually from bug/defect
databases)

Information
type

Attribute (example) Example defect

Basic
information

Unique ID SWI-1234	

 Date & time stamp 12-Jul-201X, 16:33:04

Problem Status
Open/ Resolved/
Closed/ Cancelled

Open	

Severity
Major/ Minor/
Insignificant

Minor	

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

6

Problem Type
Requirement defect/
Design defect/ Code
defect

Code defect	

Title and
Description

Title Misplaced white pixels on the home screen	

Description

Precondition	
System is up and running.	

Action	
Enter home screen in default mode (all tiles in standard size).	
Note! This error is only applicable first time the user enters
the home screen. Once tiles in the home screen have been
expanded, the misplaced pixels disappear.	

Observation	
In the middle of the home screen there are some white and
grey pixels in line with the top of the phone tile (between the
phone tile and the media tile).	

Expected	
There should not be any colour deviation of “stains” on the
background screen.	

Probability	
100%	

Additional
Information

Attachments Attached Log file	

 Comments

Update 201X-08-26:	
When entering and exiting the Settings list, the misplaced
pixels reappear, even if tiles in the home screen have
previously been expanded (and shrunk back to default tile
size again).	

There also exist several defect classification schemes that can be used to develop
templates for defect reporting that share a well-defined structure. Such pre-defined
and shared structure facilitates quantitative analysis of defect reports that can
provide useful insights to characterize the development process and also assist in
identifying improvement opportunities [10]. Examples of defect classification
schemes include orthogonal defect classification [11] developed at IBM, schemes
based on IEEE standard classification for software anomalies (IEEE Std. 1044) and
a light-weight defect classification scheme [10].

1.1.2 Software Defect Prediction Techniques
Software Defect Prediction (SDP) techniques are used either to classify which
modules are defect-prone or to predict the number of defects expected to be found in
a software module/project. A number of different techniques have been used for the

Rakesh Rana

7

purpose of classification1/predicting defects; they can be broadly grouped into
techniques used for predicting expected number of defects to be found in a given
software artefact (Prediction) and techniques that are used to predict if or not a given
software artefact is likely to contain a defect (Classification). Figure 1 illustrates
commonly used software defect prediction techniques grouped according to the
purpose – defect count prediction or defect prone classification.

Figure 1: Overview of different software defect prediction techniques

1.1.2.1 Techniques for predicting number of defects
The prediction models may only use number of defects discovered during
development and testing without considering other attributes related to the internal
structure/design/implementation of the project/product – these are grouped as black
box defect prediction techniques. On the other hand defect prediction techniques that
use attributes related to process and product e.g. size, complexity, changes are
classified under white box techniques.

Software Reliability Growth Models (SRGMs)
SRGMs are mathematical equations used to model the growth of software/system
reliability using defect inflow data from the development/testing phase. Appropriate
model is selected based on software development/testing process or using empirical

1 Defect classification can be used to refer either to categorize a defect into classes [11] as
in case of defect classification schemes defined in section 1.1.1 or to refer to approach of
software defect prediction that involves categorizing modules into fault‐prone and non‐
fault‐prone [12]. In this thesis beyond section 1.1.2, unless specified we use the later
meaning of defect classification.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

8

evaluations of performance of a sub-set of models on the testing data, which is then
used to select appropriate models and make defect forecasts. Applying SRGMs to an
on-going project involves fitting mathematical growth models to the observed partial
defect inflow data from testing. The fitted model is then used to make final defect
count predictions or predicting possible latent defects. SRGMs can be used to model
reliability growth over testing period or over the software lifecycle using models
such as Rayleigh model. Wood [13] applied eight SRGMs on industrial defect
inflow data and found significant correlation between pre-release and post-release
defect count. A comparison of SRGMs and their use in practice within consumer
electronics embedded software is also presented in study by Almering et al. [14].
Staron and Meding [15] studied defect data from the telecom domain and concluded
that models based on moving average provided good predictability for weekly defect
predictions; the model was also found to be better than the predictions made using
expert opinions [16].

Capture Recapture analysis
This technique of defect prediction is based on analysis of patterns of defects
discovered in a given software artefact by independent defect detection activities
[17]. Latent defects count (number of defects remaining in a system) is estimated
using the overlap among defects identified by independent activities or group of
testers. The capture/recapture techniques is also referred to as defect pooling [18].
Briand et al. [19] provide a comprehensive review of capture recapture techniques
for software defect count prediction.

Expert opinions
If experts are available, the fastest and easiest method of defect prediction is using
them for predictions based on their experience. The drawback of this methodology is
its subjective nature and inability to scale down properly at lower levels of
granularity. This method can be useful in cases where defect prediction is to be done
at project level or large components level and where experts can draw on their
experience to make forecasts, but when defect predictions are to be made at lower
granularity levels (sub-systems, functions, files etc.), this method does not scale
down. Predictions using expert opinions is compared to performance of software
reliability growth model in work by Vincent et al. [14].

Causal models
Causal models attempt to establish causal relationships between software process
and product attributes with number of defects expected to be found or number of
latent defects in the system. Fenton and Neil [20] critique the use of statistical based
software defect prediction models for their lack of causal link modelling and
proposes use of Bayesian Belief Networks (BBNs). Bayesian Nets have been used to
show their applicability for defect forecasting at very early stages of software
projects [21].

Rakesh Rana

9

Analogy based predictions
Analogy based estimation techniques rely upon collection and comparison of variety
of metrics between past and current project to identify the most analogous project(s)
[22]. For software defect predictions typically size, type of application, complexity
of functionality and other parameters are used to identify similar projects to make
the estimations. The analysis can be done at project, sub-system or component level.

Multivariate Regression
Regression based models use statistical regression for making defect predictions
using a set of software metrics or code change attributes as predictor variables.
Multiple linear regression can be used to estimate the number of expected defects in
a given software project or modules (sub-systems/functions etc.). A range of
software process and product metrics has been used as the independent variables in
the regression based models; most common among them are the code complexity
metrics and source code evolution (change) metrics. Multiple linear regression is
used to model software changes in work by Khoshgoftaar et al. [23] - where a set of
software complexity metrics are used as independent variables. Khoshgoftaar et al.
[24] used linear regression for predicting program faults, their model also relied on
set of code complexity metrics and number of changes to a given module to predict
the dependent variable (program faults).

Constructive quality model (COQUALMO)
The constructive quality model [25] is based on the software defect introduction and
removal model proposed by Barry Boehm [26] which in turn is analogous to Capers
Jones [27] tank and pipe model. The model use expert-determined defect
introduction and removal sub-models to construct a quality model refereed as
COQUALMO. Under this model, firstly number of non-trivial requirements, design
and coding defects introduced are estimated using Defect Introduction (DI) sub-
model. The DI sub-model uses software size estimate and other attributes related to
project and process (platform, personal etc.). The output of DI sub-model is used as
input to the Defect Removal (DR) sub-model together with inputs from defect
removal profile levels and software size estimates. The output of DR sub-model is
an estimation of number of residual defects per unit size [25].

Correlation based models
Correlation based models also use defect data found during the software
development and testing process. Number of defects found at a given phase or
iteration during the development process is used to predict number of defects
expected to be found in later phases/iterations. Yu, Shen, and Dunsmore [28]
evaluated the relationship between defects in earlier and later phases using linear
regression model. While regression and correlation based models both use linear

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

10

regression (univariate or multivariate linear regression) for defect count prediction,
we distinguish between the two as follows:

a. When at least one of the predictor (independent) variable used in the
regression model is a direct measure of defect count in an earlier phase or
iteration – the model is categorised under correlation based models,

b. While if the prediction model does not use defect count measure of earlier
phase/iteration as a predictor variables, the model is classified under
regression based models.

1.1.2.2 Techniques for defect classification
The other main approach to defect prediction is software defect classification. These
models strive to identify fault-prone software modules using variety of software
project and product attributes. Defect classification models are usually applied at
lower granularity levels such as file and class level. Software artefacts thus
identified as defect prone can be prioritized for more intensive verification and
validation activities.

Logistic regression
Logistic regression can be used to classify software modules as defect-prone or not.
Similar to multivariate regression, range of process and product metrics are used as
predictor variables for the classification of software modules. Logistic regression
has been used by Khoshgoftaar and Allen [29] for classifying modules as fault-prone
or not. Zimmermann, et al. [30] also used logistic regression to classify
file/packages in Eclipse project as defect prone.

Machine learning models
Machine learning based models use algorithms based on statistical methods and data
mining techniques that can be used for defect classification/predictions. These
methods are similar to regression based methods and use similar input data
(independent variables). The key difference being that machine learning based
methods are dynamic learning algorithms that tend to improve their performance, as
more data is made available. Using code metrics data of projects from NASA IV&V
facility Metrics Data Program (MDP), Menzies et al. [31] model based on naïve
Bayes predicted with accuracy of 71% (pd, probability of detection) and probability
of false alarm (pf) of 25%. Gondra [32] also using NASA project data set (JM1)
obtained correct classifications of 72.6% with ANNs and 87.4% with SVMs. Using
data from 31 projects from industry and using BNNs Fenton et al. [21] obtained an
R2 of 0.93 between predicted and actual number of defects.

Rakesh Rana

11

1.1.3 Software Development in Automotive Domain
Automotive software is a form of embedded software, which is defined as the
software that resides permanently within a device (hence embedded) and contributes
to the device control and functionality. Automotive software is diverse and complex,
the major reasons for complexity can be attributed to factors such as [1]:

 Interaction between software and hardware with number of sensors
and actuators,

 Expected real time behaviour based on states and events,
 Systems with long life time where embedded software is expected

to continue working often without updates, and
 Demands for high reliability and dependability especially for

applications that are safety critical.

At the same time the diversity of automotive software range from entertainment
related software to safety-critical real time control software [33]. Based on the
application area and non-functional requirements these areas can be grouped into
five clusters as defined in [33]:

1. Multimedia, telematics, and MMI software: typically soft real-time
software which also has to interface with off-board IT, dominated
by discrete event/data processing.

2. Body/comfort software: typically soft real-time, discrete-event
processing dominates over control programs.

3. Software for safety electronics: hard real-time, discrete event-
based, strict safety requirements.

4. Power train and chassis control software: hard real-time, control
algorithms dominate over discrete-event processing, strict
availability requirements.

5. Infrastructure software: soft and hard real-time, event-based
software for management of the IT systems in the vehicle, like
software for diagnosis and software updates.

The software development and testing process used is usually influenced by the
application area, for example multimedia software may be developed in an agile
way with very short iteration time, while infrastructure software developed using
suppliers would generally follow “V” model of software development with longer
time-span. The focus of this thesis is at the level of full EE (Electronics & Electrical
system) development, which constitutes the complete development of software and
electronic hardware (Electronic Control Units) in the automotive domain. At full EE
level, the projects are referred to as platform projects (within VCG, Volvo Car
Group). These projects typically consist of following steps:

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

12

 Requirements are set at vehicle level,
 The system is discretised into several functions and logical

components,
 Functions and logical components are mapped to individual ECUs,
 Software is implemented and unit tested at ECU level in-house or at

supplier, and
 The system is integrated followed by integration, function and

acceptance testing.

The following section describes the development process in details.

Most automotive Original Equipment Manufacturers (OEMs) follow Model Driven
Development (MDD) and since car platform projects are often large and spread over
several months, they are executed in number of iterations. In literature and
development standards, software development life cycle in automotive domain has
been illustrated as approaches based on V-model [34], [35].

The process followed at each iteration within the production software development
phase can be described using a V-model, essentially for each iteration - first the
requirements are set or reviewed followed by System Design (functional design and
system architecture). Following the system design ECU specifications is done which
can also be referred as software design since software is usually designed for
specific ECUs and they are generally co-developed, optimized for particular
functionality.

Next comes the implementation where designed software is implemented (as code
either manually written in object oriented language or auto-generated from a
functional model build using some domain specific language (DSL) such as
Matlab/Simulink). The implemented code usually undergoes rigorous testing under
simulated environment to ensure correct working of intended functionality and
fulfilment of desired quality requirements. The testing of software in simulated
environment is termed Model-In-Loop testing where different functional
models/code is also integrated and tested.

The software code is then integrated within the hardware/ECU, followed by testing
in Hardware-In-Loop configuration (for all iterations) and testing within complete
vehicle prototypes (for certain iterations). Major types of testing carried out to verify
and validate the functionality include unit testing, sub-system integration and
testing, system integration and testing, functional and acceptance testing.

Software development in automotive domain mainly follows V-model where left
branch (early phase) is dominated by software design and implementation, while

Rakesh Rana

13

verification and validation is prominent on the right branch. Figure 2 shows the
mapping of different stages/phases in automotive software and electronic hardware
(ECU) development at the industrial partner (VCG). Requirements at the vehicle
level are grouped based on features (or functions), each function has an assigned
owner responsible for overlooking the design-to-acceptance of feature in the final
product. System designers design the system based on all the functions that are
carried over and to be introduced (new). The system is designed such that each ECU
is assigned number of logical components that implements the required
functionality. Thus there is one to many relationship between function and logical
components for example to provide an Anti-lock feature/function, central electronic
module (ECU) may have a logical component named Anti-lock control component,
while ECU controlling the wheel braking may have another logical component that
implements the braking action under anti-lock conditions, which together fulfil the
full functionality of Anti-lock braking feature.

It is common in automotive domain that OEMs such as VCG take responsibility of
design and acceptance testing of software and hardware at vehicle level, while
electronic hardware (ECUs) and base software for the ECUs are developed by their
suppliers. While OEMs do implement some of the application level software in-
house (generally functions/features that are new and innovative which provide
market differentiation to their products), much of the application level software is
also sourced through tier-1 and tier-2 suppliers customized to the needs of individual
OEMs. Under these conditions access to change metrics is not readily available as
the software is developed/customized by supplier and not developed in-house.

Figure 2: Overview of software development process at VCG

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

14

Further software development in the automotive domain often uses combinations of
different programming languages and techniques. Use of domain specific languages
(DSLs) such as Matlab/Simulink is common among major companies in this sector
(both OEMs and their suppliers) and also among other embedded software domains
(e.g. aerospace). The production code that runs on a typical ECU today may have
mix of code elements that are auto-generated from behavioural models, behavioural
model that includes legacy code and hand written code. Figure 3 shows the possible
mix of software elements that can be part of production code providing the intended
functionality.

Figure 3: Example combination of software elements in an automotive production software

In such functions and systems obtaining precise and accurate complexity metrics
possess challenges for e.g.

 Should we use complexity metrics from behavioural models or
from code generated from these models?

 How can we reliably use the complexity metrics for code that is
auto-generated and optimized using different Model-to-Code
generation tools?

 How can we compare or combine complexity metrics from auto-
generated and hand-written code?

Thus software defect prediction techniques based on change and complexity metrics
may not always be feasible or easy to apply in certain cases within automotive and
other embedded software domains due to:

Rakesh Rana

15

 Difficulty to calculate the size of software module with good
accuracy, thus difficulty calculating and working with defect
densities.

 Source code metrics e.g. complexity, size, couplings are readily
defined for hand written code, but corresponding metrics for
behavioural models are often not validated and in some cases not
yet defined.

 Software sourced from suppliers generally is delivered as black-
box, which makes it difficult to obtain source code metrics and
software evolution information (i.e. change metrics).

In such cases where access to source code and change metrics is unavailable,
software defect prediction and defect classification techniques that use code and
change metrics may not be feasible.

In the automotive domain, experts have traditionally played their de-facto role in
providing their expertise to evaluate the reliability and maturity of software
systems/projects. While expert opinions are generally available in large software
development companies (like automotive OEMs) and can provide quick predictions,
these are based on subjective judgements. Further different experts tend to have
different opinions, which make it difficult for managers to take objective decisions.
Causal models on the other hand use data from historical projects and characteristics
of current project to model and forecast the expected defects found during testing or
latent defects. Although causal models provide a more objective and data based
predictions, their implementation requires significant effort on first their modelling
and secondly on estimating large number of transition probabilities which becomes
problematic with increasing number of independent factors and cases where large
amount of data is not readily available.

In this thesis the focus has been on software defect prediction techniques that
depend on data which is readily available in the automotive software development
environment (at OEMs) and models that are easy to implement and use at the
companies with low running costs.

1.1.4 Role of Evaluation, Selection and Adoption in
Software Engineering

Evaluation
Evaluation of tools and techniques is an important part of software engineering
research and development. Software engineers can be divided into two distinct
groups, one consisting of those that build and maintain software systems and others

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

16

who develop methods and tools for the use of former group [36]. New methods and
tools continuously proliferate without much supporting evidence or benefits over
existing approaches [36]. Scientifically based and practical approach to evaluation
fills this gap by providing the necessary evidence on benefits of given
tools/techniques - thus allowing organizations to take informed decisions and
helping with the adoption of new tools and methods.

Kitchenham et al. [37] presented methodology for evaluating software engineering
methods and tools. The methodology is intended to help organizations plan and
execute unbiased and reliable evaluation. It identifies nine methods of evaluation
and sets of criteria to help evaluators select an appropriate method. Three important
evaluation methods identified under this methodology are: formal experiments,
quantitative case studies, and feature analysis exercise; the latter two have been used
in this thesis.

Selection
Evaluation can be done for a single tool/method to assess its applicability or
performance in a given context or it can be applied for number of similar or
competing tools/methods to help select the best one for a given purpose. The
evaluation methodology by Kitchenham et al. [37] is comparative, assuming that
there exist several alternative ways of performing software engineering task and the
main purpose of evaluation is to identify the best alternative for given specific
circumstances.

For various decisions to be made with respect to software development, such as
which process to use, programming language, tools, or techniques for data analysis -
a number of options are usually available. With number of alternative methods and
tools available to be applied, selecting appropriate method/tools is a recurring theme
in software engineering. Three important methods of selecting the best among
competing systems have been described by David et al. [38] as: interactive analysis,
ranking & selection and multiple comparison. Ranking & selection has been used in
this work specifically for the selection of appropriate software reliability growth
models from sub-set of number of competing models.

Adoption
Software managers and practitioners often have to make decisions about which
technologies to employ on their projects. An important challenge in making
informed decisions about whether to adopt a new technology or not often arise due
to lack of objective evidence for the suitability, cost, quality and inherent risks of
given technology, tool or method [39]. The transfer of new software engineering
techniques and tools from research to industry involves more than just new idea and
evidence that it works [40]. Successful technology transfer require good ideas,

Rakesh Rana

17

generation of evidence of superior characteristics in given contexts, good packaging
and support, and careful consideration of the audience for the given technology [40].
Technology acceptance model [41] and technology adoption framework [42] help
understand the factors that are important for adoption decisions, while and
technology transfer models [43] outlines the process of adoption.

Thus for a comprehensive assessment of a given method, tool or technique – it must
be evaluated using scientifically based practical approaches. Also when sets of
similar/competing alternatives are present, selecting an appropriate tool/technique
for a given purpose is also important. Further when the objective of assessment also
includes the transfer to technology from research to industry, factors affecting
technology adoption and acceptance are also useful to be studied. We assess
software defect prediction techniques in the context of automotive domain mainly in
these three dimensions.

1.2 Research Questions
In section 1.1 we reviewed different techniques of software defect predictions,
which use different types of input data and can be applied at different stages of
software life cycle at different level of granularity. We also provided a brief
background on the lifecycle of software development in automotive domain and the
development process. Given the specific context of automotive software
development using particular development process, tools and other practical
constraints when working with third party suppliers – we underline that some of the
software defect prediction techniques may or may not be suitable for use in the
automotive domain, thus the main goal of this thesis is:

To evaluate how software defect prediction techniques can be effectively
applied over the software development life cycle within the automotive domain.

The main research goal addressed in this thesis was broken down to six research
questions as following:

RQ1: Which defect prediction techniques are applicable at different stages of
software life cycle in automotive domain?

This research question provides a basis for understanding the context of software
development life cycle as well as overview of different software defect prediction
techniques that are applicable over the life cycle. The answer to this research
question is provided in chapter 2. The chapter maps different defect prediction
techniques onto when they can be applied over the automotive software life cycle.
The chapter also maps SDP techniques to what granularity level they can be applied

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

18

and for what purpose. This in turn provides a basis for understanding which defect
prediction techniques are applicable at what stage of software development, for what
purpose and at what granularity they can be applied.

Next the research question posed was to evaluate how software reliability growth
models can be used for making defect count prediction and release readiness
assessment in the automotive domain.

RQ2: How software reliability growth models can be used for defect predictions in
automotive domain?

The research question two is addressed in chapter 3; in particular we were interested
in evaluating applicability and performance of software reliability growth models in
the context of automotive software development. Two specific application areas of
interest in this chapter where total defect count prediction accuracy and assessment
of release readiness. The chapter also deals with practical aspects of applying
SRGMs in practice such as which parameter estimation method to use, metrics for
evaluating predictive accuracy and how the choice of SRGMs on an on-going
project be made more effective.

After evaluation of SRGMs for predicting defect count for live projects, the next
research question addressed in the thesis is aimed at understanding the consequences
of mispredicting total defect count or the shape of defect inflow.

RQ3: What are the consequences of mispredicting total number of defects and
release readiness?

Predictions obtained from any type of abstract models have uncertainties and risk of
mispredictions associated with them. When using SRGMs for predicting expected
defect count in an on-going project, misprediction scenarios could be over- and
under-prediction, early- and late-predictions – and the combination of theses. The
research question answered in chapter 4 is about possible consequences of
mispredicting scenarios. The consequence or cost model is developed together with
industry professionals at Ericsson and VCG and interviews were conducted to
reflect which consequences were more or less relevant for two organizational
divisions involved in the study.

Following evaluation of SRGMs that have been evaluated in RQ 2 and possible
consequences of mispredictions in RQ3, we evaluate another black box defect
prediction technique – correlation based models for defect prediction.

RQ4: How can correlation based models be used for defect prediction in automotive
domain?

Rakesh Rana

19

In particular the study was aimed at evaluating if and how can correlation based
models be used for defect prediction in the context of EE (Electronics & Electrical
system) platform projects in the automotive domain. Since correlation based models
also do not require access to process or product metrics (access to source code), they
were deemed suitable for the given context. Further correlation based models were
also attractive due to their characteristics that they can be applied very easily in the
industrial context, requires little (usually available) data and are intuitive to
understand by all stakeholders involved in the development and quality assurance of
software. The results of this study are presented in chapter 5.

Most SDP techniques either use data from software testing and or use various
process and product attributes collected from the analysis of source code and
evolution data of software under development. A large part of software developed
within the automotive domain uses domain specific modelling languages such as
Matlab/Simulink from which code is usually auto-generated. The next research
question posed was to investigate how these early software artefacts can be used for
reliability evaluations.

RQ5: How to evaluate reliability characteristics of software at early stages of
development using only behavioural models?

This research question required a shift from using software testing data for defect
count prediction to using behavioural models for making reliability assessment early
in the software development process. The framework proposed in this study
comprises of utilizing fault injection in combination with mutation testing to assess
the efficacy of the test suite. The framework help identify which defects if remained
undetected by the available test suite can potentially violate the safety goals
according to the ISO 26262 functional safety standard. Thus the proposed
framework helps improving the reliability of system by early identification of design
and possible implementation defects that can lead to safety goal violations.

Defect prediction and classification models such as machine learning based models
that use software evolution and code source based metrics are not feasible in many
areas of automotive software development (particularly areas where large part of
software is developed using suppliers). Nonetheless other areas within automotive
software development that develops software in-house, these defect prediction
techniques can be potentially useful. Also in other industrial domains developing
embedded software such as telecom - these techniques are particularly attractive.
While ML based SDP techniques have been extensively evaluated in research, their
adoption in industry is yet far from optimal. The research question posed in chapter
7 is to understand why.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

20

RQ6: What are important factors for industrial adoption of machine learning based
defect prediction models?

When evaluating new techniques for software defect prediction, one attribute that is
the focus of most research studies is the predictive accuracy. Many research
investigations propose new algorithms and prove their usability by showing their
superior predictive performance to other algorithms/techniques. Although in
industry predictive performance is only one of many attributes that industrial
practitioners consider while making adoption related decisions. The last research
question addressed in chapter 7 investigates the factors that are considered important
by these practitioners for choosing to use new techniques for defect prediction based
on machine learning algorithms or adopting new tools based on these new
techniques.

1.2.1 Mapping of research questions to chapters and
included papers

In this section, the research questions (RQ1 – RQ6) discussed in the previous section
are mapped to individual chapters and research questions answered in individual
papers included in the thesis. Figure 4, illustrates the overview of this mapping.

Figure 4: Mapping of main research questions to the chapters in the thesis.

Rakesh Rana

21

Chapter 1 - Introduction

 The introduction provides an overview of the goals of this thesis
and the context in which the research has been conducted to
answer the research questions posed.

Chapter 2 - Overview of SDP techniques in context of automotive software life
cycle

Paper I:
 RQ 1.1 What are the state of the art methods for software defect

predictions?
 RQ 1.2 When and at what granularity these methods applicable in

the automotive software development life?

Chapter 3 - SRGMs in automotive domain – selection and evaluation

Paper II:
 RQ 2.1 Which parameter estimation model is practical for applying

SRGMs in automotive domain?
 RQ 2.2 What metric to use for assessing the predictive accuracy of

SRGM models?

Paper III:
 RQ 2.3 Which SRGMs fit best to the defect inflow of large

automotive software project?

Paper IV:
 RQ 2.4 Which SRGMs are best for assisting with resource

allocation?
 RQ 2.5 Which SRGMs are best for making release readiness

assessment?
 RQ 2.6 Does using information from earlier projects improve

release readiness assessment?
 RQ 2.7 How to make the choice of SRGM (model selection) more

effective?

Paper V:
 RQ 2.8 Which statistical distribution fit best to the defect inflow

from large software projects?
 RQ 2.9 How do different information criteria differ for selecting the

best distribution fit?

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

22

Chapter 4 - Consequence of mispredictions

Paper VI:
 RQ 3.1 Given the software quality growth prediction curve, what

are the consequences of mispredicting the total number of defects
and release readiness?

Chapter 5 - Correlation based SDP technique in automotive domain -
evaluation

Paper VII:
 RQ 4.1 Is it possible to use defect count in current iteration to

predict the defect count in next iteration?
 RQ 4.2 Is it possible to predict pre-release defect counts using only

defect count data in the intermediate iterations?
 RQ 4.3 How can we use correlation based prediction models to

identify defect prone modules?

Chapter 6 - Evaluating reliability characteristics of executable models

Paper VIII:
 RQ 5.1 How fault injection and mutation testing can be used at

model level and how it can be applied within the ISO 26262
verification and validation framework?

Chapter 7 - Machine learning techniques for SDP in industry - adoption

Paper IX:
 RQ 6.1 How can we use the technology acceptance and adoption

models for developing framework for ML adoption in industry and
how to adapt it for software defect prediction?

Paper X:
 RQ 6.2 What are the factors that are important for companies to

make informed decision to adopt (or not adopt) ML algorithms for
the purpose of software defect predictions?

Chapter 8 – Summary of research results

 The chapter provides a summary of research results, conclusions
and areas of future research.

Rakesh Rana

23

1.3 Contributions of the thesis
The main contribution of this thesis comprises of evaluation of software defect
prediction techniques in the context of automotive software development. The
evaluation is primarily aimed at supporting software developers, testers, quality and
project managers to take effective decisions on test resource allocation and
assessment of maturity of software under development. In order to structure the
research and thesis into sizable pieces, the main research question was broken down
into six research questions (RQ1 to RQ6), which are addressed in chapters 2 to 7.
The answer to the main research question and conclusions are presented in the final
chapter (number 8).

The first research question RQ1 is posed to provide more contextual information
about software development life cycle in the automotive domain and mapping
software defect prediction techniques with respect to their applicability on this life
cycle. Also the purpose different SDP techniques can be used for and at what
granularity level they can be applied was also explored under this research question,
which is addressed in chapter 2. This study mainly provided:

a. An overview of automotive software development life cycle for
large platform EE projects,

b. Mapping of different SDP techniques according to the development
phase they can be applied,

c. An overview of input data required, advantages and limitations of
mapped SDP,

d. The purpose and application level for different SDP techniques, and
e. Roadmap for increasing the efficiency of defect predictions by

using field data.

The next research question, RQ2 addressed in chapter 3 was aimed at evaluating the
applicability of software reliability growth models for defect count predictions and
software maturity assessment. Related aspects such as the parameter estimation
method to use and how the choice of SRGMs could be made more effective were
also evaluated in this chapter. The studies included in this chapter provided:

a. Two commonly used maximum likelihood estimation (MLE) and
non-linear regression (NLR) were compared and suitability of
metric for measurement of predictive accuracy discussed,

b. Commonly applied SRGMs were evaluated on a system level
suggesting applicability of SRGMs for the purpose of defect count
predictions,

c. A number of SRGMs were further evaluated on defect data from
three different companies from embedded software domain and

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

24

their predictive performance for defect count forecast and release
readiness assessment compared,

d. It was also shown that trend analysis of defect inflow profile on an
on-going project can help predict the expected shape of defect
inflow for the project which can be useful for selecting the
appropriate SRGM, and

e. The statistical distribution family of defect inflow data was also
explored where beta distribution was shown to be prominent family
among tested distributions.

The results from chapter 2 evaluated the performance of commonly applied SRGMs
at system level software and at the level of EE platform project. The question of how
to choose the appropriate SRGMs for a given purpose was also addressed.

The next chapter addressed research question RQ3 to answer what are the
cost/consequences of making wrong predictions using reliability growth modes. The
main outcome of the research presented in this chapter where:

a. Two axis of accuracy of prediction were explicitly identified - (i)
the prediction of the asymptote or the total number of defects and
(ii) when the total number of defects are discovered or the release
readiness, and

b. Different consequences of mispredictions on the two axes were
discussed in the study and their impact on organizations was
evaluated using case studies at two organizations.

The following research question, RQ4 addressed in chapter 5 was posed primarily to
evaluate applicability of correlation based defect prediction models in the context of
iterative software development for EE platform projects in the automotive domain.
Since correlation based models only needs few attributes as data input and can
potentially be used to make predictions early in the development process, they can
prove to be potentially useful for industrial practitioners. The answer to research
question RQ4 consists of:

a. Total defect count until about half way through the project strongly
correlate to the total pre-release defect count suggesting its possible
use as early indicator, and

b. It was also shown in the study how correlation based models could
be used to identify software modules that may need specific
attention.

After evaluating applicability of SRGMs and correlation based models for software
defect count predictions and assessment of release readiness, we evaluated specific

Rakesh Rana

25

opportunity presented in the automotive domain by the use of behavioural models.
These models usually developed in domain specific languages such as
Matlab/Simulink are detailed at implementation level from which code is commonly
auto-generated. Since the development of these models begins early in the
development process, using them for reliability analysis can provide early feedback
for designers - thus making changes easy to implement and cost efficient. The study
presented in this chapter 6 provided:

a. A framework for early identification of design flaws and evaluating
the efficacy of test suite to detect potential implementation defects
that can potentially violate the safety goals. A combination of fault
injection and mutation testing approach is used in the framework,
and

b. The framework was also subjected to initial validation to provide a
proof-of-concept which encouraging results.

Finally in chapter 7, research question RQ6 is addressed. Machine learning based
software defect prediction techniques have found strong support among the research
community – a number of techniques have been shown to provide high predictive
accuracy, but their adoption in industry has not been widespread. In this chapter the
main question of interest was to identify the factors that influence the decision of
adoption for such techniques in industry. The study resulted in:

a. A framework for adoption of machine learning based techniques in
industry and its adaptation for software defect prediction,

b. The framework identified nine main factors and various sub-
attributes that affect the decisions of adoption of new techniques for
SDP in the industry, and

c. The initial validation of framework was done at two companies and
specific challenges for adoption are also identified.

The results from the study suggested that while predictive accuracy have been the
main focus of past research, industrial practitioners were also interested in how the
new techniques fit into their existing systems and the magnitude of setup and
maintenance costs. The study further discussed how to use the framework where
research studies can actively address the concerns on industry practitioner looking to
adopt these techniques and how tool vendors can use such information for further
development of their tool offerings and marketing of their products. The framework
also provides an objective checklist for organizations to evaluate new technologies
or to distinguish between two competing techniques or tool offerings.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

26

1.4 Research Methodology
Research methodology describes the systematic process that is undertaken to yield
the sought out research results. It outlines the process, steps taken, practices and
methods employed to address the questions one wish to explore. Different
approaches can be used to meet the objectives of a research, which could be
discovery of knowledge and/or solving a specific problem. Possible research models
identified by Adrion [44], [45], also identified as research paradigms by Basili [46]
are:

 The scientific method
 The engineering method
 The empirical method
 The analytical method

Depending on the questions of interest, different research approach and methods can
be employed. While there is no consensus in the field with respect to classification
of research techniques [47], a number of approaches and methods are well
established in the field, we use research approach classification used by Glass,
Vessey and Ramesh [47], they broadly classified research approaches used into
descriptive, evaluative and formulative, these are further subcategorized as
represented in Table 2.

Table 2: Research approach as classified in [47]

Descriptive Descriptive system (DS)
Descriptive other (DO)
Review of literature (DR)

Evaluative Evaluative-deductive (ED)
Evaluative-interpretive (EI)
Evaluative-critical (EC)
Evaluative-other (EO)

Formulative Formulative-framework (FF)
Formulative-guidelines/standards (FG)
Formulative-model (FM)
Formulative-process, method, algorithm (FP)
Formulative-classification/taxonomy (FT)
Formulative-concept (FC)

The studies included in this thesis are classified based on the research approach,
refer to Table 4.

1.4.1 Main research types used in this thesis
Research can be classified under various types, which mainly relate to what type of
research questions are answered and the process followed. The studies included in

Rakesh Rana

27

this thesis are classified on the basic types of research using classification provided
in Kothari [48], distinguishing between:

 Descriptive Vs. Analytical,
 Fundamental Vs. Applied,
 Quantitative Vs. Qualitative,
 Conceptual Vs. Empirical, and
 Other types of research.

Descriptive Vs. Analytical
The main purpose of descriptive studies is to describe the state of a system, as it is
present. In descriptive studies researcher has/exert no control over the variables but
only report what has happened or is happening. Descriptive studies are usually used
to describe the state or workings of software systems, eco-systems or take the form
of review of literature classifying and summarizing the advances in a particular area
of interest. On the other hand in case of analytical research, the researcher use facts
and information available already and it is analysed to make critical evaluation.
According to Glass [45], analytical studies include proposing or using an existing
theory or set of axioms, develop that theory deriving results and where possible
comparing the results using empirical observations. Analytical studies can be done
using correlation/regression analysis. Analytical studies usually use quantitative
research methods which is defined as [49]: “Explaining phenomena by collecting
numerical data that are analysed using mathematical based methods (in particular
statistics)”. Both descriptive and analytical research types have been used in various
studies included in this thesis.

Fundamental Vs. Applied
Fundamental (or basic/pure) research is mainly concerned with formulating theories
and generalization of phenomenon. This type of research is mainly driven to expand
the knowledge within a specific research area. On the other hand applied research is
mainly driven to solve specific problems with immediate practical implications. The
overall research goal of this thesis is applied in nature and thus all studies in this
thesis were applied research type.

Quantitative Vs. Qualitative
Quantitative research is based on objective measures and is applicable for
phenomenon’s that can be expressed in terms of numerical quantities. Quantitative
research collect data from number of cases and interesting patterns can be reviled
using statistical methods, these methods are not appropriate for gaining deeper
understanding of underlying reasons. While quantitative research can be effectively
used to evaluate established or proposed theories, it is usually not appropriate for
explaining why questions where qualitative research using methods such as case

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

28

studies are useful. Quantitative research deals with “when”, “where” and “how
often”; on the other hand qualitative research generally aims at answering the “why”
and “how” questions. In this thesis six out of ten included studies are quantitative in
nature while rest are qualitative research type.

Conceptual Vs. Empirical
Research related to abstract idea(s) or theory is usually regarded as conceptual
research, while research that relies exclusively on the experience/observations is
classified as empirical type. In conceptual analysis an idea or a concept is broken
down into its constituent parts to gain better understanding, this research type is
more popular in social sciences and philosophy. Empirical research involves
collection of data through observations and experiments and it is usually done to test
a given hypothesis. Most studies conducted in the course of this thesis can be
classified as empirical research.

Other types of research
Types of research not described above are often variations of one or more of above
stated research types. Research type can also be classified in other ways such as
from the perspective of time, a research can be conducted as one-time study (using
cross-sectional data) or it can be conducted over longer time period (longitudinal
study).

1.4.2 Research methods mapping to studies included
in the thesis

Research methods used in a given study are usually not mutually exclusive; they are
generally combined as appropriated by the purpose of research. We use the research
methods categories used by Glass, Vessey and Ramesh [47], Table 3 list the
research methods listed in [47].

Table 3: Research methods as classified in [47]

AR
CA
CAM
CI

CS
DA
DI
ET
FE
FS
GT

Action research
Conceptual analysis
Conceptual analysis/mathematical
Concept implementation (proof of
concept)
Case study
Data analysis
Discourse analysis
Ethnography
Field experiment
Field study
Grounded theory

HE
ID
LH

LR
LS
MA
MP
PA
PH
SI
SU

Hermeneutics
Instrument development
Laboratory experiment (human
subjects)
Literature review/analysis
Laboratory experiment (software)
Meta-analysis
Mathematical proof
Protocol analysis
Phenomenology
Simulation
Descriptive/exploratory survey

Rakesh Rana

29

Table 4 presents the overview of mapping of included studies based on research
methodology and methods used.

Table 4: Mapping of research approach, type and methods to papers included in the
thesis.

Paper
No

Research approach Research type Research methods

Paper 1
Descriptive, Review of
literature

Descriptive, Applied,
Qualitative, Conceptual

Conceptual analysis, Case
study, Literature
review/analysis

Paper 2 Evaluative-deductive
Analytical, Applied,
Quantitative, Empirical

Conceptual
analysis/mathematical, Data
analysis

Paper 3 Evaluative-deductive
Analytical, Applied,
Quantitative, Empirical

Case study, Data analysis

Paper 4
Evaluative-deductive,
Formulative-guidelines

Analytical, Applied,
Quantitative, Empirical

Case study, Data analysis

Paper 5
Evaluative-interpretive,
Formulative-model

Analytical, Applied,
Quantitative, Empirical

Case study, Data analysis

Paper 6
Descriptive, Descriptive
other

Descriptive, Applied,
Qualitative, Conceptual

Conceptual analysis, Action
research, Literature
review/analysis, Case study

Paper 7 Formulative-framework
Analytical, Applied,
Quantitative, Empirical

Case study, Simulation

Paper 8 Evaluative-deductive
Analytical, Applied,
Quantitative, Empirical

Case study, Data analysis

Paper 9 Formulative-framework
Descriptive, Applied,
Qualitative, Conceptual

Conceptual analysis, Action
research, Literature
review/analysis, Case study

Paper 10 Evaluative-deductive
Analytical, Applied,
Qualitative, Empirical

Case study, Field study

The principle research methods used in the included studies are described next.

Case study
Case studies are empirical studies using either qualitative or quantitative data, these
are generally used for exploring projects, activities or assignments [50]. According
to Yin [51] a case study is an empirical investigation of contemporary phenomenon
within a real-life context. Although the level of control is lower compared to
experiments in a case study, it has a strong focus on empiricism and thus effective
for tracking a specific attribute or establishing relationships between different
attributes in real-life situations. The strong emphasis on understanding the context
makes case study very suitable for industrial evaluation of software engineering
methods and tools [50], while the greatest weakness of this method is the low power
of generalizability.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

30

Data Analysis
Data analysis method is used for both quantitative and qualitative research types. In
case of quantitative data, the analysis techniques usually include descriptive
statistics, correlation analysis, predictive modelling and hypothesis testing [52].
Descriptive statistics help understand the collected data - mean values, standard
deviations and various exploratory visual plots aid the researcher in data exploration
and visualization. Correlation and predictive models are used to describe
relationship between different attributes of a process. Hypothesis testing is typically
done to establish if there exists a significant effect of one or more variables on one
or more other variables [52].

1.4.3 Mapping research process to experience factory
model

The environment, in which research is conducted, commonly referred to as research
setting has important consequences for type of research that can be conducted.
Research settings for example affect the choice of experimental design, the type of
data that can be collected, research methods used and overall goals of conducted
research. The research settings used in this thesis can be mapped to the experience
factory model described by Basili et al. [53]. The Quality Improvement Paradigm/
Experience Factory Organization setup provides an appropriate setup for conducting
applied research in close collaboration with industrial partners, which fits well with
the main objectives of this project.

Figure 5: Illustration of Quality Improvement Paradigm/Experience Factory Organization as
presented in Basili et al. [51]

Rakesh Rana

31

The experience factory can be a physically separate and/or logical organization
within the project organization. The correspondence between this thesis project
setup and experience factory model can be described as follows:

The project organization: This role was fulfilled mainly by the industrial partner of
the project i.e. VCG. While some studies included in the thesis have been conducted
in co-operation of other companies including Ericsson and Saab electronic defence
system, the main partner organization has been VCG. The project was co-supervised
by the industrial supervisor at the project organization. The development
organization provided the analysis organization with the environment characteristics
(context of automotive software development and testing), development data
(software defect data), process, quality, resource utilization etc.

Experience factory: The project researcher together with main academic supervisor
from the division of software engineering at Chalmers/University of Gothenburg
were the primary participants of the analysis organization (experience factory). The
analysis organization engaged in data collection (interviews, observations etc.),
analysis of collected data and returned direct feedback on the lessons learned to the
project organization. The role of support organization was fulfilled by academic and
industrial co-supervisors of the project who facilitated the interaction between
developers, testers and managers within the project organization and with the
efficient retrieval of information.

 The data collected was analysed based on the goals of project,
which were setup in the beginning of the project and continually
reviewed following the project progress.

The data was mainly used to:

 Characterize and understand, (e.g. the paradigm of software
development and verification and validation environment within
automotive domain, the constraints and opportunities of the same);

 Evaluate and analyse, (e.g. which SRGMs give the best predictive
performance for defect count prediction and for assessment of
release readiness);

 Predict and control, (e.g. predicting expected defect count in next
iteration based on defect found until a given iteration, using defect
count data to identify software modules for further investigation);

 Motivate and improve, (e.g. how to improve the reliability
characteristics of software under development using early stage
artefacts such as behavioural models).

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

32

The package part of experience organization came from the experience of academic
and industrial co-supervisors. While the project and analysis organization in the
setup of this project were not strictly setup according to the Quality Improvement
Paradigm/Experience Factory Organization [53], the implicit setup of the research
project was close to this paradigm as outlined above.

1.5 Related Papers
The main part of the thesis excluding current and last chapter comprise of papers
and articles that have been published or are under submission. Some of papers that
were published but not included in the thesis are listed separately in section 0.

1.5.1 Papers included in the thesis
The following papers were included in the thesis:

Chapter 2: R. Rana, M. Staron, J. Hansson and M. Nilsson, “Defect Prediction over
Software Life Cycle in Automotive Domain”, In the proceedings of 9th International
Joint Conference on Software Technologies - ICSOFT-EA, Vienna, Austria, 2014

Chapter 3: This chapter consist of four papers

R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Törner, “Comparing
between Maximum Likelihood Estimator and Non-Linear Regression estimation
procedures for Software Reliability Growth Modelling”, In the proceedings of 23rd
International Conference on Software Measurement, IWSM-Mensura, Ankara,
Turkey, 2013

R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, F. Törner, and N. Mellegård,
“Evaluation of standard reliability growth models in the context of automotive
software systems”, In the proceedings of 14th Product-Focused Software Process
Improvement, PROFES, Paphos, Cyprus, 2013

R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, F. Törner, W. Meding, and
C. Höglund, “Selecting software reliability growth models and improving their
predictive accuracy using historical projects data,” Published in Journal of Systems
and Software, vol. 98, pp. 59–78, Dec. 2014

R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and W. Meding, “Analyzing
Defect Inflow Distribution of Large Software Projects”, Submitted to a Journal

Rakesh Rana

33

-This paper is based (revised and extended) on paper “Analysing Defect Inflow
Distribution of Automotive Software Projects”, Published in the proceedings of 10th
International Conference on Predictive Models in Software Engineering, PROMISE,
Turin, Italy, 2014

Chapter 4: M. Staron, R. Rana, W. Meding, and M. Nilsson, “Consequences of
Mispredictions of Software Reliability: A Model and its Industrial Evaluation”, In
the proceedings of 24nd International Conference on Software Measurement,
IWSM-Mensura, Rotterdam, The Netherlands, 2014

Chapter 5: R. Rana, M. Staron, J. Hansson, M. Nilsson, and F. Törner, “Predicting
Pre-Release Defects and Monitoring Quality in Large Software Development: A
Case Study from the Automotive Domain”, Submitted to a Journal

Chapter 6: R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Törner,
“Early Verification and Validation According to ISO 26262 by Combining Fault
Injection and Mutation Testing,” Published in Software Technologies, Springer,
2014, pp. 164–179.

Chapter 7: This chapter consist of two papers

R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and W. Meding, “A
framework for adoption of machine learning in industry for software defect
prediction”, In the proceedings of 9th International Joint Conference on Software
Technologies, ICSOFT-EA, Vienna, Austria, 2014

R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and W. Meding, “The
adoption of machine learning techniques for software defect prediction: An initial
industrial validation”, In the proceedings of 11th Joint Conference On Knowledge-
Based Software Engineering, JCKBSE, Volgograd, Russia, 2014

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

34

1.5.2 Papers not included in the thesis
The following papers and technical report are not included in the thesis:

R. Rana, “Defect Prediction & Prevention in Automotive Software Development”,
Ph.D. Licentiate Thesis (Technical Report No 108L), Chalmers/ University of
Gothenburg, Sweden, 2013

R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Törner, “Evaluating
long-term predictive power of standard reliability growth models on automotive
systems”, In the proceedings of 24rd IEEE International Symposium on Software
Reliability Engineering (ISSRE), Pasadena, USA, 2013

R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Törner, “Increasing
Efficiency of ISO 26262 Verification and Validation by Combining Fault Injection
and Mutation Testing with Model Based Development”, In the proceedings of 8th
International Joint Conference on Software Technologies, ICSOFT-EA, Reykjavík,
Iceland, 2013

R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson and F. Törner, “Improving
Dependability of Embedded Software Systems using Fault Bypass Modeling”, In the
proceedings of Software-Based Methods for Robust Embedded Systems (SOBRES)
Workshop at Informatik, Germany, 2013

R. Rana, M. Staron, C. Berger, J. Hansson and M. Nilsson, “Analysing Defect
Inflow Distribution of Automotive Software Projects”, In the proceedings of 10th
International Conference on Predictive Models in Software Engineering, PROMISE,
Turin, Italy, 2014

M. Holmén, E. Nivorozhkin, and R. Rana, “Do anti-takeover devices affect the
takeover likelihood or the takeover premium?”, Published in The European Journal
of Finance, vol. 20, no. 4, pp. 319–340, Jul. 2012

Rakesh Rana

35

1.6 Thesis outline
The thesis is structured according to the research questions presented in section 1.2.
The first chapter provides the introduction to the thesis, providing an overview of
research questions addressed, mapping them to individual chapters and research
methodologies used and providing a summary of thesis contributions. In chapter 2
software development life cycle in automotive domain is introduced providing the
contextual information and different software defect prediction techniques are
mapped to the phases of this life cycle. The next chapter makes an evaluation of
applicability of SRGMs for the purpose of defect count predictions and release
readiness assessment. The questions on how to apply SRGMs in practice and how
appropriate models can be selected are also addressed in the same chapter. The
following chapter (number 4) provide details on the possible consequences of
mispredicting the defect count or mispredicting the timing of when the expected
defects would be found.

Next in chapter 5 we evaluate another black box software defect prediction
technique namely the correlation based prediction models. The chapter evaluates if
the number of defects found until a given iteration can be used to predict the
expected defect count in the next iteration and/or the total pre-release defect count.
Chapter 6 shifts the focus on how behavioural models developed under the paradigm
of model based development can be used for early identification of potential design
defects and to assess the adequacy of test suite to provide early feedback to software
designers and testers to improvise the reliability characteristics of software under
development. In chapter 7, factors that play an important role in adoption of
machine learning based techniques for software defect prediction are identified and
validated in the industrial context. The chapter also provides guidelines on the use of
adoption framework developed for different purposes. Finally chapter 8 concludes
the thesis with the summary of research results and directions for future research.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

36

Rakesh Rana

37

Chapter 2:
Overview of software defect
prediction techniques in context
of automotive software life cycle

Included Publication:

I. R. Rana, M. Staron, J. Hansson and M. Nilsson, “Defect Prediction over
Software Life Cycle in Automotive Domain”, In the proceedings of 9th
International Joint Conference on Software Technologies ‐ ICSOFT‐EA,
Vienna, Austria, 2014

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

38

Rakesh Rana

39

2 DEFECT PREDICTION OVER SOFTWARE
LIFE CYCLE IN AUTOMOTIVE DOMAIN:
STATE OF THE ART AND ROAD MAP
FOR FUTURE

Abstract— Software today provides an important and vital role in providing the
functionality and user experience in automotive domain. With ever increasing size
and complexity of software together with high demands on quality and
dependability, managing software development process effectively is an important
challenge. Methods of software defect predictions provide useful information for
optimal resource allocation and release planning; they also help track and model
software and system reliability. In this paper we present an overview of defect
prediction methods and their applicability in different software lifecycle phases in
the automotive domain. Based on the overview and current trends we identify that
close monitoring of in-service performance of software based systems will provide
useful feedback to software development teams and allow them to develop more
robust and user friendly systems.

Keywords— Defect Prediction; Software Life Cycle; Automotive Software; Test
Resource Allocation; Release Readiness

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

40

2.1 Introduction
Software is now an important part of automotive products, over 2000 software
functions running on up to 70 Electronic Control Units (ECUs) provide a range of
functionality and services in modern cars [3]. With premium segment cars today
carrying about 100 million lines of code, which is more than fighter jets and airliners
[54]. Automotive software development projects at full EE (Electronics & Electrical
System) level usually are large and span several months. Given the size, complexity,
demands on quality and dependability, managing such projects efficiently and
tracking the software evolution and quality over the project lifecycle is important.

Defects in software provide observable indicators to track the quality of software
project/product under development. Different methods for analysis of software
defect data have been developed and evaluated; these methods have also been used
to provide a range of benefits such as allowing early planning and allocation of
resources to meet the desired goals of projects. The different methods of software
defect analysis and predictions have different characteristics. They need different
types of input data, are only appropriate to be applied at specific granularity levels
and for certain applications. In this paper we summarize the state of the art methods
for software defect predictions. We place these methods where these are applicable
on the automotive software development life. The methods are mapped to their
appropriate level of granularity and application type. We also contend for the
position that with technology enabling collection and analysis of in-operations data
efficiently will enable software designers and developers to use this information to
design more robust and user-friendly features and functions.

2.2 Background

2.2.1 Automotive Software Development Life Cycle
Most automotive Original Equipment Manufacturers (OEMs) follow Model Driven
Development (MDD). And since car/platform projects are often large and spread
over several months, they are executed in number of iterations. Software
development in this domain has been illustrated as variants of iterative development
based on spiral process model [55] and approaches based on V-model [34], [35].

Rakesh Rana

41

Figure 6: Time Line of Automotive Software Development Life Cycle

The full EE (Electronics & Electrical System) development constitutes the complete
development of software and hardware (Electronic Control Units). Different stages
of software development process in the automotive domain (illustrated by Figure 6)
are:

1. Concept Phase: Where a new functionality is designed and tested
on prototypes and Proof of Concept (POC) is demonstrated.

2. Production Software: The main requirements (on vehicle level) are
set for the upgrade and new functions approved for market
introduction. Software and hardware intended to be included in
production automobiles is developed in iterative manner following
V-model or spiral development process. The first part of
developing production software is dominated by the addition of the
new functionality. Unit, integration and function testing are also
part of each iteration. In the second part, also carried out in number
of iterations – the focus is shifted to integration and acceptance
testing.

3. In Operation: Once the new vehicle model is released into the
market, the performance of software and hardware is monitored
(through diagnostics) during its operation.

2.2.2 Methods for Software Defect Predictions (SDP)
Early estimations of software defects can be used effectively to do better resource
planning and allocations. It can also help to track the progress of given software
project and improve release planning.

A number of methods have been used for predicting software defects. These
methods differ from one another based on the type of input required; the amount of
data needed, prediction made and sensitivity to give stable predictions varies. Based
on their characteristics, the models can be categorized as:

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

42

 Causal Models,
 Using Expert Opinions,
 Analogy Based Predictions,
 Models based on Code and Change Metrics,
 Software Reliability Growth Models (SRGMs), etc.

2.3 Related Work
Expert opinions were used and their performance compared to other data based
models in a study by Staron and Meding [15]. Long term predictive power of
SRGMs within the automotive domain was studied in authors earlier works [56],
[57], demonstrating their usefulness in making defect and reliability predictions.

Number of software metrics based on code characteristics such as size, complexity
etc., has been successfully used to classify defect prone software modules or
estimate software defect densities. Khoshgoftaar and Allen [29] used logistic
regression for classifying modules as fault-prone, while Menzies, Greenwald and
Frank [31] used static code attributes to make defect prone forecasts. Methods that
use code and change metrics as inputs and use machine learning methods for
classification and forecasting have also been studied by Iker Gondra [32] and [58].

Fenton and Neil [20] critique the use of statistical based software defect prediction
models for their lack of causal link modelling and proposes use of Bayesian Belief
Networks (BBNs). Bayesian Nets have been used to show their applicability for
defect forecasting at very early stages of software projects [21]. Our study
complements earlier studies in defect predictions by illustrating when different
methods of SDP are most appropriate over a software development life cycle.

2.4 Defects Prediction over Automotive
Software Life Cycle

Applicability of various methods for software defect predictions over the life cycle
phases of automotive software development is represented in Figure 7 and the
characteristics of each method are summarized in Table 5. At earliest (concept)
phase models that can be applied (given the availability of data about requirements,
designs and implementation) are:

 Causal Models
 Using Expert Opinions
 Analogy Based Predictions
 COnstructive QUALity MOdel (COQUALMO)

Rakesh Rana

43

Models applied at this (concept) phase usually also use information from similar
historical projects. Experts in the company draw on their experience to make such
forecasts, while data based models require the data to be supplied as inputs. The
larger the amount of information available on similar historical projects, the higher
is the likelihood for these models to make accurate and stable predictions.

Other SDP methods require data from the development/testing phase. Examples of
such methods are:

 Correlation Analysis
 Methods based on Code & Change Metrics
 Software Reliability Growth Models (SRGM)

Correlation analysis models uses number of defects discovered in given iteration
(and possibly more attributes) to predict number of defects for following iterations
or defect count at project level. Methods based on code and change metrics require
access to source code/functional models to measure characteristics such as size,
complexity, dependencies etc., which are then used to make the defect proneness
classification or forecasting of defect counts/densities. Thus methods based on code
and change metrics can only be applied when access to source code/functional
models is available. After end of iteration 1, such data is usually available and can
be used for making such forecasts. In some cases, which is often the situation in
automotive software development, access to source code may be an issue when
software is sourced through a sub-supplier. Further since the software development
in automotive domain pre-dominantly uses MDD, functional/behavioural model
metrics alternatives to code metrics may need to be used where their applicability
and performance is currently not well investigated/documented.

Table 5: Software defect prediction models, characteristics and applicability over
Automotive SW life cycle

Method Input Data Required Advantages and Limitations

Causal Models

Inputs about estimated
size, complexity,
qualitative inputs on
planned testing and
quality requirements.

Causal models biggest advantage is that they can be
applied very early in the development process.
Possible to analyse what-if scenarios to estimate
output quality or level of testing needed to meet
desired quality goals.

Expert Opinions

Domain experience
(software development,
testing and quality
assessment).

This is the quickest and most easy way to get the
predictions (if experts are available).
Uncertainty of predictions is high and forecasts may be
subjected to individual biases.

Analogy Based
Predictions

Project characteristics
and observations from
large number of
historical projects.

Quick and easy to use, the current project is compared
to previous project with most similar characteristics.
Evolution of software process, development tool chain
may lead to inapplicability or large prediction errors.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

44

COnstructive
QUALity MOdel

Software size estimates,
product, personal and
project attributes; defect
removal level.

Can be used to predict cost, schedule or the residual
defect density of the software under development.
Needs large effort to calibrate the model.

Correlation
Analysis

Number of defects found
in given iteration; size
and test effort estimates
can also be used in
extended models.

This method needs little data input which is available
after each iteration.
The method provides easy to use rules that can be
quickly applied.
The model can also be used to identify modules that
show higher/lower levels of defect density and thus
allow early interventions.

Regression
Models

Software code (or
model) metrics as
measure of different
characteristics of
software code/model;
Another input can be the
change metrics.

Uses actual code/models characteristic metrics which
means estimates are made based on data from actual
software under development.
Can only be applied when code/models are already
implemented and access to the source code/model is
available.
The regression model relationship between input
characteristics and output can be difficult to interpret –
do not map causal relationship.

Machine
Learning based
models

Software code (or
model) metrics as
measure of different
characteristics of
software code/model;
Another input can be the
change metrics.

Similar to regression models, these can be used for
either classification (defective/not defective) or to
estimate defect count/densities.
Over time as more data is made available, the models
improvise on their predictive accuracy by adjusting
their value of parameters (learning by experience).
While some models as Decision Trees are easy to
understand others may act like a black box (for
example Artificial Neural Networks) where their
internal working is not explicit.

Software
Reliability
Growth Models

Defect inflow data of
software under
development (life cycle
model) or software under
testing.

Can use defect inflow data to make defect predictions
or forecast the reliability of software based system.
Reliability growth models are also useful to assess the
maturity/release readiness of software close to its
release
These models need substantial data points to make
precise and stable predictions.

Rakesh Rana

45

SRGMs on the other hand do not need access to source code/model metrics data;
these are black-box techniques that only use defect inflow data during
development/testing to model the reliability of software systems. While these
models can be applied when the software is under development/testing – they need
substantial data points (defect inflow) to make stable predictions.

Figure 7: Methods for software defect predictions, applicability over SW life cycle in automotive
domain

2.5 Analysing defects data over software life
cycle

Another characteristic of defect analysis methods is at what level they can be
applied. Based on the type of method and input data needed different models
provide optimal results at different granularity levels. They can also be used for
variety of different purposes. Table 6 summarizes the levels and appropriate
applications for each model type. The granularity level at which analysis can be
done are:

 Product Level (PL),
 System Level (SL),
 Sub-System level (SSL),

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

46

 Functional Unit level (FU),
 MOdule (MO), or at the
 File Level (FL)

And the applications where analysis of software defect data can be useful are:

 Resource Planning and Allocations (RPA),
 What-IF analysis (WIF),
 Release Readiness Assessment (RR),
 Root Cause Analysis (RCA), or for
 Identification of Defect Prone units (IDP)

Table 6: Application level and useful purposes

Model	 Application level	Application area	
Causal Models	 PL, SL, SSL	 RPA, WIF	
Expert Opinions	 PL, SL, SSL, FU	 RPA, RRA, RCA, WIF	
Analogy Based Predictions	PL, SL, SSL, FU	 RPA, RRA	
COQUALMO	 PL, SL, SSL, FU	 RPA	
Correlation Analysis	 SSL, FU, MO, FL	RRA, IDP, WIF	
Regression Models	 SSL, FU, MO, FL	RRA, IDP, WIF	
ML based models	 SSL, FU, MO, FL	RRA, IDP, WIF	
SRGMs	 PL, SL	 RPA, RR, RCA	

2.6 Roadmap for increasing efficiency in
combining defect prediction methods with
field data

In the software domain, the post release monitoring have been fairly limited as
software is not regarded same as hardware (software do not degrade or break down
with age). Another major reason for lack of monitoring of software in-operation
performance in the past has been the un-availability of necessary skills at the service
end to retrieve the data and easily feed it back to OEMs for analysis.

But with the advancements of new technology such as high speed data transfer,
cloud storage and highly automated computer based diagnostics equipment’s
available across most of the service points - offers unprecedented opportunity to
collect and retrieve the data from the in-operations phase. This feedback information
can further enhance the capabilities to design and develop even better, higher quality
and safe automotive software.

We contend that the current technologies make it possible for OEMs to collect and
analyse in-operations performance of software based systems very much like it has

Rakesh Rana

47

been the case for hardware components in the past. And much like how such
monitoring helped design better hardware components, increase their life and
reliability – monitoring the in-operations data of software systems performance will
help design more robust, reliable and user friendly software functions in the future.

For example, following and analysing detailed performance metrics of software
based system during their life-time operations will:

 Provide in-operations performance metrics of software based
systems.

 The qualitative and quantitative robustness and reliability measures
from in-operations data will provide input (feedback) for experts
and causal models on which software characteristics lead to most
reliable performance.

 The current evaluation of performance of code & change metrics
SDP models is based on their performance compared to defects
found during development and testing. Using in-operations
performance data and using code & change metrics data from their
source code will help identify “best practices” for the software
designers and developers to avoid actions that may lead to sub-
optimal performance during operations.

 Insights from the in-operation phase are already used by certain
OEMs for effective optimization/calibration. For example
functional units such as powertrain use in-operations data to
calibrate engines for achieving optimal balance between power and
efficiency.

 Active monitoring and analysis of in-operations performance (of
software based systems) will help isolate any potential performance
related issues and offer quick updates whenever needed. This will
further enhance the overall dependability of automotive products.

 Further in future where in-operation monitoring and feedback cycle
is shortened would also enable OEMs to identify user satisfaction
and usefulness of different features within their cars. This will
allow for design and development of more user-friendly features
that will benefits the end customers.

2.7 Conclusions
The role and importance of software in automotive domain is rapidly increasing.
The size, complexity and value - software provides in modern automotive products
is ever increasing and expected to grow further. With trends moving towards more

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

48

software enabled functions, autonomous vehicles and active safety systems –
ensuring dependability of software based systems is highest priority.

Software development in automotive domain is a long and complex process, various
software defect predictions models offer possibilities to predict expected defects
thus providing early estimations that are useful for resource planning and
allocations, release planning and enabling close monitoring of progress of given
project.

In the paper we reviewed that different methods for SDP need different forms of
input data, they also have different capabilities and limitations when it comes to
their ability to make accurate and stable forecasts. Thus given at what phase of
software development life cycle we are in and what kind of data is available, certain
defect prediction models may be more appropriate than others and thus should be
preferred.

We also show that unlike past, the present technology enables close monitoring,
collection and analysis of detailed performance data of software based system
during in-operations phase. This data now and in future will be much easy to collect,
store, retrieve and analyse. We contend that analysis of such data will lead to
development of more robust software based systems that will further help to enhance
the reliability of automotive products and aid in development of features that
provide superior overall user experience.

Rakesh Rana

49

Chapter 3:
Software reliability growth
models in automotive domain –
selection and evaluation

Included Publications:
II. R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Törner,

“Comparing between Maximum Likelihood Estimator and Non‐Linear
Regression estimation procedures for Software Reliability Growth
Modelling”, In the proceedings of 23rd International Conference on
Software Measurement, IWSM‐Mensura, Ankara, Turkey, 2013

III. R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, F. Törner, and N.

Mellegård, “Evaluation of standard reliability growth models in the
context of automotive software systems”, In the proceedings of 14th
Product‐Focused Software Process Improvement, PROFES, Paphos, Cyprus,
2013

IV. R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, F. Törner, W. Meding,

and C. Höglund, “Selecting software reliability growth models and
improving their predictive accuracy using historical projects data”,
Published in Journal of Systems and Software, vol. 98, pp. 59–78, Dec. 2014

V. R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and W. Meding,

“Analyzing Defect Inflow Distribution of Large Software Projects”,
Submitted to a Journal
‐This paper is based (revised and extended) on paper “Analysing Defect
Inflow Distribution of Automotive Software Projects”, Published in the
proceedings of 10th International Conference on Predictive Models in
Software Engineering, PROMISE, Turin, Italy, 2014

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

50

Rakesh Rana

51

3 COMPARING BETWEEN MAXIMUM
LIKELIHOOD ESTIMATOR AND NON-
LINEAR REGRESSION ESTIMATION
PROCEDURES FOR SOFTWARE
RELIABILITY GROWTH MODELLING

Abstract— Software Reliability Growth Models (SRGMs) have been used by
engineers and managers for tracking and managing the reliability change of software
to ensure required standard of quality is achieved before the software is released to
the customer. SRGMs can be used during the project to help make testing resource
allocation decisions and/ or it can be used after the testing phase to determine the
latent faults prediction to assess the maturity of software artefact. A number of
SRGMs have been proposed and to apply a given reliability model, defect inflow
data is fitted to model equations. Two of the widely known and recommended
techniques for parameter estimation are maximum likelihood and method of least
squares. In this paper we compare between the two estimation procedures for their
usability and applicability in context of SRGMs. We also highlight a couple of
practical considerations, reliability practitioners must be aware of when applying
SRGMs.

Keywords— Software reliability growth model (SRGM), Asymptote prediction,
Predictive relative error (PRE), unbiased, BPRE, Non-linear Regression, Maximum
likelihood estimation.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

52

3.1 Introduction
Software is plying an ever increasing role in our day today life. Most of the products
and services we consume are now based on software or uses software in certain
ways [59]. Over the years the complexity of software artefacts has been growing
rapidly, while at the same time the demands for dependability of software systems
have also increased. The link between complexity and software faults have been
suggested for long, studies as early as 1980s such as [60] suggest that software
complexity often affects its reliability. Thus while it is important to keep the
complexity of software under check, it is also important to tack and monitor their
reliability growth.

Software testing is still the main source of ensuring reliability and quality of
software systems. Testing in the area of software products is highly resource
intensive exercise, some of the estimates put it around 50% of overall development
cost [61]. But testing resource consumptions can be much more resource/cost
efficient, if project managers are able to plan testing activities well [62]. Software
reliability growth models have been used to estimate the reliability change in
software products and use the reliability growth predictions for making testing
resource allocation decisions. Since the software can rarely be made fully error free,
project managers need to balance costs associated with software testing to cost of
fixing bugs after release [63].

Software reliability can be modelled using reliability models, which can be based on
Non-Homogeneous Poisson Process (NHPP), Markov process or Bayesian models.
One of the major difficulty faced when using Markov and NHPP models is with
their parameter estimation [64].

A number of difficulties that may be encountered when applying SRGMs to defect
data; in this paper we explore practical considerations when using two types of
estimators – Non-Linear Regression and Maximum Likelihood Estimator. We
compare between the two and introduce a measure for assessing the predictive
power of reliability models. The data used for this study is time-domain failure data
for a real-time control system provided in [65] and used in many earlier studies
including [66], [67]. In the data 136 faults have been reported with their time
between failures (TBF). In the next section we describe the basics of SRGMs and
list related work, section 3 outlines the research questions and methodology while
the following section (4) is used to present the results. The paper is summarized in
section 5 with conclusions and directions for future work.

Rakesh Rana

53

3.2 Background

3.2.1 SRGMs: Software Reliability Growth Models
Software reliability engineering tends to focus on using engineering techniques for
assessing and improving the reliability of software systems during development and
post development. A roadmap on the software reliability engineering is presented in
[68]. Application of empirical reliability engineering techniques have led to two
basic categories, the first class of models called software reliability models (SRMs)
are static models that uses attributes of software source code to assess or predict its
reliability, while the software reliability growth models (called SRGMs) or the
dynamic models generally uses statistical distributions of the defect inflow patterns
to estimate/predict the end-product reliability [69]. The SRMs and SRGMs could
also be differentiated based on their access to source code which former being a
white box models while the latter being black box modelling of software reliability.
We focus on SRGMs in this study.

3.2.2 Model Selection
Since the start of reliability modelling within software domain in early 1960s [70], a
number of SRGMs have been proposed and evaluated [65]. With so many models
which generally differ from one another on their assumptions about underlying
software development and testing process, model selection has been a critical
challenge. Studies such as by Goel [71] and Musa [72] have shown that different
models/families of models are better suited than others for certain applications. A
number of studies have also looked into the questions of model selection and
suggested various solutions. Sharma [73] recommends that different models should
be first compared and evaluated before making a selection. Stringfellow and
Andrews [74] presented an empirical method for selecting the SRGM using a
proposed criteria and iteratively applying different models, while Khoshgoftaar and
Woodcock [75] supports using Akaike Information Criteria (AIC) which is based on
the log-likelihood function as a tool to select the best model for given
application/data.

3.2.3 Comparing between SRGMs
One common way to understand the differences between different models and their
ability to fit and predict given defect data is to do comparative studies. A number of
NHPP based SRGMs have been reviewed and compared on their fit and predictive
power by Pham [66]. Ullah et al. [76] also present a study comparing eight SRGMs
onto large dataset consisting of fifty defect data from industrial and open source
projects. Other studies have also evaluated and compared different SRGMs on
industrial data, Wood [13] made comparison of eight SRGMs on defect inflow data

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

54

and found it correlated with post release defects. Staron and Meding [15] evaluated
different SRGMs using large software projects from telecom sector, while in [77]
seven SRGMs have been evaluated for their applicability within automotive
software projects and long-term predictive power. SRGMs comparison and use in
practice for embedded software in consumer electronics is also presented in [14].
Although a number of studies have compared and evaluated different SRGMs within
different context, we are still far from making a consensus on how to select SRGMs
for given purpose and which models are best for given process characteristics. The
situation with different SRGMs comparison is very well summarised by Stephan
Kan as: “Some models sometimes give good results, some are almost universally
awful, and none can be trusted to be accurate at all times.” [69].

3.2.4 Parameter Estimation
Two practical and important challenges faced when applying SRGMs in
practice/industry are the process to be followed and how to estimate the parameters.
IEEE standard 1633: recommended practice on software reliability [78] provides a
13-steps procedure on assessing and predicting the software reliability. The standard
also lists three methods commonly used for parameter estimation when using
SRGMs as: method of moments, least squares and the maximum likelihood
estimation. Maximum likelihood estimation is the recommended approach by the
standard and by the various studies introducing new SRGMs [71], [79], [80].

Parameter estimation using Maximum likelihood estimation requires solving sets of
simultaneous equations to maximize the likelihood of defect data coming from given
function (model equation) to find the parameters. Although MLE fulfils number of
important statistical properties of optimal estimator and thus considered the best
estimator for large data, unfortunately the set of equations used to find parameters
using MLE are very complex and usually need to be solved numerically [13], [72],
[81]. This is a practical issue that limits the use of MLE by industrial practitioners
who may not be trained to use sophisticated statistical modelling required to use
MLE for different SRGMs. The problem of using MLE widely for parameter
estimation is further compounded either due to SRGM models with complex log-
likelihood functions and cases where MLE does not converge to give unique
estimation of unknown parameters. Meyfroyt [82] provides necessary and sufficient
conditions for ensuring unique, positive and finite estimation of parameters using
MLE for Goel-Okumoto, Yamada S-shaped and Inflection S-shaped models. Use of
MLE in industry is further restricted due to lack of commercial tools that can
provide reliable MLE parameter estimation for different SRGMs.

On the other hand the least square estimation uses curve fitting to the observed data
for making estimation of unknown parameters. Parameters values are estimated for

Rakesh Rana

55

curve that gives minimum sum of square of errors, i.e. curve that fits best (with
respect to sum of squared errors). Given the nature of common SRGMs the least
square estimation usually leads to using non-linear regression (NLR) for estimating
the unknown parameters. Contrary to MLE, least square estimation is easy to apply,
and NLR is often available as standard routine in most commercially available
statistical packages.

Wood [13] applied both MLE and least square estimation and found least square
predictions to be more stable and better correlated to field data although MLE
results were more reasonable. He also noted major difference between the
confidence intervals where least square estimates were unsatisfactory, and while
MLE confidence interval estimates were realistic they were too wide to make
practical conclusions.

It can be safely assumed that statistically MLE is much better parameter prediction
procedure than least square, but the least square is much easier and provide
consistent results in wider data sets and thus a preferred method of choice by
industrial practitioners. Also in certain cases where MLE cannot provide the
parameter estimations, least square approach is the natural alternative. Thus the least
square estimator/NLR is also used more often than MLE for studies evaluating
different SRGMs over large datasets [76], [77]. Given the differences between the
two estimators the need to understand the applicability and performance differences
of these two estimators is quite apparent.

3.3 Research Context and Method

3.3.1 Research Objectives
In this study we take a look at some of the practical considerations and questions
faced by software reliability practitioners. The objective is mainly to document these
aspects and mark their importance. Mainly we look at:

 Comparing MLE verses NLR procedure for estimation of unknown
SRGM model parameters.

 Assessing predictive accuracy using predicted relative error metric.
 Working with un-grouped data.
 We also comment on reproducibility of earlier studies from

literature and provide directions for further research.

3.3.2 SRGMs and Data
In this study we use three of the very early and widely used software reliability
models, the SRGMs used and their mean value functions are listed below in Table 7.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

56

The main reason for their selection is their wide familiarity and availability of MLE
simultaneous equations. The mean value functions have parameters a, which refers
to total number of predicted defects and b, which is generally the shape parameter or
growth rate parameter. Parameter β in Inflection S-shaped model is assumed to be
1.2 following the earlier studies [66].

Table 7: Summary of SRGMs used in this study

No Model Name Mean Value Function Ref.
1 Goel-Okumoto (GO) ି௕௧ [79]
2 Delayed S-shaped model ି௕௧ [80]	
3 Inflection S-shaped model

ି௕௧

ି௕௧ [7]}

The data used for this study is time-domain failure data for a real-time control
system provided in [65] and used in many studies including [66], [67]. In the data
136 faults have been reported with their time between failures (TBF). For practical
reasons we also assume 136 to be the real asymptote of given data, i.e. actual total
number of defects. Cumulative time obtained by successively adding TBF is used
for fitting the cumulative distribution functions to different SRGMs. 122 failures are
used for fitting the data and making parameter estimates, while the rest are used to
evaluate the predictive power.

3.3.3 Data Analysis Techniques
To ensure high reproducibility we list all the data analysis techniques and equations
used for analysis in this study with their references.

1. For parameter estimation using least squares we use Non-Linear
Regression routine available in statistical package IBM SPSS, the
starting values provided were and
iterations were done until successive residual errors difference was
less than (default value in SPSS).

2. For parameter estimation using MLE, we use package maxLik, a
package for statistical environment R [83]. The optimization
method used was Nelder-Mead (NM) and the starting values
provided were same as those used for NLR routine.

3. We also compare the parameter estimations obtained by above
methods (NLR and MLE using maxLik) with earlier study by Pham
[66] using the same data.

Rakesh Rana

57

4. To make the two estimators comparison even more robust, we
further use the non-linear simultaneous equations for getting the
analytical solution using MLE. The equations are available for
Goel-Okumoto model and Delayed S-shaped model described in
[84] and reproduced below:-
For GO model:

೙…………………………...…..........……….(1)

೙ …………………………..……….(2)

For Delayed S-shaped model

೙………………………………….(3)

೙ ...…………………….……….(4)

Where n represents number of failures reported; time between
failures is represented as and where time to

 failure is given by ; for details refer to [84].
Equations (1) & (2) or (3) & (4) can be solved

simultaneously to obtain the point estimates of parameters .
We used Matlab fsolve to solve system of non-linear equations
given above.

5. To make comparison of asymptote prediction accuracy, we use the
metric Predicted Relative Error (PRE), which is described in the
IEEE standard 1633 and also used in earlier studies as measure of
prediction accuracy [76].

PRE is defined as ratio between predicted error (predicted
minus the actual asymptote) to the predicted number of failures.

 .………………….………….(5)

PRE resolves a common problem with using relative error

for comparing between different models prediction, the relative
error is the ratio of prediction error over actual value and thus if the
predicted value is much larger (in multiples) than the actual value,
relative error can be greater than 100%. PRE provides a
comparative scale between [-1 1] or [-100% 100%], where value
close to zero means better predictive accuracy and closer to +/-
100% is as worse prediction as it can get.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

58

Although we identify one major problem with PRE, which
is: It provides asymmetric value based on over or under prediction.
The problem can be easily understood using a simple example.

Let us assume actual value be and case1: the predicted
value is 20% higher than actual i.e. 1.2a; for case2: the predicted
value is 20% lower than actual (i.e. -20% of actual or 0.8a).

Now applying PRE to case1 and case2, gives PRE values:-

,

While for

To make PRE symmetric and thus give consistent value for over
and under estimation we define BPRE, referring to Balanced
Predicted Relative Error, as follows (equation (6)):

,

 ……………….(6)

Now applying above defined BPRE to same

, gives BPRE values:-

, and

Miyazaki et al. [85] defined a balanced relative error metric , also
referred as Balanced Relative Error, BREbias defined as given by
equation (7):

……………….(7)

Our metric BPRE is similar to , but different in the sense that
while is unbounded on both sides, BPRE is bounded [-0.5, 1)
which is useful to make comparisons when deviations are
particularly large compared to actual values.

6. To compare the model fitting to data for both fit and predicted
values, we use another widely used metric, Mean Square Error
(MSE). Mean square error measures the average deviations

Rakesh Rana

59

between the predicted and actual values [86], thus a measure of fit,
it is given by equation (8):

೔ ೔
೙
భ ……………………………..………...(8)

Where is actual values, predicted values for data set of size
and is the number of parameters.

3.4 Results

3.4.1 Parameter estimation using MLE and NLR
estimation

Parameter estimation using maximum likelihood and non-liner regression procedure
are summarised in Table 8. The table also provides comparison of parameters values
obtained in study using same data by Pham [66] and also by solving MLE
simultaneous equations provided in [86].

Table 8: Comparing Parameters With Different Estimators

Asymptote MLE NLR Pham Equation
Goel-Okumoto 132 114.05 125 139.37
DelayedS 132 103.33 140 125.16
InflectionS 132 107.60 135.5

Growth Rate MLE NLR Pham Equation
Goel-Okumoto 3.80E-05 6.07E-05 6.00E-05 3.65E-05
DelayedS 9.73E-05 1.66E-05 7.00E-05 9.76E-05
InflectionS 5.79E-05 1.07E-05 7.00E-05

Form Table 8 it can be observed that the asymptote (, total number of predicted
defects/failures) predictions obtained in this study using maximum likelihood
estimator utilizing package maxLik gives very consistent results for all three models.
While the asymptote predictions using non–linear regression routine (NLR) varies
much more with minimum prediction being 103 for Delayed S-shaped model and
114 for GO model. It is further interesting to note that significant differences are
also observed between our predictions using (MLE) and values obtained by earlier
study by Pham, although in both case the estimator used is the same (MLE). The
difference observed here may be attributed to difference in tools used or the starting
values predicted. Given that the tool used and starting values details are not
available for earlier study, it is difficult to verify the source of this observed
difference.

Predictions for growth rate parameter () with different estimators are also listed in
Table 8. While there are variations between different models growth rates obtained

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

60

in this study using MLE and NLR. The growth rate is predicted to have highest
value for Delayed S-shaped model and lowest for GO model using both (MLE &
NLR) estimators in our study. The growth rates predicted in Pham study are closer
to each other. It can also be noted that for both asymptote and growth rate, our
estimates using MLE are very close to the parameters estimates obtained using MLE
simultaneous equations described earlier.

The fitting of predicted models using different estimators to actual data is also
represented in Figure 8, Figure 9 and Figure 10.

Figure 8: Goel-Okumoto model fitting to data with different estimators

Rakesh Rana

61

Figure 9: Delayed S-shaped model fitting to data with different estimators

Figure 10: Inflection S-shaped model fitting to data with different estimators

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

62

3.4.2 Predictive Accuracy using Predicted Relative
Error (PRE) and unbiased PRE (BPRE)

We now compare the predictive accuracy of asymptote values obtained using MLE
estimator to NLR estimators.

Table 9: PRE and BPRE for different estimators and models

Asymptote, PRE MLE NLR Pham
Goel-Okumoto -3.0% -19.2% -8.8%
DelayedS -3.0% -31.6% 2.9%
InflectionS -3.0% -26.4% -0.4%

Asymptote, BPRE MLE NLR Pham
Goel-Okumoto -2.9% -13.9% -7.5%
DelayedS -2.9% -19.4% 2.9%
InflectionS -2.9% -17.3% -0.4%

It is interesting to note from Table 9 that all but one estimate under predicts for
given dataset. Using PRE and BPRE values for same parameter predictions we can
also see that BPRE gives better and more accurate representation of undervalued
asymptote prediction as described in the section 3. The BPRE values for asymptote
predictions using MLE and NLR are also presented below in Figure 11. We also add
two more models using NLR procedure to make further check.

Figure 11: Comparing between BPRE values for MLE and NLR estimations

Rakesh Rana

63

Figure 11 shows that in our study although MLE estimators also under predict
asymptote values the prediction is consistent for all models and prediction accuracy
much higher (BPRE lower than -5%). While the unbiased predictive relative error
value for NLR estimators is comparatively higher closer to but under negative 20%
for different models tested here.

Figure 12: Comparing between MSE fit and predict for MLE and NLR estimation

From Table 10 and Figure 12 we can observe that MSE fit values using NLR are
much better compared to values obtained using MLE. This is not surprising given
that least square procedure actually minimizes the sum of square of errors between
the observed data and used model. On comparing MSE values using MLE obtained
in this study to earlier study by Pham and by using equations, we can see that in all
but one case MSE values obtained in this study are much smaller than those
presented in earlier study and they are also closer to values obtained using MLE
simultaneous equations.

Further the interesting point to note from the comparison is that despite NLR giving
very good fit values, it does comparatively worse for the MSE values for the
predicted values. Mean square error using MLE are significantly smaller to ones
obtained using NLR which confirms that MLE is a better estimator for prediction
purposes.

Although as described earlier that SSE (Sum of Squared Errors)/MSE is not a fair
comparison parameter between MLE and NLR for the fitted data points, but since

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

64

MSE for the predicted data is not optimized for both estimators (MLE & NLR), it
serves the purpose of comparing between the two estimators on evaluating fit of
given model to observed data and goodness-of-fit to predicted data.

3.4.3 Which Estimators give better Fit to data and
Predicted values

Another widely used parameter to compare different models and their estimators for
their performance is their ability to fit the observed defect/failure data and to the
predicted the data. Mean Square Error (MSE) is often used to compare the fit of
observed and predicted values. MSE is described in section 3 and values obtained
for MLE and NLR estimators are provided in Table 10. The MSE values using MLE
and NLR estimation using additional Logistic and Gompertz model (for NLR
estimator) is also presented in Figure 12.

Table 10: Comparing MSE fit and predict values for different estimators and models

MSE fit MLE NLR Pham Using Equation
Goel-Okumoto 67.0 20.8 62.7 65.4
Delayed S-shaped 246.6 89.2 420.4 223.8
Inflection S-shaped 155.7 42.3 132.1

MSE predict MLE NLR Pham Using Equation
Goel-Okumoto 42.7 301.6 50.4 1.6
Delayed S-shaped 12.8 702.0 22.5 40.9
Inflection S-shaped 9.3 501.6 23.0

3.4.4 Working with un-grouped data
A further practical consideration that needs to be accounted when working with un-
grouped data is as follows: in some cases the time between failures is zero for
example in the data set used in this study it occurs at fault numbered 33, 61 and 104,
highlighted in Table 11. When using MLE estimators with log-likelihood function
for NHPP process as given in [66] and using MLE packages such as MaxLik the
failures where mean time between failures (MTBF) is zero need to be grouped, else
the package can returns NaN errors. And when using the MLE simultaneous
equations for GO and Delayed S-shaped model as given in [84], the data used
should be un-grouped including the failures with MTBF values equal to zero, else
it’s equivalent to not considering those failures in the analysis which is also not
correct.

Rakesh Rana

65

3.5 Conclusions
In this study using data from literature we have compared between two of the most
widely recommended and used methodology for estimating parameters for the
purpose of applying SRGMs to defect/failure data. It is noted in the study that while
MLE is the recommended estimator with superior statistical properties, its usability
and applicability in all situations is questionable. Further MLE is difficult to apply
which limits its use in industry, especially due to lack of tools support.

Although external validity of work presented here may be considered low due to use
of only single dataset, the study provides important results that point towards
different results obtained using different estimation procedures. The study provides
useful and practical insights for industry practitioners and early researchers applying
reliability modelling to defect/failure data.

We further provide an improvised metric (BPRE) for comparing the predictive
accuracy that is symmetric for over and under prediction addressing the problem
identified in this study with widely used metric PRE (predicted relative error).

With results in this study suggesting that the fit, predict and predictive accuracy
obtained using MLE and NLR estimators may be much different from one estimator
to another, more research in this direction is needed to establish these differences in
different contexts and thus helping to resolve the dilemma faced by reliability
practitioners of which estimator to use and in which conditions a given estimator is
better than other. Initial results presented here and properties of MLE and NLR
estimators suggest that while NLR is good estimator for fitting the data to observed
failure data, MLE is better estimator for making reliable predictions.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

66

Table 11: Data used in this study, provided in [65] and used in earlier studies
including [66], [67]

F TBF Cum F TBF Cum F TBF Cum F TBF Cum F TBF Cum F TBF Cum
1 3 3 24 68 2676 47 6 7843 70 379 16185 93 2930 35338 116 122 53443
2 30 33 25 422 3098 48 79 7922 71 44 16229 94 1461 36799 117 990 54433
3 113 146 26 180 3278 49 816 8738 72 129 16358 95 843 37642 118 948 55381
4 81 227 27 10 3288 50 1351 10089 73 810 17168 96 12 37654 119 1082 56463
5 115 342 28 1146 4434 51 148 10237 74 290 17458 97 261 37915 120 22 56485
6 9 351 29 600 5034 52 21 10258 75 300 17758 98 1800 39715 121 75 56560
7 2 353 30 15 5049 53 233 10491 76 529 18287 99 865 40580 122 482 57042
8 91 444 31 36 5085 54 134 10625 77 281 18568 100 1435 42015 123 5509 62551
9 112 556 32 4 5089 55 357 10982 78 160 18728 101 30 42045 124 100 62651
10 15 571 33 0 5089 56 193 11175 79 828 19556 102 143 42188 125 10 62661
11 138 709 34 8 5097 57 236 11411 80 1011 20567 103 108 42296 126 1071 63732
12 50 759 35 227 5324 58 31 11442 81 445 21012 104 0 42296 127 371 64103
13 77 836 36 65 5389 59 369 11811 82 296 21308 105 3110 45406 128 790 64893
14 24 860 37 176 5565 60 748 12559 83 1755 23063 106 1247 46653 129 6150 71043
15 108 968 38 58 5623 61 0 12559 84 1064 24127 107 943 47596 130 3321 74364
16 88 1056 39 457 6080 62 232 12791 85 1783 25910 108 700 48296 131 1045 75409
17 670 1726 40 300 6380 63 330 13121 86 860 26770 109 875 49171 132 648 76057
18 120 1846 41 97 6477 64 365 13486 87 983 27753 110 245 49416 133 5485 81542
19 26 1872 42 263 6740 65 1222 14708 88 707 28460 111 729 50145 134 1160 82702
20 114 1986 43 452 7192 66 543 15251 89 33 28493 112 1897 52042 135 1864 84566
21 325 2311 44 255 7447 67 10 15261 90 868 29361 113 447 52489 136 4116 88682
22 55 2366 45 197 7644 68 16 15277 91 724 30085 114 386 52875
23 242 2608 46 193 7837 69 529 15806 92 2323 32408 115 446 53321

Rakesh Rana

67

EVALUATION OF STANDARD RELIABILITY
GROWTH MODELS IN THE CONTEXT OF
AUTOMOTIVE SOFTWARE SYSTEMS

Abstract— Reliability and dependability of software in modern cars is of utmost
importance. Predicting these properties for software under development is therefore
important for modern car OEMs, and using reliability growth models (e.g. Rayleigh,
Goel-Okumoto) is one approach. In this paper we evaluate a number of standard
reliability growth models on a real software system from automotive industry. The
results of the evaluation show that models can be fitted well with defect inflow data
but certain parameters need to be adjusted manually in order to predict reliability
more precisely in late test phases. In this paper we provide recommendations for
how to adjust the models and how the adjustments should be used in the
development process of software in the automotive domain by investigating data
from an industrial project.

Keywords— Software Reliability Growth Models, Automotive Software, Model
Based Development, ISO 26262

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

68

3.6 Introduction
Software plays a significant role in modern cars. In past few decades the amount and
importance of software in cars has increased exponentially [87], to the extent that
today’s premium cars carry more than 70 ECUs and software of the order of over
ten million lines of code (SLOC) [3]. Software is not only replacing traditional
models of control systems but today it is at the heart of providing new functionality
and driving innovation. With the rapid growth in significance of software in
automotive industry there are a number of challenges the industry faces in
developing and maintaining good software for modern cars [3][88].

Automotive software differs from software in other sectors due to stringent demands
for rapid development, need for cost effective development, and high demand for
innovation and need of high quality and reliability, especially for applications,
which are deemed safety critical. To ensure that cars are safe for drivers, occupants
and other road users as well as to maintain the consumer confidence, the quality and
reliability demand for safety critical software is very high. Functional safety
standards such as ISO 26262 [35] provide strict guidelines for the development of
software for safety critical applications with significant emphasis on ensuring
reliability.

Software reliability growth models (SRGMs) have been used to assess the maturity
of software for number of years. Efficient estimation of latent defects in software is
valuable information, test managers can use this information to make important
decisions not only to ensure optimal resource allocation but also to decide when the
given software is ready for release [74]. Applying SRGMs for estimating reliability
in industrial applications needs careful consideration to the applied model
assumptions, data availability and predictive power, but proper use of SRGMs
provides several benefits for developing high quality and reliable software.

3.7 Related Work
Over the years, a number of SRGMs has been presented [68], although similar
extent is lacking in the comprehensive evaluation of these models on industrial
domain specific applications. This is especially true for the automotive sector.
Different industrial domains have very different demands for its software and the
development process also varies to a large extent, not all SRGMs would be suited
for every sector. Woods [13] applied eight SRGMs on software products from
industry and showed that defects predicted based on cumulative defects matches
well with after release defects. Staron & Meding [15] evaluated SRGMs on large
software projects in the Telecom sector and proposed a new model based on historic

Rakesh Rana

69

trends data. In this paper we apply common SRGMs on a large project from the
automotive sector and evaluate it on simplest fit measure. The applications of
SRGMs in automotive software projects are very scarce and with increasing
dominance of software in the automotive industry, the need and importance of such
studies is very apparent.

In [66], authors present a review of common Non-Homogeneous Poison Process
(NHPP) based software reliability models and compare their performance on real
time control system. We evaluate SRGMs with only two and maximum three
parameters, which are easy to implement and intuitive to understand, this also means
that these models can be easily adopted in the industry.

The automotive domain in itself is quite unique, firstly the industry due to various
reasons including the historic factors is driven by the “V” development model with
high dependence on suppliers, this has also became true to a large extent for the
development of software within this domain. Secondly automotive unlike some
other industries and like many other similar sectors have widely adopted the model
based development approach. Additionally within the Original Equipment
Manufacturers (OEMs) there exist numbers of different departments/teams (for
example Power-train, Central Electric Module, Infotainment etc.), which develops
quite different type of software products and works in quite different working
environments. Currently there is also significant trend in automotive domain
towards being more agile in their software development process. All these factors
affect the defect inflow profiles and the use of SRGMs needs to take these factors
into consideration for successful application. In this paper we give a way forward for
effective implementation of SRGMs in the automotive sector, what needs to be
emphasized and what would lead to optimal software reliability modelling in this
domain.

3.8 Research context and method
We use data from a large project within the development of an active safety function
from our industrial partner, Volvo Car Group (VCG) from the automotive sector.
Department of Active Safety within VCG develops functions/features such as driver
alert control, collision warning, lane departure warning etc. The defect data has been
used earlier in [89] in a study that introduced a new lightweight defect classification
scheme LiDeC. We use dynamic software reliability growth models that have been
reported in many earlier studies and are summarized in Table 12.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

70

Table 12: Software Reliability Growth Models used in the study.

Model Name Type Mean Value Function Ref.

Models with 2 parameters

Goel-Okumoto (GO) Concave ି௕௧) [79]

Delayed S-shaped model S-shaped ି௕௧ [80]
Rayleigh model ିቀ

௕
௧ቁ

మ

 [69]

Models with 3 parameters

Inflection S-shaped model S-shaped
ି௕௧

ି௕௧ [66]

Yamada exponential imperfect
debugging model (YExpI)

S-shaped ఈ௧ ି௕௧ [90]

Yamada linear imperfect
debugging model (Y-LinI)

S-shaped ି௕௧ [90]

Logistic population model S-shaped ି௕ሺ௧ି௖ሻ [29]

Gompertz model S-shaped ି௕௘ష೎೟ [91]

To fit the models to our data we used non-linear regression (NLR) routine of the
commercially available statistical software package, IBM SPSS. The starting values
we used are same for all models and iterations are done until the reduction between
successive residuals errors is less than . Models with two and three
parameters were used in fitting of the curves as these parameters could be
interpreted empirically (for instance with respect to the testing effort or maximum
number of defects). The models were built based on the data set from all the
development phases of the system - starting at requirement analysis and ending with
vehicle production testing (i.e. excluding the post-release defects).

3.9 Results and interpretation
The fitting of different SRGMs (two and three parameter models) on actual data is
presented in Figure 13 and Figure 14, due to confidentiality reasons the Y-axis scale
is not presented and time scale is trimmed at beginning and end representing only
partial data for illustrating the fit of the used models. For fitting the model, however,
the full data set was used.

Rakesh Rana

71

Figure 13: Two parameter software reliability growth models applied to data set from automotive
software project2.

Although (as shown in Figure 13) the models fit the data, they have a tendency of
growing exponentially. The exponential growth gives unrealistically high values of
asymptotes (maximum predicted defects), such growth is not possible in practice –
the number of defects discovered late in the projects decreases over time, thus giving
the well-known S-shape of the cumulative defect inflow profile. This shortcoming
can be overcome by using three parameter models which include the
parameter. The additional parameter is meant to describe the function of test
progress over time, and therefore provide more accurate results with logical
empirical explanations. Figure 14 presents these models.

2 Scales on X and Y axis have been removed due to confidentiality reasons. The time domain
is also trimmed at the beginning and end to show only the partial data, however full data
was used to fit the models.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

72

Figure 14: Three parameter software reliability growth models applied to data set from
automotive software project.

The analysis of the models and their fit, as shown in Figure 14, suggests that the
 parameter is promising and will be used in our further analyses. Using the

Mean Square Error (MSE) measure to analyse the goodness-of-fit of the models
(shown in Figure 15) we observed that the most accurate model was the InflectionS
model and the logistic model (used to model population growths in general [92]
[93].

MSE presented in Figure 15 for the simplest and one of the earliest Goel-Okumoto
(GO) model was approximately 10 times larger than the rest of the models thus we
excluded it from the chart to rescale it and focus on the remaining models. As
expected, the three parameter models generally fit better than two parameter models,
but we observed one exception - the DelayedS model fits better than the Yamada
exponential imperfect debugging model (Y-ExpI) and Yamada linear imperfect
debugging model (Y-LinI), both of which attempts to account for the testing effort
using a third parameter. This means that our initial results should be complemented
with more accurate model of the testing effort.

Another significant observation is with respect to the three parameter general
logistic model, which performs best among models used in this study with respect to
minimum MSE criteria, despite this model not being widely used for software
reliability modelling. The three parameters general logistic model is used in many

Rakesh Rana

73

applications and domains but not as widely in the software reliability modelling
although it yields relatively accurate results. Our observation suggests that
traditional three parameter models such as logistic and Gompertz model provides
superior fit to our data from automotive domain software project. InflectionS model
also does very well in MSE fit criteria with MSE only higher than logistic and lower
than that using Gompertz model.

Figure 15: The mean-square error for each of the models. Note that the GO model is excluded in
this figure.

3.10 Conclusions
A number of SRGMs have been proposed and evaluated over time. It is noted here
that despite software being dominant in modern automotive industry there is a gap in
studies evaluating the application of SRGMs in this domain. In this paper we take a
step in direction of addressing this gap by applying eight common SRGMs on defect
data from a large automotive software project and evaluating their fit using MSE
criteria. We further-more, provide a way forward for effective application of
SRGMs in automotive software reliability modelling which are as follows:

 It was observed that simple two parameters models can provide
good fit (with exception of the GO model), but the asymptotes
obtained might be unrealistic;

 Logistic and InflectionS models had the best fit to our data among
the different models tried;

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

74

 Since one of the important factors for successful use of SRGMs is
to use appropriate time scale, we identify that modelling the change
of testing effort over time (generally done using parameter
will be critical in applying SRGMs within automotive sector;

 Using parameter estimates from two parameter models and based
on historic values one could also model/predict the testing effort i.e.

for the current project which would give useful insight to
project managers for optimizing the resource allocation going
forward.

Realistic accounting of testing effort will help us to fit the SRGMs to actual defect
inflow data. Finding the models, which provide the best fit, have superior predictive
power, and use the data in its available form will significantly enhance the adoption
of software reliability modelling in industries where software is starting to play a
critical role. And customizing the SRGMs to conform to given industrial domains
such as automotive sector will provide a powerful tool to test and quality managers
within these industries to use them for optimal resource management, increasing the
quality and reliability, and ensuring timely delivery of high quality software.

Rakesh Rana

75

SELECTING SOFTWARE RELIABILITY
GROWTH MODELS AND IMPROVING
THEIR PREDICTIVE ACCURACY USING
HISTORICAL PROJECTS DATA

Abstract— During software development two important decisions organizations
have to make are: how to allocate testing resources optimally and when the software
is ready for release. SRGMs (Software Reliability Growth Models) provide
empirical basis for evaluating and predicting reliability of software systems. When
using SRGMs for the purpose of optimizing testing resource allocation, the model’s
ability to accurately predict the expected defect inflow profile is useful. For
assessing release readiness, the asymptote accuracy is the most important attribute.
Although more than hundred models for software reliability have been proposed and
evaluated over time, there exists no clear guide on which models should be used for
a given software development process or for a given industrial domain.

Using defect inflow profiles from large software projects from Ericsson, Volvo Car
Group and Saab, we evaluate commonly used SRGMs for their ability to provide
empirical basis for making these decisions. We also demonstrate that using defect
intensity growth rate from earlier projects increases the accuracy of the predictions.
Our results show that Logistic and Gompertz models are the most accurate models;
we further observe that classifying a given project based on its expected shape of
defect inflow help to select the most appropriate model.

Keywords— Software Reliability Growth Models; Embedded Software; Defect
Inflow; Automotive; Test Resources Allocation; Release Readiness; Automotive;
Telecom; Defence Industry

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

76

3.11 Introduction
Embedded software is today an integral part of most products, on which we depend
for smooth functioning of our daily life. Embedded software does not only provide
functionality, it also drives innovation in mobile phones, satellite systems, home
appliances, and aircrafts. Reliability is an important attribute of such systems and
one way of evaluating their reliability is to use Software Reliability Growth Models
(SRGMs). SRGMs are the result of applying reliability engineering theory to the
software development domain. The defect inflow data is modelled using
mathematical models that quantify the change in reliability of the given software
artefact during its development and testing. SRGMs help to answer an important
practical question as to when the given software quality is good enough and thus,
when can we stop testing [94]. The good-enough quality is also referred to as release
readiness of a given product [95]. From the reliability standpoint, one of the most
important factors for deciding if a software is ready for release is the number of
remaining defects (latent defects). By comparing the predicted total number of
defects (asymptote of SRGMs) and the number of defects discovered and resolved to
date, software managers can decide if the software is ready to be released [96].

Apart from answering the important release readiness question, SRGMs can also be
used to make the software testing process more efficient [97]. However,
requirements for the successful application of SRGMs for optimal resource
allocation and the assessment of release readiness of software differ. Models which
can be applied early in the project and have higher ability to accurately forecast the
expected shape of the defect inflow profile are useful for optimizing test resource
allocations. While SRGMs that are accurate in forecasting total expected defects in a
software product (asymptote) late in the development/testing phase are better suited
for assessing the release readiness of a given software system.

Although more than hundred SRGMs have been proposed and evaluated in the
literature [68], many of the earlier studies evaluating SRGMs have focused only on
how well they could fit to the observed defect inflow data. The evaluation of the
predictive power of SRGMs in the literature has generally been limited to only the
last few data points (typically last 10% of data) [57] [66]. The difficulty of applying
SRGMs in industry is compounded with the lack of studies focusing on specific
industrial domains [98] and scarce guidelines to select the best SRGMs for a given
software process/application. We focus on the following research questions that are
important for reliability practitioners and project managers in software
organizations, denoted RQ1-RQ4 below:

Since software development projects have a planned amount of testing resources, we
explore how SRGMs can help to allocate these resources more effectively. We

Rakesh Rana

77

assess which SRGMs are best for this purpose, i.e. we evaluate the SRGMs’ ability
to correctly predict the shape of the future defect inflow during an on-going project.

RQ1: Which SRGMs are best to assist decisions for optimal allocation of testing
resources?

When the software system has been developed and tested, the most important
question is: Is the software ready to be deployed (released) or does it need more
testing? We evaluate, which SRGMs are best for assessing the release readiness of
software systems from the reliability standpoint.

RQ2: Which SRGMs are best for assessing the release readiness of a software
system?

Given that software development organizations usually have data on a large number
of historical projects, it is also important to evaluate how we can use this experience
to make the reliability predictions for current projects more accurate. This is
addressed by the following research question:

RQ3: Does using information from earlier projects improve release readiness
assessment?

Further, there exists no agreement on which models are the best for a given software
development process or industrial domain especially during the early phases of a
software project [76], thus we analyse how to select the best SRGM for a given
purpose based on available data on an on-going project:

RQ4: How to make the choice of SRGM more effective?

The answers to these questions are the key to successfully applying SRGMs in
industrial settings. Evaluation of long-term predictive power of SRGMs in the
automotive domain was done in our earlier work [57]. In this paper we extend the
analysis by using additional data from two more large organizations engaged in
embedded software development but in different application areas (telecom and
defence). With the unique setting of large-scale software projects we are able to
answer the research questions with higher generalizability. We are also able to make
distinctions between the applicability of different SRGMs based on different project
attributes, defect inflow profiles and development processes. We further use trend
analysis for predicting the shape of the defect inflow for on-going projects - which
provides practitioners in industry a framework for selecting and applying SRGMs
for supporting decisions of practical significance, such as test resource management
and evaluating whether the software product is ready for release.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

78

The rest of the paper is structured as follows: Background for the research and a
brief discussion around related works is presented in section 3.12. In section 3.13,
we describe in details the design choices of this study, the data, models, and analysis
methods we used. Section 3.14 presents the results and analysis of data with answers
to the research questions. Section 3.15 presents recommendations for industry to
apply SRGMs while conclusions are presented in section 3.16.

3.12 Background and Related Work
Common terms related to software reliability are defined in IEEE 1633:
Recommended practice on software reliability [78], accordingly:

Software Reliability (SR): is (A) the probability that software will not cause the
failure of a system for a specified time under specified conditions, or (B) the ability
of a program to perform a required function under stated conditions for a stated
period of time.

Software Reliability Model (SRM) is a mathematical expression that specifies the
general form of the software failure process as a function of factors such as fault
introduction, fault removal, and the operational environment.

IEEE standard 1633 also provides metrics used in reliability modelling and specifies
the recommended procedure for software reliability assessment and prediction.

SRMs can be classified as white box and black box models [76] [99]. White box
models use source code attributes for making the assessment and predicting the
defect proneness of a given software artefact, while black box models use defect
inflow data for modelling reliability. Based on the nature of the data in use, white
box and black box models are also known as static and dynamic models [100].
Dynamic/black box models are usually referred to as SRGMs and use defect data
from development and/or testing phases. The failure or reliability process can be
modelled using calendar or execution time. Though the execution time models have
been shown to be more accurate, the calendar-time models are easier to apply and
more intuitive to interpret.

Different models are based on different assumptions, which make some models
better suited than others for a given process. Musa et al. [72] showed that various
families of models have characteristics that are better suited for certain applications.
The same conclusion is also achieved in the study by Goel [71]. Thus, one of the
important questions in software reliability engineering has been which models to use
and how to apply them [101]. Khoshgoftaar and Woodcock presented a case study
[75] to support the claim that Akaike Information Criteria (AIC), based on the log-

Rakesh Rana

79

likelihood function, can be used to select the best model. Sharma et al. [73] looked
at the model selection problem and proposed a quantitative framework based on the
distance-based approach that can be used to rank different models and select the
optimal one. Stringfellow and Andrews [74] proposed an empirical method to select
a suitable SRGM for making release decisions during the test phase. They iteratively
applied different SRGMs and if a given model passed the proposed criteria, it could
be used for making release readiness decisions.

In this study we introduce a new approach for selecting the appropriate SRGM,
which is based on the observed defect inflow profile. We use the trend of defect
intensity to predict the shape of the full defect profile, which is used to select the
appropriate SRGM for a given purpose. We also evaluate if using this strategy leads
to better model selection.

SRGMs evaluations within specific industrial domains are limited, though some
studies have been reported. Wood [13] evaluated eight SRGMs on data from
industry concluding that defect predictions based on cumulative defect inflow data
from development and testing was well correlated with after-release defects. Popov
et al. studied the problem of estimating the reliability of multiple-version software to
estimate the bounds on reliability of diverse systems [102]. Staron and Meding [15]
studied defect data from the telecom domain to found a reliability model based on
moving average giving good predictability for weekly defect predictions. Ullah et al.
[76] also did a similar analysis using commonly used eight SRGMs on several sets
from industrial and open source software projects. Their study found Musa-
Okumoto and Inflection models performing best on industrial datasets, while
Gompertz and Inflection were concluded as best for the open source software
projects. A number of commonly used SRGMs have been evaluated on software
projects from the automotive domain in our earlier study [57] demonstrating the
usefulness of trend models (Logistic & Gompertz) in such reliability evaluations. In
this study we extend our earlier work from the automotive domain [57] and
complement previous works [97], [76] in this direction by evaluating, which SRGM
performs best for a given software process in the embedded software domain.

To use SRGMs for testing resource management, the long-term predictive power is
an important criterion [97]. It is noted that in existing studies the effort has been
more focused on introducing new models with higher goodness-of-fit and the
assessment of the predictive power was mostly restricted to short-term (typically
using last 10% data, for example [103], [66]). An early work in long-term
predictability of SRGMs has been presented by Malaiya et al. [97]; they proposed
two predictability measures to characterize long-term predictive power namely
average error and average bias and used them to evaluate five SRGMs common at
the time. The authors used 18 data sets derived from earlier studies and found that

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

80

different models have appreciably different predictive powers. Use of secondary
sources of data meant that it was either difficult and in many cases impossible to
compare the performance based on software domain/development process
characteristics. Also metrics based on averages do not allow examining the
predictive power of models during a specific point in the project timeline. In this
study, our focus is also on the long-term predictive power of SRGMs. We measure a
model’s predicted defect inflow fit to the actual defect inflow at four distinct phases
of a project starting mid-way through the project timeline. This evaluation helps us
in selecting the best model for a given purpose and also evaluate when (in project
timeline) these models can be used in practice.

Historical project data is proposed to be used to monitor running project progress
and evaluating the time to market [104]. Xie et al. proposed using the growth rate
from earlier similar projects to avoid the problem of non-convergence when using
maximum likelihood estimation for estimating SRGMs parameters early in the
testing phases with less failure data available [105]. Our approach to incorporate the
information from past projects is similar to the approach introduced by [105], we
apply this method for incorporating past projects’ information using non-linear
regression and use it to evaluate if the predictive accuracy of the models can be
increased to make reliable predictions.

3.13 Case Study Design
Using Robson’s classification [106], the study presented here is a case study with
the main goal of evaluating the applicability of SRGMs in the context of embedded
software development projects for decision support with regard to resource
allocation and release readiness. Following the taxonomy and guidelines for
conducting and reporting case studies in software engineering by Runeson and Höst
[52], the presented study is an interpretive case study using a fixed design principle.
The research is organized as an embedded case study with each company being the
unit of analysis. The similarities and differences based on different application
domains and software development processes are explored and highlighted in this
study, which suits the embedded case study design. The case study design overview
is presented in Figure 16.

Rakesh Rana

81

Figure 16: Overview of case study design

Table 13 shows the summary of the characteristics of the process used in the
companies and the mapping to the industrial domain.

Table 13: Overview of units of case analysis within this embedded case study

Company
(unit of analysis)

Application
domain

Software development process for studied projects

Volvo Car Group Automotive
V-shaped software development mostly using sub-
suppliers for implementation

Ericsson Telecom Agile development, mostly in-house

Saab EDS
Defence
Equipment

Waterfall development (old projects) with
development concentrated in-house

3.13.1 Case and subjects selection
In this study, the selection of case units was primarily driven to capture the variation
in software development process and application domain. Two case units although
allows for a better comparison between case units, but also limit the generalizability
of results. While if four or more case units are chosen it leads to difficulties in
conducting cross-case analysis including necessary details, thus three case units
were selected for this study. Next we provide brief descriptions of each unit of
analysis and their application domain (from the authors earlier work [107]), details
about each unit’s software development process is also included.

Company A: Volvo Car Group
Volvo Car Group (VCG) is a Swedish car Original Equipment Manufacturer
(OEM), based in Gothenburg. VCG develops software and hardware typically in a
distributed software development environment, but for a limited number of
Electronic Control Units (ECUs) the software is also developed in-house. The
development is done by the software development teams who usually also hold
responsibility for integrating the software with the hardware developed by suppliers.
The majority of the embedded software development in the car, however, is
developed by external suppliers who design, implement, and test the functionality
based on specifications from VCG ([108], [109]).

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

82

The size of the entire automotive project in terms of resources is substantially larger
than the projects in the other application domains studied in this case study, due to
the fact that both OEM and suppliers (first and second tier) are involved and car
development projects are usually conducted using the product line approach with
reference architectures ([110]).

Software Development Process
The software development process at VCG predominantly follows the V-model. The
projects studied here are so called platform projects, which span for a long period of
time and are divided into a number of stages (marked as stages S0, S1, to S7 in
Figure 17). Each stage is effectively iterative within a larger project where new
functionality is designed, developed, tested, verified, and released into the latest
system builds. The model is shown in Figure 17.

Figure 17: Representation of software development process for case unit 1

A project starts with setting up the requirements, which is followed by design,
implementation (in-house or using suppliers) and testing (in each stage). By the end
of stage S4, all functionality addition is completed, and the focus is shifted to

Rakesh Rana

83

calibration and optimization. Defects found during testing of the software are
removed as they are detected or patches are provided in the software updates.

Company B: Ericsson
Ericsson develops large software products for mobile telecommunication networks.
The size of the projects in this study was up to several hundred engineers. The
projects at the company are increasingly often carried out according to the principles
of Agile software development and Lean production system, referred to as
Streamline development (SD) [111]. In this environment, various teams are
responsible for larger parts of the process compared to traditional processes: Design
teams (cross-functional teams responsible for complete analysis, design,
implementation, and testing of particular features of the product), network
verification and integration testing, etc.

Software Development Process
The whole process is dominated with continuous development and testing as
expected in a highly iterative agile software development process. The overview of
process is presented in Figure 18.

Figure 18: Representation of software development process for case unit 2

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

84

Each product has a main branch and for each release, a number of features would be
agreed to be developed and released. These features will be developed by separate
teams who would also be responsible for unit testing (UT) and preliminary function
(FT) and system testing (ST) before releasing it to the main branch. The main
branch with the newly developed features is branched out which is subjected to
function testing and part of system tests on daily builds with any defects detected
being reported to the defect database and resolved in due time. New versions with
newly developed features are integrated to network in the Network Integration phase
where later phase is concentrated on verification activates (Network Verification and
Clean Run using specific test cases for new features). Network integration and
verification is completed before the product is released internally. After the internal
release, the product is subjected to further function and system testing before
making the general release to customers.

Company C: Saab Electronic Defence System (EDS)
Saab EDS develops embedded software and graphical user interfaces for ground
based radar systems. The specific project’s data used in this study was part of a
larger product developed by several hundred developers, designers, testers, analysts
etc. The historic project (used in this study) developed the product in waterfall
process and did not utilize cross functional teams.

The organization has, since these projects evolved into using more agile processes
with increasing use of cross functional teams. A lot of improvements and
optimizations have also been applied regarding software build and delivery times.
Also to improve customer value, market competitiveness and profit, Saab EDS in
Gothenburg is going through a Lean transformation.

Software Development Process
The overview of the software development process at case unit 3 (Saab EDS) is
shown in Figure 19.

Rakesh Rana

85

Figure 19: Representation of software development process for case unit 3

The development of software starts with defining the stakeholder’s requirements,
which are translated to system requirements. The system is broken into a number of
sub-systems, which are concurrently developed by different teams; each sub-system
is developed, integrated, tested, and verified as individual units. The sub-systems are
integrated followed by the verification and validation at system level. The system is
then tested for the stakeholder’s expectations in acceptance testing and finally made
available for release.

3.13.2 Data collection and analysis methods
Based on the existing literature, seven widely used SRGMs were selected to be
evaluated in this study as in our earlier study [57]. Selected models are a mix of
concave, S-shaped, and trend models. These models are frequently mentioned,
evaluated, and applied in software reliability research and practice. Also to account
for the highly iterative streamline software development process at Ericsson, we also
use a linear model that has been used in prior studies [112] for agile and streamline
software development processes. It is noted here that the linear model does not have
an asymptote modelled in the equation (the model assumes a
constant growth rate (g) and the total predicted defects in this case are taken as
predicted defects at the time when the project is finished. Since the linear model

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

86

does not have a theoretically motivated asymptote prediction, it is excluded for its
applicability for conducting release readiness assessment of software in this study. A
summary of the software reliability models used in the study with their mean value
functions is presented in Table 14.

Table 14: Software reliability growth models used in this study

No Model Name Shape Structure Mean Value Function Reference
1 Musa-Okumoto (MO) Concave NHPP [113]

2 Goel-Okumoto (GO) Concave NHPP ି௕௧ [79]

3 Inflection-S model S-shaped NHPP
ି௕௧

ି௕௧ [7]

4 Delayed-S model S-shaped NHPP ି௕௧ [80]

5 Rayleigh model S-shaped NHPP ିቀ
௧
௕ቁ

మ

 [69]

6 Logistic model S-shaped Trend ି௕ሺ௧ି௖ሻ [114]

7 Gompertz model S-shaped Trend ି௕௘ష೎೟ [91]

8 Linear model Linear Trend [112]

Software reliability models can be fitted to the observed defect inflow data using
statistical techniques such as maximum likelihood parameter estimation or curve
fitting techniques like Non-Linear Least Square (NLLS). Following earlier studies
[76], [57], [115], we used NLLS for the parameter estimation of models. Non-linear
regression routine in commercially available statistical software package (IBM
SPSS) is used to make parameter estimations. Since the parameter estimation using
NLLS is an iterative process, we run iterations until successive iterations returned
less than 1.0*E-08 difference in residual errors, which is the default setting. For the
case of Inflection-S model, the β parameter value is assumed to be equal to 1.2
following the parameter estimation procedure given by [7].

To assess which reliability models are best and when they can be applied during a
project timeline, we evaluated their respective goodness-of-fit and accuracy of
asymptote prediction using full and partial data sets. For each project we divided the
data into four sets (p0, p10, p30 and p50), containing all, 90%, 70% and 50% data
points respectively – this data is referred to as the observed region of defect inflow
profile. These sets correspond to same level of project completion with respect to
project timeline (our data is weekly defect count data). The data points in the
observed region for each set are used for model fitting (for estimating the parameters
of given SRGM using NLLS method), while the remaining data points toward the
end of the project (i.e. 0, 10, 30 and 50% referring to p0, p10, p30 and p50
respectively) are used to assess the predictive power of a given SRGMs – this region
is referred to as the predicted region.

Rakesh Rana

87

3.13.3 Data collection
The main source of data for the case study is defect inflow data from defect
reporting systems of individual companies. Already collected metrics data from
software projects is archival data [52] that offers limited possibility for researchers
to control or assess the quality of data. But in mature software development
organizations defect reporting is generally a controlled and monitored activity,
which is the fact for each case unit used in this study and thus the data used is of
high quality. In order to ensure the comparability of data collected for the different
case units, a common definition of defect inflow was used as given by [15]: “defect
inflow is the number of non-redundant defects reported in the defect database”, the
definition was cross-checked with each company involved in this multiple case
study and appropriate filters were used to collect the data from their defect reporting
databases.

In total, we collected the defect inflow data from eleven projects (seven individual
projects including one project with five releases) from three companies. Data was
collected in close cooperation with the industrial partners; all projects in this study
were finished before the beginning of our data collection and thus we had full data at
hand. The defect data collected is from development to testing phases excluding the
post-release defects.

Stronger conclusions can be drawn by using triangulation i.e. using data from
several sources [52]. Therefore we complement the defect inflow data with
information obtained through interviews. Semi-structured interviews were
conducted with managers and developers in each company in two stages:

a. During the case study design phase, i.e. before the defect data was
collected. The main aim of these interviews was to understand the
context, to get insights of software development process, and to
confirm that the data to be collected matches the definition used in
this study.

b. After the analysis of defect data, the initial conclusion and
interpretations were again discussed with the same interviewees at
each company to transfer the knowledge and also to confirm if the
conclusions and interpretations aligned with their experience from
the actual projects.

c. To minimize the possible bias due to job roles, two people in each
company were selected for interviews. A manager and a
developer/tester both involved in the original projects and familiar
with the companies’ defect reporting system and procedures were
selected.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

88

Although it is not possible to share the actual defect data due to confidentiality
issues, for each project we provide the partial cumulative defect inflow profile,
which helps to visualize the distribution as well as to point out
similarities/differences between the projects. The total number of defects reported
and the total timespan of projects cannot be disclosed and hence the data is
normalized.

3.13.4 Metrics used for the evaluation of research
questions in this study

SRGMs in general can be evaluated for their ability to fit the observed defect data
(i.e. reproduce the observed behaviour), and to forecast the expected future
behaviour based on observed data [116].

Goodness-of-fit criterion help us evaluate the models ability to reproduce the
observed behaviour, MSE (Mean Square Error) is a well understood measure for
evaluating difference between actual and predicted values [117] [70], a smaller MSE
indicate closer fit and thus better performance.

Predictive validity criterion on the other hand help us evaluate the ability of model
to predict the future behaviour from past and present observed data [116]. Predicted
relative error is one such measure which is useful indicator of error between
predicted and actual number of defects discovered by termination time of testing
[100]. Other similar measure such as relative error defined by Musa [72] have been
used to evaluate predictive validity of models in earlier studies [117] [118].

In this study, the comparison criteria used are MSE for goodness-of-fit and Balanced
PRE for evaluating predictive validity, these are explained next.

Mean Square Error (MSE)
MSE is the mean of squared error, where error is defined as the difference between
actual and predicted value. MSE value can only be used as an interval scale measure
to compare between different estimators to rank one model against another. The
lower the MSE, the better is the model/estimator goodness-of-fit. MSE measures the
variance for an unbiased estimator and is given by equation (1):

 …………………………………………...………(1)

where, = actual value, = predicted value, and is the number of data points in
use.

Rakesh Rana

89

Mean square error is used to evaluate the fit of a given software reliability growth
model to the observed data and predicted values to the actual values in the predicted
region. Other goodness-of-fit metrics such as the R2 and Theil’s statistics have been
used in various studies [76] as well as our previous work [57], but given that these
metrics are scaled versions of MSE, we only consider MSE to evaluate and compare
the fit ability of different models in this study. Another widely used goodness-of-fit
metric is Akaike's information criterion (AIC), which is given by equation (2) [67],
[75]:

….......…(2)

Under the usual assumptions of Non-Linear Least Square Regression (random error
follows Gaussian distribution, which is also same as assuming that random errors
are independent and identically distributed), AIC can be redefined [119] [120] by
following equations (3) – (4):

ௌௌா

௡
…………………………….…………..….…………..(3)

…………………………….……..….…....….…...…(4)

where, is the number of non-missing observations, is sum of squared errors
) and is the number of fitted parameters in the model.

AIC is a better criterion for evaluating effectiveness of fit (lower values imply better
fit) as it penalizes those models with greater number of parameters (). However, in
our case since is large, while the number of parameters for all tested models is
small () - ranking of models using either the MSE or AIC criterion is unlikely
to be different. Given that the MSE has a more intuitive definition, which is easy to
interpret by industry practitioners - we use MSE as the main goodness-of-fit
measure in this study.

Balanced Predicted Relative Error
Goodness-of-fit measures one characteristic of reliability models, the other
important property is the predicted asymptote accuracy which can be used to assess
the release readiness of a product. To measure the asymptote correctness, the
Predicted Relative Error (PRE) defined as the ratio of predicted asymptote error to
the predicted number of defects is used;

, is specified as one possible approach
in the IEEE standard 1633 [78] to measure model predictive validity and used in
earlier studies [76]. In [121], it is observed that the PRE does not give consistent
results for positive and negative deviations and hence, we use Balanced PRE
(BPRE) as described in [121], given by equation (5):

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

90

w ………….(5)

BPRE has upper and lower bound of +/-1 respectively; values closer to +/-1 indicate
large predicted relative error. While a BPRE value closer to 0 shows that the total
number of defects predicted by the model is very close to the actual total number of
defects reported in the given project. Corresponding to PRE, BPRE values of +/-
10% are usually considered good for making reliable predictions [76] [78].

3.13.5 Analysis methods for the research questions

Which SRGMs are the best to assist decisions for optimal allocation of testing
resources?
For assisting decisions to optimize the usage of testing resources such as allocation
of human testers, test case scheduling, testing effort etc., a good model should be
able to predict the shape of the defect inflow profile in the future, i.e. the fit of
model in the predicted region during the project should be as high as possible. Thus,
models that give the best fit (minimum MSE values) for the predicted region using
50% and 70% data are best suited for this purpose.

MSE values for all SRGMs that we tested (including the linear model), are presented
using average MSE plots (e.g. Figure 24); these plots compare MSE values for all
models in the observed and predicted regions for the different sets of data. Lower
MSE values on the observed region indicate the superior ability of a given model to
fit the observed data, while lower MSE values on the predicted region show that the
model is more accurate in predicting the shape of the future defect inflow profile.
Figure 20 provides an overview of the analysis procedure in use.

For optimal resource planning and management, the earlier the predictions can be
made with high accuracy the better. Thus, we calculate an index MSE value using
weights of 50%, 30%, and 20% respectively on MSE values for the predicted region
at half-way, 70%, and 90% of a project’s completion.

The index MSE value is used to order SRGMs according to their ability to assist in
resource allocation decisions. In the average-MSE plots (e.g. Figure 24), the SRGMs
are placed in the ascending order of values and thus, the best models are
placed on top of the plots. The selection of weights is subjective and can be

Rakesh Rana

91

customized according to the specific information need of a given organization. For
example a company interested in making resource allocation decisions at the mid-
way milestone of the project may choose to use 100% weight for .

Figure 20: Flow chart for analysis procedure for RQ1and RQ2

Which SRGMs are best for assessing the release readiness of a software system?
To compare between the SRGMs for their appropriateness in determining release
readiness of software systems, we calculate the average BPRE ignoring the sign of
predictive relative error, giving us Avg+3. The Avg+ BPRE values for each tested
model are plotted for each case unit (e.g. Figure 25).

3 Averaging BPRE values can lead to a mean value lower than the actual magnitude of mean
due to sign convention for over and under predictions. Since we are only interested in the
mean precision accuracy, Avg+ only considers the magnitude.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

92

The criteria for a good model in this case are based on the ability of model to make
accurate asymptote predictions towards the end of the project using full or 90%
observed data so that latent defects can be estimated with high accuracy. The
secondary criterion for selecting the appropriate model for release readiness
assessment is its consistency, i.e. the model should make accurate predictions of an
asymptote not only late in a project but also when the project is close to completion.
We calculate the index BPREi value as follows:

,

where the subscripts show which data set is used for BPRE calculation. The weights
for calculating index BPRE values reflect the importance a manager assigns, for
when such assessment is useful. The selection of weights could be customized by an
individual organization according to their information needs. The index BPRE value
is used to order SRGMs for their ability to assist with release readiness assessment
in Avg+ BPRE plots (e.g. Figure 25). An overview of the analysis method applied is
shown in Figure 20.

Does using the information from earlier projects improve release readiness
assessment?
Another important and practical question when applying SRGMs in industry is, if
and how can we use experiences from earlier projects to make better predictions on
an on-going project. The analysis method used for answering this research questions
(RQ3) is represented as flowchart in Figure 21.

Rakesh Rana

93

Figure 21: Flow chart for analysis procedure for RQ3

Two important parameters in the SRGM mathematical models are the asymptote
value and the growth rate. Since the objective here is to make a better prediction of
the asymptote value, we use the growth rate from the first project in each case unit
using full data (e.g. p0 dataset of project A1 in case of VCG) to all other datasets and
projects for the given case unit. This is equivalent to assuming that we expect
projects in the same organization that are developed and tested by similar teams to
have a shape of the defect inflow profile, which is similar to earlier projects.

To evaluate which model performs best when information from earlier projects is
used, Avg+ BPRE values for each model tested are plotted for each case unit and
ordered using the index BPRE value. Additionally, we also test the following null
hypothesis:

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

94

Ha: There is no significant difference between the overall performance of asymptote
prediction (index BPRE values) with and without using growth rates from earlier
projects.

How to make the choice of SRGM more effective?
There are two main shape classes for SRGM models: concave and S-shaped [13]
which relate to the general outlook of their shape. Concave profiles bend
downwards, while S-shaped curves are first convex and then concave-shaped [13] as
illustrated in Figure 22.

Figure 22: Different shapes of cumulative defect inflow profiles (left) and flow chart for analysis

method used for RQ4 (right).

Rakesh Rana

95

To evaluate if the selection of a model for optimal test resources management and
release readiness assessment can be further improved, the projects in this study were
classified based on the shape of their defect inflow profiles into the following three
categories:

Concave: The cumulative defect inflow profile is concave-shaped if its shape bends
downwards, i.e. if you draw a straight line between first and last point and the defect
inflow profile is curved outwards for the most part (approximately 70% of time). In
these cases, the growth rate for cumulative defects (defect intensity or the tangent to
the cumulative defect inflow profile) is at its maximum early in the project, and then
drops as project progresses giving a concave-shaped cumulative defect inflow
profile.

Convex: The cumulative defect inflows that bent upwards are classified as convex-
shaped, i.e. if you draw a straight line between first and last point, the defect inflow
profile is curved inwards for the most part (approximately 70% of time). These
projects are characterized by a slow growth rate of cumulative defects at the
beginning, which stays until late in the project and eventually increasing (refer
Figure 22) to give a convex shape.

S-shaped: The S-shaped cumulative defect inflow profile is one that is convex-
shaped at the beginning and concave-shaped later. The growth rate of cumulative
defect inflow is small at the beginning; it increases to reach a maximum about in the
middle of project and eventually slows down to give the characteristic S-shape
(Figure 22).

The Average MSE and Avg+ BPRE values are recalculated for the projects with
similar shapes of the defect inflow and the best models for a given shape are
selected using indexed values as described before. To assess if classifying models
into groups based on the predicted shape of the cumulative defect profile improves
predictions, following hypotheses are formulated:

Hb: There is no significant difference between the overall performances of a model’s
ability to fit the predicted region of a defect inflow (indexed MSE predict values)
with and without classification into groups based on its shape.

Hc: There is no significant difference between the overall performances of asymptote
prediction (indexed BPRE values) with and without classification into groups based
on its shape.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

96

To test the formulated hypotheses, we use related samples Wilcoxon signed rank test
for Ha and independent samples Mann-Whitney U test for Hb and Hc; the alpha value
for all tests is selected at 0.05 level.

3.14 Results and analysis
Since each company has a different software development paradigm, we first
analyse each case unit separately following each research question. We also do cross
case analysis to highlight how the similarities/differences of the software
development process or the shape of the defect inflow affect the
selection/applicability of SRGMs within the context of embedded software
development.

3.14.1 Case-1: Software Development Processes
using V-model: Automotive domain (Volvo Car
Group)

In this unit of analysis we study four large4 software development projects from
Volvo Car Group (VCG), a company from the automotive domain. The projects
come from the E/E (Electrical and Electronics) integration department within the
VCG, which deals with the integration of various software functionalities and which
is responsible for the final assessment of the complete EE hardware and software
systems. All projects used in this study have been completed during the last decade.
Furthermore, they consist of different modules developed by different teams and
tested within the development team (unit testing), while further integration and
acceptance testing is done by dedicated teams in the integration department. All
defects that are detected during all testing phases are reported in the central defect
database used by VCG, which is also the primary data source for this study.

3.14.1.1 Defect Inflow Profiles

4 We define a software project as large software project if it involves at least team of 40
developers and testers working for a minimum period of six months. All projects studied in
this study quality this criterion by a large margin.

Rakesh Rana

97

The cumulative defect inflow profile for the four projects analysed from case unit 1
are presented in Figure 23. From the figure we can observe that most projects (all
except project A2) have an S-shape. The cumulative defect inflow profile of project
A2 resembles the convex defect inflow. The specific difference of this project to the
other projects was no surprise for the interviewees of this company, who explained
that the defect reporting strategy was different for this project – project A2 included
defect reports from a specific team which applies an agile process and generally
reports their defects in another database. Despite this, it is included in this analysis
since the specified teams’ contribution to the overall project A2 was comparatively
large.

Figure 23: Cumulative defect inflow profiles for case unit-1.

3.14.1.2 Which SRGMs are the best to assist decisions
for optimal allocation of testing resources?

The goodness-of-fit measure, the mean square error (MSE) is presented in Figure 24.
It is important to note that the values are averages for all four projects from this case
unit. In the figure, the horizontal bars on the left side represent MSE values for the
observed region, while the bars on the right side within the same figure show the
MSE values for the predicted region using 50%, 70%, and 90% data. We do not
show the magnitude of MSE values in the figure since the actual magnitude of MSE
does not have a physical interpretation because it is measured on an interval scale
and is primarily useful for comparative purposes. The fit measure differs in
magnitudes on the observed and predicted region – the MSE values are much higher
in the predicted region than in the observed region. Thus these values are scaled
down by a factor of five (MSE predict values divided by five on right side) in all
MSE plots.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

98

The difference in the order of magnitude shows that the fit is superior in the
observed region, which is not surprising given that NLLS minimizes the sum of
square of errors. We also observe that models where less data is used (e.g. 50% data)
fit the observed data better than when using more data (e.g. 90% data), simply due to
the fact that it is relatively easy to configure parameters to fit less data points, while
fitting the same model to more data points leads to more errors and thus a
comparatively inferior fit. At the same time, the opposite is true for the predicted
region – using more data gives more accurate parameter estimates making the
predicted part fit better as more data points are used (represented by the bars on the
right side). The SRGMs are ordered using indexed value of MSE calculated as
described in section III part D.

Figure 24: Average MSE for studied SRGMs over full & partial data for case unit 1.

With respect to the goodness-of-fit criterion, we observe that the Logistic model fits
best in the observed region. The concave models (Musa-Okumoto and Goel-
Okumoto models) do not give good fit overall, and Delayed-S is the worst regarding
the fit criterion.

With regard to fit in the predicted region, the Logistic model again performed the
best, although it is noteworthy that the Logistic model is unable to converge to the
set of 50% data, which shows that this model is not useful with little data. An

with 90%
with 70%

Delayed‐S, 50%

Inflection‐S

Musa‐Okumoto

Rayleigh

Goel‐Okumoto

Linear

Gompertz

Logistic

MSE (observed region) MSE (predict region)

Rakesh Rana

99

alternative to Logistic is the Gompertz model, which converged in all cases and
provides good fit with high reliability; however not as good as the Logistic model.

Therefore the Logistic model is best for making test resource allocation decisions as
it has superior ability to accurately predict the shape of the defect inflow compared
to other models but in this case unit as the Logistic model is unable to give results
with 50% data at that point of project timeline, the Gompertz model is
recommended.

3.14.1.3 Which SRGMs are best for assessing the
release readiness of a software system?

Figure 25 displays the BPRE values for all SRGMs that are used in this study
averaged across the four projects. It is obvious that the concave models perform the
worst. While S-shaped models perform better than the concave models, trend
models are the most accurate in this respect.

Again, the Logistic model gives the most accurate results in predicting the total
number of defects in a project when it is close to completion (using all and 90%
data). If the projects are half-way, the model is unable to converge for allowing
reliable predictions. Gompertz on the other hand has good predictive accuracy and is
also consistent in its predictions over different data sets for this software
development process.

Figure 25: Average+ BPRE for studied SRGMs for case unit 1.

0.00 0.20 0.40 0.60 0.80 1.00

Goel‐Okumoto

Musa‐Okumoto

Inflection‐S

Delayed‐S

Rayleigh

Gompertz

Logistic

Balanced Predictive Relative Error

100% data

90% data

70% data

50% data

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

100

Based on the analysis of the case unit 1, for a software development process that
resembles the V-model, the Logistic model is the best model for the assessment of
the release readiness.

3.14.1.4 Does using the information from earlier
projects improve release readiness assessment?

The estimates for BPRE values using the growth rate from project A1 are presented
in Figure 26. The results show a sharp improvement in the prediction accuracy
compared to BPRE values that are obtained without using the growth rate from an
earlier project (Figure 25).

Figure 26: Average+ BPRE for studied SRGMs with growth rate from Project-A1 (100% data),
case unit 1.

Except for the concave models, using a growth rate from an earlier project increases
the accuracy of the asymptote predictions resulting in BPRE values close to +/-10%
with all and with 90% of the data. The results demonstrate that using information
from earlier projects is useful for increasing the accuracy of asymptote predictions in
on-going projects for embedded software development in the automotive domain.

Testing hypothesis Ha using Wilcoxon signed rank test for this case unit, we are able
to reject the null hypothesis (p-value = 0.018) that shows a statistically significant
improvement is achieved in the prediction accuracy of SRGMs by using the growth
rate compared to applying models using no information from earlier projects.

0.00 0.20 0.40 0.60 0.80 1.00

Goel‐Okumoto

Musa‐Okumoto

Rayleigh

Inflection‐S

Delayed‐S

Gompertz

Logistic

Balanced Predictive Relative Error

100% data

90% data

70% data

50% data

Rakesh Rana

101

3.14.2 Case-B: Highly Iterative Software
Development Processes: Telecom domain
(Ericsson)

3.14.2.1 Defect Inflow Profiles
The defect data from five consecutive releases of a single product is used for the
analysis of this case unit, the defects data collected and included in the analysis is
from function and system testing starting when new features are delivered to the
main branch for the first time until the new release is made available (released)
internally, as shown in this case unit’s software development process in Figure 18.

Figure 27: Cumulative defect inflow profiles for case unit-2.

The partial cumulative defect inflow profile for five releases is presented in Figure
27. The defect inflow profiles in this case unit with its highly iterative software
development and testing process do not show S-shaped characteristics, which we
observed in the previous case unit. Three out of five profiles are concave-shaped
while the remaining two are convex-shaped. To accommodate prior studies for the
iterative software development paradigm [112], a linear model is also evaluated and
compared to seven other models in this study.

3.14.2.2 Which SRGMs are the best to assist decisions
for optimal allocation of testing resources?

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

102

The goodness-of-fit measured by MSE for this case unit is shown in Figure 28. The
first interesting observation is that the ability of the linear model, which is
recommended in earlier studies [112] for agile software development process to
predict the shape of the defect inflow profile, is lowest among the tested models.

Figure 28: Average MSE for studied SRGMs over full & partial data for case unit 2.

The Gompertz model performs best for this case unit following an iterative
development process.

3.14.2.3 Which SRGMs are the best for assessing the
release readiness of a software system?

The asymptote prediction accuracy is presented in Figure 29, the concave models and
the Inflection-S model performed poorly for this case unit. With respect to accuracy
of predictions and consistency to make good predictions with different data sets, the
Logistic model is found to be the best model.

with 90%
with 70%

Linear, 50%

Musa‐Okumoto

Rayleigh

Goel‐Okumoto

Logistic

Inflection‐S

Delayed‐S

Gompertz

MSE (observed region) MSE (predict region)

Rakesh Rana

103

Figure 29: Average+ BPRE for studied SRGMs for case unit 2.

The results here suggest that for making decisions on release readiness where the
decisions are made towards the end of the project timeline and where the main
criterion of assessment is the likelihood of presence of latent defects
(), the Logistic model is
the recommended model for a software development process that is highly iterative.

3.14.2.4 Does using the information from earlier
projects improve release readiness assessment?

Figure 30 shows the asymptote prediction accuracy (BPRE values) when the growth
rate from an earlier project (here release B1) is used for later releases. Comparing
the results (Figure 30) to those without using the previous growth rate (Figure 29),
we can observe that the prediction accuracy of concave models improves
significantly. Using the earlier growth rate, the prediction accuracy of concave
models (Musa-Okumoto) is best among the tested SRGMs, the predictions are also
consistent among full and partial data sets.

0.00 0.20 0.40 0.60 0.80 1.00

Goel‐Okumoto

Musa‐Okumoto

Inflection‐S

Gompertz

Delayed‐S

Rayleigh

Logistic

Balanced Predictive Relative Error

100% data

90% data

70% data

50% data

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

104

Figure 30: Average+ BPRE for studied SRGMs with growth rate from Release-B1 (100% data),
case unit 2.

Another observation is that the asymptote prediction accuracy for S-shaped and
trend models on average decreased by a small amount in this case after using the
growth rate from release B1. This decrease of predictive accuracy can be attributed
to factor that two out of five releases, defect inflow is different from release B1.
This point toward an important lesson that the growth rate to be used should be from
projects, which is a typical case or some form of weighted average should be used
instead, which can be customized to reflect more closely the similarity between
current and past projects.

Overall, if the objective is to assess if a software is ready for release and a growth
rate from earlier projects is available then the concave model Musa-Okumoto
performs best when the software development is streamline (lean and agile) as in
this case unit (Ericsson). Testing hypothesis Ha for this case unit, we were unable to
reject the null hypothesis (p-value = 0.735 showing that overall there is no
statistically significant improvement in the prediction accuracy by using the growth
rate compared to applying models using no information from earlier projects for
release readiness assessment.

0.00 0.20 0.40 0.60 0.80 1.00

Goel‐Okumoto

Rayleigh

Delayed‐S

Inflection‐S

Logistic

Gompertz

Musa‐Okumoto

Balanced Predictive Relative Error

100% data

90% data

70% data

50% data

Rakesh Rana

105

3.14.3 Case-C: Modified Waterfall Software
Development Processes: Defence Equipment’s
(Saab Electronic and Defence Systems)

3.14.3.1 Defect Inflow Profiles
The defect data analysed in this case unit comes from two large software products.
For each product, defects reported during the development and testing of all sub-
systems and during integration testing and verification are collected (refer Figure 19).
The cumulative defect inflow profile for the two projects is represented in Figure 31.

Figure 31: Cumulative defect inflow profiles for case unit-3.

 The cumulative defect inflow profiles show signs of an S-shape in project C1, while
the second project is closer to convex-shaped; it is also observed that the second
project in this case unit had an unusually low growth rate in the beginning which
was confirmed by the interviewees for this unit. It is also noted that since the
number of projects available for analysis in this case unit is only two, deviations in
any of the projects can lead to large deviations on the average value and thus, these
aspects need to be considered when analysing the results.

3.14.3.2 Which SRGMs are the best to assist decisions
for optimal allocation of testing resources?

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

106

The MSE values measuring goodness-of-fit for this case unit are shown in Figure 32.

Figure 32: Average MSE for studied SRGMs over full & partial data for case unit 3.

It is observed that the concave models (MO, GO) and Inflection-S model do not fit
well, neither on the observed region nor on the predicted region. Delayed-S and
Rayleigh models perform comparatively better, while the Logistic models fit best in
the observed data and predicted region. The results are similar to the ones obtained
in case unit 1. We see the Logistic trend model to be the best among all tested
models. Thus, the preferred model for optimal allocation of test resources would be
the Logistic model for a software development process that resembles the waterfall
model.

3.14.3.3 Which SRGMs are best for assessing the
release readiness of a software system?

Again given that we only have two projects in this case out of which one has an
unusually low growth rate at the beginning, we see large deviations in performance
of models when applied at different times of the project timeline (cf. Figure 33).
Nonetheless, on average we confirm the general observations from case unit 1,
concave models asymptote predictions are very close to upper limit showing large
error in predicted asymptote values in these projects. The prediction accuracy of S-

with 90%
with 70%

Goel‐Okumoto, 50%

Musa‐Okumoto

Inflection‐S

Gompertz

Delayed‐S

Rayleigh

Linear

Logistic

MSE (observed region)

Rakesh Rana

107

shaped models is better than concave models but still not close to the desired
accuracy levels for use in practice. Trends model such as Logistic and Gompertz
perform better when more data is used but unlike the other case units, these models
are inconsistent given the large deviation of project C2’s defect inflow profile.

Figure 33: Average+ BPRE for studied SRGMs for case unit 3.

While we observed in case unit 1 as well in case unit 2 that the trend models
(Logistic and Gompertz) performed well in asymptote prediction accuracy, results
here suggest that if the defect inflow profile deviates heavily from S-shape (such as
in project C2 here), the use of these models with partial data sets either should be
avoided or thorough care needs to be taken when interpreting the results.

Nonetheless, for this case unit, the Gompertz model is shown to be the best for
assessing release readiness of a given software project.

3.14.3.4 Does using information from earlier projects
improve release readiness assessment?

shows the asymptote prediction accuracy when we use growth rate from project C1
to improve prediction accuracy for the case unit 3. In this case unlike the case unit 1,
we do not see significant improvements in the asymptote predication accuracy for
concave models but the prediction accuracy of S-shaped models and trend models is
improved. The observation also shows that using information from an earlier project
increases the consistency of prediction accuracy.

0.00 0.20 0.40 0.60 0.80 1.00

Musa‐Okumoto

Goel‐Okumoto

Inflection‐S

Delayed‐S

Rayleigh

Logistic

Gompertz

Balanced Predictive Relative Error

100% data
90% data
70% data
50% data

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

108

Figure 34: Average+ BPRE for studied SRGMs with growth rate from Project-C1 (100% data),
case unit 3.

The result is interesting given the fact that C2’s defect inflow profile deviates from
the expected standard shape and thus, it is concluded that if one has to use SRGMs
for asymptote prediction and data availability is restricted (i.e. when predictions are
needed early in development project) one should try to maximize the use of the
information from earlier projects. This strategy will improve the chance of making
predictions, which are more accurate than making asymptote predictions without
using such information. The Logistic model is best suited for release readiness in
this case unit when a growth rate from an earlier project is used.

Testing hypothesis Ha for this case unit, we were again unable to reject the null
hypothesis (p-value = 0.063) that shows that overall there is no statistically
significant difference in the median of prediction accuracy of SRGMs with and
without using the growth rates at 5% alpha level. The best model selected using
growth rates (Logistic) had a much lower indexed BPRE value than the best model
(Gompertz) without using growth rates, 7% compared to 20%, which indicates that
the best model using growth rates is much more accurate for making release
readiness assessment than using the best model without using a growth rate.

0.00 0.20 0.40 0.60 0.80 1.00

Musa‐Okumoto

Goel‐Okumoto

Inflection‐S

Gompertz

Delayed‐S

Rayleigh

Logistic

Balanced Predictive Relative Error

100% data
90% data
70% data
50% data

Rakesh Rana

109

3.14.4 Cross Case Analysis
Analysing the three case units together, we first plot the cumulative defect inflow
profiles, also called cumulative defect count for all projects analysed under all case
units in Figure 35. For the sake of comparison, the X and Y axis in the figure are
normalized to an interval [0, 1]; the project timeline is normalized by total weeks for
each project and the defect count by the total defect count observed for each project
respectively. A diagonal line helps making a visual distinction of the shape of
cumulative defect count profiles. If the defect inflow profile starts under the
diagonal line but by mid-way through the project passes over the diagonal, it is S-
shaped, while if it starts and stays over the diagonal for most part of the project
timeline, the profile is concave-shaped. The projects where the defect inflow profile
starts with slow growth rate (i.e. under the diagonal line) and stays below this line
for most part of the project are regarded as convex-shaped.

Figure 35: Cumulative defect inflow profile (or cumulative defect count) for case units 1-3.

It is observed from Figure 35 that a given case unit may have projects with different
cumulative defect inflow shapes. Notably the case unit 1 has most projects (A1, A3
and A4) following the S-shape, while only one project A2 follows the convex
profile. Case unit 2 has three out of five releases following the concave cumulative
defect inflow (B1, B3 & B5), while the other two follow the convex profile. In case
unit 3, project C1 is S-shaped while the anomalous project C2 is closer to convex
shaped than to any other shape. Based on the overall results from the evaluation of
SRGMs on each case unit, the software reliability growth models that suit the
different objectives for each case unit are summarized in Table 15.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

110

Table 15: Summary of recommended SRGMs for case units 1-3.

Case unit
(domain)

Software
development

process

Observed shape
of defect inflow

profile

Recommended SRGMs

For testing
resource(s)
allocation

For release readiness assessment

Only using
current project

data

Using
historical

information

1. Automotive V-model S-shape, Convex Gompertz Logistic Logistic

2. Telecom Lean + Agile
Concave,
Convex

Gompertz Logistic Musa-Okumoto

3. Defence
Equip

Waterfall S-shape, Convex Logistic Gompertz Logistic

It is noted that:

 For the company developing embedded software in the automotive
domain following the V-model for software development (case unit
1), the defect inflow profile of projects is dominantly S-shaped with
few exceptions that are convex-shaped. In this case for decisions
regarding optimal allocation of testing resources, the Gompertz
model performs best, while the Logistic model is recommended for
assessing the release readiness with or without using past
information.

 In the case of Ericsson using streamline development for
developing embedded software in the telecom domain, project
releases in general produce defect inflow profiles that are concave
and convex-shaped. The best performing model for optimal test
resource allocation is Gompertz. For release readiness assessment
using current project information, the Logistic model is the best
choice while when previous projects information is used, the Musa-
Okumoto model gives the best results.

 For Saab EDS developing embedded software in the defence
equipment domain following the waterfall development process
(case unit 3), the projects defect count profiles are S-shaped and
convex-shaped. The Logistic model is recommended for making
optimal test resource allocation decisions in this case. While for
making the assessment of release readiness with and without using
historical project information, the Logistic and Gompertz models
are best respectively.

 Overall, for making decisions with respect to optimal allocation of
resources during a project, the Gompertz model is the

Rakesh Rana

111

recommended unless the software development process is waterfall
where the Logistic model is better.

 For making an assessment if a product is ready for release or will
be ready for release by a given date by using only defect data from
the current project, the Logistic model is recommended except in
the case of the waterfall development process, where the Gompertz
model should be preferred.

 When information in form of a growth rate is used from earlier
projects, the assessment of release readiness can be done more
accurately by using the Logistic model, except in an agile
development process, where the concave-shaped model Musa-
Okumoto is more accurate for such assessment.

3.14.5 How to make the choice of SRGM more
effective?

Next we investigate how different reliability growth models perform if we apply
them based on the observed defect inflow profile rather than evaluating them on
company/case unit basis. Based on the shape of observed defect inflow profiles from
Figure 23, Figure 27, and Figure 31, the projects/releases at three case units are
classified into groups of S-shaped, concave, and convex-shaped defect inflow
profiles (shown in Figure 36).

Figure 36: Cumulative defect inflow profile (or cumulative defect count), cases classified into S-
shaped, concave and convex-shaped respectively.

Although it is easy to classify the projects based on the observed shape of defect
inflow profiles when a project is finished, it is not straightforward to select an
appropriate SRGM for a project when the project is on-going.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

112

We propose to use the trend of observed defect intensity to predict the shape of a
defect inflow profile, the overall defect intensity of all projects/releases classified
according to their shape is presented in Figure 37. A vertical line is also drawn when
a software project is half-way through its timeline, where we aim to predict the
shape of full defect inflow profile. As it can be seen from the figure, the defect
intensity for S-shaped profiles maximizes close to the middle of project timeline
before it starts to fall down. For concave-shaped cumulative defect profiles, the
defect intensity maximizes very early in the project and then decreases smoothly
over the rest of the project. On the other hand, projects that have a convex-shaped
cumulative profile, the defect intensity keeps increasing until late in the project
timeline before eventually reaching a maximum and then declining. These projects
show what in industry is called late defects, which tend to put a lot of pressure on
the project teams near the release time.

Figure 37: Defect inflow profile (or defect intensity), cases classified into S-shaped, concave and
convex-shaped respectively.

To predict the shape of defect inflow during an on-going project (i.e. using partial
defect data), we plot only the observed defect intensity of a project (in this case
when a project is half-way through its timeline) and plot a linear trend line for this
period, as shown in Figure 38. It is clear that for cumulative defect profiles that are S-
shaped and convex-shaped, the defect intensity until half-way through the project is
increasing, while for concave-shaped cumulative defect inflow, the overall defect
intensity trend at the middle of project is decreasing.

Rakesh Rana

113

Figure 38: Partial Defect intensity with linear trend line, cases classified into S-shaped, concave
and convex-shaped respectively.

Thus observing a linear trend of defect intensity only allows us to identify the
concave-shaped defect profiles but not to distinguish between S-shaped and convex-
shaped. For this distinction we split the observed region before and after the
maximum defect intensity (for the observed period) is reached. Overall if the
maximum defect intensity is reached near to half-way though the project and then
the defect intensity trend is decreasing, the predicted shape is the S-shaped, while if
the trend of defect intensity after it has reached its maximum is increasing then the
predicted shape is convex. Only project C2 does not satisfy the classification method
described here but it is also the project with an unusually low growth rate for much
of the early phases of project.

Figure 39: Partial Defect intensity with linear trend line before and after the maximum intensity is
reached.

How to predict the shape of cumulative defect inflow by analysing the trend of
defect inflow intensity of observed data is summarized in Table 16.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

114

Table 16: Summary of classifying projects based on predicted shape of defect inflow
using observed trend of defect intensity.

Projects/
Releases

Defect inflow intensity trend until half-way through the project
Predicted
shape of
defect inflow
profile

Overall
trend

Trend after
reaching
maximum

Defect inflow intensity trend
characteristics

A1, A3, A4
& C1

Increasing Decreasing
Defect inflow intensity first increases,
maximizes near to half-way and then
decreases

S-shape

B1, B3 &
B4

Decreasing Decreasing
Early defects, defect inflow intensity
maximum early then decreases smoothly

Concave

A2, B2, B5
& C2

Increasing Increasing
Late defects, defect inflow intensity trend is
positive throughout half-way of project
timeline

Convex

Re-evaluating the results based on classification of predicted shape of defect inflow
profiles are presented in Figure 40 and Figure 41. As before SRGMs are ordered
based on the indexed value of MSE and BPRE that indicate which models are best
for a given purpose: Assisting in allocation of testing resources and assessment of
release readiness.

Figure 40: Mean Square Error for classified cases, S-shaped, concave and convex defect profiles
respectively.

Rakesh Rana

115

Figure 41: Balanced predictive relative error for classified cases, S-shaped, concave and convex
defect profiles respectively.

The recommended model for each (predicted) category of defect inflow shape is
summarized in Table 17. After classification, it is observed that:

For S-shaped defect inflow profiles, the Logistic model is best for assisting in
decisions regarding optimal testing resource allocation as well as for using SRGMs
for assessing release readiness.

If the predicted shape of defect inflow profile is concave, most models give good
prediction accuracy but overall, the Gompertz model is best for both purposes.

For projects where the defect inflow profiles are convex-shaped due to late defects,
most models fail to make precise predictions. The best model for helping with
resource allocation decisions in such projects is Delayed-S, while for assessing
release readiness is the Logistic model.

Table 17: Summary of recommended SRGMs for projects classified based on
(predicted) shape of defect inflow profiles.

Predicted shape of defect
inflow profile

Recommended SRGMs

For testing resource(s)
allocation

For release readiness assessment using
current project data

S-shape Logistic Logistic

Concave Gompertz Gompertz

Convex Delayed-S Logistic

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

116

To test if it actually helps to predict the shape of defect inflow profile and use this
information to select an SRGM for test resource allocation or assessment of release
readiness, box plots for indexed MSE values (for predicted region) and indexed
BPRE values with and without classification are presented in Figure 42. The
hypothesis Hb and Hc formulated earlier are also tested.

Figure 42: Box plot for index MSE and index BPRE values before and after classification based
on predicted shape of defect inflow profile.

Testing the hypothesis Hb for all projects using independent samples Mann-Whitney
U test, we are unable to reject the null hypothesis (p-value = 0.564). There is no
statistically significant difference between a model’s ability to fit the predicted
region of defect inflow (indexed MSE predict values) with and without classification
into groups based on the shape.

While testing hypothesis Hc for all projects, we are able to reject the null hypothesis
(p-value = 0.026) that show that a statistically significant improvement is achieved
in the overall performances of asymptote prediction (indexed BPRE values) by
classifying projects based on the predicted shape of their defect inflow. Thus, release
readiness assessment can be improved significantly if the shape of defect inflow
profile is predicted and this information is used to select the most appropriate model.

3.14.6 Threats to validity
We address the threats to validity in the manner as described by Wohlin et al. [50].
There exists a threat to internal validity to this study regarding what is considered to
be a defect. To minimize the threat, a common definition of defect was used which
was verified at each case unit before the data was collected. Another threat to
internal validity of this study arises from using non-linear least square (NLLS) for

Rakesh Rana

117

curve fitting/parameter estimation, while a widely recommended technique is the
maximum likelihood estimation. NLLS has been used in many earlier studies mainly
the ones comparing the performance of different models [76], [57], [115], which is
also the case here. Also since the main objective of this study is to compare between
the models, the parameter estimator method does not pose a serious threat.

A threat to conclusion validity is present due to the assumption that the total
reported defects is the actual asymptote, but since all the projects used in this study
have been completed at least one year before this study was initiated, the threat of
this assumption being invalid is hence minimized. There also exists a conclusion
validity threat due to the use of a new metric for assessment. For measuring and
comparing asymptote prediction accuracy, the new metric BPRE is used, which is an
improvised version of the widely used metric Predictive Relative Error (PRE).
Defined in detail in [121], BPRE is used to ensure that there is consistency
(symmetry) between the metric values for over and under predictions. Taking only
the magnitude value and ignoring the sign when averaging prediction accuracy to
give Avg+ further ensures that over and under predictions are treated equally and do
not cancel each other’s effect. Thus, these changes help us to enhance the conclusion
validity of our study.

External validity concerns with the generalizability of results in settings outside of
the particular study. In the work presented here, we have evaluated eight well
studied and widely accepted SRGMs on industrial embedded software projects.
Seven plus one different reliability models with different shapes and structures were
chosen to represent the sample; the selected models are based on their widespread
use in reliability literature. The data used for this study came from three leading
companies with heavy focus on embedded software development but with a
different product portfolio and different software development processes
respectively. The wide variation in development processes and the defect inflow
profiles helped us to keep the study quite general. Thus, the results obtained from
this study have wider applicability within the embedded software domain. Results
concerning applicability of SRGMs for optimal allocation of testing resources,
assessment of release readiness, and usability of historical information for
improving the prediction accuracy of given models have also applicability beyond
the embedded software domain.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

118

3.15 Recommendations for applying SRGMs in
industry for embedded software
development

By evaluating SRGMs using real data from industry and addressing practically
important research questions in this study, we seek to increase their industrial
adoption. Based on the results discussed in this work, we provide some guidelines
for companies looking to apply SRGMs for reliability assessment:

a. Collect the right data from testing: Understand the software
development and testing process at your company. The defect
reporting and management process in a company greatly influences
which data from which database and from which
development/testing phases are best suited for reliability analysis.

b. Perform exploratory analysis of data: Visualizing the data is the
first and essential step for choosing the right model. Exploratory
analysis of past and current projects provides understanding of the
shape of the defect inflow and also how similar the past and current
projects are with respect to their defect inflow profiles.

c. Define goals for applying SRGMs: Reliability growth models can
be used to assess the release readiness at the end of a project, and/or
to allocate testing resource to ensure the desired reliability/quality
is achieved in a given timeline. Some models are better suited for
one purpose than others and thus, defining the goals upfront helps
the analyst to choose the right model for the given purpose.

d. Model selection: It is observed that performance of different
SRGMs vary widely. Therefore, instead of selecting a model on ad-
hoc criterion, pick a few models based on the observed defect
inflow profiles from past projects and current projects, evaluate
these models on the data, and select the best model.

e. For the embedded software domain, the current work suggests that
irrespective of different development/testing process, trend models
(Logistic and Gompertz) perform quite well while concave models
were the least accurate.

f. Classify based on predicted shape: This study suggests that it is
possible to predict the shape of the defect inflow profile during an
on-going project. Predicting the expected shape helps to select the
appropriate SRGM for a given purpose.

g. Use of historical information: Use information from earlier
projects to increase the prediction accuracy. When the development
and testing process is similar to earlier projects, reducing the model

Rakesh Rana

119

parameters provides an easy to use methodology for increasing
predictive accuracy of these models. When applying these models
early in the project timeline, past information can improve the
models’ prediction accuracy and increase also their prediction
consistency.

3.16 Conclusions
In this paper we have evaluated eight established SRGMs on a number of large
software projects within the embedded software domain from three different
companies. With this unique setting and rich data, we set out to evaluate:

3.16.1 Which SRGMs are the best to assist decisions
for optimal allocation of testing resources?

For assisting decisions on how to manage testing resources effectively by evaluating
different reliability models across the different projects in the domain of embedded
software development, it is observed that the Gompertz model is the best for
software development processes that are either V-model based or follow lean and
agile software development processes. The Logistic model should be chosen for
waterfall development process.

Predicting the shape of defect inflow profile, the Logistic, Gompertz and Delayed-S
models were found to be best to assist decisions for optimal allocation of testing
resources for S-shaped, concave, and convex-shaped defect inflow profiles.

3.16.2 Which SRGMs are the best for assessing the
release readiness of a software system?

Overall, trend models (Logistic and Gompertz) performed best from the perspective
of asymptote precision, which is an important property for the assessment of release
readiness. The Logistic model proved to be the best among tested models for all
except the waterfall processes, where the Gompertz model is found to provide the
best results.

When the shape of defect inflow is predicted, for the assessment of release
readiness, the Logistic model is shown to be the best for the S-shaped and convex-
shaped defect inflow, while the Gompertz is the best model for concave-shaped
defect profile.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

120

Another question evaluated in our study is regarding usability of historical
information in terms of growth rates from earlier projects for improving long-term
asymptote predictions:

3.16.3 Does using information from earlier projects
improve release readiness assessment?

Using information in terms of growth rates from earlier completed projects is shown
to significantly improve the asymptote accuracy across the models in software
development following the V-model. In the case of the waterfall development
process, the best model obtained after using the growth rate is comparatively much
more accurate than the model without using the growth rate. For the lean and agile
software processes, using the growth rate did not improve the overall asymptote
accuracy of the models. Thus depending on the software development process, using
the growth rate from past projects can significantly improve the asymptote
prediction accuracy or help with selecting a better model to assess release readiness.

3.16.4 How to make the choice of SRGM more
effective?

It is observed in this study that the shape of a defect inflow profile can be predicted
for an on-going project by analysing the trend of the observed defect intensity as
early as when a project is half-way through its timeline.

It is further noted that predicting the shape of expected defect inflow profile
although do not significantly improve the ability of models to fit the predicted
region, but a statistically significant improvement is achieved in asymptote
prediction accuracy. Thus, with respect to assessing release readiness it is useful to
predict the shape of the defect inflow for the current project and to use this
information to select the most appropriate model.

In this study, two of the important and practically relevant questions are analysed in
relation to applying software reliability growth models in the context of developing
embedded software. Using data from three different leading companies from their
respective sectors, the study provides useful and practical information for the
application of SRGMs during an on-going project for distributing testing resources
more effectively and to better assess their release readiness, which are important
decisions from the project management and software quality perspectives. Further
studies in a similar direction will ensure that reliability engineering is more widely
adopted in the industry and provides useful information to industrial reliability
practitioners and project managers to effectively manage the project cost/resources
and quality of software.

Rakesh Rana

121

ANALYZING DEFECT INFLOW
DISTRIBUTION OF LARGE SOFTWARE
PROJECTS

Abstract— Tracking and predicting quality is a major challenge in large and
distributed software development projects. A number of standard distributions have
been successfully used in reliability engineering theory and practice, common
among these for modelling software defect inflow being exponential, Weibull, beta
and Non-Homogeneous Poisson Process (NHPP). Although standard distribution
models have been recognized in reliability engineering practice, their ability to fit
defect data from commercial software systems is not well understood. Lack of
knowledge about underlying defect inflow distribution leads to difficulty in
choosing appropriate SRGMs and uncertainty about applicability of different
statistical methods for further data analyses. In this paper we explore the defect
inflow distribution of total of fourteen large software projects/release from the two
industrial domain and open source community. We evaluate six standard
distributions for their ability to fit the defect inflow data and also assess which
information criterion is practical for selecting the distribution with best fit. Our
results show that beta distribution provides the best fit to the defect inflow data for
all industrial projects as well as majority of OSS projects studied. Finding the
underlying distribution of defect inflow is useful for applying appropriate statistical
techniques for data analyses and also for selecting the appropriate SRGMs for
modelling reliability. The information about defect inflow distribution is further
useful for modelling the prior beliefs or experience as prior probabilities in Bayesian
analysis.

Keywords—Software; SRGM; Defect Inflow; Beta distribution; Software reliability
growth models; Automotive domain; Telecom; Open Source Software

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

122

3.17 Introduction
Tracking and predicting quality is a major challenge in large and distributed
software development projects. Software defects found during development provide
an observable and useful indicator to track and forecast software reliability, an
important measure of quality. Software reliability measures are primarily used for
[7]:

 Planning and controlling testing resources during software
development, and

 Evaluating the maturity or release readiness of software before the
release date.

Software Reliability Growth Models (SRGMs) are widely used methods for
quantitative assessment of software reliability [122]. A large number of models
(SRGMs) have been proposed over last three decades [65] based on both, the
Frequentist and Bayesian statistical approaches. But with no standard method to
choose the most appropriate model, and more than 100 SRGMs [68] to choose from,
the selection of right model is a major challenge.

In this paper we address the problem of selecting the appropriate SRGM model. The
current way of selecting the appropriate SRGMs are either empirical (based on
expert opinions) or analytical (based on testing a subset of models and evaluating
their performance before picking the best model). The problem with these
approaches is that either the selection is subjective or the best model selected via
analytical evaluation is only as good as the subset of models evaluated.

Our method is based on using statistical method to find a family of defect
distribution first, which reduces the number of models to evaluate by an order of
magnitude. We propose that the selection of candidate SRGMs to be done by
identifying the underlying distribution family of the defect data. Understanding
underlying defect distribution family is important, according to Okamura, Dohi and
Osaki [122]

“When the number of total software faults is given by a Poisson random variable,
the mean value function of NHPPP-based SRGMs is dominated by only failure time
distribution. That is, the essential problem can be reduced to what kind of
probability distribution is suitable for representing the failure time distribution.”

Knowledge of underlying defect distribution family is also important for Bayesian
approaches for modeling software reliability where initial knowledge about software
reliability is coded in form of prior distribution.

Rakesh Rana

123

A number of standard distributions have been successfully used in reliability
engineering theory and practice, most common among these for modelling software
defect inflow being exponential, Weibull, beta and Non-Homogeneous Poisson
Process (NHPP). Rayleigh model is member of Weibull family which has been
widely used for software project life cycle defect modelling [9]. Although standard
distribution models have been recognized in reliability engineering practice, their
ability to fit defect data from real software systems is not well understood. The low
understandability of underlying distribution of defect data further leads to
uncertainty on which statistical techniques can be uses (for example t-tests) or if a
given SRGM is appropriate or not for given data. The research objectives of this
study are to:

 Explore which statistical distribution fit best to the defect inflow
from large software projects, and

 Explore how different information criteria differ in selection of best
distribution fit.

Using defect inflow data from nine large software projects/releases from two
different industrial domains and five large open source software projects we focus
on analysing the defect inflow distribution during software development and testing.
We explore different distribution families’ ability to fit to the defect data from
industry.

 Finding out the distribution that fits best to observed defect inflow
data is helpful for:

 Enhancing the understanding of defect inflow profile and
underlying process of defect discovery process.

 To choose the correct statistical analysis method, it is important to
know the distribution of the data. Different statistical methods
usually have underlying distributions assumptions. For example to
statistically determine if two projects defect inflow differs
significantly or not, using a parametric or non-parametric method
depends on among others if or not the defect inflow data for
projects is distributed normally or not.

 Visualization and simulations, knowing the distribution of given
data helps with easy visualization and tracking the difference
between different projects data using only a few parameters. It also
allows generation/simulation of data for analysis of different
scenarios.

 Knowing the distribution of defect inflow data is useful for
selecting the right model for modelling/forecasting reliability
growth. For example Rayleigh model/function used to model
software reliability is a specific instance of one of Weibull family.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

124

Thus if the defect inflow data do not follow Weibull distribution,
Rayleigh model is unlikely to give good results for modelling
reliability in such a case.

 The information on distribution of data is also useful in Bayesian
analysis to describe the initial knowledge provided as prior
probability (distribution) which can be updated in light on new
data.

This is an extended version of authors earlier work [123] evaluating the defect
inflow distribution for automotive software projects. In this paper we extend the
analysis by adding five consecutive releases from another large software project
from a telecom domain company and further also analyse the defect inflow
distribution of five open source software projects. The additional data used adds
software projects from different industrial domain as well as open source
community which follows different process for software development and testing,
thus the external validity of results obtained earlier [123] is further strengthened.

The rest of the paper is structured as follows. Section 3.18 presents the background
for our research. Section 3.19 describes the important related works in this area. In
section 3.20 we describe in detail the research methodology and data used for this
study, while Section 3.21 presents the findings from the study. Finally section 3.22
presents our conclusions.

3.18 Background

3.18.1 Software Defects and Reliability Growth
Models

IEEE standard 1044, Classification for Software Anomalies provides common
vocabulary for terms useful in this context, according to the standard [9]:

defect: An imperfection or deficiency in a work product where that work product
does not meet its requirements or specifications and needs to be either repaired or
replaced.

error: A human action that produces an incorrect result.

failure: (A) Termination of the ability of a product to perform a required function or
its inability to perform within previously specified limits Or (B) An event in which a
system or system component does not perform a required function within specified
limits.

Rakesh Rana

125

fault: A manifestation of an error in software.

problem: (A) Difficulty or uncertainty experienced by one or more persons,
resulting from an unsatisfactory encounter with a system in use Or (B) A negative
situation to overcome.

Software defect can be defined as issue or deficiency raised due to use of software
product which causes it to perform unexpectedly [8]. Defects can be introduced at
different phases of this continuous process and testing is the phase where focus is on
discovering and eliminating these defects. If we plot the discovery of defects against
time we get the defect inflow distribution over the development cycle. The
distribution of defect inflow can be used for various purposes, form enhancing the
understanding of defect creation, discovery and fixing process to modelling
reliability of software system using software reliability growth models.

Software reliability models can be categorized broadly as static and dynamic
models. Static models use attributes from project and the product (source code) to
predict the number of defects, while dynamic models uses the defect discovery data
during development and/or testing and use statistical models to estimate the
reliability of given product. Static models are termed static in the sense that they use
parameters, which are based on earlier projects; the current project/product is
considered an additional observation from same sample. On the other hand dynamic
models estimate their model parameters from multiple data points from the same
project and use it to predict/forecast for the same project going forward. Dynamic
software reliability models can be further classified in categories based on which
data they use, Rayleigh model being an example of first category which model the
entire development process while other category being represented by like of
exponential model that models the data from back-end testing phase [69].

3.18.2 Software Defect Inflow Distributions and
Model Selection

A number of SRGMs have been proposed and evaluated, a roadmap on software
reliability engineering is given by Lyu [68] [124]. Different models have different
process assumptions and different distributions are better suited for varied defect
inflow profiles. Musa [72] and Goel [71] with their work showed that different
families of distributions are better suited for applications with different
characteristics.

Lyu [8] propose that to assess and predict reliability of software systems, proper
measurement and collection of failure data is needed over given system’s testing
and/or operation. Further the underlying process of software development process

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

126

also needs to be understood for selecting the appropriate reliability model. Thus
most studies proposing or evaluating SRGMs have applied mathematical models to
failure data which is well structure or filtered from specific testing phase. This
methodology while works well for assessment of maturity of software artefact once
the software is completely developed and tested, but is not optimal for in-process
defect prediction; thus there is need for models and their validation on defects from
full project development cycles.

Weibull families of curves are one of the best known distributions in reliability
engineering; reliability models such as exponential and Rayleigh model are special
cases of Weibull distribution. Misra [125] applied exponential model successfully to
estimate defect arrival rates for NASA shuttle’s ground system software. Rayleigh
model have also been used widely to model the defect inflow during software life
cycle phases [126], [127], [128]. Other distributions like beta distribution and
Logistic population growth models have also been used in reliability engineering;
Non-Homogenous Poisson Process (NHPP) based models have been used widely for
software reliability modelling.

With number of SRGMs proposed, no distinct way of selecting models and lack of
exploratory analysis of data – a common way to differentiate between different
models it to apply them to same data sets and do comparative studies. Ullah et al.
[76] compared between eight SRGMs on dataset from fifty industrial and open
source projects, Pham [66] compared and reviewed common NHPP based SRGMs
for their ability to fit data from real-time control system. A number of SRGMs have
also been compared for their ability to fit data from telecom domain in study by
Staron and Meding [15]. Seven SRGMs have also been compared on their
performance on predictive power using partial in-process data from real projects in
Rana et al. [57]. Contrary to earlier studies where different software reliability
models have been compared and assessed on their ability to fit defect data, in this
study we compare between standard distributions such as Weibull, beta, exponential
etc. known to do well in reliability engineering and check which distribution fits best
to defect inflow behaviour of large software projects form different industrial
domains within embedded software development.

Selection of models have been discussed in number of earlier studies, Stringfellow
and Andrews [74] propose empirical method fitting data iteratively to different
models and selecting a SRGM based on proposed criteria. Akaike Information
Criteria (AIC), based on the log-likelihood function is recommended to be used for
selecting appropriate model by Khoshgoftaar and Woodcock [75]. Sharma [73] also
recommends that before making a selection different models should be first tried,
compared and evaluated. Even after certain attempts and currently active research to
find a standard selection method/criteria, common agreement on model selection is

Rakesh Rana

127

not reached which highlight the further need that data be studied properly to
understand the process and different distributions/models be tried before making a
final selection of reliability model to be used for given defect data and reliability
modelling where the current study attempts to make its contribution. In the
evaluation of different distributions we also evaluate how different information
criteria’s differ and if that have any impact on the choice of best distribution.

Evaluation of SRGMs on industrial data and specifically into particular domains is
scarce [98]. Wood [13] applied eight SRGMs on industrial defect inflow data and
found significant correlation between pre-release defects and post release defects. A
comparison of SRGMs and their use in practice within consumer electronics
embedded software in is also presented in [14]. The present study complements
earlier work in defect data analysis and application of reliability models to industrial
defect inflow data.

3.19 Related Work
Different family of distributions has been used for modelling software reliability in
previous studies. Zhao [129] proposed to use beta distribution to indicate software
testability, the author theoretically prove that testing effort and test values can be
simultaneously expressed through the distribution. Mullen [130] shows evidences of
lognormal distribution of software failure rates and discuss their origins. In a later
study Mullen [131] highlights the dissatisfaction with large number of software
reliability models and lack of single flexible general model and introduces software
reliability growth model based on lognormal distribution. Gokhale and Trivedi [84]
contend that finite failure NHPP models can capture constant, monotonic increasing,
and monotonic decreasing failure occurrence rate per fault, but fail to capture cases
with increasing/ decreasing nature of failure occurrence rate per fault. The authors
propose log-logistic reliability growth model for such cases. Zhou and Davis [132]
analysed time related bug reporting patterns of eight popular open source projects
evaluated, they showed that open source projects exhibited similar reliability growth
pattern as closed projects and Weibull distribution provides a good fit to the defect
inflow distribution.

According to Okamura, Dohi and Osaki [122]different statistical distributions such
as exponential, gamma, Pareto and Weibull have been used to model the failure time
distributions for most of NHPP-based SRGMs. On the contrary models based on
normal distribution have not been given more attention and the authors [122]
proposes SRGM based on normal distribution. Kharchenko et al. [133] also
highlighted the model selection problem for applying SRGMs in practice. The
authors classified SRGMs on five different criteria with special emphasis on

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

128

distribution family of failure intensity. A method of choice (for selecting SRGM) is
presented based on the assumptions of different models and features of software
engineering and testing process. Our study contributes in this direction by providing
empirical evidence of which distribution family best fits to defect inflow from large
software projects from industry and open source community.

Karunanithi, Malaiya and Whitley [134] contend despite applicability of a model
can be established for large collection of data sets, a certain degree of stiffness
(model’s inability to correctly simulate failure process trend for new data set) cannot
be completely ruled out. The authors explored the use of neural networks for
modelling software reliability. Littlewood [135], in his proposed Bayesian reliability
growth model used gamma distribution family to model the prior probabilities
justified by its flexibility, correct range of parameters and mathematical
tractability. Kuo et al. [136] presented Bayes inference methodology for NHPP
models with S-shaped mean value functions. The authors Bayes methodology for
Ohba-Yamada model which assumes mean value function to follow gamma
distribution with shape parameter of 2 is proposed and generalized to class of
gamma distribution growth curves with known shape parameter and unknown scale
parameter. Neil et al. [137] used the Bayesian belief networks for predicting the
reliability of military vehicles, in such applications modelling prior beliefs with
regard to failure rate is an important step which can be enhances by having better
understanding of defect/failure distribution from historical projects/products. By
identifying which distribution fits the historical projects and which information
criteria can be used for selecting the best fit distribution – our results strengthen the
notion that defect inflow distribution be studied for historical projects. In Bayesian
approach to modelling software reliability, understanding historical projects defect
distribution properties reveal information that is useful in precise modelling of prior
probability distribution.

An emerging area which has wide use in software engineering is information
visualization, the technology uses graphics techniques for visualizing abstract
entities [138]. Visual representation provide an alternative approach for exploring
the data for enhancing the understanding of underlying processes and patterns and
may also be used as tool to convey information more effectively. Hora et al. [139]
argue that while number of tools exist to extract and analyse information regarding
evolution of software systems, little is known about the evolutionary behaviour,
lifetime, distribution and stability of software defects. A tool named BugMaps is
presented that can automate the retrieval and mapping of bugs from relevant
databases. The tool provides interactive visualization which is useful source of
information for decision support. Empirical software engineering evaluates the
applicability and performance of different models and techniques in the practical
context with the aim of documenting knowledge and provides support for making

Rakesh Rana

129

decisions. Garcia et al. [140] observe that using only pre-determined hypothesis and
using standard statistical techniques, it might be difficult to reveal the non-
anticipated relationships and patterns from the data. In this study we do not presume
the defect inflow distribution and use exploratory methods to determine the
distributions of historical projects. Understanding the underlying defect distributions
for historical projects can form the basis for visualization of defect inflow, exploring
the likely effects of process changes on defect inflow and selection of appropriate
SRGMs for modelling software reliability.

3.20 Research Methodology and Data
The study is organized as an exploratory case study following classification of
Robson [106], the main objective of the study is to explore which standard
distribution family(s) are able to fit to software defect inflow data from large scale
software projects with wide variations in their distribution characteristics. The
research is organized as an embedded case study with the unit of analysis being each
project. The similarities and differences based on different software projects are
explored and highlighted in this study which suits the embedded case study design.
The case study design overview is presented in Figure 43.

Figure 43: Overview of case study design

Table 18 shows the summary of the characteristics of the process used in the case
units and mapping to their application domain.

Table 18: Overview of units of case analysis within this embedded case study

Unit of analysis Application domain Software development process for studied projects
Volvo Cars
Group

Automotive
V-shaped software development mostly using sub-
suppliers for implementation

Ericsson Telecom Agile development, mostly in-house

OSS Open-Source Projects
Open source software development, projects from
Apache and Mozilla

Context: Large Software Projects

Case: Defect Inflow Distribution (best fit)

Unit 1: VCC

Four large
automotive
software
project

Unit 2: Ericsson

Five consecutive
releases of a
large telecom
product

Unit 3: OSS

Five large open
source software
project

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

130

3.20.1 Case Units
In this study, the selection of case units was primarily driven to capture variation in
the software development process and application domain within large scale
software development projects from industry and open source community.
Nonetheless limiting units of analysis to a manageable number and accessibility also
played a role in the selection of these units. Two case units although allow a better
comparison, but limits the generalizability, while if four or more case units are
chosen it leads to difficulty in conducting cross case analysis including necessary
details, thus three case units were selected for this study.

3.20.1.1 Company A: Volvo Car Group, A company
from the automotive domain

Volvo Car Group (VCG) is a Swedish car Original Equipment Manufacturer
(OEM), based in Gothenburg. VCG is developing software and hardware in a
distributed software development environment. The size of the entire automotive
project in terms of resources is substantially larger than the projects in the other
application domains studied in this case study, due to the fact that both OEM and
suppliers (first and second tier) are involved and car development projects are
usually conducted using the product line approach with reference architectures
([110]). The software projects studied here come from the E/E (Electrical and
Electronics) integration department within the VCG which deals with the integration
of various software functionalities and responsible for the final assessment of full
E/E hardware and software systems. All the projects studied have been completed in
last decade and consist of different modules developed by different teams and tested
within the development team (unit testing), while further integration and acceptance
testing is done by dedicated teams in the integration department. All defects detected
during all testing phases are reported in the central bug database used by the
company which was also the primary source of data compilation for this study.

3.20.1.2 Unit B: Ericsson, A company from the
telecom domain

Ericsson develops large software products for the mobile telecommunication
network. The size of the organization during the study is several hundred engineers
and the size of the projects is up to a few hundreds. Projects are increasingly often
carried out according to the principles of Agile software development and Lean
production system, referred to as Streamline development (SD) within Ericsson
[111]. In this environment, various teams are responsible for larger parts of the
process compared to traditional processes: design teams (cross-functional teams
responsible for complete analysis, design, implementation, and testing of particular
features of the product), network verification and integration testing, etc.

Rakesh Rana

131

3.20.1.3 Unit C: Open source software projects
We used five large open-source software projects from Apache and Mozilla. While
there is no strict software development process followed for all five projects, both
Apache and Mozilla projects used in this study generally follow active development
with development teams regularly making commits and fixing bugs. For details on
the development process of Apache and Mozilla, readers are referred to work done
by Mockus et al. [141] [142]. All issue reports marked RESOLVED, CLOSED, or
VERIFIED with resolution set to FIXED were retrieved from the bug database -
from these issues only ones identified as BUGs [143] are used in this study. The
time period and number of defects is summarized in Table 19.

Table 19: Summary of projects time span and number of defects/issues

Case Unit Project/Release Time Period
Total number of
Defects*/Issues

VCG

Project-A1
Project-A2
Project-A3
Project-A4

NA

6.7X
14.4X
2.0X

X

Ericsson

Release-B1
Release-B2
Release-B3
Release-B4
Release-B5

NA

2.2Y
Y

1.3Y
1.2Y
1.6Y

OSS

Project- HTTPClient
Project- Jackrabbit

Project- Lucene-Java
Project- Rhino

Project- Tomcat5

Nov-2001 – Apr-2012
Sep-2004 – Apr-2012
Mar-2004 – Mar-2012
Nov-1999 – Feb-2012
May-2002 – Dec-2011

305
938
697
302
670

*Total number of defect for industrial projects are normalized by project within the case unit
with lowest defect and time period is not provided due to confidentiality

3.20.2 Data Collection and Analysis Methods
The data for this study is collected from the central defect database for each project.
For industrial projects we used the definition for defect from IEEE 1044 standard
[9], while defect inflow of a project is defined as “defect inflow is the number of
non-redundant defects reported in the defect database” [15]. In industrial settings,
what is reported and marked as a defect is closely controlled which assures the
quality of data collected, but for open source projects, what is classified as a defect
or bug5 is not strictly controlled. The problem of misclassification of issue reports
(issues classified as bugs which are actually not bugs) have been highlighted in

5 Defect and bug are used interchangeably to refer to a non‐redundant defect reported in
the defect database.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

132

earlier studies [144] [143]. Misclassification of bugs and non-bugs issues can be a
serious threat for defect classification where bugs from the database are used to
mark files as containing bug or clean. In this study we are interested in the inflow
distribution of defects and not on defect classification thus misclassification does not
pose a serious threat as long as the distribution of defects in all issues reported does
not vary over time. Nonetheless to ensure that the distribution we analyse is of
defects/bugs only – for open source projects we use issues which are identified as
Bugs using manual classification in earlier study by Kim, Just and Zeller [143].
Using manually validated data not only ensures quality of data used but also provide
higher consistency with industrial data where issues classification as defect is
closely controlled.

Based on the existing reliability engineering literature, we selected six widely used
continuous distributions to be evaluated in this study. A number of reliability growth
models such as exponential model, Rayleigh models are based on these
distributions. A summary of continuous distributions and their probability density
functions (pdf) used in the study are presented in Table 20.

Table 20: Overview of distributions used in this study

No Distribution Notation Parameters Probability Density Function

1 Exponential ିఒ௫

2 Weibull

௞ିଵ
ିሺ௫ ఒ⁄ ሻೖ

3 Beta

ఈିଵ ఉିଵ

ఈିଵ ఉିଵ
ଵ

଴

4 Gamma

௞
௞ିଵ ି

௫
ఏ

௧ିଵ ି௫
ஶ

଴

5 Logistic

ି
௫ିఓ
௦

ି
௫ିఓ
௦

ଶ

6 Normal ଶ

ଶ
ି
ሺ௫ିఓሻమ

ଶఙమ

Rakesh Rana

133

To fit the distributions to the observed defect inflow data fitdistr() function available
in MASS package in statistical environment R was used. The function uses
maximum-likelihood fitting for fitting the distribution and estimating the
distribution parameters. To assess which distribution fit best to the given project’s
defect inflow, we evaluated their goodness-of-fit using six different recommended
criteria’s listed in Table 21.

We provide a brief overview of commonly used information criteria - to analyse
which criterion suits our purpose and does selecting one criterion over another could
make difference between selecting one distribution over another.

LogLik (Log–likelihood): Likelihood function is a function of parameters of
a function given the outcome. In other words likelihood is defined as “the
hypothetical probability that an event that has already occurred would yield a
specific outcome. The concept differs from that of a probability in that a probability
refers to the occurrence of future events, while a likelihood refers to past events with
known outcomes” [145]. The criteria to pick the best fit model is to pick the model
with highest likelihood or log-likelihood which is the natural logarithm of likelihood
function.

ML (Maximum Likelihood): , is same as Log-likelihood, with the
difference that instead of casting the criteria as maximizing the logarithm of
likelihood function, the criteria is set as a minimization problem with objective
function as -2*LogLik. Thus both the criteria would pick the same distribution as
best.

AIC (Akaike Information Criterion): , is another
measure for assessing the relative quality of statistical models. The difference from
ML being that it includes a penalty for higher complexity of model. By penalizing
higher number of free parameters , AIC discourages over-fitting. For simple
distributions with low number of free parameters or where the selection is between
models of same parameters AIC will tend to select the same model as with using
ML.

AICc (Akaike Information Criterion, correction): ,
AICc is similar to AIC with correction for finite sample size . Its penalty is
higher than AIC for higher parameters. AICc converges to AIC when n is large or
is small. In other cases (i.e. where is small or is large) it is recommended to use
the AICc [146]. In our case (for all four projects) as sample size is much greater than
the distribution parameters , AICc is expected to give similar results as
AIC.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

134

BIC (Bayesian Information Criterion): , is another
penalized-likelihood criteria for model selection from a finite set of models. While
AIC and BIC have different theoretical assumptions, the practical difference
between the two is the size of penalty. BIC applies more penalty for higher model
complexity which increases as a logarithm function of sample size. There is always
a chance that a big model is chosen using AIC regardless of sample size, while with
BIC there is little chance of choosing too big model for sufficient sample size. On
the other hand BIC has higher chance of selecting too small model than AIC for any
sample size [147].

HQC (Hannan–Quinn Information Criterion):
, provides a penalty size between that of AIC and BIC which increases

with the sample size.

Table 21: Overview of information criteria for selecting distribution with best fit

No Short Long Name Definition

1 LogLik Log likelihood
Logarithm of the probability of observed
outcomes given a set of parameter values

2 ML Maximum Likelihood

3 AIC Akaike Information Criterion

4 AICc Akaike Information Criterion (correction)

5 BIC Bayesian Information Criterion

6 HQC Hannan–Quinn Information Criterion

Where

3.21 Results

3.21.1 Defect Inflow Profiles
The cumulative defect inflow profile for the four projects analysed is presented in
Figure 2 to Figure 46. The data used for all projects in this study is weekly defect
count data, thus the horizontal axis in figure represents actual time normalized by
total duration of project timeline, while Y-axis show the normalized defect counts.
For defect inflow the numbers of weekly defects are normalized by maximum
number of weekly defects over the given projects time period and for cumulative
defect inflow it is normalized by the total number of defects/issues reported for the
studied period.

Rakesh Rana

135

Figure 44: Defect inflow and cumulative defect inflow (normalized) for case unit 1

From the Figure 44 we can observe that most projects (all except project A2) have
an S-shape. The cumulative defect inflow profile of project A2 resembles convex
defect inflow; the specific difference of this project to the rest was due to the fact
that defect reporting strategy was different from other projects - A2 included defect
reports from a specific team which works in agile process and generally reports their
defects in another database. It was included here since their contribution to this
overall project was comparatively large. Software development in highly iterative
process (using agile process) integrates new functionality and fixes to previously
discovered defects in short cycles (weekly or more frequently), which allows for
testing to proceed continuously. Earlier studies [112] have indicated that for such
process the defect inflow is better predicted by concave SRGM models and linear
models than S-shaped models which indicated toward the defect inflow of these
projects not conforming to S-shape.

Figure 45: Defect inflow and cumulative defect inflow (normalized) for case unit 2

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

136

The defect inflow from case unit 2 (Figure 45) represents the defect inflow from
software development process which is highly iterative. We do not see
characteristics of S-shape as observed in projects from case unit 1; rather see
cumulative defect inflows shaped concave or convex. Three out of five profiles are
concave-shaped while the remaining two are convex-shaped. Concave-shaped
cumulative defect inflows are characterized by defect intensity (number of defects
per unit time, Figure 45 Defect Inflow) maximum early in the project, and then
drops as project progresses giving a concave-shaped cumulative defect inflow
profile. On the other hand defect cumulative defect inflows that are convex-shaped
are characterized by slow growth rate of cumulative defects at the beginning, which
stays until late in the project and eventually increasing as seen for Release-B2 and
Release-B5 in Figure 45 for case unit 2.

Figure 46: Defect inflow and cumulative defect inflow (normalized) for case unit 3

For projects from the open source community, the issues inflow is quite different
across the projects ranging from S-shaped to inflow quite close to following a linear
trend. Project-TomCat and Jack show characteristic signs of concave-shaped
cumulative defect inflow, while Project-Lucene is convex-shaped. Projects Http and
Rhino cumulative defect inflows do not show distinct signs of S-shape, concave- or
convex-shape but are more close to following a linear trend, such profile is seen
when a project would receive about similar number of issue throughout the studied
period. Since software projects in open source community can be released very early
in beta releases following development and gaining maturity over long periods to
time, issues inflow with linear trend is not unlikely.

Rakesh Rana

137

3.21.2 Distribution parameters
The distribution parameters for each distribution for all four projects are presented in
Table 22 to Table 24.

Table 22: Parameter values for projects A1-A4 for fitted distributions

Project
Exponential Weibull Beta Gamma Logistic Normal

λ λ k α β k θ µ s µ

A1 4.375 0.809 0.207 0.527 2.318 0.683 2.988 0.193 0.125 0.229 0.232

A2 2.838 1.145 0.366 1.155 2.164 1.032 2.927 0.337 0.146 0.352 0.248

A3 3.982 0.620 0.206 1.408 6.589 0.462 1.839 0.229 0.127 0.251 0.225

A4 8.080 0.446 0.069 0.303 3.617 0.322 2.606 0.089 0.080 0.124 0.176

Table 23: Parameter values for releases B1-B5 for fitted distributions

Release
Exponential Weibull Beta Gamma Logistic Normal

λ λ k α β k θ µ s µ

B1 5.531 0.807 0.167 0.577 5.342 0.640 3.540 0.150 0.088 0.181 0.176

B2 2.314 2.059 0.490 0.610 2.395 4.200 9.720 0.400 0.120 0.432 0.225

B3 2.188 2.030 0.518 0.953 1.762 3.389 7.416 0.440 0.142 0.457 0.240

B4 4.848 0.954 0.203 1.333 33.081 0.773 3.748 0.186 0.084 0.206 0.167

B5 2.272 2.022 0.498 1.484 3.406 3.348 7.606 0.424 0.132 0.440 0.231

Table 24: Parameter values for open source software projects for fitted distributions

Project
Exponential Weibull Beta Gamma Logistic Normal

λ λ k α β k θ µ s µ

Http 13.306 0.756 0.069 0.293 2.162 0.569 7.566 0.069 0.033 0.075 0.061

Jack 2.942 2.064 0.384 4.657 84.615 3.527 10.376 0.327 0.097 0.340 0.173

Lucene 5.149 1.343 0.209 0.917 3.092 2.441 -0.015 0.179 0.073 0.194 0.132

Rhino 4.023 0.714 0.224 1.020 4.925 0.527 2.119 0.225 0.106 0.249 0.197

TomCat 4.501 0.593 0.174 0.946 6.219 0.441 1.984 0.192 0.122 0.222 0.221

In Figure 44 to Figure 46, we observed that the defect inflow distributions for
different projects across and within case units differ from each other. Following this
we can observe from Table 22 - Table 24, that parameter values are different

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

138

distribution families tested also span large range. The distribution parameter values
not only are different for defect inflows across case units, but also differ for project
in case units. For example the shape (λ) parameter of exponential distribution ranges
from approx. 2.8 to 8.1 for case unit 1, 2.2 to 5.5 for case unit 2, while the shape
parameter for open source project Http is 13.3.

Large difference in parameter values within same distribution family and case units
indicate the individual differences between each project. While it is possible that
defect inflow form a given company or open source community may follow a
particular pattern or distribution, but individual projects also have variations
between them. The variations in parameter values further suggest that, while it may
be useful to start with the defect distribution information from historical projects; for
on-going projects the partial observed defect data should be used (for e.g. using
Bayesian approach) to get better forecasts of defect inflow in projects under
development/testing.

To visually inspect how the fitted distribution fits the observed defect/bug inflow
data, we plot the density and empirical distribution function (eCDF) for observed
data and fitted distributions. Figure 47 presents the probability density plots of six
evaluated distributions fit to observed defect data for project A1, release B1 and
project Lucene. Probability density plots describes the relative likelihood of given
data to take a particular value; plotting density plots for observed data and fitted
distribution help us visualize the degree of fit over the range of observed data.

Given the observed data, density probability plots is a graphical method to evaluate
how well an empirically derived density function fits a theoretical density function
for a specified probability distribution [148]. In Figure 47 green (line) represent the
probability density of observed defect data while red (dots) show the density
function of fitted distribution.

Rakesh Rana

139

Figure 47: Density probability plots showing Project-A1, Release-B1 and Project-Http data fits to
selected distribution (green line show observed data while red dots show fitted distribution)

From Figure 47, following observations are made:

 For Project A1, while the exponential, Weibull and gamma
functions gives a good fit over most part, the relative probability
density over the left tail fits poorly. The logistic and normal
distributions fit is overall poor with underestimation of relative
probability over the left tail, while overestimation in right tail.
Overall beta distribution seems to fit best over the entire range.

 In Release-B1 again the logistic and normal distributions do not
provide good fit. Visually exponential, Weibull and beta are seen to
provide good fit to the observe data.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

140

 Visually identifying a best fit distribution based on probability
density plot for open source project Lucene is much more difficult
with most tested distributions having close fit with observed data.
In such cases quantitative criteria of selecting best fit must be used
which are discussed later in the study.

Figure 48 presents the density and eCDF plots of six evaluated distributions fit to
observed defect data for project A1, release B1 and project Lucene.

Figure 48: Empirical distribution function (eCDF) for observed data and fitted distributions (green

dots show eCDF of observed data while red line show fitted distribution)

Rakesh Rana

141

Similar to probability density plots, empirical distribution function plots (Figure 48)
help visualize the cumulative probability of observed defect inflow and that of fitted
distribution. While these plots are also a quick way of visualizing information and
can aid in figuring out which distribution family seem to provide good/bad fit for
observed data, the plots cannot give precise selection of best fit distribution. The
plots can be helpful to visualize the original data as well as eliminate distributions
which provide bad fit, for e.g. logistic and normal distribution in case of Project A1
and Release B1 are do not seem promising for further investigation.

3.21.3 Selecting the distribution with best fit
Another popular graphical tool to evaluate the closeness/goodness of fit between
observed and specified distribution are the Quantile–Quantile or QQ plots. A
quantile is the fraction of points below a threshold, at 0.3 quantile, 30% of the data
points fall below the threshold and 70% fall above. QQ-plots compare the fit
between two distributions by plotting their quantiles against one another. Although
these plots do not allow for visual comparison of probability densities, the fit
between distributions is relatively easy to visualize. The QQ-plot for the sample
project/release for selected distributions is shown in Figure 49, the , green
(line) help visualize the fit, the closer the points to the line the better is the fit. The
observations from the density probability and eCDF plots are further confirmed for
these plots.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

142

Figure 49: Quantile–quantile plots (QQ-plots) for Project-A1, Release-B1 and Project-Http for
selected distributions

QQ-plots are comparatively better graphical method than density plots to assess the
fit between observed data and fitted distribution as they are primarily used for this
purpose. From these plots (Figure 49) we can make better distinction between which
distributions fit the observed data than using probability density plots or the eCDFs
(Figure 47, Figure 48). We observe that:

 For Project-A1 from case unit 1, Weibull and beta distributions
seem to provide the best fit and arguably it is also clear that beta
distribution fit is superior to that of Weibull.

Rakesh Rana

143

 In case of Release-B1, picking the best fit distribution is not clear
from the QQ-plots. Although it seems again the Weibull and beta
distributions provide close fit followed by the gamma distribution.

 For Project-Lucene, all but beta and gamma distributions can be
seen clearly not providing good fit to observed data.

The graphical methods such as QQ-plots and density probability plots allow us to
make a good guess on the fit between the observed data and empirical (fitted)
distribution. They also allow for visualizing other characteristics of data such as
density probabilities, but it is difficult to pick the absolute best fit function among
the tested distributions.

To pick the best fit distribution quantitative assessment can be used. As noted in the
section 3, a number of criteria have been proposed to select the best distribution
among number of tested distributions. Table 25 show the values obtained for
different information criteria for Project-Jack from the case unit 3. In this case
irrespective of the information criteria the distribution with best fit was found to be
beta distribution.

Table 25: Values of different information criterions for selected distribution for
Project-Jack

Project Distribution LogLik ML AIC AICc BIC HQC

Jack

Exponential 7.29 -14.57 -12.57 -12.53 -10.05 -11.56

Weibull 36.25 -72.50 -68.50 -68.36 -63.45 -66.46

Beta 36.72 -73.44 -69.44 -69.31 -64.40 -67.41

Gamma 36.05 -72.10 -68.10 -67.96 -63.06 -66.06

Logistic 31.43 -62.86 -58.86 -58.72 -53.81 -56.82

Normal 30.79 -61.58 -57.58 -57.44 -52.53 -55.54

Selected Criteria 36.72 -73.44 -69.44 -69.31 -64.40 -67.41

Selected Distribution Beta Beta Beta Beta Beta Beta

When fitting distributions to defect inflow data from software projects, the sample
size can be different. Depending on the chosen granularity of time and software
project’s development and testing time span, could vary from small to
very high. In the projects we evaluated, we have weekly count data for industrial
projects and monthly count data for open source projects. This together with long
time span of these large projects (refer Table 19) give sample size that is large for
each project while the tested distributions all have low number of parameters

, thus for these cases size of penalty do not affect much in model

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

144

selection. The penalized likelihood criteria are also not of much use when the choice
is between distributions/models with same number of parameters (for five out
of six tested distributions) and for a given project (same sample size). Thus we
observe that to select among distributions fit for defect inflow profiles, unless the
sample size is small or choice is among models with different number of parameters,
most penalized-likelihood criteria for model selection will give similar results as
log-likelihood criteria.

Thus while we tested all projects and releases for selected information criteria to
select the best fit model we present only the log-likelihood values for all projects for
each distribution in Table 26 to Table 28.

Table 26: Log-Likelihood values for selected distribution for case unit 1

Project Exponential Weibull Beta Gamma Logistic Normal
A1 59.0 63.6 105.9 66.0 8.4 5.2
A2 5.5 7.0 19.8 5.5 -6.8 -3.1
A3 56.9 82.9 104.6 98.6 11.6 10.9
A4 119.8 188.3 491.2 199.5 50.3 35.3

Table 27: Log-Likelihood values for selected distribution for case unit 2

Release Exponential Weibull Beta Gamma Logistic Normal
B1 88.1 92.6 167.1 97.9 48.8 39.6
B2 -4.3 4.6 24.8 6.0 2.7 2.0
B3 -7.8 2.8 5.0 2.9 -0.7 0.3
B4 38.8 38.9 86.7 40.4 30.2 24.7
B5 -8.4 5.4 11.9 5.3 1.7 2.2

Table 28: Log-Likelihood values for selected distribution for case unit 3

Project Exponential Weibull Beta Gamma Logistic Normal
Http 195.4 202.1 406.2 211.9 174.6 169.0
Jack 7.3 36.2 36.7 36.0 31.4 30.8

Lucene 62.0 67.6 70.7 71.9 59.4 58.8
Rhino 52.9 63.7 59.4 77.3 31.4 28.1

TomCat 58.5 73.0 76.9 71.9 12.3 10.7

The results from testing fit between selected distributions for their fit to the studied
large software projects – we find:

 For all project from two different industrial domains (four large
projects form automotive domain and five consecutive releases of
large telecom software product), beta distribution was found to fit
best defect inflow data

Rakesh Rana

145

 For open source software projects, beta distribution again provided
the best fit in three out of five projects, while gamma distribution
was found to fit best to the rest two projects.

The fit between the observed defect inflow data and their respective best fit
distributions for all projects/releases is visualized using QQ-plots in Figure 50.

Figure 50: Quantile–Quantile plots (QQ-plots) for all projects/releases and respective best fit
distribution

In total 12 out of 14 projects/releases defect inflow data was described best by beta
distribution from the selected six distribution families, only for two open source
software projects gamma distribution provided the best fit to bug inflow data.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

146

Knowledge of underlying distribution of observed defect inflow data from historical
projects is helpful for:

a. In choosing the correct statistical methods for data analysis. If the
defect inflow data is not normally distributed, non-parametric
methods must be preferred for statistical analysis.

b. Visualization, simulations and scenario analysis. For example a
new project is launched where based on project attributes like size,
time span etc. the total number of defects is estimated to be n,
knowing that majority of historical projects defect inflow followed
beta distribution, one could simulate the expected defect inflow
intensity over the project development/testing time span. This
information can be used for planning the test resources effectively.

c. Knowing the distribution also helps with selecting appropriate
SRGM for modelling software reliability. For example if it has
been established that defect inflow in most historical projects at a
given company had Weibull or Beta distribution, SRGMs with
mean value function based on these distributions can be used for
modelling software reliability with higher confidence than selecting
a model ad-hoc.

d. The information on underlying distribution of data is particularly
useful for Bayesian analysis. The distribution that fits best to
historical projects can be used to code the initial knowledge as prior
probability (distribution). The observations from on-going project
are then used to obtain the posterior distribution using Bayes
statistics.

3.21.4 Threats to validity
We address the threats to validity in manner as described by Wohlin et al. [37].
Threat to internal validity exists for this study regarding what is considered to be a
defect. To minimize the threat a common definition of defect was used which was
verified for each industrial project before the data was collected. What is marked as
defect is usually not strictly controlled in the open source software projects, the
threat of misclassification in these projects was minimized by using the manually
validated bug reports from earlier work of Kim, Just and Zeller [143] which helped
ensure the quality of data used was high for OSS projects as well.

Another threat to internal validity is concerned with the selection criteria for the best
distribution. Best fit distribution was selected using criteria recommended in
literature, a number of criteria have been proposed and used to select the best fit. In

Rakesh Rana

147

this paper we evaluated different information criteria to ensure higher validity of
selected distribution which minimizes the threat to internal validity.

A threat to conclusion validity is present because of using a limited set of
distributions and selection criteria’s, the best distribution selected is valid only
among the tested distributions using the selection criteria’s evaluated in the study.
The selected distributions include most commonly used distributions applied in
reliability engineering. With regard to selection criteria for the selecting the best fit
distribution, as proposed in [147], multiple criteria’s were used to arrive on the
conclusions which strengthens the validity of conclusions.

External validity concerns with the generalizability of results in settings outside of
the particular study. In our earlier work [123], the analysis was limited to software
projects form the automotive domain. In the work presented here, we extended that
analysis with five more large software releases from another large company engaged
in software development in different industrial domain. We also analysed five
projects from the open source community to include software developed with
different development paradigms. The defect inflow profiles for studied
projects/releases varied widely which indicates towards better generalizability of
results. We do not claim that the distribution found best in this study will be
applicable for all defect inflow data for any software project but provide empirical
evidence from sample of software projects form different domains. The results
obtained in this study indicate towards possibility of common distribution of defect
inflow for software projects, which is useful for the given company or open source
community.

3.22 Conclusions
Six standard distribution families were evaluated for their fit to defect inflow of
fourteen projects from the industrial and open source domain. We set out to:

 Explore which statistical distribution fit best to the defect inflow
from large software projects, and

 Explore how different information criteria differ in selection of best
distribution fit.

For the projects analysed in this study, beta distribution fitted best to the defect
inflow data from the industrial software projects. Defect inflow of three of five OSS
projects also has beta distribution while remaining two projects defect inflow
followed gamma distribution. To select the best fit distribution to defect inflow, out
evaluation suggest that it can be done with high confidence, using one of many
recommended likelihood based criteria. If the number of observations is large and

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

148

comparison is among distributions with about same number of parameters,
penalized-likelihood criteria are unlikely to give a different result than choosing
model with highest log-likelihood.

Knowing the underlying distribution of defect inflow, helps with understanding and
explaining the process of defect discovery in a given software development and
testing environment. The information is further useful for selecting right statistical
methods and techniques for data analysis and also to choose appropriate models for
defect/reliability modelling and predictions.

Knowledge of underlying disturbing of defect inflow also allow for easy tracking,
visualization and simulation of data which is useful for scenario based analysis.
Underlying distribution information is especially useful to model experience or
personal belief as prior probability distribution in Bayesian statistical analysis.

Rakesh Rana

149

Chapter 4:
Consequence of mispredictions

Included Publication:
VI. M. Staron, R. Rana, W. Meding, and M. Nilsson, “Consequences of

Mispredictions of Software Reliability: A Model and its Industrial
Evaluation”, In the proceedings of 24nd International Conference on
Software Measurement, IWSM‐Mensura, Rotterdam, The Netherlands,
2014

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

150

Rakesh Rana

151

4 CONSEQUENCES OF MISPREDICTIONS
OF SOFTWARE RELIABILITY: A MODEL
AND ITS INDUSTRIAL EVALUATION

Abstract— Predicting reliability of software under development is an important part
of estimations in software engineering projects. In many organizations as the goal is
that software products are released with no known defects, the process of finding
and removing defects correlates with the effort for software projects. Software
development projects estimate the resources needed to design, develop, test and
release software products, and the number of defects which have to be handled. In
this paper we present a model for consequence analysis of inaccurate predictions of
quality in software projects. The model is a result of multiple case studies and is
evaluated at two companies. The model recognizes the most common mispredictions
– e.g. over- and under-prediction, early- and late-predictions – and the combination
of theses. The results from the industrial evaluation show that the consequences can
be grouped according to under- and over-predictions and that the late- and early-
predictions have the same consequences. The results show also that mispredicting
the shape of the reliability curve has a significant consequence with regard to
assessment of release readiness and resource planning.

Keywords— Software Reliability; SRGMs; Consequence; Mispredictions; Software;
Forecasting

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

152

4.1 Introduction
Predicting the number of defects in software modules is one of the tasks of quality
managers in mature software development organizations. The quality managers
predict rate of defect inflow in order to support the organization in directing
software testing or optimizing testing efforts [149], [150]. One of the methods for
predicting is using software reliability growth modelling [151]–[153] which is based
on developing a reliability growth formula6 and applying it on an on-going project in
order to predict the future defect inflow and the total number of defects [154].

The development of the reliability formula requires domain and product knowledge
and can be costly in terms of data collection. The formula may also be inaccurate as
software development projects are dynamic entities exposed to external factors (e.g.
sick leaves, equipment failures, project delays). One of the aspects which make the
reliability growth formulas being neglected by software professionals is the lack of a
cost-model which could allow the professionals to reason about the potential costs of
mispredictions.

Based on our previous work in reliability modelling we observed this as an
important problem which we address in this paper [15], [77], [155], [156]. In
particular, in this paper we address the following research question:

Given the software quality growth prediction curve, what are the consequences of
mispredicting the total number of defects and release readiness?

In the research question we explicitly recognize two common axes of the accuracy
of predictions – (i) the prediction of the asymptote or the total number of defects and
(ii) the prediction when the total number of defects is discovered or the release
readiness [157].

In order to address the research question we conducted an action research project
where we develop the model together with the industry professionals from Ericsson
and Volvo Car Group. The model shows that the costs of over and under-predictions
as well as predictions using an incorrect type of curve can cause significant extra
costs for the companies in terms of unnecessary extra testing effort or costly post-
release corrective maintenance.

6
 The usual name is Software Reliability Growth Model, but we use the term “formula” in order to avoid mixing it

with the consequence model presented in this paper.

Rakesh Rana

153

4.2 Related work

Reliability growth formulas
Common terms related to software reliability are defined in IEEE 1633:
Recommended practice on software reliability [78]:

Software Reliability (SR): is (A) the probability that software will not cause the
failure of a system for a specified time under specified conditions. Or (B) the ability
of a program to perform a required function under stated conditions for a stated
period of time.

Software Reliability Model (SRM) is a mathematical expression that specifies the
general form of the software failure process as a function of factors such as fault
introduction, fault removal, and the operational environment.

IEEE standard 1633 also provides metrics used in reliability modelling and specifies
recommended procedure for software reliability assessment and prediction. SRMs
can be classified as white box and black box formulas. White box formulas use
source code attributes for making assessment and predicting defect proneness of
given software artefact, while black box models uses defect inflow data for
modelling reliability. Based on the nature of data used, white box and black box
models are also known as static and dynamic formulas. Dynamic/Black box
formulas are usually referred to as SRGMs and uses defect data from development
and/or testing phases. The failure or reliability process can be modelled using
calendar or execution time. Though execution time models have been shown to be
more accurate, calendar time models provides more intuitiveness for testers and
mangers making them easy to interpret.

SRGMs can be applied primarily for two purposes, the firstly for optimal allocation
of test resources [97] and secondly for release readiness assessment [95]. In cases
where SRGMs are used for optimal resource allocation such as amount of testing
time or test case allocation - SRGMs are applied during the testing process on the
partial defect inflow data. Then the predicted/estimated defect inflow information is
used to allocate the testing resources optimally such that the product is ready for
release by the release date. Release readiness is assessed by applying SRGMs on the
defect inflow data post the testing phase, suitable SRGM based on a given testing
process is used to model the defect inflow and estimate the total number of defects.
If the prediction is close to number of defects already detected and fixed the
software is assessed ready for release, while if the SRGM show presence of latent
defects higher than the required quality criteria then the software is assessed as not
ready for release and send back for further testing.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

154

Given the nature of applications, it is apparent that models that provide superior fit
to full defect data are better suited for applying SRGMs for release readiness, while
models that have better long-term predictive power are more useful for resource
allocation applications. Table 14 presents a set of commonly used software
reliability growth models.

Table 29: Software reliability growth formulas used in this study

Formula Name Shape Mean Value Function Ref.

Musa-Okumoto Concave [113]

Goel-Okumoto Concave ି௕௧ [79]

Inflection-S model S-shaped
ି௕௧

ି௕௧ [7]

Delayed-S model S-shaped ି௕௧ [80]

Rayleigh model S-shaped ିቀ
௧
௕ቁ

మ

 [69]

Logistic model S-shaped ି௕ሺ௧ି௖ሻ [158]

Gompertz model S-shaped ି௕௘ష೎೟ [91]

Linear model Linear [112]

Release readiness (RR) Linear
#ௗ௘௙௘௖௧௦

ௗ௥௥ିሺ௧௥௥ି௧௣௥ሻ
§ [157]

In this study we categorize models according to their shape – Convex, S-shaped,
Concave and linear.

4.3 Mispredicion consequence model
The model for assessing the consequences of mispredictions contains the following
elements:

 Shape of the prediction formula
 Set of consequences
 Strategies to minimize the risk of mispredictions

The consequences of mispredictions are usually negative for the project, the
company or the product under development. In the model we recognize three
situations:

 Mispredictions of the asymptote – mispredictions of the total
number of defects

Rakesh Rana

155

 Mispredictions of the release readiness – mispredictions of when all
predicted defects are found

 Mispredictions of the shape of the prediction formula

As we show in the model below there are numerous similarities in the consequences
for these three types of situations.

4.3.1 Mispredicting the asymptote
Predicting the asymptote of the number of defects shows the total number of defects
which the product might have. The asymptote is usually the same as the coefficient
a in the formulas in Table 14. Figure 51 shows two types of mispredictions –over
and under- predictions. The optimal prediction is the prediction which is the closest
to the reality7. The mispredictions of the asymptote are important for the ongoing
project, which means that the consequences regard the fact that the predictions are
over- or under- the optimal curve during development.

Figure 51: Mispredictions of asymptote

For the over-predictions the general consequence is that the project expects to find
more defects than they do. This means that during the duration of the project the

7 In theory this is the optimal prediction is equal to the actual defect inflow in the project, but in
practice there can be deviations.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

156

project management can perceive their testing process as inadequate or ineffective
thus putting more effort into finding defects which do not exist. More detailed
examples are:

 Too high expectations on the defect inflow – more pressure on the
testing team to find more defects (where there might be none).

 Assumption that testing is ineffective as during the project (before
the release) the number of predicted defects is higher than the
number of discovered defects.

 Additional cost of test analyses in search for new test areas
(unnecessary)

 Risk for postponing release
 Risk for lost time to market
 Risk for wasted costs for testing
 Risk for unnecessary RCAs to find area which are not tested

enough

Over-predictions occur when testing is done early in the project and when the
majority of the defects are found early (and expected late). This situation is common
when the wrong shape of the curve is using for predictions – e.g. S-shaped instead of
Convex.

For the under-predictions the general repercussion is that the project expects too few
defects and thus risks releasing the software to the customers with defects.
Consequences of under-prediction:

 Releasing the product with defects (since effective testing is not
really effective).

 Additional costs for post-release defect removal activities and
patches.

 Defects which are manifested as integration problems requiring
quick fixes.

 De-prioritizing testing effort at early stages and thus finding large
number of late (and thus costly) defects during system testing or
acceptance testing.

Under-predictions occur when testing is done late in the project or when the product
has the functionality that requires full integration (e.g. complex functionality or
large embedded products). The situation is common when Concave or S-shaped
predictions are used instead of Convex-predictions.

Rakesh Rana

157

4.3.2 Mispredicting release readiness
Another dimension of the model is the timelineness of predicting [159] when the
reliability growth curve reaches the asymptote. There are two cases of
mispredictions – the early-prediction and late-prediction. Figure 52 illustrates these
two cases compared to the optimal/true prediction.

Figure 52: Mispredictions of release readiness

For the early-prediction the general repercussion is that the project management is
informed about being ready earlier than in reality. This means that the consequences
can be:

 Releasing the software with defects
 Higher cost of corrective maintenance of the product
 Postponing the release (if the mispredictions are discovered before

the release)

For the late-prediction the general repercussion is that the project management
received information about being late when in fact being on track. This means that
the consequences can be:

 Unnecessary additional testing resources to get back on track
 Postponing the release in expectation of more defects to come and

in order to avoid costly corrective maintenance

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

158

 Additional costs of test analysis to increase the speed and
effectiveness of testing

4.3.3 Mispredicting the asymptote and the release
readiness

The superposition of the mispredictions amplifies the situation and increases the
risks for negative impact on the project. However, it does not introduce new risks.
Figure 53 presents the superposition.

Figure 53: Mispredictions of release readiness and asymptote

As the figure suggests the superposition of the mispredictions is similar to over- and
under-predictions. The difference, however, is that in the beginning of the project
the under-predictions of the asymptote may be perceived as over-predictions. This
situation depends on how early the under-predictions predict the asymptote. The
more inaccurate mispredictions are, the larger the chance of misperceptions.

4.3.4 Misprediction of the shape of the curve
One of the main issues in using the reliability growth models is the choice of the
reliability growth formula, which determines the type of the curve as shown in
Figure 54.

Rakesh Rana

159

Figure 54: Mispredictions of the shape

Mispredicting the shape with the consequences is described in the following table.

Table 30: Consequences of mispredicting the shape

Actual
shape

Expected shape
Convex S-shaped Concave

Convex
Over-prediction of the
total number of defects

Over-prediction of the
total number of defects

S-shaped

Release readiness is predicted
too early

X% of found defects is
predicted earlier than

expected

Over-prediction of the
total number of defects

Concave

Release readiness is predicted
too early

X% of found defects is
predicted earlier than

expected

Too much resources for
late testing

The consequences of the mispredictions of the shape are visible in the course of the
project as the decisions of project management are based on false trends of defect
inflows.

The mispredictions can have significance impact on decisions in the following
situations:

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

160

 Predicting when the project discovers X% of expected defects. As
shown in Figure 54 this mispredictions may be significant if the
Concave model is used instead of the other two.

 Predicting the status of the project w r t target. If a project is done
in a continuous way (e.g. Lean/Agile [16], [157]) then the shapes
like Convex or Concave can lead to wrong status reporting (too
many or too few defects than expected)

The situations and consequences described in this section constitute the most
common problems with mispredictions with the most serious consequences.

4.4 Industrial evaluation

4.4.1 Case study design
Following the taxonomy and guidelines for conducting and reporting case studies in
software engineering by Runeson and Höst [52], we conducted an exploratory case
study using flexible design principle. We studied two large companies from widely
different industrial domains (Automotive and Telecom) with significant focus on
development of embedded software. Given the differences in domain, the study is
designed as an embedded case study with two units of analysis (each company);
Figure 55 and Table 31 present an overview of the case study design and summary
of case units.

Figure 55: case study design

Table 31: Overview of case units.

Application
domain

Software development process
Current methods for software defect
prediction

Automotive
V-shaped software development mostly using
sub-suppliers for implementation

Focus on status visualization and
analogy based prediction

Telecom Agile development, mostly in-house
Various modes of presenting current
status and predictions methods

To provide the context for this study we provide details about each case unit’s
domain, important characteristics of their software development and which specific

Rakesh Rana

161

part of organization we interacted with. The included information provides the
context that is needed for meeting the objectives of this research.

Volvo Car Group (VCG): A company from the automotive domain

The team we interacted with in this case study from VCG is responsible for
integrating software for electrical systems at complete vehicle level. While some of
the software is developed in-house using agile process, majority of the embedded
software development in the company is developed following V-model through
external suppliers who design, implement and test the functionality based on
specifications provided by the VCG. The company on the other hand is responsible
for high level functional development which is done in domain specific modelling
language such as Matlab/Simulink8.

Ericsson: A company from the telecom domain

Ericsson develops large software products for the mobile telecommunication
networks. Projects are carried out according to the principles of agile and lean
software development. In this environment, various teams are responsible for larger
parts of the process compared to traditional processes: design teams (cross-
functional teams responsible for complete analysis, design, implementation, and
testing of particular features of the product), network verification and integration
testing, etc. The whole process is dominated with continuous development and
testing as expected in highly iterative agile software development process.

4.4.2 Data collection and analysis methods
The main source of data for the case study is obtained through empirical
observations and semi-structured interviews, data collected through interviews is a
form of first degree methods [52], that are although expensive to collect but offer
larger control. Since the objective for this research was to explore, identify and
validate consequences of mispredictions of defect inflow on software quality, direct
method in form of interviews was assessed as appropriate.

Stronger conclusions can be drawn by using triangulation i.e. using data from
several sources [52], therefore we complement the information obtained through
interviews with document analysis from these companies. The archival documents
analysed related to the information needs within the organization with respect to
software defects and information demanded by various stakeholders within the
organization. Semi-structured interviews were conducted with managers responsible

8 Simulink® is a block diagram environment for multidomain simulation and Model‐Based Design. Matlab and

Simulink are products and registered trademark of The MathWorks, Inc.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

162

for providing software defects related information to different stakeholders within
the organizations and quality manger. The interviewees were:

 Manager at Volvo Cars Group within the department responsible
for integrating software sourced from different teams and suppliers,
the manager have more than 20 years of experience working with
software development and testing. Ensuring safety and quality is a
major responsibility within this role.

 Team leader of metrics team at Ericsson; the studied department at
Ericsson provides the measurement systems to different
stakeholders within the organization. The team leader interviewed
also have more than 20 years of experience working with software
development and testing.

4.5 Results

4.5.1 Summary of results form case unit A: VCG
 A number of different metrics are collected and monitored

continuously for tracking and assessing quality of software under
development.

 Forecasts are used to track if the software will be ready for release
(with respect to quality) by the release date.

 If forecasts show an area with possible problems, then root cause
analysis is done to discover the main causes for such deviations.

 The focus after the root cause analysis is on what can be done now
to get on track? As it is highly important to meet the release dates,
more resources are mobilized and allocated where needed.

 Consequence of under-predictions: Would need task force (resource
mobilization) late in the project. While this is not seen as major
problem if under-prediction is limited to a few ECUs, but could be
a potential problem if under-prediction is widespread across
platform (large project).

 Consequence of over-predictions: Over-prediction is not seen as a
critical problem in this case unit. If it is recognized late in the
project that forecasts have over-predicted, the human test resources
simply shift their energies and focus on other on-going projects.

 Consequence of early-predictions: No impact if the project is small
as risk can be easily managed at any stage of project. For larger
platform projects, in case of early-predictions, the forecasts will be
re-checked consecutively for a period of time and cross-validated

Rakesh Rana

163

by different expert opinions before resources are planned according
to forecasts.

 Consequence of late-predictions: In this case, the strategy adopted
within this case unit is to find areas affected by late-predictions.
The test resource would be balanced in light of new information
and with the aim to meet quality requirements by the release date.

4.5.2 Summary of results form case unit B: Ericsson
The impact of mispredictions have two dimensions – (i) metric team which delivers
the predictions and (ii) project where the predictions are used.

For the metrics team:

 All mispredictions make the team lose trust from the organization.
Once the organization acts upon wrong predictions the team loses
the ability to influence – the next time the organization will need a
second opinion before acting. This increases the cost of predictions
in the long run.

 For the projects:
 Over-predictions:
 Strengthening and reallocation of resources – if this is done during

a long period of time then this impacts the release date negatively
 Under-predictions:
 Negative impact on the release date
 Ordered overtime/extra resources – when the organization finds

that the reliability was under-predicted
 Reallocation of resources – when the organization finds that the

reliability was under-predicted.

4.6 Interpretation and recommendations
Strategies to avoid mispredictions: In order to avoid the costly mistakes in
predictions we have identified a number of strategies:

 Predict often – update the predictions every 4th data points (e.g.
every fourth week for weekly predictions). Updating too often can
cause instability of predictions and the loss of trustworthiness
[154], [160] and predicting too seldom causes risks of unnecessary
costs during longer periods of time.

 Experiment with three types of curves – until the prediction
model stabilizes (i.e. the curve can be fit with R2 over 85%)

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

164

experiment with concave, s-shaped and convex curves. If the
prediction model does not stabilize use the logistic model as it gives
the most accurate results in the majority of cases [154].

 Predict the shape of defect inflow using available data – in our
earlier work [161], we showed that by analysing trend of defect
inflow it is possible to predict the shape of defect inflow as early as
half-way through the project timeline. Such prediction can be
useful to select the right SRGM.

4.7 Conclusions
Quality is an important criterion for software products. To ensure that software
developed in a project meets its quality requirements by the release date calls for
monitoring and forecasting metrics related to software quality. Predicting expected
defect inflow, total expected defects and latent defects offer one way of monitoring
and forecasting software quality. Such predictions are also important to plan and
balance test resources which form major part of software costs. While such
predictions help monitor and plan for test resources, their use is associated with risks
of mispredictions.

Mispredictions if not handled carefully can have major impact on project timeline
and costs. In this paper we provided a consequence model for most common
mispredictions. The model helps evaluate what could go wrong and the
consequences of the same. The model is validated at two companies which provide
insights into which mispredictions are critical in industry and how they are currently
managed.

Rakesh Rana

165

Chapter 5:
Correlation based software defect
prediction technique in
automotive domain ‐ evaluation

Included Publication:
VII. R. Rana, M. Staron, J. Hansson, M. Nilsson, and F. Törner, “Predicting Pre‐

Release Defects and Monitoring Quality in Large Software Development:
A Case Study from the Automotive Domain”, Submitted to a Journal

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

166

Rakesh Rana

167

5 PREDICTING PRE-RELEASE DEFECTS
AND MONITORING QUALITY IN LARGE
SOFTWARE DEVELOPMENT: A CASE
STUDY FROM THE AUTOMOTIVE
DOMAIN

Abstract— Early estimation of software defects in sub-systems and features in an
on-going project can be used for effective allocation of effort and resources by the
development teams. It also provides support for planning and decisions with regard
to software release. Current methods of defect predictions based on code and change
metrics requires access to source code and software evolution information which
may not always be available or easy to obtain. This paper evaluates if number of
defects found in an earlier integration point can be a good predictor of number of
defects to be found in next integration point. Using data from four large software
projects from the automotive domain, we evaluate the correlation between defects
found across integration points and final pre-release defect count. We do the
analysis at the granularity of sub-systems (Electronic Control Units) and features
with a sample size of 140 sub-systems and 178 features over 9 integration points.
Our results show that defects found at integration point 4 and 5 could be used as a
good predictor for forecasting total expected defect count at final release. It is also
demonstrated how correlation between defects found across integration points can
be used to identify risky modules early in the development life cycle which can
trigger corrective actions.

Keywords— Software defect management; Defect-prone modules; Predictive
models; Software evolution; Automotive domain

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

168

5.1 Introduction
Defects in software are real and observable indicators that can be used to track the
quality of given product during its development and testing. It has been shown that
in large software development projects, majority of software defects are often found
in few of the sub-systems and features [162] [163]. Identifying which sub-systems9
and features10 are defect-prone and early estimation of number of defects expected to
be found in a given project can be effectively used to increase testing efficiency.
Such predictions help teams to focus quality assurance activities and resources to
areas where they are needed most. Such efforts help in improving the overall quality
of software system under development.

Defect prediction models based on code and change metrics requires access to
source code which may be a problem when software is developed using sub-
suppliers or code is auto-generated from models in model based development.
Another shortcoming when using these methods is uncertainty of how to handle
cases where software under study contains reused code [28], which is a frequently
the case in many industrial domains engaged in embedded software development for
example automotive domain.

Simple prediction models that only use defect data from earlier integration points of
software project lifecycle to predict defect count in later integration points can
elevate many of aforementioned shortcomings. Such models can prove to be simple
and cost-effective way of estimating defects at the appropriate granularity level
(sub-system or features) and time (early), where such predictions allow quality and
project managers to take corrective actions.

In this paper we investigate the relationship between defects discovered during an
earlier integration point to that of later ones over a software project lifecycle (at sub-
systems and features level). The research questions (RQ1-RQ4) that we address in
this paper are:

 RQ1: does small number of modules contain most of the defects found in
large automotive software projects?

9 We use sub‐systems in the given (automotive software) context to refer to software
developed for specific Electronic Control Unit (ECU).
10 Feature refers to a software module that provide a specific functionality for example
Anti‐lock control module, software module for central locking etc. Features are also
commonly referred to as functions in the automotive domain.
There exist many to many relationship between sub‐systems and features, while an ECU
usually carry more than one feature – a single feature can also be distributed over many
ECUs.

Rakesh Rana

169

 RQ2: Do defects found in current integration point strongly correlates to
defects found in next integration point?

 RQ3: How can we use defect inflow data for continuous quality monitoring
(i.e. early risk identification)?

 RQ4: When in project timeline can we make useful pre-release defect count
predictions?

To answer the research questions posed, we use correlation and simple regression
analysis on defect data from four large industrial software projects from the
automotive domain consisting of in total 140 sub-systems and 178 features over 9
integration points.

We find evidence which support earlier observations [1] that small number of
software modules accounts for majority of defect counts, specifically our results
support the 20-60 rule observed by Fenton and Ohlsson [2]. The results from
regression analysis show that number of defect found at fourth and fifth integration
point can be used as an early indicator for predicting total pre-release defects. We
further show that correlation between defects found across integration points can be
used to identify sub-systems and features that may need more attention thus helping
early interventions to improve their quality.

The remaining of the paper is structured as follows: section 5.2 presents the
background and related work for our research with brief overview of different
methods of software defect predictions. In section 5.3 we describe in detail the
research methodology and data used for this study, while Section 5.4 presents the
findings from the study. Section 5.5 provides recommendations for industrial
practitioners on how to apply the proposed prediction model and discuss the threats
to validity. Finally section 5.6 presents our conclusions and outlines future research
directions.

5.2 Background and Related Work

5.2.1 Software Defect Prediction
A software defect can be defined as an issue or deficiency raised due to use of
software product which causes it to perform unexpectedly [8]. Software Defect
Prediction (SDP) methods are used either to classify which modules are defect-
prone or to predict the number of defects expected to be found in a software
module/project. Usual techniques used for classification/prediction are using:

 expert opinions for prediction,
 software reliability growth models for prediction,
 regression based methods for classification and prediction, and/or

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

170

 machine learning based methods for classification and prediction.

Expert opinion is one of the easiest (if experts are available), but subjective method
of predicting software defects in an on-going project. This method can be useful in
cases where defects predictions are to be done at project level or large components
level and where experts are readily available. But when defect predictions are to be
made at lower granularity levels (sub-systems, features, files etc.), this method do
not scale down.

Software Reliability Growth Models (SRGMs) use mathematical equations to model
the growth of software/system reliability using defect inflow data from the
development/testing phases. Appropriate model is selected based on software
development/testing process or using empirical evaluations of number of models on
the testing data, which is then used to select appropriate SRGM to make defect
forecasts. These models are easy to apply in practice, but reliable predictions can
only be made when enough testing data is available for model fitting which may be
late in the testing process. These models can be used to model reliability growth
over testing period or over the software lifecycle using models such as Rayleigh
model.

Regression based methods on the other hand uses statistical regression for making
defect predictions using a set of software metrics or code change attributes as
predictor variables. Regression methods such as logistic regression can be used to
classify software modules as defect-prone or not, while multiple linear regression
can be used to estimate the number of expected defects in a given software project
or modules (sub-systems/features etc.). A range of software process and product
metrics have been used as the independent variables in the regression based models;
most common among them are the code complexity metrics and source code
evolution (change) metrics.

Methods based on machine learning use algorithms based on statistical methods and
data mining techniques that can be used for defect classification/predictions. These
methods are similar to regression based methods and use similar input data
(independent variables). The key difference being that machine learning based
methods are dynamic learning algorithms that tend to improve their performance as
more data is made available.

5.2.2 Automotive Domain and Embedded Software
Automotive software is essentially embedded software which is defined as the
software that resides permanently within a device (hence embedded) and contributes
to the device control and functionality. Today’s modern cars carry large amount of
software; some estimates suggest that premium segment cars can carry up to 100
million lines of code, much more than that of F-35 Joint Strike Fighter (5.7 million)

Rakesh Rana

171

and even Boeing’s 787 jetliner (6.5 million) [54]. A typical modern car can carry
about 800 features [4] realized by software which is distributed over 70 to 100
microprocessor-based Electronic Control Units (ECUs) [54].

Automotive software is diverse and complex, the major reasons for complexity can
be attributed to factors such as [1]:

 Interaction between software and hardware with number of sensors and
actuators;

 Expected real time behaviour based on states and events;
 Systems with long life time where embedded software is expected to

continue working often without updates; and
 Demands for high reliability and dependability especially for applications

which are safety critical.

Software development in automotive domain mainly follows V-model where left
branch (early phase) is dominated by software design and implementation, while
verification and validation is prominent on the right branch. Figure 2 shows the
mapping of different stages/phases in automotive software and electronic hardware
(ECU) development at the case company (Volvo Car Group, VCG). Requirements at
the vehicle level are grouped based on features (or features), each feature has an
assigned owner responsible for overlooking the design-to-acceptance of that feature
in the final product. System designers design the system based on all the features
that are carried over and to be introduced (new). The system is designed such that
each ECU is assigned number of logical components which implements the required
functionality. Thus there is one to many relationship between feature and logical
components for example to provide an Anti-lock feature/feature, central electronic
module (ECU) may have a logical component named Anti-lock control component,
while ECU controlling the wheel braking may have another logical component that
implements the braking action under anti-lock conditions, which together fulfil the
full functionality of Anti-lock braking feature.

It is common in automotive domain that Original equipment manufacturers (OEMs)
such as VCG take responsibility of design and acceptance testing of software and
hardware at vehicle level, while electronic hardware (ECUs) and base software for
the ECUs is developed by their suppliers. While OEMs do implement some of the
application level software in-house (generally features/features that are new and
innovative which provide market differentiation to their products), but much of the
application level software is also sourced through tier-1 and tier-2 suppliers
customized to the need of individual OEMs. Under these conditions access to
change metrics is not readily available as the software is developed/customized by
supplier and not developed in-house.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

172

Figure 56: Overview of software development process at VCG

Further software development in the automotive domain often uses combinations of
different programming languages and techniques. Use of domain specific languages
(DSLs) such as Matlab/Simulink is common among major companies in this sector
(both OEMs and their suppliers) and also among other embedded software domains
(e.g. aerospace). The production code that runs on a typical ECU today may have
mix of code elements that are auto-generated from behavioural models, behavioural
model that includes legacy code and hand written code. Figure 3 shows the possible
mix of software elements that can be part of production code providing the intended
functionality. In such features and systems obtaining precise and accurate
complexity metrics possess challenges for e.g.

 Should we use complexity metrics from behavioural models or from code
generated from these models?

 Can we reliably use the complexity metrics for code that is auto-generated
and optimized using different Model-to-Code generation tools?

 Can we compare or combine complexity metrics from auto-generated and
hand-written code?

Figure 57: Possible mix of software elements in automotive production software

Rakesh Rana

173

Thus software defect prediction techniques based on change and complexity metrics
may not always be feasible or easy to apply in certain cases within automotive and
other embedded software domains due to:-

 Difficulty to calculate the size of software module with good accuracy, thus
difficulty calculating and working with defect densities.

 Source code metrics e.g. complexity, size, couplings are readily defined for
hand written code, but corresponding metrics for behavioural models are
often not validated and in some cases not yet defined.

 Sourcing software from suppliers may also pose difficulty in obtaining
reliable software evolution information (i.e. change metrics) during its
implementation.

With these issues in perspective, for large iterative software development projects
we evaluate the efficacy of defect count at a given integration point as an early
predictor for defect count in next integration point and for predicting total pre-
release defects. This paper makes following key contributions:

 New defect count prediction technique that does not require code or change
metrics.

 The evaluation of usefulness of defect count in given integration point as
early predictor for defect count in following integration point and total
expected pre-release defect counts.

 Approach for early identification of features and sub-systems that may need
more attention.

5.2.3 Related Work
A number of earlier studies have provided empirical support for the Pareto principle
of defect distribution over software modules. Fenton and Ohlsson [2] observed 20-
60 rule i.e. approximately 20% of software modules accounting for more than 60%
of defects discovered during pre-release testing. The observation was also confirmed
in the replication study by Andersson and Runeson [164], the principle have also
been documented for software systems by other researchers [165] [166]. In this
study we provide complementary evidence to support the Pareto principle of defect
distribution for four large software projects from the automotive domain and hence
strengthen the evidence in this regard.

When it comes to predicting expected number of defects at project or lower levels of
granularity – a number of approaches/techniques have been used. Earlier studies
have evaluated expert opinions and different SRGMs for predicting software
defects. Wood [13] applied eight SRGMs on industrial defect inflow data and found
significant correlation between pre-release defects and post-release defects. Staron

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

174

and Meding [15] studied defect data from the telecom domain and concluded that
models based on moving average provided good predictability for weekly defect
predictions; the model was also found to be better than the predictions made using
expert opinions [16]. While SRGMs are useful for modelling reliability at the
system/project level, applying them at lower levels (feature/sub-system) is difficult.
The defect count at that level is small which poses a challenge for fitting the models
to the observed partial defect inflow making it difficult to make reliable forecasts.

Regression based SDP approaches have been quite successful. Logistic regression
have been used by Khoshgoftaar and Allen [29] for classifying modules as fault-
prone or not. Logistic regression was also used to classify file/packages in Eclipse
project as defect prone in the study done by Zimmermann, Premraj and Zeller [30].
Multiple linear regression has been used to model software changes where a set of
software complexity metrics were used as independent variables [23]. Khoshgoftaar
et al. [24] used linear regression for predicting program faults, their model also
relied on set of code complexity metrics and number of changes to a given module
to predict the dependent variable (program faults).

Bell et al. [167] used negative binomial regression models for predicting software
faults in an industrial voice response system. The study confirmed Pareto
distribution of faults and used set of simple, readily accessible predictor variables
that are independent of programming language. Nonetheless the predictor variables
used require access to source code and evolution metrics that we do not use in our
prediction models. Further Weyuker et al. [168] also compared between four
modelling methods that included negative binomial regression, random forests,
recursive partitioning and Bayesian additive regression trees for such prediction
models and found the first two outperforming the latters.

Our work complement these earlier works based on regression techniques, we also
use a linear regression model with one main difference. Instead of set of code and
change metrics as independent variables we only use defects found in/until a given
integration point to make future defect predictions. Thus the model is simple and can
be applied with little effort - it does not require access to source code, static analysis
nor the information on software evolution/change during its development. Table 32
provides a brief overview of some of the related work in the area of software defect
prediction.

Rakesh Rana

175

Table 32: Overview of related work
Predictor
variable

Summary of work

Static code
analysis

Zheng et al. [169] provide empirical evidence on the usefulness of static analysis for
fault detection in software. Their analysis of projects from Nortel Networks showed that
static analysis provides cost effective means for detecting software faults, it is
particularly useful for identifying assignment and checking faults.

Nagappan and Ball [170] showed strong positive correlation between defects found by
static analysis and the actual pre-release defect density. In the case study of Windows
Server 2003, they showed that defects found by static analysis can be used to classify
components into high quality and low quality with overall accuracy of 82.91%.

Complexity
metrics

Subramanyam and Krishnan [171] provides empirical support for link between Object-
Oriented design complexity metrics and software defects. They found significant
association between OO metrics and defect counts even after controlling for size.

Nagappan, Ball and Zeller [172] empirically tested correlation between software
complexity metrics to post-release defects. Authors were able to find set of complexity
measure for each of five major projects (from Microsoft) that correlated with the post-
release defects. It was also shown that no single set of complexity metrics provided the
best defect predictor for all projects, highlighting the need for validation at the
individual project level.

Software
evolution or
change
metrics

Kim et al. [173] developed algorithm which caches 10% of source files based on
change history of software project which is then used for predicting faults at file and
feature/method level. They evaluated their approach on seven open source projects
displaying good predictive ability.

Nagappan and Ball [174] used relative code churn measures to predict the system defect
densities. They also showed that the relative code churn measure can be used to
discriminate between fault prone and not fault prone binaries.

Snipes, Robinson and Murphy-Hill [175] presented a tool to mine change records from
configuration management system (CMS) to highlight defect prone areas in the source
code. In the study, defect risk for each file is predicted using software evolution (code
change) metrics - number of unique developers and count of changes.

Complexity
and change
metrics

Nagappan and Ball [176] evaluated ability of software dependencies and churn
measures as predictors for post-release failures using source code complexity metrics
(dependencies) and change metrics (code churn measures).

Kim et al. [177] used complexity and change metrics to classify changes introduced to
software as clean or buggy. The proposed change classification approach was applied
on 12 open source projects giving an average accuracy of 78% with 60% recall.

Other
measure

Zimmermann and Nagappan [178] used network analysis on dependencies graphs to
identify program units that are more likely to contain defects. The approach was shown
to provide 10% point higher recall than using only complexity metrics in their case
study of Windows Server 2003.

D’Ambros, Lanza and Robbes [179] provide an extensive comparison of well-known
bug prediction approaches on publically available data set. They found churn and
entropy of source code as best classes of metrics overall.

Fenton and Neil [20] provide a critical review of software defect prediction methods
based on size and complexity metrics. They recommend holistic models using Bayesian
Belief Networks which are capable of modelling the causal relationships between the
variables.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

176

As explained earlier our thesis is that in cases where such information (complexity
and change metrics) may be difficult to obtain - simple prediction models which do
not require access to source code or information related to software evolution may
provide useful alternative for making quick defect count predictions and help
software practitioner with information that they need to make early intervention
decisions.

Predictions using only defect inflow data

The work presented here closely follows the study by Yu, Shen, and Dunsmore [28]
who evaluated the relationship between defects in earlier and later phases using
linear regression model. The authors tested the model on two large software projects
and found strong linear relationship between defects discovered in earlier phase and
those discovered later. While there are some differences to our study, in general our
results support the earlier findings. Compared to earlier study where the focus was
on relationship between different phases, we investigate the strength of relationship
between software integration points in large software projects following iterative
development process. We also evaluate the correlation between defects found until a
given integration point and total pre-release defects. Predicting pre-release defects is
of great interest for industry practitioners and our evaluations suggest that simple
regression model may be used effectively to make these predictions and thus satisfy
the information need of software engineers, quality, and project managers.

5.3 Research Methodology and Data

5.3.1 Case Study Design
The study presented here is a case study according to Robson’s [106] classification,
the main goal being to evaluate the relationship between defects found across
different integration points over a large software project. The context is that of
embedded software development projects where we use the data from the
automotive domain. Following the taxonomy and guidelines for conducting and
reporting case studies in software engineering by Runeson and Höst [52], the case
study presented in this paper is an interpretive study using a fixed design principle.
The research is organized as an embedded case study with unit of analysis as sub-
systems and software features. While we evaluate the defect data from four large
software projects, the main interest is on evaluating if correlation exists at the level
of sub-systems or features, thus the case study is evaluated at that unit level.

Rakesh Rana

177

Figure 58: Overview of case study design

The reason to choose sub-systems and features as case units is mainly driven due to
practical relevance. Defect prediction at project level is helpful for project and
quality managers to monitor the progress of project and evaluate quality and
reliability characteristics of the software system under development, but such
predictions do not provide predictions at the level where software engineers and
component (sub-system/feature) owners could take corrective actions. Predictions at
sub-system and feature level provide information to these stakeholders who can use
these predictions to make changes to design and put more focus on implementation
of software features or sub-systems (in next integration points) which are predicted
to be more prone to defects.

5.3.1.1 Company Profile: Volvo Car Group
Volvo Car Group (VCG) is a Swedish car Original Equipment Manufacturer (OEM)
based in Gothenburg. VCG develops software and hardware in a distributed
software development environment using a number of sub-suppliers. For a minority
of Electronic Control Units (ECUs) software is developed in-house. The
development is done by the software development teams who usually also have
responsibility for integrating the software with the hardware developed by the
suppliers. The majority of the embedded software deployed in the car, is however
developed by external suppliers who design, implement, and test the functionality
based on specifications from VCG [108], [109]. The size of the entire automotive
project in terms of resources is substantially large due to the fact that both OEM and
suppliers (first and second tier) are involved and car development projects are
usually conducted using the product line approach with reference architecture [110].

5.3.1.2 Software Development Process
The software (SW) development process at VCG predominantly follows V-model
(Figure 2), the projects studied here are platform projects which span for a long
period of time and are thus divided into number of integration points (marked as
Integration points 1, 2, to 9). Every integration point is effectively a new sprint
within a larger project where new functionality is designed, developed, tested,

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

178

verified, and released into the latest system builds. The iterative software
development model used is shown in Figure 59.

Figure 59: Representation of iterative software development process at the case company

The project starts with setting up the requirements following which each integration
point consist of design, implementation (in-house or using suppliers) and the last
part of each integration point is concentrated on testing the newly developed
software. The emphasis until integration point 4-5 is on adding new functionality,
while after integration point 4-5 the focus is shifted towards system and acceptance
testing although more functionality may also be added. The integration points are
followed by phase where calibration and optimization is the main activity. Defects
found while testing the software are removed as they are detected or patches are
provided in the software updates.

Within each integration points, development of software is a continuous process
(which approximately follows the V-model, Figure 2) where requirements are
finalized, functionality is designed and implemented in form of implementation
models or source code, after implementation various levels of testing (unit, function
and integration) is done to ensure the final product is what was originally intended.

5.3.2 Data Collection and Analysis Methods

5.3.2.1 The Basic Data
In this study the defect data is collected from four large software development
projects (Proj-1 to Proj-4) from the automotive domain. The projects come from the
E/E (Electrical and Electronics) integration department within the VCG which deals
with the integration of various software functionalities and responsible for the final

Rakesh Rana

179

assessment of full EE hardware and software systems. All the projects consist of
different modules developed by different teams and tested within the development
team (unit testing), while further integration and acceptance testing is done by
dedicated teams in the integration department. All defects detected during
integration, system and acceptance testing phases are reported in one of the central
defect database administered by the integration department - which was also the
source of data compilation for this study. Data was collected in close cooperation
with the industrial partners; projects used in this study have been completed during
the last decade, thus we had full data at hand.

In terms of project timeline, on average each project spans between two to three
years11. In the first stage that spans about four to five integration points the focus in
on development of functionality, while in later stages (beyond integration point 5) –
the focus is on system and acceptance testing. On average by the time integration
point four and five are reached, the project is about 60% and 75% complete
respectively with respect to planned timeline. Although time period between
integration point four-five and pre-release is approx. 40%-25% (refer Figure 60), it
still represents close to one year in calendar time and major part of test resources
utilization (since the focus in this phase is on system and acceptance testing). Thus
predicting pre-release defect count by integration point four-five have high practical
importance, as it allows quality and project managers to effectively allocate and
mobilise test resources as per the expected demand of project under development.

Figure 60: Average project timeline over integration points

11 The exact time period and much of detailed data about individual projects is confidential

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

180

5.3.2.2 The Analysis Methods
Next we provide a brief overview of the analysis method used for answering the
research questions (RQ1-4) that we address in this paper,

RQ1: does small number of modules contain most of the defects found in large
automotive software projects?

To answer the first research question, we evaluated what percentage of defects is
accounted by top 20 percent of sub-systems and features. The analysis is done at the
module level for all data and also at individual project level to give a detailed
picture.

RQ2: Do defects found in current integration point strongly correlates to defects
found in next integration point?
For research question RQ2, where the objective is to measure the strength of
relationship between defect counts across different integration points, we evaluate
the correlation coefficient (or Pearson product moment correlation coefficient, r)
between the two variables. Since there is no universally agreed value to determine if
the correlation is strong or weak as it depends on the context of problem, for our
analysis we peg the levels as: the correlation is considered weak if ,
moderate if , strong for and very strong for .

Simple linear regression model is also constructed with one dependent variable (Y)
and one independent variable (X). The model is represented by equation (1):

Equation 1:

where is the intercept, the regression coefficient and is the error term. The
square of correlation coefficient, also called coefficient of determination , is also
provided for each regression, which is a measure of how well the regression line
represents the data or what proportion of the variance of one variable is predicable
from the other variable. The dependent and independent variables for research
question two are:

X=Number of defects reported in given (current) integration point,
Y=Number of defects reported in next (current+1) integration point.

RQ3: How can we use defect inflow data for continuous quality monitoring (i.e.
early risk identification)?
Identification of sub‐systems and features for further review

Rakesh Rana

181

The correlation between defects found between consecutive integration points, can
also be used for identification of set of modules (sub-systems and features) that may
need more attention.

Using simple linear regression model (as represented in equation 1) between defects
found in consecutive integration points. The 95% confidence bound can be
calculated as,

Lower bound: ,

Upper bound:

where σ is the standard deviation for the given coefficient value and X is the defect
count in given (current) integration point.

If the observed defect count in next integration point falls outside of the upper or
lower bound, could be an indicator of given modules higher than expected defect-
proneness or potential lack of test coverage. Thus such modules may be selected for
further review by the quality and project managers.

RQ4: When in project timeline can we make useful pre-release defect count
predictions?
The primary objective of this research question is to identify at what stage of project
development, total defects expected to be found by the pre-release can be predicted.
We first use correlation between number of defects found at a given integration
point with total pre-release defects found at the level of sub-systems and features to
find the earliest time in project timeline when such prediction can be made.
Secondly to check the predictive ability of such prediction model, we build models
based on simple linear regression as represented in equation (1) above with
variables:
X=Number of defects reported by pre-release,
Y=Number of defects found at (or until) integration point four/five.

The prediction model is validated using 10-fold cross-validation and using relative
absolute error for assessing the predictive accuracy. Relative Absolute Error is given
by equation (2) as:

Equation 2:

where is predicted value for nth observation, is the actual value for that
observation and the mean of all actual values. Thus relative absolute error
measures predictive performance of given prediction model in comparison of a
simple predictor that predicts average values. Thus a value of less than 100%

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

182

indicates better performance than simple predictor while a value relative absolute
error of over 100% indicate performance worse than using mean value predictor.

Note on outliers: The defect data we evaluated (Proj-1 to Proj-4) constituted a total
of 140 sub-systems and 178 features. Two out of 140 sub-systems and one out of
178 features were excluded from the analysis due to practical reasons. The two sub-
systems and one feature excluded all came from a single project (Proj-2) and were
considerably different from the typical sub-system and features developed under
software projects at the studied company. Thus to ensure that our analysis is
practically relevant and is not influenced by such one-time events, these modules
were excluded from the analysis. The decision to exclude these from analysis was
done after close consultation and approval from the industrial partner who pointed
out the unique characteristics of these modules. Thus the final sample size was 138
sub-systems and 177 features and data was available for 9 integration points before
the pre-release. Thus for RQ2-4, doing the analysis for all sub-systems and features
gave a sample size of 1104 and 1416 observations respectively at sub-system and
feature level.

Again for practical reasons the analysis is not only done at all sub-system and
feature levels, but also for a smaller sub-set consisting of Top-15, Top-10 and Top-5
sub-systems and Top-15 and Top-10 features (Top-X here refer to X sub-
systems/features with most defect count at pre-release). The main reason for
evaluating the model at smaller sub-set is to check if the relationship which we
observe and prediction models thus build using all data also holds for these sub-sets
of data. The sub-sets evaluated in the study have high practical importance: during a
large project, developers, system owners and managers are more concerned with
monitoring and predicting defect counts for sub-systems and features that are most
defect-prone where it would be most helpful to optimize test resource allocation and
early interventions in design and implementation will provide best returns in terms
of higher quality.

5.4 Results
In this section we present and discuss the results from the evaluation of strength of
relationship between defect counts across integration points in large software
projects and evaluate if it can be used to build simple regression models that can be
used for defect predictions. We first present the defect count distribution over the
nine integration points in the four projects and then the results are organised
according to five hypotheses we test in this study.

Rakesh Rana

183

5.4.1 Does small number of modules contain most of
the defects found in large automotive software
projects?

Large-scale software development projects may include hundreds of designers and
testers working at different sub-systems and features level. Due to various factors
such as size, complexity etc., not all sub-systems or features report defects on same
magnitude and severity. This presents an opportunity where software quality
assurance activities can be made more efficient by effectively allocating more
proportionally to the defect proneness of these modules.

Some earlier studies have shown that majority of defects and failures are found in
few of the sub-systems and features [162] [163], we test this observation for the
projects in this study under our first research question (RQ1). The results are
provided in Table 33 and defect distribution by sub-systems for all projects is shown
Figure 61.

Table 33: Summary of defect distribution and percentage of modules with 80% of reported
defects

Module Project
N, total number
of modules

%age of defects in
top 20% modules

Sub‐systems

Proj‐1 50 76.0%

Proj‐2 33 67.7%

Proj‐3 28 85.4%

Proj‐4 27 89.6%

Features

Proj‐1 43 85.3%

Proj‐2 47 80.2%

Proj‐3 48 57.1%

Proj‐4 39 66.1%

Total sub‐systems 138 81.0%

Total Features 177 83.0%

For full dataset which constitutes 138 sub-systems and 177 features the, 20%
modules accounted for majority (more than 80%) of reported defects. At individual
project level percentage of reported defects in top 20% sub-systems range from 67%
to 89%. For features at project level, again except for one project (Proj-3), top 20%
of features accounted for more than 60% of reported defects.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

184

Figure 61: defect distribution at sub-systems and features level

Thus with an exception of Proj-3, we confirm the earlier observation that 20%
modules account for more than 60% reported defects [163]. The results that 20-60
rule holds for large iterative automotive software projects has practical importance.
From given projects, we infer that a small set of modules (sub-system and features)
account for major proportion of defects. The observation adds further evidence that
Pareto principle of defect distribution also holds for large automotive software
projects.

5.4.2 Do defects found in current integration point
strongly correlates to defects found in next
integration point?

For second research question, we test if we can use the defect count in a given
integration point (current) to make a good prediction of expected number of defects
to be found in next (current+1) integration point. Such predictions can help
designers and managers to identify the most defect-prone modules in the upcoming
integration points and may trigger some corrective actions early for example by
making modifications on design or allocation of more resources to ensure high
quality. Figure 62 shows the scatter plot for all sub-systems and features showing the
relationship between the defect count in current and next integration points.

Rakesh Rana

185

Figure 62: Scatter plot for defect count in current and next (current+1) integration point for
all sub-system and features

We observe that while there exists a positive correlation between the defect count in
current and next integration points, it is not very strong. The linear regression line
also help get a subjective overview with number of points away from the line show
correlation between the two variables is not strong. The correlation coefficient (r)
and the results of regression model are presented in Table 34 for sub-sets with
different modules and scope. We note that correlation coefficient for all cases is
moderate (0.6 < r < 0.8) but not strong.

Table 34: Regression results for the prediction model for defect count in next (current+1)
integration point using defect count in current integration point

Module Scope
Sample

Size
Coefficien

t ()
Standar
d Error

P-value
r,

Correlation
Coefficient

R2, Coefficient
of

Determination

Sub-
systems

Top 15 480 0.676 0.034 0.000 0.670 0.449
Top 10 320 0.665 0.042 0.000 0.660 0.436
Top 5 160 0.647 0.061 0.000 0.645 0.415

Features
Top 15 480 0.711 0.033 0.000 0.700 0.490
Top 10 320 0.695 0.041 0.000 0.687 0.472

All sub-systems 1104 0.697 0.022 0.000 0.690 0.476
All Features 1416 0.747 0.019 0.000 0.731 0.534

This (weak correlation between consecutive integration points when measured for
all integration points combined) is not un-expected given that defects found per unit
time tend to increase as project progresses until a certain time, stabilizes and then
begin to fall off as the software matures – giving a characteristic S-shape to defect
inflow profile [180]. What is interesting however is - if there exists any strong

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

186

correlations between the consecutive integration points. To test this, we measure the
correlation coefficient across integration points one to nine and results are presented
in Table 35. It is observed that correlation is weak across IP_1 to IP_3 particularly
for sub-systems. Overall for all sub-systems correlation across consecutive
integration points is moderate (between IP_5 to IP_7), strong (between IP_3-IP_4
and IP_7-IP_8) and very strong between IP_4-IP_5 and IP_8-IP_9. For all features
the correlation between defects found across integration points range from moderate
to very strong.

Table 35: Correlation coefficient between defects found across integration points one to nine

Module Scope
Sample

Size
IP_1 -
IP_2

IP_2 -
IP_3

IP_3 -
IP_4

IP_4 -
IP_5

IP_5 -
IP_6

IP_6 -
IP_7

IP_7 -
IP_8

IP_8 -
IP_9

Sub-
systems

Top 15 60 -0.09 -0.11 0.85 0.96 0.67 0.57 0.79 0.95

Top 10 40 -0.10 -0.14 0.85 0.96 0.64 0.52 0.78 0.95

Features
Top 15 60 0.85 0.68 0.88 0.71 0.77 0.89 0.93 0.88

Top 10 40 0.85 0.66 0.88 0.69 0.76 0.88 0.93 0.91

All sub-systems 138 -0.05 -0.07 0.85 0.96 0.72 0.63 0.81 0.95

All Features 177 0.85 0.70 0.90 0.75 0.82 0.90 0.94 0.89

Thus for integration point three onwards, we find correlation between defects found
across consecutive integration points to be moderate-to-very strong. This
information can be used in subsequent projects to check if a given module follows
general trend of defects found at a given integration point which can help identify
sub-systems/features for further review - described in following section.

5.4.3 Identification of sub-systems and features for
further review

As explained in section 3.2.2, using 95% confidence intervals of regression
coefficients, we can find an upper and lower bound of forecasted defect count for
next integration point; an example is shown in Figure 63.

Rakesh Rana

187

Figure 63: Scatter plot showing potential identification of sub-systems or features for further
review. The graph shows actual Vs. predicted defect count for IP_5 using defect count at

IP_4 for all features

In the review phase after a given integration point and before a subsequent
integration point begins, mangers can use the forecasted values of defect counts and
actual defect counts for identification of sub-systems or features that need extra
attention. For example in Figure 63, these are marked by red, and green circles.

For the software modules (sub-systems/features) that report defect counts much
higher than the forecasted upper bound are marked by red circles, managers may
choose to take actions that may include:

 root cause analysis,
 design inspection/review,
 dependencies check,
 further reliability analysis, etc.

The modules that report less than the forecasted lower bound (marked by green
circle) may also need more attention; the actions taken by mangers for these
modules among others may include:

 check the adequacy of test cases,
 initiate more testing,
 inspection or manual walkthrough,
 root cause analysis, etc.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

188

Not all modules outside the lower and upper bound would need close inspections or
further actions, there may be practical reasons for the observed deviations (for
example less functionality addition in given integration point compared to previous
or reusability of code etc.). Also for cases where the defects count is low, small
deviations may not be as important as modules with high defect count and large
deviations. Small deviations at low defect count may just be due to low defect count
at previous integration point or start of new functionality addition to a given module.
Thus given on available information these modules may be taken for further review
or not.

It is thus noted that simple regression models are not only useful to make a forecast
of defects expected to be found in software modules in next integration point which
can be used to allocated necessary resources, but also can help identify smaller
subset that may need more attention.

5.4.4 When in project timeline can we make useful pre-
release defect count predictions?

When it comes to defect prediction and management, one information that most
stakeholders are interested in is to predict the number of defects expected to be
found by pre-release. Important questions in this respect are if we can predict (with
good accuracy) number of pre-release defects when the project is on-going and
when these predictions can be made with respect to project timeline. Pre-release
defect count predictions at project and components level help project managers and
quality assurance mangers to ensure that they plan for expected resource demands. It
also helps these mangers to monitor the progress of project with respect to its quality
and reliability characteristics. At individual team level, the sub-system responsible
and software engineering use pre-release defect counts at sub-system and feature
level to identify which features (area of code) need more attention. If the predictions
highlight specific features to be defect prone, early interventions in terms of design
change or refactoring may be undertaken to improvise the quality and thus avoid
defects late in the development process.

To answer these questions we analyse the correlation between defect count reported
at each integration point with the number of pre-release defects. Table 36 shows
correlation matrix for defect count at each integration point with the total defect
count by the pre-release at sub-system and feature level. The analysis is also done at
sub-sets that are of high practical value to company such as Top10 sub-systems or
Top10 features. It is observed that correlations between defect count at individual
integration point and pre-release are mostly weak for integration points 1-2 and for
integration points 7-9. The correlation is moderate/strong between pre-release defect
count and integration point 3 and 6. For integration points 4 and 5, defect count

Rakesh Rana

189

show the highest correlation with the pre-release defect count where correlation is
either strong or very strong.

Table 36: Correlation matrix for defect count in given integration point with pre-release
defect count

Correlation
Coefficient

Sub-systems Features

All Top 15 Top 10
Top

5
All

Top
15

Top
10

IP_1 0.424 0.374 0.336 0.527 0.278 0.231 0.205

IP_2 0.262 0.221 0.194 0.112 0.609 0.566 0.542

IP_3 0.748 0.735 0.722 0.786 0.823 0.799 0.791

IP_4 0.911 0.906 0.904 0.907 0.863 0.841 0.837

IP_5 0.943 0.938 0.934 0.937 0.930 0.913 0.912

IP_6 0.824 0.784 0.756 0.664 0.721 0.651 0.618

IP_7 0.556 0.474 0.400 0.169 0.720 0.651 0.623

IP_8 0.437 0.371 0.321 0.176 0.655 0.580 0.565

IP_9 0.353 0.295 0.246 0.120 0.659 0.606 0.614

Pre_Rel 1 1 1 1 1 1 1

Cumulative defect count (total defect count until a given time/integration point) tend
to be a more stable measure as it averages out fluctuations of defect count over
individual iterations, it also carries more information as it is an aggregate measure of
defects reported until a given date. Correlation between cumulative defect count at
end of each integration point to pre-release defect count is summarized in Table 37.

Table 37: Correlation matrix for cumulative defect count in given iteration with pre-release
defect count

Correlation
Coefficient

Sub-systems Features

All
Top
15

Top
10

Top
5

All
Top
15

Top
10

IP_1 0.424 0.374 0.336 0.527 0.278 0.231 0.205

IP_2 0.396 0.343 0.309 0.210 0.578 0.531 0.492

IP_3 0.797 0.775 0.756 0.796 0.784 0.753 0.734

IP_4 0.909 0.901 0.894 0.900 0.865 0.844 0.837

IP_5 0.936 0.930 0.925 0.927 0.930 0.917 0.916

IP_6 0.963 0.957 0.953 0.948 0.961 0.952 0.952

IP_7 0.979 0.975 0.972 0.967 0.986 0.983 0.983

IP_8 0.994 0.993 0.992 0.991 0.995 0.994 0.994

IP_9 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Pre_Rel 1 1 1 1 1 1 1

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

190

The correlation between cumulative defect count and pre-release defects is either
strong or very strong starting from iteration 4. The correlation between the number
of defects found at and by a given integration point to total defects found by pre-
release is also presented using line chart in Figure 64 and Figure 65 for sub-systems
and features respectively.

Figure 64: Line plot showing correlation between defects found at and by (cumulative
defects) a given integration point with total defects found by pre-release for sub-systems

The figures (Figure 64 and Figure 65) show clearly that the correlation between
defects found at a given integration point with total defects found by pre-release is
strongest at integration point 5. Also correlation between defects found at integration
point 4 and pre-release defect count is very strong for sub-systems (>0.9) and strong
for features (>0.8). Further as expected, correlation between cumulative defect count
at given integration points and pre-release defect count in general follows a concave
profile due to smoothening of variations over defect count at individual integration
points.

From Tables (Table 36 and Table 37) and their representation in Figure 64 and Figure
65, it is also observed that until integration point 5, correlation with pre-release
defect count is slightly higher with defects found at a given integration point than
with cumulative defect count at the same integration point.

Rakesh Rana

191

Figure 65: Line plot showing correlation between defects found at and by (cumulative
defects) a given integration point with total defects found by pre-release for features

It is noteworthy here that Integration point 4 is reached when project is about 60%
through its planned timeline (refer Figure 60) and thus if predictions for pre-release
defect count could be made at this time, it can prove to be of high practical
importance with respect to assistance in test resource planning and allocations to
projects.

Predictions using linear regression model

To build the prediction models we use the simple regression model described earlier,
the model is represented by equation 3,

Equation 3:

We build two types of model and check their predictive accuracy using relative
absolute error (as described in section 3.2) and using 10-fold cross-validation, these
models are:-

1. Simple linear regression models: in these models the dependent variable
(Y) is pre-release defect count which is predicted using only one
independent variable (X). We use defects found at integration point 4 or 5 as
the predictor variable, the results are summarised in Table 38.

2. Multiple linear regression models: in these models for same dependent
variable (Y, pre-release defect count) is predicted using defect counts at
integration points until integration point 4 or 5. Since this model takes into
account not only defects found at integration point 4 or 5 but also the
evolution of defects found until that point, it is expected to provide higher

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

192

predictive accuracy. The results for multiple linear regression models are
summed up in Table 39.

Table 38: Results of simple linear regression models for predicting pre-release defect count

using defect count at integration point 4 or 5

Module Scope
Sample

Size
Linear Regression

Model

Relative
absolute

error

Root
relative
squared

error

r,
Correlation
Coefficient

R2

Sub-
systems

Using IP_4 138
Pre-Rel = 3.13*IP_4 +

15.9
40.7% 43.3% 0.901 0.812

Using IP_5 138
Pre-Rel = 2.72*IP_5 +

13.84
31.1% 34.0% 0.939 0.883

Features
Using IP_4 177

Pre-Rel = 2.97*IP_4 +
24.4

47.5% 53.7% 0.846 0.716

Using IP_5 177
Pre-Rel = 5.45*IP_5 +

7.41
34.7% 41.1% 0.911 0.830

Table 39: Results of multiple linear regression models for predicting pre-release defect count
using defect counts until integration point 4 or 5

Module Scope
Sample

Size
Linear Regression Model

Relative
absolute

error

Root
relative
squared

error

r,
Correlatio

n
Coefficient

R2

Sub-
systems

Until IP_4 138
Pre-Rel = 4.38*IP_1 +

1.65*IP_2 - 1.02*IP_3 +
3.30*IP_4 + 11.58

38.5% 41.7% 0.909 0.826

Until IP_5 138

Pre-Rel = 3.44*IP_1 +
0.81*IP_2 - 0.94*IP_3 +
0.90*IP_4 + 2.13*IP_5 +

11.41

31.6% 35.6% 0.934 0.872

Features

Until IP_4 177
Pre-Rel = 1.37*IP_2 +

2.60*IP_4 + 22.62
49.3% 59.8% 0.818 0.670

Until IP_5 177
Pre-Rel = 2.75*IP_1 +

0.56*IP_2 + 1.25*IP_3 +
4.13*IP_5 + 2.72

19.0% 19.3% 0.981 0.962

The results from simple and multiple linear regression models (from Table 38 and
Table 39) are as follows:

a. Only using defects found at integration point 4 or 5, pre-release defect count
can be predicted with good accuracy (compared to mean value predictor),

b. Using defects found at integration point 5 provided better predictive
accuracy than using defect count at integration point 4,

Rakesh Rana

193

c. The best predictions for sub-systems (among tested models) was obtained
using simple linear regression model using defects found at integration point
5 as predictor variable, and

d. Best prediction model for features was obtained using multiple linear
regression model using defect counts until integration point 5 as the
independent variables for predicting pre-release defects.

5.5 Recommendations and Threats to Validity

5.5.1 How to apply the prediction models:
Recommendation to software quality and project managers for using correlation
based simple defect prediction models

Quality assurance and project managers may:

 Identify high risk modules using predictions confidence intervals (as
explained in section 4.3) and use the information to ensure that necessary
support in terms of required resources is available to teams working on such
modules. Also the information will facilitate managers to allocate their
attention effectively to areas that need it most.

 Use simple prediction models after integration point 4 (as explained in
section 4.5) to forecast total number of expected defects at pre-release for
long-term planning and monitoring the progress of system verification and
validation activities at complete system/project level and also at individual
teams level.

Software development and testing teams can benefit from simple correlation based
defect prediction modelling in following ways:

 They can use the simple rule based predictions (e.g. for a given feature by
end of integration point X+1 we usually expect to find Z times the number
of defects we found by end of integration point X) as a quick check to see if
any particular modules stand out and if so investigate the reasons (root
cause) or take appropriate actions as demonstrated in section 4.3.1.

 By continuously monitoring their current scorecard (with respect to defect
counts) and comparing it against the forecasts, the team leaders and
members at each team can monitor their own progress. Check if they will be
able to deliver their part of software by expected release date and if needed
when it is the time to call for more support such that corrective actions are
taken on right time rather than late in the development process.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

194

5.5.2 Threats to validity
We address the threats to validity in manner as described by Wohlin et al. [37].
Threat to conclusion validity is minimized by studying the correlation between the
dependent and independent variable. In this study the dependent and independent
variable are essentially the same (defect count or its cumulative value) only
separated temporally, thus it is reasonable to assume that they are affected by similar
underlying factors and thus we expect to see a relationship between the two. For a
given sub-system or feature new functionality is added and tested in each integration
point, and although it is possible to have major differences between the functionality
added across integration points – in general the characteristics is expected to follow
linear trend. A feature that is expected to be a large or complex feature at the end of
process is also more likely to have large or complex functionality addition during
the different integration points compared to a feature with is not expected to have
such characteristics.

A threat to internal validity is minimized in this study as the independent variable
always precedes the dependent variable (temporal precedence). We analyse the
covariance (correlation) and build and recommend regression models only when the
correlation is found to be strong or very strong. There is however threat to internal
validity as the defect count is in a given sub-system or feature over different
integration points could be due to other underlying factors such as size, complexity
etc. But since the intention of building the regression model is intended to be only
used to make defect count predictions in next integration points and we do not claim
that there is causal relationship between the independent and dependent variable,
this treat is not a major threat to the validity of our conclusions.

External validity concerns with the generalizability of results in settings outside of
the particular study. In the work presented here, we evaluated strength of
relationship between the defect counts across different integration points in large
software development projects. We studied four projects which had different project
characteristics (size, scope, complexity etc.), but it is also noteworthy that all
projects came from a single domain (automotive) and a single company (VCG).
Given that we studied four large projects which are finished over last decade, at
level of sub-systems and features over nine integration points, provide us with large
sample size and thus conclusions are drawn from large and heterogeneous projects.
While we do not claim that results can be generalized to all large software projects,
but given that most of such projects are broken down in an iterative manner, the
results are expected to be more generally applicable than the scope of the given
study.

Rakesh Rana

195

5.6 Conclusions
Testing, verification and validation is a major part of software development process
and an important activity to ensure desired quality and reliability is achieved.
Software defects proved a real and observable indicator to monitor the reliability
growth of software under development. Early estimation of how many defects are
expected to be found at the system/project, sub-systems and features level can help
with:

 Project managers to manage release cycle decisions and monitor progress,
 Quality assurance mangers to plan and allocate human and test resources

optimally, and
 Help designers and developers to make early intervention in design and

implementation to take corrective actions when needed

In this paper using defect data from four large software projects from the automotive
domain, consisting of 139 sub-systems and 177 software features over nine
integration points – we evaluated five hypothesis. The results from our study show
that:

RQ1: does small number of modules contain most of the defects found in large
automotive software projects?

We found evidence to support earlier observations, for all sub-systems and features
– 20% modules account for more than 80% of all defect reported. While at
individual projects level the 20-60 rule as observed by Fenton and Ohlsson [2] was
supported.

RQ2: Do defects found in current integration point strongly correlates to defects
found in next integration point?

The correlation between defects count in consecutive integration point when
analysed for all integration points together was not found to be strong. Nonetheless,
for most consecutive integration steps, the correlation between defects found across
integration points is found to be moderate-to-very strong for all sub-systems,
features and their subsets.

RQ3: How can we use defect inflow data for continuous quality monitoring (i.e.
early risk identification)?

Following RQ2, for integration point 3 and beyond the correlation between defects
found in consecutive integration points is found to be moderate-to-very strong. This

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

196

correlation can be used to build simple prediction rules for predicting expected
defect count in next integration point using defect count in current integration point.

The simple prediction rule can also be used to identify sub-systems and features that
report large deviations from the expected increase to investigate deeply the
underlying reasons for such deviations. Thus the prediction model can be useful in
practice to also help identify small subset of sub-systems and features where root
cause analysis will yield useful insights and help identify any trends/patterns that if
left unchecked could cause problems late in the development process.

Rakesh Rana

197

Chapter 6:
Evaluating reliability
characteristics of executable
models

Included Publication:
VIII. R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Törner, “Early

Verification and Validation According to ISO 26262 by Combining Fault
Injection and Mutation Testing,” Published in Software Technologies,
Springer, 2014, pp. 164–179.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

198

Rakesh Rana

199

6 EARLY VERIFICATION AND
VALIDATION ACCORDING TO ISO
26262 BY COMBINING FAULT
INJECTION AND MUTATION TESTING

Abstract— Today software is core part of modern automobiles. The amount,
complexity and importance of software components within Electrical/Electronics
(E/E) systems of modern cars is only increasing with time. Several automotive
functions carrying software provide or interact with safety critical systems such as
systems steering and braking and thus assuring functional safety for such systems is
of high importance. Requirements for the safety assurance are specified partially by
such functional safety standards as ISO 26262. The standard provides the framework
and guidelines for the development of hardware and software for components
deemed to be safety critical. In this chapter we argue that traditional approaches for
safety assurance such as fault injection and mutation testing can be adapted and
applied to functional models to enable early verification and validation according to
the requirements of ISO 26262. We show how to use fault injection in combination
with mutation based testing to identify defects early in the development process –
both theoretically and on a case of self-driving miniature vehicles. The argument is
grounded upon the current best practices within the industry, a study of ISO 26262
standard, and academic and industrial case studies using fault injection and mutation
based testing applied to the functional model level. In this paper we also provide the
initial validation of this approach using software of a self-driving miniature vehicle.

Keywords— Fault injection, Mutation testing, ISO 26262, Simulink, Model based
development, Automotive domain, Safety critical software

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

200

6.1 Introduction
Nowadays, a typical premium car has up to 70 ECUs which are connected by
several system buses to realize over 2000 functions [3]. As around 90% of all
innovations today are driven by electronics and software, the complexity of car’s
embedded software is already high and expected to grow further. The growth is
fuelled by cars beginning to act more proactively and provide more assistance to its
drivers, which requires software to interact with hardware more efficiently and
making more decisions automatically (e.g. collision avoidance by braking, brake-by-
wire or similar functions). In total with about 100 million lines of code (SLOC),
premium segment vehicles carry more software code than in modern fighter jets and
airliners [181].

Software for custom functionality in modern cars is usually developed by multiple
suppliers although it is largely designed by a single Original Equipment
Manufacturer (OEM) like Volvo Cars. The distributed development and use of
standards like AUTOSAR aims to facilitate reuse of software and hardware
components between different vehicle platforms, OEMs and suppliers [182].
However, testing of such systems is more complex and even today testing of
software generally accounts for almost 50% of overall development costs [183].

ISO-26262 in automotive domain poses stringent requirements for development of
safety critical applications and in particular on the testing processes for this
software. These requirements are intended to increase the safety of modern cars,
although they also increase the cost of modern cars.

The position for which we argue in this paper is that efficient verification and
validation of safety functions requires combining Model Based Development (MBD)
with fault injection into models with mutation testing. This position is based on the
studies of the ISO 26262 standard (mainly chapter 6 that describes requirements on
software development but also chapter 4, which poses requirements on product
development [35]). It is also based on previous case studies of the impact of late
defects on the software development practices in the automotive domain (e.g. [184])

The requirements from the ISO 26262 standard on using fault injection techniques is
challenging since it relates to the development of complete functions rather than
components or sub-components of software. The current situation in the automotive
sector is that fault injection is used, but it is used at the level of one electronic
component (ECU) or one software system and rarely at the function level [185]
[186].

Rakesh Rana

201

The current state of art testing is not enough for detecting safety defects early in the
automotive software development process since fault injection is done late in the
development (when ECUs are being developed), which usually makes the detection
of specification-related defects difficult and costly [184]. As much possible this
detection should be done at the model level when the ECUs’ functionality is still
under design and thus, it is relatively cheap to redesign/reconfigure. The evidence
from literature on successful use of fault injection shows that the techniques are
indeed efficient in finding dependability problems of hardware and software systems
when applied to compute [187]. Finally, to be able to increase the effectiveness of
the fault injection strategies and identify whether the faults should be injected at the
model, software or ECU level - Mutation testing should be applied to verify the
adequacy of test cases and finally how the combination of these approaches when
applied at the model level will enhance the detection of safety defects right at the
design stage.

In this paper, we provide a roadmap, which shows how to introduce fault injection
and mutation testing to modelling of automotive software in order to avoid costly
late defects and increase the safety of modern and future cars. This paper is the
extended version of our previous work [188] where we presented the theoretical
approach. In this paper we include a validation of this framework on a set of
software components of self-driving miniature vehicles. The system used for initial
validation is developed using a code-centric approach which makes the framework
more generic as the initial evaluation in [188] was conducted on model-based
development.

The remaining of the paper is structured as follows: In the next section 6.2 we
provide an overview of software development in automotive domain and associated
concepts. This is followed by brief discussion on related work in section 6.3 and our
position is presented and discussed in section 6.4. Section 6.5 presents the initial
validation case for the framework and section 6.6 provides conclusions.

6.2 Background
In this section we take a brief overview on the current state of automotive software
development process and environment, how safety is important in safety critical
applications and overview of theoretical background on fault injection techniques
and mutation testing.

6.2.1 Automotive Software Development & ISO 26262

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

202

Various software functions/applications developed within the automotive industry
today are classed as safety critical, for example Volvo’s City Safety feature consists
of components that are safety critical.

Figure 66: Volvo Cars city safety function, image provided by Volvo Car Group

[3] gives examples of functions/areas within automotive domain with recent
development which includes crash prevention, crash safety, advanced energy
management, adaptable man-machine interface, advanced driver assistance,
programmable car, car networking etc., much of these also fall within the safety
critical functionality and thus demands high quality and reliability. Also a number of
on-going projects are directed towards the goal of self-driving cars.

Software development in automotive sector in general follows the ‘V’ process,
where OEMs take the responsibility of requirement specification, system design, and
integration/acceptance testing. This is followed by the supplier, which develops the
actual code that runs on ECUs. Although the code is tested at the supplier level
(mainly unit testing), the OEMs are responsible for the final integration, system and
acceptance testing to ensure that the given implementation of a software (SW) meets
its intended functional and safety goals/demands.

Rakesh Rana

203

Figure 67: The V-model in the automotive industry with distinction between the OEM and supplier
contributions

In this model of software/product development (see Figure 67) testing is usually
concentrated in the late stages of development, which also implies that most of the
defects are discovered late in the development process. In a recent study using real
defect data from an automotive software project from the industry [189] showed that
late detection of defects is still a relevant problem and challenge yet to overcome.
The defect inflow profile presented in this study is reproduced in Figure 68 for
reference, which exhibits a clear peak in number of open defects in the late stages of
function development/testing.

Figure 68: Defect inflow profile for automotive software project, as given in (Mellegård et al.,
2012)

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

204

Testing the software is an important tool of ensuring correct functionality and
reliability of systems but it is also a very resource intensive activity accounting for
up to 50% of total software development costs [2] and even more for safety/mission
critical software systems. Thus having a good testing strategy is critical for any
industry with high software development costs. It has also been shown that most of
the defects detected during testing do not depend on actual implementation of code,
about 50% of defects detected during testing in the study by [190], were found
during the test preparation, an activity independent of the executable code. And
since automotive sector has already widely adopted MBD for the software
development of embedded systems, a high potential exists for using the behavioural
modes developed at the early stages of software development for performing some
of the V&V (Verification & Validation). Early V&V by helping to detect defects
early will potentially save significant amount of cost for the projects and reduce the
cycle time.

6.2.2 ISO 26262
ISO/IEC 26262 is a standard describing safety requirements. It is applied to safety-
related systems that include one or more electrical and/or electronic (E/E) systems.
The overview of safety case and argumentation is represented in Figure 69, based on
[35].

Figure 69: Overview of ISO-26262 safety case & argumentation process

Item
•The item representing a system or a function is defined.

PHA

•A Preliminary Hazard Analysis & Risk Assessment is done
to assign an appropriate ASIL level.

SG

•Safety Goals are derived from the Hazard Analysis and
they inherit the assigned ASIL level.

FSR

•Functional Safety Requirements are drawn such that the
set Safety Goals are met.

TSR

•The Technical Safety Requirements are formulated
describing how to implement FSR.

Doc

•Further development includes implementation,
integration and documentation of safety cases.

Rakesh Rana

205

Written specifically for automotive domain/sector, the ISO-26262 standard is
adapted for the V-model of product development corresponding to the current
practice in the industry. The guidelines are laid out for system design, hardware and
software design & development and integration of components to realize the full
product. ISO-26262 includes specifications for MBD and provides
recommendations for using fault injection techniques for hardware integration and
testing, software unit testing, software integration testing, hardware-software
integration testing, system integration testing and vehicle integration testing, for
overview on fault injection recommendations in ISO-26262 see [191]. Although the
functional safety standard specifies clearly the recommendations for using fault
injection during various stages of testing but it does not recommend anything with
respect to using mutation testing. This also reflects the current standard practice
within the automotive industry where mutation testing is not widely adopted yet.

6.2.3 Fault Injection

Figure 70: Common classification of fault injection techniques and implementation tools,
description available in (Ziade et al., 2004, Hsueh et al., 1997)

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

206

Fault injection techniques are widely used for experimental dependability
evaluation. Although these techniques have been used more widely for assessing the
hardware/prototypes, the techniques are now about to be applied at behavioural
models of software systems [192] - thus enabling early verification of intended
functionality as well as enhancing communication between different stakeholders.
Fault injection techniques applied at models level offer distinct advantages
especially in an industry using MBD for its software development, but use of these
techniques at model level in automotive industry is currently at its infancy. Figure
70 shows a mind map of classification of fault injection techniques based on how the
technique is implemented; some of the tools which are developed based on given
approach are also listed for reference. For a good overview of fault injection
techniques readers are referred to [187], [193].

6.2.4 Mutation Testing
Mutation testing is technique for assessing the adequacy of given test suite.
Mutation testing includes injection of systematic, repeatable seeding of faults in
large number thus generating number of copies of original software artefacts with
artificial fault infestation (called a mutant). Percentage of mutations detected by the
given test cases/suite is a metrics (called “mutation adequacy score” [194]) used for
measuring effectiveness of the given test suite. The variants of code (faults) can be
introduced by hand or auto-generated using tools like Insure++, Plextest, Certitude,
ESPT for C/C++ codes. It has been shown that the use of mutants yields trustworthy
results [195], i.e. mutants do reflect characteristics of real faults.

Mutation theory is based on two fundamental hypotheses namely Competent
Programmer Hypothesis and the Coupling Effect, both introduced by [196]. The
Competent Programmer hypothesis reflects the assumption that programmers are
competent in their job and thus would develop programme close to correct version
(although making a number of mistakes) while the Coupling Effect hypothesis
means that complex mutants are coupled to simple mutants in such a way that a test
data that detects large percent of simple faults is also effective in detecting high
percentage of the complex defects” [197].

6.3 Related Work
A number of European Union sponsored projects, within the area of embedded
software development and safety critical systems have looked at and developed
techniques to effectively use fault injection for safe and reliable software
development. The examples include the ESACS (Enhanced Safety Assessment for
Complex Systems) [198] and the ISAAC [199](Improvement of Safety Activities on
Aeronautical Complex systems). These projects have used the SCADE (Safety-

Rakesh Rana

207

Critical Application Development Environment) modelling environment to simulate
hardware failure scenarios to identify fault combinations that lead to safety case
violations.

A model-implemented fault injection plug-in to SCADE called FISCADE is
introduced in [200]. The plug-in tool utilizes approach similar to mutation based
testing, where it replaces the original model operators by their equivalent fault
injection nodes. The derived models are then used to inject the fault during
execution and log the results which are analysed later. Dependability evaluation of
automotive functions using model based software implemented fault injection
techniques have also been studied in [201].

A generic tool capable of injecting various types of faults on the
behavioural/functional Simulink models is also developed and introduced in [192].
The tool called MODIFI (or MODel-Implemented Fault Injection tool) can be used
to inject single or multiple point faults on behavioural models, which can be used to
study the effectiveness/properties of fault tolerant system and identify the faults
leading to failure by studying the fault propagation properties of the models.

Another work [202] with its root in the European CESAR (Cost-efficient methods
and processes for safety relevant embedded systems) project provides a good
theoretical overview of how fault and mutation based test coverage can be used for
automated test case generation for Simulink models. We provide a practical
framework on how fault injection combined with mutation testing within an MDB
environment can be used in the industry. And how will this practice enhance the
verification and validation of software under development, its functional validation
that would generates statistics for the effective argumentation of ISO 26262
compliance.

6.4 Framework for Early Verification and
Validation According to ISO 26262

We contend that fault injection can be effectively used at the model level to verify
and validate the attainment or violation of safety goals. We also propose that it
should be complemented with mutation testing approach at the model level to
provide enough statistical evidence for argumenting the fulfilment of safety goals as
per the ISO-26262 safety standard requirements.

A major challenge in successful argumentation of ISO-26262 compliance is to
provide statistical evidence that safety goals (SGs) would not be violated during

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

208

operation and collecting the evidence for this argumentation within reasonable
testing efforts.

If we are able to differentiate early between defects that can cause the violation of
SGs and those that cannot cause the violation, the amount of testing required will be
manageable. With MBD the functional testing could be done using fault injection
techniques and this can be complemented with later system testing of the actual code
using the mutation testing approach.

The framework on how this could be achieved in practice is as follows:

Figure 71: MBD based representation of a general system with inputs, outputs and dependencies

As illustrated in Figure 71, a given system/function generally have following
common features (in context of model based development): firstly it will have x
inputs (i1,2…x); it would have dependencies to other y components/ functions (d1,2…y);
it will have z outputs (o1,2…z); and it will have a number of sub-units/modules within
it that implement the intended functionality, let us assume that this part contains n
basic blocks in the modelling environment corresponding to n statements for a hand
written code. To verify and validate the correct functionality and ISO-26262
compliance of this generic function using fault and mutation testing approach we
can follow the steps as:

 Assign or define the technical safety requirements (TSRs)
corresponding to the functional safety requirements (FSRs) for the
given system/function to its z outputs.

 Use fault injection techniques to inject faults which are similar to
commonly occurring defects and other possible fault conditions at
the x inputs of the function.

Rakesh Rana

209

 Fault scenarios that leads to violation of TSRs/FSRs are identified,
statistics are built on what percentage of total faults lead to such
failures and fault propagation properties of such cases are studied to
build the fault tolerance within the system for given fault
conditions.

 Repeat steps (b) & (c) to test, correct and validate the given
system/function for its dependencies on other
functions/components.

 Cause mutations to the n basic blocks of given functional model
and asses the detection effectiveness of test suite/cases for possible
implementation bugs.

 Examine the mutants which are not killed by given set of test
cases/suits for their effect on FSRs. If a given mutation violates the
FSRs then a suitable test case is created to detect/kill such mutants,
i.e. detect such bugs in actual code.

By following the above mentioned steps we not only ensure that the given function
holds the FSRs and TSRs under faulty inputs, but we can also prevent potential
implementation defects and ensure that we have test cases ready to catch such faults
that can potentially violate the FSRs/TSRs already at the design (model) level.

It is also worthwhile to note here that steps (a) to (e) can be easily automated using
the currently available testing methodologies, which makes the usability and
industrial viability much higher that testing frameworks requiring high manual
interventions.

Further to make this framework/approach more effective in industrial practice we
identify a number of best practices that will have positive impact on detecting
defects early in the development process and thus have effective V&V of ISO-
26262:

 The best practice is to build and maintain models corresponding to
each abstraction layer of software architecture.

 The next best practice is to specify and test these models for FSRs
and TSR at the appropriate abstraction level.

 Also identification of different types of defects/faults and at what
stage they could be modelled/injected in the behavioural models
would ensure that models are tested for these faults at the earliest -
leading to models being build that are robust right from the start
instead of adding fault tolerance properties in the later stages of
development.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

210

6.5 Case Study: Validation
In this section we present the validation of proposed framework on a set of
components for self-driving miniature vehicles. The software for the miniature
vehicles is build using similar methods and tools as professional software in the
automotive industry, although on a smaller scale. In the validation we use the self-
parking function of a self-driving miniature vehicle [203]. The architecture of the
software is described in detail in [204] and one of our miniature vehicles using the
self-driving vehicle software and a scenario for a sideways parking realized in our
simulation environment are illustrated in Figure 72 & Figure 73. The miniature
vehicles are in the scale 1:10 compared to the normal cars.

Figure 72: Self-driving miniature vehicle [204]

For understanding the initial validation of this framework it is sufficient to note that
the functionality we are dealing with is self-parking for on a sideways parking strip.
The self-parking algorithm expects a gap size of at least 7m to park in one turn
without using an additional correction trajectory. This scenario is presented in
Figure 8.

Rakesh Rana

211

Figure 73: Test track for the experiment with parking gap from our simulation environment

We applied the framework for early verification and validation following the steps
given in section 4 as follows:

 Assign FSR/TSR: An example of obvious functional safety
requirement (FSR) for self-parking functionality is parking without
hitting any other object. The corresponding technical safety
requirement (TSR) can thus be parking only when gap size exceeds
7m (minimum gap size requirement).

 Using fault injection to simulate common fault scenario: A fault
scenario is created by injecting a fault in the returned value for the
travelled path by adding an error value of maximum 3.4% for the
relatively travelled path increment. Thus, the size for measured
gaps (due to faulty sensor input) increases for example by ~9.7cm
to 7.01678m.

 Identify fault scenarios leading to FSR/TSR violations: Since in the
experiment with fault injection, the parking algorithm depends on
the travelled path; thus the algorithm parks the car in the lower gap
which leads to a safety case violation because the cars collides with
the obstacle at the rear side.

 Repeat steps (b) & (c) for all inputs: For this experiment, we
focused on the fault injection for a single signal.

 Cause mutations: Single point mutations are caused by changing
the logical operators in the self-parking function code, the standard
test protocol to test the expected functionality was then applied to
evaluate the generated mutants.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

212

 Examine mutants & create new test cases: The mutants and the
results whether they were successfully detected are provided in
Lessons learned

 The initial validation experiment presented in this section for the
proposed framework is the first step towards a complete validation
of this framework in an industrial setting. Although the framework
is focused on using fault injection and mutation testing at functional
model level in model-based development to shift some of the
verification and validation efforts to early stages of development,
the example here demonstrated its applicability of given framework
in a code-centric development environment as well.

The experiments using the software of a miniature vehicle provided a proof-of-
concept for the framework and provide a frame of reference with respect to possible
effectiveness. While in full scale safety evaluations following the ISO 26262, a
given function depending on its functionality may be subjected to tens of safety
goals and even a larger number of corresponding FSR/TSRs, we only evaluated one
such scenario. Still with only a single fault scenario, we were able to identify faults
leading to safety case violation. Also the mutation approach applied to this
exemplary scenario by using 24 mutations, two out of these 24 mutants produced
unexpected results and exposed the deficiency of the current test protocol, which
was considered as adequate for the given functionality.

Therefore while these are encouraging results pointing towards applicability and
effectiveness of the proposed framework, we also learned that we need further
validation on industrial scale projects to increase the external validity of these
results. Further for this framework to be successful in any organization much of the
steps of described framework will have to be automated and supported by
appropriate tools. As explained in section 2 & 3, a number of tools for fault injection
and mutation testing based approaches are available for code-centric development
making this framework practical for implementation on large scale with high
automation. But corresponding tools to support fault injection and mutation based
testing at functional model level in model-based development are not widely
available and the few tools currently available are in their early stages of
development where reliability of such tools will be an issue at least for some time in
near future.

 Table 40. In this simple case itself with only 24 mutations, to our
surprise two mutations produced unexpected results and violated
the assigned FSR. While previously the test protocol has been
deemed being sufficient for this function, the experiment clearly
demonstrated the need for adding further test cases to reliably spot

Rakesh Rana

213

these failures and to detect possible faults leading to FSR
violations.

6.5.1 Lessons learned
The initial validation experiment presented in this section for the proposed
framework is the first step towards a complete validation of this framework in an
industrial setting. Although the framework is focused on using fault injection and
mutation testing at functional model level in model-based development to shift some
of the verification and validation efforts to early stages of development, the example
here demonstrated its applicability of given framework in a code-centric
development environment as well.

The experiments using the software of a miniature vehicle provided a proof-of-
concept for the framework and provide a frame of reference with respect to possible
effectiveness. While in full scale safety evaluations following the ISO 26262, a
given function depending on its functionality may be subjected to tens of safety
goals and even a larger number of corresponding FSR/TSRs, we only evaluated one
such scenario. Still with only a single fault scenario, we were able to identify faults
leading to safety case violation. Also the mutation approach applied to this
exemplary scenario by using 24 mutations, two out of these 24 mutants produced
unexpected results and exposed the deficiency of the current test protocol, which
was considered as adequate for the given functionality.

Therefore while these are encouraging results pointing towards applicability and
effectiveness of the proposed framework, we also learned that we need further
validation on industrial scale projects to increase the external validity of these
results. Further for this framework to be successful in any organization much of the
steps of described framework will have to be automated and supported by
appropriate tools. As explained in section 2 & 3, a number of tools for fault injection
and mutation testing based approaches are available for code-centric development
making this framework practical for implementation on large scale with high
automation. But corresponding tools to support fault injection and mutation based
testing at functional model level in model-based development are not widely
available and the few tools currently available are in their early stages of
development where reliability of such tools will be an issue at least for some time in
near future.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

214

Table 40: Mutation testing output, case with and without fault mode scenario

ID Mutant Change description

Test case result using regular vehicle

simulation

Test case result using vehicle simulation

with fault injection

1

Unmodi

fied

Original self‐parking

algorithm Passed as expected

Failed as not expected, vehicle took first gap,

collided (expected: robust algorithm dealing

with varying travelled distance data)

2 68 Changed == to > Failed as expected, vehicle did not start Failed as expected, vehicle did not start

3 73 Changed first > to ==

Failed as expected, vehicle started

hardly noticeable (v < 0.009m/s)

Failed as expected, vehicle started hardly

noticeable (v < 0.009m/s)

4 73 Changed && to ||

Failed as expected, vehicle moved

forwards slightly and pull back while

Failed as expected, vehicle moved forwards

slightly and pull back while turning to left

5 73 Changed second < to >

Failed as expected, vehicle moved to the

end of the second parking spot but did

Failed as expected, vehicle moved to the end

of the first parking spot but did not start

6 79 Changed first >= to <= Failed as expected, vehicle did not start Failed as expected, vehicle did not start

7 79 Changed && to ||

Failed as expected, vehicle moved

backwards while turning to left

Failed as expected, vehicle moved backwards

while turning to left

8 73 Changed second < to >

Failed as expected, vehicle moved to the

end of the second parking spot but did

Failed as expected, vehicle moved to the end

of the first parking spot but did not start

9 85 Changed first >= to <=

Failed as expected, vehicle moved

backwards while turning to right

Failed as expected, vehicle moved backwards

while turning to right

10 85 Changed && to ||

Failed as expected, vehicle moved

backwards while turning first to right and

then to left (S‐shaped)

Failed as expected, vehicle moved backwards

while turning first to right and then to left (S‐

shaped)

11 85 Changed second < to >

Failed as expected, vehicle moved to the

end of the second parking spot but did

Failed as expected, vehicle moved to the end

of the first parking spot but did not start

12 91 Changed first >= to <=

Failed as expected, vehicle moved

backwards while turning to left

Failed as expected, vehicle moved backwards

while turning to left

13 91 Changed && to ||

Failed as expected, vehicle moved

backwards while turning to left

Failed as expected, vehicle moved backwards

while turning to left

14 91 Changed second < to >

Failed as expected, vehicle moved to the

end of the second parking spot, started

parking, but stopped after the first right

Failed as expected, vehicle moved to the end

of the first parking spot, started parking, but

stopped after the first right turn

15 97 Changed >= to <= Failed as expected, vehicle did not start Failed as expected, vehicle did not start

16 115 Changed first > to <

Failed as expected, vehicle did not find

the parking stop and continues driving

Passed as not expected, vehicle parked in the

second parking spot because the noise added

to the travelled distance resulted in a valid

parking gap size

17 115 Changed && to ||

Failed as expected, stopped before the

first parking gap, collided with parked

Failed as expected, stopped before the first

parking gap, collided with parked car

18 115 Changed second > to <

Failed as expected, stopped before the

first parking gap, collided with parked

Failed as expected, stopped before the first

parking gap, collided with parked car

19 126 Changed first > to <

Failed as expected, vehicle took first

gap, collided

Failed as expected, vehicle took first gap,

collided

20 126 Changed && to ||

Failed as expected, vehicle did not find

the parking stop and continues driving

Failed as expected, vehicle did not find the

parking stop and continues driving

21 126 Changed second > to <

Failed as expected, vehicle did not find

the parking stop and continues driving

Failed as expected, vehicle did not find the

parking stop and continues driving

22 135 Changed first > to <

Failed as expected, vehicle did not find

the parking stop and continues driving

Failed as expected, vehicle did not find the

parking stop and continues driving

23 135 Changed && to ||

Failed as expected, stopped before the

first parking gap, collided with parked

Failed as expected, stopped before the first

parking gap, collided with parked car

24 135 Changed second > to <

Failed as expected, stopped before the

first parking gap, collided with parked

Failed as expected, stopped before the first

parking gap, collided with parked car

Rakesh Rana

215

6.6 Conclusions
The development of software in the automotive domain has widely adopted the
paradigm of model based development to allow for easier integration of
functionality usually developed by multiple suppliers. By the nature of the domain
much of the functionality developed and implemented in cars is safety critical; the
criticality that requires observation of stringent quality assessment and adherence to
functional safety standards such as ISO 26262.

Development of behavioural models in MBD offers significant opportunity to do
functional testing early in the development process. Fault injection and mutation
testing approach in combination can be used to effectively verify and validate the
functional properties of a software system/function. The approach also provides
required statistics for the argumentation of safety standards compliance. In this
paper the need for such validation and a framework on how this could be achieved
in practice is discussed. The results are a roadmap for further research and tool
support to bring this approach into wider industrial adoption.

Initial validation of our proposed framework provided a proof-of-concept and
produced encouraging results indicating its usefulness and effectiveness in practice.
It is also noted that the framework will become much more effective and easy to use
for model-based development as tools related to fault injection and mutation testing
at model level matures over time. In the meantime, validation on industrial scale
functions will provide further evidence to evaluate the applicability and
effectiveness of the proposed framework in practice.

By detecting defects early and being able to do much of verification and validation
of intended functionality, robustness and compliance to safety standards on the
models – the quality and reliability of software in automotive domain can be
significantly enhanced. Effective approaches and tools support reduce the V&V
costs and lead to shorter development times.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

216

Rakesh Rana

217

Chapter 7:
Machine learning techniques for
software defect prediction in
industry ‐ adoption

Included Publications:
IX. R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and W. Meding, “A

framework for adoption of machine learning in industry for software
defect prediction”, In the proceedings of 9th International Joint Conference
on Software Technologies, ICSOFT‐EA, Vienna, Austria, 2014

X. R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and W. Meding, “The
adoption of machine learning techniques for software defect prediction:
An initial industrial validation”, In the proceedings of 11th Joint
Conference On Knowledge‐Based Software Engineering, JCKBSE, Volgograd,
Russia, 2014

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

218

Rakesh Rana

219

7 A FRAMEWORK FOR ADOPTION OF
MACHINE LEARNING IN INDUSTRY FOR
SOFTWARE DEFECT PREDICTION

Abstract— Machine learning algorithms are increasingly being used in a variety of
application domains including software engineering. While their practical value
have been outlined, demonstrated and highlighted in number of existing studies,
their adoption in industry is still not widespread. The evaluations of machine
learning algorithms in literature seem to focus on few attributes and mainly on
predictive accuracy. On the other hand the decision space for adoption or acceptance
of machine learning algorithms in industry encompasses much more factors.
Companies looking to adopt such techniques want to know where such algorithms
are most useful, if the new methods are reliable and cost effective. Further questions
such as how much would it cost to setup, run and maintain systems based on such
techniques are currently not fully investigated in the industry or in academia leading
to difficulties in assessing the business case for adoption of these techniques in
industry. In this paper we argue for the need of framework for adoption of machine
learning in industry. We develop a framework for factors and attributes that
contribute towards the decision of adoption of machine learning techniques in
industry for the purpose of software defect predictions. The framework is developed
in close collaboration within industry and thus provides useful insight for industry
itself, academia and suppliers of tools and services.

Keywords— Machine Learning, software defect prediction, technology acceptance,
adoption, software quality

Acronyms Used— ML: Machine Learning; SDP: Software Defect Prediction; TAM:
Technology Acceptance Model

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

220

7.1 Introduction
Testing is an essential activity in software engineering [205], but also one of the
most expensive phase within software development life cycle with some estimates
approximating it to consume about 50% of time and resources [206]. Software
Defect Prediction (SDP) offers one possible way to make software testing more
effective by making it possible to optimize test resource allocation, i.e. distributing
more effort to parts (files/modules) that are predicted to be more prone to defects.
The importance of such predictions is further substantiated by previous research
suggesting applicability of 80:20 rule to software defects (that is approximately 20%
of software files are responsible for 80% of errors and cost of rework) [207] [162].

Different methods for defect prediction have been evaluated and used; these can
broadly be classified as traditional (using expert opinions and regression based
approaches) and those based on machine learning techniques. Methods based on
machine learning offer addition advantage with their ability to improve their
performance through experience (as more data is made available over time). Despite
the importance of predicting defects in a software project and demonstrations that
SDP using ML techniques is not too difficult to apply in practice [208], their
adoption and application by practitioners in industry has been limited which is
apparent from the lack of published experience reports. Adoption of any complex
method/technology is dependent on several dimensions [209], but most of the earlier
studies in SDP have focused mainly on the aspect of predictive accuracy. In this
paper we argue that our lack of understanding of other factors relevant to industrial
practitioners is a major reason for low adoption of ML techniques for SDP in
industry.

Based on the technology acceptance model (TAM) and technology adoption
frameworks we develop a framework for explaining the adoption of ML for SDP in
industry. TAM intends to explain why users’ belief and their attitudes towards a
technology affect their acceptance or rejection of the information-communication
technology. While TAM is parsimonious and theoretically justified model to explain
information technology adoption [210], to use this model for a specific technology
requires identification of detailed attributes specific to the given technology and
context which collectively explain the belief and attitude of uses towards the given
technology. The research question we address in this paper is:

“How can we use the technology acceptance and adoption models for developing
framework for ML adoption in industry and how to adapt it for software defect
prediction?”

Rakesh Rana

221

7.2 Background and Related work

7.2.1 Software defect prediction using tradition
approaches

Traditional methods used for software defect prediction and risk assessment can be
broadly categorized under:

 Expert Opinions
 Analogy Based Predictions
 Regression Based Approaches

Statistical approaches based on regression have also been used for the task of defect
prediction. The dependent (or outcome) variable could be binary (defective or not
defective) as in logistic regression or the model could be built to predict the number
of expected defects as in case of multiple linear regression. Logistic regression has
been applied in Khoshgoftaar and Allen [29] for classifying modules as fault-prone
or not. Zimmermann, Premraj and Zeller [30] also applied Logistic regression to
classify file/packages in Eclipse project as defect prone (has defect Vs. not has
defect) . Multiple linear regression is used to model software changes [23] as a
function of a set of software complexity metrics. Linear regression was also used by
Khoshgoftaar et al. [24] for predicting program faults in two subsystems of a
general-purpose operating system, where they also evaluated different fitting
criteria’s (namely Least Squares, Least Absolute Value, Relative Least Squares and
Minimum Relative Error).

7.2.2 Software defect prediction using ML techniques
Broad types of Machine Learning (ML) techniques used for software defect
prediction:

 Decision Trees (DTs)
 Support Vector Machines (SVMs)
 Artificial Neural Networks (ANNs)
 Bayesian Belief Networks (BNNs)

Machine learning algorithms can also be used to model the software defect
prediction as a classification problem as in case of DTs and SVMs where the class
variable can take two values (defective or not defective). Or the problem can be
modelled to predict expected number of defects in a software module/system using
different code and change metrics. ML techniques for pattern recognition for e.g.
ANNs and BNNs can be used to accomplish such tasks.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

222

Number of various classification models including DTs and SVMs have been
evaluated and compared in [12]. Iker Gondra [32] applied machine learning
algorithms to predict the fault proneness and compared between the ANNs and
SVMs and found that if fault proneness is modelled as classification task, SVMs
performs better than the ANNs.

Table 41 provides an overview of some of the important ML techniques that can be
applied for SDP and lists their main advantages and limitations. For details on ML
techniques applicable in software engineering domain; readers are referred to work
by Zhang and Tsai [211].

Table 41: Overview of ML techniques used for software defect prediction

Algorithm Type DTs
Domain Knowledge Not Required
Training Data Adequate data needed to avoid over-fitting.

Advantages
Robust to noisy data; Missing values tolerated; Capable of learning
disjunctive expressions.

Disadvantages Prone to over-fitting.

Algorithm Type SVMs
Domain knowledge Not Required
Training Data Adequate data needed for training.

Advantages
Effective for high dimensional spaces, is memory efficient and is versatile
as it can take different kernel functions as decision function

Disadvantages
SVMs are likely to give low performance if number of features is much
higher than the number of samples

Algorithm Type ANNs
Domain knowledge Not Required
Training Data Adequate data needed for training.

Advantages
Able to learn non-linear and complex functions; Robust to errors in
training data.

Disadvantages
Slow training and convergent process; Prone to over-fitting; Results
difficult to interpret.

Algorithm Type BNNs
Domain Knowledge Not Required
Training Data Required for estimate the prior probabilities.

Advantages
Able to give probabilistic predictions; Useful for knowledge discovery;
Can be used very early in the development lifecycle

Disadvantages
Requires estimation of many prior probabilities that can be very large for
big models; computationally expensive; requires domain expertise for
building the network.

Rakesh Rana

223

7.2.3 Technology Adoption Framework

Figure 74: Overview of Original Technology Acceptance Model [209]

According to Attewell [212] adoption of complex technology is not an event, but
resembles knowledge acquisition over time, the perspective is applicable where new
innovation/technique is [212]:

 Abstract and have demanding scientific base,
 Fragile in sense of consistency, i.e. do not always perform as

expected,
 Difficult to try in a meaningful way, and
 Unpackaged, i.e. adopters cannot pick a tool out of shelve and use it

as a black box model, but instead need to acquire broad tacit
knowledge and procedural know-how.

Characteristics of ML based techniques fits well to most above point and thus can be
classed as complex technology/techniques. Further according to the Theory of
Reasoned Action (TRA) [213], the intention of adoption of behaviour or technology
is based on the beliefs about the consequences of adoption. The theory have been
used to build Technology Acceptance Model (TAM) by Davis [41], an overview of
model is presented in Figure 74. TAM postulates that a users’ adoption intention and
the actual usage of information technology is determined by two critical factors, the
perceived usefulness and perceived ease of use. Perceived usefulness is defined as
the degree to which a user believes that using a particular system would enhance
his/her job performance, while perceived ease of use is the degree to which the user
believes that using the system would be effort free [210].

In this study we are focused on technology adoption decisions, thus the model we
use for our framework is based on the revised version of original TAM model [214],
the postulation of revised model is that potential users of a technology actively

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

224

evaluate the usefulness and ease of use of given technology in their decision making
process [215]. Our position in this paper is similar:

We contend that applying technology adoption framework to ML techniques use in
SDP is needed to better understand the needs of industry - which will help
accelerate the technology transfer and adoption process of these techniques.

Technology adoption framework by Tornatzky et al. [42] also provide a model of
adoption that has been applied widely. According to the framework, there are three
elements which influence the innovation adoption process:

1. The external environmental context,
2. The technological context, and
3. The organizational context.

Chau and Tam [216] used the framework to model the factors affecting adoption of
open systems in the Information Science (IS). We adapt their framework in
conjunction with the Technology Acceptance Model (TAM) to model the factors
affecting adoption of ML in industry.

7.3 Study Design
The research process for development and quantitative validation of adoption
framework for ML techniques in industry is shown in Figure 75. The focus of this
paper is Stage-1, where the centre of attention has been to develop the general
adoption framework for machine learning techniques and demonstrate how the
model can be adapted for the specific case of software defect prediction (SDP).

Figure 75: Research process overview

Rakesh Rana

225

Literature Review: To capture the factors that affect the adoption of ML techniques
in industry we searched for likely factors mentioned in software engineering,
machine learning and technology adoption literature. A list of factors deemed
potentially relevant for industry was compiled which was used for discussions with
the industrial practitioners. The application area we concentrated on is defect
prediction in software system/projects.

Interviews: Semi-structured interviews were conducted with industrial practitioners
to first evaluate which factors are relevant for ML adoption in industry. In the next
round the same interviewees helped adapt this general model for the case of
software defect prediction.

In total four managers from two large companies with significant focus on software
development were interviewed consequently in two rounds. The companies included
in the study are:

 Volvo Car Group (VCG): A company from the automotive
domain, and

 Ericsson: A company from the telecom domain

The divisions we interacted with have one thing in common, they have not yet
adopted machine learning as their main method/technique for predicting software
defects, but they are evaluating it as a possible technique to compliment the current
software defect measurement/prediction systems in place. The interviewees
included,

 Manager at Volvo Cars Group within the department responsible
for integrating software sourced from different teams and suppliers,
the manager has more than 20 years of experience working with
software development and testing. Ensuring safety and quality of
software developed is a major responsibility in this job role.

 Team leader at Volvo Car Group responsible for collection,
analysis and reporting of project status with regard to software
defects and their predictions, the team leader has more than three
decades of experience in various roles at the company.

 A senior quality manager at Ericsson whose experience with
software (mainly within quality assurance) spans more than three
decades, and

 Team leader of metrics team at Ericsson; metrics team is a unit at
Ericsson that provides the measurement systems for various
purposes including software defect measurement, monitoring and
prediction systems within the organization.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

226

The main focus in the first round of interviews is to identify the factors relevant with
regard to technology adoption/acceptance decisions (to build a general framework of
ML adoption in industry). While the second round of interviews were focused on
identification of relevant attributes for each factor in the specific context of software
defect prediction.

7.4 Framework for adoption of ML techniques
in industry

It is important to note that for any organization at any given point in time, the trade-
off analysis is not between adopting or not adopting a new technology/process (as in
case of ML techniques); the trade-off is between adopting it now or deferring that
decision until a later date. This distinction is important as the factors that affect the
adoption are not only specifically related to direct advantages and limitation of given
technology/process, but also organizational and environmental at a given point in
time. In this context, nine important factors that affect the adoption of ML
techniques were identified; these can be grouped into three categories according to
the framework by Tornatzky [42]. The framework for adoption of ML in industry is
presented in Figure 76.

Figure 76: A Model for ML adoption in Industry

Rakesh Rana

227

In Fig 3 (+) and (-) signs denote the possibility of positive/negative relationship with
medium strength between a given factor and probability of adoption of ML. A
double (++/--) indicate a strong relationship; the strength of relationship can be
tested by setting a stricter significance level during quantitative evaluation (for e.g.
alpha value of 0.1 for +/- and 0.05 for ++/--). Accordingly hypotheses for each
factor can be formulated which can be tested quantitatively from a survey. We
provide a couple of examples of null hypothesis that can be quantitatively tested:

H1: Higher levels of perceived benefits of adopting ML techniques will strongly
(and positively) affect the likelihood of their adoption.

H2: Higher levels of perceived barriers of adopting ML techniques will strongly
(and negatively) affect the likelihood of their adoption.

7.5 Adaptation of ML adoption framework for
SDP

We adapt the general framework for ML adoption in industry (Fig 3) to the specific
problem of software defect prediction.

7.5.1 Characteristics of machine learning
Adoption of any new technology or process change is heavily dependent upon the
characteristics of technology/innovation. Factors affecting cost-benefit trade-off of
adoption are some of the critical factors in decisions of adoption. The relevant
attributes that affect the acceptance of ML for software defect predictions are
presented in Figure 77.

Perceived benefits: one of the most critical factors in adopting ML techniques in
industry are the perceived benefits of these techniques for a given organizations
specific context. The keywords here are perceived and context. While the actual
benefits, an organization can achieve by adopting a new innovation/technology is
important in long run, at a given point in time what affects an organizations decision
to adopt a new specific technology/innovation is its perception.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

228

Figure 77: Overview of attributes relevant to ML characteristics that affects its acceptance for
SDP

When it comes to SDP, the perceived benefits of using ML approaches as expressed
in previous studies evaluating ML techniques for SDP and opinions expressed by the
interviewees of this study are ability of ML based algorithms to:

 Provide higher prediction accuracy (high probability of detection
and low probability of false alarm) [32].

 Be highly automated, i.e. most aspects of system including data
collection to visualization of results can be done using smart
algorithms mining and analysing data autonomously from the
multiple local databases [217] with minimal human intervention.

 It is perceived that ML techniques can handle large data; in fact ML
methods are expected to improve their performance as more data is
made available over time [211].

 Another important expectation with techniques applied to
predicting software defects is that these techniques are capable of
identifying new patterns in data thus providing new insights from
the data itself. This offers possibility to use large historical data to
discover regularities and use them to improve future decisions
[218]. New insights can be generated using large data by employing

Rakesh Rana

229

specific ML techniques such as causal modelling for example by
using Bayesian Networks to model causal networks and deduct
probabilistic relationships.

 Given the self-adaptive nature, using ML techniques is also
perceived to be low on maintenance activities.

Perceived barriers: On the other hand perceived barriers negatively affect the
adoption/acceptance of ML techniques. For software defect predictions, some of the
common perceived barriers are:

 Steep learning curve – According to Edmondson et al. [219], users
of new innovation/technology need to understand it well before
they can put it into productive use. Their study also suggests that
when tacit knowledge is needed, new technologies may fail in
market even when their advantages have been proven.

 For example in case of SDP, when using classification or pattern
recognition, selecting the set of attributes (inputs) that give optimal
results is very much based on domain experience and experience of
using ML based techniques which is difficult to document/codify
explicitly for new users.

 Lack of trust – stakeholders in software projects who are used to
traditional approaches of predicting defects (such as expert
opinions) do not generally trust the algorithms to outperform expert
based predictions.

 For software projects, in general and in particular for safety and
business critical software products, the penalty for mis-prediction is
an important barrier. The severity of mis-prediction is correlated to
importance of information need and actions it can trigger. For
example a prediction model that falsely predicts 20% of software
modules as defect prone (compared to actual 10%) may lead to
review of 10% modules which was unnecessary and results in
resource allocation which is not optimal.

 As traditional methods have been used for comparatively longer
time, their levels of (un)certainty are known – which is not the case
with ML techniques. To overcome this barrier we recommend that
in the initial phase of adoption of machine learning techniques,
these should be using alongside the traditional methods to validate
their usefulness and predictive accuracy in practice. This provides
the comparisons industrial practitioners want to see before trust in
new techniques begins to build up over such trial periods.

 Given that most practical aspects can be affected by wide range of
factors; techniques based on ML approaches usually do not take

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

230

into account all of these. Human factors such as differences in
productivity, people getting sick or motivation level of employees
are hard to measure and account for in algorithmic models for SDP
and thus a source of error in such techniques.

 Uncertainty regarding generalizability of ML over projects. The
perception is that while ML techniques (used for classification and
pattern recognition) work well in recognizing existing patterns in
the data, but their performance degrades for patterns that are unseen
before.

Availability of tool and support is expected to increase the acceptance of ML in
industry [220]. Some of the attributes related to this factor are - if the available tools
are open source or proprietary, how much support is available and how much they
cost. Others include if the given tool is compatible with existing measurement
systems and in-house competences with respect to its usage. Consulting services can
also help specific companies to get started with new approaches that they do not
have enough experience with - thus helping acceptance of new techniques and tools
in industry.

A number of packages implementing ML algorithms are available for e.g. Netlab,
Spider and BNT for Matlab; Nodelib, Torch for C++; and CREST for python.
Commercial (e.g. Ayasdi, NeuroSolutions etc.) and open source tools (e.g. Weka,
KNIME etc.) are also available with GUI. While availability of such tools is likely
to increase the adoption of ML in industry, other attributes such as support and
consulting services is also important in determining the level and speed with which
ML is adopted in the industry.

One possible way of enhancing adoption through tool and support availability is by
making available problem specific customized solutions for highly relevant
industrial problems such as SDP. Other activities that can potentially accelerate the
adoption process is integration of ML based algorithms in existing software
packages widely used within industry, for e.g. Microsoft Neural Network algorithm
available for SQL Server 2012.

7.5.2 Organizational characteristics
Need and importance: The higher the need and importance of given information is
in an organization, the higher is the likelihood for adopting new techniques to satisfy
this information need.

To improve on the accuracy and reliability for such measures, new approaches that
offer higher accuracy and reliability are more likely to be adopted. Zhang and Tsai

Rakesh Rana

231

[211] provides a good overview of applications of ML in software engineering
domain which outlines different information needs within this domain. Examples of
information need specific to software defect predictions are:

 Predicting software quality (identification of high-risk, or fault-
prone components)

 Predicting software reliability
 Predicating expected number of defects
 Predicting maintenance task effort
 Predicting software release timings

Factors such as how satisfied a company is with its existing defect prediction
systems, their familiarity with machine learning techniques and in-house
competences are also important for explaining acceptance and adoption of ML for
SDP within a company. A model of attributes that contribute to these factors is
presented in Figure 78.

Figure 78: Overview of attributes relevant to organizational characteristics that affects its
acceptance for SDP

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

232

Satisfaction with existing systems: the motivation for change (adoption of new
approaches) is strongly connected to given organizations satisfaction with its current
measurement/analysis systems. If a company is well satisfied with accuracy and
efficiency of existing methods it is unlikely to invest significant amount of cost,
resources and learning on new approaches. In case of software defect prediction,
attributes relevant to satisfaction with existing systems are:

 If or not the existing system satisfies the information need of
stakeholders involved in the project.

 Does existing system allow stakeholders to effectively and
efficiently visualize the trend over time and let them compare
current projects with similar historical projects data.

The reliability and cost also plays important role in determining the level of
satisfaction with existing defect management and prediction systems within software
development organizations.

Familiarity and competence with ML techniques: organizations familiar with
approaches of machine learning though their workforce or collaborations with
academia will have better understanding of advantages and limitations of such
approaches. These organizations will also be more informed about practical
applicability of these techniques and thus in a position where they can identify and
assess areas where the benefits of using ML techniques outweigh the barriers –
therefore organizations that are familiar with such methods are strongly likely to
adopt these methods.

Attewell [212] proposes that “firms delay in-house adoption of complex technology
until they obtain sufficient technical know-how to implement and operate is
successfully”

Almost all mature organizations engaged in developing software generally collect,
store and analyse their product and process related data. Given that such data is
available in large quantities (within the organizations), an organization with good
competences/skills in machine learning are more likely to try ML techniques on
their data and eventually adopt it on larger scales.

The main challenge in this context is unavailability of structured data. Much of the
data generated within an organization is in form of unstructured text (e.g. software
requirements, defect reports, customer feedback written in textual form). On the
other hand most ML algorithms require inputs in numeric or categorical form which
presents challenge in using such data in practice. Developments in field of Natural

Rakesh Rana

233

Language Processing (NLP) are already addressing these challenges and advances in
such areas are likely to increase the adoption of ML based techniques for SDP.

7.5.3 External environment
ML techniques, if adopted in different industries signals their applicability in
practice, although this is not expected to be a strong factor deriving adoption in
other industries – it is likely to affect positively the probability of adoption.

A similar but stronger factor for adoption of new technology/approaches such as ML
in a given company is likely to be the information whether or not any of the
competing companies are using such techniques. The motivation behind this factor
is simple - every organization in a given domain intends to be at the forefront of
technology or process knowledge. The adoption of a particular technique/process by
a competitor is a strong signal that given technique could have potential benefits;
this can potentially motivate the need for evaluation of such methods within the
given organization.

7.6 How to use the framework
Over the years companies have begun capturing huge volumes of data about their
products, consumers and operations [218]. ML offers new tools that can use this
data to recognize patterns and provide useful insights hidden within these huge
volumes of data.

7.6.1 Setting the research direction
The research in software defect predictions has been mainly focused on evaluating
and highlighting the predictive accuracy of ML techniques and in some cases
comparing it to traditional methods. On the other hand the adoption framework
indicates that not only predictive accuracy, but attributes such as cost, reliability and
generalizability are also important for adoption decisions.

Therefore the technology adoption framework, such as one proposed here, can be
useful to guide future research directions by helping to identify which factors are
relevant for industrial adoption, but currently unaddressed in terms of their scientific
evaluation.

7.6.2 Evaluating specific ML techniques by a given
company

Technology acceptance/adoption frameworks enhance our understanding of which
factors affect the end users decision to adopt a given technology/innovation.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

234

Although these factors do play a role to varying degree when companies evaluate
their decision to adopt or delay the adoption of such techniques, the lack of a
framework can lead to sub-optimal decisions. Without a guiding framework there is
high probability that effect of some detailed attributes that affect the overall
usefulness is missed. The severity of problem is greater when comparisons are made
between two or more techniques or tools where it is likely that evaluation would
focus only on small set of attributes which does not provide the full picture.

Table 42: Example of how adoption framework can be used to compare between two
new tools/services

Attribute	 Tool A	 Tool B	
Predictive Accuracy	 85%	 82%	

Auto data acquisition	 Yes	 Yes	
Report generation	 Yes, web based	 Yes, multiple format	
Can handle multiple projects	 Yes	 Yes	
Generate causal maps	 Yes, Non-Interactive	 Yes, Interactive	
Running time (typical project)	 30min	 40min	
Cost of license (tool)	 $ 20000/ license	 $ 35000/ license	
Maintenance cost (estimate)	 $ 7000 pa	 $ 9000 pa	
…

Table 43: Example of how comparative checklist can be used to evaluate new
technique for SDP

Attribute Existing Method New ML based technique
Predictive Accuracy	 Good	 Very Good	
Auto data acquisition	 Yes	 Yes	
Report generation	 Yes, word document	 Yes, web based	
Can handle multiple projects	 No	 Yes	
Generate causal maps	 No	 Yes	
Running time (typical project)	 15min	 30min	
Cost of license (tool)	 None	 $ 20000/ license	
Maintenance cost (estimate)	 $ 2000 pa	 $ 7000 pa	
…	

In such cases, the adoption framework can be used as a guide so that all important
factors and associated attributes are covered when considering adoption of new
techniques or tools or even as a checklist to make such assessment and comparison
between two or more techniques/tools using Likert-type scale for evaluation. To
provide an example, Table 42 shows a checklist to compare a ML based technique
against existing system for SDP and Table 43 show potential use of similar checklist
for comparison of two competing tools. Industrial practitioners can use such

Rakesh Rana

235

checklists to make informed decision with regard to adoption of these techniques
and for effective comparison between tools.

The technology adoption framework also help companies to reflect upon their
strengths with respect to given technology and areas of potential improvement. Such
analysis is useful to identify areas where training and competence build-up would be
advantageous. For example in SDP, if a company identifies that the in-house
competence for implementing and maintaining ML based system would benefit a
specific business unit within the organization, necessary training and or recruitment
targeting those specific skills could be quickly arranged, thus improvising the long
term competitiveness of the company.

7.6.3 Improvising the tool and services by vendors
Technology adoption framework is also useful for tool vendors who can use the
information in multiple ways, to:

 Prioritize feature introduction, and
 Effective marketing of their tools and services

Tools based on emerging technologies/techniques usually provide new functionality
not available in old well established tools, but at the same time they are not mature
and need to constantly evolve to engage and acquire new customers. Understanding
clearly which attributes are key for adoption decision help these tool vendors to
prioritize the features they implement and deliver to their customers. For example, a
vendor with Tool X for SDP which at a given time do not outperform existing tools
on predictive accuracy; finds out that running and maintenance costs are important
attributes in adoption decisions - may use this information to strategically decide to
develop a light version of tool which demands low running and maintenance costs.

Understanding of which attributes play a key role in adoption decisions also help
tool and service vendors to make their marketing more effective. Vendors may
choose to highlight how they provide value to their customers on the key attributes
industry is looking for when considering adopting a new technology based product
or services. This accelerates the adoption and acceptance of new techniques within
the industry.

7.7 Conclusions and future work
Large and constantly growing amount of data is now available within organizations
that can be used for gaining useful insights to improvise process, products and
services. Machine learning techniques have high potential to aid companies in this
purpose. Despite demonstration of usefulness of such techniques in academia and

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

236

availability of tools, the adoption of these techniques in industry currently is far
from optimal. Our position in this paper has been that for accelerating the adoption
of ML based techniques in industry, we need to enhance our understanding of
information needs of industry in this respect. Technology acceptance model offer
cost effective approach to meet this purpose.

In this paper we developed a framework for the adoption of ML techniques in
industry. The framework is developed with its basis on previous research on
technology adoption and technology acceptance models. We also adapted the
framework to the specific problem of software defect predictions and highlighted
that while adoption decisions are multi-dimensional, current research studies have
mainly focused on few of these attributes. We contend that elevating our
understanding of factors and attributes relevant for industrial practitioners will help
companies, researchers and tool vendors to meet the specific information needs.

In future work we plan to quantitatively evaluate the effect size of important
attributes towards ML adoption decision using large scale survey of companies that
have already adopted ML techniques and ones that are yet to embrace them.
Research with regard to which factors are important for industry and evaluative
studies of ML based techniques/tools on these factors can complement the existing
and on-going work on establishing the characteristics of ML techniques and thus
contribute toward their adoption in industry and society.

Rakesh Rana

237

THE ADOPTION OF MACHINE LEARNING
TECHNIQUES FOR SOFTWARE DEFECT
PREDICTION: AN INITIAL INDUSTRIAL
VALIDATION

Abstract— Existing methods for predicting reliability of software are static and need
manual maintenance to adjust to the evolving data sets in software organizations.
Machine learning has a potential to address the problem of manual maintenance but
can also require changes in how companies works with defect prediction. In this
paper we address the problem of identifying what the benefits of machine learning
are compared to existing methods and which barriers exist for adopting them in
practice.

Our methods consist of literature studies and a case study at two companies –
Ericsson and Volvo Car Group. By studying literature we develop a framework for
adopting machine learning and using case studies we evaluate this framework
through a series of four interviews with experts working with predictions at both
companies - line manager, quality manager and measurement team leader.

The findings of our research show that the most important perceived benefits of
adopting machine learning algorithms for defect prediction are accuracy of
predictions and ability to generate new insights from data. The two most important
perceived barriers in this context are inability to recognize new patterns and low
generalizability of the machine learning algorithms.

We conclude that in order to support companies in making an informed decision to
adopt machine learning techniques for software defect predictions we need to go
beyond accuracy and also evaluate factors such as costs, generalizability and
competence.

Keywords— Machine Learning, software defect prediction, technology acceptance,
adoption, software quality

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

238

7.8 Introduction
Modelling software reliability and predicting defect prone files/modules have been a
practical challenge for software project and quality managers [20]. A number of
methods are available to address the challenge of Software Defect Predictions (SDP)
– ranging from mathematical reliability growth modelling [65], regression based
models [172], analogy based predictions [16] and expert opinions [221]. The main
limitation of these methods is the fact that they are based on existing patterns (or
trends) in defect inflows or software metrics and thus are not robust to changes in
these patterns. Recently data mining and Machine Learning (ML) techniques have
been applied in this domain with acclaimed success [21], which can address the
robustness limitations. Given easy access to growing amount of data and nature of
software engineering problems, the use of ML in this area is expected to grow too
[211].

While a number of companies have tested or started using these methods/tools
[222], the methods are still used in a limited manner - which indicates that there are
number of barriers preventing companies from adopting them in practice. A number
of studies have evaluated different machine learning techniques for the purpose of
software defect predictions [21] [32] [31], but they focus mainly on predictive
accuracy of these methods while disregarding the ease of introduction or ability to
evolve together with the data sets. On the other hand, when companies consider
adopting new methods/techniques, they are also concerned with a range of other
factors that are currently not adequately addressed. In this paper we investigate
which of these factors are important for companies when they consider using
machine learning for software defect predications. The research question we address
is:

What are the factors that are important for companies to make informed decision to
adopt (or not adopt) ML algorithms for the purpose of software defect predictions
(SDP)?

Based on review of technology adoption/acceptance and machine learning literature,
we developed a framework and outlined factors that potentially affect the adoption
of ML in industry in our earlier work [223]. In this paper we present the initial
validation of same from the perspective of its users i.e. the industry. The main
objective is to provide insights of which factors companies regard as being
important to them when they consider adoption of ML techniques in this context and
what their main concerns are. These insights are useful for multitude of players in
this domain from researchers to tool venders and the companies themselves who can
use this explicit knowledge to make better decisions using a structured
framework/approach.

Rakesh Rana

239

The remainder of this paper is organized as follows. In following section 7.9 we
summarize briefly the related work. Section 7.10 introduces the study design, case
study context, data and analysis methods. The ML adoption framework with
important factors is provided in section 7.11, while section 7.12 provides the results
from the case study. The paper ends with conclusions and ideas for future work
discussed in section 7.13.

7.9 Related Work
ML has already been applied for predicting defects or defect proneness using code
and change metrics and achieved good accuracy. Using code metrics data of projects
from NASA IV&V facility Metrics Data Program (MDP), Menzies et al. [31] model
based on naïve Bayes predicted with accuracy of 71% (pd, probability of detection)
and probability of false alarm (pf) of 25%. Iker Gondra [32] also using NASA
project data set (JM1) and obtained correct classifications of 72.6% with ANNs and
87.4% with SVMs. Using data from 31 projects form industry and using BNNs
Fenton et al. [21] obtained an R2 of 0.93 between predicted and actual number of
defects. In [208] Menzies et al. tested different feature subset selection and report
that software defect detection using machine learning approach is not too difficult in
practice. As it can be observed from above cited studies - most compare and report
performance with respect to predictive accuracy of different ML based algorithms,
but performance evaluation on other dimensions either is limited or simply do not
exist.

On the other hand studies within the area of technology adoption/acceptance have
shown that adoption of complex technologies depend on multitude of factors [216]
[224]. Building on the Theory of Reasoned Action (TRA) [213], Davis [41]
developed the Technology Acceptance Model (TAM) to explain user acceptance of
computer-based information systems. TAM has been applied and extended in
number of previous studies for example to explain the adoption/acceptance of
computer based technologies such as object oriented development processes by
individual software developers [225], to explain the gender differences in perception
of email usage [226] and predicting use of web-based information systems [227].
Wallace and Sheetz [224] used TAM in their attempt to provide a theoretical
foundation for explaining and predicting the adoption of software measures. Chau
and Tam [216] applied Tornatzky et al. [42] adoption framework, to explain factors
affecting adoption of open systems in organizational computing, they found that
organizations tend to focus more on their ability of adoption than on the benefits
from adoption. Further the authors show that organizations take a reactive approach
towards adoption of opens systems rather than a proactive attitude which have
strong managerial implications.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

240

We adapt and customize the TAM and Tornatzky et al. adoption framework [42] to
explain which factors are relevant for explaining the adoption (or non-adoption) of
machine learning techniques for software defect predictions [223]. In this paper we
provide the perception of industry to these factors – which factors and their sub-
dimensions (or attributes) are deemed important by the industry. The perception of
industrial practitioners in this context is important as it provides useful insights on
what is desired from these techniques. The framework and understanding of level of
importance of attributes also help to set the direction for future research where
different ML techniques can be compared on these attributes, which accelerates the
technology transfer and its adoption.

7.10 Study Design
The overview of the research process employed in this study to capture the factors
important for acceptance/adoption of machine learning in industry is presented in
Figure 79.

Figure 79: Research process overview

The main steps in the process were:

 Existing research literature on machine learning and technology
acceptance/adoption was explored for list of important benefits and
challenges in applying ML in industry.

 The information was used to drive discussions with the industrial
practitioners and a framework for ML adoption in industry (for
software defect prediction) was developed [223].

 Attributes are mapped for each factor within this framework.
 Industrial practitioners validate the framework and mark the level

of importance of each attribute in relation to making adoption
decisions.

Rakesh Rana

241

7.10.1 Case Study Context
Following the taxonomy and guidelines for conducting and reporting case studies in
software engineering by Runeson and Höst [52], we conducted an exploratory case
study using flexible design principle. We studied two large companies from widely
different industrial domains (Automotive and Telecom) with significant focus on
development of embedded software. Given the differences in domain, the study is
designed as an embedded case study with two units of analysis (each company);
Figure 80 and Table 44 present an overview of the case study design and summary
of case units.

Figure 80: Case study design overview

Two companies were selected that come from two different domains:

 Volvo Car Group (VCG), A company from the automotive domain
 Ericsson, A company from the telecom domain

The divisions we interacted with have one thing in common, they have not yet
adopted machine learning as their main method/technique for predicting software
defects, but they are considering evaluating it as a possible technique to compliment
the current measurement/prediction systems in place. Since the objective of this
paper is to present the factors affecting the adoption of machine learning in industry
for software defect prediction, the subjects selected are considered appropriate for
the purpose.

Table 44: Overview of case units

Unit of analysis
(Domain)

Software
development
process

Current methods for SDP
Current state of
adoption of ML for
SDP

VCG
(Automotive)

V-shaped software
development

Focus on status visualization and
analogy based prediction

Considering evaluation

Ericsson
(Telecom)

Lean and Agile
development

Various modes of presenting
current status and predictions
methods

Considering evaluation

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

242

7.10.2 Data collection and analysis methods
The main source of data for the case study is obtained through semi-structured
interviews, which is a more open method compared to structured interviews – this
allows for adaptation of questions to given context and exploration of new ideas
during the interview. Data collected through interviews is a form of first degree
methods [52], that are although expensive to collect but offer larger control. Since
the objective for this research is to explore, identify and validate factors affecting
adoption of ML in industry, direct methods in form of interviews was assessed as
appropriate.

Stronger conclusions can be drawn by using triangulation i.e. using data from
several sources [52], therefore we complement the information obtained through
interviews with document analysis from these companies. The archival documents
analysed related to the information needs within the organization with respect to
software defects and information demanded by various stakeholders within the
organization.

Semi-structured interviews were conducted with managers responsible for providing
software defects related information to different stakeholders within the
organizations, these interviews were also complemented by interviews with
managers responsible for quality. This setting provides us with both - the
perspectives of practitioners responsible for delivering the information (roles
responsible for applying/implementing ML techniques for software defect
predictions) and the end users of this information who use it at various levels for
decision support. The interviewees included:

 Manager at Volvo Cars Group within the department responsible
for integrating software sourced from different teams and suppliers,
the manager has more than 20 years of experience working with
software development and testing. As ensuring safety and quality is
a major responsibility in this role we refer to this manager by
(VCG, QM).

 Team leader responsible for collection, analysis and reporting of
project status with regard to software defects and their predictions
(VCG, MetricsTL), the team leader has more than three decades of
experience in various roles at the company.

 A senior quality manger whose experience with software (mainly
within quality assurance) spans more than three decades (Ericsson,
QM), and

 Team leader of metrics team at Ericsson; metrics team is the unit at
Ericsson that provide the measurement systems within the
organization (Ericsson, MetricsTL).

Rakesh Rana

243

7.11 Factors affecting adoption of ML techniques
in industry

The framework for adoption of ML in industry with how each factor is likely to
affect the probability of this adoption is represented in Figure 81. In the figure (+/-)
indicates the possibility (hypothesis) of existence of positive/negative relationship
with medium strength between a given factor and probability of adoption of ML in
industry; a double (++/--) indicate a strong relationship.

Figure 81: A framework for ML adoption in Industry

7.11.1 Organizational and ML characteristics
The factors of ML adoption framework are further broken down to sub-dimensions
(or attributes) which represents the tangible measures the industrial practitioners can
use to comment on their level of importance. The attributes for ML and
organizational characteristics are shown in Figure 82.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

244

Figure 82: Overview of attributes which relate to acceptance of ML for defect prediction

7.11.2 Operationalization of factors
Factors were operationalized by asking interviewees to give the level of importance
to each attributes on a five-point Likert-type scale. The levels that could be selected
were:

 Very Low (VL)
 Low (L)
 Medium (M)
 High (H)
 Very High (VH)

The levels of scale reflect the degree of importance that an attribute has for
adoption/acceptance of ML techniques for software defect predictions. The levels
are used in different contexts; Table 45 summarizes the definitions used for each
level.

Rakesh Rana

245

Table 45: Defining the levels for different contexts

Level
Need and importance
(Table 2)

Level of Satisfaction
(Table 3)

Level of importance
(Table 4)

Very Low (VL)
The information is not
needed.

Not satisfactory,
improvement is needed.

The attribute is not needed
for analysis.

Low (L)
The information is
desired, but not
considered important.

Not satisfactory,
improvement is desired.

The attribute can be
considered but not
required.

Medium (M)
The information is desired
and is considered of value
(if available).

Satisfactory, but could be
improved.

The attribute is useful for
making the analysis.

High (H)
The information is
deemed as needed and is
considered important.

Satisfaction is high.
The information on given
attribute is needed for
making the analysis.

Very High (VH)
The information is a must
and should be provided
with high accuracy.

Satisfaction is very high,
with low scope for further
improvement.

Cannot make a decision
without information about
this attribute.

7.12 Findings

7.12.1 Information need and its importance for SDP
When it comes to defect management in software development, mature
organizations collect and monitor wide range of defect related metrics. There is also
need for various types of predictions to manage defects (and software quality)
effectively and efficiently. The interviewees from two case units were asked to
indicate the importance of different information needs.

Table 46: Examples of information need and its importance in industry

Prediction Needs w.r.t software defects
VCG
(QM)

VCG
MetricsTL

Ericsson
(QM)

Ericsson
MetricsTL

Classification of defect prone files/modules L H VH VH
Expected number of defects in SW components H H L VH
Expected defect inflow for a project/release H H L VH
Release readiness/expected latent defects H VH H VH
Severity classification of defects VH M H H

Table 46 shows that different organizations information needs can be different –
among others this is dependent on factors such as how the software is developed,
tested and verified within an organization. At VCG similar to most OEMs (Original
Equipment Manufacturers) in automotive domain, Model Based Development
(MBD) is prevalent. Much of the software in this company is developed using

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

246

Simulink12 models where code is generally auto-generated from models or sub-
contracted to suppliers. In such environments classification of files/modules prone to
defects is not the top priority. While for Ericsson which has more code-centric
approach predicting defect prone files/modules holds very high importance.

Assessing release readiness is important (High) for both case units as is the case
with severity classification of defects. It is interesting to note differences in their
information need due to differences in their software testing and quality assessment
approach. While at Ericsson finding smaller set of files/modules more prone to
defects helps testing and quality teams to focus the limited resources to achieve high
quality, at VCG knowing number of expected defects in a software component or
expected defect inflow at a given point in time is more useful to mobilize their
testing efforts to meet high quality demands.

7.12.2 Current status of each case unit
The same scale (five-point Likert-type) was used to indicate the level of satisfaction
with current defect management/prediction systems, familiarity and in-house
competence of ML techniques. The results are summarised in Table 47.

Table 47: Current status of each case unit

Factors
VCG
(QM)

VCG
MetricsTL

Ericsson
(QM)

Ericsson
MetricsTL

Satisfaction with existing systems
Status information H H H H
Trend visualization H M M H
Predictions accuracy M M L H
Cost (current costs are low) VH VH - VH
Reliability VH H VH M

Familiarity and competence with ML techniques
ML tried in previous project L L - M
Understanding of the technology L L - M
Ability to implement algorithms in-house VL M - M
Academic collaboration M H - M
Ability to interpret the results H H - M
Ability to assess quality of results H M - M

*In the fields marked (-), The Quality Manager interviewed at Ericsson was unable to
provide assessment with high confidence, thus they are left out from analysis.

12
 Simulink® is a block diagram environment for multidomain simulation and Model‐Based Design. Matlab and

Simulink are products and registered trademark of The MathWorks, Inc.

Rakesh Rana

247

It is observed (from Table 47) that for companies currently not using ML for
software defect prediction, satisfaction with existing defect monitoring and
prediction systems is high, while the need to enhance the in-house competence in
ML techniques is recognised.

Satisfaction with existing systems

 Stakeholders such as quality managers within these companies are
satisfied to a high degree with how the defect related information is
presented and trend visualized using existing systems.

 The accuracy of predictions is realized to be satisfactory, while it is
considered improvements can be made.

 Cost is an important factor when choosing the prediction method -
“Cost of obtaining results is very important factor and the current
systems we use are very cheap to run and maintain” – QM at
VCG.

Since the existing systems have been in place for at least two years in each case, the
running costs are very low and operational reliability very high.

Familiarity and competence with ML techniques

 It is recognised that there is a need for training before ML
techniques can be used for software defect prediction. The
improvement potential has also been realised with respect to in-
house competence of implementing such algorithms.

 Participating companies in the study show medium to high
confidence with their ability to interpret the results from such
analysis which is related to the need for training (see point c)
above). This is due to fact that experts in these organizations have
deep understanding of their process, products and impact of
different factors on these gained through experience of multiple
projects over long periods of time.

7.12.3 Level of importance of factors
Table 48 presents the level of the importance of different attributes that affect the
adoption/acceptance of machine learning algorithms in industry.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

248

Table 48: Level of importance of attributes for the case units

Factors Level of importance

Attributes
VCG
(QM)

VCG
MetricsTL

Ericsson
(QM)

Ericsson
MetricsTL

Perceived Benefits
Accuracy in predicting H H VH VH
Automation of pattern discovery M H VH VH
Adaptability to different data sets M H VH VH
Ability to handle large data H H M VH
Ability to generate new insights H M H H

Perceived Barriers
Steep learning curve L VH VH VH
Inability to recognize new
patterns

VH M VH VH

High cost of mis-predicitons M M VL L
Low generalizability of
algorithms

H H H VH

Need for high coverage of
relevant attributes

M M L VH

Tool availability
Compatibility with existing
systems

M L H VH

Availability of open source tools L H M VH
Low cost of obtaining results VH H H M
Support/consulting services H M L VL

External factors
Adoption by other industries L L L M
Use by competitors H M L M

It is observed that while there are some variations depending on the case units,
attributes related to perceived benefits and barriers are considered highly important
for making adoption decisions. Attributes related to tool availability are deemed
important but not critical, while external factors had little influence on adoption
decisions of ML techniques in industry for SDP. Specifically,

Perceived Benefits

 Accuracy of predictions, automation, adaptability and ability to
handle large are generally regarded as high or very high
importance. Some interesting comments highlight these, “When it
comes to the benefits, accuracy and automation are the top
priorities for us” – MetricsTL at Ericsson.

 Using causal models such as Bayesian Networks that can provide
range of decision-support and risk assessment capabilities for
project managers [21] is perceived as an important benefit of ML
techniques application to SDP.

Rakesh Rana

249

Perceived Barriers

On the other hand uncertainty over if the ML based techniques can be effective for
detecting new patterns in the data and concerns over their generalizability are
barriers that are considered highly important for making adoption decisions.

 Technology/innovations that need high upfront investment in terms
of new knowledge acquisition can slow the adoption process. The
respondents in our study also considered this attribute as highly
important, except for the QM at VCG, according to him “Steep
learning curve is not a major problem if only few people (experts)
need to know it to generate the results as long as they are easy to
interpret by rest of the stakeholders” – QM at VCG.

 Mispredictions can be costly for an organization and usually
considered a barrier for prediction systems, but managers at both
case units emphasized that this is not a show stopper. “Since all
predictions generally go through number of experts if the
predictions are not close to reality they would not be accepted by
these experts.” – MetricsTL at VCG.

Tool availability

It was revealed that availability of tools is important for organizations, while if the
tools are open source or proprietary does not have same impact on the adoption of
new techniques.

 Information that is relevant to companies with respect to tools is the
cost of running it (in terms of resources) should be low; i.e. it
should be fairly easy to feed in the data and generate the results.

 Availability of support/consulting service for given tool is another
factor that depends on given company preferences, companies like
VCG in our case study, prefer to use a sub-supplier to provide
services which are new to the company and generally incorporate
them within in-house systems when confidence in their usability
and effectiveness is well established. “Even if open source tools are
available, we typically need a vendor in between to do tool
integration, manage upgrades and do maintenance work – we do
not have resources for that” – QM at VCG.

While at Ericsson, the departments which are supported by a specialized in-house
team to cater the need of measurement systems, for these departments in order to
achieve high transparency and provide greater flexibility prefer to develop in-house
measurement systems than relying on external vendors where possible.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

250

External factors

 When it comes to external factors, adoption of a new
method/techniques by industries outside of given industrial domain
have low impact, while the knowledge that similar techniques are
being used within the domain can highly motivate their evaluation
within a given company. “We are not afraid of trying new things
and being the first one, but if it is used in automotive sector and we
have not tried it surely helps the case” – QM at VCG.

 The perspective on some attributes within the company is also
dependent on the role. This is mainly due to the fact that some roles
(as quality manger) are consumers of the information/measurement
system, while in others (as a team leader of metrics team) the
responsibility is to supply this information (responsible for building
and maintaining the measurement/prediction systems).

 The difference can be large for some attributes, while QM is not
concerned with maintenance aspects, MetricsTL said with respect
to ML techniques for software defect predictions: “I am not
confident that maintenance cost is low with respect to competence
and technology we have today” – MetricsTL at Ericsson.

 Explaining it further MetricsTL highlighted “first developing a
prediction system is time consuming task and further if I have to
update it often then costs will be too high. Other thing is that we
change our technology (for e.g. tools) from time to time – so what
does that mean as a developer of ML based prediction system?”

7.12.4 Specific challenges in adopting ML
techniques in industry for SDP

Apart from common factors identified in previous section, in this section we present
the specific challenges that were raised during the interviews towards accepting the
ML techniques for software defect prediction.

Lack of information to make a strong business case: Does ML techniques save
company time or will they reduce risk? If so how much? These are some of the
important questions mangers need - to make a strong business case for motivating
the use of new techniques within their team and within the company.

“Time is a critical factor, especially in automotive domain where a new functionality
is promised to the market long before it is completely ready, then the clock is ticking
and the product development divisions are expected to deliver on time with superior
quality” – QM at VCG.

Rakesh Rana

251

If expected time savings or reduction in risk could be quantified for a given
company, their decision on adoption becomes much easier.

Uncertainty on applicability of ML when access to source code is not available:
In cases where software is purchased from suppliers, the access to code and change
metrics may not be available. It is unclear if ML based algorithms can still be useful
and effective for SDP.

How to adapt ML techniques for model driven development: Model driven
development is predominant in many industries such as aerospace and automotive
domain model. The question that is yet unanswered for these organizations is if ML
based prediction systems can be effectively applied for their specific context.

Some of the important questions are - can we adapt ML based techniques to analyse
models (e.g. UML, Simulink etc.) for the purpose of defects or quality predictions?
Or can the metrics obtained from code (which is usually auto-generated from these
models) be appropriate for SDP using current ML based approaches?

How to effectively use text base artefacts for SDP: While most ML based
techniques for SDP use quantitative data, some of the major software artefacts such
as requirements and defect reports are largely text based. The ability of ML based
methods to reliably handle textual data will boost confidence of industry in these
methods, Menzies and Marcus [228] work is a good example of type of work these
companies want to see more.

Uncertainty over where ML fits in context of compliance to standards:
Industrial domains with safety critical software usually follow stringent safety
standards. For example in automotive domain, ISO 26262 is the new functional
safety standard which recommends using formal methods for software verification
and validation for high safety critical applications. How does ML based software
prediction techniques fit in this framework and how can they contribute towards
ensuring compliance to such standards is another area currently not well understood
but important for organizations in such domain.

7.12.5 Validity
Threats to validity in this study are addressed in manner as described by Wohlin et
al. [50]. There exists threat to internal validity to this study with respect to the
selection of case units – both case units have not adopted ML widely for software
defect predictions. For example it can be expected that there may be a difference
between the perceived benefits among companies that have adopted such techniques
and those that have not. In this study we only report how important these units feel

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

252

these attributes are for taking an adoption decision thus minimizing the mentioned
threat. This also aligns well with the objective of this study where our aim is to
explore and list the important factors and not what the case units in this study’s
assessment is about ML techniques and tools.

Threat to construct validity exists with respect to if or not all factors that are
important for making adoption decisions of ML in industry are taken into account.
We explored the factors and attributes closely with the companies involved in this
study. The attributes and model were again validated with the companies involved
which limit the possibility of miss-interpretation which minimizes the threat to
construct validity.

Incorrect conclusions about relationships can pose threat of conclusion validity. The
presented study is designed as an exploratory case study. We present the perception
of industry of which factors they deem as important with indications of possible
relationship to the adoption framework. The future study planned that quantitatively
assesses these relationships will have to seriously evaluate this threat to validity, but
for present study it does not pose a major threat.

Threat to external validity is a major threat to this study, since only two units within
two large software development organizations are used for validation, but numbers
of steps are taken to minimize this threat. Firstly the adoption framework is based on
wider technology adoption/acceptance literature, secondly the model is claimed to
be only initially validated with these case units, comprehensive validation and
quantitative assessment is planned as future work. Further using case units from
widely different industrial domain and using different job roles within the units and
two stage interviews help minimize the threat to external validity.

7.13 Conclusions and future work
In large software development organizations, a software defect prediction is
important for project and quality mangers to realise the goal of zero known defects
by the release date. Machine learning techniques offer an alternative to methods
based on statistical regression or expert opinions. ML based methods have been
compared to traditional methods for aspect such as predictive accuracy, but for
companies considering adoption of ML based techniques, a number of other factors
are also important.

In this paper we set out to investigate, What are the factors that are important for
companies to make informed decision to adopt (or not adopt) ML algorithms for the
purpose of software defect predictions (SDP)? We identified a total of nine

Rakesh Rana

253

important factors and 27 related attributes that affect the adoption of ML based
techniques for software defect predictions. The framework for adoption of ML for
SDP is validated using a series of interviews with experts on quality and team
leaders responsible for providing software defects related information at two large
software development organizations.

The results suggest that information needs can be different for different companies
based on their software development and testing process. The existing systems in
place for presenting and visualizing information related to software defects are
deemed satisfactory, they offer low running costs and high reliability. The need for
training to increase competence in ML techniques is also recognised in these
companies. The study further show that for adopting ML techniques, predictive
accuracy and ability to generate new insights from large data are most important
perceived benefits. At the same time low generalizability and steep learning curve
are perceived barriers that need to be overcome to gain higher adoption of ML in
industry. Availability of tools and support services can also accelerate the adoption
process in this respect.

Impact of understanding such factors is at multiple levels: for companies themselves
it explicitly lists the factors that are implicitly deemed important by them when they
make adoption decisions on ML based techniques/tools. Listing and visualizing
important attributes for such decisions also makes it easier for mangers to see the big
picture and objectively evaluate new ML based techniques and tools for their
usefulness and applicability for a given problem at a given point in time. The
adoption framework is also useful for companies that provide tools and services to
larger organizations developing software. With knowledge of important factors they
can customize their products (e.g. tools) and services offerings to closely fit the need
of these organizations.

In future work we plan to quantitatively evaluate the effect size of important
attributes towards ML adoption decision using large scale survey of companies that
have already adopted ML techniques and ones that are yet to embrace it. Research
with regard to which factors are important for industry and evaluative studies of ML
based techniques/tools on these factors can complement the existing and on-going
work on establishing the characteristics of ML techniques and thus contribute
toward their adoption in industry and society.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

254

Rakesh Rana

255

Chapter 8:
Summary of research results

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

256

Rakesh Rana

257

8 SUMMARY OF RESEARCH RESULTS

The main results provided in the thesis provide evidence of how software defect
prediction techniques can be used in the context of automotive software
development. This section presents the summary of results from individual studies
included in the thesis, while in next section (8.1) the conclusions drawn from the
combined results is provided, finally section 8.2 presents the areas for future
research.

Results from the overview study of software defect prediction techniques and the
automotive software life cycle
The first study presented in chapter 2 provided the overview of software
development life cycle at the level of full EE (Electronics & Electrical System)
platform projects. Three distinct phases of life cycle namely concept phase,
production software development and in-operations phase were identified and
iterative development in the production software discussed. In particular the study
resulted in:

a. Life cycle overview of full EE platform projects in automotive
domain.

b. Overview of different software defect prediction techniques
applicable in automotive domain with their mapping to when they
can be applied over the platform project timeline.

c. Classification of defect prediction techniques on basis of what
purpose they can be used for and at what granularity level they can
be applied.

d. A roadmap for using in-operations data for improving the
efficiency of defect prediction techniques.

The mapping to project timeline and classification based on the application purpose
and granularity help with selection of appropriate defect prediction technique. The
input data needed for each technique and their main advantages and limitations were
also highlighted to aid industrial practitioners with the selection. The roadmap
included in the study presents possible future scenario where easy retrieval of in-
operation data can be used to help calibrate software for optimal performance,
develop and adapt software features based on user interaction data.

Results from the evaluation of SRGMs in chapter 3
Chapter 3 was particularly aimed at evaluating SRGMs in the context of automotive
domain. A set of commonly used models were evaluated at a sub-system level and
also on multiple EE platform projects from the automotive domain. The models

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

258

were also evaluated on projects from other industrial domains from the embedded
domain that help enhance the external validity of the results. In summary the results
were:

a. Two of the commonly used parameter estimation techniques
namely maximum likelihood estimation (MLE) and non-linear
regression (NLR) were compared and evaluated for their statistical
properties and practicality for applying SRGMs to defect count
data.

b. A balanced metric for measuring asymptote prediction accuracy,
Balanced Predicted Relative Error (BPRE) was defined which is
symmetric for over and under predictions unlike more commonly
used Predicted Relative Error (PRE).

c. Evaluation of SRGMs on a project from one division at VCG (sub-
system level project) showed the ability of SRGMs to fit the defect
inflow data.

d. A set of SRGMs were evaluated on eleven large projects from three
different industrial domains (including four EE platform projects).

e. Models that performed best within the tested set for defect count
prediction and for assessment of release readiness were identified.
Overall it was observed that Logistic and Gompertz model
performed well compared to other tested models.

f. The results also suggested that given software development
process, the asymptote prediction accuracy could be significantly
improved by using growth rate from historical projects.

g. It was shown that using simple trend analysis the shape of defect
inflow profile for an on-going project could be predicted as early as
halfway through the project timeline. Predicting the probable shape
of defect inflow profile is useful in selecting the appropriate SRGM
for the given on-going project for making defect count predictions.

h. In another study included in this chapter, the defect inflow
distribution family was analysed where beta distribution family was
shown to fit best to the defect inflow from number of projects data
used in the study. Understanding distribution of historical and on-
going projects within an organization can help in choosing correct
statistical methods, easy visualization and simulation.

i. Knowing distribution of historical projects is also useful in
Bayesian analysis were the information is used for describing the
prior probabilities.

Overall in chapter 3 we evaluated SRGMs for their applicability for defect count
prediction and assessment of release readiness in the automotive domain and found

Rakesh Rana

259

that they provide a viable option for these analyses. Methods for selection of
appropriate SRGMs for an on-going project were also developed and evaluated.

Results from the study of consequence of mispredictions in chapter 4
In chapter 4 we continued with the theme of evaluating SRGMs, but in this chapter
we focused on the cost/consequences of mispredictions. Since risk of misprediction
is always present when making any forecasts, understanding the possible
consequences help practitioners to actively take them into account when they use
prediction models in practice. The results from the study suggested:

a. The two main possibilities of misprediction are (i) mispredicting
the expected defect count (the asymptote) - over or under predicting
it, and (ii) Mispredicting when the total expected defect count
would be reached (timing) - early or late predictions.

b. It was noted in the study that while theoretically the consequences
would be same for each scenario of misprediction, the
cost/consequences to a given organization depend on their domain,
process and organizational structure. The case study at two
companies (VCG and Ericsson) also summarized the possible
response action for such scenarios.

The research question addressed in this chapter provided the balanced view on using
defect count predictions and assessment of reliability analysis. While most
predictions and data driven analysis help industrial practitioners make informed
decisions, but predictions should be made and used with careful consideration of
possible risks which were explored in this study for case of using reliability models.

Results from the evaluation of correlation based SDP technique in automotive
domain
Having evaluated the applicability and possible risks of using SRGMs, in chapter 5
we evaluated correlation based defect prediction technique for its applicability in the
automotive domain. Since EE platform projects tend to be large and span long time
period, they are also organized into several iterations over which part of software is
designed, implemented and tested. The study results:

a. Supported earlier observations that small amount of software
modules (ECUs/features in our case) account for majority of defect
counts.

b. The correlation between number of defects found across integration
points is found to be moderately-to-very strongly, which may be
used for building not very accurate, but quick and easy prediction
rules.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

260

c. The pre-release defect count for software modules was strongly
correlated to defect count at integration point four/five which is
about midway through the project timeline.

d. It was also discussed how correlation based model can be used to
identify software modules that may need further review and/or
testing.

Correlation based prediction models can use historical projects data to provide
simple thumb rule based prediction models that are very easy to apply in practice
and are also very intuitive for various stakeholders involved.

Results from the reliability analysis using executable models
In the next study presented in chapter 6, behavioural models that are produced in a
Model Based Development (MBD) environment were proposed to be used for early
assessment of reliability characteristics. The main results of the study were:

a. A framework using fault injection and mutation based testing was
proposed for identification of design defects and defects that can
lead to possible safety case violations (according to the definition
of ISO 26262 functional safety standard).

b. Since the proposed assessment can be done early in the project life
cycle (using executable models), they can provide early feedback to
designers and caution testers by assessing the efficacy of test suite
intended to catch possible implementation defects.

c. The initial validation of framework on miniature cars provided
encouraging results.

Fault injection has been long used successfully for assessment of dependability
characteristics in the hardware domain, while mutation testing has been applied with
good results for traditional code. With executable models availability in the MBD,
the proposed framework can be used for early reliability assessment which can lead
to robust design and software with superior reliability properties.

Results from chapter 7
Finally we also looked at machine learning based techniques for software defect
prediction. While our research in earlier studies have raised questions on the
applicability of these techniques when access to source code and software evolution
data is not readily available. Still these techniques are useful within automotive
domain where software is developed full or part of software is developed in-house.
A number of earlier studies have presented the evaluation of these techniques with
promising results, but their adoption in industry is not so widespread. Thus we
focused our effort on understanding the factors that influence industrial

Rakesh Rana

261

practitioners’ decision to adopt or defer the decision of adopting such techniques.
The study resulted in:

a. A framework for adoption of machine learning based techniques in
industry which is based on the technology adoption and acceptance
models.

b. The framework was adapted for the specific case of software defect
prediction resulting in identification of nine main attributes and
number of sub-attributes for each main factor.

c. Guidelines for using framework for evaluating a new potential
machine learning based technique for adoption as well as using the
framework for comparative purposes between two techniques/tools
were provided.

d. The initial validation of framework at two partner companies (VCG
and Ericsson) highlighted several important factors that affect the
adoption decisions at industry.

Understanding of factors important in adoption decisions serves multiple purposes,
firstly it helps in identifying possible areas of research that can address information
gaps and thus accelerate the technology transfer process. Secondly it provides tool
developers and vendors to prioritize features according to the demands of their
intended users and finally it provides industrial practitioners with an objective
framework that can help them evaluate potential new techniques and/or alternative
tools for adoption.

8.1 Conclusions
We set out this project with the following main goal:

To evaluate how software defect prediction techniques can be effectively applied
over the software development life cycle within the automotive domain.

While software developed within automotive domain is highly diverse, we focused
mainly at the level of full EE (Electronics & Electrical system) platform projects. In
the thesis we started with reviewing the software development process, life cycle of
EE platform projects and commonly used software defect prediction techniques. The
review of development process and constraints specific to automotive domain limits
application of some of these techniques thus we placed special emphasis on
techniques that could be applied under given constraints. The series of studies
presented in the thesis resulted in evaluation of techniques for defect count
prediction and assessment of release readiness.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

262

The thesis shows that testing data driven models such as software reliability growth
models and correlation based predictions can be used for defect count predictions, it
was specifically shown that:

a. The shape of defect inflow profile can be predicted using simple
trend analysis about midway through the project timeline.

b. SRGMs can be used for defect count prediction and release
readiness assessment for large software development projects
(within embedded and specifically in automotive domain).

c. Using historical data, predicting shape of defect inflow profile and
analysis of defect distribution of historical projects can help with
selection of appropriate SRGMs.

d. Correlation based models can potentially be used for predicting
defect count in upcoming iteration and also predicting pre-release
defect count.

The applied aspect of applying these models in the context of automotive domain
such as parameter estimation method, selecting best performance model from set of
selected models and choosing an appropriate model for predictions were also
evaluated as part of the thesis. The evaluation was done to provide objective
assessment of these techniques to support decisions on optimal allocation of test
resource and with decisions related to release timing.

Moreover a framework combining fault injection with mutation based testing
approach applied at the executable behavioural models was proposed and validated.
The framework support early identification of design defects and identification of
possible implementation defects capable of violating safety goal requirements.
Testing behavioural models for possible design defects and testing efficacy of test
suite with mutation testing potentially provides a narrow feedback loop for designers
to improve and develop robust designs with superior reliability characteristics. By
evaluating the efficacy of test suite early, it is possible to avoid potential design and
implementation defects from slipping over.

Finally an adoption framework for machine learning based models for software
defect predictions was developed and validated. ML based techniques can support
parts of software development within automotive domain especially sections of
organizations with in-house software development. The adoption framework
highlighted important factors such as setup, running and maintenance costs.
Understanding of these factors and the adoption framework is useful for various
stakeholders including researchers evaluating such techniques, tool vendors and
organizations looking to adopt these techniques or tools based on them.

Rakesh Rana

263

Overall in the thesis we evaluated number of different software defect prediction
techniques that can be applied over software development life cycle in the
automotive domain. It was shown when they can be applied, for what purpose and at
what granularity level they can be applied. A set of these techniques were evaluated
for their performance for the objective of supporting optimal resource allocation
decisions and release readiness assessment. Using defect prediction techniques and
frameworks for early identification of design and possible implementation defects
can lead to better allocation of limited test resources and release of mature software
with superior reliability characteristics.

8.2 Future research
The research in this thesis opens several directions for further research, particularly
in collaboration with industry. The thesis provides a basis for evaluating
applicability of software defect predictions in the automotive domain for supporting
questions of high practical importance. A set of techniques were evaluated in this
thesis and new frameworks proposed and validated, nonetheless a number of open
questions and areas for further research are identified, these can be grouped into
separate, although not mutually exclusive categories.

8.2.1 A comprehensive comparison of different
software defect prediction techniques within
embedded domain using data from large set of
cross-company projects.

The main research direction stemming from the thesis is the comprehensive
comparison of different software defect prediction techniques within the embedded
software domain using large number of projects from representative sample of
companies from this domain. In particular, the ambitious research goal could be
achieved by studies focusing on:

a. Setup of open databases similar to Tukutuku [229] and Promise
repository [230] which is open for researchers, but also promote
commercial organizations to add anonymised project and defect
data, and

b. Using cross-company database for benchmarking and comparative
evaluation of different techniques.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

264

8.2.2 Defining and validating product metrics for
behavioural models in domain specific
languages.

Another research direction that can be pursued is the definition of important product
metrics for behavioural models in Domain Specific Languages (DSL) and their
validation. A number of industrial domains specifically within the embedded
software use various DSLs such as Matlab/Simulink for modelling purposes. Often
these models are executable and made at implementation level details (behavioural
models) which are used for generation of code that goes into the final systems.
While number of metrics have been defined and validated for sequential and object
oriented code to measure size, complexity, coupling etc., similar metrics are not yet
well defined and validated for behavioural models. Validated metrics for such
models will enable enhanced monitoring and control of software evolution
properties developed using DSLs. It will also pave the path for application of
regression and machine learning based defect prediction and classification
techniques that use product metrics and thus cannot be used in such cases.

8.2.3 Industrial validation and further exploration of
using fault injections and mutation based
approaches on behavioural models for
dependability evaluations.

The use of behavioural models is widespread in the automotive and many other
industrial domains such as aerospace. Also models are usually developed early in
the development lifecycle, thus increasing their use for verification and validation
can not only enhance the dependability characteristics of the software under
development, but also contribute towards shorter development cycle hence reducing
market lead time. Use of approaches such as fault injection and mutation testing and
frameworks based on them need to be validated on industrial scale projects and their
performance and possible contribution evaluated.

265

REFERENCES

[1] C. Ebert and C. Jones, “Embedded software: Facts, figures, and future,”
Computer, vol. 42, no. 4, pp. 42–52, 2009.

[2] E. L. Jones, “Integrating testing into the curriculum—arsenic in small doses,”
in ACM SIGCSE Bulletin, 2001, vol. 33, pp. 337–341.

[3] M. Broy, “Challenges in automotive software engineering,” in Proceedings of
the 28th international conference on Software engineering, 2006, pp. 33–42.

[4] S. Fürst, “Challenges in the design of automotive software,” in Proceedings of
the Conference on Design, Automation and Test in Europe, 2010, pp. 256–258.

[5] U. Eklund and H. akan Gustavsson, “Architecting automotive product lines:
Industrial practice,” Science of Computer Programming, vol. 78, no. 12, pp.
2347–2359, 2013.

[6] R. B. Grady, “Software failure analysis for high‐return process improvement
decisions,” Hewlett Packard Journal, vol. 47, pp. 15–24, 1996.

[7] C.‐Y. Huang, M. R. Lyu, and S.‐Y. Kuo, “A unified scheme of some
nonhomogenous poisson process models for software reliability estimation,”
IEEE Transactions on Software Engineering, vol. 29, no. 3, pp. 261–269, 2003.

[8] M. McDonald, R. Musson, and R. Smith, The practical guide to defect
prevention. Microsoft Press, 2007.

[9] 1044‐2009‐IEEE Standard Classification for Software Anomalies. 2010.
[10] N. Melleg\a ard, Improving Defect Management in Automotive Software

Development, LiDeC—A Light‐weight Defect Classification Scheme. Chalmers
University of Technology, 2013.

[11] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus, B. K. Ray,
and M.‐Y. Wong, “Orthogonal defect classification‐a concept for in‐process
measurements,” Software Engineering, IEEE Transactions on, vol. 18, no. 11,
pp. 943–956, 1992.

[12] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
Classification Models for Software Defect Prediction: A Proposed Framework
and Novel Findings,” IEEE Transactions on Software Engineering, vol. 34, no.
4, pp. 485–496, 2008.

[13] A. Wood, “Predicting software reliability,” Computer, vol. 29, no. 11, pp. 69–
77, 1996.

[14] V. Almering, M. van Genuchten, G. Cloudt, and P. J. Sonnemans, “Using
software reliability growth models in practice,” IEEE Software, vol. 24, no. 6,
pp. 82–88, 2007.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

266

[15] M. Staron and W. Meding, “Predicting weekly defect inflow in large software
projects based on project planning and test status,” Information and Software
Technology, vol. 50, no. 7, pp. 782–796, 2008.

[16] M. Staron, W. Meding, and B. Söderqvist, “A method for forecasting defect
backlog in large streamline software development projects and its industrial
evaluation,” Information and Software Technology, vol. 52, no. 10, pp. 1069–
1079, 2010.

[17] B. Clark and D. Zubrow, “How good is the software: a review of defect
prediction techniques,” sponsored by the US department of Defense, 2001.

[18] S. McConnell, “Gauging software readiness with defect tracking,” Software,
IEEE, vol. 14, no. 3, pp. 136–135, 1997.

[19] L. C. Briand, K. El Emam, B. G. Freimut, and O. Laitenberger, “A
comprehensive evaluation of capture‐recapture models for estimating
software defect content,” Software Engineering, IEEE Transactions on, vol. 26,
no. 6, pp. 518–540, 2000.

[20] N. E. Fenton and M. Neil, “A critique of software defect prediction models,”
IEEE Transactions on Software Engineering, vol. 25, no. 5, pp. 675–689, 1999.

[21] N. Fenton, M. Neil, W. Marsh, P. Hearty, Ł. Radliński, and P. Krause, “On the
effectiveness of early life cycle defect prediction with Bayesian Nets,” Empir
Software Eng, vol. 13, no. 5, pp. 499–537, Oct. 2008.

[22] A. Mockus, “Analogy based prediction of work item flow in software projects:
a case study,” in 2003 International Symposium on Empirical Software
Engineering, 2003. ISESE 2003. Proceedings, 2003, pp. 110–119.

[23] T. M. Khoshgoftaar, J. C. Munson, and D. L. Lanning, “A comparative study of
predictive models for program changes during system testing and
maintenance,” in Software Maintenance, 1993. CSM‐93, Proceedings.,
Conference on, 1993, pp. 72–79.

[24] T. M. Khoshgoftaar, J. C. Munson, B. B. Bhattacharya, and G. D. Richardson,
“Predictive modeling techniques of software quality from software
measures,” Software Engineering, IEEE Transactions on, vol. 18, no. 11, pp.
979–987, 1992.

[25] S. Chulani and B. Boehm, “Modeling Software Defect Introduction and
Removal,” 1999.

[26] B. W. Boehm, Software engineering economics. 1981. Prentice‐Hall.
[27] C. Jones, “Programming defect removal,” Proceedings, GUIDE, vol. 40, 1975.

267

[28] T.‐J. Yu, V. Y. Shen, and H. E. Dunsmore, “An analysis of several software
defect models,” Software Engineering, IEEE Transactions on, vol. 14, no. 9, pp.
1261–1270, 1988.

[29] T. M. Khoshgoftaar and E. B. Allen, “Logistic regression modeling of software
quality,” International Journal of Reliability, Quality and Safety Engineering,
vol. 6, no. 04, pp. 303–317, 1999.

[30] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for eclipse,” in
Predictor Models in Software Engineering, 2007. PROMISE’07: ICSE
Workshops 2007. International Workshop on, 2007, pp. 9–9.

[31] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code attributes to
learn defect predictors,” IEEE Transactions on Software Engineering, vol. 33,
no. 1, pp. 2–13, 2007.

[32] I. Gondra, “Applying machine learning to software fault‐proneness
prediction,” Journal of Systems and Software, vol. 81, no. 2, pp. 186–195, Feb.
2008.

[33] M. Broy, I. H. Kruger, A. Pretschner, and C. Salzmann, “Engineering
automotive software,” Proceedings of the IEEE, vol. 95, no. 2, pp. 356–373,
2007.

[34] W. Dieterle, “Mechatronic systems: Automotive applications and modern
design methodologies,” Annual Reviews in Control, vol. 29, no. 2, pp. 273–
277, 2005.

[35] ISO, “International Standard‐ISO 26262‐Road vehicles‐Functional safety.”
International Organization for Standardization, 2011.

[36] B. Kitchenham, S. Linkman, and D. Law, “DESMET: a methodology for
evaluating software engineering methods and tools,” Computing & Control
Engineering Journal, vol. 8, no. 3, pp. 120–126, 1997.

[37] B. A. Kitchenham, “Evaluating software engineering methods and tool part 1:
The evaluation context and evaluation methods,” ACM SIGSOFT Software
Engineering Notes, vol. 21, no. 1, pp. 11–14, 1996.

[38] D. Goldsman, B. L. Nelson, and B. Schmeiser, “Methods for selecting the best
system,” in Proceedings of the 23rd conference on Winter simulation, 1991,
pp. 177–186.

[39] T. Dyba, B. A. Kitchenham, and M. Jorgensen, “Evidence‐based software
engineering for practitioners,” Software, IEEE, vol. 22, no. 1, pp. 58–65, 2005.

[40] S. L. Pfleeger, “Understanding and improving technology transfer in software
engineering,” Journal of Systems and Software, vol. 47, no. 2–3, pp. 111–124,
Jul. 1999.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

268

[41] F. D. Davis Jr, “A technology acceptance model for empirically testing new
end‐user information systems: Theory and results,” Massachusetts Institute
of Technology, 1986.

[42] L. G. Tornatzky, M. Fleischer, and A. K. Chakrabarti, “Processes of
technological innovation,” 1990.

[43] T. Gorschek, C. Wohlin, P. Carre, and S. Larsson, “A Model for Technology
Transfer in Practice,” IEEE Software, vol. 23, no. 6, pp. 88–95, Nov. 2006.

[44] W. R. Adrion, “Research methodology in software engineering,” in Summary
of the Dagstuhl Workshop on Future Directions in Software Engineering” Ed.
Tichy, Habermann, and Prechelt, ACM Software Engineering Notes, SIGSoft,
1993, vol. 18, pp. 36–37.

[45] R. L. Glass, “The software‐research crisis,” Software, IEEE, vol. 11, no. 6, pp.
42–47, 1994.

[46] V. R. Basili, “The experimental paradigm in software engineering,” in
Experimental Software Engineering Issues: Critical Assessment and Future
Directions, Springer, 1993, pp. 1–12.

[47] R. L. Glass, I. Vessey, and V. Ramesh, “Research in software engineering: an
analysis of the literature,” Information and Software technology, vol. 44, no.
8, pp. 491–506, 2002.

[48] C. R. Kothari, Research Methodology: Methods and Techniques. New Age
International, 2011.

[49] M. Aliaga and B. Gunderson, Interactive statistics. Prentice Hall, 1999.
[50] C., Runeson,Per, Höst,Martin, Ohlsson,Magnus C Wohlin and B.,

Wesslén,Anders Regnell, Experimentation in Software Engineering. New York:
Springer, 2012.

[51] R. K. Yin, Case study research: Design and methods, vol. 5. Sage, 2009.
[52] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study

research in software engineering,” Empirical Software Engineering, vol. 14,
no. 2, pp. 131–164, 2009.

[53] V. R. Basili, G. Caldiera, and H. D. Rombach, “Experience factory,”
Encyclopedia of software engineering, 1994.

[54] R. N. Charette, “This car runs on code,” IEEE Spectrum, vol. 46, no. 3, p. 3,
2009.

[55] B. W. Boehm, “A spiral model of software development and enhancement,”
Computer, vol. 21, no. 5, pp. 61–72, 1988.

[56] R. Rana, M. Staron, N. Melleg\aard, C. Berger, J. Hansson, M. Nilsson, and F.
Törner, “Evaluation of Standard Reliability Growth Models in the Context of

269

Automotive Software Systems,” in Product‐Focused Software Process
Improvement, Springer, 2013, pp. 324–329.

[57] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Törner,
“Evaluating long‐term predictive power of standard reliability growth models
on automotive systems,” presented at the 24th annual International
Symposium on Software Reliability Engineering (ISSRE 2013), Pasadena, CA,
USA, 2013.

[58] E. Ceylan, F. O. Kutlubay, and A. B. Bener, “Software defect identification
using machine learning techniques,” in 32nd EUROMICRO Conference on
Software Engineering and Advanced Applications, SEAA’06., 2006, pp. 240–
247.

[59] R. Kitchin and M. Dodge, Code/space: Software and everyday life. The MIT
Press, 2011.

[60] K. S. Lew, T. S. Dillon, and K. E. Forward, “Software complexity and its impact
on software reliability,” IEEE Transactions on Software Engineering, vol. 14,
no. 11, pp. 1645–1655, 1988.

[61] M. Camuffo, M. Maiocchi, and M. Morselli, “Automatic software test
generation,” Information and Software Technology, vol. 32, no. 5, pp. 337–
346, 1990.

[62] C.‐T. Lin and C.‐Y. Huang, “Enhancing and measuring the predictive
capabilities of testing‐effort dependent software reliability models,” Journal
of Systems and Software, vol. 81, no. 6, pp. 1025–1038, 2008.

[63] T. Goradia, “Dynamic impact analysis: A cost‐effective technique to enforce
error‐propagation,” ACM SIGSOFT Software Engineering Notes, vol. 18, no. 3,
pp. 171–181, 1993.

[64] M. Xie, “Software Reliability Models ‐ Past, Present and Future,” in Recent
Advances in Reliability Theory, N. Limnios and M. Nikulin, Eds. Birkhäuser
Boston, 2000, pp. 325–340.

[65] M. R. Lyu, Handbook of software reliability engineering, vol. 3. IEEE Computer
Society Press CA, 1996.

[66] H. Pham, “Software reliability and cost models: Perspectives, comparison, and
practice,” European Journal of Operational Research, vol. 149, no. 3, pp. 475–
489, 2003.

[67] X. Zhang, X. Teng, and H. Pham, “Considering fault removal efficiency in
software reliability assessment,” IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans, vol. 33, no. 1, pp. 114–120, 2003.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

270

[68] M. R. Lyu, “Software reliability engineering: A roadmap,” in Future of
Software Engineering, 2007. FOSE’07, 2007, pp. 153–170.

[69] S. H. Kan and others, Metrics and Models in Software Quality Engineering,
2/e. Pearson Education India, 2003.

[70] P. Kapur, H. Pham, S. Anand, and K. Yadav, “A unified approach for developing
software reliability growth models in the presence of imperfect debugging
and error generation,” IEEE Transactions on Reliability, vol. 60, no. 1, pp. 331–
340, 2011.

[71] A. L. Goel, “Software reliability models: Assumptions, limitations, and
applicability,” IEEE Transactions on Software Engineering, no. 12, pp. 1411–
1423, 1985.

[72] J. D. Musa, A. Iannino, and K. Okumoto, Software reliability. McGraw‐Hill New
York, 1987.

[73] K. Sharma, R. Garg, C. K. Nagpal, and R. K. Garg, “Selection of Optimal
Software Reliability Growth Models Using a Distance Based Approach,” IEEE
Transactions on Reliability, vol. 59, no. 2, pp. 266–276, 2010.

[74] C. Stringfellow and A. A. Andrews, “An empirical method for selecting
software reliability growth models,” Empirical Software Engineering, vol. 7,
no. 4, pp. 319–343, 2002.

[75] T. M. Khoshgoftaar and T. G. Woodcock, “Software reliability model selection:
a cast study,” in Proceedings of International Symposium on Software
Reliability Engineering, 1991., 1991, pp. 183–191.

[76] N. Ullah, M. Morisio, and A. Vetro, “A Comparative Analysis of Software
Reliability Growth Models using Defects Data of Closed and Open Source
Software,” in 35th Annual IEEE Software Engineering Workshop (SEW), 2012,
pp. 187–192.

[77] R. Rana, M. Staron, N. Mellegård, C. Berger, J. Hansson, M. Nilsson, and F.
Törner, “Evaluation of standard reliability growth models in the context of
automotive software systems,” in Product‐Focused Software Process
Improvement, Springer, 2013, pp. 324–329.

[78] IEEE Reliability Society, “IEEE Recommended Practice on Software Reliability.”
The Institute of Electrical and Electronics Engineers, Inc, 2008.

[79] A. L. Goel and K. Okumoto, “Time‐dependent error‐detection rate model for
software reliability and other performance measures,” IEEE Transactions on
Reliability, vol. 28, no. 3, pp. 206–211, 1979.

271

[80] S. Yamada, M. Ohba, and S. Osaki, “S‐shaped reliability growth modeling for
software error detection,” IEEE Transactions on Reliability, vol. 32, no. 5, pp.
475–484, 1983.

[81] D. C. Boes, F. A. Graybill, and A. M. Mood, “Introduction to the Theory of
Statistics,” Series in probabili, 1974.

[82] P. H. A. Meyfroyt, “Parameter Estimation for Software Reliability Models,”
2012.

[83] A. Henningsen and O. Toomet, “maxLik: A package for maximum likelihood
estimation in R,” Computational Statistics, vol. 26, no. 3, pp. 443–458, 2011.

[84] S. S. Gokhale and K. S. Trivedi, “Log‐logistic software reliability growth
model,” in Proceedings of Third IEEE International High‐Assurance Systems
Engineering Symposium, 1998., 1998, pp. 34–41.

[85] Y. Miyazaki, A. Takanou, H. Nozaki, N. Nakagawa, and K. Okada, “Method to
estimate parameter values in software prediction models,” Information and
Software Technology, vol. 33, no. 3, pp. 239–243, Apr. 1991.

[86] S. Hwang and H. Pham, “Quasi‐renewal time‐delay fault‐removal
consideration in software reliability modeling,” IEEE Transactions on Systems,
Man and Cybernetics, Part A: Systems and Humans., vol. 39, no. 1, pp. 200–
209, 2009.

[87] P. Liggesmeyer and M. Trapp, “Trends in embedded software engineering,”
IEEE Software, vol. 26, no. 3, pp. 19–25, 2009.

[88] K. Grimm, “Software technology in an automotive company: major
challenges,” in Proceedings of the 25th international conference on Software
Engineering, pp. 498–503.

[89] N. Mellegård, M. Staron, and F. Törner, “A Light‐Weight Defect Classification
Scheme for Embedded Automotive Software and Its Initial Evaluation,” in IEEE
23rd International Symposium on Software Reliability Engineering (ISSRE),
2012, pp. 261–270.

[90] S. Yamada, K. Tokuno, and S. Osaki, “Imperfect debugging models with fault
introduction rate for software reliability assessment,” International Journal of
Systems Science, vol. 23, no. 12, pp. 2241–2252, 1992.

[91] K. Ohishi, H. Okamura, and T. Dohi, “Gompertz software reliability model:
Estimation algorithm and empirical validation,” Journal of Systems and
Software, vol. 82, no. 3, pp. 535–543, 2009.

[92] S. Gamito, “Growth models and their use in ecological modelling: an
application to a fish population,” Ecological Modelling, vol. 113, no. 1, pp. 83–
94, 1998.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

272

[93] Y. Yano, T. Oguma, H. Nagata, and S. Sasaki, “Application of logistic growth
model to pharmacodynamic analysis of in vitro bactericidal kinetics,” Journal
of pharmaceutical sciences, vol. 87, no. 10, pp. 1177–1183, 1998.

[94] S. R. Dalal and C. L. Mallows, “When should one stop testing software?,”
Journal of the American Statistical Association, vol. 83, no. 403, pp. 872–879,
1988.

[95] P. K. Kapur and V. K. Bhalla, “Optimal release policies for a flexible software
reliability growth model,” Reliability Engineering & System Safety, vol. 35, no.
1, pp. 49–54, 1992.

[96] T.‐S. Quah, “Estimating software readiness using predictive models,”
Information Sciences, vol. 179, no. 4, pp. 430–445, 2009.

[97] Y. K. Malaiya, N. Karunanithi, and P. Verma, “Predictability of software‐
reliability models,” IEEE Transactions on Reliability, vol. 41, no. 4, pp. 539–
546, 1992.

[98] R. Rana, M. Staron, M. Niklas, C. Berger, J. Hansson, M. Nilsson, and F. Törner,
“Evaluation of standard reliability growth models in the context of
automotive software systems,” presented at the International Conference on
on Product‐Focused Software Process Improvement, Phaphos, Cyprus, 2013.

[99] W.‐L. Wang, D. Pan, and M.‐H. Chen, “Architecture‐based software reliability
modeling,” Journal of Systems and Software, vol. 79, no. 1, pp. 132–146, Jan.
2006.

[100] S. Yamada, Software reliability modeling: fundamentals and applications.
Springer, 2014.

[101] C. A. Asad, M. I. Ullah, and M.‐U. Rehman, “An approach for software
reliability model selection,” in Proceedings of the 28th Annual International
Computer Software and Applications Conference, COMPSAC 2004., 2004, pp.
534–539.

[102] P. Popov, L. Strigini, J. May, and S. Kuball, “Estimating bounds on the
reliability of diverse systems,” IEEE Transactions on Software Engineering, vol.
29, no. 4, pp. 345–359, Apr. 2003.

[103] H. Pham, L. Nordmann, and Z. Zhang, “A general imperfect‐software‐
debugging model with S‐shaped fault‐detection rate,” IEEE Transactions on
Reliability, vol. 48, no. 2, pp. 169–175, 1999.

[104] P. Van Der Spek and C. Verhoef, “Balancing Time‐to‐Market and Quality in
Embedded Systems,” Systems Engineering, vol. 17, no. 2, pp. 166–192, 2014.

[105] M. Xie, G. Y. Hong, and C. Wohlin, “A practical method for the estimation of
software reliability growth in the early stage of testing,” in PROCEEDINGS The

273

Eighth International Symposium On Software Reliability Engineering, 1997,
pp. 116–123.

[106] C. Robson, Real World Research: A Resource for Social Scientists and
Practitioner‐Researchers. Wiley, 2002.

[107] M. Staron, J. Hansson, R. Feldt, A. Henriksson, W. Meding, S. Nilsson, and C.
Hoglund, “Measuring and Visualizing Code Stability–A Case Study at Three
Companies,” in Joint Conference of the 23rd International Workshop on
Software Measurement and the 2013 Eighth International Conference on
Software Process and Product Measurement (IWSM‐MENSURA)., 2013, pp.
191–200.

[108] U. Eklund, N. Jonsson, J. Bosch, and A. Eriksson, “A reference architecture
template for software‐intensive embedded systems,” in Proceedings of the
WICSA/ECSA 2012 Companion Volume, 2012, pp. 104–111.

[109] R. A. McGee, U. Eklund, and M. Lundin, “Stakeholder identification and
quality attribute prioritization for a global Vehicle Control System,” in
Proceedings of the Fourth European Conference on Software Architecture:
Companion Volume, 2010, pp. 43–48.

[110] H. Gustavsson and U. Eklund, “Architecting automotive product lines:
Industrial practice,” in Software Product Lines: Going Beyond, Springer, 2010,
pp. 92–105.

[111] P. Tomaszewski, P. Berander, and L.‐O. Damm, “From Traditional to
Streamline Development—opportunities and challenges,” Software Process:
Improvement and Practice, vol. 13, no. 2, pp. 195–212, 2008.

[112] M. Bäumer, P. Seidler, R. Torkar, R. Feldt, P. Tomaszewski, and L.‐O. Damm,
“Predicting fault inflow in highly iterative software development processes:
an industrial evaluation,” in Proceedings of the 19th IEEE International
Symposium on Software Reliability Engineering: Industry Track, 2008.

[113] J. D. Musa and K. Okumoto, “A logarithmic Poisson execution time model for
software reliability measurement,” in Proceedings of the 7th international
conference on Software engineering, 1984, pp. 230–238.

[114] M. K. Taghi and B. A. Edward, “Logistic regression modeling of software
quality,” International Journal of Reliability, Quality and Safety Engineering,
vol. 6, no. 04, pp. 303–317, 1999.

[115] P. Kapur, H. Pham, A. Gupta, and P. Jha, “Software Reliability Growth
Models,” in Software Reliability Assessment with OR Applications, Springer,
2011, pp. 49–95.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

274

[116] C.‐Y. Huang, S.‐Y. Kuo, and M. R. Lyu, “An assessment of testing‐effort
dependent software reliability growth models,” Reliability, IEEE Transactions
on, vol. 56, no. 2, pp. 198–211, 2007.

[117] C.‐Y. Huang, “Performance analysis of software reliability growth models with
testing‐effort and change‐point,” Journal of Systems and Software, vol. 76,
no. 2, pp. 181–194, 2005.

[118] P. K. Kapur, D. N. Goswami, A. Bardhan, and O. Singh, “Flexible software
reliability growth model with testing effort dependent learning process,”
Applied Mathematical Modelling, vol. 32, no. 7, pp. 1298–1307, Jul. 2008.

[119] H. Motulsky and A. Christopoulos, Fitting Models to Biological Data Using
Linear and Nonlinear Regression: A Practical Guide to Curve Fitting. Oxford
University Press, 2004.

[120] S. Hu, “Akaike information criterion,” Center for Research in Scientific
Computation, 2007.

[121] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Törner,
“Comparing between MLE and NLR estimation procedures for Applying
SRGMs,” presented at the IWSM‐MENSURA 2013, Ankara, Turkey, 2013.

[122] H. Okamura, T. Dohi, and S. Osaki, “Software reliability growth model with
normal distribution and its parameter estimation,” in Quality, Reliability, Risk,
Maintenance, and Safety Engineering (ICQR2MSE), 2011 International
Conference on, 2011, pp. 411–416.

[123] R. Rana, M. Staron, C. Berger, J. Hansson, and M. Nilsson, “Analysing defect
inflow distribution of automotive software projects,” in Proceedings of The
10th International Conference on Predictive Models in Software Engineering,
2014.

[124] M. Xie, Software reliability modelling, vol. 1. World Scientific, 1991.
[125] P. N. Misra, “Software reliability analysis,” IBM Systems Journal, vol. 22, no. 3,

pp. 262–270, 1983.
[126] L. H. Putnam, “A general empirical solution to the macro software sizing and

estimating problem,” IEEE Transactions on Software Engineering, no. 4, pp.
345–361, 1978.

[127] M. Trachtenberg, “A general theory of software‐reliability modeling,” IEEE
Transactions on Reliability, vol. 39, no. 1, pp. 92–96, 1990.

[128] L. H. Putnam and W. Myers, Measures for excellence: reliable software on
time, within budget. Prentice Hall Professional Technical Reference, 1991.

275

[129] L. Zhao, “A new approach for software testability analysis,” in Proceedings of
the 28th international conference on Software engineering, 2006, pp. 985–
988.

[130] R. E. Mullen, “The lognormal distribution of software failure rates: origin and
evidence,” in Software Reliability Engineering, 1998. Proceedings. The Ninth
International Symposium on, 1998, pp. 124–133.

[131] R. E. Mullen, “The lognormal distribution of software failure rates: application
to software reliability growth modeling,” in Software Reliability Engineering,
1998. Proceedings. The Ninth International Symposium on, 1998, pp. 134–
142.

[132] Y. Zhou and J. Davis, “Open source software reliability model: an empirical
approach,” ACM SIGSOFT Software Engineering Notes, vol. 30, no. 4, pp. 1–6,
2005.

[133] V. S. Kharchenko, O. M. Tarasyuk, V. V. Sklyar, and V. Y. Dubnitsky, “The
method of software reliability growth models choice using assumptions
matrix,” in Computer Software and Applications Conference, 2002. COMPSAC
2002. Proceedings. 26th Annual International, 2002, pp. 541–546.

[134] N. Karunanithi, Y. K. Malaiya, and D. Whitley, “Prediction of software
reliability using neural networks,” in Software Reliability Engineering, 1991.
Proceedings., 1991 International Symposium on, 1991, pp. 124–130.

[135] B. Littlewood and J. L. Verrall, “A Bayesian reliability growth model for
computer software,” Applied statistics, pp. 332–346, 1973.

[136] L. Kuo, J. C. Lee, K. Choi, and T. Y. Yang, “Bayes inference for S‐shaped
software‐reliability growth models,” IEEE Transactions on Reliability, vol. 46,
no. 1, pp. 76–80, 87, Mar. 1997.

[137] M. Neil, N. Fenton, S. Forey, and R. Harris, “Using Bayesian belief networks to
predict the reliability of military vehicles,” Computing & Control Engineering
Journal, vol. 12, no. 1, pp. 11–20, 2001.

[138] S. K. Card, J. D. Mackinlay, and B. Shneiderman, Readings in information
visualization: using vision to think. Morgan Kaufmann, 1999.

[139] A. Hora, N. Anquetil, S. Ducasse, M. Bhatti, C. Couto, M. T. Valente, and J.
Martins, “Bug Maps: A Tool for the Visual Exploration and Analysis of Bugs,”
in 2012 16th European Conference on Software Maintenance and
Reengineering (CSMR), 2012, pp. 523–526.

[140] R. E. Garcia, M. C. F. de Oliveira, J. C. Maldonado, and M. Mendonça, “Visual
analysis of data from empirical studies,” in International Workshop on Visual
Languages and Computing, 2004.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

276

[141] A. Mockus, R. T. Fielding, and J. Herbsleb, “A case study of open source
software development: the Apache server,” in Proceedings of the 22nd
international conference on Software engineering, 2000, pp. 263–272.

[142] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of open source
software development: Apache and Mozilla,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 11, no. 3, pp. 309–346, 2002.

[143] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: How
misclassification impacts bug prediction,” in Proceedings of the 2013
International Conference on Software Engineering, 2013, pp. 392–401.

[144] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.‐G. Guéhéneuc, “Is it a bug
or an enhancement?: a text‐based approach to classify change requests,” in
Proceedings of the 2008 conference of the center for advanced studies on
collaborative research: meeting of minds, 2008, p. 23.

[145] E. W. Weisstein, “Likelihood ‐‐ from Wolfram MathWorld.” [Online].
Available: http://mathworld.wolfram.com/Likelihood.html. [Accessed: 02‐Jul‐
2014].

[146] K. P. Burnham and D. R. Anderson, Model selection and multimodel inference:
a practical information‐theoretic approach. Springer, 2002.

[147] J. J. Dziak, D. L. Coffman, S. T. Lanza, and R. Li, “Sensitivity and specificity of
information criteria,” The Methodology Center and Department of Statistics,
Penn State, The Pennsylvania State University, 2012.

[148] N. J. Cox, “Speaking Stata: density probability plots,” Stata Journal, vol. 5, no.
2, pp. 259–273, 2005.

[149] B. Baudry, Y. Le Traon, and G. Sunyé, “Testability analysis of a UML class
diagram,” in Software Metrics, 2002. Proceedings. Eighth IEEE Symposium on,
2002, pp. 54–63.

[150] G. Wittig and G. Finnie, “Estimating software development effort with
connectionist models,” Information and Software Technology, vol. 39, no. 7,
pp. 469–476, 1997.

[151] A. Asthana and J. Olivieri, “Quantifying software reliability and readiness,” in
Communications Quality and Reliability, 2009. CQR 2009. IEEE International
Workshop Technical Committee on, 2009, pp. 1–6.

[152] A. E. Atwater, M. J. Safrit, T. A. Baumgartner, and C. West, Reliability theory.
American Alliance for Health, Physical Education, and Recreation, 1976.

[153] J. H. Bailey and R. A. Kowalski, “Reliability‐growth analysis for an Ada‐coding
process,” in Reliability and Maintainability Symposium, 1992. Proceedings.,
Annual, 1992, pp. 280–284.

277

[154] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Torner,
“Evaluating long‐term predictive power of standard reliability growth models
on automotive systems,” in Software Reliability Engineering (ISSRE), 2013 IEEE
24th International Symposium on, 2013, pp. 228–237.

[155] M. Staron and W. Meding, “Short‐term defect inflow prediction in large
software project‐an initial evaluation,” in International Conference on
Empirical Assessment in Software Engineering (EASE), 2007.

[156] M. Staron and W. Meding, “Predicting Monthly Defect Inflow in Large
Software Projects–An Industrial Case Study,” in Industry Track Proceedings of
the 27 International Symposium on Software Reliability Engineering, 2007.

[157] M. Staron, W. Meding, and K. Palm, “Release Readiness Indicator for Mature
Agile and Lean Software Development Projects,” in Agile Processes in
Software Engineering and Extreme Programming, Springer, 2012, pp. 93–107.

[158] C.‐Y. Huang and S.‐Y. Kuo, “Analysis of incorporating logistic testing‐effort
function into software reliability modeling,” IEEE Transactions on Reliability,
vol. 51, no. 3, pp. 261–270, 2002.

[159] Y. W. Lee, D. M. Strong, B. K. Kahn, and R. Y. Wang, “AIMQ: a methodology
for information quality assessment,” Information & management, vol. 40, no.
2, pp. 133–146, 2002.

[160] M. Staron and W. Meding, “Ensuring reliability of information provided by
measurement systems,” in Software Process and Product Measurement,
Springer, 2009, pp. 1–16.

[161] R. Rana, M. Staron, C. Berger, J. Hansson, W. Meding, and C. Höglund,
“Selecting software reliability growth models and improving their predictive
accuracy using historical projects data,” Submitted to Journal of Systems and
Software, 2014.

[162] A. Güneş Koru and J. Tian, “An empirical comparison and characterization of
high defect and high complexity modules,” Journal of Systems and Software,
vol. 67, no. 3, pp. 153–163, 2003.

[163] N. E. Fenton and N. Ohlsson, “Quantitative analysis of faults and failures in a
complex software system,” Software Engineering, IEEE Transactions on, vol.
26, no. 8, pp. 797–814, 2000.

[164] C. Andersson and P. Runeson, “A Replicated Quantitative Analysis of Fault
Distributions in Complex Software Systems,” IEEE Transactions on Software
Engineering, vol. 33, no. 5, pp. 273–286, May 2007.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

278

[165] T. Galinac Grbac, P. Runeson, and D. Huljenić, “A second replicated
quantitative analysis of fault distributions in complex software systems,”
Software Engineering, IEEE Transactions on, vol. 39, no. 4, pp. 462–476, 2013.

[166] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Where the bugs are,” in ACM
SIGSOFT Software Engineering Notes, 2004, vol. 29, pp. 86–96.

[167] R. M. Bell, T. J. Ostrand, and E. J. Weyuker, “Looking for Bugs in All the Right
Places,” in Proceedings of the 2006 International Symposium on Software
Testing and Analysis, New York, NY, USA, 2006, pp. 61–72.

[168] E. J. Weyuker, T. J. Ostrand, and R. M. Bell, “Comparing the effectiveness of
several modeling methods for fault prediction,” Empir Software Eng, vol. 15,
no. 3, pp. 277–295, Jun. 2010.

[169] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and M. A. Vouk,
“On the value of static analysis for fault detection in software,” Software
Engineering, IEEE Transactions on, vol. 32, no. 4, pp. 240–253, 2006.

[170] N. Nagappan and T. Ball, “Static analysis tools as early indicators of pre‐
release defect density,” in Proceedings of the 27th international conference
on Software engineering, 2005, pp. 580–586.

[171] R. Subramanyam and M. S. Krishnan, “Empirical analysis of ck metrics for
object‐oriented design complexity: Implications for software defects,”
Software Engineering, IEEE Transactions on, vol. 29, no. 4, pp. 297–310, 2003.

[172] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict component
failures,” in Proceedings of the 28th international conference on Software
engineering, 2006, pp. 452–461.

[173] S. Kim, T. Zimmermann, E. J. Whitehead Jr, and A. Zeller, “Predicting faults
from cached history,” in Proceedings of the 29th international conference on
Software Engineering, 2007, pp. 489–498.

[174] N. Nagappan and T. Ball, “Use of relative code churn measures to predict
system defect density,” in Software Engineering, 2005. ICSE 2005.
Proceedings. 27th International Conference on, 2005, pp. 284–292.

[175] W. Snipes, B. Robinson, and E. Murphy‐Hill, “Code hot spot: A tool for
extraction and analysis of code change history,” in Software Maintenance
(ICSM), 2011 27th IEEE International Conference on, 2011, pp. 392–401.

[176] N. Nagappan and T. Ball, “Using software dependencies and churn metrics to
predict field failures: An empirical case study,” in First International
Symposium on Empirical Software Engineering and Measurement, ESEM
2007., 2007, pp. 364–373.

279

[177] S. Kim, E. J. Whitehead, and Y. Zhang, “Classifying software changes: Clean or
buggy?,” Software Engineering, IEEE Transactions on, vol. 34, no. 2, pp. 181–
196, 2008.

[178] T. Zimmermann and N. Nagappan, “Predicting defects using network analysis
on dependency graphs,” in Proceedings of the 30th international conference
on Software engineering, 2008, pp. 531–540.

[179] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison of bug
prediction approaches,” in Mining Software Repositories (MSR), 2010 7th IEEE
Working Conference on, 2010, pp. 31–41.

[180] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, F. Törner, W. Meding,
and C. Höglund, “Selecting software reliability growth models and improving
their predictive accuracy using historical projects data,” Journal of Systems
and Software, vol. 98, pp. 59–78, Dec. 2014.

[181] R. N. Charette, This Car Runs on Code. http://spectrum.ieee.org/green‐
tech/advanced‐cars/this‐car‐runs‐on‐code, 2009.

[182] H. Fennel, S. Bunzel, H. Heinecke, rgen Bielefeld, Jü, S. Fü, rst, K.‐P. Schnelle,
W. Grote, N. Maldener, T. Weber, F. Wohlgemuth, and others, “Achievements
and exploitation of the AUTOSAR development partnership,” Convergence,
vol. 2006, p. 10, 2006.

[183] B. Boehm and V. R. Basili, “Defect Reduction Top 10 List,” Computer, pp. 135–
137, 2001.

[184] N. Mellegård, M. Staron, and F. Törner, “A Light‐Weight Defect Classification
Scheme for Embedded Automotive Software Development,” 2013.

[185] M. Hillenbrand, M. Heinz, N. Adler, K. D. Müller‐Glaser, J. Matheis, and C.
Reichmann, “ISO/DIS 26262 in the context of electric and electronic
architecture modeling,” in Architecting Critical Systems, Springer, 2010, pp.
179–192.

[186] B. Schätz, “Certification of Embedded Software–Impact of ISO DIS 26262 in
the Automotive Domain,” in Leveraging Applications of Formal Methods,
Verification, and Validation, Springer, 2010, pp. 3–3.

[187] M. C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and tools,”
Computer, vol. 30, no. 4, pp. 75–82, 1997.

[188] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Törner,
“Increasing Efficiency of ISO 26262 Verification and Validation by Combining
Fault Injection and Mutation Testing with Model Based Development,”
presented at the 8th International Conference on Software Engineering and
Applications, Reykjavík, Iceland, 2013.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

280

[189] N. Mellegård, M. Staron, and F. Törner, A light‐weight defect classification
scheme for embedded automotive software and its initial evaluation. 2012.

[190] R. Megen and D. B. Meyerhoff, “Costs and benefits of early defect detection:
experiences from developing client server and host applications,” Software
Quality Journal, vol. 4, no. 4, pp. 247–256, 1995.

[191] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Törner,
“Improving Fault Injection in Automotive Model Based Development using
Fault Bypass Modeling,” presented at the Submitted To: 2nd Workshop on
Software‐Based Methods for Robust Embedded Systems, Informatik 2013,
Koblenz, Germany, 2013.

[192] R. Svenningsson, J. Vinter, H. Eriksson, and M. Törngren, “MODIFI: a MODel‐
implemented fault injection tool,” Computer Safety, Reliability, and Security,
pp. 210–222, 2010.

[193] H. Ziade, R. A. Ayoubi, R. Velazco, and others, “A survey on fault injection
techniques,” The International Arab Journal of Information Technology, vol. 1,
no. 2, pp. 171–186, 2004.

[194] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering, vol. 37, no. 5,
pp. 649–678, 2011.

[195] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate tool
for testing experiments?[software testing],” in Proceedings. 27th
International Conference on Software Engineering, ICSE 2005., 2005, pp. 402–
411.

[196] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data selection:
Help for the practicing programmer,” Computer, vol. 11, no. 4, pp. 34–41,
1978.

[197] A. J. Offutt, “Investigations of the software testing coupling effect,” ACM
Transactions on Software Engineering and Methodology (TOSEM), vol. 1, no.
1, pp. 5–20, 1992.

[198] A. Joshi and M. P. E. Heimdahl, Model‐based safety analysis of simulink
models using SCADE design verifier. 2005.

[199] R. Kakade, M. Murugesan, B. Perugu, and M. Nair, “Model‐Based
Development of Automotive Electronic Climate Control Software,” Modelling
Foundations and Applications, pp. 144–155, 2010.

[200] J. Vinter, L. Bromander, P. Raistrick, and H. Edler, “FISCADE ‐ A Fault Injection
Tool for SCADE Models,” in 3rd Institution of Engineering and Technology
Conference on Automotive Electronics, 2007., 2007, pp. 1–9.

281

[201] A. Plummer, “Model‐in‐the‐loop testing,” Proceedings of the Institution of
Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol.
220, no. 3, pp. 183–199, 2006.

[202] A. Brillout, N. He, M. Mazzucchi, D. Kroening, M. Purandare, P. Rümmer, and
G. Weissenbacher, “Mutation‐based test case generation for simulink
models,” in Formal Methods for Components and Objects, 2010, pp. 208–227.

[203] C. Berger, M. Chaudron, R. Heldal, O. Landsiedel, and E. M. Schiller, “Model‐
based, Composable Simulation for the Development of Autonomous
Miniature Vehicles.”

[204] C. Berger and J. Hansson, “COTS‐Architecture with a Real‐Time OS for a Self‐
Driving Miniature Vehicle,” in Proceedings of Workshop ASCoMS (Architecting
Safety in Collaborative Mobile Systems) of the 32nd International Conference
on Computer Safety, Reliability and Security, 2013.

[205] A. Bertolino, “Software testing research: Achievements, challenges, dreams,”
in 2007 Future of Software Engineering, 2007, pp. 85–103.

[206] M. J. Harrold, “Testing: a roadmap,” in Proceedings of the Conference on the
Future of Software Engineering, 2000, pp. 61–72.

[207] B. Boehm, Industrial software metrics top 10 list. IEEE COMPUTER SOC 10662
LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720‐1264, 1987.

[208] T. Menzies, K. Ammar, A. Nikora, and J. DiStefano, “How simple is software
defect detection,” Submitted to the Emprical Software Engineering Journal,
2003.

[209] P. Legris, J. Ingham, and P. Collerette, “Why do people use information
technology? A critical review of the technology acceptance model,”
Information & management, vol. 40, no. 3, pp. 191–204, 2003.

[210] H. Van der Heijden, “Factors influencing the usage of websites: the case of a
generic portal in The Netherlands,” Information & Management, vol. 40, no.
6, pp. 541–549, 2003.

[211] D. Zhang and J. J. Tsai, “Machine learning and software engineering,”
Software Quality Journal, vol. 11, no. 2, pp. 87–119, 2003.

[212] P. Attewell, “Technology diffusion and organizational learning: The case of
business computing,” Organization Science, vol. 3, no. 1, pp. 1–19, 1992.

[213] I. Ajzen and M. Fishbein, “Understanding attitudes and predicting social
behaviour,” 1980.

[214] G. G. Pijpers, T. Bemelmans, F. J. Heemstra, and K. A. van Montfort, “Senior
executives’ use of information technology,” Information and Software
Technology, vol. 43, no. 15, pp. 959–971, 2001.

Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption

282

[215] K. C. Yang, “Exploring factors affecting the adoption of mobile commerce in
Singapore,” Telematics and informatics, vol. 22, no. 3, pp. 257–277, 2005.

[216] P. Y. Chau and K. Y. Tam, “Factors Affecting the Adoption of Open Systems: An
Exploratory Study.,” Mis Quarterly, vol. 21, no. 1, 1997.

[217] S. Zhang and M. J. Zaki, “Mining multiple data sources: local pattern analysis,”
Data Mining and Knowledge Discovery, vol. 12, no. 2–3, pp. 121–125, 2006.

[218] T. M. Mitchell, “Machine learning and data mining,” Communications of the
ACM, vol. 42, no. 11, pp. 30–36, 1999.

[219] A. C. Edmondson, A. B. Winslow, R. M. Bohmer, and G. P. Pisano, “Learning
how and learning what: Effects of tacit and codified knowledge on
performance improvement following technology adoption,” Decision
Sciences, vol. 34, no. 2, pp. 197–224, 2003.

[220] S. Sonnenburg, M. L. Braun, C. S. Ong, S. Bengio, L. Bottou, G. Holmes, Y.
LeCun, K.‐R. Müller, F. Pereira, and C. E. Rasmussen, “The need for open
source software in machine learning.,” Journal of Machine Learning Research,
vol. 8, no. 10, 2007.

[221] M. Li and C. S. Smidts, “A ranking of software engineering measures based on
expert opinion,” IEEE Transactions on Software Engineering, vol. 29, no. 9, pp.
811–824, 2003.

[222] N. Fenton, M. Neil, W. Marsh, P. Hearty, D. Marquez, P. Krause, and R.
Mishra, “Predicting software defects in varying development lifecycles using
Bayesian nets,” Information and Software Technology, vol. 49, no. 1, pp. 32–
43, 2007.

[223] R. Rana, M. Staron, and M. Nilsson, “A framework for adoption of machine
learning in industry for software defect prediction,” presented at the
submitted to ICSOFT‐EA, 2014, Vienna, Austria, 2014.

[224] L. G. Wallace and S. D. Sheetz, “The adoption of software measures: A
technology acceptance model (TAM) perspective,” Information &
Management, vol. 51, no. 2, pp. 249–259, Mar. 2014.

[225] B. C. Hardgrave and R. A. Johnson, “Toward an information systems
development acceptance model: the case of object‐oriented systems
development,” Engineering Management, IEEE Transactions on, vol. 50, no. 3,
pp. 322–336, 2003.

[226] D. Gefen and D. W. Straub, “Gender Differences in the Perception and Use of
E‐Mail: An Extension to the Technology Acceptance Model.,” MIS quarterly,
vol. 21, no. 4, 1997.

283

[227] M. Y. Yi and Y. Hwang, “Predicting the use of web‐based information systems:
self‐efficacy, enjoyment, learning goal orientation, and the technology
acceptance model,” International journal of human‐computer studies, vol. 59,
no. 4, pp. 431–449, 2003.

[228] T. Menzies and A. Marcus, “Automated severity assessment of software
defect reports,” in IEEE International Conference on Software Maintenance,
ICSM 2008., 2008, pp. 346–355.

[229] E. Mendes, N. Mosley, and S. Counsell, “Investigating early web size measures
for web cost estimation,” in Proceedings of EASE’2003 Conference, Keele,
2003, pp. 1–22.

[230] T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall, F. Peters, and B. Turhan, “The
promise repository of empirical software engineering data,” West Virginia
University, Department of Computer Science, 2012.

