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ABSTRACT 

Software is becoming an increasingly important part of automotive product 
development. While software in automotive domain enables important functionality 
and innovations, it also requires significant effort for its verification & validation to 
meet the demands of safety, high quality and reliability. To ensure that the safety 
and quality demands are meet within the available resource and time - requires 
efficient planning and control of test resources and continuous reliability 
assessment. By forecasting the expected number of defects and likely defect inflow 
profile over software life cycle, defect prediction techniques can be used for 
effective allocation of limited test resources. These techniques can also help with the 
assessment of maturity of software before release. 

This thesis presents research aimed at improving the use of software defect 
prediction techniques within the automotive domain. Through a series of empirical 
studies, different software defect prediction techniques are evaluated for their 
applicability in this context. The focus of the assessment have been on evaluation of 
these techniques, how to select the appropriate software reliability growth models 
and the factors that play important role in their adoption in industry. 

The results show that - defect prediction techniques (i) can be effectively used to 
forecast the expected defect inflow profile (shape and the asymptote); (ii) they are 
also useful for assessment of the maturity of software before release; (iii) executable 
models can be used for early reliability assessment by combining fault injection with 
mutation testing approach; and (iv) a number of factors beyond predictive accuracy 
such as setup, running, and maintenance costs are important for industrial adoption 
of machine learning based software defect prediction techniques. 

The effective use of software defect prediction techniques and doing early reliability 
assessment on executable models would allow (i) early planning and efficient use of 
limited test resources; (ii) reduced development time/ market lead time; and (iii) 
more robust software in automobiles which make them more intelligent, safe and 
also highly reliable.    
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1 INTRODUCTION 

Finding and fixing defects is overall the most expensive activity in embedded 
software development [1]. Given the size, complexity, time and cost pressures - 
tracking and predicting quality is a major challenge in automotive software 
development projects. To meet the demands of high quality and reliability - 
significant effort is devoted on software V&V (Verification & Validation). Testing 
the software is an important part of software V&V used for ensuring correct 
functionality and reliability of software systems; but at the same time software 
testing is also a resource intensive activity accounting for up to 50% of total 
software development costs [2] and even more for safety critical software systems. 
Thus having a good testing strategy is critical for any industry with high software 
development costs.  
 
Within about 30 years - amount of software in cars went from about zero to more 
than 10 million lines of code [3]. Premium segment cars today carry about 30-70 
ECUs [4], [5] realizing about 2000 individual functions communicating over five 
different system buses. High use of software also have associated cost implications, 
today about 50-70% of development costs [6] of software/hardware systems are 
software costs and about 40% of vehicle development and production costs [3] of 
modern cars are attributed to electronics and software. 
 
Software defect prediction techniques offer one way of increasing the efficiency and 
effectiveness of software testing. Predicting expected defect inflow and/or defect 
prone files/modules allow effective management of limited testing resources. 
Primarily software defect and reliability measures are used for [6] [7]: 

 Software process improvement, 
 Planning and controlling testing resources during software 

development, and 
 Evaluating the maturity or release readiness of software before the 

release date. 

In terms of size and complexity, the automotive domain is similar to other embedded 
software domains - the amount and complexity of software has been growing 
exponentially. Also with high proportions of development and production costs 
incurred on software coupled with market competition largely determining the 
prices, the need for efficient software development and testing process is apparent. 
Defect prediction techniques can contribute toward the goal of making software 
testing more effective and efficient.  
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The purpose of this thesis is to evaluate techniques for software defect prediction in 
the automotive domain. Further contributions are also made towards selecting the 
right technique over the life cycle of software development, selection of appropriate 
reliability models and identification of factors that are important for companies to 
adopt machine learning based software defect prediction techniques. 

Robert Graddy of Hewlett-Packard stated “software defect data is [the] most 
important available management information source for software process 
improvement decisions” and that “ignoring defect data can lead to serious 
consequences for an organization’s business” [6]. The overall goal of this work is to 
use the defect data to provide insights to software engineers, quality and project 
managers and assist them in taking decisions on test resource allocations and 
assessment of maturity of software system under development. 

1.1 Frame of Reference  
The research presented in this thesis is focused on the evaluation of applicability of 
software defect prediction techniques in the automotive software domain. As 
different software defect prediction techniques are based on different basic 
assumptions, they require specific inputs and can be applied at/or perform best for 
certain granularity levels. In the frame of reference we describe different techniques 
commonly used for defect prediction during software development and maintenance 
and also provide the context of software development specific to automotive 
domain.  

1.1.1 Software Defect Prediction  
Software defect, commonly also referred to as bug can be defined as an issue or 
deficiency in the software product which causes it to perform unexpectedly [8]. 
IEEE standard 1044, Classification for Software Anomalies provides common 
vocabulary for terms useful in this context, according to the standard [9]: 

 Defect: An imperfection or deficiency in a work product where that 
work product does not meet its requirements or specifications and 
needs to be either repaired or replaced. 

 Error: A human action that produces an incorrect result. 
 Failure: (A) Termination of the ability of a product to perform a 

required function or its inability to perform within previously 
specified limits Or (B) An event in which a system or system 
component does not perform a required function within specified 
limits. 

 Fault: A manifestation of an error in software. 
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 Problem: (A) Difficulty or uncertainty experienced by one or more 
persons, resulting from an unsatisfactory encounter with a system 
in use or (B) a negative situation to overcome. 

Since defects in software can lead to malfunctioning of the entire embedded 
software system, which could in some cases also pose serious risk to health/life (in 
case of safety critical systems), most organizations developing software aim to 
release software with no known defects. All defects discovered during V&V 
activities are reported (documented) in the defect database.  

Most organizations maintain defect databases, which can be local to a team, 
project/product or specific section of an organization. All defects found during 
verification and validation activities are reports in these databases in a pre-defined 
format - often with the sole purpose of facilitating their resolution. The database 
usually provides the platform where different stakeholders within and outside of an 
organization can:  

 Access the information about defect(s) of their interest, 
 Add, edit, or update the information related to a given defect, 
 Comment, provide expertise or guidance to help resolve the defect, and 
 Track the progress of reported defect(s) and monitor defect statistics.  

To facilitate the documentation and exchange of information, various attributes are 
recorded for each reported defect. Some of these attributes are mandatory aimed at 
providing the basic information pertaining to given defect, while others are optional 
that provide additional details. The overall goal is to provide information from actor 
(usually tester) who discovered the defect to actor(s) who will resolve or help 
resolve it (usually developers).  Table 1 provides an example of basic attributes that 
are usually documented when reporting defects in such a database. Most defect 
databases contain more attributes and information than listed in Table 1. Other 
attributes are generally customized for given industrial domain, software 
development process, and needs of testers and developers for effective exchange of 
information.  

Table 1:  Defect attributes available for analysis (usually from bug/defect 
databases) 

Information 
type 

Attribute (example) Example defect 

Basic 
information 

Unique ID SWI-1234	

 Date & time stamp 12-Jul-201X, 16:33:04 

Problem Status 
Open/ Resolved/ 
Closed/ Cancelled 

Open	

Severity 
Major/ Minor/ 
Insignificant 

Minor	
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Problem Type 
Requirement defect/ 
Design defect/ Code 
defect  

Code defect	

Title and 
Description 

Title Misplaced white pixels on the home screen	

Description 

Precondition	
System is up and running.	
 
Action	
Enter home screen in default mode (all tiles in standard size).	
Note! This error is only applicable first time the user enters 
the home screen. Once tiles in the home screen have been 
expanded, the misplaced pixels disappear.	
 
Observation	
In the middle of the home screen there are some white and 
grey pixels in line with the top of the phone tile (between the 
phone tile and the media tile).	
 
Expected	
There should not be any colour deviation of “stains” on the 
background screen.	
 
Probability	
100%	

Additional 
Information 

Attachments Attached Log file	

 Comments 

Update 201X-08-26:	
When entering and exiting the Settings list, the misplaced 
pixels reappear, even if tiles in the home screen have 
previously been expanded (and shrunk back to default tile 
size again).	

 
There also exist several defect classification schemes that can be used to develop 
templates for defect reporting that share a well-defined structure. Such pre-defined 
and shared structure facilitates quantitative analysis of defect reports that can 
provide useful insights to characterize the development process and also assist in 
identifying improvement opportunities [10].  Examples of defect classification 
schemes include orthogonal defect classification [11] developed at IBM, schemes 
based on IEEE standard classification for software anomalies (IEEE Std. 1044) and 
a light-weight defect classification scheme [10].  

1.1.2 Software Defect Prediction Techniques  
Software Defect Prediction (SDP) techniques are used either to classify which 
modules are defect-prone or to predict the number of defects expected to be found in 
a software module/project. A number of different techniques have been used for the 
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purpose of classification1/predicting defects; they can be broadly grouped into 
techniques used for predicting expected number of defects to be found in a given 
software artefact (Prediction) and techniques that are used to predict if or not a given 
software artefact is likely to contain a defect (Classification). Figure 1 illustrates 
commonly used software defect prediction techniques grouped according to the 
purpose – defect count prediction or defect prone classification.  
 

 
Figure 1: Overview of different software defect prediction techniques 

1.1.2.1 Techniques for predicting number of defects 
The prediction models may only use number of defects discovered during 
development and testing without considering other attributes related to the internal 
structure/design/implementation of the project/product – these are grouped as black 
box defect prediction techniques. On the other hand defect prediction techniques that 
use attributes related to process and product e.g. size, complexity, changes are 
classified under white box techniques. 
 
Software Reliability Growth Models (SRGMs) 
SRGMs are mathematical equations used to model the growth of software/system 
reliability using defect inflow data from the development/testing phase. Appropriate 
model is selected based on software development/testing process or using empirical 

                                                      
1 Defect classification can be used to refer either to categorize a defect into classes [11] as 
in case of defect classification schemes defined in section 1.1.1 or to refer to approach of 
software defect prediction that involves categorizing modules into fault‐prone and non‐
fault‐prone [12]. In this thesis beyond section 1.1.2, unless specified we use the later 
meaning of defect classification.   
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evaluations of performance of a sub-set of models on the testing data, which is then 
used to select appropriate models and make defect forecasts. Applying SRGMs to an 
on-going project involves fitting mathematical growth models to the observed partial 
defect inflow data from testing. The fitted model is then used to make final defect 
count predictions or predicting possible latent defects. SRGMs can be used to model 
reliability growth over testing period or over the software lifecycle using models 
such as Rayleigh model. Wood [13] applied eight SRGMs on industrial defect 
inflow data and found significant correlation between pre-release and post-release 
defect count. A comparison of SRGMs and their use in practice within consumer 
electronics embedded software is also presented in study by Almering et al. [14]. 
Staron and Meding [15] studied defect data from the telecom domain and concluded 
that models based on moving average provided good predictability for weekly defect 
predictions; the model was also found to be better than the predictions made using 
expert opinions [16].  
 
Capture Recapture analysis 
This technique of defect prediction is based on analysis of patterns of defects 
discovered in a given software artefact by independent defect detection activities 
[17]. Latent defects count (number of defects remaining in a system) is estimated 
using the overlap among defects identified by independent activities or group of 
testers. The capture/recapture techniques is also referred to as defect pooling [18]. 
Briand et al. [19] provide a comprehensive review of capture recapture techniques 
for software defect count prediction.  
 
Expert opinions 
If experts are available, the fastest and easiest method of defect prediction is using 
them for predictions based on their experience. The drawback of this methodology is 
its subjective nature and inability to scale down properly at lower levels of 
granularity. This method can be useful in cases where defect prediction is to be done 
at project level or large components level and where experts can draw on their 
experience to make forecasts, but when defect predictions are to be made at lower 
granularity levels (sub-systems, functions, files etc.), this method does not scale 
down. Predictions using expert opinions is compared to performance of software 
reliability growth model in work by Vincent et al. [14].  
 
Causal models 
Causal models attempt to establish causal relationships between software process 
and product attributes with number of defects expected to be found or number of 
latent defects in the system. Fenton and Neil [20] critique the use of statistical based 
software defect prediction models for their lack of causal link modelling and 
proposes use of Bayesian Belief Networks (BBNs). Bayesian Nets have been used to 
show their applicability for defect forecasting at very early stages of software 
projects [21].   
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Analogy based predictions 
Analogy based estimation techniques rely upon collection and comparison of variety 
of metrics between past and current project to identify the most analogous project(s) 
[22]. For software defect predictions typically size, type of application, complexity 
of functionality and other parameters are used to identify similar projects to make 
the estimations. The analysis can be done at project, sub-system or component level.  
 
Multivariate Regression 
Regression based models use statistical regression for making defect predictions 
using a set of software metrics or code change attributes as predictor variables. 
Multiple linear regression can be used to estimate the number of expected defects in 
a given software project or modules (sub-systems/functions etc.). A range of 
software process and product metrics has been used as the independent variables in 
the regression based models; most common among them are the code complexity 
metrics and source code evolution (change) metrics. Multiple linear regression is 
used to model software changes in work by Khoshgoftaar et al. [23] - where a set of 
software complexity metrics are used as independent variables. Khoshgoftaar et al. 
[24] used linear regression for predicting program faults, their model also relied on 
set of code complexity metrics and number of changes to a given module to predict 
the dependent variable (program faults). 
 
Constructive quality model (COQUALMO) 
The constructive quality model [25] is based on the software defect introduction and 
removal model proposed by Barry Boehm [26] which in turn is analogous to Capers 
Jones [27] tank and pipe model. The model use expert-determined defect 
introduction and removal sub-models to construct a quality model refereed as 
COQUALMO. Under this model, firstly number of non-trivial requirements, design 
and coding defects introduced are estimated using Defect Introduction (DI) sub-
model. The DI sub-model uses software size estimate and other attributes related to 
project and process (platform, personal etc.). The output of DI sub-model is used as 
input to the Defect Removal (DR) sub-model together with inputs from defect 
removal profile levels and software size estimates. The output of DR sub-model is 
an estimation of number of residual defects per unit size [25].  
 
Correlation based models 
Correlation based models also use defect data found during the software 
development and testing process. Number of defects found at a given phase or 
iteration during the development process is used to predict number of defects 
expected to be found in later phases/iterations. Yu, Shen, and Dunsmore [28] 
evaluated the relationship between defects in earlier and later phases using linear 
regression model. While regression and correlation based models both use linear 
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regression (univariate or multivariate linear regression) for defect count prediction, 
we distinguish between the two as follows: 

a. When at least one of the predictor (independent) variable used in the 
regression model is a direct measure of defect count in an earlier phase or 
iteration – the model is categorised under correlation based models,  

b. While if the prediction model does not use defect count measure of earlier 
phase/iteration as a predictor variables, the model is classified under 
regression based models.  

1.1.2.2 Techniques for defect classification 
The other main approach to defect prediction is software defect classification. These 
models strive to identify fault-prone software modules using variety of software 
project and product attributes. Defect classification models are usually applied at 
lower granularity levels such as file and class level. Software artefacts thus 
identified as defect prone can be prioritized for more intensive verification and 
validation activities. 
 
Logistic regression  
Logistic regression can be used to classify software modules as defect-prone or not. 
Similar to multivariate regression, range of process and product metrics are used as 
predictor variables for the classification of software modules. Logistic regression 
has been used by Khoshgoftaar and Allen [29] for classifying modules as fault-prone 
or not. Zimmermann, et al. [30] also used logistic regression to classify 
file/packages in Eclipse project as defect prone.  
 
Machine learning models 
Machine learning based models use algorithms based on statistical methods and data 
mining techniques that can be used for defect classification/predictions. These 
methods are similar to regression based methods and use similar input data 
(independent variables). The key difference being that machine learning based 
methods are dynamic learning algorithms that tend to improve their performance, as 
more data is made available. Using code metrics data of projects from NASA IV&V 
facility Metrics Data Program (MDP), Menzies et al. [31] model based on naïve 
Bayes predicted with accuracy of 71% (pd, probability of detection) and probability 
of false alarm (pf) of 25%. Gondra [32] also using NASA project data set (JM1) 
obtained correct classifications of 72.6% with ANNs and 87.4% with SVMs. Using 
data from 31 projects from industry and using BNNs Fenton et al. [21] obtained an 
R2 of 0.93 between predicted and actual number of defects. 
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1.1.3 Software Development in Automotive Domain  
Automotive software is a form of embedded software, which is defined as the 
software that resides permanently within a device (hence embedded) and contributes 
to the device control and functionality. Automotive software is diverse and complex, 
the major reasons for complexity can be attributed to factors such as [1]: 

 Interaction between software and hardware with number of sensors 
and actuators, 

 Expected real time behaviour based on states and events, 
 Systems with long life time where embedded software is expected 

to continue working often without updates, and 
 Demands for high reliability and dependability especially for 

applications that are safety critical. 

At the same time the diversity of automotive software range from entertainment 
related software to safety-critical real time control software [33]. Based on the 
application area and non-functional requirements these areas can be grouped into 
five clusters as defined in [33]:  

1. Multimedia, telematics, and MMI software: typically soft real-time 
software which also has to interface with off-board IT, dominated 
by discrete event/data processing. 

2. Body/comfort software: typically soft real-time, discrete-event 
processing dominates over control programs. 

3. Software for safety electronics: hard real-time, discrete event-
based, strict safety requirements. 

4. Power train and chassis control software: hard real-time, control 
algorithms dominate over discrete-event processing, strict 
availability requirements. 

5. Infrastructure software: soft and hard real-time, event-based 
software for management of the IT systems in the vehicle, like 
software for diagnosis and software updates. 

The software development and testing process used is usually influenced by the 
application area, for example multimedia software may be developed in an agile 
way with very short iteration time, while infrastructure software developed using 
suppliers would generally follow “V” model of software development with longer 
time-span. The focus of this thesis is at the level of full EE (Electronics & Electrical 
system) development, which constitutes the complete development of software and 
electronic hardware (Electronic Control Units) in the automotive domain. At full EE 
level, the projects are referred to as platform projects (within VCG, Volvo Car 
Group). These projects typically consist of following steps: 
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 Requirements are set at vehicle level, 
 The system is discretised into several functions and logical 

components, 
 Functions and logical components are mapped to individual ECUs, 
 Software is implemented and unit tested at ECU level in-house or at 

supplier, and 
 The system is integrated followed by integration, function and 

acceptance testing.  

The following section describes the development process in details.  

Most automotive Original Equipment Manufacturers (OEMs) follow Model Driven 
Development (MDD) and since car platform projects are often large and spread over 
several months, they are executed in number of iterations. In literature and 
development standards, software development life cycle in automotive domain has 
been illustrated as approaches based on V-model [34], [35]. 

The process followed at each iteration within the production software development 
phase can be described using a V-model, essentially for each iteration - first the 
requirements are set or reviewed followed by System Design (functional design and 
system architecture). Following the system design ECU specifications is done which 
can also be referred as software design since software is usually designed for 
specific ECUs and they are generally co-developed, optimized for particular 
functionality.  

Next comes the implementation where designed software is implemented (as code 
either manually written in object oriented language or auto-generated from a 
functional model build using some domain specific language (DSL) such as 
Matlab/Simulink). The implemented code usually undergoes rigorous testing under 
simulated environment to ensure correct working of intended functionality and 
fulfilment of desired quality requirements. The testing of software in simulated 
environment is termed Model-In-Loop testing where different functional 
models/code is also integrated and tested. 

The software code is then integrated within the hardware/ECU, followed by testing 
in Hardware-In-Loop configuration (for all iterations) and testing within complete 
vehicle prototypes (for certain iterations). Major types of testing carried out to verify 
and validate the functionality include unit testing, sub-system integration and 
testing, system integration and testing, functional and acceptance testing.  

Software development in automotive domain mainly follows V-model where left 
branch (early phase) is dominated by software design and implementation, while 
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verification and validation is prominent on the right branch. Figure 2 shows the 
mapping of different stages/phases in automotive software and electronic hardware 
(ECU) development at the industrial partner (VCG). Requirements at the vehicle 
level are grouped based on features (or functions), each function has an assigned 
owner responsible for overlooking the design-to-acceptance of feature in the final 
product. System designers design the system based on all the functions that are 
carried over and to be introduced (new). The system is designed such that each ECU 
is assigned number of logical components that implements the required 
functionality. Thus there is one to many relationship between function and logical 
components for example to provide an Anti-lock feature/function, central electronic 
module (ECU) may have a logical component named Anti-lock control component, 
while ECU controlling the wheel braking may have another logical component that 
implements the braking action under anti-lock conditions, which together fulfil the 
full functionality of Anti-lock braking feature. 

It is common in automotive domain that OEMs such as VCG take responsibility of 
design and acceptance testing of software and hardware at vehicle level, while 
electronic hardware (ECUs) and base software for the ECUs are developed by their 
suppliers. While OEMs do implement some of the application level software in-
house (generally functions/features that are new and innovative which provide 
market differentiation to their products), much of the application level software is 
also sourced through tier-1 and tier-2 suppliers customized to the needs of individual 
OEMs. Under these conditions access to change metrics is not readily available as 
the software is developed/customized by supplier and not developed in-house.  

Figure 2: Overview of software development process at VCG 
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Further software development in the automotive domain often uses combinations of 
different programming languages and techniques. Use of domain specific languages 
(DSLs) such as Matlab/Simulink is common among major companies in this sector 
(both OEMs and their suppliers) and also among other embedded software domains 
(e.g. aerospace). The production code that runs on a typical ECU today may have 
mix of code elements that are auto-generated from behavioural models, behavioural 
model that includes legacy code and hand written code. Figure 3 shows the possible 
mix of software elements that can be part of production code providing the intended 
functionality.  

 
Figure 3: Example combination of software elements in an automotive production software 

In such functions and systems obtaining precise and accurate complexity metrics 
possess challenges for e.g.  

 Should we use complexity metrics from behavioural models or 
from code generated from these models? 

 How can we reliably use the complexity metrics for code that is 
auto-generated and optimized using different Model-to-Code 
generation tools?  

 How can we compare or combine complexity metrics from auto-
generated and hand-written code?  

Thus software defect prediction techniques based on change and complexity metrics 
may not always be feasible or easy to apply in certain cases within automotive and 
other embedded software domains due to: 
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 Difficulty to calculate the size of software module with good 
accuracy, thus difficulty calculating and working with defect 
densities. 

 Source code metrics e.g. complexity, size, couplings are readily 
defined for hand written code, but corresponding metrics for 
behavioural models are often not validated and in some cases not 
yet defined. 

 Software sourced from suppliers generally is delivered as black-
box, which makes it difficult to obtain source code metrics and 
software evolution information (i.e. change metrics).  

In such cases where access to source code and change metrics is unavailable, 
software defect prediction and defect classification techniques that use code and 
change metrics may not be feasible. 

In the automotive domain, experts have traditionally played their de-facto role in 
providing their expertise to evaluate the reliability and maturity of software 
systems/projects. While expert opinions are generally available in large software 
development companies (like automotive OEMs) and can provide quick predictions, 
these are based on subjective judgements. Further different experts tend to have 
different opinions, which make it difficult for managers to take objective decisions. 
Causal models on the other hand use data from historical projects and characteristics 
of current project to model and forecast the expected defects found during testing or 
latent defects. Although causal models provide a more objective and data based 
predictions, their implementation requires significant effort on first their modelling 
and secondly on estimating large number of transition probabilities which becomes 
problematic with increasing number of independent factors and cases where large 
amount of data is not readily available.  

In this thesis the focus has been on software defect prediction techniques that 
depend on data which is readily available in the automotive software development 
environment (at OEMs) and models that are easy to implement and use at the 
companies with low running costs.  

1.1.4 Role of Evaluation, Selection and Adoption in 
Software Engineering 

 
Evaluation 
Evaluation of tools and techniques is an important part of software engineering 
research and development. Software engineers can be divided into two distinct 
groups, one consisting of those that build and maintain software systems and others 
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who develop methods and tools for the use of former group [36]. New methods and 
tools continuously proliferate without much supporting evidence or benefits over 
existing approaches [36]. Scientifically based and practical approach to evaluation 
fills this gap by providing the necessary evidence on benefits of given 
tools/techniques - thus allowing organizations to take informed decisions and 
helping with the adoption of new tools and methods. 

Kitchenham et al. [37] presented methodology for evaluating software engineering 
methods and tools. The methodology is intended to help organizations plan and 
execute unbiased and reliable evaluation. It identifies nine methods of evaluation 
and sets of criteria to help evaluators select an appropriate method. Three important 
evaluation methods identified under this methodology are: formal experiments, 
quantitative case studies, and feature analysis exercise; the latter two have been used 
in this thesis. 

Selection  
Evaluation can be done for a single tool/method to assess its applicability or 
performance in a given context or it can be applied for number of similar or 
competing tools/methods to help select the best one for a given purpose. The 
evaluation methodology by Kitchenham et al. [37] is comparative, assuming that 
there exist several alternative ways of performing software engineering task and the 
main purpose of evaluation is to identify the best alternative for given specific 
circumstances. 

For various decisions to be made with respect to software development, such as 
which process to use, programming language, tools, or techniques for data analysis - 
a number of options are usually available. With number of alternative methods and 
tools available to be applied, selecting appropriate method/tools is a recurring theme 
in software engineering. Three important methods of selecting the best among 
competing systems have been described by David et al. [38] as: interactive analysis, 
ranking & selection and multiple comparison. Ranking & selection has been used in 
this work specifically for the selection of appropriate software reliability growth 
models from sub-set of number of competing models.  

Adoption 
Software managers and practitioners often have to make decisions about which 
technologies to employ on their projects. An important challenge in making 
informed decisions about whether to adopt a new technology or not often arise due 
to lack of objective evidence for the suitability, cost, quality and inherent risks of 
given technology, tool or method [39]. The transfer of new software engineering 
techniques and tools from research to industry involves more than just new idea and 
evidence that it works [40]. Successful technology transfer require good ideas, 
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generation of evidence of superior characteristics in given contexts, good packaging 
and support, and careful consideration of the audience for the given technology [40]. 
Technology acceptance model [41] and technology adoption framework [42] help 
understand the factors that are important for adoption decisions, while and 
technology transfer models [43] outlines the process of adoption.   

Thus for a comprehensive assessment of a given method, tool or technique – it must 
be evaluated using scientifically based practical approaches. Also when sets of 
similar/competing alternatives are present, selecting an appropriate tool/technique 
for a given purpose is also important. Further when the objective of assessment also 
includes the transfer to technology from research to industry, factors affecting 
technology adoption and acceptance are also useful to be studied. We assess 
software defect prediction techniques in the context of automotive domain mainly in 
these three dimensions.  

1.2 Research Questions  
In section 1.1 we reviewed different techniques of software defect predictions, 
which use different types of input data and can be applied at different stages of 
software life cycle at different level of granularity. We also provided a brief 
background on the lifecycle of software development in automotive domain and the 
development process. Given the specific context of automotive software 
development using particular development process, tools and other practical 
constraints when working with third party suppliers – we underline that some of the 
software defect prediction techniques may or may not be suitable for use in the 
automotive domain, thus the main goal of this thesis is:  

To evaluate how software defect prediction techniques can be effectively 
applied over the software development life cycle within the automotive domain. 

 
The main research goal addressed in this thesis was broken down to six research 
questions as following: 

RQ1: Which defect prediction techniques are applicable at different stages of 
software life cycle in automotive domain? 

This research question provides a basis for understanding the context of software 
development life cycle as well as overview of different software defect prediction 
techniques that are applicable over the life cycle. The answer to this research 
question is provided in chapter 2. The chapter maps different defect prediction 
techniques onto when they can be applied over the automotive software life cycle. 
The chapter also maps SDP techniques to what granularity level they can be applied 
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and for what purpose. This in turn provides a basis for understanding which defect 
prediction techniques are applicable at what stage of software development, for what 
purpose and at what granularity they can be applied. 

Next the research question posed was to evaluate how software reliability growth 
models can be used for making defect count prediction and release readiness 
assessment in the automotive domain. 

RQ2: How software reliability growth models can be used for defect predictions in 
automotive domain? 

The research question two is addressed in chapter 3; in particular we were interested 
in evaluating applicability and performance of software reliability growth models in 
the context of automotive software development. Two specific application areas of 
interest in this chapter where total defect count prediction accuracy and assessment 
of release readiness. The chapter also deals with practical aspects of applying 
SRGMs in practice such as which parameter estimation method to use, metrics for 
evaluating predictive accuracy and how the choice of SRGMs on an on-going 
project be made more effective.  

After evaluation of SRGMs for predicting defect count for live projects, the next 
research question addressed in the thesis is aimed at understanding the consequences 
of mispredicting total defect count or the shape of defect inflow.  

RQ3: What are the consequences of mispredicting total number of defects and 
release readiness?  

Predictions obtained from any type of abstract models have uncertainties and risk of 
mispredictions associated with them. When using SRGMs for predicting expected 
defect count in an on-going project, misprediction scenarios could be over- and 
under-prediction, early- and late-predictions – and the combination of theses. The 
research question answered in chapter 4 is about possible consequences of 
mispredicting scenarios. The consequence or cost model is developed together with 
industry professionals at Ericsson and VCG and interviews were conducted to 
reflect which consequences were more or less relevant for two organizational 
divisions involved in the study.  

Following evaluation of SRGMs that have been evaluated in RQ 2 and possible 
consequences of mispredictions in RQ3, we evaluate another black box defect 
prediction technique – correlation based models for defect prediction. 

RQ4: How can correlation based models be used for defect prediction in automotive 
domain? 
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In particular the study was aimed at evaluating if and how can correlation based 
models be used for defect prediction in the context of EE (Electronics & Electrical 
system) platform projects in the automotive domain. Since correlation based models 
also do not require access to process or product metrics (access to source code), they 
were deemed suitable for the given context. Further correlation based models were 
also attractive due to their characteristics that they can be applied very easily in the 
industrial context, requires little (usually available) data and are intuitive to 
understand by all stakeholders involved in the development and quality assurance of 
software. The results of this study are presented in chapter 5. 

Most SDP techniques either use data from software testing and or use various 
process and product attributes collected from the analysis of source code and 
evolution data of software under development. A large part of software developed 
within the automotive domain uses domain specific modelling languages such as 
Matlab/Simulink from which code is usually auto-generated. The next research 
question posed was to investigate how these early software artefacts can be used for 
reliability evaluations. 

RQ5: How to evaluate reliability characteristics of software at early stages of 
development using only behavioural models? 

This research question required a shift from using software testing data for defect 
count prediction to using behavioural models for making reliability assessment early 
in the software development process. The framework proposed in this study 
comprises of utilizing fault injection in combination with mutation testing to assess 
the efficacy of the test suite. The framework help identify which defects if remained 
undetected by the available test suite can potentially violate the safety goals 
according to the ISO 26262 functional safety standard. Thus the proposed 
framework helps improving the reliability of system by early identification of design 
and possible implementation defects that can lead to safety goal violations. 

Defect prediction and classification models such as machine learning based models 
that use software evolution and code source based metrics are not feasible in many 
areas of automotive software development (particularly areas where large part of 
software is developed using suppliers). Nonetheless other areas within automotive 
software development that develops software in-house, these defect prediction 
techniques can be potentially useful. Also in other industrial domains developing 
embedded software such as telecom - these techniques are particularly attractive. 
While ML based SDP techniques have been extensively evaluated in research, their 
adoption in industry is yet far from optimal. The research question posed in chapter 
7 is to understand why.  
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RQ6: What are important factors for industrial adoption of machine learning based 
defect prediction models? 

When evaluating new techniques for software defect prediction, one attribute that is 
the focus of most research studies is the predictive accuracy. Many research 
investigations propose new algorithms and prove their usability by showing their 
superior predictive performance to other algorithms/techniques. Although in 
industry predictive performance is only one of many attributes that industrial 
practitioners consider while making adoption related decisions. The last research 
question addressed in chapter 7 investigates the factors that are considered important 
by these practitioners for choosing to use new techniques for defect prediction based 
on machine learning algorithms or adopting new tools based on these new 
techniques.  

1.2.1 Mapping of research questions to chapters and 
included papers  

In this section, the research questions (RQ1 – RQ6) discussed in the previous section 
are mapped to individual chapters and research questions answered in individual 
papers included in the thesis. Figure 4, illustrates the overview of this mapping. 

Figure 4: Mapping of main research questions to the chapters in the thesis. 
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Chapter 1 - Introduction 

 The introduction provides an overview of the goals of this thesis 
and the context in which the research has been conducted to 
answer the research questions posed.  

Chapter 2 - Overview of SDP techniques in context of automotive software life 
cycle 

Paper I: 
 RQ 1.1 What are the state of the art methods for software defect 

predictions?  
 RQ 1.2 When and at what granularity these methods applicable in 

the automotive software development life? 

Chapter 3 - SRGMs in automotive domain – selection and evaluation 

Paper II: 
 RQ 2.1 Which parameter estimation model is practical for applying 

SRGMs in automotive domain? 
 RQ 2.2 What metric to use for assessing the predictive accuracy of 

SRGM models? 

Paper III: 
 RQ 2.3 Which SRGMs fit best to the defect inflow of large 

automotive software project? 

Paper IV: 
 RQ 2.4 Which SRGMs are best for assisting with resource 

allocation?  
 RQ 2.5 Which SRGMs are best for making release readiness 

assessment? 
 RQ 2.6 Does using information from earlier projects improve 

release readiness assessment? 
 RQ 2.7 How to make the choice of SRGM (model selection) more 

effective? 

Paper V: 
 RQ 2.8 Which statistical distribution fit best to the defect inflow 

from large software projects? 
 RQ 2.9 How do different information criteria differ for selecting the 

best distribution fit? 
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Chapter 4 - Consequence of mispredictions  

Paper VI: 
 RQ 3.1 Given the software quality growth prediction curve, what 

are the consequences of mispredicting the total number of defects 
and release readiness? 

Chapter 5 - Correlation based SDP technique in automotive domain - 
evaluation 

Paper VII: 
 RQ 4.1 Is it possible to use defect count in current iteration to 

predict the defect count in next iteration? 
 RQ 4.2 Is it possible to predict pre-release defect counts using only 

defect count data in the intermediate iterations? 
 RQ 4.3 How can we use correlation based prediction models to 

identify defect prone modules? 

Chapter 6 - Evaluating reliability characteristics of executable models 

Paper VIII: 
 RQ 5.1 How fault injection and mutation testing can be used at 

model level and how it can be applied within the ISO 26262 
verification and validation framework? 

Chapter 7 - Machine learning techniques for SDP in industry - adoption 

Paper IX: 
 RQ 6.1 How can we use the technology acceptance and adoption 

models for developing framework for ML adoption in industry and 
how to adapt it for software defect prediction? 

Paper X: 
 RQ 6.2 What are the factors that are important for companies to 

make informed decision to adopt (or not adopt) ML algorithms for 
the purpose of software defect predictions? 

Chapter 8 – Summary of research results 

 The chapter provides a summary of research results, conclusions 
and areas of future research.  
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1.3 Contributions of the thesis 
The main contribution of this thesis comprises of evaluation of software defect 
prediction techniques in the context of automotive software development. The 
evaluation is primarily aimed at supporting software developers, testers, quality and 
project managers to take effective decisions on test resource allocation and 
assessment of maturity of software under development. In order to structure the 
research and thesis into sizable pieces, the main research question was broken down 
into six research questions (RQ1 to RQ6), which are addressed in chapters 2 to 7. 
The answer to the main research question and conclusions are presented in the final 
chapter (number 8). 

The first research question RQ1 is posed to provide more contextual information 
about software development life cycle in the automotive domain and mapping 
software defect prediction techniques with respect to their applicability on this life 
cycle. Also the purpose different SDP techniques can be used for and at what 
granularity level they can be applied was also explored under this research question, 
which is addressed in chapter 2. This study mainly provided: 

a. An overview of automotive software development life cycle for 
large platform EE projects, 

b. Mapping of different SDP techniques according to the development 
phase they can be applied, 

c. An overview of input data required, advantages and limitations of 
mapped SDP,  

d. The purpose and application level for different SDP techniques, and 
e. Roadmap for increasing the efficiency of defect predictions by 

using field data. 

The next research question, RQ2 addressed in chapter 3 was aimed at evaluating the 
applicability of software reliability growth models for defect count predictions and 
software maturity assessment. Related aspects such as the parameter estimation 
method to use and how the choice of SRGMs could be made more effective were 
also evaluated in this chapter. The studies included in this chapter provided: 

a. Two commonly used maximum likelihood estimation (MLE) and 
non-linear regression (NLR) were compared and suitability of 
metric for measurement of predictive accuracy discussed, 

b. Commonly applied SRGMs were evaluated on a system level 
suggesting applicability of SRGMs for the purpose of defect count 
predictions, 

c. A number of SRGMs were further evaluated on defect data from 
three different companies from embedded software domain and 
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their predictive performance for defect count forecast and release 
readiness assessment compared, 

d. It was also shown that trend analysis of defect inflow profile on an 
on-going project can help predict the expected shape of defect 
inflow for the project which can be useful for selecting the 
appropriate SRGM, and 

e. The statistical distribution family of defect inflow data was also 
explored where beta distribution was shown to be prominent family 
among tested distributions.  

The results from chapter 2 evaluated the performance of commonly applied SRGMs 
at system level software and at the level of EE platform project. The question of how 
to choose the appropriate SRGMs for a given purpose was also addressed. 

The next chapter addressed research question RQ3 to answer what are the 
cost/consequences of making wrong predictions using reliability growth modes. The 
main outcome of the research presented in this chapter where: 

a. Two axis of accuracy of prediction were explicitly identified - (i) 
the prediction of the asymptote or the total number of defects and 
(ii) when the total number of defects are discovered or the release 
readiness, and 

b. Different consequences of mispredictions on the two axes were 
discussed in the study and their impact on organizations was 
evaluated using case studies at two organizations. 

The following research question, RQ4 addressed in chapter 5 was posed primarily to 
evaluate applicability of correlation based defect prediction models in the context of 
iterative software development for EE platform projects in the automotive domain. 
Since correlation based models only needs few attributes as data input and can 
potentially be used to make predictions early in the development process, they can 
prove to be potentially useful for industrial practitioners. The answer to research 
question RQ4 consists of: 

a. Total defect count until about half way through the project strongly 
correlate to the total pre-release defect count suggesting its possible 
use as early indicator, and 

b. It was also shown in the study how correlation based models could 
be used to identify software modules that may need specific 
attention. 

After evaluating applicability of SRGMs and correlation based models for software 
defect count predictions and assessment of release readiness, we evaluated specific 
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opportunity presented in the automotive domain by the use of behavioural models.  
These models usually developed in domain specific languages such as 
Matlab/Simulink are detailed at implementation level from which code is commonly 
auto-generated. Since the development of these models begins early in the 
development process, using them for reliability analysis can provide early feedback 
for designers - thus making changes easy to implement and cost efficient. The study 
presented in this chapter 6 provided: 

a. A framework for early identification of design flaws and evaluating 
the efficacy of test suite to detect potential implementation defects 
that can potentially violate the safety goals. A combination of fault 
injection and mutation testing approach is used in the framework, 
and 

b. The framework was also subjected to initial validation to provide a 
proof-of-concept which encouraging results. 

Finally in chapter 7, research question RQ6 is addressed. Machine learning based 
software defect prediction techniques have found strong support among the research 
community – a number of techniques have been shown to provide high predictive 
accuracy, but their adoption in industry has not been widespread. In this chapter the 
main question of interest was to identify the factors that influence the decision of 
adoption for such techniques in industry. The study resulted in: 

a. A framework for adoption of machine learning based techniques in 
industry and its adaptation for software defect prediction,  

b. The framework identified nine main factors and various sub-
attributes that affect the decisions of adoption of new techniques for 
SDP in the industry, and  

c. The initial validation of framework was done at two companies and 
specific challenges for adoption are also identified. 

The results from the study suggested that while predictive accuracy have been the 
main focus of past research, industrial practitioners were also interested in how the 
new techniques fit into their existing systems and the magnitude of setup and 
maintenance costs. The study further discussed how to use the framework where 
research studies can actively address the concerns on industry practitioner looking to 
adopt these techniques and how tool vendors can use such information for further 
development of their tool offerings and marketing of their products. The framework 
also provides an objective checklist for organizations to evaluate new technologies 
or to distinguish between two competing techniques or tool offerings. 
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1.4 Research Methodology  
Research methodology describes the systematic process that is undertaken to yield 
the sought out research results. It outlines the process, steps taken, practices and 
methods employed to address the questions one wish to explore. Different 
approaches can be used to meet the objectives of a research, which could be 
discovery of knowledge and/or solving a specific problem. Possible research models 
identified by Adrion [44], [45], also identified as research paradigms by Basili [46] 
are: 

 The scientific method 
 The engineering method 
 The empirical method 
 The analytical method 

Depending on the questions of interest, different research approach and methods can 
be employed. While there is no consensus in the field with respect to classification 
of research techniques [47], a number of approaches and methods are well 
established in the field, we use research approach classification used by Glass, 
Vessey and Ramesh [47], they broadly classified research approaches used into 
descriptive, evaluative and formulative, these are further subcategorized as 
represented in Table 2. 

Table 2: Research approach as classified in [47] 

Descriptive Descriptive system (DS) 
Descriptive other (DO) 
Review of literature (DR) 

Evaluative Evaluative-deductive (ED) 
Evaluative-interpretive (EI) 
Evaluative-critical (EC) 
Evaluative-other (EO) 

Formulative Formulative-framework (FF) 
Formulative-guidelines/standards (FG) 
Formulative-model (FM) 
Formulative-process, method, algorithm (FP) 
Formulative-classification/taxonomy (FT) 
Formulative-concept (FC) 

  
The studies included in this thesis are classified based on the research approach, 
refer to Table 4. 

1.4.1 Main research types used in this thesis 
Research can be classified under various types, which mainly relate to what type of 
research questions are answered and the process followed. The studies included in 
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this thesis are classified on the basic types of research using classification provided 
in Kothari [48], distinguishing between: 

 Descriptive Vs. Analytical, 
 Fundamental Vs. Applied, 
 Quantitative Vs. Qualitative, 
 Conceptual Vs. Empirical, and 
 Other types of research. 

Descriptive Vs. Analytical 
The main purpose of descriptive studies is to describe the state of a system, as it is 
present. In descriptive studies researcher has/exert no control over the variables but 
only report what has happened or is happening. Descriptive studies are usually used 
to describe the state or workings of software systems, eco-systems or take the form 
of review of literature classifying and summarizing the advances in a particular area 
of interest. On the other hand in case of analytical research, the researcher use facts 
and information available already and it is analysed to make critical evaluation. 
According to Glass [45], analytical studies include proposing or using an existing 
theory or set of axioms, develop that theory deriving results and where possible 
comparing the results using empirical observations. Analytical studies can be done 
using correlation/regression analysis. Analytical studies usually use quantitative 
research methods which is defined as [49]: “Explaining phenomena by collecting 
numerical data that are analysed using mathematical based methods (in particular 
statistics)”. Both descriptive and analytical research types have been used in various 
studies included in this thesis. 

Fundamental Vs. Applied 
Fundamental (or basic/pure) research is mainly concerned with formulating theories 
and generalization of phenomenon. This type of research is mainly driven to expand 
the knowledge within a specific research area. On the other hand applied research is 
mainly driven to solve specific problems with immediate practical implications. The 
overall research goal of this thesis is applied in nature and thus all studies in this 
thesis were applied research type. 

Quantitative Vs. Qualitative  
Quantitative research is based on objective measures and is applicable for 
phenomenon’s that can be expressed in terms of numerical quantities. Quantitative 
research collect data from number of cases and interesting patterns can be reviled 
using statistical methods, these methods are not appropriate for gaining deeper 
understanding of underlying reasons. While quantitative research can be effectively 
used to evaluate established or proposed theories, it is usually not appropriate for 
explaining why questions where qualitative research using methods such as case 
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studies are useful. Quantitative research deals with “when”, “where” and “how 
often”; on the other hand qualitative research generally aims at answering the “why” 
and “how” questions. In this thesis six out of ten included studies are quantitative in 
nature while rest are qualitative research type. 

Conceptual Vs. Empirical   
Research related to abstract idea(s) or theory is usually regarded as conceptual 
research, while research that relies exclusively on the experience/observations is 
classified as empirical type. In conceptual analysis an idea or a concept is broken 
down into its constituent parts to gain better understanding, this research type is 
more popular in social sciences and philosophy. Empirical research involves 
collection of data through observations and experiments and it is usually done to test 
a given hypothesis. Most studies conducted in the course of this thesis can be 
classified as empirical research.  

Other types of research    
Types of research not described above are often variations of one or more of above 
stated research types. Research type can also be classified in other ways such as 
from the perspective of time, a research can be conducted as one-time study (using 
cross-sectional data) or it can be conducted over longer time period (longitudinal 
study).  

1.4.2 Research methods mapping to studies included 
in the thesis 

Research methods used in a given study are usually not mutually exclusive; they are 
generally combined as appropriated by the purpose of research. We use the research 
methods categories used by Glass, Vessey and Ramesh [47], Table 3 list the 
research methods listed in [47]. 

Table 3: Research methods as classified in [47] 

AR 
CA 
CAM 
CI 
 
CS 
DA 
DI 
ET 
FE 
FS 
GT 

Action research 
Conceptual analysis 
Conceptual analysis/mathematical 
Concept implementation (proof of 
concept) 
Case study 
Data analysis 
Discourse analysis 
Ethnography 
Field experiment 
Field study 
Grounded theory 

HE 
ID 
LH 
 
LR 
LS 
MA 
MP 
PA 
PH 
SI 
SU 

Hermeneutics 
Instrument development 
Laboratory experiment (human 
subjects) 
Literature review/analysis 
Laboratory experiment (software) 
Meta-analysis 
Mathematical proof 
Protocol analysis 
Phenomenology 
Simulation 
Descriptive/exploratory survey 
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Table 4 presents the overview of mapping of included studies based on research 
methodology and methods used. 

Table 4: Mapping of research approach, type and methods to papers included in the 
thesis. 

Paper 
No 

Research approach Research type Research methods 

Paper 1 
Descriptive, Review of 
literature  

Descriptive, Applied, 
Qualitative, Conceptual 

Conceptual analysis, Case 
study, Literature 
review/analysis 

Paper 2 Evaluative-deductive 
Analytical, Applied, 
Quantitative, Empirical 

Conceptual 
analysis/mathematical, Data 
analysis 

Paper 3 Evaluative-deductive 
Analytical, Applied, 
Quantitative, Empirical 

Case study, Data analysis 

Paper 4 
Evaluative-deductive,  
Formulative-guidelines 

Analytical, Applied, 
Quantitative, Empirical 

Case study, Data analysis 

Paper 5 
Evaluative-interpretive, 
Formulative-model 

Analytical, Applied, 
Quantitative, Empirical 

Case study, Data analysis 

Paper 6 
Descriptive, Descriptive 
other 

Descriptive, Applied, 
Qualitative, Conceptual 

Conceptual analysis, Action 
research, Literature 
review/analysis, Case study 

Paper 7 Formulative-framework 
Analytical, Applied, 
Quantitative, Empirical 

Case study, Simulation
  

Paper 8 Evaluative-deductive 
Analytical, Applied, 
Quantitative, Empirical 

Case study, Data analysis 

Paper 9 Formulative-framework 
Descriptive, Applied, 
Qualitative, Conceptual 

Conceptual analysis, Action 
research, Literature 
review/analysis, Case study 

Paper 10 Evaluative-deductive 
Analytical, Applied, 
Qualitative, Empirical 

Case study, Field study 

 
The principle research methods used in the included studies are described next. 

Case study  
Case studies are empirical studies using either qualitative or quantitative data, these 
are generally used for exploring projects, activities or assignments [50]. According 
to Yin [51] a case study is an empirical investigation of contemporary phenomenon 
within a real-life context. Although the level of control is lower compared to 
experiments in a case study, it has a strong focus on empiricism and thus effective 
for tracking a specific attribute or establishing relationships between different 
attributes in real-life situations. The strong emphasis on understanding the context 
makes case study very suitable for industrial evaluation of software engineering 
methods and tools [50], while the greatest weakness of this method is the low power 
of generalizability.    
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Data Analysis 
Data analysis method is used for both quantitative and qualitative research types. In 
case of quantitative data, the analysis techniques usually include descriptive 
statistics, correlation analysis, predictive modelling and hypothesis testing [52]. 
Descriptive statistics help understand the collected data - mean values, standard 
deviations and various exploratory visual plots aid the researcher in data exploration 
and visualization. Correlation and predictive models are used to describe 
relationship between different attributes of a process. Hypothesis testing is typically 
done to establish if there exists a significant effect of one or more variables on one 
or more other variables [52].  

1.4.3 Mapping research process to experience factory 
model 

The environment, in which research is conducted, commonly referred to as research 
setting has important consequences for type of research that can be conducted. 
Research settings for example affect the choice of experimental design, the type of 
data that can be collected, research methods used and overall goals of conducted 
research. The research settings used in this thesis can be mapped to the experience 
factory model described by Basili et al. [53]. The Quality Improvement Paradigm/ 
Experience Factory Organization setup provides an appropriate setup for conducting 
applied research in close collaboration with industrial partners, which fits well with 
the main objectives of this project. 

Figure 5: Illustration of Quality Improvement Paradigm/Experience Factory Organization as 
presented in Basili et al. [51] 
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The experience factory can be a physically separate and/or logical organization 
within the project organization. The correspondence between this thesis project 
setup and experience factory model can be described as follows: 

The project organization: This role was fulfilled mainly by the industrial partner of 
the project i.e. VCG. While some studies included in the thesis have been conducted 
in co-operation of other companies including Ericsson and Saab electronic defence 
system, the main partner organization has been VCG. The project was co-supervised 
by the industrial supervisor at the project organization. The development 
organization provided the analysis organization with the environment characteristics 
(context of automotive software development and testing), development data 
(software defect data), process, quality, resource utilization etc.  

Experience factory: The project researcher together with main academic supervisor 
from the division of software engineering at Chalmers/University of Gothenburg 
were the primary participants of the analysis organization (experience factory). The 
analysis organization engaged in data collection (interviews, observations etc.), 
analysis of collected data and returned direct feedback on the lessons learned to the 
project organization. The role of support organization was fulfilled by academic and 
industrial co-supervisors of the project who facilitated the interaction between 
developers, testers and managers within the project organization and with the 
efficient retrieval of information. 

 The data collected was analysed based on the goals of project, 
which were setup in the beginning of the project and continually 
reviewed following the project progress.  

The data was mainly used to: 

 Characterize and understand, (e.g. the paradigm of software 
development and verification and validation environment within 
automotive domain, the constraints and opportunities of the same); 

 Evaluate and analyse, (e.g. which SRGMs give the best predictive 
performance for defect count prediction and for assessment of 
release readiness); 

 Predict and control, (e.g. predicting expected defect count in next 
iteration based on defect found until a given iteration, using defect 
count data to identify software modules for further investigation); 

 Motivate and improve, (e.g. how to improve the reliability 
characteristics of software under development using early stage 
artefacts such as behavioural models). 
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The package part of experience organization came from the experience of academic 
and industrial co-supervisors. While the project and analysis organization in the 
setup of this project were not strictly setup according to the Quality Improvement 
Paradigm/Experience Factory Organization [53], the implicit setup of the research 
project was close to this paradigm as outlined above.   

1.5 Related Papers 
The main part of the thesis excluding current and last chapter comprise of papers 
and articles that have been published or are under submission. Some of papers that 
were published but not included in the thesis are listed separately in section 0.  

1.5.1 Papers included in the thesis 
The following papers were included in the thesis: 

Chapter 2: R. Rana, M. Staron, J. Hansson and M. Nilsson, “Defect Prediction over 
Software Life Cycle in Automotive Domain”, In the proceedings of 9th International 
Joint Conference on Software Technologies - ICSOFT-EA, Vienna, Austria, 2014 

Chapter 3: This chapter consist of four papers 

R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Törner, “Comparing 
between Maximum Likelihood Estimator and Non-Linear Regression estimation 
procedures for Software Reliability Growth Modelling”, In the proceedings of 23rd 
International Conference on Software Measurement, IWSM-Mensura, Ankara, 
Turkey, 2013 

R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, F. Törner, and N. Mellegård, 
“Evaluation of standard reliability growth models in the context of automotive 
software systems”, In the proceedings of 14th Product-Focused Software Process 
Improvement, PROFES, Paphos, Cyprus, 2013 

R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, F. Törner, W. Meding, and 
C. Höglund, “Selecting software reliability growth models and improving their 
predictive accuracy using historical projects data,” Published in Journal of Systems 
and Software, vol. 98, pp. 59–78, Dec. 2014 

R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and W. Meding, “Analyzing 
Defect Inflow Distribution of Large Software Projects”, Submitted to a Journal 
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-This paper is based (revised and extended) on paper “Analysing Defect Inflow 
Distribution of Automotive Software Projects”, Published in the proceedings of 10th 
International Conference on Predictive Models in Software Engineering, PROMISE, 
Turin, Italy, 2014 

Chapter 4: M. Staron, R. Rana, W. Meding, and M. Nilsson, “Consequences of 
Mispredictions of Software Reliability: A Model and its Industrial Evaluation”, In 
the proceedings of 24nd International Conference on Software Measurement, 
IWSM-Mensura, Rotterdam, The Netherlands, 2014 

Chapter 5: R. Rana, M. Staron, J. Hansson, M. Nilsson, and F. Törner, “Predicting 
Pre-Release Defects and Monitoring Quality in Large Software Development: A 
Case Study from the Automotive Domain”, Submitted to a Journal 

Chapter 6: R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Törner, 
“Early Verification and Validation According to ISO 26262 by Combining Fault 
Injection and Mutation Testing,” Published in Software Technologies, Springer, 
2014, pp. 164–179. 

Chapter 7: This chapter consist of two papers 

R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and W. Meding, “A 
framework for adoption of machine learning in industry for software defect 
prediction”, In the proceedings of 9th International Joint Conference on Software 
Technologies, ICSOFT-EA, Vienna, Austria, 2014 

R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and W. Meding, “The 
adoption of machine learning techniques for software defect prediction: An initial 
industrial validation”, In the proceedings of 11th Joint Conference On Knowledge-
Based Software Engineering, JCKBSE, Volgograd, Russia, 2014 
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1.5.2 Papers not included in the thesis 
The following papers and technical report are not included in the thesis: 

R. Rana, “Defect Prediction & Prevention in Automotive Software Development”, 
Ph.D. Licentiate Thesis (Technical Report No 108L), Chalmers/ University of 
Gothenburg, Sweden, 2013 

R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Törner, “Evaluating 
long-term predictive power of standard reliability growth models on automotive 
systems”, In the proceedings of 24rd IEEE International Symposium on Software 
Reliability Engineering (ISSRE), Pasadena, USA, 2013 

R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Törner, “Increasing 
Efficiency of ISO 26262 Verification and Validation by Combining Fault Injection 
and Mutation Testing with Model Based Development”, In the proceedings of 8th 
International Joint Conference on Software Technologies, ICSOFT-EA, Reykjavík, 
Iceland, 2013 

R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson and F. Törner, “Improving 
Dependability of Embedded Software Systems using Fault Bypass Modeling”, In the 
proceedings of Software-Based Methods for Robust Embedded Systems (SOBRES) 
Workshop at Informatik, Germany, 2013 

R. Rana, M. Staron, C. Berger, J. Hansson and M. Nilsson, “Analysing Defect 
Inflow Distribution of Automotive Software Projects”, In the proceedings of 10th 
International Conference on Predictive Models in Software Engineering, PROMISE, 
Turin, Italy, 2014 

M. Holmén, E. Nivorozhkin, and R. Rana, “Do anti-takeover devices affect the 
takeover likelihood or the takeover premium?”, Published in The European Journal 
of Finance, vol. 20, no. 4, pp. 319–340, Jul. 2012 
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1.6 Thesis outline 
The thesis is structured according to the research questions presented in section 1.2. 
The first chapter provides the introduction to the thesis, providing an overview of 
research questions addressed, mapping them to individual chapters and research 
methodologies used and providing a summary of thesis contributions. In chapter 2 
software development life cycle in automotive domain is introduced providing the 
contextual information and different software defect prediction techniques are 
mapped to the phases of this life cycle. The next chapter makes an evaluation of 
applicability of SRGMs for the purpose of defect count predictions and release 
readiness assessment. The questions on how to apply SRGMs in practice and how 
appropriate models can be selected are also addressed in the same chapter. The 
following chapter (number 4) provide details on the possible consequences of 
mispredicting the defect count or mispredicting the timing of when the expected 
defects would be found. 

Next in chapter 5 we evaluate another black box software defect prediction 
technique namely the correlation based prediction models. The chapter evaluates if 
the number of defects found until a given iteration can be used to predict the 
expected defect count in the next iteration and/or the total pre-release defect count. 
Chapter 6 shifts the focus on how behavioural models developed under the paradigm 
of model based development can be used for early identification of potential design 
defects and to assess the adequacy of test suite to provide early feedback to software 
designers and testers to improvise the reliability characteristics of software under 
development. In chapter 7, factors that play an important role in adoption of 
machine learning based techniques for software defect prediction are identified and 
validated in the industrial context. The chapter also provides guidelines on the use of 
adoption framework developed for different purposes. Finally chapter 8 concludes 
the thesis with the summary of research results and directions for future research. 
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2 DEFECT PREDICTION OVER SOFTWARE 
LIFE CYCLE IN AUTOMOTIVE DOMAIN: 
STATE OF THE ART AND ROAD MAP 
FOR FUTURE 

 

Abstract— Software today provides an important and vital role in providing the 
functionality and user experience in automotive domain. With ever increasing size 
and complexity of software together with high demands on quality and 
dependability, managing software development process effectively is an important 
challenge. Methods of software defect predictions provide useful information for 
optimal resource allocation and release planning; they also help track and model 
software and system reliability. In this paper we present an overview of defect 
prediction methods and their applicability in different software lifecycle phases in 
the automotive domain. Based on the overview and current trends we identify that 
close monitoring of in-service performance of software based systems will provide 
useful feedback to software development teams and allow them to develop more 
robust and user friendly systems. 

Keywords— Defect Prediction; Software Life Cycle; Automotive Software; Test 
Resource Allocation; Release Readiness 
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2.1 Introduction 
Software is now an important part of automotive products, over 2000 software 
functions running on up to 70 Electronic Control Units (ECUs) provide a range of 
functionality and services in modern cars [3]. With premium segment cars today 
carrying about 100 million lines of code, which is more than fighter jets and airliners 
[54]. Automotive software development projects at full EE (Electronics & Electrical 
System) level usually are large and span several months. Given the size, complexity, 
demands on quality and dependability, managing such projects efficiently and 
tracking the software evolution and quality over the project lifecycle is important. 

Defects in software provide observable indicators to track the quality of software 
project/product under development.  Different methods for analysis of software 
defect data have been developed and evaluated; these methods have also been used 
to provide a range of benefits such as allowing early planning and allocation of 
resources to meet the desired goals of projects. The different methods of software 
defect analysis and predictions have different characteristics. They need different 
types of input data, are only appropriate to be applied at specific granularity levels 
and for certain applications. In this paper we summarize the state of the art methods 
for software defect predictions. We place these methods where these are applicable 
on the automotive software development life. The methods are mapped to their 
appropriate level of granularity and application type. We also contend for the 
position that with technology enabling collection and analysis of in-operations data 
efficiently will enable software designers and developers to use this information to 
design more robust and user-friendly features and functions. 

2.2 Background  

2.2.1 Automotive Software Development Life Cycle 
Most automotive Original Equipment Manufacturers (OEMs) follow Model Driven 
Development (MDD). And since car/platform projects are often large and spread 
over several months, they are executed in number of iterations. Software 
development in this domain has been illustrated as variants of iterative development 
based on spiral process model [55] and approaches based on V-model [34], [35]. 
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Figure 6: Time Line of Automotive Software Development Life Cycle 

The full EE (Electronics & Electrical System) development constitutes the complete 
development of software and hardware (Electronic Control Units). Different stages 
of software development process in the automotive domain (illustrated by Figure 6) 
are:  

1. Concept Phase: Where a new functionality is designed and tested 
on prototypes and Proof of Concept (POC) is demonstrated. 

2. Production Software: The main requirements (on vehicle level) are 
set for the upgrade and new functions approved for market 
introduction. Software and hardware intended to be included in 
production automobiles is developed in iterative manner following 
V-model or spiral development process. The first part of 
developing production software is dominated by the addition of the 
new functionality. Unit, integration and function testing are also 
part of each iteration. In the second part, also carried out in number 
of iterations – the focus is shifted to integration and acceptance 
testing.  

3. In Operation: Once the new vehicle model is released into the 
market, the performance of software and hardware is monitored 
(through diagnostics) during its operation.  

2.2.2 Methods for Software Defect Predictions (SDP) 
Early estimations of software defects can be used effectively to do better resource 
planning and allocations. It can also help to track the progress of given software 
project and improve release planning. 

A number of methods have been used for predicting software defects. These 
methods differ from one another based on the type of input required; the amount of 
data needed, prediction made and sensitivity to give stable predictions varies. Based 
on their characteristics, the models can be categorized as: 
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 Causal Models, 
 Using Expert Opinions, 
 Analogy Based Predictions, 
 Models based on Code and Change Metrics,  
 Software Reliability Growth Models (SRGMs), etc. 

2.3 Related Work 
Expert opinions were used and their performance compared to other data based 
models in a study by Staron and Meding [15]. Long term predictive power of 
SRGMs within the automotive domain was studied in authors earlier works [56], 
[57], demonstrating their usefulness in making defect and reliability predictions.  

Number of software metrics based on code characteristics such as size, complexity 
etc., has been successfully used to classify defect prone software modules or 
estimate software defect densities. Khoshgoftaar and Allen [29] used logistic 
regression for classifying modules as fault-prone, while Menzies, Greenwald and 
Frank [31] used static code attributes to make defect prone forecasts. Methods that 
use code and change metrics as inputs and use machine learning methods for 
classification and forecasting have also been studied by Iker Gondra [32] and [58].  

Fenton and Neil [20] critique the use of statistical based software defect prediction 
models for their lack of causal link modelling and proposes use of Bayesian Belief 
Networks (BBNs). Bayesian Nets have been used to show their applicability for 
defect forecasting at very early stages of software projects [21]. Our study 
complements earlier studies in defect predictions by illustrating when different 
methods of SDP are most appropriate over a software development life cycle.  

2.4 Defects Prediction over Automotive 
Software Life Cycle 

Applicability of various methods for software defect predictions over the life cycle 
phases of automotive software development is represented in Figure 7 and the 
characteristics of each method are summarized in Table 5. At earliest (concept) 
phase models that can be applied (given the availability of data about requirements, 
designs and implementation) are:  

 Causal Models 
 Using Expert Opinions 
 Analogy Based Predictions 
 COnstructive QUALity MOdel (COQUALMO)  
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Models applied at this (concept) phase usually also use information from similar 
historical projects. Experts in the company draw on their experience to make such 
forecasts, while data based models require the data to be supplied as inputs. The 
larger the amount of information available on similar historical projects, the higher 
is the likelihood for these models to make accurate and stable predictions. 

Other SDP methods require data from the development/testing phase. Examples of 
such methods are: 

 Correlation Analysis 
 Methods based on Code & Change Metrics 
 Software Reliability Growth Models (SRGM) 

Correlation analysis models uses number of defects discovered in given iteration 
(and possibly more attributes) to predict number of defects for following iterations 
or defect count at project level. Methods based on code and change metrics require 
access to source code/functional models to measure characteristics such as size, 
complexity, dependencies etc., which are then used to make the defect proneness 
classification or forecasting of defect counts/densities. Thus methods based on code 
and change metrics can only be applied when access to source code/functional 
models is available. After end of iteration 1, such data is usually available and can 
be used for making such forecasts. In some cases, which is often the situation in 
automotive software development, access to source code may be an issue when 
software is sourced through a sub-supplier. Further since the software development 
in automotive domain pre-dominantly uses MDD, functional/behavioural model 
metrics alternatives to code metrics may need to be used where their applicability 
and performance is currently not well investigated/documented.  

Table 5: Software defect prediction models, characteristics and applicability over 
Automotive SW life cycle 

Method Input Data Required Advantages and Limitations 

Causal Models 

Inputs about estimated 
size, complexity, 
qualitative inputs on 
planned testing and 
quality requirements. 

Causal models biggest advantage is that they can be 
applied very early in the development process. 
Possible to analyse what-if scenarios to estimate 
output quality or level of testing needed to meet 
desired quality goals. 

Expert Opinions 

Domain experience 
(software development, 
testing and quality 
assessment). 

This is the quickest and most easy way to get the 
predictions (if experts are available). 
Uncertainty of predictions is high and forecasts may be 
subjected to individual biases. 

Analogy Based 
Predictions 

Project characteristics 
and observations from 
large number of 
historical projects. 

Quick and easy to use, the current project is compared 
to previous project with most similar characteristics. 
Evolution of software process, development tool chain 
may lead to inapplicability or large prediction errors. 
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COnstructive 
QUALity MOdel 

Software size estimates, 
product, personal and 
project attributes; defect 
removal level. 

Can be used to predict cost, schedule or the residual 
defect density of the software under development. 
Needs large effort to calibrate the model. 

Correlation 
Analysis 

Number of defects found 
in given iteration; size 
and test effort estimates 
can also be used in 
extended models. 

This method needs little data input which is available 
after each iteration. 
The method provides easy to use rules that can be 
quickly applied. 
The model can also be used to identify modules that 
show higher/lower levels of defect density and thus 
allow early interventions. 

Regression 
Models 

Software code (or 
model) metrics as 
measure of different 
characteristics of 
software code/model; 
Another input can be the 
change metrics. 

Uses actual code/models characteristic metrics which 
means estimates are made based on data from actual 
software under development. 
Can only be applied when code/models are already 
implemented and access to the source code/model is 
available. 
The regression model relationship between input 
characteristics and output can be difficult to interpret – 
do not map causal relationship. 

Machine 
Learning based 
models 

Software code (or 
model) metrics as 
measure of different 
characteristics of 
software code/model; 
Another input can be the 
change metrics. 

Similar to regression models, these can be used for 
either classification (defective/not defective) or to 
estimate defect count/densities. 
Over time as more data is made available, the models 
improvise on their predictive accuracy by adjusting 
their value of parameters (learning by experience). 
While some models as Decision Trees are easy to 
understand others may act like a black box (for 
example Artificial Neural Networks) where their 
internal working is not explicit. 

Software 
Reliability 
Growth Models 

Defect inflow data of 
software under 
development (life cycle 
model) or software under 
testing. 

Can use defect inflow data to make defect predictions 
or forecast the reliability of software based system. 
Reliability growth models are also useful to assess the 
maturity/release readiness of software close to its 
release 
These models need substantial data points to make 
precise and stable predictions. 
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SRGMs on the other hand do not need access to source code/model metrics data; 
these are black-box techniques that only use defect inflow data during 
development/testing to model the reliability of software systems. While these 
models can be applied when the software is under development/testing – they need 
substantial data points (defect inflow) to make stable predictions. 

Figure 7: Methods for software defect predictions, applicability over SW life cycle in automotive 
domain 

2.5 Analysing defects data over software life 
cycle 

Another characteristic of defect analysis methods is at what level they can be 
applied. Based on the type of method and input data needed different models 
provide optimal results at different granularity levels. They can also be used for 
variety of different purposes. Table 6 summarizes the levels and appropriate 
applications for each model type. The granularity level at which analysis can be 
done are: 

 Product Level (PL), 
 System Level (SL), 
 Sub-System level (SSL), 
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 Functional Unit level (FU), 
 MOdule (MO), or at the 
 File Level (FL) 

And the applications where analysis of software defect data can be useful are: 

 Resource Planning and Allocations (RPA), 
 What-IF analysis (WIF), 
 Release Readiness Assessment (RR), 
 Root Cause Analysis (RCA), or for  
 Identification of Defect Prone units (IDP) 

Table 6: Application level and useful purposes 

Model	 Application level	Application area	
Causal Models	 PL, SL, SSL	 RPA, WIF	
Expert Opinions	 PL, SL, SSL, FU	 RPA, RRA, RCA, WIF	
Analogy Based Predictions	PL, SL, SSL, FU	 RPA, RRA	
COQUALMO	 PL, SL, SSL, FU	 RPA	
Correlation Analysis	 SSL, FU, MO, FL	RRA, IDP, WIF	
Regression Models	 SSL, FU, MO, FL	RRA, IDP, WIF	
ML based models	 SSL, FU, MO, FL	RRA, IDP, WIF	
SRGMs	 PL, SL	 RPA, RR, RCA	

2.6 Roadmap for increasing efficiency in 
combining defect prediction methods with 
field data 

In the software domain, the post release monitoring have been fairly limited as 
software is not regarded same as hardware (software do not degrade or break down 
with age). Another major reason for lack of monitoring of software in-operation 
performance in the past has been the un-availability of necessary skills at the service 
end to retrieve the data and easily feed it back to OEMs for analysis. 

But with the advancements of new technology such as high speed data transfer, 
cloud storage and highly automated computer based diagnostics equipment’s 
available across most of the service points - offers unprecedented opportunity to 
collect and retrieve the data from the in-operations phase. This feedback information 
can further enhance the capabilities to design and develop even better, higher quality 
and safe automotive software.  

We contend that the current technologies make it possible for OEMs to collect and 
analyse in-operations performance of software based systems very much like it has 
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been the case for hardware components in the past. And much like how such 
monitoring helped design better hardware components, increase their life and 
reliability – monitoring the in-operations data of software systems performance will 
help design more robust, reliable and user friendly software functions in the future. 

For example, following and analysing detailed performance metrics of software 
based system during their life-time operations will: 

 Provide in-operations performance metrics of software based 
systems. 

 The qualitative and quantitative robustness and reliability measures 
from in-operations data will provide input (feedback) for experts 
and causal models on which software characteristics lead to most 
reliable performance. 

 The current evaluation of performance of code & change metrics 
SDP models is based on their performance compared to defects 
found during development and testing. Using in-operations 
performance data and using code & change metrics data from their 
source code will help identify “best practices” for the software 
designers and developers to avoid actions that may lead to sub-
optimal performance during operations.  

 Insights from the in-operation phase are already used by certain 
OEMs for effective optimization/calibration. For example 
functional units such as powertrain use in-operations data to 
calibrate engines for achieving optimal balance between power and 
efficiency. 

 Active monitoring and analysis of in-operations performance (of 
software based systems) will help isolate any potential performance 
related issues and offer quick updates whenever needed. This will 
further enhance the overall dependability of automotive products. 

 Further in future where in-operation monitoring and feedback cycle 
is shortened would also enable OEMs to identify user satisfaction 
and usefulness of different features within their cars. This will 
allow for design and development of more user-friendly features 
that will benefits the end customers. 

2.7 Conclusions 
The role and importance of software in automotive domain is rapidly increasing. 
The size, complexity and value - software provides in modern automotive products 
is ever increasing and expected to grow further. With trends moving towards more 
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software enabled functions, autonomous vehicles and active safety systems – 
ensuring dependability of software based systems is highest priority. 

Software development in automotive domain is a long and complex process, various 
software defect predictions models offer possibilities to predict expected defects 
thus providing early estimations that are useful for resource planning and 
allocations, release planning and enabling close monitoring of progress of given 
project. 

In the paper we reviewed that different methods for SDP need different forms of 
input data, they also have different capabilities and limitations when it comes to 
their ability to make accurate and stable forecasts. Thus given at what phase of 
software development life cycle we are in and what kind of data is available, certain 
defect prediction models may be more appropriate than others and thus should be 
preferred.  

We also show that unlike past, the present technology enables close monitoring, 
collection and analysis of detailed performance data of software based system 
during in-operations phase. This data now and in future will be much easy to collect, 
store, retrieve and analyse. We contend that analysis of such data will lead to 
development of more robust software based systems that will further help to enhance 
the reliability of automotive products and aid in development of features that 
provide superior overall user experience. 
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3 COMPARING BETWEEN MAXIMUM 
LIKELIHOOD ESTIMATOR AND NON-
LINEAR REGRESSION ESTIMATION 
PROCEDURES FOR SOFTWARE 
RELIABILITY GROWTH MODELLING 

 

Abstract— Software Reliability Growth Models (SRGMs) have been used by 
engineers and managers for tracking and managing the reliability change of software 
to ensure required standard of quality is achieved before the software is released to 
the customer. SRGMs can be used during the project to help make testing resource 
allocation decisions and/ or it can be used after the testing phase to determine the 
latent faults prediction to assess the maturity of software artefact. A number of 
SRGMs have been proposed and to apply a given reliability model, defect inflow 
data is fitted to model equations. Two of the widely known and recommended 
techniques for parameter estimation are maximum likelihood and method of least 
squares. In this paper we compare between the two estimation procedures for their 
usability and applicability in context of SRGMs. We also highlight a couple of 
practical considerations, reliability practitioners must be aware of when applying 
SRGMs. 

Keywords— Software reliability growth model (SRGM), Asymptote prediction, 
Predictive relative error (PRE), unbiased, BPRE, Non-linear Regression, Maximum 
likelihood estimation. 
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3.1 Introduction 
Software is plying an ever increasing role in our day today life. Most of the products 
and services we consume are now based on software or uses software in certain 
ways [59]. Over the years the complexity of software artefacts has been growing 
rapidly, while at the same time the demands for dependability of software systems 
have also increased. The link between complexity and software faults have been 
suggested for long, studies as early as 1980s such as [60] suggest that software 
complexity often affects its reliability. Thus while it is important to keep the 
complexity of software under check, it is also important to tack and monitor their 
reliability growth. 

Software testing is still the main source of ensuring reliability and quality of 
software systems. Testing in the area of software products is highly resource 
intensive exercise, some of the estimates put it around 50% of overall development 
cost [61]. But testing resource consumptions can be much more resource/cost 
efficient, if project managers are able to plan testing activities well [62]. Software 
reliability growth models have been used to estimate the reliability change in 
software products and use the reliability growth predictions for making testing 
resource allocation decisions. Since the software can rarely be made fully error free, 
project managers need to balance costs associated with software testing to cost of 
fixing bugs after release [63]. 

Software reliability can be modelled using reliability models, which can be based on 
Non-Homogeneous Poisson Process (NHPP), Markov process or Bayesian models. 
One of the major difficulty faced when using Markov and NHPP models is with 
their parameter estimation [64]. 

A number of difficulties that may be encountered when applying SRGMs to defect 
data; in this paper we explore practical considerations when using two types of 
estimators – Non-Linear Regression and Maximum Likelihood Estimator. We 
compare between the two and introduce a measure for assessing the predictive 
power of reliability models. The data used for this study is time-domain failure data 
for a real-time control system provided in [65] and used in many earlier studies 
including [66], [67]. In the data 136 faults have been reported with their time 
between failures (TBF). In the next section we describe the basics of SRGMs and 
list related work, section 3 outlines the research questions and methodology while 
the following section (4) is used to present the results. The paper is summarized in 
section 5 with conclusions and directions for future work. 
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3.2 Background 

3.2.1 SRGMs: Software Reliability Growth Models 
Software reliability engineering tends to focus on using engineering techniques for 
assessing and improving the reliability of software systems during development and 
post development. A roadmap on the software reliability engineering is presented in 
[68]. Application of empirical reliability engineering techniques have led to two 
basic categories, the first class of models called software reliability models (SRMs) 
are static models that uses attributes of software source code to assess or predict its 
reliability, while the software reliability growth models (called SRGMs) or the 
dynamic models generally uses statistical distributions of the defect inflow patterns 
to estimate/predict the end-product reliability [69]. The SRMs and SRGMs could 
also be differentiated based on their access to source code which former being a 
white box models while the latter being black box modelling of software reliability. 
We focus on SRGMs in this study. 

3.2.2 Model Selection 
Since the start of reliability modelling within software domain in early 1960s [70], a 
number of SRGMs have been proposed and evaluated [65]. With so many models 
which generally differ from one another on their assumptions about underlying 
software development and testing process, model selection has been a critical 
challenge. Studies such as by Goel [71] and Musa [72] have shown that different 
models/families of models are better suited than others for certain applications. A 
number of studies have also looked into the questions of model selection and 
suggested various solutions. Sharma [73] recommends that different models should 
be first compared and evaluated before making a selection. Stringfellow and 
Andrews [74] presented an empirical method for selecting the SRGM using a 
proposed criteria and iteratively applying different models, while Khoshgoftaar and 
Woodcock [75] supports using Akaike Information Criteria (AIC) which is based on 
the log-likelihood function as a tool to select the best model for given 
application/data. 

3.2.3 Comparing between SRGMs 
One common way to understand the differences between different models and their 
ability to fit and predict given defect data is to do comparative studies. A number of 
NHPP based SRGMs have been reviewed and compared on their fit and predictive 
power by Pham [66]. Ullah et al. [76] also present a study comparing eight SRGMs 
onto large dataset consisting of fifty defect data from industrial and open source 
projects. Other studies have also evaluated and compared different SRGMs on 
industrial data, Wood [13] made comparison of eight SRGMs on defect inflow data 
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and found it correlated with post release defects. Staron and Meding [15] evaluated 
different SRGMs using large software projects from telecom sector, while in [77] 
seven SRGMs have been evaluated for their applicability within automotive 
software projects and long-term predictive power. SRGMs comparison and use in 
practice for embedded software in consumer electronics is also presented in [14]. 
Although a number of studies have compared and evaluated different SRGMs within 
different context, we are still far from making a consensus on how to select SRGMs 
for given purpose and which models are best for given process characteristics. The 
situation with different SRGMs comparison is very well summarised by Stephan 
Kan as: “Some models sometimes give good results, some are almost universally 
awful, and none can be trusted to be accurate at all times.” [69]. 

3.2.4 Parameter Estimation 
Two practical and important challenges faced when applying SRGMs in 
practice/industry are the process to be followed and how to estimate the parameters. 
IEEE standard 1633: recommended practice on software reliability [78] provides a 
13-steps procedure on assessing and predicting the software reliability. The standard 
also lists three methods commonly used for parameter estimation when using 
SRGMs as: method of moments, least squares and the maximum likelihood 
estimation. Maximum likelihood estimation is the recommended approach by the 
standard and by the various studies introducing new SRGMs [71], [79], [80]. 

Parameter estimation using Maximum likelihood estimation requires solving sets of 
simultaneous equations to maximize the likelihood of defect data coming from given 
function (model equation) to find the parameters. Although MLE fulfils number of 
important statistical properties of optimal estimator and thus considered the best 
estimator for large data, unfortunately the set of equations used to find parameters 
using MLE are very complex and usually need to be solved numerically [13], [72], 
[81]. This is a practical issue that limits the use of MLE by industrial practitioners 
who may not be trained to use sophisticated statistical modelling required to use 
MLE for different SRGMs. The problem of using MLE widely for parameter 
estimation is further compounded either due to SRGM models with complex log-
likelihood functions and cases where MLE does not converge to give unique 
estimation of unknown parameters. Meyfroyt [82] provides necessary and sufficient 
conditions for ensuring unique, positive and finite estimation of parameters using 
MLE for Goel-Okumoto, Yamada S-shaped and Inflection S-shaped models. Use of 
MLE in industry is further restricted due to lack of commercial tools that can 
provide reliable MLE parameter estimation for different SRGMs. 

On the other hand the least square estimation uses curve fitting to the observed data 
for making estimation of unknown parameters. Parameters values are estimated for 
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curve that gives minimum sum of square of errors, i.e. curve that fits best (with 
respect to sum of squared errors). Given the nature of common SRGMs the least 
square estimation usually leads to using non-linear regression (NLR) for estimating 
the unknown parameters. Contrary to MLE, least square estimation is easy to apply, 
and NLR is often available as standard routine in most commercially available 
statistical packages. 

Wood [13] applied both MLE and least square estimation and found least square 
predictions to be more stable and better correlated to field data although MLE 
results were more reasonable. He also noted major difference between the 
confidence intervals where least square estimates were unsatisfactory, and while 
MLE confidence interval estimates were realistic they were too wide to make 
practical conclusions. 

It can be safely assumed that statistically MLE is much better parameter prediction 
procedure than least square, but the least square is much easier and provide 
consistent results in wider data sets and thus a preferred method of choice by 
industrial practitioners. Also in certain cases where MLE cannot provide the 
parameter estimations, least square approach is the natural alternative. Thus the least 
square estimator/NLR is also used more often than MLE for studies evaluating 
different SRGMs over large datasets [76], [77]. Given the differences between the 
two estimators the need to understand the applicability and performance differences 
of these two estimators is quite apparent. 

3.3 Research Context and Method 

3.3.1 Research Objectives 
In this study we take a look at some of the practical considerations and questions 
faced by software reliability practitioners. The objective is mainly to document these 
aspects and mark their importance. Mainly we look at: 

 Comparing MLE verses NLR procedure for estimation of unknown 
SRGM model parameters. 

 Assessing predictive accuracy using predicted relative error metric. 
 Working with un-grouped data. 
 We also comment on reproducibility of earlier studies from 

literature and provide directions for further research. 

3.3.2 SRGMs and Data 
In this study we use three of the very early and widely used software reliability 
models, the SRGMs used and their mean value functions are listed below in Table 7. 
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The main reason for their selection is their wide familiarity and availability of MLE 
simultaneous equations. The mean value functions have parameters a, which refers 
to total number of predicted defects and b, which is generally the shape parameter or 
growth rate parameter. Parameter β in Inflection S-shaped model is assumed to be 
1.2 following the earlier studies [66]. 

Table 7: Summary of SRGMs used in this study 

No Model Name Mean Value Function Ref. 
1 Goel-Okumoto (GO) ି௕௧  [79] 
2 Delayed S-shaped model ି௕௧  [80]	
3 Inflection S-shaped model 

ି௕௧

ି௕௧  [7]} 

 
The data used for this study is time-domain failure data for a real-time control 
system provided in [65] and used in many studies including [66], [67]. In the data 
136 faults have been reported with their time between failures (TBF). For practical 
reasons we also assume 136 to be the real asymptote of given data, i.e. actual total 
number of defects. Cumulative time obtained by successively adding TBF is used 
for fitting the cumulative distribution functions to different SRGMs. 122 failures are 
used for fitting the data and making parameter estimates, while the rest are used to 
evaluate the predictive power. 

3.3.3 Data Analysis Techniques 
To ensure high reproducibility we list all the data analysis techniques and equations 
used for analysis in this study with their references. 

1. For parameter estimation using least squares we use Non-Linear 
Regression routine available in statistical package IBM SPSS, the 
starting values provided were  and 
iterations were done until successive residual errors difference was 
less than  (default value in SPSS). 
 

2. For parameter estimation using MLE, we use package maxLik, a 
package for statistical environment R [83]. The optimization 
method used was Nelder-Mead (NM) and the starting values 
provided were same as those used for NLR routine. 
 

3. We also compare the parameter estimations obtained by above 
methods (NLR and MLE using maxLik) with earlier study by Pham 
[66] using the same data. 
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4. To make the two estimators comparison even more robust, we 
further use the non-linear simultaneous equations for getting the 
analytical solution using MLE. The equations are available for 
Goel-Okumoto model and Delayed S-shaped model described in 
[84] and reproduced below:- 
For GO model: 

೙…………………………...…..........……….(1) 

 
೙ …………………………..……….(2) 

 
For Delayed S-shaped model 

೙………………………………….(3) 

 
೙ ...…………………….……….(4) 

 
Where n represents number of failures reported; time between 
failures is represented as  and where time to 

 failure is given by  ; for details refer to [84]. 
Equations (1) & (2) or (3) & (4) can be solved 

simultaneously to obtain the point estimates of parameters . 
We used Matlab fsolve to solve system of non-linear equations 
given above. 
 

5. To make comparison of asymptote prediction accuracy, we use the 
metric Predicted Relative Error (PRE), which is described in the 
IEEE standard 1633 and also used in earlier studies as measure of 
prediction accuracy [76].  

PRE is defined as ratio between predicted error (predicted 
minus the actual asymptote) to the predicted number of failures. 

 .………………….………….(5) 

 
PRE resolves a common problem with using relative error 

for comparing between different models prediction, the relative 
error is the ratio of prediction error over actual value and thus if the 
predicted value is much larger (in multiples) than the actual value, 
relative error can be greater than 100%. PRE provides a 
comparative scale between [-1 1] or [-100% 100%], where value 
close to zero means better predictive accuracy and closer to +/-
100% is as worse prediction as it can get. 



Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption 

58 
 

 

Although we identify one major problem with PRE, which 
is: It provides asymmetric value based on over or under prediction. 
The problem can be easily understood using a simple example.  

Let us assume actual value be  and case1: the predicted 
value is 20% higher than actual i.e. 1.2a; for case2: the predicted 
value is 20% lower than actual (i.e. -20% of actual or 0.8a).  

Now applying PRE to case1 and case2, gives PRE values:- 

, 

While for 

 

To make PRE symmetric and thus give consistent value for over 
and under estimation we define BPRE, referring to Balanced 
Predicted Relative Error, as follows (equation (6)): 

, 

 ……………….(6) 

 
Now applying above defined BPRE to same 

, gives BPRE values:- 

, and 

 

 
Miyazaki et al. [85] defined a balanced relative error metric , also 
referred as Balanced Relative Error, BREbias defined as given by 
equation (7): 

……………….(7) 

Our metric BPRE is similar to , but different in the sense that 
while  is unbounded on both sides, BPRE is bounded [-0.5, 1) 
which is useful to make comparisons when deviations are 
particularly large compared to actual values. 
 

6. To compare the model fitting to data for both fit and predicted 
values, we use another widely used metric, Mean Square Error 
(MSE). Mean square error measures the average deviations 
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between the predicted and actual values [86], thus a measure of fit, 
it is given by equation (8): 

೔ ೔
೙
భ  ……………………………..………...(8) 

Where  is actual values,  predicted values for data set of size  
and  is the number of parameters. 

3.4 Results 

3.4.1 Parameter estimation using MLE and NLR 
estimation 

Parameter estimation using maximum likelihood and non-liner regression procedure 
are summarised in Table 8. The table also provides comparison of parameters values 
obtained in study using same data by Pham [66] and also by solving MLE 
simultaneous equations provided in [86]. 

Table 8: Comparing Parameters With Different Estimators 

Asymptote MLE NLR Pham Equation 
Goel-Okumoto 132 114.05 125 139.37 
DelayedS 132 103.33 140 125.16 
InflectionS 132 107.60 135.5  

 

Growth Rate MLE NLR Pham Equation 
Goel-Okumoto 3.80E-05 6.07E-05 6.00E-05 3.65E-05 
DelayedS 9.73E-05 1.66E-05 7.00E-05 9.76E-05 
InflectionS 5.79E-05 1.07E-05 7.00E-05  

 
Form Table 8 it can be observed that the asymptote ( , total number of predicted 
defects/failures) predictions obtained in this study using maximum likelihood 
estimator utilizing package maxLik gives very consistent results for all three models. 
While the asymptote predictions using non–linear regression routine (NLR) varies 
much more with minimum prediction being 103 for Delayed S-shaped model and 
114 for GO model. It is further interesting to note that significant differences are 
also observed between our predictions using (MLE) and values obtained by earlier 
study by Pham, although in both case the estimator used is the same (MLE). The 
difference observed here may be attributed to difference in tools used or the starting 
values predicted. Given that the tool used and starting values details are not 
available for earlier study, it is difficult to verify the source of this observed 
difference. 

Predictions for growth rate parameter ( ) with different estimators are also listed in 
Table 8. While there are variations between different models growth rates obtained 
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in this study using MLE and NLR. The growth rate is predicted to have highest 
value for Delayed S-shaped model and lowest for GO model using both (MLE & 
NLR) estimators in our study. The growth rates predicted in Pham study are closer 
to each other. It can also be noted that for both asymptote and growth rate, our 
estimates using MLE are very close to the parameters estimates obtained using MLE 
simultaneous equations described earlier.  

The fitting of predicted models using different estimators to actual data is also 
represented in Figure 8, Figure 9 and Figure 10. 

Figure 8: Goel-Okumoto model fitting to data with different estimators 
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Figure 9: Delayed S-shaped model fitting to data with different estimators 

Figure 10: Inflection S-shaped model fitting to data with different estimators 
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3.4.2 Predictive Accuracy using Predicted Relative 
Error (PRE) and unbiased PRE (BPRE) 

We now compare the predictive accuracy of asymptote values obtained using MLE 
estimator to NLR estimators. 

Table 9: PRE and BPRE for different estimators and models 

Asymptote, PRE MLE NLR Pham 
Goel-Okumoto  -3.0% -19.2% -8.8% 
DelayedS -3.0% -31.6% 2.9% 
InflectionS -3.0% -26.4% -0.4% 
    

Asymptote, BPRE MLE NLR Pham 
Goel-Okumoto  -2.9% -13.9% -7.5% 
DelayedS -2.9% -19.4% 2.9% 
InflectionS -2.9% -17.3% -0.4% 

 
It is interesting to note from Table 9 that all but one estimate under predicts for 
given dataset. Using PRE and BPRE values for same parameter predictions we can 
also see that BPRE gives better and more accurate representation of undervalued 
asymptote prediction as described in the section 3. The BPRE values for asymptote 
predictions using MLE and NLR are also presented below in Figure 11. We also add 
two more models using NLR procedure to make further check. 

Figure 11: Comparing between BPRE values for MLE and NLR estimations 
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Figure 11 shows that in our study although MLE estimators also under predict 
asymptote values the prediction is consistent for all models and prediction accuracy 
much higher (BPRE lower than -5%). While the unbiased predictive relative error 
value for NLR estimators is comparatively higher closer to but under negative 20% 
for different models tested here. 

Figure 12: Comparing between MSE fit and predict for MLE and NLR estimation 

From Table 10 and Figure 12 we can observe that MSE fit values using NLR are 
much better compared to values obtained using MLE. This is not surprising given 
that least square procedure actually minimizes the sum of square of errors between 
the observed data and used model. On comparing MSE values using MLE obtained 
in this study to earlier study by Pham and by using equations, we can see that in all 
but one case MSE values obtained in this study are much smaller than those 
presented in earlier study and they are also closer to values obtained using MLE 
simultaneous equations. 

Further the interesting point to note from the comparison is that despite NLR giving 
very good fit values, it does comparatively worse for the MSE values for the 
predicted values. Mean square error using MLE are significantly smaller to ones 
obtained using NLR which confirms that MLE is a better estimator for prediction 
purposes.  

Although as described earlier that SSE (Sum of Squared Errors)/MSE is not a fair 
comparison parameter between MLE and NLR for the fitted data points, but since 
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MSE for the predicted data is not optimized for both estimators (MLE & NLR), it 
serves the purpose of comparing between the two estimators on evaluating fit of 
given model to observed data and goodness-of-fit to predicted data. 

3.4.3 Which Estimators give better Fit to data and 
Predicted values 

Another widely used parameter to compare different models and their estimators for 
their performance is their ability to fit the observed defect/failure data and to the 
predicted the data. Mean Square Error (MSE) is often used to compare the fit of 
observed and predicted values. MSE is described in section 3 and values obtained 
for MLE and NLR estimators are provided in Table 10. The MSE values using MLE 
and NLR estimation using additional Logistic and Gompertz model (for NLR 
estimator) is also presented in Figure 12. 

Table 10: Comparing MSE fit and predict values for different estimators and models 

MSE fit MLE NLR Pham Using Equation 
Goel-Okumoto  67.0 20.8 62.7 65.4 
Delayed S-shaped 246.6 89.2 420.4 223.8 
Inflection S-shaped 155.7 42.3 132.1 
     

MSE predict MLE NLR Pham Using Equation 
Goel-Okumoto  42.7 301.6 50.4 1.6 
Delayed S-shaped 12.8 702.0 22.5 40.9 
Inflection S-shaped 9.3 501.6 23.0 

 

3.4.4 Working with un-grouped data 
A further practical consideration that needs to be accounted when working with un-
grouped data is as follows: in some cases the time between failures is zero for 
example in the data set used in this study it occurs at fault numbered 33, 61 and 104, 
highlighted in Table 11. When using MLE estimators with log-likelihood function 
for NHPP process as given in [66] and using MLE packages such as MaxLik the 
failures where mean time between failures (MTBF) is zero need to be grouped, else 
the package can returns NaN errors. And when using the MLE simultaneous 
equations for GO and Delayed S-shaped model as given in [84], the data used 
should be un-grouped including the failures with MTBF values equal to zero, else 
it’s equivalent to not considering those failures in the analysis which is also not 
correct. 
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3.5 Conclusions 
In this study using data from literature we have compared between two of the most 
widely recommended and used methodology for estimating parameters for the 
purpose of applying SRGMs to defect/failure data. It is noted in the study that while 
MLE is the recommended estimator with superior statistical properties, its usability 
and applicability in all situations is questionable. Further MLE is difficult to apply 
which limits its use in industry, especially due to lack of tools support.  

Although external validity of work presented here may be considered low due to use 
of only single dataset, the study provides important results that point towards 
different results obtained using different estimation procedures. The study provides 
useful and practical insights for industry practitioners and early researchers applying 
reliability modelling to defect/failure data. 

We further provide an improvised metric (BPRE) for comparing the predictive 
accuracy that is symmetric for over and under prediction addressing the problem 
identified in this study with widely used metric PRE (predicted relative error).  

With results in this study suggesting that the fit, predict and predictive accuracy 
obtained using MLE and NLR estimators may be much different from one estimator 
to another, more research in this direction is needed to establish these differences in 
different contexts and thus helping to resolve the dilemma faced by reliability 
practitioners of which estimator to use and in which conditions a given estimator is 
better than other. Initial results presented here and properties of MLE and NLR 
estimators suggest that while NLR is good estimator for fitting the data to observed 
failure data, MLE is better estimator for making reliable predictions. 
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Table 11: Data used in this study, provided in [65] and used in earlier studies 
including [66], [67] 

 

F TBF Cum F TBF Cum F TBF Cum F TBF Cum F TBF Cum F TBF Cum 
1 3 3 24 68 2676 47 6 7843 70 379 16185 93 2930 35338 116 122 53443 
2 30 33 25 422 3098 48 79 7922 71 44 16229 94 1461 36799 117 990 54433 
3 113 146 26 180 3278 49 816 8738 72 129 16358 95 843 37642 118 948 55381 
4 81 227 27 10 3288 50 1351 10089 73 810 17168 96 12 37654 119 1082 56463 
5 115 342 28 1146 4434 51 148 10237 74 290 17458 97 261 37915 120 22 56485 
6 9 351 29 600 5034 52 21 10258 75 300 17758 98 1800 39715 121 75 56560 
7 2 353 30 15 5049 53 233 10491 76 529 18287 99 865 40580 122 482 57042 
8 91 444 31 36 5085 54 134 10625 77 281 18568 100 1435 42015 123 5509 62551 
9 112 556 32 4 5089 55 357 10982 78 160 18728 101 30 42045 124 100 62651 
10 15 571 33 0 5089 56 193 11175 79 828 19556 102 143 42188 125 10 62661 
11 138 709 34 8 5097 57 236 11411 80 1011 20567 103 108 42296 126 1071 63732 
12 50 759 35 227 5324 58 31 11442 81 445 21012 104 0 42296 127 371 64103 
13 77 836 36 65 5389 59 369 11811 82 296 21308 105 3110 45406 128 790 64893 
14 24 860 37 176 5565 60 748 12559 83 1755 23063 106 1247 46653 129 6150 71043 
15 108 968 38 58 5623 61 0 12559 84 1064 24127 107 943 47596 130 3321 74364 
16 88 1056 39 457 6080 62 232 12791 85 1783 25910 108 700 48296 131 1045 75409 
17 670 1726 40 300 6380 63 330 13121 86 860 26770 109 875 49171 132 648 76057 
18 120 1846 41 97 6477 64 365 13486 87 983 27753 110 245 49416 133 5485 81542 
19 26 1872 42 263 6740 65 1222 14708 88 707 28460 111 729 50145 134 1160 82702 
20 114 1986 43 452 7192 66 543 15251 89 33 28493 112 1897 52042 135 1864 84566 
21 325 2311 44 255 7447 67 10 15261 90 868 29361 113 447 52489 136 4116 88682 
22 55 2366 45 197 7644 68 16 15277 91 724 30085 114 386 52875 
23 242 2608 46 193 7837 69 529 15806 92 2323 32408 115 446 53321 
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EVALUATION OF STANDARD RELIABILITY 
GROWTH MODELS IN THE CONTEXT OF 
AUTOMOTIVE SOFTWARE SYSTEMS 

 

Abstract— Reliability and dependability of software in modern cars is of utmost 
importance. Predicting these properties for software under development is therefore 
important for modern car OEMs, and using reliability growth models (e.g. Rayleigh, 
Goel-Okumoto) is one approach. In this paper we evaluate a number of standard 
reliability growth models on a real software system from automotive industry. The 
results of the evaluation show that models can be fitted well with defect inflow data 
but certain parameters need to be adjusted manually in order to predict reliability 
more precisely in late test phases. In this paper we provide recommendations for 
how to adjust the models and how the adjustments should be used in the 
development process of software in the automotive domain by investigating data 
from an industrial project. 

Keywords— Software Reliability Growth Models, Automotive Software, Model 
Based Development, ISO 26262 
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3.6 Introduction 
Software plays a significant role in modern cars. In past few decades the amount and 
importance of software in cars has increased exponentially [87], to the extent that 
today’s premium cars carry more than 70 ECUs and software of the order of over 
ten million lines of code (SLOC) [3]. Software is not only replacing traditional 
models of control systems but today it is at the heart of providing new functionality 
and driving innovation. With the rapid growth in significance of software in 
automotive industry there are a number of challenges the industry faces in 
developing and maintaining good software for modern cars [3][88]. 

Automotive software differs from software in other sectors due to stringent demands 
for rapid development, need for cost effective development, and high demand for 
innovation and need of high quality and reliability, especially for applications, 
which are deemed safety critical. To ensure that cars are safe for drivers, occupants 
and other road users as well as to maintain the consumer confidence, the quality and 
reliability demand for safety critical software is very high. Functional safety 
standards such as ISO 26262 [35] provide strict guidelines for the development of 
software for safety critical applications with significant emphasis on ensuring 
reliability.  

Software reliability growth models (SRGMs) have been used to assess the maturity 
of software for number of years. Efficient estimation of latent defects in software is 
valuable information, test managers can use this information to make important 
decisions not only to ensure optimal resource allocation but also to decide when the 
given software is ready for release [74]. Applying SRGMs for estimating reliability 
in industrial applications needs careful consideration to the applied model 
assumptions, data availability and predictive power, but proper use of SRGMs 
provides several benefits for developing high quality and reliable software. 

3.7 Related Work 
Over the years, a number of SRGMs has been presented [68], although similar 
extent is lacking in the comprehensive evaluation of these models on industrial 
domain specific applications. This is especially true for the automotive sector. 
Different industrial domains have very different demands for its software and the 
development process also varies to a large extent, not all SRGMs would be suited 
for every sector. Woods [13] applied eight SRGMs on software products from 
industry and showed that defects predicted based on cumulative defects matches 
well with after release defects. Staron & Meding [15] evaluated SRGMs on large 
software projects in the Telecom sector and proposed a new model based on historic 
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trends data. In this paper we apply common SRGMs on a large project from the 
automotive sector and evaluate it on simplest fit measure. The applications of 
SRGMs in automotive software projects are very scarce and with increasing 
dominance of software in the automotive industry, the need and importance of such 
studies is very apparent.   

In [66], authors present a review of common Non-Homogeneous Poison Process 
(NHPP) based software reliability models and compare their performance on real 
time control system. We evaluate SRGMs with only two and maximum three 
parameters, which are easy to implement and intuitive to understand, this also means 
that these models can be easily adopted in the industry.  

The automotive domain in itself is quite unique, firstly the industry due to various 
reasons including the historic factors is driven by the “V” development model with 
high dependence on suppliers, this has also became true to a large extent for the 
development of software within this domain. Secondly automotive unlike some 
other industries and like many other similar sectors have widely adopted the model 
based development approach. Additionally within the Original Equipment 
Manufacturers (OEMs) there exist numbers of different departments/teams (for 
example Power-train, Central Electric Module, Infotainment etc.), which develops 
quite different type of software products and works in quite different working 
environments. Currently there is also significant trend in automotive domain 
towards being more agile in their software development process. All these factors 
affect the defect inflow profiles and the use of SRGMs needs to take these factors 
into consideration for successful application. In this paper we give a way forward for 
effective implementation of SRGMs in the automotive sector, what needs to be 
emphasized and what would lead to optimal software reliability modelling in this 
domain.  

3.8 Research context and method 
We use data from a large project within the development of an active safety function 
from our industrial partner, Volvo Car Group (VCG) from the automotive sector. 
Department of Active Safety within VCG develops functions/features such as driver 
alert control, collision warning, lane departure warning etc. The defect data has been 
used earlier in [89] in a study that introduced a new lightweight defect classification 
scheme LiDeC. We use dynamic software reliability growth models that have been 
reported in many earlier studies and are summarized in Table 12. 
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Table 12: Software Reliability Growth Models used in the study. 

Model Name Type Mean Value Function Ref. 

Models with 2 parameters 

Goel-Okumoto (GO) Concave ି௕௧ ) [79] 

Delayed S-shaped model S-shaped ି௕௧  [80] 
Rayleigh model  ିቀ

௕
௧ቁ

మ

 [69] 

Models with 3 parameters 

Inflection S-shaped model S-shaped 
ି௕௧

ି௕௧  [66] 

Yamada exponential imperfect 
debugging model (YExpI) 

S-shaped ఈ௧ ି௕௧  [90] 

Yamada linear imperfect 
debugging model (Y-LinI) 

S-shaped ି௕௧  [90] 

Logistic population model S-shaped ି௕ሺ௧ି௖ሻ [29] 

Gompertz model S-shaped ି௕௘ష೎೟ [91] 

 
To fit the models to our data we used non-linear regression (NLR) routine of the 
commercially available statistical software package, IBM SPSS. The starting values 
we used are same for all models and iterations are done until the reduction between 
successive residuals errors is less than . Models with two and three 
parameters were used in fitting of the curves as these parameters could be 
interpreted empirically (for instance with respect to the testing effort or maximum 
number of defects). The models were built based on the data set from all the 
development phases of the system - starting at requirement analysis and ending with 
vehicle production testing (i.e. excluding the post-release defects). 

3.9 Results and interpretation 
The fitting of different SRGMs (two and three parameter models) on actual data is 
presented in Figure 13 and Figure 14, due to confidentiality reasons the Y-axis scale 
is not presented and time scale is trimmed at beginning and end representing only 
partial data for illustrating the fit of the used models. For fitting the model, however, 
the full data set was used. 
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Figure 13: Two parameter software reliability growth models applied to data set from automotive 
software project2. 

Although (as shown in Figure 13) the models fit the data, they have a tendency of 
growing exponentially. The exponential growth gives unrealistically high values of 
asymptotes (maximum predicted defects), such growth is not possible in practice – 
the number of defects discovered late in the projects decreases over time, thus giving 
the well-known S-shape of the cumulative defect inflow profile. This shortcoming 
can be overcome by using three parameter models which include the  
parameter. The additional parameter is meant to describe the function of test 
progress over time, and therefore provide more accurate results with logical 
empirical explanations. Figure 14 presents these models. 

  

                                                      
2 Scales on X and Y axis have been removed due to confidentiality reasons. The time domain 
is also trimmed at the beginning and end to show only the partial data, however full data 
was used to fit the models. 
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Figure 14: Three parameter software reliability growth models applied to data set from 
automotive software project. 

The analysis of the models and their fit, as shown in Figure 14, suggests that the 
 parameter is promising and will be used in our further analyses. Using the 

Mean Square Error (MSE) measure to analyse the goodness-of-fit of the models 
(shown in Figure 15) we observed that the most accurate model was the InflectionS 
model and the logistic model (used to model population growths in general [92] 
[93]. 

MSE presented in Figure 15 for the simplest and one of the earliest Goel-Okumoto 
(GO) model was approximately 10 times larger than the rest of the models thus we 
excluded it from the chart to rescale it and focus on the remaining models. As 
expected, the three parameter models generally fit better than two parameter models, 
but we observed one exception - the DelayedS model fits better than the Yamada 
exponential imperfect debugging model (Y-ExpI) and Yamada linear imperfect 
debugging model (Y-LinI), both of which attempts to account for the testing effort 
using a third parameter. This means that our initial results should be complemented 
with more accurate model of the testing effort. 

Another significant observation is with respect to the three parameter general 
logistic model, which performs best among models used in this study with respect to 
minimum MSE criteria, despite this model not being widely used for software 
reliability modelling. The three parameters general logistic model is used in many 
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applications and domains but not as widely in the software reliability modelling 
although it yields relatively accurate results. Our observation suggests that 
traditional three parameter models such as logistic and Gompertz model provides 
superior fit to our data from automotive domain software project. InflectionS model 
also does very well in MSE fit criteria with MSE only higher than logistic and lower 
than that using Gompertz model. 

Figure 15: The mean-square error for each of the models. Note that the GO model is excluded in 
this figure. 

3.10 Conclusions 
A number of SRGMs have been proposed and evaluated over time. It is noted here 
that despite software being dominant in modern automotive industry there is a gap in 
studies evaluating the application of SRGMs in this domain. In this paper we take a 
step in direction of addressing this gap by applying eight common SRGMs on defect 
data from a large automotive software project and evaluating their fit using MSE 
criteria. We further-more, provide a way forward for effective application of 
SRGMs in automotive software reliability modelling which are as follows: 

 It was observed that simple two parameters models can provide 
good fit (with exception of the GO model), but the asymptotes 
obtained might be unrealistic; 

 Logistic and InflectionS models had the best fit to our data among 
the different models tried; 
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 Since one of the important factors for successful use of SRGMs is 
to use appropriate time scale, we identify that modelling the change 
of testing effort over time (generally done using parameter  
will be critical in applying SRGMs within automotive sector; 

 Using parameter estimates from two parameter models and based 
on historic values one could also model/predict the testing effort i.e. 

for the current project which would give useful insight to 
project managers for optimizing the resource allocation going 
forward. 

Realistic accounting of testing effort will help us to fit the SRGMs to actual defect 
inflow data. Finding the models, which provide the best fit, have superior predictive 
power, and use the data in its available form will significantly enhance the adoption 
of software reliability modelling in industries where software is starting to play a 
critical role. And customizing the SRGMs to conform to given industrial domains 
such as automotive sector will provide a powerful tool to test and quality managers 
within these industries to use them for optimal resource management, increasing the 
quality and reliability, and ensuring timely delivery of high quality software. 
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SELECTING SOFTWARE RELIABILITY 
GROWTH MODELS AND IMPROVING 
THEIR PREDICTIVE ACCURACY USING 
HISTORICAL PROJECTS DATA 

 

Abstract— During software development two important decisions organizations 
have to make are: how to allocate testing resources optimally and when the software 
is ready for release. SRGMs (Software Reliability Growth Models) provide 
empirical basis for evaluating and predicting reliability of software systems.  When 
using SRGMs for the purpose of optimizing testing resource allocation, the model’s 
ability to accurately predict the expected defect inflow profile is useful. For 
assessing release readiness, the asymptote accuracy is the most important attribute. 
Although more than hundred models for software reliability have been proposed and 
evaluated over time, there exists no clear guide on which models should be used for 
a given software development process or for a given industrial domain. 

Using defect inflow profiles from large software projects from Ericsson, Volvo Car 
Group and Saab, we evaluate commonly used SRGMs for their ability to provide 
empirical basis for making these decisions. We also demonstrate that using defect 
intensity growth rate from earlier projects increases the accuracy of the predictions. 
Our results show that Logistic and Gompertz models are the most accurate models; 
we further observe that classifying a given project based on its expected shape of 
defect inflow help to select the most appropriate model.  

Keywords— Software Reliability Growth Models; Embedded Software; Defect 
Inflow; Automotive; Test Resources Allocation; Release Readiness; Automotive; 
Telecom; Defence Industry 
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3.11 Introduction 
Embedded software is today an integral part of most products, on which we depend 
for smooth functioning of our daily life. Embedded software does not only provide 
functionality, it also drives innovation in mobile phones, satellite systems, home 
appliances, and aircrafts. Reliability is an important attribute of such systems and 
one way of evaluating their reliability is to use Software Reliability Growth Models 
(SRGMs). SRGMs are the result of applying reliability engineering theory to the 
software development domain. The defect inflow data is modelled using 
mathematical models that quantify the change in reliability of the given software 
artefact during its development and testing. SRGMs help to answer an important 
practical question as to when the given software quality is good enough and thus, 
when can we stop testing [94]. The good-enough quality is also referred to as release 
readiness of a given product [95]. From the reliability standpoint, one of the most 
important factors for deciding if a software is ready for release is the number of 
remaining defects (latent defects). By comparing the predicted total number of 
defects (asymptote of SRGMs) and the number of defects discovered and resolved to 
date, software managers can decide if the software is ready to be released [96]. 

Apart from answering the important release readiness question, SRGMs can also be 
used to make the software testing process more efficient [97]. However, 
requirements for the successful application of SRGMs for optimal resource 
allocation and the assessment of release readiness of software differ. Models which 
can be applied early in the project and have higher ability to accurately forecast the 
expected shape of the defect inflow profile are useful for optimizing test resource 
allocations. While SRGMs that are accurate in forecasting total expected defects in a 
software product (asymptote) late in the development/testing phase are better suited 
for assessing the release readiness of a given software system.  

Although more than hundred SRGMs have been proposed and evaluated in the 
literature [68], many of the earlier studies evaluating SRGMs have focused only on 
how well they could fit to the observed defect inflow data. The evaluation of the 
predictive power of SRGMs in the literature has generally been limited to only the 
last few data points (typically last 10% of data) [57] [66]. The difficulty of applying 
SRGMs in industry is compounded with the lack of studies focusing on specific 
industrial domains [98] and scarce guidelines to select the best SRGMs for a given 
software process/application. We focus on the following research questions that are 
important for reliability practitioners and project managers in software 
organizations, denoted RQ1-RQ4 below: 

Since software development projects have a planned amount of testing resources, we 
explore how SRGMs can help to allocate these resources more effectively. We 
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assess which SRGMs are best for this purpose, i.e. we evaluate the SRGMs’ ability 
to correctly predict the shape of the future defect inflow during an on-going project.   

RQ1: Which SRGMs are best to assist decisions for optimal allocation of testing 
resources? 

When the software system has been developed and tested, the most important 
question is: Is the software ready to be deployed (released) or does it need more 
testing? We evaluate, which SRGMs are best for assessing the release readiness of 
software systems from the reliability standpoint. 

RQ2: Which SRGMs are best for assessing the release readiness of a software 
system? 

Given that software development organizations usually have data on a large number 
of historical projects, it is also important to evaluate how we can use this experience 
to make the reliability predictions for current projects more accurate. This is 
addressed by the following research question: 

RQ3: Does using information from earlier projects improve release readiness 
assessment?  

Further, there exists no agreement on which models are the best for a given software 
development process or industrial domain especially during the early phases of a 
software project [76], thus we analyse how to select the best SRGM for a given 
purpose based on available data on an on-going project: 

RQ4: How to make the choice of SRGM more effective? 

The answers to these questions are the key to successfully applying SRGMs in 
industrial settings. Evaluation of long-term predictive power of SRGMs in the 
automotive domain was done in our earlier work [57]. In this paper we extend the 
analysis by using additional data from two more large organizations engaged in 
embedded software development but in different application areas (telecom and 
defence). With the unique setting of large-scale software projects we are able to 
answer the research questions with higher generalizability. We are also able to make 
distinctions between the applicability of different SRGMs based on different project 
attributes, defect inflow profiles and development processes. We further use trend 
analysis for predicting the shape of the defect inflow for on-going projects - which 
provides practitioners in industry a framework for selecting and applying SRGMs 
for supporting decisions of practical significance, such as test resource management 
and evaluating whether the software product is ready for release. 
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The rest of the paper is structured as follows: Background for the research and a 
brief discussion around related works is presented in section 3.12. In section 3.13, 
we describe in details the design choices of this study, the data, models, and analysis 
methods we used. Section 3.14 presents the results and analysis of data with answers 
to the research questions. Section 3.15 presents recommendations for industry to 
apply SRGMs while conclusions are presented in section 3.16. 

3.12 Background and Related Work 
Common terms related to software reliability are defined in IEEE 1633: 
Recommended practice on software reliability [78], accordingly: 

Software Reliability (SR): is (A) the probability that software will not cause the 
failure of a system for a specified time under specified conditions, or (B) the ability 
of a program to perform a required function under stated conditions for a stated 
period of time. 

Software Reliability Model (SRM) is a mathematical expression that specifies the 
general form of the software failure process as a function of factors such as fault 
introduction, fault removal, and the operational environment.  

IEEE standard 1633 also provides metrics used in reliability modelling and specifies 
the recommended procedure for software reliability assessment and prediction.  

SRMs can be classified as white box and black box models [76] [99]. White box 
models use source code attributes for making the assessment and predicting the 
defect proneness of a given software artefact, while black box models use defect 
inflow data for modelling reliability. Based on the nature of the data in use, white 
box and black box models are also known as static and dynamic models [100]. 
Dynamic/black box models are usually referred to as SRGMs and use defect data 
from development and/or testing phases. The failure or reliability process can be 
modelled using calendar or execution time. Though the execution time models have 
been shown to be more accurate, the calendar-time models are easier to apply and 
more intuitive to interpret.   

Different models are based on different assumptions, which make some models 
better suited than others for a given process. Musa et al. [72] showed that various 
families of models have characteristics that are better suited for certain applications. 
The same conclusion is also achieved in the study by Goel [71]. Thus, one of the 
important questions in software reliability engineering has been which models to use 
and how to apply them [101]. Khoshgoftaar and Woodcock presented a case study 
[75] to support the claim that Akaike Information Criteria (AIC), based on the log-
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likelihood function, can be used to select the best model. Sharma et al. [73] looked 
at the model selection problem and proposed a quantitative framework based on the 
distance-based approach that can be used to rank different models and select the 
optimal one. Stringfellow and Andrews [74] proposed an empirical method to select 
a suitable SRGM for making release decisions during the test phase. They iteratively 
applied different SRGMs and if a given model passed the proposed criteria, it could 
be used for making release readiness decisions.  

In this study we introduce a new approach for selecting the appropriate SRGM, 
which is based on the observed defect inflow profile. We use the trend of defect 
intensity to predict the shape of the full defect profile, which is used to select the 
appropriate SRGM for a given purpose. We also evaluate if using this strategy leads 
to better model selection.  

SRGMs evaluations within specific industrial domains are limited, though some 
studies have been reported. Wood [13] evaluated eight SRGMs on data from 
industry concluding that defect predictions based on cumulative defect inflow data 
from development and testing was well correlated with after-release defects. Popov 
et al. studied the problem of estimating the reliability of multiple-version software to 
estimate the bounds on reliability of diverse systems [102]. Staron and Meding [15] 
studied defect data from the telecom domain to found a reliability model based on 
moving average giving good predictability for weekly defect predictions. Ullah et al. 
[76] also did a similar analysis using commonly used eight SRGMs on several sets 
from industrial and open source software projects. Their study found Musa-
Okumoto and Inflection models performing best on industrial datasets, while 
Gompertz and Inflection were concluded as best for the open source software 
projects. A number of commonly used SRGMs have been evaluated on software 
projects from the automotive domain in our earlier study [57] demonstrating the 
usefulness of trend models (Logistic & Gompertz) in such reliability evaluations. In 
this study we extend our earlier work from the automotive domain [57] and 
complement previous works [97], [76] in this direction by evaluating, which SRGM 
performs best for a given software process in the embedded software domain. 

To use SRGMs for testing resource management, the long-term predictive power is 
an important criterion [97]. It is noted that in existing studies the effort has been 
more focused on introducing new models with higher goodness-of-fit and the 
assessment of the predictive power was mostly restricted to short-term (typically 
using last 10% data, for example [103], [66]). An early work in long-term 
predictability of SRGMs has been presented by Malaiya et al. [97]; they proposed 
two predictability measures to characterize long-term predictive power namely 
average error and average bias and used them to evaluate five SRGMs common at 
the time. The authors used 18 data sets derived from earlier studies and found that 
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different models have appreciably different predictive powers. Use of secondary 
sources of data meant that it was either difficult and in many cases impossible to 
compare the performance based on software domain/development process 
characteristics. Also metrics based on averages do not allow examining the 
predictive power of models during a specific point in the project timeline. In this 
study, our focus is also on the long-term predictive power of SRGMs. We measure a 
model’s predicted defect inflow fit to the actual defect inflow at four distinct phases 
of a project starting mid-way through the project timeline. This evaluation helps us 
in selecting the best model for a given purpose and also evaluate when (in project 
timeline) these models can be used in practice. 

Historical project data is proposed to be used to monitor running project progress 
and evaluating the time to market [104]. Xie et al. proposed using the growth rate 
from earlier similar projects to avoid the problem of non-convergence when using 
maximum likelihood estimation for estimating SRGMs parameters early in the 
testing phases with less failure data available [105]. Our approach to incorporate the 
information from past projects is similar to the approach introduced by [105], we 
apply this method for incorporating past projects’ information using non-linear 
regression and use it to evaluate if the predictive accuracy of the models can be 
increased to make reliable predictions.    

3.13 Case Study Design 
Using Robson’s classification [106], the study presented here is a case study with 
the main goal of evaluating the applicability of SRGMs in the context of embedded 
software development projects for decision support with regard to resource 
allocation and release readiness. Following the taxonomy and guidelines for 
conducting and reporting case studies in software engineering by Runeson and Höst 
[52], the presented study is an interpretive case study using a fixed design principle. 
The research is organized as an embedded case study with each company being the 
unit of analysis. The similarities and differences based on different application 
domains and software development processes are explored and highlighted in this 
study, which suits the embedded case study design. The case study design overview 
is presented in Figure 16. 
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Figure 16: Overview of case study design 

Table 13 shows the summary of the characteristics of the process used in the 
companies and the mapping to the industrial domain.  

Table 13: Overview of units of case analysis within this embedded case study 

Company 
(unit of analysis) 

Application 
domain 

Software development process for studied projects 

Volvo Car Group Automotive 
V-shaped software development mostly using sub-
suppliers for implementation 

Ericsson Telecom Agile development, mostly in-house 

Saab EDS 
Defence 
Equipment 

Waterfall development (old projects) with 
development concentrated in-house 

3.13.1 Case and subjects selection 
In this study, the selection of case units was primarily driven to capture the variation 
in software development process and application domain. Two case units although 
allows for a better comparison between case units, but also limit the generalizability 
of results. While if four or more case units are chosen it leads to difficulties in 
conducting cross-case analysis including necessary details, thus three case units 
were selected for this study. Next we provide brief descriptions of each unit of 
analysis and their application domain (from the authors earlier work [107]), details 
about each unit’s software development process is also included.   

Company A: Volvo Car Group 
Volvo Car Group (VCG) is a Swedish car Original Equipment Manufacturer 
(OEM), based in Gothenburg. VCG develops software and hardware typically in a 
distributed software development environment, but for a limited number of 
Electronic Control Units (ECUs) the software is also developed in-house. The 
development is done by the software development teams who usually also hold 
responsibility for integrating the software with the hardware developed by suppliers. 
The majority of the embedded software development in the car, however, is 
developed by external suppliers who design, implement, and test the functionality 
based on specifications from VCG ([108], [109]).  
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The size of the entire automotive project in terms of resources is substantially larger 
than the projects in the other application domains studied in this case study, due to 
the fact that both OEM and suppliers (first and second tier) are involved and car 
development projects are usually conducted using the product line approach with 
reference architectures ([110]). 

Software Development Process 
The software development process at VCG predominantly follows the V-model. The 
projects studied here are so called platform projects, which span for a long period of 
time and are divided into a number of stages (marked as stages S0, S1, to S7 in 
Figure 17). Each stage is effectively iterative within a larger project where new 
functionality is designed, developed, tested, verified, and released into the latest 
system builds. The model is shown in Figure 17. 

Figure 17: Representation of software development process for case unit 1 

A project starts with setting up the requirements, which is followed by design, 
implementation (in-house or using suppliers) and testing (in each stage). By the end 
of stage S4, all functionality addition is completed, and the focus is shifted to 
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calibration and optimization. Defects found during testing of the software are 
removed as they are detected or patches are provided in the software updates.  

Company B: Ericsson 
Ericsson develops large software products for mobile telecommunication networks. 
The size of the projects in this study was up to several hundred engineers. The 
projects at the company are increasingly often carried out according to the principles 
of Agile software development and Lean production system, referred to as 
Streamline development (SD) [111]. In this environment, various teams are 
responsible for larger parts of the process compared to traditional processes: Design 
teams (cross-functional teams responsible for complete analysis, design, 
implementation, and testing of particular features of the product), network 
verification and integration testing, etc. 

Software Development Process 
The whole process is dominated with continuous development and testing as 
expected in a highly iterative agile software development process. The overview of 
process is presented in Figure 18. 

Figure 18: Representation of software development process for case unit 2 
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Each product has a main branch and for each release, a number of features would be 
agreed to be developed and released. These features will be developed by separate 
teams who would also be responsible for unit testing (UT) and preliminary function 
(FT) and system testing (ST) before releasing it to the main branch. The main 
branch with the newly developed features is branched out which is subjected to 
function testing and part of system tests on daily builds with any defects detected 
being reported to the defect database and resolved in due time. New versions with 
newly developed features are integrated to network in the Network Integration phase 
where later phase is concentrated on verification activates (Network Verification and 
Clean Run using specific test cases for new features). Network integration and 
verification is completed before the product is released internally. After the internal 
release, the product is subjected to further function and system testing before 
making the general release to customers. 

Company C: Saab Electronic Defence System (EDS) 
Saab EDS develops embedded software and graphical user interfaces for ground 
based radar systems. The specific project’s data used in this study was part of a 
larger product developed by several hundred developers, designers, testers, analysts 
etc. The historic project (used in this study) developed the product in waterfall 
process and did not utilize cross functional teams.  

The organization has, since these projects evolved into using more agile processes 
with increasing use of cross functional teams. A lot of improvements and 
optimizations have also been applied regarding software build and delivery times.  
Also to improve customer value, market competitiveness and profit, Saab EDS in 
Gothenburg is going through a Lean transformation. 

Software Development Process 
The overview of the software development process at case unit 3 (Saab EDS) is 
shown in Figure 19.  
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Figure 19: Representation of software development process for case unit 3 

The development of software starts with defining the stakeholder’s requirements, 
which are translated to system requirements. The system is broken into a number of 
sub-systems, which are concurrently developed by different teams; each sub-system 
is developed, integrated, tested, and verified as individual units. The sub-systems are 
integrated followed by the verification and validation at system level. The system is 
then tested for the stakeholder’s expectations in acceptance testing and finally made 
available for release.  

3.13.2 Data collection and analysis methods 
Based on the existing literature, seven widely used SRGMs were selected to be 
evaluated in this study as in our earlier study [57]. Selected models are a mix of 
concave, S-shaped, and trend models. These models are frequently mentioned, 
evaluated, and applied in software reliability research and practice. Also to account 
for the highly iterative streamline software development process at Ericsson, we also 
use a linear model that has been used in prior studies [112] for agile and streamline 
software development processes. It is noted here that the linear model does not have 
an asymptote modelled in the equation (  the model assumes a 
constant growth rate (g) and the total predicted defects in this case are taken as 
predicted defects at the time when the project is finished. Since the linear model 
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does not have a theoretically motivated asymptote prediction, it is excluded for its 
applicability for conducting release readiness assessment of software in this study. A 
summary of the software reliability models used in the study with their mean value 
functions is presented in Table 14.  

Table 14: Software reliability growth models used in this study 

No Model Name Shape Structure Mean Value Function Reference 
1 Musa-Okumoto (MO) Concave NHPP  [113] 

2 Goel-Okumoto (GO) Concave NHPP ି௕௧  [79] 

3 Inflection-S model S-shaped NHPP 
ି௕௧

ି௕௧  [7] 

4 Delayed-S model S-shaped NHPP ି௕௧  [80] 

5 Rayleigh model S-shaped NHPP ିቀ
௧
௕ቁ

మ

 [69] 

6 Logistic model S-shaped Trend ି௕ሺ௧ି௖ሻ  [114] 

7 Gompertz model S-shaped Trend ି௕௘ష೎೟ [91] 

8 Linear model Linear Trend  [112] 

 
Software reliability models can be fitted to the observed defect inflow data using 
statistical techniques such as maximum likelihood parameter estimation or curve 
fitting techniques like Non-Linear Least Square (NLLS). Following earlier studies 
[76], [57], [115], we used NLLS for the parameter estimation of models. Non-linear 
regression routine in commercially available statistical software package (IBM 
SPSS) is used to make parameter estimations. Since the parameter estimation using 
NLLS is an iterative process, we run iterations until successive iterations returned 
less than 1.0*E-08 difference in residual errors, which is the default setting. For the 
case of Inflection-S model, the β parameter value is assumed to be equal to 1.2 
following the parameter estimation procedure given by [7]. 

To assess which reliability models are best and when they can be applied during a 
project timeline, we evaluated their respective goodness-of-fit and accuracy of 
asymptote prediction using full and partial data sets. For each project we divided the 
data into four sets (p0, p10, p30 and p50), containing all, 90%, 70% and 50% data 
points respectively – this data is referred to as the observed region of defect inflow 
profile. These sets correspond to same level of project completion with respect to 
project timeline (our data is weekly defect count data). The data points in the 
observed region for each set are used for model fitting (for estimating the parameters 
of given SRGM using NLLS method), while the remaining data points toward the 
end of the project (i.e. 0, 10, 30 and 50% referring to p0, p10, p30 and p50 
respectively) are used to assess the predictive power of a given SRGMs – this region 
is referred to as the predicted region. 
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3.13.3 Data collection 
The main source of data for the case study is defect inflow data from defect 
reporting systems of individual companies. Already collected metrics data from 
software projects is archival data [52] that offers limited possibility for researchers 
to control or assess the quality of data. But in mature software development 
organizations defect reporting is generally a controlled and monitored activity, 
which is the fact for each case unit used in this study and thus the data used is of 
high quality. In order to ensure the comparability of data collected for the different 
case units, a common definition of defect inflow was used as given by [15]: “defect 
inflow is the number of non-redundant defects reported in the defect database”, the 
definition was cross-checked with each company involved in this multiple case 
study and appropriate filters were used to collect the data from their defect reporting 
databases.  

In total, we collected the defect inflow data from eleven projects (seven individual 
projects including one project with five releases) from three companies. Data was 
collected in close cooperation with the industrial partners; all projects in this study 
were finished before the beginning of our data collection and thus we had full data at 
hand. The defect data collected is from development to testing phases excluding the 
post-release defects.  

Stronger conclusions can be drawn by using triangulation i.e. using data from 
several sources [52]. Therefore we complement the defect inflow data with 
information obtained through interviews. Semi-structured interviews were 
conducted with managers and developers in each company in two stages: 

a. During the case study design phase, i.e. before the defect data was 
collected. The main aim of these interviews was to understand the 
context, to get insights of software development process, and to 
confirm that the data to be collected matches the definition used in 
this study. 

b. After the analysis of defect data, the initial conclusion and 
interpretations were again discussed with the same interviewees at 
each company to transfer the knowledge and also to confirm if the 
conclusions and interpretations aligned with their experience from 
the actual projects.  

c. To minimize the possible bias due to job roles, two people in each 
company were selected for interviews. A manager and a 
developer/tester both involved in the original projects and familiar 
with the companies’ defect reporting system and procedures were 
selected.  
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Although it is not possible to share the actual defect data due to confidentiality 
issues, for each project we provide the partial cumulative defect inflow profile, 
which helps to visualize the distribution as well as to point out 
similarities/differences between the projects. The total number of defects reported 
and the total timespan of projects cannot be disclosed and hence the data is 
normalized.  

3.13.4 Metrics used for the evaluation of research 
questions in this study 

SRGMs in general can be evaluated for their ability to fit the observed defect data 
(i.e. reproduce the observed behaviour), and to forecast the expected future 
behaviour based on observed data [116].  

Goodness-of-fit criterion help us evaluate the models ability to reproduce the 
observed behaviour, MSE (Mean Square Error) is a well understood measure for 
evaluating difference between actual and predicted values [117] [70], a smaller MSE 
indicate closer fit and thus better performance.  

Predictive validity criterion on the other hand help us evaluate the ability of model 
to predict the future behaviour from past and present observed data [116]. Predicted 
relative error is one such measure which is useful indicator of error between 
predicted and actual number of defects discovered by termination time of testing 
[100]. Other similar measure such as relative error defined by Musa [72] have been 
used to evaluate predictive validity of models in earlier studies [117] [118].  

In this study, the comparison criteria used are MSE for goodness-of-fit and Balanced 
PRE for evaluating predictive validity, these are explained next.  

Mean Square Error (MSE) 
MSE is the mean of squared error, where error is defined as the difference between 
actual and predicted value. MSE value can only be used as an interval scale measure 
to compare between different estimators to rank one model against another. The 
lower the MSE, the better is the model/estimator goodness-of-fit. MSE measures the 
variance for an unbiased estimator and is given by equation (1): 

 …………………………………………...………(1) 

where,  = actual value,  = predicted value, and  is the number of data points in 
use.  
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Mean square error is used to evaluate the fit of a given software reliability growth 
model to the observed data and predicted values to the actual values in the predicted 
region. Other goodness-of-fit metrics such as the R2 and Theil’s statistics have been 
used in various studies [76] as well as our previous work [57], but given that these 
metrics are scaled versions of MSE, we only consider MSE to evaluate and compare 
the fit ability of different models in this study. Another widely used goodness-of-fit 
metric is Akaike's information criterion (AIC), which is given by equation (2) [67], 
[75]: 

….......…(2) 

Under the usual assumptions of Non-Linear Least Square Regression (random error 
follows Gaussian distribution, which is also same as assuming that random errors 
are independent and identically distributed),  AIC can be redefined [119] [120] by 
following equations (3) – (4): 

   
ௌௌா

௡
…………………………….…………..….…………..(3)

…………………………….……..….…....….…...…(4)

where,  is the number of non-missing observations,  is sum of squared errors 
) and  is the number of fitted parameters in the model.  

AIC is a better criterion for evaluating effectiveness of fit (lower values imply better 
fit) as it penalizes those models with greater number of parameters ( ). However, in 
our case since  is large, while the number of parameters for all tested models is 
small ( ) - ranking of models using either the MSE or AIC criterion is unlikely 
to be different. Given that the MSE has a more intuitive definition, which is easy to 
interpret by industry practitioners - we use MSE as the main goodness-of-fit 
measure in this study.  

Balanced Predicted Relative Error 
Goodness-of-fit measures one characteristic of reliability models, the other 
important property is the predicted asymptote accuracy which can be used to assess 
the release readiness of a product. To measure the asymptote correctness, the 
Predicted Relative Error (PRE) defined as the ratio of predicted asymptote error to 
the predicted number of defects is used; 

, is specified as one possible approach 
in the IEEE standard 1633 [78] to measure model predictive validity and used in 
earlier studies [76]. In [121], it is observed that the PRE does not give consistent 
results for positive and negative deviations and hence, we use Balanced PRE 
(BPRE) as described in [121], given by equation (5): 
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w   ………….(5) 

BPRE has upper and lower bound of +/-1 respectively; values closer to +/-1 indicate 
large predicted relative error. While a BPRE value closer to 0 shows that the total 
number of defects predicted by the model is very close to the actual total number of 
defects reported in the given project. Corresponding to PRE, BPRE values of +/-
10% are usually considered good for making reliable predictions [76] [78].  

3.13.5 Analysis methods for the research questions 
 
Which SRGMs are the best to assist decisions for optimal allocation of testing 
resources? 
For assisting decisions to optimize the usage of testing resources such as allocation 
of human testers, test case scheduling, testing effort etc., a good model should be 
able to predict the shape of the defect inflow profile in the future, i.e. the fit of 
model in the predicted region during the project should be as high as possible. Thus, 
models that give the best fit (minimum MSE values) for the predicted region using 
50% and 70% data are best suited for this purpose.  

MSE values for all SRGMs that we tested (including the linear model), are presented 
using average MSE plots (e.g. Figure 24); these plots compare MSE values for all 
models in the observed and predicted regions for the different sets of data. Lower 
MSE values on the observed region indicate the superior ability of a given model to 
fit the observed data, while lower MSE values on the predicted region show that the 
model is more accurate in predicting the shape of the future defect inflow profile. 
Figure 20 provides an overview of the analysis procedure in use. 

For optimal resource planning and management, the earlier the predictions can be 
made with high accuracy the better. Thus, we calculate an index MSE value using 
weights of 50%, 30%, and 20% respectively on MSE values for the predicted region 
at half-way, 70%, and 90% of a project’s completion.  

  

The index MSE value is used to order SRGMs according to their ability to assist in 
resource allocation decisions. In the average-MSE plots (e.g. Figure 24), the SRGMs 
are placed in the ascending order of  values and thus, the best models are 
placed on top of the plots. The selection of weights is subjective and can be 
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customized according to the specific information need of a given organization. For 
example a company interested in making resource allocation decisions at the mid-
way milestone of the project may choose to use 100% weight for . 

Figure 20: Flow chart for analysis procedure for RQ1and RQ2 

Which SRGMs are best for assessing the release readiness of a software system? 
To compare between the SRGMs for their appropriateness in determining release 
readiness of software systems, we calculate the average BPRE ignoring the sign of 
predictive relative error, giving us Avg+3. The Avg+ BPRE values for each tested 
model are plotted for each case unit (e.g. Figure 25). 

                                                      
3 Averaging BPRE values can lead to a mean value lower than the actual magnitude of mean 
due to sign convention for over and under predictions. Since we are only interested in the 
mean precision accuracy, Avg+ only considers the magnitude. 
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The criteria for a good model in this case are based on the ability of model to make 
accurate asymptote predictions towards the end of the project using full or 90% 
observed data so that latent defects can be estimated with high accuracy. The 
secondary criterion for selecting the appropriate model for release readiness 
assessment is its consistency, i.e. the model should make accurate predictions of an 
asymptote not only late in a project but also when the project is close to completion. 
We calculate the index BPREi value as follows: 

, 

where the subscripts show which data set is used for BPRE calculation. The weights 
for calculating index BPRE values reflect the importance a manager assigns, for 
when such assessment is useful. The selection of weights could be customized by an 
individual organization according to their information needs. The index BPRE value 
is used to order SRGMs for their ability to assist with release readiness assessment 
in Avg+ BPRE plots (e.g. Figure 25). An overview of the analysis method applied is 
shown in Figure 20. 

Does using the information from earlier projects improve release readiness 
assessment? 
Another important and practical question when applying SRGMs in industry is, if 
and how can we use experiences from earlier projects to make better predictions on 
an on-going project. The analysis method used for answering this research questions 
(RQ3) is represented as flowchart in Figure 21. 
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Figure 21: Flow chart for analysis procedure for RQ3 

Two important parameters in the SRGM mathematical models are the asymptote 
value and the growth rate. Since the objective here is to make a better prediction of 
the asymptote value, we use the growth rate from the first project in each case unit 
using full data (e.g. p0 dataset of project A1 in case of VCG) to all other datasets and 
projects for the given case unit. This is equivalent to assuming that we expect 
projects in the same organization that are developed and tested by similar teams to 
have a shape of the defect inflow profile, which is similar to earlier projects.  

To evaluate which model performs best when information from earlier projects is 
used, Avg+ BPRE values for each model tested are plotted for each case unit and 
ordered using the index BPRE value. Additionally, we also test the following null 
hypothesis: 
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Ha: There is no significant difference between the overall performance of asymptote 
prediction (index BPRE values) with and without using growth rates from earlier 
projects. 

How to make the choice of SRGM more effective? 
There are two main shape classes for SRGM models: concave and S-shaped [13] 
which relate to the general outlook of their shape. Concave profiles bend 
downwards, while S-shaped curves are first convex and then concave-shaped [13] as 
illustrated in Figure 22.  

 

 
Figure 22: Different shapes of cumulative defect inflow profiles (left) and flow chart for analysis 

method used for RQ4 (right). 
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To evaluate if the selection of a model for optimal test resources management and 
release readiness assessment can be further improved, the projects in this study were 
classified based on the shape of their defect inflow profiles into the following three 
categories: 

Concave: The cumulative defect inflow profile is concave-shaped if its shape bends 
downwards, i.e. if you draw a straight line between first and last point and the defect 
inflow profile is curved outwards for the most part (approximately 70% of time). In 
these cases, the growth rate for cumulative defects (defect intensity or the tangent to 
the cumulative defect inflow profile) is at its maximum early in the project, and then 
drops as project progresses giving a concave-shaped cumulative defect inflow 
profile. 

Convex: The cumulative defect inflows that bent upwards are classified as convex-
shaped, i.e. if you draw a straight line between first and last point, the defect inflow 
profile is curved inwards for the most part (approximately 70% of time). These 
projects are characterized by a slow growth rate of cumulative defects at the 
beginning, which stays until late in the project and eventually increasing (refer 
Figure 22) to give a convex shape.  

S-shaped: The S-shaped cumulative defect inflow profile is one that is convex-
shaped at the beginning and concave-shaped later. The growth rate of cumulative 
defect inflow is small at the beginning; it increases to reach a maximum about in the 
middle of project and eventually slows down to give the characteristic S-shape 
(Figure 22). 

The Average MSE and Avg+ BPRE values are recalculated for the projects with 
similar shapes of the defect inflow and the best models for a given shape are 
selected using indexed values as described before. To assess if classifying models 
into groups based on the predicted shape of the cumulative defect profile improves 
predictions, following hypotheses are formulated: 

Hb: There is no significant difference between the overall performances of a model’s 
ability to fit the predicted region of a defect inflow (indexed MSE predict values) 
with and without classification into groups based on its shape. 

Hc: There is no significant difference between the overall performances of asymptote 
prediction (indexed BPRE values) with and without classification into groups based 
on its shape. 
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To test the formulated hypotheses, we use related samples Wilcoxon signed rank test 
for Ha and independent samples Mann-Whitney U test for Hb and Hc; the alpha value 
for all tests is selected at 0.05 level.  

3.14 Results and analysis 
Since each company has a different software development paradigm, we first 
analyse each case unit separately following each research question. We also do cross 
case analysis to highlight how the similarities/differences of the software 
development process or the shape of the defect inflow affect the 
selection/applicability of SRGMs within the context of embedded software 
development.  

3.14.1 Case-1: Software Development Processes 
using V-model: Automotive domain (Volvo Car 
Group) 

In this unit of analysis we study four large4 software development projects from 
Volvo Car Group (VCG), a company from the automotive domain. The projects 
come from the E/E (Electrical and Electronics) integration department within the 
VCG, which deals with the integration of various software functionalities and which 
is responsible for the final assessment of the complete EE hardware and software 
systems. All projects used in this study have been completed during the last decade. 
Furthermore, they consist of different modules developed by different teams and 
tested within the development team (unit testing), while further integration and 
acceptance testing is done by dedicated teams in the integration department. All 
defects that are detected during all testing phases are reported in the central defect 
database used by VCG, which is also the primary data source for this study.  

3.14.1.1 Defect Inflow Profiles 

                                                      
4 We define a software project as large software project if it involves at least team of 40 
developers and testers working for a minimum period of six months. All projects studied in 
this study quality this criterion by a large margin.   
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The cumulative defect inflow profile for the four projects analysed from case unit 1 
are presented in Figure 23. From the figure we can observe that most projects (all 
except project A2) have an S-shape. The cumulative defect inflow profile of project 
A2 resembles the convex defect inflow. The specific difference of this project to the 
other projects was no surprise for the interviewees of this company, who explained 
that the defect reporting strategy was different for this project – project A2 included 
defect reports from a specific team which applies an agile process and generally 
reports their defects in another database. Despite this, it is included in this analysis 
since the specified teams’ contribution to the overall project A2 was comparatively 
large. 

Figure 23: Cumulative defect inflow profiles for case unit-1. 

3.14.1.2 Which SRGMs are the best to assist decisions 
for optimal allocation of testing resources? 

The goodness-of-fit measure, the mean square error (MSE) is presented in Figure 24. 
It is important to note that the values are averages for all four projects from this case 
unit. In the figure, the horizontal bars on the left side represent MSE values for the 
observed region, while the bars on the right side within the same figure show the 
MSE values for the predicted region using 50%, 70%, and 90% data. We do not 
show the magnitude of MSE values in the figure since the actual magnitude of MSE 
does not have a physical interpretation because it is measured on an interval scale 
and is primarily useful for comparative purposes. The fit measure differs in 
magnitudes on the observed and predicted region – the MSE values are much higher 
in the predicted region than in the observed region. Thus these values are scaled 
down by a factor of five (MSE predict values divided by five on right side) in all 
MSE plots.  
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The difference in the order of magnitude shows that the fit is superior in the 
observed region, which is not surprising given that NLLS minimizes the sum of 
square of errors. We also observe that models where less data is used (e.g. 50% data) 
fit the observed data better than when using more data (e.g. 90% data), simply due to 
the fact that it is relatively easy to configure parameters to fit less data points, while 
fitting the same model to more data points leads to more errors and thus a 
comparatively inferior fit. At the same time, the opposite is true for the predicted 
region – using more data gives more accurate parameter estimates making the 
predicted part fit better as more data points are used (represented by the bars on the 
right side). The SRGMs are ordered using indexed value of MSE calculated as 
described in section III part D. 

Figure 24: Average MSE for studied SRGMs over full & partial data for case unit 1. 

With respect to the goodness-of-fit criterion, we observe that the Logistic model fits 
best in the observed region. The concave models (Musa-Okumoto and Goel-
Okumoto models) do not give good fit overall, and Delayed-S is the worst regarding 
the fit criterion.  

With regard to fit in the predicted region, the Logistic model again performed the 
best, although it is noteworthy that the Logistic model is unable to converge to the 
set of 50% data, which shows that this model is not useful with little data. An 
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alternative to Logistic is the Gompertz model, which converged in all cases and 
provides good fit with high reliability; however not as good as the Logistic model. 

Therefore the Logistic model is best for making test resource allocation decisions as 
it has superior ability to accurately predict the shape of the defect inflow compared 
to other models but in this case unit as the Logistic model is unable to give results 
with 50% data at that point of project timeline, the Gompertz model is 
recommended.   

3.14.1.3 Which SRGMs are best for assessing the 
release readiness of a software system?    

Figure 25 displays the BPRE values for all SRGMs that are used in this study 
averaged across the four projects. It is obvious that the concave models perform the 
worst. While S-shaped models perform better than the concave models, trend 
models are the most accurate in this respect.  

Again, the Logistic model gives the most accurate results in predicting the total 
number of defects in a project when it is close to completion (using all and 90% 
data). If the projects are half-way, the model is unable to converge for allowing 
reliable predictions. Gompertz on the other hand has good predictive accuracy and is 
also consistent in its predictions over different data sets for this software 
development process. 

Figure 25: Average+ BPRE for studied SRGMs for case unit 1. 
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Based on the analysis of the case unit 1, for a software development process that 
resembles the V-model, the Logistic model is the best model for the assessment of 
the release readiness.  

3.14.1.4 Does using the information from earlier 
projects improve release readiness assessment? 

The estimates for BPRE values using the growth rate from project A1 are presented 
in Figure 26. The results show a sharp improvement in the prediction accuracy 
compared to BPRE values that are obtained without using the growth rate from an 
earlier project (Figure 25).  

Figure 26: Average+ BPRE for studied SRGMs with growth rate from Project-A1 (100% data), 
case unit 1. 

Except for the concave models, using a growth rate from an earlier project increases 
the accuracy of the asymptote predictions resulting in BPRE values close to +/-10% 
with all and with 90% of the data. The results demonstrate that using information 
from earlier projects is useful for increasing the accuracy of asymptote predictions in 
on-going projects for embedded software development in the automotive domain.  

Testing hypothesis Ha using Wilcoxon signed rank test for this case unit, we are able 
to reject the null hypothesis (p-value = 0.018) that shows a statistically significant 
improvement is achieved in the prediction accuracy of SRGMs by using the growth 
rate compared to applying models using no information from earlier projects.   
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3.14.2 Case-B: Highly Iterative Software 
Development Processes: Telecom domain 
(Ericsson) 

3.14.2.1 Defect Inflow Profiles 
The defect data from five consecutive releases of a single product is used for the 
analysis of this case unit, the defects data collected and included in the analysis is 
from function and system testing starting when new features are delivered to the 
main branch for the first time until the new release is made available (released) 
internally, as shown in this case unit’s software development process in Figure 18. 

Figure 27: Cumulative defect inflow profiles for case unit-2. 

The partial cumulative defect inflow profile for five releases is presented in Figure 
27. The defect inflow profiles in this case unit with its highly iterative software 
development and testing process do not show S-shaped characteristics, which we 
observed in the previous case unit. Three out of five profiles are concave-shaped 
while the remaining two are convex-shaped. To accommodate prior studies for the 
iterative software development paradigm [112], a linear model is also evaluated and 
compared to seven other models in this study. 

3.14.2.2 Which SRGMs are the best to assist decisions 
for optimal allocation of testing resources? 
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The goodness-of-fit measured by MSE for this case unit is shown in Figure 28. The 
first interesting observation is that the ability of the linear model, which is 
recommended in earlier studies [112] for agile software development process to 
predict the shape of the defect inflow profile, is lowest among the tested models. 

Figure 28: Average MSE for studied SRGMs over full & partial data for case unit 2. 

The Gompertz model performs best for this case unit following an iterative 
development process. 

3.14.2.3 Which SRGMs are the best for assessing the 
release readiness of a software system? 

The asymptote prediction accuracy is presented in Figure 29, the concave models and 
the Inflection-S model performed poorly for this case unit. With respect to accuracy 
of predictions and consistency to make good predictions with different data sets, the 
Logistic model is found to be the best model.  
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Figure 29: Average+ BPRE for studied SRGMs for case unit 2. 

The results here suggest that for making decisions on release readiness where the 
decisions are made towards the end of the project timeline and where the main 
criterion of assessment is the likelihood of presence of latent defects 
( ), the Logistic model is 
the recommended model for a software development process that is highly iterative. 

3.14.2.4 Does using the information from earlier 
projects improve release readiness assessment? 

Figure 30 shows the asymptote prediction accuracy (BPRE values) when the growth 
rate from an earlier project (here release B1) is used for later releases. Comparing 
the results (Figure 30) to those without using the previous growth rate (Figure 29), 
we can observe that the prediction accuracy of concave models improves 
significantly. Using the earlier growth rate, the prediction accuracy of concave 
models (Musa-Okumoto) is best among the tested SRGMs, the predictions are also 
consistent among full and partial data sets. 
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Figure 30: Average+ BPRE for studied SRGMs with growth rate from Release-B1 (100% data), 
case unit 2. 

Another observation is that the asymptote prediction accuracy for S-shaped and 
trend models on average decreased by a small amount in this case after using the 
growth rate from release B1. This decrease of predictive accuracy can be attributed 
to factor that two out of five releases, defect inflow is different from release B1. 
This point toward an important lesson that the growth rate to be used should be from 
projects, which is a typical case or some form of weighted average should be used 
instead, which can be customized to reflect more closely the similarity between 
current and past projects. 

Overall, if the objective is to assess if a software is ready for release and a growth 
rate from earlier projects is available then the concave model Musa-Okumoto 
performs best when the software development is streamline (lean and agile) as in 
this case unit (Ericsson). Testing hypothesis Ha for this case unit, we were unable to 
reject the null hypothesis (p-value = 0.735 showing that overall there is no 
statistically significant improvement in the prediction accuracy by using the growth 
rate compared to applying models using no information from earlier projects for 
release readiness assessment.  
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3.14.3 Case-C: Modified Waterfall Software 
Development Processes: Defence Equipment’s 
(Saab Electronic and Defence Systems) 

3.14.3.1 Defect Inflow Profiles 
The defect data analysed in this case unit comes from two large software products. 
For each product, defects reported during the development and testing of all sub-
systems and during integration testing and verification are collected (refer Figure 19). 
The cumulative defect inflow profile for the two projects is represented in Figure 31. 

Figure 31: Cumulative defect inflow profiles for case unit-3. 

 The cumulative defect inflow profiles show signs of an S-shape in project C1, while 
the second project is closer to convex-shaped; it is also observed that the second 
project in this case unit had an unusually low growth rate in the beginning which 
was confirmed by the interviewees for this unit. It is also noted that since the 
number of projects available for analysis in this case unit is only two, deviations in 
any of the projects can lead to large deviations on the average value and thus, these 
aspects need to be considered when analysing the results. 

3.14.3.2 Which SRGMs are the best to assist decisions 
for optimal allocation of testing resources? 
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The MSE values measuring goodness-of-fit for this case unit are shown in Figure 32.  

Figure 32: Average MSE for studied SRGMs over full & partial data for case unit 3. 

It is observed that the concave models (MO, GO) and Inflection-S model do not fit 
well, neither on the observed region nor on the predicted region. Delayed-S and 
Rayleigh models perform comparatively better, while the Logistic models fit best in 
the observed data and predicted region. The results are similar to the ones obtained 
in case unit 1. We see the Logistic trend model to be the best among all tested 
models. Thus, the preferred model for optimal allocation of test resources would be 
the Logistic model for a software development process that resembles the waterfall 
model. 

3.14.3.3 Which SRGMs are best for assessing the 
release readiness of a software system? 

Again given that we only have two projects in this case out of which one has an 
unusually low growth rate at the beginning, we see large deviations in performance 
of models when applied at different times of the project timeline (cf. Figure 33). 
Nonetheless, on average we confirm the general observations from case unit 1, 
concave models asymptote predictions are very close to upper limit showing large 
error in predicted asymptote values in these projects. The prediction accuracy of S-
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shaped models is better than concave models but still not close to the desired 
accuracy levels for use in practice. Trends model such as Logistic and Gompertz 
perform better when more data is used but unlike the other case units, these models 
are inconsistent given the large deviation of project C2’s defect inflow profile.  

Figure 33: Average+ BPRE for studied SRGMs for case unit 3. 

While we observed in case unit 1 as well in case unit 2 that the trend models 
(Logistic and Gompertz) performed well in asymptote prediction accuracy, results 
here suggest that if the defect inflow profile deviates heavily from S-shape (such as 
in project C2 here), the use of these models with partial data sets either should be 
avoided or thorough care needs to be taken when interpreting the results.  

Nonetheless, for this case unit, the Gompertz model is shown to be the best for 
assessing release readiness of a given software project. 

3.14.3.4 Does using information from earlier projects 
improve release readiness assessment? 

shows the asymptote prediction accuracy when we use growth rate from project C1 
to improve prediction accuracy for the case unit 3. In this case unlike the case unit 1, 
we do not see significant improvements in the asymptote predication accuracy for 
concave models but the prediction accuracy of S-shaped models and trend models is 
improved. The observation also shows that using information from an earlier project 
increases the consistency of prediction accuracy.  
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Figure 34: Average+ BPRE for studied SRGMs with growth rate from Project-C1 (100% data), 
case unit 3. 

The result is interesting given the fact that C2’s defect inflow profile deviates from 
the expected standard shape and thus, it is concluded that if one has to use SRGMs 
for asymptote prediction and data availability is restricted (i.e. when predictions are 
needed early in development project) one should try to maximize the use of the 
information from earlier projects. This strategy will improve the chance of making 
predictions, which are more accurate than making asymptote predictions without 
using such information. The Logistic model is best suited for release readiness in 
this case unit when a growth rate from an earlier project is used.  

Testing hypothesis Ha for this case unit, we were again unable to reject the null 
hypothesis (p-value = 0.063) that shows that overall there is no statistically 
significant difference in the median of prediction accuracy of SRGMs with and 
without using the growth rates at 5% alpha level. The best model selected using 
growth rates (Logistic) had a much lower indexed BPRE value than the best model 
(Gompertz) without using growth rates, 7% compared to 20%, which indicates that 
the best model using growth rates is much more accurate for making release 
readiness assessment than using the best model without using a growth rate.  
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3.14.4 Cross Case Analysis  
Analysing the three case units together, we first plot the cumulative defect inflow 
profiles, also called cumulative defect count for all projects analysed under all case 
units in Figure 35. For the sake of comparison, the X and Y axis in the figure are 
normalized to an interval [0, 1]; the project timeline is normalized by total weeks for 
each project and the defect count by the total defect count observed for each project 
respectively. A diagonal line helps making a visual distinction of the shape of 
cumulative defect count profiles. If the defect inflow profile starts under the 
diagonal line but by mid-way through the project passes over the diagonal, it is S-
shaped, while if it starts and stays over the diagonal for most part of the project 
timeline, the profile is concave-shaped. The projects where the defect inflow profile 
starts with slow growth rate (i.e. under the diagonal line) and stays below this line 
for most part of the project are regarded as convex-shaped. 

Figure 35: Cumulative defect inflow profile (or cumulative defect count) for case units 1-3. 

It is observed from Figure 35 that a given case unit may have projects with different 
cumulative defect inflow shapes. Notably the case unit 1 has most projects (A1, A3 
and A4) following the S-shape, while only one project A2 follows the convex 
profile. Case unit 2 has three out of five releases following the concave cumulative 
defect inflow (B1, B3 & B5), while the other two follow the convex profile. In case 
unit 3, project C1 is S-shaped while the anomalous project C2 is closer to convex 
shaped than to any other shape. Based on the overall results from the evaluation of 
SRGMs on each case unit, the software reliability growth models that suit the 
different objectives for each case unit are summarized in Table 15. 
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Table 15: Summary of recommended SRGMs for case units 1-3. 

Case unit 
(domain) 

Software 
development 

process 

Observed shape 
of defect inflow 

profile 

Recommended SRGMs 

For testing 
resource(s) 
allocation 

For release readiness assessment 

Only using 
current project 

data 

Using 
historical 

information 

1. Automotive V-model S-shape, Convex Gompertz Logistic Logistic 

2. Telecom Lean + Agile 
Concave, 
Convex 

Gompertz Logistic Musa-Okumoto 

3. Defence 
Equip 

Waterfall S-shape, Convex Logistic Gompertz Logistic 

 
It is noted that: 

 For the company developing embedded software in the automotive 
domain following the V-model for software development (case unit 
1), the defect inflow profile of projects is dominantly S-shaped with 
few exceptions that are convex-shaped. In this case for decisions 
regarding optimal allocation of testing resources, the Gompertz 
model performs best, while the Logistic model is recommended for 
assessing the release readiness with or without using past 
information. 

 In the case of Ericsson using streamline development for 
developing embedded software in the telecom domain, project 
releases in general produce defect inflow profiles that are concave 
and convex-shaped. The best performing model for optimal test 
resource allocation is Gompertz. For release readiness assessment 
using current project information, the Logistic model is the best 
choice while when previous projects information is used, the Musa-
Okumoto model gives the best results. 

 For Saab EDS developing embedded software in the defence 
equipment domain following the waterfall development process 
(case unit 3), the projects defect count profiles are S-shaped and 
convex-shaped.  The Logistic model is recommended for making 
optimal test resource allocation decisions in this case. While for 
making the assessment of release readiness with and without using 
historical project information, the Logistic and Gompertz models 
are best respectively. 

 Overall, for making decisions with respect to optimal allocation of 
resources during a project, the Gompertz model is the 
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recommended unless the software development process is waterfall 
where the Logistic model is better. 

 For making an assessment if a product is ready for release or will 
be ready for release by a given date by using only defect data from 
the current project, the Logistic model is recommended except in 
the case of the waterfall development process, where the Gompertz 
model should be preferred. 

 When information in form of a growth rate is used from earlier 
projects, the assessment of release readiness can be done more 
accurately by using the Logistic model, except in an agile 
development process, where the concave-shaped model Musa-
Okumoto is more accurate for such assessment.  

3.14.5 How to make the choice of SRGM more 
effective? 

Next we investigate how different reliability growth models perform if we apply 
them based on the observed defect inflow profile rather than evaluating them on 
company/case unit basis. Based on the shape of observed defect inflow profiles from 
Figure 23, Figure 27, and Figure 31, the projects/releases at three case units are 
classified into groups of S-shaped, concave, and convex-shaped defect inflow 
profiles (shown in Figure 36).  

Figure 36: Cumulative defect inflow profile (or cumulative defect count), cases classified into S-
shaped, concave and convex-shaped respectively. 

Although it is easy to classify the projects based on the observed shape of defect 
inflow profiles when a project is finished, it is not straightforward to select an 
appropriate SRGM for a project when the project is on-going.  
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We propose to use the trend of observed defect intensity to predict the shape of a 
defect inflow profile, the overall defect intensity of all projects/releases classified 
according to their shape is presented in Figure 37. A vertical line is also drawn when 
a software project is half-way through its timeline, where we aim to predict the 
shape of full defect inflow profile. As it can be seen from the figure, the defect 
intensity for S-shaped profiles maximizes close to the middle of project timeline 
before it starts to fall down. For concave-shaped cumulative defect profiles, the 
defect intensity maximizes very early in the project and then decreases smoothly 
over the rest of the project. On the other hand, projects that have a convex-shaped 
cumulative profile, the defect intensity keeps increasing until late in the project 
timeline before eventually reaching a maximum and then declining. These projects 
show what in industry is called late defects, which tend to put a lot of pressure on 
the project teams near the release time. 

Figure 37: Defect inflow profile (or defect intensity), cases classified into S-shaped, concave and 
convex-shaped respectively. 

To predict the shape of defect inflow during an on-going project (i.e. using partial 
defect data), we plot only the observed defect intensity of a project (in this case 
when a project is half-way through its timeline) and plot a linear trend line for this 
period, as shown in Figure 38. It is clear that for cumulative defect profiles that are S-
shaped and convex-shaped, the defect intensity until half-way through the project is 
increasing, while for concave-shaped cumulative defect inflow, the overall defect 
intensity trend at the middle of project is decreasing. 
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Figure 38: Partial Defect intensity with linear trend line, cases classified into S-shaped, concave 
and convex-shaped respectively. 

Thus observing a linear trend of defect intensity only allows us to identify the 
concave-shaped defect profiles but not to distinguish between S-shaped and convex-
shaped. For this distinction we split the observed region before and after the 
maximum defect intensity (for the observed period) is reached. Overall if the 
maximum defect intensity is reached near to half-way though the project and then 
the defect intensity trend is decreasing, the predicted shape is the S-shaped, while if 
the trend of defect intensity after it has reached its maximum is increasing then the 
predicted shape is convex. Only project C2 does not satisfy the classification method 
described here but it is also the project with an unusually low growth rate for much 
of the early phases of project.  

Figure 39: Partial Defect intensity with linear trend line before and after the maximum intensity is 
reached. 

How to predict the shape of cumulative defect inflow by analysing the trend of 
defect inflow intensity of observed data is summarized in Table 16. 
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Table 16: Summary of classifying projects based on predicted shape of defect inflow 
using observed trend of defect intensity. 

Projects/ 
Releases 

Defect inflow intensity trend until half-way through the project 
Predicted 
shape of 
defect inflow 
profile 

Overall 
trend 

Trend after 
reaching 
maximum 

Defect inflow intensity trend 
characteristics 

A1, A3, A4 
& C1 

Increasing Decreasing 
Defect inflow intensity first increases, 
maximizes near to half-way and then 
decreases 

S-shape 

B1, B3 & 
B4 

Decreasing Decreasing 
Early defects, defect inflow intensity 
maximum early then decreases smoothly 

Concave 

A2, B2, B5 
& C2 

Increasing Increasing 
Late defects, defect inflow intensity trend is 
positive throughout half-way of project 
timeline 

Convex 

 
Re-evaluating the results based on classification of predicted shape of defect inflow 
profiles are presented in Figure 40 and Figure 41. As before SRGMs are ordered 
based on the indexed value of MSE and BPRE that indicate which models are best 
for a given purpose: Assisting in allocation of testing resources and assessment of 
release readiness.  

Figure 40: Mean Square Error for classified cases, S-shaped, concave and convex defect profiles 
respectively. 
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Figure 41: Balanced predictive relative error for classified cases, S-shaped, concave and convex 
defect profiles respectively. 

The recommended model for each (predicted) category of defect inflow shape is 
summarized in Table 17. After classification, it is observed that: 

For S-shaped defect inflow profiles, the Logistic model is best for assisting in 
decisions regarding optimal testing resource allocation as well as for using SRGMs 
for assessing release readiness. 

If the predicted shape of defect inflow profile is concave, most models give good 
prediction accuracy but overall, the Gompertz model is best for both purposes. 

For projects where the defect inflow profiles are convex-shaped due to late defects, 
most models fail to make precise predictions. The best model for helping with 
resource allocation decisions in such projects is Delayed-S, while for assessing 
release readiness is the Logistic model. 

Table 17: Summary of recommended SRGMs for projects classified based on 
(predicted) shape of defect inflow profiles. 

Predicted shape of defect 
inflow profile 

Recommended SRGMs 

For testing resource(s) 
allocation 

For release readiness assessment using 
current project data 

S-shape Logistic Logistic 

Concave Gompertz Gompertz 

Convex Delayed-S Logistic 
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To test if it actually helps to predict the shape of defect inflow profile and use this 
information to select an SRGM for test resource allocation or assessment of release 
readiness, box plots for indexed MSE values (for predicted region) and indexed 
BPRE values with and without classification are presented in Figure 42. The 
hypothesis Hb and Hc formulated earlier are also tested. 

Figure 42: Box plot for index MSE and index BPRE values before and after classification based 
on predicted shape of defect inflow profile. 

Testing the hypothesis Hb for all projects using independent samples Mann-Whitney 
U test, we are unable to reject the null hypothesis (p-value = 0.564). There is no 
statistically significant difference between a model’s ability to fit the predicted 
region of defect inflow (indexed MSE predict values) with and without classification 
into groups based on the shape.  

While testing hypothesis Hc for all projects, we are able to reject the null hypothesis 
(p-value = 0.026) that show that a statistically significant improvement is achieved 
in the overall performances of asymptote prediction (indexed BPRE values) by 
classifying projects based on the predicted shape of their defect inflow. Thus, release 
readiness assessment can be improved significantly if the shape of defect inflow 
profile is predicted and this information is used to select the most appropriate model. 

3.14.6 Threats to validity 
We address the threats to validity in the manner as described by Wohlin et al. [50]. 
There exists a threat to internal validity to this study regarding what is considered to 
be a defect. To minimize the threat, a common definition of defect was used which 
was verified at each case unit before the data was collected. Another threat to 
internal validity of this study arises from using non-linear least square (NLLS) for 
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curve fitting/parameter estimation, while a widely recommended technique is the 
maximum likelihood estimation. NLLS has been used in many earlier studies mainly 
the ones comparing the performance of different models [76], [57], [115], which is 
also the case here. Also since the main objective of this study is to compare between 
the models, the parameter estimator method does not pose a serious threat.  

A threat to conclusion validity is present due to the assumption that the total 
reported defects is the actual asymptote, but since all the projects used in this study 
have been completed at least one year before this study was initiated, the threat of 
this assumption being invalid is hence minimized. There also exists a conclusion 
validity threat due to the use of a new metric for assessment. For measuring and 
comparing asymptote prediction accuracy, the new metric BPRE is used, which is an 
improvised version of the widely used metric Predictive Relative Error (PRE). 
Defined in detail in [121], BPRE is used to ensure that there is consistency 
(symmetry) between the metric values for over and under predictions. Taking only 
the magnitude value and ignoring the sign when averaging prediction accuracy to 
give Avg+ further ensures that over and under predictions are treated equally and do 
not cancel each other’s effect. Thus, these changes help us to enhance the conclusion 
validity of our study.  

External validity concerns with the generalizability of results in settings outside of 
the particular study. In the work presented here, we have evaluated eight well 
studied and widely accepted SRGMs on industrial embedded software projects. 
Seven plus one different reliability models with different shapes and structures were 
chosen to represent the sample; the selected models are based on their widespread 
use in reliability literature. The data used for this study came from three leading 
companies with heavy focus on embedded software development but with a 
different product portfolio and different software development processes 
respectively. The wide variation in development processes and the defect inflow 
profiles helped us to keep the study quite general. Thus, the results obtained from 
this study have wider applicability within the embedded software domain. Results 
concerning applicability of SRGMs for optimal allocation of testing resources, 
assessment of release readiness, and usability of historical information for 
improving the prediction accuracy of given models have also applicability beyond 
the embedded software domain. 
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3.15 Recommendations for applying SRGMs in 
industry for embedded software 
development 

By evaluating SRGMs using real data from industry and addressing practically 
important research questions in this study, we seek to increase their industrial 
adoption. Based on the results discussed in this work, we provide some guidelines 
for companies looking to apply SRGMs for reliability assessment: 

a. Collect the right data from testing: Understand the software 
development and testing process at your company. The defect 
reporting and management process in a company greatly influences 
which data from which database and from which 
development/testing phases are best suited for reliability analysis. 

b. Perform exploratory analysis of data: Visualizing the data is the 
first and essential step for choosing the right model. Exploratory 
analysis of past and current projects provides understanding of the 
shape of the defect inflow and also how similar the past and current 
projects are with respect to their defect inflow profiles.  

c. Define goals for applying SRGMs: Reliability growth models can 
be used to assess the release readiness at the end of a project, and/or 
to allocate testing resource to ensure the desired reliability/quality 
is achieved in a given timeline. Some models are better suited for 
one purpose than others and thus, defining the goals upfront helps 
the analyst to choose the right model for the given purpose. 

d. Model selection: It is observed that performance of different 
SRGMs vary widely. Therefore, instead of selecting a model on ad-
hoc criterion, pick a few models based on the observed defect 
inflow profiles from past projects and current projects, evaluate 
these models on the data, and select the best model.  

e. For the embedded software domain, the current work suggests that 
irrespective of different development/testing process, trend models 
(Logistic and Gompertz) perform quite well while concave models 
were the least accurate.  

f. Classify based on predicted shape: This study suggests that it is 
possible to predict the shape of the defect inflow profile during an 
on-going project. Predicting the expected shape helps to select the 
appropriate SRGM for a given purpose. 

g. Use of historical information: Use information from earlier 
projects to increase the prediction accuracy. When the development 
and testing process is similar to earlier projects, reducing the model 
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parameters provides an easy to use methodology for increasing 
predictive accuracy of these models. When applying these models 
early in the project timeline, past information can improve the 
models’ prediction accuracy and increase also their prediction 
consistency.   

3.16 Conclusions 
In this paper we have evaluated eight established SRGMs on a number of large 
software projects within the embedded software domain from three different 
companies. With this unique setting and rich data, we set out to evaluate: 

3.16.1 Which SRGMs are the best to assist decisions 
for optimal allocation of testing resources? 

For assisting decisions on how to manage testing resources effectively by evaluating 
different reliability models across the different projects in the domain of embedded 
software development, it is observed that the Gompertz model is the best for 
software development processes that are either V-model based or follow lean and 
agile software development processes. The Logistic model should be chosen for 
waterfall development process.  

Predicting the shape of defect inflow profile, the Logistic, Gompertz and Delayed-S 
models were found to be best to assist decisions for optimal allocation of testing 
resources for S-shaped, concave, and convex-shaped defect inflow profiles. 

3.16.2 Which SRGMs are the best for assessing the 
release readiness of a software system?  

Overall, trend models (Logistic and Gompertz) performed best from the perspective 
of asymptote precision, which is an important property for the assessment of release 
readiness. The Logistic model proved to be the best among tested models for all 
except the waterfall processes, where the Gompertz model is found to provide the 
best results. 

When the shape of defect inflow is predicted, for the assessment of release 
readiness, the Logistic model is shown to be the best for the S-shaped and convex-
shaped defect inflow, while the Gompertz is the best model for concave-shaped 
defect profile. 
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Another question evaluated in our study is regarding usability of historical 
information in terms of growth rates from earlier projects for improving long-term 
asymptote predictions: 

3.16.3 Does using information from earlier projects 
improve release readiness assessment? 

Using information in terms of growth rates from earlier completed projects is shown 
to significantly improve the asymptote accuracy across the models in software 
development following the V-model. In the case of the waterfall development 
process, the best model obtained after using the growth rate is comparatively much 
more accurate than the model without using the growth rate. For the lean and agile 
software processes, using the growth rate did not improve the overall asymptote 
accuracy of the models. Thus depending on the software development process, using 
the growth rate from past projects can significantly improve the asymptote 
prediction accuracy or help with selecting a better model to assess release readiness.  

3.16.4 How to make the choice of SRGM more 
effective? 

It is observed in this study that the shape of a defect inflow profile can be predicted 
for an on-going project by analysing the trend of the observed defect intensity as 
early as when a project is half-way through its timeline. 

It is further noted that predicting the shape of expected defect inflow profile 
although do not significantly improve the ability of models to fit the predicted 
region, but a statistically significant improvement is achieved in asymptote 
prediction accuracy. Thus, with respect to assessing release readiness it is useful to 
predict the shape of the defect inflow for the current project and to use this 
information to select the most appropriate model.  

In this study, two of the important and practically relevant questions are analysed in 
relation to applying software reliability growth models in the context of developing 
embedded software. Using data from three different leading companies from their 
respective sectors, the study provides useful and practical information for the 
application of SRGMs during an on-going project for distributing testing resources 
more effectively and to better assess their release readiness, which are important 
decisions from the project management and software quality perspectives. Further 
studies in a similar direction will ensure that reliability engineering is more widely 
adopted in the industry and provides useful information to industrial reliability 
practitioners and project managers to effectively manage the project cost/resources 
and quality of software. 
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ANALYZING DEFECT INFLOW 
DISTRIBUTION OF LARGE SOFTWARE 
PROJECTS 

 

Abstract— Tracking and predicting quality is a major challenge in large and 
distributed software development projects. A number of standard distributions have 
been successfully used in reliability engineering theory and practice, common 
among these for modelling software defect inflow being exponential, Weibull, beta 
and Non-Homogeneous Poisson Process (NHPP). Although standard distribution 
models have been recognized in reliability engineering practice, their ability to fit 
defect data from commercial software systems is not well understood. Lack of 
knowledge about underlying defect inflow distribution leads to difficulty in 
choosing appropriate SRGMs and uncertainty about applicability of different 
statistical methods for further data analyses. In this paper we explore the defect 
inflow distribution of total of fourteen large software projects/release from the two 
industrial domain and open source community. We evaluate six standard 
distributions for their ability to fit the defect inflow data and also assess which 
information criterion is practical for selecting the distribution with best fit. Our 
results show that beta distribution provides the best fit to the defect inflow data for 
all industrial projects as well as majority of OSS projects studied. Finding the 
underlying distribution of defect inflow is useful for applying appropriate statistical 
techniques for data analyses and also for selecting the appropriate SRGMs for 
modelling reliability. The information about defect inflow distribution is further 
useful for modelling the prior beliefs or experience as prior probabilities in Bayesian 
analysis. 

Keywords—Software; SRGM; Defect Inflow; Beta distribution; Software reliability 
growth models; Automotive domain; Telecom; Open Source Software 
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3.17 Introduction 
Tracking and predicting quality is a major challenge in large and distributed 
software development projects. Software defects found during development provide 
an observable and useful indicator to track and forecast software reliability, an 
important measure of quality. Software reliability measures are primarily used for 
[7]: 

 Planning and controlling testing resources during software 
development, and 

 Evaluating the maturity or release readiness of software before the 
release date. 

Software Reliability Growth Models (SRGMs) are widely used methods for 
quantitative assessment of software reliability [122]. A large number of models 
(SRGMs) have been proposed over last three decades [65] based on both, the 
Frequentist and Bayesian statistical approaches. But with no standard method to 
choose the most appropriate model, and more than 100 SRGMs [68] to choose from, 
the selection of right model is a major challenge.  

In this paper we address the problem of selecting the appropriate SRGM model. The 
current way of selecting the appropriate SRGMs are either empirical (based on 
expert opinions) or analytical (based on testing a subset of models and evaluating 
their performance before picking the best model). The problem with these 
approaches is that either the selection is subjective or the best model selected via 
analytical evaluation is only as good as the subset of models evaluated.  

Our method is based on using statistical method to find a family of defect 
distribution first, which reduces the number of models to evaluate by an order of 
magnitude. We propose that the selection of candidate SRGMs to be done by 
identifying the underlying distribution family of the defect data. Understanding 
underlying defect distribution family is important, according to Okamura, Dohi and 
Osaki [122]  

“When the number of total software faults is given by a Poisson random variable, 
the mean value function of NHPPP-based SRGMs is dominated by only failure time 
distribution. That is, the essential problem can be reduced to what kind of 
probability distribution is suitable for representing the failure time distribution.” 

Knowledge of underlying defect distribution family is also important for Bayesian 
approaches for modeling software reliability where initial knowledge about software 
reliability is coded in form of prior distribution. 
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A number of standard distributions have been successfully used in reliability 
engineering theory and practice, most common among these for modelling software 
defect inflow being exponential, Weibull, beta and Non-Homogeneous Poisson 
Process (NHPP). Rayleigh model is member of Weibull family which has been 
widely used for software project life cycle defect modelling [9]. Although standard 
distribution models have been recognized in reliability engineering practice, their 
ability to fit defect data from real software systems is not well understood. The low 
understandability of underlying distribution of defect data further leads to 
uncertainty on which statistical techniques can be uses (for example t-tests) or if a 
given SRGM is appropriate or not for given data. The research objectives of this 
study are to: 

 Explore which statistical distribution fit best to the defect inflow 
from large software projects, and 

 Explore how different information criteria differ in selection of best 
distribution fit. 

Using defect inflow data from nine large software projects/releases from two 
different industrial domains and five large open source software projects we focus 
on analysing the defect inflow distribution during software development and testing. 
We explore different distribution families’ ability to fit to the defect data from 
industry.  

 Finding out the distribution that fits best to observed defect inflow 
data is helpful for: 

 Enhancing the understanding of defect inflow profile and 
underlying process of defect discovery process. 

 To choose the correct statistical analysis method, it is important to 
know the distribution of the data. Different statistical methods 
usually have underlying distributions assumptions. For example to 
statistically determine if two projects defect inflow differs 
significantly or not, using a parametric or non-parametric method 
depends on among others if or not the defect inflow data for 
projects is distributed normally or not. 

 Visualization and simulations, knowing the distribution of given 
data helps with easy visualization and tracking the difference 
between different projects data using only a few parameters. It also 
allows generation/simulation of data for analysis of different 
scenarios. 

 Knowing the distribution of defect inflow data is useful for 
selecting the right model for modelling/forecasting reliability 
growth. For example Rayleigh model/function used to model 
software reliability is a specific instance of one of Weibull family. 
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Thus if the defect inflow data do not follow Weibull distribution, 
Rayleigh model is unlikely to give good results for modelling 
reliability in such a case. 

 The information on distribution of data is also useful in Bayesian 
analysis to describe the initial knowledge provided as prior 
probability (distribution) which can be updated in light on new 
data. 

This is an extended version of authors earlier work [123] evaluating the defect 
inflow distribution for automotive software projects. In this paper we extend the 
analysis by adding five consecutive releases from another large software project 
from a telecom domain company and further also analyse the defect inflow 
distribution of five open source software projects. The additional data used adds 
software projects from different industrial domain as well as open source 
community which follows different process for software development and testing, 
thus the external validity of results obtained earlier [123] is further strengthened.  

The rest of the paper is structured as follows. Section 3.18 presents the background 
for our research. Section 3.19 describes the important related works in this area. In 
section 3.20 we describe in detail the research methodology and data used for this 
study, while Section 3.21 presents the findings from the study. Finally section 3.22 
presents our conclusions. 

3.18 Background  

3.18.1 Software Defects and Reliability Growth 
Models 

IEEE standard 1044, Classification for Software Anomalies provides common 
vocabulary for terms useful in this context, according to the standard [9]: 

defect: An imperfection or deficiency in a work product where that work product 
does not meet its requirements or specifications and needs to be either repaired or 
replaced. 

error: A human action that produces an incorrect result. 

failure: (A) Termination of the ability of a product to perform a required function or 
its inability to perform within previously specified limits Or (B) An event in which a 
system or system component does not perform a required function within specified 
limits. 
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fault: A manifestation of an error in software. 

problem: (A) Difficulty or uncertainty experienced by one or more persons, 
resulting from an unsatisfactory encounter with a system in use Or (B) A negative 
situation to overcome. 

Software defect can be defined as issue or deficiency raised due to use of software 
product which causes it to perform unexpectedly [8]. Defects can be introduced at 
different phases of this continuous process and testing is the phase where focus is on 
discovering and eliminating these defects. If we plot the discovery of defects against 
time we get the defect inflow distribution over the development cycle. The 
distribution of defect inflow can be used for various purposes, form enhancing the 
understanding of defect creation, discovery and fixing process to modelling 
reliability of software system using software reliability growth models.  

Software reliability models can be categorized broadly as static and dynamic 
models. Static models use attributes from project and the product (source code) to 
predict the number of defects, while dynamic models uses the defect discovery data 
during development and/or testing and use statistical models to estimate the 
reliability of given product. Static models are termed static in the sense that they use 
parameters, which are based on earlier projects; the current project/product is 
considered an additional observation from same sample. On the other hand dynamic 
models estimate their model parameters from multiple data points from the same 
project and use it to predict/forecast for the same project going forward. Dynamic 
software reliability models can be further classified in categories based on which 
data they use, Rayleigh model being an example of first category which model the 
entire development process while other category being represented by like of 
exponential model that models the data from back-end testing phase [69]. 

3.18.2 Software Defect Inflow Distributions and 
Model Selection 

A number of SRGMs have been proposed and evaluated, a roadmap on software 
reliability engineering is given by Lyu [68] [124]. Different models have different 
process assumptions and different distributions are better suited for varied defect 
inflow profiles. Musa [72] and Goel [71] with their work showed that different 
families of distributions are better suited for applications with different 
characteristics.   

Lyu [8] propose that to assess and predict reliability of software systems, proper 
measurement and collection of failure data is needed over given system’s testing 
and/or operation. Further the underlying process of software development process 
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also needs to be understood for selecting the appropriate reliability model. Thus 
most studies proposing or evaluating SRGMs have applied mathematical models to 
failure data which is well structure or filtered from specific testing phase. This 
methodology while works well for assessment of maturity of software artefact once 
the software is completely developed and tested, but is not optimal for in-process 
defect prediction; thus there is need for models and their validation on defects from 
full project development cycles.  

Weibull families of curves are one of the best known distributions in reliability 
engineering; reliability models such as exponential and Rayleigh model are special 
cases of Weibull distribution. Misra [125] applied exponential model successfully to 
estimate defect arrival rates for NASA shuttle’s ground system software. Rayleigh 
model have also been used widely to model the defect inflow during software life 
cycle phases [126], [127], [128]. Other distributions like beta distribution and 
Logistic population growth models have also been used in reliability engineering; 
Non-Homogenous Poisson Process (NHPP) based models have been used widely for 
software reliability modelling.  

With number of SRGMs proposed, no distinct way of selecting models and lack of 
exploratory analysis of data – a common way to differentiate between different 
models it to apply them to same data sets and do comparative studies. Ullah et al. 
[76] compared between eight SRGMs on dataset from fifty industrial and open 
source projects, Pham [66] compared and reviewed common NHPP based SRGMs 
for their ability to fit data from real-time control system. A number of SRGMs have 
also been compared for their ability to fit data from telecom domain in study by 
Staron and Meding [15]. Seven SRGMs have also been compared on their 
performance on predictive power using partial in-process data from real projects in 
Rana et al. [57]. Contrary to earlier studies where different software reliability 
models have been compared and assessed on their ability to fit defect data, in this 
study we compare between standard distributions such as Weibull, beta, exponential 
etc. known to do well in reliability engineering and check which distribution fits best 
to defect inflow behaviour of large software projects form different industrial 
domains within embedded software development.  

Selection of models have been discussed in number of earlier studies, Stringfellow 
and Andrews [74] propose empirical method fitting data iteratively to different 
models and selecting a SRGM based on proposed criteria. Akaike Information 
Criteria (AIC), based on the log-likelihood function is recommended to be used for 
selecting appropriate model by Khoshgoftaar and Woodcock [75]. Sharma [73] also 
recommends that before making a selection different models should be first tried, 
compared and evaluated. Even after certain attempts and currently active research to 
find a standard selection method/criteria, common agreement on model selection is 



Rakesh Rana 

127 
 

 

not reached which highlight the further need that data be studied properly to 
understand the process and different distributions/models be tried before making a 
final selection of reliability model to be used for given defect data and reliability 
modelling where the current study attempts to make its contribution. In the 
evaluation of different distributions we also evaluate how different information 
criteria’s differ and if that have any impact on the choice of best distribution. 

Evaluation of SRGMs on industrial data and specifically into particular domains is 
scarce [98]. Wood [13] applied eight SRGMs on industrial defect inflow data and 
found significant correlation between pre-release defects and post release defects. A 
comparison of SRGMs and their use in practice within consumer electronics 
embedded software in is also presented in [14]. The present study complements 
earlier work in defect data analysis and application of reliability models to industrial 
defect inflow data. 

3.19 Related Work 
Different family of distributions has been used for modelling software reliability in 
previous studies. Zhao [129] proposed to use beta distribution to indicate software 
testability, the author theoretically prove that testing effort and test values can be 
simultaneously expressed through the distribution. Mullen [130] shows evidences of 
lognormal distribution of software failure rates and discuss their origins. In a later 
study Mullen [131] highlights the dissatisfaction with large number of software 
reliability models and lack of single flexible general model and introduces software 
reliability growth model based on lognormal distribution. Gokhale and Trivedi [84] 
contend that finite failure NHPP models can capture constant, monotonic increasing, 
and monotonic decreasing failure occurrence rate per fault, but fail to capture cases 
with increasing/ decreasing nature of failure occurrence rate per fault. The authors 
propose log-logistic reliability growth model for such cases. Zhou and Davis [132] 
analysed time related bug reporting patterns of eight popular open source projects 
evaluated, they showed that open source projects exhibited similar reliability growth 
pattern as closed projects and Weibull distribution provides a good fit to the defect 
inflow distribution.  

According to Okamura, Dohi and Osaki [122]different statistical distributions such 
as exponential, gamma, Pareto and Weibull have been used to model the failure time 
distributions for most of NHPP-based SRGMs. On the contrary models based on 
normal distribution have not been given more attention and the authors [122] 
proposes SRGM based on normal distribution. Kharchenko et al. [133] also 
highlighted the model selection problem for applying SRGMs in practice. The 
authors classified SRGMs on five different criteria with special emphasis on 
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distribution family of failure intensity. A method of choice (for selecting SRGM) is 
presented based on the assumptions of different models and features of software 
engineering and testing process. Our study contributes in this direction by providing 
empirical evidence of which distribution family best fits to defect inflow from large 
software projects from industry and open source community.  

Karunanithi, Malaiya and Whitley [134] contend despite applicability of a model 
can be established for large collection of data sets, a certain degree of stiffness 
(model’s inability to correctly simulate failure process trend for new data set) cannot 
be completely ruled out.  The authors explored the use of neural networks for 
modelling software reliability. Littlewood [135], in his proposed Bayesian reliability 
growth model used gamma distribution family to model the prior probabilities 
justified by its flexibility, correct range of parameters  and mathematical 
tractability. Kuo et al. [136] presented Bayes inference methodology for NHPP 
models with S-shaped mean value functions. The authors Bayes methodology for 
Ohba-Yamada model which assumes mean value function to follow gamma 
distribution with shape parameter of 2 is proposed and generalized to class of 
gamma distribution growth curves with known shape parameter and unknown scale 
parameter. Neil et al. [137] used the Bayesian belief networks for predicting the 
reliability of military vehicles, in such applications modelling prior beliefs with 
regard to failure rate is an important step which can be enhances by having better 
understanding of defect/failure distribution from historical projects/products. By 
identifying which distribution fits the historical projects and which information 
criteria can be used for selecting the best fit distribution – our results strengthen the 
notion that defect inflow distribution be studied for historical projects. In Bayesian 
approach to modelling software reliability, understanding historical projects defect 
distribution properties reveal information that is useful in precise modelling of prior 
probability distribution. 

An emerging area which has wide use in software engineering is information 
visualization, the technology uses graphics techniques for visualizing abstract 
entities [138]. Visual representation provide an alternative approach for exploring 
the data for enhancing the understanding of underlying processes and patterns and 
may also be used as tool to convey information more effectively. Hora et al. [139] 
argue that while number of tools exist to extract and analyse information regarding 
evolution of software systems, little is known about the evolutionary behaviour, 
lifetime, distribution and stability of software defects. A tool named BugMaps is 
presented that can automate the retrieval and mapping of bugs from relevant 
databases. The tool provides interactive visualization which is useful source of 
information for decision support. Empirical software engineering evaluates the 
applicability and performance of different models and techniques in the practical 
context with the aim of documenting knowledge and provides support for making 
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decisions. Garcia et al. [140] observe that using only pre-determined hypothesis and 
using standard statistical techniques, it might be difficult to reveal  the non-
anticipated relationships and patterns from the data. In this study we do not presume 
the defect inflow distribution and use exploratory methods to determine the 
distributions of historical projects. Understanding the underlying defect distributions 
for historical projects can form the basis for visualization of defect inflow, exploring 
the likely effects of process changes on defect inflow and selection of appropriate 
SRGMs for modelling software reliability.  

3.20 Research Methodology and Data 
The study is organized as an exploratory case study following classification of 
Robson [106], the main objective of the study is to explore which standard 
distribution family(s) are able to fit to software defect inflow data from large scale 
software projects with wide variations in their distribution characteristics. The 
research is organized as an embedded case study with the unit of analysis being each 
project. The similarities and differences based on different software projects are 
explored and highlighted in this study which suits the embedded case study design. 
The case study design overview is presented in Figure 43. 

Figure 43: Overview of case study design 

Table 18 shows the summary of the characteristics of the process used in the case 
units and mapping to their application domain.  

Table 18: Overview of units of case analysis within this embedded case study 

Unit of analysis Application domain Software development process for studied projects 
Volvo Cars 
Group 

Automotive 
V-shaped software development mostly using sub-
suppliers for implementation 

Ericsson Telecom Agile development, mostly in-house 

OSS Open-Source Projects 
Open source software development, projects from 
Apache and Mozilla 

 

Context: Large Software Projects

Case: Defect Inflow Distribution (best fit)

Unit 1: VCC

Four large 
automotive 
software 
project

Unit 2: Ericsson

Five consecutive 
releases of a 
large telecom 
product

Unit 3: OSS

Five large open 
source software 
project
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3.20.1 Case Units  
In this study, the selection of case units was primarily driven to capture variation in 
the software development process and application domain within large scale 
software development projects from industry and open source community. 
Nonetheless limiting units of analysis to a manageable number and accessibility also 
played a role in the selection of these units. Two case units although allow a better 
comparison, but limits the generalizability, while if four or more case units are 
chosen it leads to difficulty in conducting cross case analysis including necessary 
details, thus three case units were selected for this study.  

3.20.1.1 Company A: Volvo Car Group, A company 
from the automotive domain 

Volvo Car Group (VCG) is a Swedish car Original Equipment Manufacturer 
(OEM), based in Gothenburg. VCG is developing software and hardware in a 
distributed software development environment. The size of the entire automotive 
project in terms of resources is substantially larger than the projects in the other 
application domains studied in this case study, due to the fact that both OEM and 
suppliers (first and second tier) are involved and car development projects are 
usually conducted using the product line approach with reference architectures 
([110]). The software projects studied here come from the E/E (Electrical and 
Electronics) integration department within the VCG which deals with the integration 
of various software functionalities and responsible for the final assessment of full 
E/E hardware and software systems. All the projects studied have been completed in 
last decade and consist of different modules developed by different teams and tested 
within the development team (unit testing), while further integration and acceptance 
testing is done by dedicated teams in the integration department. All defects detected 
during all testing phases are reported in the central bug database used by the 
company which was also the primary source of data compilation for this study. 

3.20.1.2 Unit B: Ericsson, A company from the 
telecom domain 

Ericsson develops large software products for the mobile telecommunication 
network. The size of the organization during the study is several hundred engineers 
and the size of the projects is up to a few hundreds. Projects are increasingly often 
carried out according to the principles of Agile software development and Lean 
production system, referred to as Streamline development (SD) within Ericsson 
[111]. In this environment, various teams are responsible for larger parts of the 
process compared to traditional processes: design teams (cross-functional teams 
responsible for complete analysis, design, implementation, and testing of particular 
features of the product), network verification and integration testing, etc. 
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3.20.1.3 Unit C: Open source software projects 
We used five large open-source software projects from Apache and Mozilla. While 
there is no strict software development process followed for all five projects, both 
Apache and Mozilla projects used in this study generally follow active development 
with development teams regularly making commits and fixing bugs. For details on 
the development process of Apache and Mozilla, readers are referred to work done 
by Mockus et al. [141] [142]. All issue reports marked RESOLVED, CLOSED, or 
VERIFIED with resolution set to FIXED were retrieved from the bug database - 
from these issues only ones identified as BUGs [143] are used in this study. The 
time period and number of defects is summarized in Table 19. 

Table 19: Summary of projects time span and number of defects/issues 

Case Unit Project/Release Time Period 
Total number of 
Defects*/Issues 

VCG 

Project-A1 
Project-A2 
Project-A3 
Project-A4 

NA 

6.7X 
14.4X 
2.0X 

X 

Ericsson 

Release-B1 
Release-B2 
Release-B3 
Release-B4 
Release-B5 

NA 

2.2Y 
Y 

1.3Y 
1.2Y 
1.6Y 

OSS 

Project- HTTPClient 
Project- Jackrabbit 

Project- Lucene-Java 
Project- Rhino 

Project- Tomcat5 

Nov-2001 – Apr-2012 
Sep-2004 – Apr-2012 
Mar-2004 – Mar-2012 
Nov-1999 – Feb-2012 
May-2002 – Dec-2011 

305 
938 
697 
302 
670 

*Total number of defect for industrial projects are normalized by project within the case unit 
with lowest defect and time period is not provided due to confidentiality 

3.20.2 Data Collection and Analysis Methods 
The data for this study is collected from the central defect database for each project. 
For industrial projects we used the definition for defect from IEEE 1044 standard 
[9], while defect inflow of a project is defined  as “defect inflow is the number of 
non-redundant defects reported in the defect database” [15]. In industrial settings, 
what is reported and marked as a defect is closely controlled which assures the 
quality of data collected, but for open source projects, what is classified as a defect 
or bug5 is not strictly controlled. The problem of misclassification of issue reports 
(issues classified as bugs which are actually not bugs) have been highlighted in 

                                                      
5 Defect and bug are used interchangeably to refer to a non‐redundant defect reported in 
the defect database. 
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earlier studies [144] [143]. Misclassification of bugs and non-bugs issues can be a 
serious threat for defect classification where bugs from the database are used to 
mark files as containing bug or clean. In this study we are interested in the inflow 
distribution of defects and not on defect classification thus misclassification does not 
pose a serious threat as long as the distribution of defects in all issues reported does 
not vary over time. Nonetheless to ensure that the distribution we analyse is of 
defects/bugs only – for open source projects we use issues which are identified as 
Bugs using manual classification in earlier study by Kim, Just and Zeller [143]. 
Using manually validated data not only ensures quality of data used but also provide 
higher consistency with industrial data where issues classification as defect is 
closely controlled. 

Based on the existing reliability engineering literature, we selected six widely used 
continuous distributions to be evaluated in this study. A number of reliability growth 
models such as exponential model, Rayleigh models are based on these 
distributions. A summary of continuous distributions and their probability density 
functions (pdf) used in the study are presented in Table 20.  

Table 20: Overview of distributions used in this study 

No Distribution Notation Parameters Probability Density Function 

1 Exponential   ିఒ௫ 

2 Weibull  
 
 

௞ିଵ
ିሺ௫ ఒ⁄ ሻೖ

 

3 Beta  
 
 

ఈିଵ ఉିଵ

 

ఈିଵ ఉିଵ
ଵ

଴
 

4 Gamma  
 
 

௞
௞ିଵ ି

௫
ఏ  

௧ିଵ ି௫
ஶ

଴
 

5 Logistic  
 

 

ି
௫ିఓ
௦

ି
௫ିఓ
௦

ଶ 

6 Normal ଶ  
 

ଶ  
ି
ሺ௫ିఓሻమ

ଶఙమ  
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To fit the distributions to the observed defect inflow data fitdistr() function available 
in MASS package in statistical environment R was used. The function uses 
maximum-likelihood fitting for fitting the distribution and estimating the 
distribution parameters. To assess which distribution fit best to the given project’s 
defect inflow, we evaluated their goodness-of-fit using six different recommended 
criteria’s listed in Table 21. 

We provide a brief overview of commonly used information criteria - to analyse 
which criterion suits our purpose and does selecting one criterion over another could 
make difference between selecting one distribution over another. 

LogLik (Log–likelihood): Likelihood function is a function of parameters of 
a function given the outcome. In other words likelihood is defined as “the 
hypothetical probability that an event that has already occurred would yield a 
specific outcome. The concept differs from that of a probability in that a probability 
refers to the occurrence of future events, while a likelihood refers to past events with 
known outcomes” [145]. The criteria to pick the best fit model is to pick the model 
with highest likelihood or log-likelihood which is the natural logarithm of likelihood 
function. 

ML (Maximum Likelihood): , is same as Log-likelihood, with the 
difference that instead of casting the criteria as maximizing the logarithm of 
likelihood function,  the criteria is set as a minimization problem with objective 
function as -2*LogLik. Thus both the criteria would pick the same distribution as 
best.  

AIC (Akaike Information Criterion): , is another 
measure for assessing the relative quality of statistical models. The difference from 
ML being that it includes a penalty for higher complexity of model. By penalizing 
higher number of free parameters , AIC discourages over-fitting. For simple 
distributions with low number of free parameters or where the selection is between 
models of same parameters AIC will tend to select the same model as with using 
ML. 

AICc (Akaike Information Criterion, correction): , 
AICc is similar to AIC with correction for finite sample size . Its penalty is 
higher than AIC for higher parameters. AICc converges to AIC when n is large or  
is small. In other cases (i.e. where  is small or  is large) it is recommended to use 
the AICc [146]. In our case (for all four projects) as sample size is much greater than 
the distribution parameters , AICc is expected to give similar results as 
AIC. 
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BIC (Bayesian Information Criterion): , is another 
penalized-likelihood criteria for model selection from a finite set of models. While 
AIC and BIC have different theoretical assumptions, the practical difference 
between the two is the size of penalty. BIC applies more penalty for higher model 
complexity which increases as a logarithm function of sample size. There is always 
a chance that a big model is chosen using AIC regardless of sample size, while with 
BIC there is little chance of choosing too big model for sufficient sample size. On 
the other hand BIC has higher chance of selecting too small model than AIC for any 
sample size [147]. 

HQC (Hannan–Quinn Information Criterion): 
, provides a penalty size between that of AIC and BIC which increases 

with the sample size. 

Table 21: Overview of information criteria for selecting distribution with best fit 

No Short Long Name Definition 

1 LogLik Log likelihood 
Logarithm of the probability of observed 
outcomes given a set of parameter values 

2 ML Maximum Likelihood  

3 AIC Akaike Information Criterion  

4 AICc Akaike Information Criterion (correction)  

5 BIC Bayesian Information Criterion  

6 HQC Hannan–Quinn Information Criterion  

Where  

3.21 Results 

3.21.1 Defect Inflow Profiles 
The cumulative defect inflow profile for the four projects analysed is presented in 
Figure 2 to Figure 46. The data used for all projects in this study is weekly defect 
count data, thus the horizontal axis in figure represents actual time normalized by 
total duration of project timeline, while Y-axis show the normalized defect counts. 
For defect inflow the numbers of weekly defects are normalized by maximum 
number of weekly defects over the given projects time period and for cumulative 
defect inflow it is normalized by the total number of defects/issues reported for the 
studied period.  
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Figure 44: Defect inflow and cumulative defect inflow (normalized) for case unit 1 

From the Figure 44 we can observe that most projects (all except project A2) have 
an S-shape. The cumulative defect inflow profile of project A2 resembles convex 
defect inflow; the specific difference of this project to the rest was due to the fact 
that defect reporting strategy was different from other projects - A2 included defect 
reports from a specific team which works in agile process and generally reports their 
defects in another database. It was included here since their contribution to this 
overall project was comparatively large. Software development in highly iterative 
process (using agile process) integrates new functionality and fixes to previously 
discovered defects in short cycles (weekly or more frequently), which allows for 
testing to proceed continuously. Earlier studies [112] have indicated that for such 
process the defect inflow is better predicted by concave SRGM models and linear 
models than S-shaped models which indicated toward the defect inflow of these 
projects not conforming to S-shape. 

Figure 45: Defect inflow and cumulative defect inflow (normalized) for case unit 2 
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The defect inflow from case unit 2 (Figure 45) represents the defect inflow from 
software development process which is highly iterative. We do not see 
characteristics of S-shape as observed in projects from case unit 1; rather see 
cumulative defect inflows shaped concave or convex. Three out of five profiles are 
concave-shaped while the remaining two are convex-shaped. Concave-shaped 
cumulative defect inflows are characterized by defect intensity (number of defects 
per unit time, Figure 45 Defect Inflow) maximum early in the project, and then 
drops as project progresses giving a concave-shaped cumulative defect inflow 
profile. On the other hand defect cumulative defect inflows that are convex-shaped 
are characterized by slow growth rate of cumulative defects at the beginning, which 
stays until late in the project and eventually increasing as seen for Release-B2 and 
Release-B5 in Figure 45 for case unit 2. 

Figure 46: Defect inflow and cumulative defect inflow (normalized) for case unit 3 

For projects from the open source community, the issues inflow is quite different 
across the projects ranging from S-shaped to inflow quite close to following a linear 
trend. Project-TomCat and Jack show characteristic signs of concave-shaped 
cumulative defect inflow, while Project-Lucene is convex-shaped. Projects Http and 
Rhino cumulative defect inflows do not show distinct signs of S-shape, concave- or 
convex-shape but are more close to following a linear trend, such profile is seen 
when a project would receive about similar number of issue throughout the studied 
period. Since software projects in open source community can be released very early 
in beta releases following development and gaining maturity over long periods to 
time, issues inflow with linear trend is not unlikely.   
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3.21.2 Distribution parameters 
The distribution parameters for each distribution for all four projects are presented in 
Table 22 to Table 24.  

Table 22: Parameter values for projects A1-A4 for fitted distributions 

Project 
Exponential Weibull Beta Gamma Logistic Normal 

λ λ k α β k θ µ s µ  

A1 4.375 0.809 0.207 0.527 2.318 0.683 2.988 0.193 0.125 0.229 0.232 

A2 2.838 1.145 0.366 1.155 2.164 1.032 2.927 0.337 0.146 0.352 0.248 

A3 3.982 0.620 0.206 1.408 6.589 0.462 1.839 0.229 0.127 0.251 0.225 

A4 8.080 0.446 0.069 0.303 3.617 0.322 2.606 0.089 0.080 0.124 0.176 

 

Table 23: Parameter values for releases B1-B5 for fitted distributions 

Release 
Exponential Weibull Beta Gamma Logistic Normal 

λ λ k α β k θ µ s µ  

B1 5.531 0.807 0.167 0.577 5.342 0.640 3.540 0.150 0.088 0.181 0.176 

B2 2.314 2.059 0.490 0.610 2.395 4.200 9.720 0.400 0.120 0.432 0.225 

B3 2.188 2.030 0.518 0.953 1.762 3.389 7.416 0.440 0.142 0.457 0.240 

B4 4.848 0.954 0.203 1.333 33.081 0.773 3.748 0.186 0.084 0.206 0.167 

B5 2.272 2.022 0.498 1.484 3.406 3.348 7.606 0.424 0.132 0.440 0.231 

 

Table 24: Parameter values for open source software projects for fitted distributions 

Project 
Exponential Weibull Beta Gamma Logistic Normal 

λ λ k α β k θ µ s µ  

Http 13.306 0.756 0.069 0.293 2.162 0.569 7.566 0.069 0.033 0.075 0.061 

Jack 2.942 2.064 0.384 4.657 84.615 3.527 10.376 0.327 0.097 0.340 0.173 

Lucene 5.149 1.343 0.209 0.917 3.092 2.441 -0.015 0.179 0.073 0.194 0.132 

Rhino 4.023 0.714 0.224 1.020 4.925 0.527 2.119 0.225 0.106 0.249 0.197 

TomCat 4.501 0.593 0.174 0.946 6.219 0.441 1.984 0.192 0.122 0.222 0.221 

 
In Figure 44 to Figure 46, we observed that the defect inflow distributions for 
different projects across and within case units differ from each other. Following this 
we can observe from Table 22 - Table 24, that parameter values are different 
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distribution families tested also span large range. The distribution parameter values 
not only are different for defect inflows across case units, but also differ for project 
in case units. For example the shape (λ) parameter of exponential distribution ranges 
from approx. 2.8 to 8.1 for case unit 1, 2.2 to 5.5 for case unit 2, while the shape 
parameter for open source project Http is 13.3.  

Large difference in parameter values within same distribution family and case units 
indicate the individual differences between each project. While it is possible that 
defect inflow form a given company or open source community may follow a 
particular pattern or distribution, but individual projects also have variations 
between them. The variations in parameter values further suggest that, while it may 
be useful to start with the defect distribution information from historical projects; for 
on-going projects the partial observed defect data should be used (for e.g. using 
Bayesian approach) to get better forecasts of defect inflow in projects under 
development/testing. 

To visually inspect how the fitted distribution fits the observed defect/bug inflow 
data, we plot the density and empirical distribution function (eCDF) for observed 
data and fitted distributions. Figure 47 presents the probability density plots of six 
evaluated distributions fit to observed defect data for project A1, release B1 and 
project Lucene. Probability density plots describes the relative likelihood of given 
data to take a particular value; plotting density plots for observed data and fitted 
distribution help us visualize the degree of fit over the range of observed data.  

Given the observed data, density probability plots is a graphical method to evaluate 
how well an empirically derived density function fits a theoretical density function 
for a specified probability distribution [148]. In Figure 47 green (line) represent the 
probability density of observed defect data while red (dots) show the density 
function of fitted distribution.  
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Figure 47: Density probability plots showing Project-A1, Release-B1 and Project-Http data fits to 
selected distribution (green line show observed data while red dots show fitted distribution) 

From Figure 47, following observations are made: 

 For Project A1, while the exponential, Weibull and gamma 
functions gives a good fit over most part, the relative probability 
density over the left tail fits poorly. The logistic and normal 
distributions fit is overall poor with underestimation of relative 
probability over the left tail, while overestimation in right tail. 
Overall beta distribution seems to  fit best over the entire range. 

 In Release-B1 again the logistic and normal distributions do not 
provide good fit. Visually exponential, Weibull and beta are seen to 
provide good fit to the observe data. 
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 Visually identifying a best fit distribution based on probability 
density plot for open source project Lucene is much more difficult 
with most tested distributions having close fit with observed data. 
In such cases quantitative criteria of selecting best fit must be used 
which are discussed later in the study.   

Figure 48 presents the density and eCDF plots of six evaluated distributions fit to 
observed defect data for project A1, release B1 and project Lucene. 

Figure 48: Empirical distribution function (eCDF) for observed data and fitted distributions (green 

dots show eCDF of observed data while red line show fitted distribution) 



Rakesh Rana 

141 
 

 

Similar to probability density plots, empirical distribution function plots (Figure 48) 
help visualize the cumulative probability of observed defect inflow and that of fitted 
distribution. While these plots are also a quick way of visualizing information and 
can aid in figuring out which distribution family seem to provide good/bad fit for 
observed data, the plots cannot give precise selection of best fit distribution. The 
plots can be helpful to visualize the original data as well as eliminate distributions 
which provide bad fit, for e.g. logistic and normal distribution in case of Project A1 
and Release B1 are do not seem promising for further investigation.  

3.21.3 Selecting the distribution with best fit 
Another popular graphical tool to evaluate the closeness/goodness of fit between 
observed and specified distribution are the Quantile–Quantile or QQ plots. A 
quantile is the fraction of points below a threshold, at 0.3 quantile, 30% of the data 
points fall below the threshold and 70% fall above. QQ-plots compare the fit 
between two distributions by plotting their quantiles against one another. Although 
these plots do not allow for visual comparison of probability densities, the fit 
between distributions is relatively easy to visualize. The QQ-plot for the sample 
project/release for selected distributions is shown in Figure 49, the , green 
(line) help visualize the fit, the closer the points to the line the better is the fit. The 
observations from the density probability and eCDF plots are further confirmed for 
these plots.  
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Figure 49: Quantile–quantile plots (QQ-plots) for Project-A1, Release-B1 and Project-Http for 
selected distributions 

QQ-plots are comparatively better graphical method than density plots to assess the 
fit between observed data and fitted distribution as they are primarily used for this 
purpose. From these plots (Figure 49) we can make better distinction between which 
distributions fit the observed data than using probability density plots or the eCDFs 
(Figure 47, Figure 48). We observe that: 

 For Project-A1 from case unit 1, Weibull and beta distributions 
seem to provide the best fit and arguably it is also clear that beta 
distribution fit is superior to that of Weibull. 
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 In case of Release-B1, picking the best fit distribution is not clear 
from the QQ-plots. Although it seems again the Weibull and beta 
distributions provide close fit followed by the gamma distribution. 

 For Project-Lucene, all but beta and gamma distributions can be 
seen clearly not providing good fit to observed data.  

The graphical methods such as QQ-plots and density probability plots allow us to 
make a good guess on the fit between the observed data and empirical (fitted) 
distribution. They also allow for visualizing other characteristics of data such as 
density probabilities, but it is difficult to pick the absolute best fit function among 
the tested distributions.  

To pick the best fit distribution quantitative assessment can be used. As noted in the 
section 3, a number of criteria have been proposed to select the best distribution 
among number of tested distributions. Table 25 show the values obtained for 
different information criteria for Project-Jack from the case unit 3. In this case 
irrespective of the information criteria the distribution with best fit was found to be 
beta distribution. 

Table 25: Values of different information criterions for selected distribution for 
Project-Jack 

Project Distribution LogLik ML AIC AICc BIC HQC 

Jack 

Exponential 7.29 -14.57 -12.57 -12.53 -10.05 -11.56 

Weibull 36.25 -72.50 -68.50 -68.36 -63.45 -66.46 

Beta 36.72 -73.44 -69.44 -69.31 -64.40 -67.41 

Gamma 36.05 -72.10 -68.10 -67.96 -63.06 -66.06 

Logistic 31.43 -62.86 -58.86 -58.72 -53.81 -56.82 

Normal 30.79 -61.58 -57.58 -57.44 -52.53 -55.54 

Selected Criteria 36.72 -73.44 -69.44 -69.31 -64.40 -67.41 

Selected Distribution Beta Beta Beta Beta Beta Beta 

 
When fitting distributions to defect inflow data from software projects, the sample 
size  can be different. Depending on the chosen granularity of time and software 
project’s development and testing time span,  could vary from small  to 
very high. In the projects we evaluated, we have weekly count data for industrial 
projects and monthly count data for open source projects. This together with long 
time span of these large projects (refer Table 19) give sample size that is large for 
each project while the tested distributions all have low number of parameters 

, thus for these cases size of penalty do not affect much in model 
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selection. The penalized likelihood criteria are also not of much use when the choice 
is between distributions/models with same number of parameters (  for five out 
of six tested distributions) and for a given project (same sample size). Thus we 
observe that to select among distributions fit for defect inflow profiles, unless the 
sample size is small or choice is among models with different number of parameters, 
most penalized-likelihood criteria for model selection will give similar results as 
log-likelihood criteria. 

Thus while we tested all projects and releases for selected information criteria to 
select the best fit model we present only the log-likelihood values for all projects for 
each distribution in Table 26 to Table 28.  

Table 26: Log-Likelihood values for selected distribution for case unit 1 

Project Exponential Weibull Beta Gamma Logistic Normal 
A1 59.0 63.6 105.9 66.0 8.4 5.2 
A2 5.5 7.0 19.8 5.5 -6.8 -3.1 
A3 56.9 82.9 104.6 98.6 11.6 10.9 
A4 119.8 188.3 491.2 199.5 50.3 35.3 

 
Table 27: Log-Likelihood values for selected distribution for case unit 2 

Release Exponential Weibull Beta Gamma Logistic Normal 
B1 88.1 92.6 167.1 97.9 48.8 39.6 
B2 -4.3 4.6 24.8 6.0 2.7 2.0 
B3 -7.8 2.8 5.0 2.9 -0.7 0.3 
B4 38.8 38.9 86.7 40.4 30.2 24.7 
B5 -8.4 5.4 11.9 5.3 1.7 2.2 

 
Table 28: Log-Likelihood values for selected distribution for case unit 3 

Project Exponential Weibull Beta Gamma Logistic Normal 
Http 195.4 202.1 406.2 211.9 174.6 169.0 
Jack 7.3 36.2 36.7 36.0 31.4 30.8 

Lucene 62.0 67.6 70.7 71.9 59.4 58.8 
Rhino 52.9 63.7 59.4 77.3 31.4 28.1 

TomCat 58.5 73.0 76.9 71.9 12.3 10.7 

 
The results from testing fit between selected distributions for their fit to the studied 
large software projects – we find: 

 For all project from two different industrial domains (four large 
projects form automotive domain and five consecutive releases of 
large telecom software product), beta distribution was found to fit 
best defect inflow data 
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 For open source software projects, beta distribution again provided 
the best fit in three out of five projects, while gamma distribution 
was found to fit best to the rest two projects.  

The fit between the observed defect inflow data and their respective best fit 
distributions for all projects/releases is visualized using QQ-plots in Figure 50. 

Figure 50: Quantile–Quantile plots (QQ-plots) for all projects/releases and respective best fit 
distribution 

In total 12 out of 14 projects/releases defect inflow data was described best by beta 
distribution from the selected six distribution families, only for two open source 
software projects gamma distribution provided the best fit to bug inflow data. 



Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption 

146 
 

 

Knowledge of underlying distribution of observed defect inflow data from historical 
projects is helpful for: 

a. In choosing the correct statistical methods for data analysis. If the 
defect inflow data is not normally distributed, non-parametric 
methods must be preferred for statistical analysis. 

b. Visualization, simulations and scenario analysis. For example a 
new project is launched where based on project attributes like size, 
time span etc. the total number of defects is estimated to be n, 
knowing that majority of historical projects defect inflow followed 
beta distribution, one could simulate the expected defect inflow 
intensity over the project development/testing time span. This 
information can be used for planning the test resources effectively.   

c. Knowing the distribution also helps with selecting appropriate 
SRGM for modelling software reliability. For example if it has 
been established that defect inflow in most historical projects at a 
given company had Weibull or Beta distribution, SRGMs with 
mean value function based on these distributions can be used for 
modelling software reliability with higher confidence than selecting 
a model ad-hoc. 

d. The information on underlying distribution of data is particularly 
useful for Bayesian analysis. The distribution that fits best to 
historical projects can be used to code the initial knowledge as prior 
probability (distribution). The observations from on-going project 
are then used to obtain the posterior distribution using Bayes 
statistics. 

3.21.4 Threats to validity 
We address the threats to validity in manner as described by Wohlin et al. [37]. 
Threat to internal validity exists for this study regarding what is considered to be a 
defect. To minimize the threat a common definition of defect was used which was 
verified for each industrial project before the data was collected. What is marked as 
defect is usually not strictly controlled in the open source software projects, the 
threat of misclassification in these projects was minimized by using the manually 
validated bug reports from earlier work of Kim, Just and Zeller [143] which helped 
ensure the quality of data used was high for OSS projects as well. 

Another threat to internal validity is concerned with the selection criteria for the best 
distribution. Best fit distribution was selected using criteria recommended in 
literature, a number of criteria have been proposed and used to select the best fit. In 
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this paper we evaluated different information criteria to ensure higher validity of 
selected distribution which minimizes the threat to internal validity. 

A threat to conclusion validity is present because of using a limited set of 
distributions and selection criteria’s, the best distribution selected is valid only 
among the tested distributions using the selection criteria’s evaluated in the study. 
The selected distributions include most commonly used distributions applied in 
reliability engineering. With regard to selection criteria for the selecting the best fit 
distribution, as proposed in [147], multiple criteria’s were used to arrive on the 
conclusions which strengthens the validity of conclusions.  

External validity concerns with the generalizability of results in settings outside of 
the particular study. In our earlier work [123], the analysis was limited to software 
projects form the automotive domain. In the work presented here, we extended that 
analysis with five more large software releases from another large company engaged 
in software development in different industrial domain. We also analysed five 
projects from the open source community to include software developed with 
different development paradigms. The defect inflow profiles for studied 
projects/releases varied widely which indicates towards better generalizability of 
results. We do not claim that the distribution found best in this study will be 
applicable for all defect inflow data for any software project but provide empirical 
evidence from sample of software projects form different domains. The results 
obtained in this study indicate towards possibility of common distribution of defect 
inflow for software projects, which is useful for the given company or open source 
community. 

3.22 Conclusions 
Six standard distribution families were evaluated for their fit to defect inflow of 
fourteen projects from the industrial and open source domain. We set out to: 

 Explore which statistical distribution fit best to the defect inflow 
from large software projects, and 

 Explore how different information criteria differ in selection of best 
distribution fit. 

For the projects analysed in this study, beta distribution fitted best to the defect 
inflow data from the industrial software projects. Defect inflow of three of five OSS 
projects also has beta distribution while remaining two projects defect inflow 
followed gamma distribution. To select the best fit distribution to defect inflow, out 
evaluation suggest that it can be done with high confidence, using one of many 
recommended likelihood based criteria. If the number of observations is large and 
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comparison is among distributions with about same number of parameters, 
penalized-likelihood criteria are unlikely to give a different result than choosing 
model with highest log-likelihood.   

Knowing the underlying distribution of defect inflow, helps with understanding and 
explaining the process of defect discovery in a given software development and 
testing environment. The information is further useful for selecting right statistical 
methods and techniques for data analysis and also to choose appropriate models for 
defect/reliability modelling and predictions.  

Knowledge of underlying disturbing of defect inflow also allow for easy tracking, 
visualization and simulation of data which is useful for scenario based analysis. 
Underlying distribution information is especially useful to model experience or 
personal belief as prior probability distribution in Bayesian statistical analysis. 
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4 CONSEQUENCES OF MISPREDICTIONS 
OF SOFTWARE RELIABILITY: A MODEL 
AND ITS INDUSTRIAL EVALUATION 

 

Abstract— Predicting reliability of software under development is an important part 
of estimations in software engineering projects. In many organizations as the goal is 
that software products are released with no known defects, the process of finding 
and removing defects correlates with the effort for software projects. Software 
development projects estimate the resources needed to design, develop, test and 
release software products, and the number of defects which have to be handled. In 
this paper we present a model for consequence analysis of inaccurate predictions of 
quality in software projects. The model is a result of multiple case studies and is 
evaluated at two companies. The model recognizes the most common mispredictions 
– e.g. over- and under-prediction, early- and late-predictions – and the combination 
of theses. The results from the industrial evaluation show that the consequences can 
be grouped according to under- and over-predictions and that the late- and early-
predictions have the same consequences. The results show also that mispredicting 
the shape of the reliability curve has a significant consequence with regard to 
assessment of release readiness and resource planning. 

Keywords— Software Reliability; SRGMs; Consequence; Mispredictions; Software; 
Forecasting 
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4.1 Introduction 
Predicting the number of defects in software modules is one of the tasks of quality 
managers in mature software development organizations. The quality managers 
predict rate of defect inflow in order to support the organization in directing 
software testing or optimizing testing efforts [149], [150]. One of the methods for 
predicting is using software reliability growth modelling [151]–[153] which is based 
on developing a reliability growth formula6 and applying it on an on-going project in 
order to predict the future defect inflow and the total number of defects [154].  

The development of the reliability formula requires domain and product knowledge 
and can be costly in terms of data collection. The formula may also be inaccurate as 
software development projects are dynamic entities exposed to external factors (e.g. 
sick leaves, equipment failures, project delays). One of the aspects which make the 
reliability growth formulas being neglected by software professionals is the lack of a 
cost-model which could allow the professionals to reason about the potential costs of 
mispredictions.  

Based on our previous work in reliability modelling we observed this as an 
important problem which we address in this paper [15], [77], [155], [156]. In 
particular, in this paper we address the following research question:  

Given the software quality growth prediction curve, what are the consequences of 
mispredicting the total number of defects and release readiness? 

In the research question we explicitly recognize two common axes of the accuracy 
of predictions – (i) the prediction of the asymptote or the total number of defects and 
(ii) the prediction when the total number of defects is discovered or the release 
readiness [157]. 

In order to address the research question we conducted an action research project 
where we develop the model together with the industry professionals from Ericsson 
and Volvo Car Group. The model shows that the costs of over and under-predictions 
as well as predictions using an incorrect type of curve can cause significant extra 
costs for the companies in terms of unnecessary extra testing effort or costly post-
release corrective maintenance. 

                                                      
6
 The usual name is Software Reliability Growth Model, but we use the term “formula” in order to avoid mixing it 

with the consequence model presented in this paper.  
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4.2 Related work 
 
Reliability growth formulas 
Common terms related to software reliability are defined in IEEE 1633: 
Recommended practice on software reliability [78]:  

Software Reliability (SR): is (A) the probability that software will not cause the 
failure of a system for a specified time under specified conditions. Or (B) the ability 
of a program to perform a required function under stated conditions for a stated 
period of time. 

Software Reliability Model (SRM) is a mathematical expression that specifies the 
general form of the software failure process as a function of factors such as fault 
introduction, fault removal, and the operational environment.  

IEEE standard 1633 also provides metrics used in reliability modelling and specifies 
recommended procedure for software reliability assessment and prediction. SRMs 
can be classified as white box and black box formulas. White box formulas use 
source code attributes for making assessment and predicting defect proneness of 
given software artefact, while black box models uses defect inflow data for 
modelling reliability. Based on the nature of data used, white box and black box 
models are also known as static and dynamic formulas. Dynamic/Black box 
formulas are usually referred to as SRGMs and uses defect data from development 
and/or testing phases. The failure or reliability process can be modelled using 
calendar or execution time. Though execution time models have been shown to be 
more accurate, calendar time models provides more intuitiveness for testers and 
mangers making them easy to interpret.   

SRGMs can be applied primarily for two purposes, the firstly for optimal allocation 
of test resources [97] and secondly for release readiness assessment [95]. In cases 
where SRGMs are used for optimal resource allocation such as amount of testing 
time or test case allocation - SRGMs are applied during the testing process on the 
partial defect inflow data. Then the predicted/estimated defect inflow information is 
used to allocate the testing resources optimally such that the product is ready for 
release by the release date. Release readiness is assessed by applying SRGMs on the 
defect inflow data post the testing phase, suitable SRGM based on a given testing 
process is used to model the defect inflow and estimate the total number of defects. 
If the prediction is close to number of defects already detected and fixed the 
software is assessed ready for release, while if the SRGM show presence of latent 
defects higher than the required quality criteria then the software is assessed as not 
ready for release and send back for further testing.  
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Given the nature of applications, it is apparent that models that provide superior fit 
to full defect data are better suited for applying SRGMs for release readiness, while 
models that have better long-term predictive power are more useful for resource 
allocation applications. Table 14 presents a set of commonly used software 
reliability growth models.  

Table 29: Software reliability growth formulas used in this study 

Formula Name Shape Mean Value Function Ref. 

Musa-Okumoto  Concave  [113] 

Goel-Okumoto Concave ି௕௧  [79] 

Inflection-S model S-shaped 
ି௕௧

ି௕௧  [7] 

Delayed-S model S-shaped ି௕௧  [80] 

Rayleigh model S-shaped ିቀ
௧
௕ቁ

మ

 [69] 

Logistic model S-shaped ି௕ሺ௧ି௖ሻ  [158] 

Gompertz model S-shaped ି௕௘ష೎೟ [91] 

Linear model Linear  [112] 

Release readiness (RR) Linear 
#ௗ௘௙௘௖௧௦

ௗ௥௥ିሺ௧௥௥ି௧௣௥ሻ
§ [157] 

 

In this study we categorize models according to their shape – Convex, S-shaped, 
Concave and linear.  

4.3 Mispredicion consequence model 
The model for assessing the consequences of mispredictions contains the following 
elements:  

 Shape of the prediction formula 
 Set of consequences  
 Strategies to minimize the risk of mispredictions 

The consequences of mispredictions are usually negative for the project, the 
company or the product under development. In the model we recognize three 
situations:  

 Mispredictions of the asymptote – mispredictions of the total 
number of defects 
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 Mispredictions of the release readiness – mispredictions of when all 
predicted defects are found  

 Mispredictions of the shape of the prediction formula 

As we show in the model below there are numerous similarities in the consequences 
for these three types of situations.  

4.3.1 Mispredicting the asymptote 
Predicting the asymptote of the number of defects shows the total number of defects 
which the product might have. The asymptote is usually the same as the coefficient 
a in the formulas in Table 14. Figure 51 shows two types of mispredictions –over 
and under- predictions. The optimal prediction is the prediction which is the closest 
to the reality7. The mispredictions of the asymptote are important for the ongoing 
project, which means that the consequences regard the fact that the predictions are 
over- or under- the optimal curve during development.  

Figure 51: Mispredictions of asymptote 

For the over-predictions the general consequence is that the project expects to find 
more defects than they do. This means that during the duration of the project the 

                                                      
7 In theory this is the optimal prediction is equal to the actual defect inflow in the project, but in 
practice there can be deviations.  
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project management can perceive their testing process as inadequate or ineffective 
thus putting more effort into finding defects which do not exist. More detailed 
examples are: 

 Too high expectations on the defect inflow – more pressure on the 
testing team to find more defects (where there might be none). 

 Assumption that testing is ineffective as during the project (before 
the release) the number of predicted defects is higher than the 
number of discovered defects. 

 Additional cost of test analyses in search for new test areas 
(unnecessary) 

 Risk for postponing release 
 Risk for lost time to market 
 Risk for wasted costs for testing 
 Risk for unnecessary RCAs to find area which are not tested 

enough 

Over-predictions occur when testing is done early in the project and when the 
majority of the defects are found early (and expected late). This situation is common 
when the wrong shape of the curve is using for predictions – e.g. S-shaped instead of 
Convex. 

For the under-predictions the general repercussion is that the project expects too few 
defects and thus risks releasing the software to the customers with defects. 
Consequences of under-prediction:  

 Releasing the product with defects (since effective testing is not 
really effective). 

 Additional costs for post-release defect removal activities and 
patches. 

 Defects which are manifested as integration problems requiring 
quick fixes. 

 De-prioritizing testing effort at early stages and thus finding large 
number of late (and thus costly) defects during system testing or 
acceptance testing.  

Under-predictions occur when testing is done late in the project or when the product 
has the functionality that requires full integration (e.g. complex functionality or 
large embedded products). The situation is common when Concave or S-shaped 
predictions are used instead of Convex-predictions.  
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4.3.2 Mispredicting release readiness 
Another dimension of the model is the timelineness of predicting [159] when the 
reliability growth curve reaches the asymptote. There are two cases of 
mispredictions – the early-prediction and late-prediction. Figure 52 illustrates these 
two cases compared to the optimal/true prediction.  

Figure 52: Mispredictions of release readiness 

For the early-prediction the general repercussion is that the project management is 
informed about being ready earlier than in reality. This means that the consequences 
can be: 

 Releasing the software with defects 
 Higher cost of corrective maintenance of the product 
 Postponing the release (if the mispredictions are discovered before 

the release) 

For the late-prediction the general repercussion is that the project management 
received information about being late when in fact being on track. This means that 
the consequences can be:  

 Unnecessary additional testing resources to get back on track 
 Postponing the release in expectation of more defects to come and 

in order to avoid costly corrective maintenance 
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 Additional costs of test analysis to increase the speed and 
effectiveness of testing 

4.3.3 Mispredicting the asymptote and the release 
readiness 

The superposition of the mispredictions amplifies the situation and increases the 
risks for negative impact on the project. However, it does not introduce new risks. 
Figure 53 presents the superposition.  

Figure 53: Mispredictions of release readiness and asymptote 

As the figure suggests the superposition of the mispredictions is similar to over- and 
under-predictions. The difference, however, is that in the beginning of the project 
the under-predictions of the asymptote may be perceived as over-predictions. This 
situation depends on how early the under-predictions predict the asymptote. The 
more inaccurate mispredictions are, the larger the chance of misperceptions.  

4.3.4 Misprediction of the shape of the curve 
One of the main issues in using the reliability growth models is the choice of the 
reliability growth formula, which determines the type of the curve as shown in 
Figure 54.   
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Figure 54: Mispredictions of the shape 

Mispredicting the shape with the consequences is described in the following table.  

Table 30: Consequences of mispredicting the shape 

Actual 
shape 

Expected shape 
Convex S-shaped Concave 

Convex  
Over-prediction of the 
total number of defects 

Over-prediction of the 
total number of defects 

S-shaped 

Release readiness is predicted 
too early 

X% of found defects is 
predicted earlier than 

expected 

 
Over-prediction of the 
total number of defects 

Concave 

Release readiness is predicted 
too early 

X% of found defects is 
predicted earlier than 

expected 

Too much resources for 
late testing 

 

 
The consequences of the mispredictions of the shape are visible in the course of the 
project as the decisions of project management are based on false trends of defect 
inflows.  

The mispredictions can have significance impact on decisions in the following 
situations: 
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 Predicting when the project discovers X% of expected defects. As 
shown in Figure 54 this mispredictions may be significant if the 
Concave model is used instead of the other two.  

 Predicting the status of the project w r t target. If a project is done 
in a continuous way (e.g. Lean/Agile [16], [157]) then the shapes 
like Convex or Concave can lead to wrong status reporting (too 
many or too few defects than expected) 

The situations and consequences described in this section constitute the most 
common problems with mispredictions with the most serious consequences.  

4.4 Industrial evaluation 

4.4.1 Case study design 
Following the taxonomy and guidelines for conducting and reporting case studies in 
software engineering by Runeson and Höst [52], we conducted an exploratory case 
study using flexible design principle. We studied two large companies from widely 
different industrial domains (Automotive and Telecom) with significant focus on 
development of embedded software. Given the differences in domain, the study is 
designed as an embedded case study with two units of analysis (each company); 
Figure 55 and Table 31 present an overview of the case study design and summary 
of case units. 

Figure 55: case study design 

Table 31: Overview of case units. 

Application 
domain 

Software development process 
Current methods for software defect 
prediction 

Automotive 
V-shaped software development mostly using 
sub-suppliers for implementation 

Focus on status visualization and 
analogy based prediction 

Telecom Agile development, mostly in-house 
Various modes of presenting current 
status and predictions methods 

 
To provide the context for this study we provide details about each case unit’s 
domain, important characteristics of their software development and which specific 



Rakesh Rana 

161 
 

 

part of organization we interacted with. The included information provides the 
context that is needed for meeting the objectives of this research. 

Volvo Car Group (VCG): A company from the automotive domain  

The team we interacted with in this case study from VCG is responsible for 
integrating software for electrical systems at complete vehicle level. While some of 
the software is developed in-house using agile process, majority of the embedded 
software development in the company is developed following V-model through 
external suppliers who design, implement and test the functionality based on 
specifications provided by the VCG. The company on the other hand is responsible 
for high level functional development which is done in domain specific modelling 
language such as Matlab/Simulink8.  

Ericsson: A company from the telecom domain 

Ericsson develops large software products for the mobile telecommunication 
networks. Projects are carried out according to the principles of agile and lean 
software development. In this environment, various teams are responsible for larger 
parts of the process compared to traditional processes: design teams (cross-
functional teams responsible for complete analysis, design, implementation, and 
testing of particular features of the product), network verification and integration 
testing, etc. The whole process is dominated with continuous development and 
testing as expected in highly iterative agile software development process.  

4.4.2 Data collection and analysis methods 
The main source of data for the case study is obtained through empirical 
observations and semi-structured interviews, data collected through interviews is a 
form of first degree methods [52],  that are although expensive to collect but offer 
larger control. Since the objective for this research was to explore, identify and 
validate consequences of mispredictions of defect inflow on software quality, direct 
method in form of interviews was assessed as appropriate.  

Stronger conclusions can be drawn by using triangulation i.e. using data from 
several sources [52], therefore we complement the information obtained through 
interviews with document analysis from these companies. The archival documents 
analysed related to the information needs within the organization with respect to 
software defects and information demanded by various stakeholders within the 
organization. Semi-structured interviews were conducted with managers responsible 

                                                      
8 Simulink® is a block diagram environment for multidomain simulation and Model‐Based Design. Matlab and 

Simulink are products and registered trademark of The MathWorks, Inc. 
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for providing software defects related information to different stakeholders within 
the organizations and quality manger. The interviewees were: 

 Manager at Volvo Cars Group within the department responsible 
for integrating software sourced from different teams and suppliers, 
the manager have more than 20 years of experience working with 
software development and testing. Ensuring safety and quality is a 
major responsibility within this role. 

 Team leader of metrics team at Ericsson; the studied department at 
Ericsson provides the measurement systems to different 
stakeholders within the organization. The team leader interviewed 
also have more than 20 years of experience working with software 
development and testing. 

4.5 Results 

4.5.1 Summary of results form case unit A: VCG 
 A number of different metrics are collected and monitored 

continuously for tracking and assessing quality of software under 
development. 

 Forecasts are used to track if the software will be ready for release 
(with respect to quality) by the release date.  

 If forecasts show an area with possible problems, then root cause 
analysis is done to discover the main causes for such deviations. 

 The focus after the root cause analysis is on what can be done now 
to get on track? As it is highly important to meet the release dates, 
more resources are mobilized and allocated where needed. 

 Consequence of under-predictions: Would need task force (resource 
mobilization) late in the project. While this is not seen as major 
problem if under-prediction is limited to a few ECUs, but could be 
a potential problem if under-prediction is widespread across 
platform (large project). 

 Consequence of over-predictions: Over-prediction is not seen as a 
critical problem in this case unit. If it is recognized late in the 
project that forecasts have over-predicted, the human test resources 
simply shift their energies and focus on other on-going projects. 

 Consequence of early-predictions: No impact if the project is small 
as risk can be easily managed at any stage of project. For larger 
platform projects, in case of early-predictions, the forecasts will be 
re-checked consecutively for a period of time and cross-validated 
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by different expert opinions before resources are planned according 
to forecasts. 

 Consequence of late-predictions: In this case, the strategy adopted 
within this case unit is to find areas affected by late-predictions. 
The test resource would be balanced in light of new information 
and with the aim to meet quality requirements by the release date.  

4.5.2 Summary of results form case unit B: Ericsson 
The impact of mispredictions have two dimensions – (i) metric team which delivers 
the predictions and (ii) project where the predictions are used. 

For the metrics team: 

 All mispredictions make the team lose trust from the organization. 
Once the organization acts upon wrong predictions the team loses 
the ability to influence – the next time the organization will need a 
second opinion before acting. This increases the cost of predictions 
in the long run. 

 For the projects: 
 Over-predictions: 
 Strengthening and reallocation of resources – if this is done during 

a long period of time then this impacts the release date negatively 
 Under-predictions: 
 Negative impact on the release date 
 Ordered overtime/extra resources – when the organization finds 

that the reliability was under-predicted 
 Reallocation of resources – when the organization finds that the 

reliability was under-predicted.  

4.6 Interpretation and recommendations 
Strategies to avoid mispredictions: In order to avoid the costly mistakes in 
predictions we have identified a number of strategies: 

 Predict often – update the predictions every 4th data points (e.g. 
every fourth week for weekly predictions). Updating too often can 
cause instability of predictions and the loss of trustworthiness 
[154], [160] and predicting too seldom causes risks of unnecessary 
costs during longer periods of time.  

 Experiment with three types of curves – until the prediction 
model stabilizes (i.e. the curve can be fit with R2 over 85%) 
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experiment with concave, s-shaped and convex curves. If the 
prediction model does not stabilize use the logistic model as it gives 
the most accurate results in the majority of cases [154].  

 Predict the shape of defect inflow using available data – in our 
earlier work [161], we showed that by analysing trend of defect 
inflow it is possible to predict the shape of defect inflow as early as 
half-way through the project timeline. Such prediction can be 
useful to select the right SRGM.  

4.7 Conclusions 
Quality is an important criterion for software products. To ensure that software 
developed in a project meets its quality requirements by the release date calls for 
monitoring and forecasting metrics related to software quality. Predicting expected 
defect inflow, total expected defects and latent defects offer one way of monitoring 
and forecasting software quality. Such predictions are also important to plan and 
balance test resources which form major part of software costs. While such 
predictions help monitor and plan for test resources, their use is associated with risks 
of mispredictions. 

Mispredictions if not handled carefully can have major impact on project timeline 
and costs. In this paper we provided a consequence model for most common 
mispredictions. The model helps evaluate what could go wrong and the 
consequences of the same. The model is validated at two companies which provide 
insights into which mispredictions are critical in industry and how they are currently 
managed.  
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5 PREDICTING PRE-RELEASE DEFECTS 
AND MONITORING QUALITY IN LARGE 
SOFTWARE DEVELOPMENT: A CASE 
STUDY FROM THE AUTOMOTIVE 
DOMAIN 

Abstract— Early estimation of software defects in sub-systems and features in an 
on-going project can be used for effective allocation of effort and resources by the 
development teams. It also provides support for planning and decisions with regard 
to software release. Current methods of defect predictions based on code and change 
metrics requires access to source code and software evolution information which 
may not always be available or easy to obtain. This paper evaluates if number of 
defects found in an earlier integration point can be a good predictor of number of 
defects to be found in next integration point. Using data from four large software 
projects from the automotive domain, we evaluate the correlation between defects 
found across integration points and final pre-release defect count. We do the 
analysis at the granularity of sub-systems (Electronic Control Units) and features 
with a sample size of 140 sub-systems and 178 features over 9 integration points. 
Our results show that defects found at integration point 4 and 5 could be used as a 
good predictor for forecasting total expected defect count at final release. It is also 
demonstrated how correlation between defects found across integration points can 
be used to identify risky modules early in the development life cycle which can 
trigger corrective actions. 

Keywords— Software defect management; Defect-prone modules; Predictive 
models; Software evolution; Automotive domain 
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5.1 Introduction 
Defects in software are real and observable indicators that can be used to track the 
quality of given product during its development and testing. It has been shown that 
in large software development projects, majority of software defects are often found 
in few of the sub-systems and features [162] [163]. Identifying which sub-systems9 
and features10 are defect-prone and early estimation of number of defects expected to 
be found in a given project can be effectively used to increase testing efficiency. 
Such predictions help teams to focus quality assurance activities and resources to 
areas where they are needed most. Such efforts help in improving the overall quality 
of software system under development. 

Defect prediction models based on code and change metrics requires access to 
source code which may be a problem when software is developed using sub-
suppliers or code is auto-generated from models in model based development. 
Another shortcoming when using these methods is uncertainty of how to handle 
cases where software under study contains reused code [28], which is a frequently 
the case in many industrial domains engaged in embedded software development for 
example automotive domain.  

Simple prediction models that only use defect data from earlier integration points of 
software project lifecycle to predict defect count in later integration points can 
elevate many of aforementioned shortcomings. Such models can prove to be simple 
and cost-effective way of estimating defects at the appropriate granularity level 
(sub-system or features) and time (early), where such predictions allow quality and 
project managers to take corrective actions. 

In this paper we investigate the relationship between defects discovered during an 
earlier integration point to that of later ones over a software project lifecycle (at sub-
systems and features level). The research questions (RQ1-RQ4) that we address in 
this paper are: 

 RQ1: does small number of modules contain most of the defects found in 
large automotive software projects? 

                                                      
9 We use sub‐systems in the given (automotive software) context to refer to software 
developed for specific Electronic Control Unit (ECU). 
10 Feature refers to a software module that provide a specific functionality for example 
Anti‐lock control module, software module for central locking etc. Features are also 
commonly referred to as functions in the automotive domain.  
There exist many to many relationship between sub‐systems and features, while an ECU 
usually carry more than one feature – a single feature can also be distributed over many 
ECUs.  
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 RQ2: Do defects found in current integration point strongly correlates to 
defects found in next integration point? 

 RQ3: How can we use defect inflow data for continuous quality monitoring 
(i.e. early risk identification)? 

 RQ4: When in project timeline can we make useful pre-release defect count 
predictions? 

 
To answer the research questions posed, we use correlation and simple regression 
analysis on defect data from four large industrial software projects from the 
automotive domain consisting of in total 140 sub-systems and 178 features over 9 
integration points.  

We find evidence which support earlier observations [1] that small number of 
software modules accounts for majority of defect counts, specifically our results 
support the 20-60 rule observed by Fenton and Ohlsson [2]. The results from 
regression analysis show that number of defect found at fourth and fifth integration 
point can be used as an early indicator for predicting total pre-release defects. We 
further show that correlation between defects found across integration points can be 
used to identify sub-systems and features that may need more attention thus helping 
early interventions to improve their quality.  

The remaining of the paper is structured as follows: section 5.2 presents the 
background and related work for our research with brief overview of different 
methods of software defect predictions. In section 5.3 we describe in detail the 
research methodology and data used for this study, while Section 5.4 presents the 
findings from the study. Section 5.5 provides recommendations for industrial 
practitioners on how to apply the proposed prediction model and discuss the threats 
to validity. Finally section 5.6 presents our conclusions and outlines future research 
directions. 

5.2 Background and Related Work 

5.2.1 Software Defect Prediction 
A software defect can be defined as an issue or deficiency raised due to use of 
software product which causes it to perform unexpectedly [8]. Software Defect 
Prediction (SDP) methods are used either to classify which modules are defect-
prone or to predict the number of defects expected to be found in a software 
module/project. Usual techniques used for classification/prediction are using:  

 expert opinions for prediction, 
 software reliability growth models for prediction, 
 regression based methods for classification and prediction, and/or 
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 machine learning based methods for classification and prediction. 

Expert opinion is one of the easiest (if experts are available), but subjective method 
of predicting software defects in an on-going project. This method can be useful in 
cases where defects predictions are to be done at project level or large components 
level and where experts are readily available. But when defect predictions are to be 
made at lower granularity levels (sub-systems, features, files etc.), this method do 
not scale down. 

Software Reliability Growth Models (SRGMs) use mathematical equations to model 
the growth of software/system reliability using defect inflow data from the 
development/testing phases. Appropriate model is selected based on software 
development/testing process or using empirical evaluations of number of models on 
the testing data, which is then used to select appropriate SRGM to make defect 
forecasts. These models are easy to apply in practice, but reliable predictions can 
only be made when enough testing data is available for model fitting which may be 
late in the testing process. These models can be used to model reliability growth 
over testing period or over the software lifecycle using models such as Rayleigh 
model. 

Regression based methods on the other hand uses statistical regression for making 
defect predictions using a set of software metrics or code change attributes as 
predictor variables. Regression methods such as logistic regression can be used to 
classify software modules as defect-prone or not, while multiple linear regression 
can be used to estimate the number of expected defects in a given software project 
or modules (sub-systems/features etc.). A range of software process and product 
metrics have been used as the independent variables in the regression based models; 
most common among them are the code complexity metrics and source code 
evolution (change) metrics.  

Methods based on machine learning use algorithms based on statistical methods and 
data mining techniques that can be used for defect classification/predictions. These 
methods are similar to regression based methods and use similar input data 
(independent variables). The key difference being that machine learning based 
methods are dynamic learning algorithms that tend to improve their performance as 
more data is made available. 

5.2.2 Automotive Domain and Embedded Software 
Automotive software is essentially embedded software which is defined as the 
software that resides permanently within a device (hence embedded) and contributes 
to the device control and functionality. Today’s modern cars carry large amount of 
software; some estimates suggest that premium segment cars can carry up to 100 
million lines of code, much more than that of F-35 Joint Strike Fighter (5.7 million) 
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and even Boeing’s 787 jetliner (6.5 million) [54]. A typical modern car can carry 
about 800 features [4] realized by software which is distributed over 70 to 100 
microprocessor-based Electronic Control Units (ECUs) [54].  

Automotive software is diverse and complex, the major reasons for complexity can 
be attributed to factors such as [1]: 

 Interaction between software and hardware with number of sensors and 
actuators; 

 Expected real time behaviour based on states and events; 
 Systems with long life time where embedded software is expected to 

continue working often without updates;  and 
 Demands for high reliability and dependability especially for applications 

which are safety critical. 

Software development in automotive domain mainly follows V-model where left 
branch (early phase) is dominated by software design and implementation, while 
verification and validation is prominent on the right branch. Figure 2 shows the 
mapping of different stages/phases in automotive software and electronic hardware 
(ECU) development at the case company (Volvo Car Group, VCG). Requirements at 
the vehicle level are grouped based on features (or features), each feature has an 
assigned owner responsible for overlooking the design-to-acceptance of that feature 
in the final product. System designers design the system based on all the features 
that are carried over and to be introduced (new). The system is designed such that 
each ECU is assigned number of logical components which implements the required 
functionality. Thus there is one to many relationship between feature and logical 
components for example to provide an Anti-lock feature/feature, central electronic 
module (ECU) may have a logical component named Anti-lock control component, 
while ECU controlling the wheel braking may have another logical component that 
implements the braking action under anti-lock conditions, which together fulfil the 
full functionality of Anti-lock braking feature. 

It is common in automotive domain that Original equipment manufacturers (OEMs) 
such as VCG take responsibility of design and acceptance testing of software and 
hardware at vehicle level, while electronic hardware (ECUs) and base software for 
the ECUs is developed by their suppliers. While OEMs do implement some of the 
application level software in-house (generally features/features that are new and 
innovative which provide market differentiation to their products), but much of the 
application level software is also sourced through tier-1 and tier-2 suppliers 
customized to the need of individual OEMs. Under these conditions access to 
change metrics is not readily available as the software is developed/customized by 
supplier and not developed in-house.  
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Figure 56: Overview of software development process at VCG 
 

Further software development in the automotive domain often uses combinations of 
different programming languages and techniques. Use of domain specific languages 
(DSLs) such as Matlab/Simulink is common among major companies in this sector 
(both OEMs and their suppliers) and also among other embedded software domains 
(e.g. aerospace). The production code that runs on a typical ECU today may have 
mix of code elements that are auto-generated from behavioural models, behavioural 
model that includes legacy code and hand written code. Figure 3 shows the possible 
mix of software elements that can be part of production code providing the intended 
functionality. In such features and systems obtaining precise and accurate 
complexity metrics possess challenges for e.g.  

 Should we use complexity metrics from behavioural models or from code 
generated from these models? 

 Can we reliably use the complexity metrics for code that is auto-generated 
and optimized using different Model-to-Code generation tools?  

 Can we compare or combine complexity metrics from auto-generated and 
hand-written code?  

Figure 57: Possible mix of software elements in automotive production software 
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Thus software defect prediction techniques based on change and complexity metrics 
may not always be feasible or easy to apply in certain cases within automotive and 
other embedded software domains due to:- 

 Difficulty to calculate the size of software module with good accuracy, thus 
difficulty calculating and working with defect densities. 

 Source code metrics e.g. complexity, size, couplings are readily defined for 
hand written code, but corresponding metrics for behavioural models are 
often not validated and in some cases not yet defined. 

 Sourcing software from suppliers may also pose difficulty in obtaining 
reliable software evolution information (i.e. change metrics) during its 
implementation. 

 
With these issues in perspective, for large iterative software development projects 
we evaluate the efficacy of defect count at a given integration point as an early 
predictor for defect count in next integration point and for predicting total pre-
release defects. This paper makes following key contributions: 

 New defect count prediction technique that does not require code or change 
metrics.  

 The evaluation of usefulness of defect count in given integration point as 
early predictor for defect count in following integration point and total 
expected pre-release defect counts. 

 Approach for early identification of features and sub-systems that may need 
more attention. 

5.2.3 Related Work 
A number of earlier studies have provided empirical support for the Pareto principle 
of defect distribution over software modules. Fenton and Ohlsson [2] observed 20-
60 rule i.e. approximately 20% of software modules accounting for more than 60% 
of defects discovered during pre-release testing. The observation was also confirmed 
in the replication study by Andersson and Runeson [164], the principle have also 
been documented for software systems by other researchers [165] [166]. In this 
study we provide complementary evidence to support the Pareto principle of defect 
distribution for four large software projects from the automotive domain and hence 
strengthen the evidence in this regard.    

When it comes to predicting expected number of defects at project or lower levels of 
granularity – a number of approaches/techniques have been used. Earlier studies 
have evaluated expert opinions and different SRGMs for predicting software 
defects. Wood [13] applied eight SRGMs on industrial defect inflow data and found 
significant correlation between pre-release defects and post-release defects. Staron 
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and Meding [15] studied defect data from the telecom domain and concluded that 
models based on moving average provided good predictability for weekly defect 
predictions; the model was also found to be better than the predictions made using 
expert opinions [16]. While SRGMs are useful for modelling reliability at the 
system/project level, applying them at lower levels (feature/sub-system) is difficult. 
The defect count at that level is small which poses a challenge for fitting the models 
to the observed partial defect inflow making it difficult to make reliable forecasts.  

Regression based SDP approaches have been quite successful. Logistic regression 
have been used by Khoshgoftaar and Allen [29] for classifying modules as fault-
prone or not. Logistic regression was also used to classify file/packages in Eclipse 
project as defect prone in the study done by Zimmermann, Premraj and Zeller [30]. 
Multiple linear regression has been used to model software changes where a set of 
software complexity metrics were used as independent variables [23]. Khoshgoftaar 
et al. [24] used linear regression for predicting program faults, their model also 
relied on set of code complexity metrics and number of changes to a given module 
to predict the dependent variable (program faults). 

Bell et al. [167] used negative binomial regression models for predicting software 
faults in an industrial voice response system. The study confirmed Pareto 
distribution of faults and used set of simple, readily accessible predictor variables 
that are independent of programming language. Nonetheless the predictor variables 
used require access to source code and evolution metrics that we do not use in our 
prediction models. Further Weyuker et al. [168] also compared between four 
modelling methods that included negative binomial regression, random forests, 
recursive partitioning and Bayesian additive regression trees for such prediction 
models and found the first two outperforming the latters. 

Our work complement these earlier works based on regression techniques, we also 
use a linear regression model with one main difference. Instead of set of code and 
change metrics as independent variables we only use defects found in/until a given 
integration point to make future defect predictions. Thus the model is simple and can 
be applied with little effort - it does not require access to source code, static analysis 
nor the information on software evolution/change during its development. Table 32 
provides a brief overview of some of the related work in the area of software defect 
prediction. 
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Table 32: Overview of related work 
Predictor 
variable 

Summary of work 

Static code 
analysis 

Zheng et al. [169] provide empirical evidence on the usefulness of static analysis for 
fault detection in software. Their analysis of projects from Nortel Networks showed that 
static analysis provides cost effective means for detecting software faults, it is 
particularly useful for identifying assignment and checking faults. 

Nagappan and Ball [170] showed strong positive correlation between defects found by 
static analysis and the actual pre-release defect density. In the case study of Windows 
Server 2003, they showed that defects found by static analysis can be used to classify 
components into high quality and low quality with overall accuracy of 82.91%. 

Complexity 
metrics 

Subramanyam and Krishnan [171] provides empirical support for link between Object-
Oriented design complexity metrics and software defects. They found significant 
association between OO metrics and defect counts even after controlling for size. 

Nagappan, Ball and Zeller [172] empirically tested correlation between software 
complexity metrics to post-release defects. Authors were able to find set of complexity 
measure for each of five major projects (from Microsoft) that correlated with the post-
release defects. It was also shown that no single set of complexity metrics provided the 
best defect predictor for all projects, highlighting the need for validation at the 
individual project level. 

Software 
evolution or 
change 
metrics 

Kim et al. [173] developed algorithm which caches 10% of source files  based on 
change history of software project which is then used for predicting faults at file and 
feature/method level. They evaluated their approach on seven open source projects 
displaying good predictive ability. 

Nagappan and Ball [174] used relative code churn measures to predict the system defect 
densities. They also showed that the relative code churn measure can be used to 
discriminate between fault prone and not fault prone binaries. 

Snipes, Robinson and Murphy-Hill [175] presented a tool to mine change records from 
configuration management system (CMS) to highlight defect prone areas in the source 
code. In the study, defect risk for each file is predicted using software evolution (code 
change) metrics - number of unique developers and count of changes. 

Complexity 
and change 
metrics 

Nagappan and Ball [176] evaluated ability of software dependencies and churn 
measures as predictors for post-release failures using source code complexity metrics 
(dependencies) and change metrics (code churn measures). 

Kim et al. [177] used complexity and change metrics to classify changes introduced to 
software as clean or buggy. The proposed change classification approach was applied 
on 12 open source projects giving an average accuracy of 78% with 60% recall. 

Other 
measure 

Zimmermann and Nagappan [178] used network analysis on dependencies graphs to 
identify program units that are more likely to contain defects. The approach was shown 
to provide 10% point higher recall than using only complexity metrics in their case 
study of Windows Server 2003. 

D’Ambros, Lanza and Robbes [179] provide an extensive comparison of well-known 
bug prediction approaches on publically available data set. They found churn and 
entropy of source code as best classes of metrics overall. 

Fenton and Neil [20] provide a critical review of software defect prediction methods 
based on size and complexity metrics. They recommend holistic models using Bayesian 
Belief Networks which are capable of modelling the causal relationships between the 
variables.  
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As explained earlier our thesis is that in cases where such information (complexity 
and change metrics) may be difficult to obtain - simple prediction models which do 
not require access to source code or information related to software evolution may 
provide useful alternative for making quick defect count predictions and help 
software practitioner with information that they need to make early intervention 
decisions.  

Predictions using only defect inflow data 

The work presented here closely follows the study by Yu, Shen, and Dunsmore [28] 
who evaluated the relationship between defects in earlier and later phases using 
linear regression model. The authors tested the model on two large software projects 
and found strong linear relationship between defects discovered in earlier phase and 
those discovered later. While there are some differences to our study, in general our 
results support the earlier findings. Compared to earlier study where the focus was 
on relationship between different phases, we investigate the strength of relationship 
between software integration points in large software projects following iterative 
development process. We also evaluate the correlation between defects found until a 
given integration point and total pre-release defects. Predicting pre-release defects is 
of great interest for industry practitioners and our evaluations suggest that simple 
regression model may be used effectively to make these predictions and thus satisfy 
the information need of software engineers, quality, and project managers.  

5.3 Research Methodology and Data 

5.3.1 Case Study Design  
The study presented here is a case study according to Robson’s [106] classification, 
the main goal being to evaluate the relationship between defects found across 
different integration points over a large software project. The context is that of 
embedded software development projects where we use the data from the 
automotive domain. Following the taxonomy and guidelines for conducting and 
reporting case studies in software engineering by Runeson and Höst [52], the case 
study presented in this paper is an interpretive study using a fixed design principle. 
The research is organized as an embedded case study with unit of analysis as sub-
systems and software features. While we evaluate the defect data from four large 
software projects, the main interest is on evaluating if correlation exists at the level 
of sub-systems or features, thus the case study is evaluated at that unit level.  
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Figure 58: Overview of case study design 

 
The reason to choose sub-systems and features as case units is mainly driven due to 
practical relevance. Defect prediction at project level is helpful for project and 
quality managers to monitor the progress of project and evaluate quality and 
reliability characteristics of the software system under development, but such 
predictions do not provide predictions at the level where software engineers and 
component (sub-system/feature) owners could take corrective actions. Predictions at 
sub-system and feature level provide information to these stakeholders who can use 
these predictions to make changes to design and put more focus on implementation 
of software features or sub-systems (in next integration points) which are predicted 
to be more prone to defects.  

5.3.1.1 Company Profile: Volvo Car Group 
Volvo Car Group (VCG) is a Swedish car Original Equipment Manufacturer (OEM) 
based in Gothenburg. VCG develops software and hardware in a distributed 
software development environment using a number of sub-suppliers. For a minority 
of Electronic Control Units (ECUs) software is developed in-house. The 
development is done by the software development teams who usually also have 
responsibility for integrating the software with the hardware developed by the 
suppliers. The majority of the embedded software deployed in the car, is however 
developed by external suppliers who design, implement, and test the functionality 
based on specifications from VCG [108], [109]. The size of the entire automotive 
project in terms of resources is substantially large due to the fact that both OEM and 
suppliers (first and second tier) are involved and car development projects are 
usually conducted using the product line approach with reference architecture [110]. 

5.3.1.2 Software Development Process 
The software (SW) development process at VCG predominantly follows V-model 
(Figure 2), the projects studied here are platform projects which span for a long 
period of time and are thus divided into number of integration points (marked as 
Integration points 1, 2, to 9). Every integration point is effectively a new sprint 
within a larger project where new functionality is designed, developed, tested, 
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verified, and released into the latest system builds. The iterative software 
development model used is shown in Figure 59.  

Figure 59: Representation of iterative software development process at the case company 
 

The project starts with setting up the requirements following which each integration 
point consist of design, implementation (in-house or using suppliers) and the last 
part of each integration point is concentrated on testing the newly developed 
software.  The emphasis until integration point 4-5 is on adding new functionality, 
while after integration point 4-5 the focus is shifted towards system and acceptance 
testing although more functionality may also be added. The integration points are 
followed by phase where calibration and optimization is the main activity. Defects 
found while testing the software are removed as they are detected or patches are 
provided in the software updates.  

Within each integration points, development of software is a continuous process 
(which approximately follows the V-model, Figure 2) where requirements are 
finalized, functionality is designed and implemented in form of implementation 
models or source code, after implementation various levels of testing (unit, function 
and integration) is done to ensure the final product is what was originally intended.  

5.3.2 Data Collection and Analysis Methods 

5.3.2.1 The Basic Data 
In this study the defect data is collected from four large software development 
projects (Proj-1 to Proj-4) from the automotive domain. The projects come from the 
E/E (Electrical and Electronics) integration department within the VCG which deals 
with the integration of various software functionalities and responsible for the final 
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assessment of full EE hardware and software systems. All the projects consist of 
different modules developed by different teams and tested within the development 
team (unit testing), while further integration and acceptance testing is done by 
dedicated teams in the integration department. All defects detected during 
integration, system and acceptance testing phases are reported in one of the central 
defect database administered by the integration department - which was also the 
source of data compilation for this study. Data was collected in close cooperation 
with the industrial partners; projects used in this study have been completed during 
the last decade, thus we had full data at hand.  

In terms of project timeline, on average each project spans between two to three 
years11. In the first stage that spans about four to five integration points the focus in 
on development of functionality, while in later stages (beyond integration point 5) – 
the focus is on system and acceptance testing. On average by the time integration 
point four and five are reached, the project is about 60% and 75% complete 
respectively with respect to planned timeline. Although time period between 
integration point four-five and pre-release is approx. 40%-25% (refer Figure 60), it 
still represents close to one year in calendar time and major part of test resources 
utilization (since the focus in this phase is on system and acceptance testing). Thus 
predicting pre-release defect count by integration point four-five have high practical 
importance, as it allows quality and project managers to effectively allocate and 
mobilise test resources as per the expected demand of project under development.  

Figure 60: Average project timeline over integration points 

                                                      
11 The exact time period and much of detailed data about individual projects is confidential  



Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption 

180 
 

 

5.3.2.2 The Analysis Methods  
Next we provide a brief overview of the analysis method used for answering the 
research questions (RQ1-4) that we address in this paper, 

 
RQ1: does small number of modules contain most of the defects found in large 
automotive software projects?  

To answer the first research question, we evaluated what percentage of defects is 
accounted by top 20 percent of sub-systems and features. The analysis is done at the 
module level for all data and also at individual project level to give a detailed 
picture. 

 
RQ2:  Do defects found in current integration point strongly correlates to defects 
found in next integration point? 
For research question RQ2, where the objective is to measure the strength of 
relationship between defect counts across different integration points, we evaluate 
the correlation coefficient (or Pearson product moment correlation coefficient, r) 
between the two variables. Since there is no universally agreed value to determine if 
the correlation is strong or weak as it depends on the context of problem, for our 
analysis we peg the levels as: the correlation is considered weak if , 
moderate if , strong for  and very strong for .  

Simple linear regression model is also constructed with one dependent variable (Y) 
and one independent variable (X). The model is represented by equation (1): 

Equation 1:  

 
where  is the intercept,  the regression coefficient and  is the error term. The 
square of correlation coefficient, also called coefficient of determination , is also 
provided for each regression, which is a measure of how well the regression line 
represents the data or what proportion of the variance of one variable is predicable 
from the other variable. The dependent and independent variables for research 
question two are: 

X=Number of defects reported in given (current) integration point,  
Y=Number of defects reported in next (current+1) integration point. 
 
RQ3: How can we use defect inflow data for continuous quality monitoring (i.e. 
early risk identification)? 
Identification of sub‐systems and features for further review 
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The correlation between defects found between consecutive integration points, can 
also be used for identification of set of modules (sub-systems and features) that may 
need more attention.  

Using simple linear regression model (as represented in equation 1) between defects 
found in consecutive integration points. The 95% confidence bound can be 
calculated as, 

Lower bound: , 

Upper bound:  

where σ is the standard deviation for the given coefficient value and X is the defect 
count in given (current) integration point. 

If the observed defect count in next integration point falls outside of the upper or 
lower bound, could be an indicator of given modules higher than expected defect-
proneness or potential lack of test coverage. Thus such modules may be selected for 
further review by the quality and project managers. 

 
RQ4: When in project timeline can we make useful pre-release defect count 
predictions? 
The primary objective of this research question is to identify at what stage of project 
development, total defects expected to be found by the pre-release can be predicted. 
We first use correlation between number of defects found at a given integration 
point with total pre-release defects found at the level of sub-systems and features to 
find the earliest time in project timeline when such prediction can be made.  
Secondly to check the predictive ability of such prediction model, we build models 
based on simple linear regression as represented in equation (1) above with 
variables:  
X=Number of defects reported by pre-release,  
Y=Number of defects found at (or until) integration point four/five. 
 
The prediction model is validated using 10-fold cross-validation and using relative 
absolute error for assessing the predictive accuracy. Relative Absolute Error is given 
by equation (2) as: 

Equation 2:  

 
where  is predicted value for nth observation,  is the actual value for that 
observation and  the mean of all actual values. Thus relative absolute error 
measures predictive performance of given prediction model in comparison of a 
simple predictor that predicts average values. Thus a value of less than 100% 
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indicates better performance than simple predictor while a value relative absolute 
error of over 100% indicate performance worse than using mean value predictor.  
 
Note on outliers: The defect data we evaluated (Proj-1 to Proj-4) constituted a total 
of 140 sub-systems and 178 features. Two out of 140 sub-systems and one out of 
178 features were excluded from the analysis due to practical reasons. The two sub-
systems and one feature excluded all came from a single project (Proj-2) and were 
considerably different from the typical sub-system and features developed under 
software projects at the studied company. Thus to ensure that our analysis is 
practically relevant and is not influenced by such one-time events, these modules 
were excluded from the analysis. The decision to exclude these from analysis was 
done after close consultation and approval from the industrial partner who pointed 
out the unique characteristics of these modules. Thus the final sample size was 138 
sub-systems and 177 features and data was available for 9 integration points before 
the pre-release. Thus for RQ2-4, doing the analysis for all sub-systems and features 
gave a sample size of 1104 and 1416 observations respectively at sub-system and 
feature level.  

Again for practical reasons the analysis is not only done at all sub-system and 
feature levels, but also for a smaller sub-set consisting of Top-15, Top-10 and Top-5 
sub-systems and Top-15 and Top-10 features (Top-X here refer to X sub-
systems/features with most defect count at pre-release). The main reason for 
evaluating the model at smaller sub-set is to check if the relationship which we 
observe and prediction models thus build using all data also holds for these sub-sets 
of data. The sub-sets evaluated in the study have high practical importance: during a 
large project, developers, system owners and managers are more concerned with 
monitoring and predicting defect counts for sub-systems and features that are most 
defect-prone where it would be most helpful to optimize test resource allocation and 
early interventions in design and implementation will provide best returns in terms 
of higher quality. 

5.4 Results 
In this section we present and discuss the results from the evaluation of strength of 
relationship between defect counts across integration points in large software 
projects and evaluate if it can be used to build simple regression models that can be 
used for defect predictions. We first present the defect count distribution over the 
nine integration points in the four projects and then the results are organised 
according to five hypotheses we test in this study. 
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5.4.1 Does small number of modules contain most of 
the defects found in large automotive software 
projects? 

Large-scale software development projects may include hundreds of designers and 
testers working at different sub-systems and features level. Due to various factors 
such as size, complexity etc., not all sub-systems or features report defects on same 
magnitude and severity. This presents an opportunity where software quality 
assurance activities can be made more efficient by effectively allocating more 
proportionally to the defect proneness of these modules. 

Some earlier studies have shown that majority of defects and failures are found in 
few of the sub-systems and features [162] [163], we test this observation for the 
projects in this study under our first research question (RQ1). The results are 
provided in Table 33 and defect distribution by sub-systems for all projects is shown 
Figure 61. 

Table 33: Summary of defect distribution and percentage of modules with 80% of reported 
defects 

Module  Project 
N, total number 
of modules 

%age of defects in 
top 20% modules 

Sub‐systems 

Proj‐1  50  76.0% 

Proj‐2  33  67.7% 

Proj‐3  28  85.4% 

Proj‐4  27  89.6% 

Features 

Proj‐1  43  85.3% 

Proj‐2  47  80.2% 

Proj‐3  48  57.1% 

Proj‐4  39  66.1% 

Total sub‐systems  138  81.0% 

Total Features  177  83.0% 

 

For full dataset which constitutes 138 sub-systems and 177 features the, 20% 
modules accounted for majority (more than 80%) of reported defects. At individual 
project level percentage of reported defects in top 20% sub-systems range from 67% 
to 89%. For features at project level, again except for one project (Proj-3), top 20% 
of features accounted for more than 60% of reported defects.   
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Figure 61: defect distribution at sub-systems and features level 

 
Thus with an exception of Proj-3, we confirm the earlier observation that 20% 
modules account for more than 60% reported defects [163]. The results that 20-60 
rule holds for large iterative automotive software projects has practical importance. 
From given projects, we infer that a small set of modules (sub-system and features) 
account for major proportion of defects. The observation adds further evidence that 
Pareto principle of defect distribution also holds for large automotive software 
projects. 

5.4.2 Do defects found in current integration point 
strongly correlates to defects found in next 
integration point? 

For second research question, we test if we can use the defect count in a given 
integration point (current) to make a good prediction of expected number of defects 
to be found in next (current+1) integration point. Such predictions can help 
designers and managers to identify the most defect-prone modules in the upcoming 
integration points and may trigger some corrective actions early for example by 
making modifications on design or allocation of more resources to ensure high 
quality. Figure 62 shows the scatter plot for all sub-systems and features showing the 
relationship between the defect count in current and next integration points. 
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Figure 62: Scatter plot for defect count in current and next (current+1) integration point for 
all sub-system and features 

 
We observe that while there exists a positive correlation between the defect count in 
current and next integration points, it is not very strong. The linear regression line 
also help get a subjective overview with number of points away from the line show 
correlation between the two variables is not strong. The correlation coefficient (r) 
and the results of regression model are presented in Table 34 for sub-sets with 
different modules and scope. We note that correlation coefficient for all cases is 
moderate (0.6 < r < 0.8) but not strong.  

Table 34: Regression results for the prediction model for defect count in next (current+1) 
integration point using defect count in current integration point 

Module Scope 
Sample 

Size 
Coefficien

t ( ) 
Standar
d Error 

P-value 
r, 

Correlation 
Coefficient 

R2, Coefficient 
of 

Determination 

Sub-
systems 

Top 15 480 0.676 0.034 0.000 0.670 0.449 
Top 10 320 0.665 0.042 0.000 0.660 0.436 
Top 5 160 0.647 0.061 0.000 0.645 0.415 

Features 
Top 15 480 0.711 0.033 0.000 0.700 0.490 
Top 10 320 0.695 0.041 0.000 0.687 0.472 

All sub-systems 1104 0.697 0.022 0.000 0.690 0.476 
All Features 1416 0.747 0.019 0.000 0.731 0.534 

 
This (weak correlation between consecutive integration points when measured for 
all integration points combined) is not un-expected given that defects found per unit 
time tend to increase as project progresses until a certain time, stabilizes and then 
begin to fall off as the software matures – giving a characteristic S-shape to defect 
inflow profile [180]. What is interesting however is - if there exists any strong 
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correlations between the consecutive integration points. To test this, we measure the 
correlation coefficient across integration points one to nine and results are presented 
in Table 35. It is observed that correlation is weak across IP_1 to IP_3 particularly 
for sub-systems. Overall for all sub-systems correlation across consecutive 
integration points is moderate (between IP_5 to IP_7), strong (between IP_3-IP_4 
and IP_7-IP_8) and very strong between IP_4-IP_5 and IP_8-IP_9. For all features 
the correlation between defects found across integration points range from moderate 
to very strong.  

Table 35: Correlation coefficient between defects found across integration points one to nine 

Module Scope 
Sample 

Size 
IP_1 - 
IP_2 

IP_2 - 
IP_3 

IP_3 - 
IP_4 

IP_4 - 
IP_5 

IP_5 - 
IP_6 

IP_6 - 
IP_7 

IP_7 - 
IP_8 

IP_8 - 
IP_9 

Sub-
systems 

Top 15 60 -0.09 -0.11 0.85 0.96 0.67 0.57 0.79 0.95 

Top 10 40 -0.10 -0.14 0.85 0.96 0.64 0.52 0.78 0.95 

Features 
Top 15 60 0.85 0.68 0.88 0.71 0.77 0.89 0.93 0.88 

Top 10 40 0.85 0.66 0.88 0.69 0.76 0.88 0.93 0.91 

All sub-systems 138 -0.05 -0.07 0.85 0.96 0.72 0.63 0.81 0.95 

All Features 177 0.85 0.70 0.90 0.75 0.82 0.90 0.94 0.89 

 
Thus for integration point three onwards, we find correlation between defects found 
across consecutive integration points to be moderate-to-very strong. This 
information can be used in subsequent projects to check if a given module follows 
general trend of defects found at a given integration point which can help identify 
sub-systems/features for further review - described in following section. 

5.4.3 Identification of sub-systems and features for 
further review 

As explained in section 3.2.2, using 95% confidence intervals of regression 
coefficients, we can find an upper and lower bound of forecasted defect count for 
next integration point; an example is shown in Figure 63. 
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Figure 63: Scatter plot showing potential identification of sub-systems or features for further 
review. The graph shows actual Vs. predicted defect count for IP_5 using defect count at 

IP_4 for all features 

 
In the review phase after a given integration point and before a subsequent 
integration point begins, mangers can use the forecasted values of defect counts and 
actual defect counts for identification of sub-systems or features that need extra 
attention. For example in Figure 63, these are marked by red, and green circles. 

For the software modules (sub-systems/features) that report defect counts much 
higher than the forecasted upper bound are marked by red circles, managers may 
choose to take actions that may include: 

 root cause analysis, 
 design inspection/review, 
 dependencies check, 
 further reliability analysis, etc. 

The modules that report less than the forecasted lower bound (marked by green 
circle) may also need more attention; the actions taken by mangers for these 
modules among others may include: 

 check the adequacy of test cases, 
 initiate more testing, 
 inspection or manual walkthrough, 
 root cause analysis, etc. 
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Not all modules outside the lower and upper bound would need close inspections or 
further actions, there may be practical reasons for the observed deviations (for 
example less functionality addition in given integration point compared to previous 
or reusability of code etc.). Also for cases where the defects count is low, small 
deviations may not be as important as modules with high defect count and large 
deviations. Small deviations at low defect count may just be due to low defect count 
at previous integration point or start of new functionality addition to a given module. 
Thus given on available information these modules may be taken for further review 
or not. 

It is thus noted that simple regression models are not only useful to make a forecast 
of defects expected to be found in software modules in next integration point which 
can be used to allocated necessary resources, but also can help identify smaller 
subset that may need more attention. 

5.4.4 When in project timeline can we make useful pre-
release defect count predictions? 

When it comes to defect prediction and management, one information that most 
stakeholders are interested in is to predict the number of defects expected to be 
found by pre-release. Important questions in this respect are if we can predict (with 
good accuracy) number of pre-release defects when the project is on-going and 
when these predictions can be made with respect to project timeline. Pre-release 
defect count predictions at project and components level help project managers and 
quality assurance mangers to ensure that they plan for expected resource demands. It 
also helps these mangers to monitor the progress of project with respect to its quality 
and reliability characteristics. At individual team level, the sub-system responsible 
and software engineering use pre-release defect counts at sub-system and feature 
level to identify which features (area of code) need more attention. If the predictions 
highlight specific features to be defect prone, early interventions in terms of design 
change or refactoring may be undertaken to improvise the quality and thus avoid 
defects late in the development process. 

To answer these questions we analyse the correlation between defect count reported 
at each integration point with the number of pre-release defects. Table 36 shows 
correlation matrix for defect count at each integration point with the total defect 
count by the pre-release at sub-system and feature level. The analysis is also done at 
sub-sets that are of high practical value to company such as Top10 sub-systems or 
Top10 features. It is observed that correlations between defect count at individual 
integration point and pre-release are mostly weak for integration points 1-2 and for 
integration points 7-9. The correlation is moderate/strong between pre-release defect 
count and integration point 3 and 6. For integration points 4 and 5, defect count 
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show the highest correlation with the pre-release defect count where correlation is 
either strong or very strong.  

Table 36: Correlation matrix for defect count in given integration point with pre-release 
defect count 

Correlation 
Coefficient 

Sub-systems Features 

All Top 15 Top 10 
Top 

5 
All 

Top 
15 

Top 
10 

IP_1 0.424 0.374 0.336 0.527 0.278 0.231 0.205 

IP_2 0.262 0.221 0.194 0.112 0.609 0.566 0.542 

IP_3 0.748 0.735 0.722 0.786 0.823 0.799 0.791 

IP_4 0.911 0.906 0.904 0.907 0.863 0.841 0.837 

IP_5 0.943 0.938 0.934 0.937 0.930 0.913 0.912 

IP_6 0.824 0.784 0.756 0.664 0.721 0.651 0.618 

IP_7 0.556 0.474 0.400 0.169 0.720 0.651 0.623 

IP_8 0.437 0.371 0.321 0.176 0.655 0.580 0.565 

IP_9 0.353 0.295 0.246 0.120 0.659 0.606 0.614 

Pre_Rel 1 1 1 1 1 1 1 

 
Cumulative defect count (total defect count until a given time/integration point) tend 
to be a more stable measure as it averages out fluctuations of defect count over 
individual iterations, it also carries more information as it is an aggregate measure of 
defects reported until a given date. Correlation between cumulative defect count at 
end of each integration point to pre-release defect count is summarized in Table 37.  

Table 37: Correlation matrix for cumulative defect count in given iteration with pre-release 
defect count 

Correlation 
Coefficient 

Sub-systems Features 

All 
Top 
15 

Top 
10 

Top 
5 

All 
Top 
15 

Top 
10 

IP_1 0.424 0.374 0.336 0.527 0.278 0.231 0.205 

IP_2 0.396 0.343 0.309 0.210 0.578 0.531 0.492 

IP_3 0.797 0.775 0.756 0.796 0.784 0.753 0.734 

IP_4 0.909 0.901 0.894 0.900 0.865 0.844 0.837 

IP_5 0.936 0.930 0.925 0.927 0.930 0.917 0.916 

IP_6 0.963 0.957 0.953 0.948 0.961 0.952 0.952 

IP_7 0.979 0.975 0.972 0.967 0.986 0.983 0.983 

IP_8 0.994 0.993 0.992 0.991 0.995 0.994 0.994 

IP_9 0.999 0.999 0.999 0.999 0.999 0.999 0.999 

Pre_Rel 1 1 1 1 1 1 1 
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The correlation between cumulative defect count and pre-release defects is either 
strong or very strong starting from iteration 4. The correlation between the number 
of defects found at and by a given integration point to total defects found by pre-
release is also presented using line chart in Figure 64 and Figure 65 for sub-systems 
and features respectively.  

Figure 64: Line plot showing correlation between defects found at and by (cumulative 
defects) a given integration point with total defects found by pre-release for sub-systems 

 
The figures (Figure 64 and Figure 65) show clearly that the correlation between 
defects found at a given integration point with total defects found by pre-release is 
strongest at integration point 5. Also correlation between defects found at integration 
point 4 and pre-release defect count is very strong for sub-systems (>0.9) and strong 
for features (>0.8). Further as expected, correlation between cumulative defect count 
at given integration points and pre-release defect count in general follows a concave 
profile due to smoothening of variations over defect count at individual integration 
points.  

From Tables (Table 36 and Table 37) and their representation in Figure 64 and Figure 
65, it is also observed that until integration point 5, correlation with pre-release 
defect count is slightly higher with defects found at a given integration point than 
with cumulative defect count at the same integration point.  
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Figure 65: Line plot showing correlation between defects found at and by (cumulative 
defects) a given integration point with total defects found by pre-release for features 

 
It is noteworthy here that Integration point 4 is reached when project is about 60% 
through its planned timeline (refer Figure 60) and thus if predictions for pre-release 
defect count could be made at this time, it can prove to be of high practical 
importance with respect to assistance in test resource planning and allocations to 
projects. 

 
Predictions using linear regression model 

To build the prediction models we use the simple regression model described earlier, 
the model is represented by equation 3,  

Equation 3:  

 
We build two types of model and check their predictive accuracy using relative 
absolute error (as described in section 3.2) and using 10-fold cross-validation, these 
models are:- 

1. Simple linear regression models: in these models the dependent variable 
(Y) is pre-release defect count which is predicted using only one 
independent variable (X). We use defects found at integration point 4 or 5 as 
the predictor variable, the results are summarised in Table 38.  

2. Multiple linear regression models: in these models for same dependent 
variable (Y, pre-release defect count) is predicted using defect counts at 
integration points until integration point 4 or 5. Since this model takes into 
account not only defects found at integration point 4 or 5 but also the 
evolution of defects found until that point, it is expected to provide higher 
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predictive accuracy. The results for multiple linear regression models are 
summed up in Table 39. 

 
Table 38: Results of simple linear regression models for predicting pre-release defect count 

using defect count at integration point 4 or 5 

Module Scope 
Sample 

Size 
Linear Regression 

Model 

Relative 
absolute 

error 

Root 
relative 
squared 

error 

r, 
Correlation 
Coefficient 

R2 

Sub-
systems 

Using IP_4 138 
Pre-Rel = 3.13*IP_4 + 

15.9 
40.7% 43.3% 0.901 0.812 

Using IP_5 138 
Pre-Rel = 2.72*IP_5 + 

13.84 
31.1% 34.0% 0.939 0.883 

Features 
Using IP_4 177 

Pre-Rel = 2.97*IP_4 + 
24.4 

47.5% 53.7% 0.846 0.716 

Using IP_5 177 
Pre-Rel = 5.45*IP_5 + 

7.41 
34.7% 41.1% 0.911 0.830 

 

Table 39: Results of multiple linear regression models for predicting pre-release defect count 
using defect counts until integration point 4 or 5 

Module Scope 
Sample 

Size 
Linear Regression Model 

Relative 
absolute 

error 

Root 
relative 
squared 

error 

r, 
Correlatio

n 
Coefficient 

R2 

Sub-
systems 

Until IP_4 138 
Pre-Rel = 4.38*IP_1 + 

1.65*IP_2 - 1.02*IP_3 + 
3.30*IP_4 + 11.58 

38.5% 41.7% 0.909 0.826 

Until IP_5 138 

Pre-Rel = 3.44*IP_1 + 
0.81*IP_2 - 0.94*IP_3 + 
0.90*IP_4 + 2.13*IP_5 + 

11.41 

31.6% 35.6% 0.934 0.872 

Features 

Until IP_4 177 
Pre-Rel = 1.37*IP_2 + 

2.60*IP_4 + 22.62 
49.3% 59.8% 0.818 0.670 

Until IP_5 177 
Pre-Rel = 2.75*IP_1 + 

0.56*IP_2 + 1.25*IP_3 + 
4.13*IP_5 + 2.72 

19.0% 19.3% 0.981 0.962 

 

The results from simple and multiple linear regression models (from Table 38 and 
Table 39) are as follows: 

a. Only using defects found at integration point 4 or 5, pre-release defect count 
can be predicted with good accuracy (compared to mean value predictor), 

b. Using defects found at integration point 5 provided better predictive 
accuracy than using defect count at integration point 4, 
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c. The best predictions for sub-systems (among tested models) was obtained 
using simple linear regression model using defects found at integration point 
5 as predictor variable, and 

d. Best prediction model for features was obtained using multiple linear 
regression model using defect counts until integration point 5 as the 
independent variables for predicting pre-release defects. 

5.5 Recommendations and Threats to Validity 

5.5.1 How to apply the prediction models:  
Recommendation to software quality and project managers for using correlation 
based simple defect prediction models 

Quality assurance and project managers may: 

 Identify high risk modules using predictions confidence intervals (as 
explained in section 4.3) and use the information to ensure that necessary 
support in terms of required resources is available to teams working on such 
modules. Also the information will facilitate managers to allocate their 
attention effectively to areas that need it most. 

 Use simple prediction models after integration point 4 (as explained in 
section 4.5) to forecast total number of expected defects at pre-release for 
long-term planning and monitoring the progress of system verification and 
validation activities at complete system/project level and also at individual 
teams level. 

Software development and testing teams can benefit from simple correlation based 
defect prediction modelling in following ways: 

 They can use the simple rule based predictions (e.g. for a given feature by 
end of integration point X+1 we usually expect to find Z times the number 
of defects we found by end of integration point X) as a quick check to see if 
any particular modules stand out and if so investigate the reasons (root 
cause) or take appropriate actions as demonstrated in section 4.3.1. 

 By continuously monitoring their current scorecard (with respect to defect 
counts) and comparing it against the forecasts, the team leaders and 
members at each team can monitor their own progress. Check if they will be 
able to deliver their part of software by expected release date and if needed 
when it is the time to call for more support such that corrective actions are 
taken on right time rather than late in the development process. 
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5.5.2 Threats to validity 
We address the threats to validity in manner as described by Wohlin et al. [37]. 
Threat to conclusion validity is minimized by studying the correlation between the 
dependent and independent variable. In this study the dependent and independent 
variable are essentially the same (defect count or its cumulative value) only 
separated temporally, thus it is reasonable to assume that they are affected by similar 
underlying factors and thus we expect to see a relationship between the two. For a 
given sub-system or feature new functionality is added and tested in each integration 
point, and although it is possible to have major differences between the functionality 
added across integration points – in general the characteristics is expected to follow 
linear trend. A feature that is expected to be a large or complex feature at the end of 
process is also more likely to have large or complex functionality addition during 
the different integration points compared to a feature with is not expected to have 
such characteristics. 

A threat to internal validity is minimized in this study as the independent variable 
always precedes the dependent variable (temporal precedence). We analyse the 
covariance (correlation) and build and recommend regression models only when the 
correlation is found to be strong or very strong. There is however threat to internal 
validity as the defect count is in a given sub-system or feature over different 
integration points could be due to other underlying factors such as size, complexity 
etc. But since the intention of building the regression model is intended to be only 
used to make defect count predictions in next integration points and we do not claim 
that there is causal relationship between the independent and dependent variable, 
this treat is not a major threat to the validity of our conclusions. 

External validity concerns with the generalizability of results in settings outside of 
the particular study. In the work presented here, we evaluated strength of 
relationship between the defect counts across different integration points in large 
software development projects. We studied four projects which had different project 
characteristics (size, scope, complexity etc.), but it is also noteworthy that all 
projects came from a single domain (automotive) and a single company (VCG). 
Given that we studied four large projects which are finished over last decade, at 
level of sub-systems and features over nine integration points, provide us with large 
sample size and thus conclusions are drawn from large and heterogeneous projects. 
While we do not claim that results can be generalized to all large software projects, 
but given that most of such projects are broken down in an iterative manner, the 
results are expected to be more generally applicable than the scope of the given 
study.  
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5.6 Conclusions 
Testing, verification and validation is a major part of software development process 
and an important activity to ensure desired quality and reliability is achieved. 
Software defects proved a real and observable indicator to monitor the reliability 
growth of software under development. Early estimation of how many defects are 
expected to be found at the system/project, sub-systems and features level can help 
with: 

 Project managers to manage release cycle decisions and monitor progress, 
 Quality assurance mangers to plan and allocate human and test resources 

optimally, and 
 Help designers and developers to make early intervention in design and 

implementation to take corrective actions when needed 

In this paper using defect data from four large software projects from the automotive 
domain, consisting of 139 sub-systems and 177 software features over nine 
integration points – we evaluated five hypothesis. The results from our study show 
that: 

RQ1: does small number of modules contain most of the defects found in large 
automotive software projects?  

We found evidence to support earlier observations, for all sub-systems and features 
– 20% modules account for more than 80% of all defect reported. While at 
individual projects level the 20-60 rule as observed by Fenton and Ohlsson [2] was 
supported. 

RQ2: Do defects found in current integration point strongly correlates to defects 
found in next integration point? 

The correlation between defects count in consecutive integration point when 
analysed for all integration points together was not found to be strong. Nonetheless, 
for most consecutive integration steps, the correlation between defects found across 
integration points is found to be moderate-to-very strong for all sub-systems, 
features and their subsets. 

RQ3: How can we use defect inflow data for continuous quality monitoring (i.e. 
early risk identification)?  

Following RQ2, for integration point 3 and beyond the correlation between defects 
found in consecutive integration points is found to be moderate-to-very strong. This 



Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption 

196 
 

 

correlation can be used to build simple prediction rules for predicting expected 
defect count in next integration point using defect count in current integration point. 

The simple prediction rule can also be used to identify sub-systems and features that 
report large deviations from the expected increase to investigate deeply the 
underlying reasons for such deviations. Thus the prediction model can be useful in 
practice to also help identify small subset of sub-systems and features where root 
cause analysis will yield useful insights and help identify any trends/patterns that if 
left unchecked could cause problems late in the development process.   
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6 EARLY VERIFICATION AND 
VALIDATION ACCORDING TO ISO 
26262 BY COMBINING FAULT 
INJECTION AND MUTATION TESTING 

 

Abstract— Today software is core part of modern automobiles. The amount, 
complexity and importance of software components within Electrical/Electronics 
(E/E) systems of modern cars is only increasing with time. Several automotive 
functions carrying software provide or interact with safety critical systems such as 
systems steering and braking and thus assuring functional safety for such systems is 
of high importance. Requirements for the safety assurance are specified partially by 
such functional safety standards as ISO 26262. The standard provides the framework 
and guidelines for the development of hardware and software for components 
deemed to be safety critical. In this chapter we argue that traditional approaches for 
safety assurance such as fault injection and mutation testing can be adapted and 
applied to functional models to enable early verification and validation according to 
the requirements of ISO 26262. We show how to use fault injection in combination 
with mutation based testing to identify defects early in the development process – 
both theoretically and on a case of self-driving miniature vehicles. The argument is 
grounded upon the current best practices within the industry, a study of ISO 26262 
standard, and academic and industrial case studies using fault injection and mutation 
based testing applied to the functional model level. In this paper we also provide the 
initial validation of this approach using software of a self-driving miniature vehicle. 

Keywords— Fault injection, Mutation testing, ISO 26262, Simulink, Model based 
development, Automotive domain, Safety critical software 
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6.1 Introduction 
Nowadays, a typical premium car has up to 70 ECUs which are connected by 
several system buses to realize over 2000 functions [3]. As around 90% of all 
innovations today are driven by electronics and software, the complexity of car’s 
embedded software is already high and expected to grow further. The growth is 
fuelled by cars beginning to act more proactively and provide more assistance to its 
drivers, which requires software to interact with hardware more efficiently and 
making more decisions automatically (e.g. collision avoidance by braking, brake-by-
wire or similar functions). In total with about 100 million lines of code (SLOC), 
premium segment vehicles carry more software code than in modern fighter jets and 
airliners [181].  

Software for custom functionality in modern cars is usually developed by multiple 
suppliers although it is largely designed by a single Original Equipment 
Manufacturer (OEM) like Volvo Cars. The distributed development and use of 
standards like AUTOSAR aims to facilitate reuse of software and hardware 
components between different vehicle platforms, OEMs and suppliers [182]. 
However, testing of such systems is more complex and even today testing of 
software generally accounts for almost 50% of overall development costs [183].  

ISO-26262 in automotive domain poses stringent requirements for development of 
safety critical applications and in particular on the testing processes for this 
software. These requirements are intended to increase the safety of modern cars, 
although they also increase the cost of modern cars. 

The position for which we argue in this paper is that efficient verification and 
validation of safety functions requires combining Model Based Development (MBD) 
with fault injection into models with mutation testing. This position is based on the 
studies of the ISO 26262 standard (mainly chapter 6 that describes requirements on 
software development but also chapter 4, which poses requirements on product 
development [35]). It is also based on previous case studies of the impact of late 
defects on the software development practices in the automotive domain (e.g. [184]) 

The requirements from the ISO 26262 standard on using fault injection techniques is 
challenging since it relates to the development of complete functions rather than 
components or sub-components of software. The current situation in the automotive 
sector is that fault injection is used, but it is used at the level of one electronic 
component (ECU) or one software system and rarely at the function level [185] 
[186]. 
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The current state of art testing is not enough for detecting safety defects early in the 
automotive software development process since fault injection is done late in the 
development (when ECUs are being developed), which usually makes the detection 
of specification-related defects difficult and costly [184]. As much possible this 
detection should be done at the model level when the ECUs’ functionality is still 
under design and thus, it is relatively cheap to redesign/reconfigure.  The evidence 
from literature on successful use of fault injection shows that the techniques are 
indeed efficient in finding dependability problems of hardware and software systems 
when applied to compute [187].  Finally, to be able to increase the effectiveness of 
the fault injection strategies and identify whether the faults should be injected at the 
model, software or ECU level - Mutation testing should be applied to verify the 
adequacy of test cases and finally how the combination of these approaches when 
applied at the model level will enhance the detection of safety defects right at the 
design stage.  

In this paper, we provide a roadmap, which shows how to introduce fault injection 
and mutation testing to modelling of automotive software in order to avoid costly 
late defects and increase the safety of modern and future cars. This paper is the 
extended version of our previous work [188] where we presented the theoretical 
approach. In this paper we include a validation of this framework on a set of 
software components of self-driving miniature vehicles. The system used for initial 
validation is developed using a code-centric approach which makes the framework 
more generic as the initial evaluation in [188] was conducted on model-based 
development.  

The remaining of the paper is structured as follows: In the next section 6.2 we 
provide an overview of software development in automotive domain and associated 
concepts. This is followed by brief discussion on related work in section 6.3 and our 
position is presented and discussed in section 6.4. Section 6.5 presents the initial 
validation case for the framework and section 6.6 provides conclusions. 

6.2 Background 
In this section we take a brief overview on the current state of automotive software 
development process and environment, how safety is important in safety critical 
applications and overview of theoretical background on fault injection techniques 
and mutation testing.  

6.2.1 Automotive Software Development & ISO 26262 
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Various software functions/applications developed within the automotive industry 
today are classed as safety critical, for example Volvo’s City Safety feature consists 
of components that are safety critical. 

Figure 66: Volvo Cars city safety function, image provided by Volvo Car Group 

[3] gives examples of functions/areas within automotive domain with recent 
development which includes crash prevention, crash safety, advanced energy 
management, adaptable man-machine interface, advanced driver assistance, 
programmable car, car networking etc., much of these also fall within the safety 
critical functionality and thus demands high quality and reliability. Also a number of 
on-going projects are directed towards the goal of self-driving cars.  

Software development in automotive sector in general follows the ‘V’ process, 
where OEMs take the responsibility of requirement specification, system design, and 
integration/acceptance testing. This is followed by the supplier, which develops the 
actual code that runs on ECUs. Although the code is tested at the supplier level 
(mainly unit testing), the OEMs are responsible for the final integration, system and 
acceptance testing to ensure that the given implementation of a software (SW) meets 
its intended functional and safety goals/demands. 
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Figure 67: The V-model in the automotive industry with distinction between the OEM and supplier 
contributions 

In this model of software/product development (see Figure 67) testing is usually 
concentrated in the late stages of development, which also implies that most of the 
defects are discovered late in the development process. In a recent study using real 
defect data from an automotive software project from the industry [189] showed that 
late detection of defects is still a relevant problem and challenge yet to overcome. 
The defect inflow profile presented in this study is reproduced in Figure 68 for 
reference, which exhibits a clear peak in number of open defects in the late stages of 
function development/testing. 

Figure 68: Defect inflow profile for automotive software project, as given in (Mellegård et al., 
2012) 
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Testing the software is an important tool of ensuring correct functionality and 
reliability of systems but it is also a very resource intensive activity accounting for 
up to 50% of total software development costs [2] and even more for safety/mission 
critical software systems. Thus having a good testing strategy is critical for any 
industry with high software development costs. It has also been shown that most of 
the defects detected during testing do not depend on actual implementation of code, 
about 50% of defects detected during testing in the study by [190], were found 
during the test preparation, an activity independent of the executable code. And 
since automotive sector has already widely adopted MBD for the software 
development of embedded systems, a high potential exists for using the behavioural 
modes developed at the early stages of software development for performing some 
of the V&V (Verification & Validation). Early V&V by helping to detect defects 
early will potentially save significant amount of cost for the projects and reduce the 
cycle time.  

6.2.2 ISO 26262 
ISO/IEC 26262 is a standard describing safety requirements. It is applied to safety-
related systems that include one or more electrical and/or electronic (E/E) systems. 
The overview of safety case and argumentation is represented in Figure 69, based on 
[35]. 

Figure 69: Overview of ISO-26262 safety case & argumentation process 

Item
•The item representing a system or a function is defined.

PHA

•A Preliminary Hazard Analysis & Risk Assessment is done 
to assign an appropriate ASIL level.

SG

•Safety Goals are derived from the Hazard Analysis and 
they inherit the assigned ASIL level.

FSR

•Functional Safety Requirements are drawn such that the 
set Safety Goals are met.

TSR

•The Technical Safety Requirements are formulated 
describing how to implement FSR.

Doc

•Further development includes implementation, 
integration and documentation of safety cases.
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Written specifically for automotive domain/sector, the ISO-26262 standard is 
adapted for the V-model of product development corresponding to the current 
practice in the industry. The guidelines are laid out for system design, hardware and 
software design & development and integration of components to realize the full 
product. ISO-26262 includes specifications for MBD and provides 
recommendations for using fault injection techniques for hardware integration and 
testing, software unit testing, software integration testing, hardware-software 
integration testing, system integration testing and vehicle integration testing, for 
overview on fault injection recommendations in ISO-26262 see [191]. Although the 
functional safety standard specifies clearly the recommendations for using fault 
injection during various stages of testing but it does not recommend anything with 
respect to using mutation testing. This also reflects the current standard practice 
within the automotive industry where mutation testing is not widely adopted yet. 

6.2.3 Fault Injection 

Figure 70: Common classification of fault injection techniques and implementation tools, 
description available in (Ziade et al., 2004, Hsueh et al., 1997) 
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Fault injection techniques are widely used for experimental dependability 
evaluation. Although these techniques have been used more widely for assessing the 
hardware/prototypes, the techniques are now about to be applied at behavioural 
models of software systems [192] - thus enabling early verification of intended 
functionality as well as enhancing communication between different stakeholders. 
Fault injection techniques applied at models level offer distinct advantages 
especially in an industry using MBD for its software development, but use of these 
techniques at model level in automotive industry is currently at its infancy. Figure 
70 shows a mind map of classification of fault injection techniques based on how the 
technique is implemented; some of the tools which are developed based on given 
approach are also listed for reference. For a good overview of fault injection 
techniques readers are referred to [187], [193]. 

6.2.4 Mutation Testing 
Mutation testing is technique for assessing the adequacy of given test suite. 
Mutation testing includes injection of systematic, repeatable seeding of faults in 
large number thus generating number of copies of original software artefacts with 
artificial fault infestation (called a mutant). Percentage of mutations detected by the 
given test cases/suite is a metrics (called “mutation adequacy score” [194]) used for 
measuring effectiveness of the given test suite. The variants of code (faults) can be 
introduced by hand or auto-generated using tools like Insure++, Plextest, Certitude, 
ESPT for C/C++ codes. It has been shown that the use of mutants yields trustworthy 
results [195], i.e. mutants do reflect characteristics of real faults.  

Mutation theory is based on two fundamental hypotheses namely Competent 
Programmer Hypothesis and the Coupling Effect, both introduced by [196]. The 
Competent Programmer hypothesis reflects the assumption that programmers are 
competent in their job and thus would develop programme close to correct version 
(although making a number of mistakes) while the Coupling Effect hypothesis 
means that complex mutants are coupled to simple mutants in such a way that a test 
data that detects large percent of simple faults is also effective in detecting high 
percentage of the complex defects” [197].   

6.3 Related Work 
A number of European Union sponsored projects, within the area of embedded 
software development and safety critical systems have looked at and developed 
techniques to effectively use fault injection for safe and reliable software 
development. The examples include the ESACS (Enhanced Safety Assessment for 
Complex Systems) [198] and the ISAAC [199](Improvement of Safety Activities on 
Aeronautical Complex systems). These projects have used the SCADE (Safety-
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Critical Application Development Environment) modelling environment to simulate 
hardware failure scenarios to identify fault combinations that lead to safety case 
violations.  

A model-implemented fault injection plug-in to SCADE called FISCADE is 
introduced in [200]. The plug-in tool utilizes approach similar to mutation based 
testing, where it replaces the original model operators by their equivalent fault 
injection nodes. The derived models are then used to inject the fault during 
execution and log the results which are analysed later. Dependability evaluation of 
automotive functions using model based software implemented fault injection 
techniques have also been studied in [201]. 

A generic tool capable of injecting various types of faults on the 
behavioural/functional Simulink models is also developed and introduced in  [192]. 
The tool called MODIFI (or MODel-Implemented Fault Injection tool) can be used 
to inject single or multiple point faults on behavioural models, which can be used to 
study the effectiveness/properties of fault tolerant system and identify the faults 
leading to failure by studying the fault propagation properties of the models.  

Another work [202] with its root in the European CESAR (Cost-efficient methods 
and processes for safety relevant embedded systems) project provides a good 
theoretical overview of how fault and mutation based test coverage can be used for 
automated test case generation for Simulink models. We provide a practical 
framework on how fault injection combined with mutation testing within an MDB 
environment can be used in the industry. And how will this practice enhance the 
verification and validation of software under development, its functional validation 
that would generates statistics for the effective argumentation of ISO 26262 
compliance. 

6.4 Framework for Early Verification and 
Validation According to ISO 26262 

We contend that fault injection can be effectively used at the model level to verify 
and validate the attainment or violation of safety goals. We also propose that it 
should be complemented with mutation testing approach at the model level to 
provide enough statistical evidence for argumenting the fulfilment of safety goals as 
per the ISO-26262 safety standard requirements. 

A major challenge in successful argumentation of ISO-26262 compliance is to 
provide statistical evidence that safety goals (SGs) would not be violated during 
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operation and collecting the evidence for this argumentation within reasonable 
testing efforts.  

If we are able to differentiate early between defects that can cause the violation of 
SGs and those that cannot cause the violation, the amount of testing required will be 
manageable. With MBD the functional testing could be done using fault injection 
techniques and this can be complemented with later system testing of the actual code 
using the mutation testing approach.  

The framework on how this could be achieved in practice is as follows:  

Figure 71: MBD based representation of a general system with inputs, outputs and dependencies 

As illustrated in Figure 71, a given system/function generally have following 
common features (in context of model based development): firstly it will have x 
inputs (i1,2…x); it would have dependencies to other y components/ functions (d1,2…y); 
it will have z outputs (o1,2…z); and it will have a number of sub-units/modules within 
it that implement the intended functionality, let us assume that this part contains n 
basic blocks in the modelling environment corresponding to n statements for a hand 
written code. To verify and validate the correct functionality and ISO-26262 
compliance of this generic function using fault and mutation testing approach we 
can follow the steps as: 

 Assign or define the technical safety requirements (TSRs) 
corresponding to the functional safety requirements (FSRs) for the 
given system/function to its z outputs. 

 Use fault injection techniques to inject faults which are similar to 
commonly occurring defects and other possible fault conditions at 
the x inputs of the function. 
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 Fault scenarios that leads to violation of TSRs/FSRs are identified, 
statistics are built on what percentage of total faults lead to such 
failures and fault propagation properties of such cases are studied to 
build the fault tolerance within the system for given fault 
conditions. 

 Repeat steps (b) & (c) to test, correct and validate the given 
system/function for its dependencies on other 
functions/components. 

 Cause mutations to the n basic blocks of given functional model 
and asses the detection effectiveness of test suite/cases for possible 
implementation bugs.  

 Examine the mutants which are not killed by given set of test 
cases/suits for their effect on FSRs. If a given mutation violates the 
FSRs then a suitable test case is created to detect/kill such mutants, 
i.e. detect such bugs in actual code.      

By following the above mentioned steps we not only ensure that the given function 
holds the FSRs and TSRs under faulty inputs, but we can also prevent potential 
implementation defects and ensure that we have test cases ready to catch such faults 
that can potentially violate the FSRs/TSRs already at the design (model) level.  

It is also worthwhile to note here that steps (a) to (e) can be easily automated using 
the currently available testing methodologies, which makes the usability and 
industrial viability much higher that testing frameworks requiring high manual 
interventions.  

Further to make this framework/approach more effective in industrial practice we 
identify a number of best practices that will have positive impact on detecting 
defects early in the development process and thus have effective V&V of ISO-
26262: 

 The best practice is to build and maintain models corresponding to 
each abstraction layer of software architecture. 

 The next best practice is to specify and test these models for FSRs 
and TSR at the appropriate abstraction level. 

 Also identification of different types of defects/faults and at what 
stage they could be modelled/injected in the behavioural models 
would ensure that models are tested for these faults at the earliest - 
leading to models being build that are robust right from the start 
instead of adding fault tolerance properties in the later stages of 
development. 
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6.5 Case Study: Validation 
In this section we present the validation of proposed framework on a set of 
components for self-driving miniature vehicles. The software for the miniature 
vehicles is build using similar methods and tools as professional software in the 
automotive industry, although on a smaller scale. In the validation we use the self-
parking function of a self-driving miniature vehicle [203]. The architecture of the 
software is described in detail in [204] and one of our miniature vehicles using the 
self-driving vehicle software and a scenario for a sideways parking realized in our 
simulation environment are illustrated in Figure 72 & Figure 73. The miniature 
vehicles are in the scale 1:10 compared to the normal cars. 

Figure 72: Self-driving miniature vehicle [204] 

For understanding the initial validation of this framework it is sufficient to note that 
the functionality we are dealing with is self-parking for on a sideways parking strip. 
The self-parking algorithm expects a gap size of at least 7m to park in one turn 
without using an additional correction trajectory. This scenario is presented in 
Figure 8. 
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Figure 73: Test track for the experiment with parking gap from our simulation environment 

We applied the framework for early verification and validation following the steps 
given in section 4 as follows: 

 Assign FSR/TSR: An example of obvious functional safety 
requirement (FSR) for self-parking functionality is parking without 
hitting any other object. The corresponding technical safety 
requirement (TSR) can thus be parking only when gap size exceeds 
7m (minimum gap size requirement). 

 Using fault injection to simulate common fault scenario: A fault 
scenario is created by injecting a fault in the returned value for the 
travelled path by adding an error value of maximum 3.4% for the 
relatively travelled path increment. Thus, the size for measured 
gaps (due to faulty sensor input) increases for example by ~9.7cm 
to 7.01678m. 

 Identify fault scenarios leading to FSR/TSR violations: Since in the 
experiment with fault injection, the parking algorithm depends on 
the travelled path; thus the algorithm parks the car in the lower gap 
which leads to a safety case violation because the cars collides with 
the obstacle at the rear side. 

 Repeat steps (b) & (c) for all inputs: For this experiment, we 
focused on the fault injection for a single signal. 

 Cause mutations: Single point mutations are caused by changing 
the logical operators in the self-parking function code, the standard 
test protocol to test the expected functionality was then applied to 
evaluate the generated mutants.  
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 Examine mutants & create new test cases: The mutants and the 
results whether they were successfully detected are provided in 
Lessons learned 

 The initial validation experiment presented in this section for the 
proposed framework is the first step towards a complete validation 
of this framework in an industrial setting. Although the framework 
is focused on using fault injection and mutation testing at functional 
model level in model-based development to shift some of the 
verification and validation efforts to early stages of development, 
the example here demonstrated its applicability of given framework 
in a code-centric development environment as well. 

The experiments using the software of a miniature vehicle provided a proof-of-
concept for the framework and provide a frame of reference with respect to possible 
effectiveness. While in full scale safety evaluations following the ISO 26262, a 
given function depending on its functionality may be subjected to tens of safety 
goals and even a larger number of corresponding FSR/TSRs, we only evaluated one 
such scenario. Still with only a single fault scenario, we were able to identify faults 
leading to safety case violation. Also the mutation approach applied to this 
exemplary scenario by using 24 mutations, two out of these 24 mutants produced 
unexpected results and exposed the deficiency of the current test protocol, which 
was considered as adequate for the given functionality.  

Therefore while these are encouraging results pointing towards applicability and 
effectiveness of the proposed framework, we also learned that we need further 
validation on industrial scale projects to increase the external validity of these 
results. Further for this framework to be successful in any organization much of the 
steps of described framework will have to be automated and supported by 
appropriate tools. As explained in section 2 & 3, a number of tools for fault injection 
and mutation testing based approaches are available for code-centric development 
making this framework practical for implementation on large scale with high 
automation. But corresponding tools to support fault injection and mutation based 
testing at functional model level in model-based development are not widely 
available and the few tools currently available are in their early stages of 
development where reliability of such tools will be an issue at least for some time in 
near future.  

 Table 40. In this simple case itself with only 24 mutations, to our 
surprise two mutations produced unexpected results and violated 
the assigned FSR. While previously the test protocol has been 
deemed being sufficient for this function, the experiment clearly 
demonstrated the need for adding further test cases to reliably spot 
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these failures and to detect possible faults leading to FSR 
violations. 

6.5.1 Lessons learned 
The initial validation experiment presented in this section for the proposed 
framework is the first step towards a complete validation of this framework in an 
industrial setting. Although the framework is focused on using fault injection and 
mutation testing at functional model level in model-based development to shift some 
of the verification and validation efforts to early stages of development, the example 
here demonstrated its applicability of given framework in a code-centric 
development environment as well. 

The experiments using the software of a miniature vehicle provided a proof-of-
concept for the framework and provide a frame of reference with respect to possible 
effectiveness. While in full scale safety evaluations following the ISO 26262, a 
given function depending on its functionality may be subjected to tens of safety 
goals and even a larger number of corresponding FSR/TSRs, we only evaluated one 
such scenario. Still with only a single fault scenario, we were able to identify faults 
leading to safety case violation. Also the mutation approach applied to this 
exemplary scenario by using 24 mutations, two out of these 24 mutants produced 
unexpected results and exposed the deficiency of the current test protocol, which 
was considered as adequate for the given functionality.  

Therefore while these are encouraging results pointing towards applicability and 
effectiveness of the proposed framework, we also learned that we need further 
validation on industrial scale projects to increase the external validity of these 
results. Further for this framework to be successful in any organization much of the 
steps of described framework will have to be automated and supported by 
appropriate tools. As explained in section 2 & 3, a number of tools for fault injection 
and mutation testing based approaches are available for code-centric development 
making this framework practical for implementation on large scale with high 
automation. But corresponding tools to support fault injection and mutation based 
testing at functional model level in model-based development are not widely 
available and the few tools currently available are in their early stages of 
development where reliability of such tools will be an issue at least for some time in 
near future.  
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Table 40: Mutation testing output, case with and without fault mode scenario 

ID Mutant Change description

Test case result using regular vehicle 

simulation

Test case result using vehicle simulation 

with fault injection

1

Unmodi

fied

Original self‐parking 

algorithm Passed as expected

Failed as not expected, vehicle took first gap, 

collided (expected: robust algorithm dealing 

with varying travelled distance data)

2 68 Changed == to > Failed as expected, vehicle did not start Failed as expected, vehicle did not start

3 73 Changed first > to ==

Failed as expected, vehicle started 

hardly noticeable (v < 0.009m/s)

Failed as expected, vehicle started hardly 

noticeable (v < 0.009m/s)

4 73 Changed && to ||

Failed as expected, vehicle moved 

forwards slightly and pull back while 

Failed as expected, vehicle moved forwards 

slightly and pull back while turning to left

5 73 Changed second < to >

Failed as expected, vehicle moved to the 

end of the second parking spot but did 

Failed as expected, vehicle moved to the end 

of the first parking spot but did not start 

6 79 Changed first >= to <= Failed as expected, vehicle did not start Failed as expected, vehicle did not start

7 79 Changed && to ||

Failed as expected, vehicle moved 

backwards while turning to left

Failed as expected, vehicle moved backwards 

while turning to left

8 73 Changed second < to >

Failed as expected, vehicle moved to the 

end of the second parking spot but did 

Failed as expected, vehicle moved to the end 

of the first parking spot but did not start 

9 85 Changed first >= to <=

Failed as expected, vehicle moved 

backwards while turning to right

Failed as expected, vehicle moved backwards 

while turning to right

10 85 Changed && to ||

Failed as expected, vehicle moved 

backwards while turning first to right and 

then to left (S‐shaped)

Failed as expected, vehicle moved backwards 

while turning first to right and then to left (S‐

shaped)

11 85 Changed second < to >

Failed as expected, vehicle moved to the 

end of the second parking spot but did 

Failed as expected, vehicle moved to the end 

of the first parking spot but did not start 

12 91 Changed first >= to <=

Failed as expected, vehicle moved 

backwards while turning to left

Failed as expected, vehicle moved backwards 

while turning to left

13 91 Changed && to ||

Failed as expected, vehicle moved 

backwards while turning to left

Failed as expected, vehicle moved backwards 

while turning to left

14 91 Changed second < to >

Failed as expected, vehicle moved to the 

end of the second parking spot, started 

parking, but stopped after the first right 

Failed as expected, vehicle moved to the end 

of the first parking spot, started parking, but 

stopped after the first right turn

15 97 Changed >= to <= Failed as expected, vehicle did not start Failed as expected, vehicle did not start

16 115 Changed first > to <

Failed as expected, vehicle did not find 

the parking stop and continues driving

Passed as not expected, vehicle parked in the 

second parking spot because the noise added 

to the travelled distance resulted in a valid 

parking gap size

17 115 Changed && to ||

Failed as expected, stopped before the 

first parking gap, collided with parked 

Failed as expected, stopped before the first 

parking gap, collided with parked car

18 115 Changed second > to <

Failed as expected, stopped before the 

first parking gap, collided with parked 

Failed as expected, stopped before the first 

parking gap, collided with parked car

19 126 Changed first > to <

Failed as expected, vehicle took first 

gap, collided

Failed as expected, vehicle took first gap, 

collided

20 126 Changed && to ||

Failed as expected, vehicle did not find 

the parking stop and continues driving

Failed as expected, vehicle did not find the 

parking stop and continues driving

21 126 Changed second > to <

Failed as expected, vehicle did not find 

the parking stop and continues driving

Failed as expected, vehicle did not find the 

parking stop and continues driving

22 135 Changed first > to <

Failed as expected, vehicle did not find 

the parking stop and continues driving

Failed as expected, vehicle did not find the 

parking stop and continues driving

23 135 Changed && to ||

Failed as expected, stopped before the 

first parking gap, collided with parked 

Failed as expected, stopped before the first 

parking gap, collided with parked car

24 135 Changed second > to <

Failed as expected, stopped before the 

first parking gap, collided with parked 

Failed as expected, stopped before the first 

parking gap, collided with parked car



Rakesh Rana 

215 
 

 

6.6 Conclusions 
The development of software in the automotive domain has widely adopted the 
paradigm of model based development to allow for easier integration of 
functionality usually developed by multiple suppliers. By the nature of the domain 
much of the functionality developed and implemented in cars is safety critical; the 
criticality that requires observation of stringent quality assessment and adherence to 
functional safety standards such as ISO 26262. 

Development of behavioural models in MBD offers significant opportunity to do 
functional testing early in the development process. Fault injection and mutation 
testing approach in combination can be used to effectively verify and validate the 
functional properties of a software system/function. The approach also provides 
required statistics for the argumentation of safety standards compliance. In this 
paper the need for such validation and a framework on how this could be achieved 
in practice is discussed. The results are a roadmap for further research and tool 
support to bring this approach into wider industrial adoption. 

Initial validation of our proposed framework provided a proof-of-concept and 
produced encouraging results indicating its usefulness and effectiveness in practice. 
It is also noted that the framework will become much more effective and easy to use 
for model-based development as tools related to fault injection and mutation testing 
at model level matures over time. In the meantime, validation on industrial scale 
functions will provide further evidence to evaluate the applicability and 
effectiveness of the proposed framework in practice.  

By detecting defects early and being able to do much of verification and validation 
of intended functionality, robustness and compliance to safety standards on the 
models – the quality and reliability of software in automotive domain can be 
significantly enhanced. Effective approaches and tools support reduce the V&V 
costs and lead to shorter development times.  
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Chapter 7: 
Machine learning techniques for 
software defect prediction in 
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7 A FRAMEWORK FOR ADOPTION OF 
MACHINE LEARNING IN INDUSTRY FOR 
SOFTWARE DEFECT PREDICTION 

 

Abstract— Machine learning algorithms are increasingly being used in a variety of 
application domains including software engineering. While their practical value 
have been outlined, demonstrated and highlighted in number of existing studies, 
their adoption in industry is still not widespread. The evaluations of machine 
learning algorithms in literature seem to focus on few attributes and mainly on 
predictive accuracy. On the other hand the decision space for adoption or acceptance 
of machine learning algorithms in industry encompasses much more factors. 
Companies looking to adopt such techniques want to know where such algorithms 
are most useful, if the new methods are reliable and cost effective. Further questions 
such as how much would it cost to setup, run and maintain systems based on such 
techniques are currently not fully investigated in the industry or in academia leading 
to difficulties in assessing the business case for adoption of these techniques in 
industry. In this paper we argue for the need of framework for adoption of machine 
learning in industry. We develop a framework for factors and attributes that 
contribute towards the decision of adoption of machine learning techniques in 
industry for the purpose of software defect predictions.  The framework is developed 
in close collaboration within industry and thus provides useful insight for industry 
itself, academia and suppliers of tools and services. 

Keywords— Machine Learning, software defect prediction, technology acceptance, 
adoption, software quality    

Acronyms Used— ML: Machine Learning; SDP: Software Defect Prediction; TAM: 
Technology Acceptance Model 
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7.1 Introduction 
Testing is an essential activity in software engineering [205], but also one of the 
most expensive phase within software development life cycle with some estimates 
approximating it to consume about 50% of time and resources [206]. Software 
Defect Prediction (SDP) offers one possible way to make software testing more 
effective by making it possible to optimize test resource allocation, i.e. distributing 
more effort to parts (files/modules) that are predicted to be more prone to defects. 
The importance of such predictions is further substantiated by previous research 
suggesting applicability of 80:20 rule to software defects (that is approximately 20% 
of software files are responsible for 80% of errors and cost of rework) [207]  [162].  

Different methods for defect prediction have been evaluated and used; these can 
broadly be classified as traditional (using expert opinions and regression based 
approaches) and those based on machine learning techniques. Methods based on 
machine learning offer addition advantage with their ability to improve their 
performance through experience (as more data is made available over time). Despite 
the importance of predicting defects in a software project and demonstrations that 
SDP using ML techniques is not too difficult to apply in practice [208], their 
adoption and application by practitioners in industry has been limited which is 
apparent from the lack of published experience reports. Adoption of any complex 
method/technology is dependent on several dimensions [209], but most of the earlier 
studies in SDP have focused mainly on the aspect of predictive accuracy. In this 
paper we argue that our lack of understanding of other factors relevant to industrial 
practitioners is a major reason for low adoption of ML techniques for SDP in 
industry.  

Based on the technology acceptance model (TAM) and technology adoption 
frameworks we develop a framework for explaining the adoption of ML for SDP in 
industry. TAM intends to explain why users’ belief and their attitudes towards a 
technology affect their acceptance or rejection of the information-communication 
technology. While TAM is parsimonious and theoretically justified model to explain 
information technology adoption [210], to use this model for a specific technology 
requires identification of detailed attributes specific to the given technology and 
context which collectively explain the belief and attitude of uses towards the given 
technology. The research question we address in this paper is: 

“How can we use the technology acceptance and adoption models for developing 
framework for ML adoption in industry and how to adapt it for software defect 
prediction?” 
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7.2 Background and Related work 

7.2.1 Software defect prediction using tradition 
approaches  

Traditional methods used for software defect prediction and risk assessment can be 
broadly categorized under:  

 Expert Opinions 
 Analogy Based Predictions 
 Regression Based Approaches 

Statistical approaches based on regression have also been used for the task of defect 
prediction. The dependent (or outcome) variable could be binary (defective or not 
defective) as in logistic regression or the model could be built to predict the number 
of expected defects as in case of multiple linear regression. Logistic regression has 
been applied in Khoshgoftaar and Allen [29] for classifying modules as fault-prone 
or not. Zimmermann, Premraj and Zeller [30] also applied Logistic regression to 
classify file/packages in Eclipse project as defect prone (has defect Vs. not has 
defect) . Multiple linear regression is used to model software changes [23] as a 
function of a set of software complexity metrics. Linear regression was also used by 
Khoshgoftaar et al. [24] for predicting program faults in two subsystems of a 
general-purpose operating system, where they also evaluated different fitting 
criteria’s (namely Least Squares, Least Absolute Value, Relative Least Squares and 
Minimum Relative Error).  

7.2.2 Software defect prediction using ML techniques 
Broad types of Machine Learning (ML) techniques used for software defect 
prediction:  

 Decision Trees (DTs) 
 Support Vector Machines (SVMs) 
 Artificial Neural Networks (ANNs) 
 Bayesian Belief Networks (BNNs) 

Machine learning algorithms can also be used to model the software defect 
prediction as a classification problem as in case of DTs and SVMs where the class 
variable can take two values (defective or not defective). Or the problem can be 
modelled to predict expected number of defects in a software module/system using 
different code and change metrics. ML techniques for pattern recognition for e.g. 
ANNs and BNNs can be used to accomplish such tasks. 
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Number of various classification models including DTs and SVMs have been 
evaluated and compared in [12]. Iker Gondra [32] applied machine learning 
algorithms to predict the fault proneness and compared between the ANNs and 
SVMs and found that if fault proneness is modelled as classification task, SVMs 
performs better than the ANNs.  

Table 41 provides an overview of some of the important ML techniques that can be 
applied for SDP and lists their main advantages and limitations. For details on ML 
techniques applicable in software engineering domain; readers are referred to work 
by Zhang and Tsai [211]. 

Table 41: Overview of ML techniques used for software defect prediction 

Algorithm Type DTs 
Domain Knowledge Not Required 
Training Data Adequate data needed to avoid over-fitting. 

Advantages 
Robust to noisy data; Missing values tolerated; Capable of learning 
disjunctive expressions. 

Disadvantages Prone to over-fitting. 
 
Algorithm Type SVMs 
Domain knowledge Not Required 
Training Data Adequate data needed for training. 

Advantages 
Effective for high dimensional spaces, is memory efficient and is versatile 
as it can take different kernel functions as decision function 

Disadvantages 
SVMs are likely to give low performance if number of features is much 
higher than the number of samples 

 
Algorithm Type ANNs 
Domain knowledge Not Required 
Training Data Adequate data needed for training. 

Advantages 
Able to learn non-linear and complex functions; Robust to errors in 
training data. 

Disadvantages 
Slow training and convergent process; Prone to over-fitting; Results 
difficult to interpret. 

 
Algorithm Type BNNs 
Domain Knowledge Not Required 
Training Data Required for estimate the prior probabilities. 

Advantages 
Able to give probabilistic predictions; Useful for knowledge discovery; 
Can be used very early in the development lifecycle 

Disadvantages 
Requires estimation of many prior probabilities that can be very large for 
big models; computationally expensive; requires domain expertise for 
building the network. 
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7.2.3 Technology Adoption Framework 

Figure 74: Overview of Original Technology Acceptance Model [209] 

According to Attewell [212] adoption of complex technology is not an event, but 
resembles knowledge acquisition over time, the perspective is applicable where new 
innovation/technique is [212]: 

 Abstract and have demanding scientific base,  
 Fragile in sense of consistency, i.e. do not always perform as 

expected, 
 Difficult to try in a meaningful way, and 
 Unpackaged, i.e. adopters cannot pick a tool out of shelve and use it 

as a black box model, but instead need to acquire broad tacit 
knowledge and procedural know-how. 

Characteristics of ML based techniques fits well to most above point and thus can be 
classed as complex technology/techniques. Further according to the Theory of 
Reasoned Action (TRA) [213], the intention of adoption of behaviour or technology 
is based on the beliefs about the consequences of adoption. The theory have been 
used to build Technology Acceptance Model (TAM) by Davis [41], an overview of 
model is presented in Figure 74. TAM postulates that a users’ adoption intention and 
the actual usage of information technology is determined by two critical factors, the 
perceived usefulness and perceived ease of use. Perceived usefulness is defined as 
the degree to which a user believes that using a particular system would enhance 
his/her job performance, while perceived ease of use is the degree to which the user 
believes that using the system would be effort free [210].  

In this study we are focused on technology adoption decisions, thus the model we 
use for our framework is based on the revised version of original TAM model [214], 
the postulation of revised model is that potential users of a technology actively 
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evaluate the usefulness and ease of use of given technology in their decision making 
process [215]. Our position in this paper is similar: 

We contend that applying technology adoption framework to ML techniques use in 
SDP is needed to better understand the needs of industry - which will help 
accelerate the technology transfer and adoption process of these techniques. 

Technology adoption framework by Tornatzky et al. [42] also provide a model of 
adoption that has been applied widely. According to the framework, there are three 
elements which influence the innovation adoption process: 

1. The external environmental context, 
2. The technological context, and 
3. The organizational context. 

Chau and Tam [216] used the framework to model the factors affecting adoption of 
open systems in the Information Science (IS). We adapt their framework in 
conjunction with the Technology Acceptance Model (TAM) to model the factors 
affecting adoption of ML in industry.  

7.3 Study Design 
The research process for development and quantitative validation of adoption 
framework for ML techniques in industry is shown in Figure 75. The focus of this 
paper is Stage-1, where the centre of attention has been to develop the general 
adoption framework for machine learning techniques and demonstrate how the 
model can be adapted for the specific case of software defect prediction (SDP). 

Figure 75: Research process overview 
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Literature Review: To capture the factors that affect the adoption of ML techniques 
in industry we searched for likely factors mentioned in software engineering, 
machine learning and technology adoption literature. A list of factors deemed 
potentially relevant for industry was compiled which was used for discussions with 
the industrial practitioners. The application area we concentrated on is defect 
prediction in software system/projects.  

Interviews: Semi-structured interviews were conducted with industrial practitioners 
to first evaluate which factors are relevant for ML adoption in industry. In the next 
round the same interviewees helped adapt this general model for the case of 
software defect prediction. 

In total four managers from two large companies with significant focus on software 
development were interviewed consequently in two rounds. The companies included 
in the study are: 

 Volvo Car Group (VCG): A company from the automotive 
domain, and 

 Ericsson: A company from the telecom domain 

The divisions we interacted with have one thing in common, they have not yet 
adopted machine learning as their main method/technique for predicting software 
defects, but they are evaluating it as a possible technique to compliment the current 
software defect measurement/prediction systems in place. The interviewees 
included, 

 Manager at Volvo Cars Group within the department responsible 
for integrating software sourced from different teams and suppliers, 
the manager has more than 20 years of experience working with 
software development and testing. Ensuring safety and quality of 
software developed is a major responsibility in this job role. 

 Team leader at Volvo Car Group responsible for collection, 
analysis and reporting of project status with regard to software 
defects and their predictions, the team leader has more than three 
decades of experience in various roles at the company. 

 A senior quality manager at Ericsson whose experience with 
software (mainly within quality assurance) spans more than three 
decades, and 

 Team leader of metrics team at Ericsson; metrics team is a unit at 
Ericsson that provides the measurement systems for various 
purposes including software defect measurement, monitoring and 
prediction systems within the organization.   
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The main focus in the first round of interviews is to identify the factors relevant with 
regard to technology adoption/acceptance decisions (to build a general framework of 
ML adoption in industry). While the second round of interviews were focused on 
identification of relevant attributes for each factor in the specific context of software 
defect prediction. 

7.4 Framework for adoption of ML techniques 
in industry 

It is important to note that for any organization at any given point in time, the trade-
off analysis is not between adopting or not adopting a new technology/process (as in 
case of ML techniques); the trade-off is between adopting it now or deferring that 
decision until a later date. This distinction is important as the factors that affect the 
adoption are not only specifically related to direct advantages and limitation of given 
technology/process, but also organizational and environmental at a given point in 
time. In this context, nine important factors that affect the adoption of ML 
techniques were identified; these can be grouped into three categories according to 
the framework by Tornatzky [42]. The framework for adoption of ML in industry is 
presented in Figure 76. 

Figure 76: A Model for ML adoption in Industry 



Rakesh Rana 

227 
 

 

In Fig 3 (+) and (-) signs denote the possibility of positive/negative relationship with 
medium strength between a given factor and probability of adoption of ML. A 
double (++/--) indicate a strong relationship; the strength of relationship can be 
tested by setting a stricter significance level during quantitative evaluation (for e.g. 
alpha value of 0.1 for +/- and 0.05 for ++/--). Accordingly hypotheses for each 
factor can be formulated which can be tested quantitatively from a survey. We 
provide a couple of examples of null hypothesis that can be quantitatively tested: 

H1: Higher levels of perceived benefits of adopting ML techniques will strongly 
(and positively) affect the likelihood of their adoption. 

H2: Higher levels of perceived barriers of adopting ML techniques will strongly 
(and negatively) affect the likelihood of their adoption. 

7.5 Adaptation of ML adoption framework for 
SDP 

We adapt the general framework for ML adoption in industry (Fig 3) to the specific 
problem of software defect prediction.  

7.5.1 Characteristics of machine learning 
Adoption of any new technology or process change is heavily dependent upon the 
characteristics of technology/innovation. Factors affecting cost-benefit trade-off of 
adoption are some of the critical factors in decisions of adoption. The relevant 
attributes that affect the acceptance of ML for software defect predictions are 
presented in Figure 77. 

Perceived benefits: one of the most critical factors in adopting ML techniques in 
industry are the perceived benefits of these techniques for a given organizations 
specific context. The keywords here are perceived and context. While the actual 
benefits, an organization can achieve by adopting a new innovation/technology is 
important in long run, at a given point in time what affects an organizations decision 
to adopt a new specific technology/innovation is its perception. 
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Figure 77: Overview of attributes relevant to ML characteristics that affects its acceptance for 
SDP 

When it comes to SDP, the perceived benefits of using ML approaches as expressed 
in previous studies evaluating ML techniques for SDP and opinions expressed by the 
interviewees of this study are ability of ML based algorithms to:  

 Provide higher prediction accuracy (high probability of detection 
and low probability of false alarm) [32]. 

 Be highly automated, i.e. most aspects of system including data 
collection to visualization of results can be done using smart 
algorithms mining and analysing data autonomously from the 
multiple local databases [217] with minimal human intervention. 

 It is perceived that ML techniques can handle large data; in fact ML 
methods are expected to improve their performance as more data is 
made available over time [211]. 

 Another important expectation with techniques applied to 
predicting software defects is that these techniques are capable of 
identifying new patterns in data thus providing new insights from 
the data itself. This offers possibility to use large historical data to 
discover regularities and use them to improve future decisions 
[218]. New insights can be generated using large data by employing 
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specific ML techniques such as causal modelling for example by 
using Bayesian Networks to model causal networks and deduct 
probabilistic relationships.  

 Given the self-adaptive nature, using ML techniques is also 
perceived to be low on maintenance activities. 

Perceived barriers: On the other hand perceived barriers negatively affect the 
adoption/acceptance of ML techniques. For software defect predictions, some of the 
common perceived barriers are:  

 Steep learning curve – According to Edmondson et al. [219], users 
of new innovation/technology need to understand it well before 
they can put it into productive use.  Their study also suggests that 
when tacit knowledge is needed, new technologies may fail in 
market even when their advantages have been proven. 

 For example in case of SDP, when using classification or pattern 
recognition, selecting the set of attributes (inputs) that give optimal 
results is very much based on domain experience and experience of 
using ML based techniques which is difficult to document/codify 
explicitly for new users. 

 Lack of trust – stakeholders in software projects who are used to 
traditional approaches of predicting defects (such as expert 
opinions) do not generally trust the algorithms to outperform expert 
based predictions. 

 For software projects, in general and in particular for safety and 
business critical software products, the penalty for mis-prediction is 
an important barrier. The severity of mis-prediction is correlated to 
importance of information need and actions it can trigger. For 
example a prediction model that falsely predicts 20% of software 
modules as defect prone (compared to actual 10%) may lead to 
review of 10% modules which was unnecessary and results in 
resource allocation which is not optimal.  

 As traditional methods have been used for comparatively longer 
time, their levels of (un)certainty are known – which is not the case 
with ML techniques. To overcome this barrier we recommend that 
in the initial phase of adoption of machine learning techniques, 
these should be using alongside the traditional methods to validate 
their usefulness and predictive accuracy in practice. This provides 
the comparisons industrial practitioners want to see before trust in 
new techniques begins to build up over such trial periods.  

 Given that most practical aspects can be affected by wide range of 
factors; techniques based on ML approaches usually do not take 
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into account all of these. Human factors such as differences in 
productivity, people getting sick or motivation level of employees 
are hard to measure and account for in algorithmic models for SDP 
and thus a source of error in such techniques. 

 Uncertainty regarding generalizability of ML over projects. The 
perception is that while ML techniques (used for classification and 
pattern recognition) work well in recognizing existing patterns in 
the data, but their performance degrades for patterns that are unseen 
before. 

Availability of tool and support is expected to increase the acceptance of ML  in 
industry [220]. Some of the attributes related to this factor are - if the available tools 
are open source or proprietary, how much support is available and how much they 
cost. Others include if the given tool is compatible with existing measurement 
systems and in-house competences with respect to its usage. Consulting services can 
also help specific companies to get started with new approaches that they do not 
have enough experience with - thus helping acceptance of new techniques and tools 
in industry.  

A number of packages implementing ML algorithms are available for e.g. Netlab, 
Spider and BNT for Matlab; Nodelib, Torch for C++; and CREST for python. 
Commercial (e.g. Ayasdi, NeuroSolutions etc.) and open source tools (e.g. Weka, 
KNIME etc.) are also available with GUI. While availability of such tools is likely 
to increase the adoption of ML in industry, other attributes such as support and 
consulting services is also important in determining the level and speed with which 
ML is adopted in the industry.  

One possible way of enhancing adoption through tool and support availability is by 
making available problem specific customized solutions for highly relevant 
industrial problems such as SDP. Other activities that can potentially accelerate the 
adoption process is integration of ML based algorithms in existing software 
packages widely used within industry, for e.g. Microsoft Neural Network algorithm 
available for SQL Server 2012.  

7.5.2 Organizational characteristics 
Need and importance: The higher the need and importance of given information is 
in an organization, the higher is the likelihood for adopting new techniques to satisfy 
this information need. 

To improve on the accuracy and reliability for such measures, new approaches that 
offer higher accuracy and reliability are more likely to be adopted. Zhang and Tsai 



Rakesh Rana 

231 
 

 

[211] provides a good overview of applications of ML in software engineering 
domain which outlines different information needs within this domain. Examples of 
information need specific to software defect predictions are: 

 Predicting software quality (identification of high-risk, or fault-
prone components) 

 Predicting software reliability 
 Predicating expected number of defects 
 Predicting maintenance task effort 
 Predicting software release timings 

Factors such as how satisfied a company is with its existing defect prediction 
systems, their familiarity with machine learning techniques and in-house 
competences are also important for explaining acceptance and adoption of ML for 
SDP within a company. A model of attributes that contribute to these factors is 
presented in Figure 78. 

Figure 78: Overview of attributes relevant to organizational characteristics that affects its 
acceptance for SDP 



Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption 

232 
 

 

Satisfaction with existing systems: the motivation for change (adoption of new 
approaches) is strongly connected to given organizations satisfaction with its current 
measurement/analysis systems. If a company is well satisfied with accuracy and 
efficiency of existing methods it is unlikely to invest significant amount of cost, 
resources and learning on new approaches. In case of software defect prediction, 
attributes relevant to satisfaction with existing systems are: 

 If or not the existing system satisfies the information need of 
stakeholders involved in the project. 

 Does existing system allow stakeholders to effectively and 
efficiently visualize the trend over time and let them compare 
current projects with similar historical projects data. 

The reliability and cost also plays important role in determining the level of 
satisfaction with existing defect management and prediction systems within software 
development organizations.  

Familiarity and competence with ML techniques: organizations familiar with 
approaches of machine learning though their workforce or collaborations with 
academia will have better understanding of advantages and limitations of such 
approaches. These organizations will also be more informed about practical 
applicability of these techniques and thus in a position where they can identify and 
assess areas where the benefits of using ML techniques outweigh the barriers – 
therefore organizations that are familiar with such methods are strongly likely to 
adopt these methods. 

Attewell [212] proposes that “firms delay in-house adoption of complex technology 
until they obtain sufficient technical know-how to implement and operate is 
successfully” 

Almost all mature organizations engaged in developing software generally collect, 
store and analyse their product and process related data. Given that such data is 
available in large quantities (within the organizations), an organization with good 
competences/skills in machine learning are more likely to try ML techniques on 
their data and eventually adopt it on larger scales. 

The main challenge in this context is unavailability of structured data. Much of the 
data generated within an organization is in form of unstructured text (e.g. software 
requirements, defect reports, customer feedback written in textual form). On the 
other hand most ML algorithms require inputs in numeric or categorical form which 
presents challenge in using such data in practice. Developments in field of Natural 
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Language Processing (NLP) are already addressing these challenges and advances in 
such areas are likely to increase the adoption of ML based techniques for SDP.    

7.5.3 External environment 
ML techniques, if adopted in different industries signals their applicability in 
practice, although this is not expected to be a strong factor deriving adoption in 
other industries – it is likely to affect positively the probability of adoption.  

A similar but stronger factor for adoption of new technology/approaches such as ML 
in a given company is likely to be the information whether or not any of the 
competing companies are using such techniques. The motivation behind this factor 
is simple - every organization in a given domain intends to be at the forefront of 
technology or process knowledge. The adoption of a particular technique/process by 
a competitor is a strong signal that given technique could have potential benefits; 
this can potentially motivate the need for evaluation of such methods within the 
given organization. 

7.6 How to use the framework  
Over the years companies have begun capturing huge volumes of data about their 
products, consumers and operations [218]. ML offers new tools that can use this 
data to recognize patterns and provide useful insights hidden within these huge 
volumes of data.  

7.6.1 Setting the research direction 
The research in software defect predictions has been mainly focused on evaluating 
and highlighting the predictive accuracy of ML techniques and in some cases 
comparing it to traditional methods. On the other hand the adoption framework 
indicates that not only predictive accuracy, but attributes such as cost, reliability and 
generalizability are also important for adoption decisions. 

Therefore the technology adoption framework, such as one proposed here, can be 
useful to guide future research directions by helping to identify which factors are 
relevant for industrial adoption, but currently unaddressed in terms of their scientific 
evaluation.  

7.6.2 Evaluating specific ML techniques by a given 
company 

Technology acceptance/adoption frameworks enhance our understanding of which 
factors affect the end users decision to adopt a given technology/innovation. 
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Although these factors do play a role to varying degree when companies evaluate 
their decision to adopt or delay the adoption of such techniques, the lack of a 
framework can lead to sub-optimal decisions. Without a guiding framework there is 
high probability that effect of some detailed attributes that affect the overall 
usefulness is missed. The severity of problem is greater when comparisons are made 
between two or more techniques or tools where it is likely that evaluation would 
focus only on small set of attributes which does not provide the full picture. 

Table 42: Example of how adoption framework can be used to compare between two 
new tools/services 

Attribute	 Tool A	 Tool B	
Predictive Accuracy	 85%	 82%	

Auto data acquisition	 Yes	 Yes	
Report generation	 Yes, web based	 Yes, multiple format	
Can handle multiple projects	 Yes	 Yes	
Generate causal maps	 Yes, Non-Interactive	 Yes, Interactive	
Running time (typical project)	 30min	 40min	
Cost of license (tool)	 $ 20000/ license	 $ 35000/ license	
Maintenance cost (estimate)	 $ 7000 pa	 $ 9000 pa	
…   

 

Table 43: Example of how comparative checklist can be used to evaluate new 
technique for SDP 

Attribute Existing Method New ML based technique 
Predictive Accuracy	 Good	 Very Good	
Auto data acquisition	 Yes	 Yes	
Report generation	 Yes, word document	 Yes, web based	
Can handle multiple projects	 No	 Yes	
Generate causal maps	 No	 Yes	
Running time (typical project)	 15min	 30min	
Cost of license (tool)	 None	 $ 20000/ license	
Maintenance cost (estimate)	 $ 2000 pa	 $ 7000 pa	
…	   

 
In such cases, the adoption framework can be used as a guide so that all important 
factors and associated attributes are covered when considering adoption of new 
techniques or tools or even as a checklist to make such assessment and comparison 
between two or more techniques/tools using Likert-type scale for evaluation. To 
provide an example, Table 42 shows a checklist to compare a ML based technique 
against existing system for SDP and Table 43 show potential use of similar checklist 
for comparison of two competing tools. Industrial practitioners can use such 
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checklists to make informed decision with regard to adoption of these techniques 
and for effective comparison between tools.  

The technology adoption framework also help companies to reflect upon their 
strengths with respect to given technology and areas of potential improvement. Such 
analysis is useful to identify areas where training and competence build-up would be 
advantageous. For example in SDP, if a company identifies that the in-house 
competence for implementing and maintaining ML based system would benefit a 
specific business unit within the organization, necessary training and or recruitment 
targeting those specific skills could be quickly arranged, thus improvising the long 
term competitiveness of the company. 

7.6.3 Improvising the tool and services by vendors 
Technology adoption framework is also useful for tool vendors who can use the 
information in multiple ways, to: 

 Prioritize feature introduction, and 
 Effective marketing of their tools and services 

Tools based on emerging technologies/techniques usually provide new functionality 
not available in old well established tools, but at the same time they are not mature 
and need to constantly evolve to engage and acquire new customers. Understanding 
clearly which attributes are key for adoption decision help these tool vendors to 
prioritize the features they implement and deliver to their customers. For example, a 
vendor with Tool X for SDP which at a given time do not outperform existing tools 
on predictive accuracy; finds out that running and maintenance costs are important 
attributes in adoption decisions - may use this information to strategically decide to 
develop a light version of tool which demands low running and maintenance costs. 

Understanding of which attributes play a key role in adoption decisions also help 
tool and service vendors to make their marketing more effective. Vendors may 
choose to highlight how they provide value to their customers on the key attributes 
industry is looking for when considering adopting a new technology based product 
or services. This accelerates the adoption and acceptance of new techniques within 
the industry. 

7.7 Conclusions and future work 
Large and constantly growing amount of data is now available within organizations 
that can be used for gaining useful insights to improvise process, products and 
services. Machine learning techniques have high potential to aid companies in this 
purpose. Despite demonstration of usefulness of such techniques in academia and 
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availability of tools, the adoption of these techniques in industry currently is far 
from optimal. Our position in this paper has been that for accelerating the adoption 
of ML based techniques in industry, we need to enhance our understanding of 
information needs of industry in this respect. Technology acceptance model offer 
cost effective approach to meet this purpose. 

In this paper we developed a framework for the adoption of ML techniques in 
industry. The framework is developed with its basis on previous research on 
technology adoption and technology acceptance models. We also adapted the 
framework to the specific problem of software defect predictions and highlighted 
that while adoption decisions are multi-dimensional, current research studies have 
mainly focused on few of these attributes. We contend that elevating our 
understanding of factors and attributes relevant for industrial practitioners will help 
companies, researchers and tool vendors to meet the specific information needs. 

In future work we plan to quantitatively evaluate the effect size of important 
attributes towards ML adoption decision using large scale survey of companies that 
have already adopted ML techniques and ones that are yet to embrace them.  
Research with regard to which factors are important for industry and evaluative 
studies of ML based techniques/tools on these factors can complement the existing 
and on-going work on establishing the characteristics of ML techniques and thus 
contribute toward their adoption in industry and society.  
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THE ADOPTION OF MACHINE LEARNING 
TECHNIQUES FOR SOFTWARE DEFECT 
PREDICTION: AN INITIAL INDUSTRIAL 
VALIDATION 

 

Abstract— Existing methods for predicting reliability of software are static and need 
manual maintenance to adjust to the evolving data sets in software organizations. 
Machine learning has a potential to address the problem of manual maintenance but 
can also require changes in how companies works with defect prediction. In this 
paper we address the problem of identifying what the benefits of machine learning 
are compared to existing methods and which barriers exist for adopting them in 
practice.  

Our methods consist of literature studies and a case study at two companies – 
Ericsson and Volvo Car Group. By studying literature we develop a framework for 
adopting machine learning and using case studies we evaluate this framework 
through a series of four interviews with experts working with predictions at both 
companies - line manager, quality manager and measurement team leader.  

The findings of our research show that the most important perceived benefits of 
adopting machine learning algorithms for defect prediction are accuracy of 
predictions and ability to generate new insights from data. The two most important 
perceived barriers in this context are inability to recognize new patterns and low 
generalizability of the machine learning algorithms. 

We conclude that in order to support companies in making an informed decision to 
adopt machine learning techniques for software defect predictions we need to go 
beyond accuracy and also evaluate factors such as costs, generalizability and 
competence. 

Keywords— Machine Learning, software defect prediction, technology acceptance, 
adoption, software quality    
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7.8 Introduction 
Modelling software reliability and predicting defect prone files/modules have been a 
practical challenge for software project and quality managers [20]. A number of 
methods are available to address the challenge of Software Defect Predictions (SDP) 
– ranging from mathematical reliability growth modelling [65], regression based 
models [172], analogy based predictions [16] and expert opinions [221]. The main 
limitation of these methods is the fact that they are based on existing patterns (or 
trends) in defect inflows or software metrics and thus are not robust to changes in 
these patterns. Recently data mining and Machine Learning (ML) techniques have 
been applied in this domain with acclaimed success [21], which can address the 
robustness limitations. Given easy access to growing amount of data and nature of 
software engineering problems, the use of ML in this area is expected to grow too 
[211].  

While a number of companies have tested or started using these methods/tools 
[222], the methods are still used in a limited manner - which indicates that there are 
number of barriers preventing companies from adopting them in practice. A number 
of studies have evaluated different machine learning techniques for the purpose of 
software defect predictions [21] [32] [31], but they focus mainly on predictive 
accuracy of these methods while disregarding the ease of introduction or ability to 
evolve together with the data sets. On the other hand, when companies consider 
adopting new methods/techniques, they are also concerned with a range of other 
factors that are currently not adequately addressed. In this paper we investigate 
which of these factors are important for companies when they consider using 
machine learning for software defect predications. The research question we address 
is: 

What are the factors that are important for companies to make informed decision to 
adopt (or not adopt) ML algorithms for the purpose of software defect predictions 
(SDP)? 

Based on review of technology adoption/acceptance and machine learning literature, 
we developed a framework and outlined factors that potentially affect the adoption 
of ML in industry in our earlier work [223]. In this paper we present the initial 
validation of same from the perspective of its users i.e. the industry. The main 
objective is to provide insights of which factors companies regard as being 
important to them when they consider adoption of ML techniques in this context and 
what their main concerns are. These insights are useful for multitude of players in 
this domain from researchers to tool venders and the companies themselves who can 
use this explicit knowledge to make better decisions using a structured 
framework/approach. 
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The remainder of this paper is organized as follows. In following section 7.9 we 
summarize briefly the related work. Section 7.10 introduces the study design, case 
study context, data and analysis methods. The ML adoption framework with 
important factors is provided in section 7.11, while section 7.12 provides the results 
from the case study. The paper ends with conclusions and ideas for future work 
discussed in section 7.13.  

7.9 Related Work 
ML has already been applied for predicting defects or defect proneness using code 
and change metrics and achieved good accuracy. Using code metrics data of projects 
from NASA IV&V facility Metrics Data Program (MDP), Menzies et al. [31] model 
based on naïve Bayes predicted with accuracy of 71% (pd, probability of detection) 
and probability of false alarm (pf) of 25%. Iker Gondra [32] also using NASA 
project data set (JM1) and obtained correct classifications of 72.6% with ANNs and 
87.4% with SVMs. Using data from 31 projects form industry and using BNNs 
Fenton et al. [21] obtained an R2 of 0.93 between predicted and actual number of 
defects. In [208] Menzies et al. tested different feature subset selection and report 
that software defect detection using machine learning approach is not too difficult in 
practice. As it can be observed from above cited studies - most compare and report 
performance with respect to predictive accuracy of different ML based algorithms, 
but performance evaluation on other dimensions either is limited or simply do not 
exist. 

On the other hand studies within the area of technology adoption/acceptance have 
shown that adoption of complex technologies depend on multitude of factors [216] 
[224]. Building on the Theory of Reasoned Action (TRA) [213], Davis [41] 
developed the Technology Acceptance Model (TAM) to explain user acceptance of 
computer-based information systems. TAM has been applied and extended in 
number of previous studies for example to explain the adoption/acceptance of 
computer based technologies such as object oriented development processes by 
individual software developers [225], to explain the gender differences in perception 
of email usage [226] and predicting use of web-based information systems [227]. 
Wallace and Sheetz [224] used TAM in their attempt to provide a theoretical 
foundation for explaining and predicting the adoption of software measures. Chau 
and Tam [216] applied Tornatzky et al. [42] adoption framework, to explain factors 
affecting adoption of open systems in organizational computing, they found that 
organizations tend to focus more on their ability of adoption than on the benefits 
from adoption. Further the authors show that organizations take a reactive approach 
towards adoption of opens systems rather than a proactive attitude which have 
strong managerial implications.  
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We adapt and customize the TAM and Tornatzky et al. adoption framework [42] to 
explain which factors are relevant for explaining the adoption (or non-adoption) of 
machine learning techniques for software defect predictions [223]. In this paper we 
provide the perception of industry to these factors – which factors and their sub-
dimensions (or attributes) are deemed important by the industry. The perception of 
industrial practitioners in this context is important as it provides useful insights on 
what is desired from these techniques. The framework and understanding of level of 
importance of attributes also help to set the direction for future research where 
different ML techniques can be compared on these attributes, which accelerates the 
technology transfer and its adoption. 

7.10 Study Design 
The overview of the research process employed in this study to capture the factors 
important for acceptance/adoption of machine learning in industry is presented in 
Figure 79. 

Figure 79: Research process overview 

The main steps in the process were: 

 Existing research literature on machine learning and technology 
acceptance/adoption was explored for list of important benefits and 
challenges in applying ML in industry. 

 The information was used to drive discussions with the industrial 
practitioners and a framework for ML adoption in industry (for 
software defect prediction) was developed [223]. 

 Attributes are mapped for each factor within this framework. 
 Industrial practitioners validate the framework and mark the level 

of importance of each attribute in relation to making adoption 
decisions.    
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7.10.1 Case Study Context 
Following the taxonomy and guidelines for conducting and reporting case studies in 
software engineering by Runeson and Höst [52], we conducted an exploratory case 
study using flexible design principle. We studied two large companies from widely 
different industrial domains (Automotive and Telecom) with significant focus on 
development of embedded software. Given the differences in domain, the study is 
designed as an embedded case study with two units of analysis (each company); 
Figure 80 and Table 44 present an overview of the case study design and summary 
of case units. 

Figure 80: Case study design overview 

Two companies were selected that come from two different domains: 

 Volvo Car Group (VCG), A company from the automotive domain 
 Ericsson, A company from the telecom domain 

The divisions we interacted with have one thing in common, they have not yet 
adopted machine learning as their main method/technique for predicting software 
defects, but they are considering evaluating it as a possible technique to compliment 
the current measurement/prediction systems in place. Since the objective of this 
paper is to present the factors affecting the adoption of machine learning in industry 
for software defect prediction, the subjects selected are considered appropriate for 
the purpose. 

Table 44: Overview of case units 

Unit of analysis 
(Domain) 

Software 
development 
process 

Current methods for SDP 
Current state of 
adoption of ML for 
SDP 

VCG         
(Automotive) 

V-shaped software 
development 

Focus on status visualization and 
analogy based prediction 

Considering evaluation 

Ericsson    
(Telecom) 

Lean and Agile 
development 

Various modes of presenting 
current status and predictions 
methods 

Considering evaluation 
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7.10.2 Data collection and analysis methods 
The main source of data for the case study is obtained through semi-structured 
interviews, which is a more open method compared to structured interviews – this 
allows for adaptation of questions to given context and exploration of new ideas 
during the interview. Data collected through interviews is a form of first degree 
methods [52], that are although expensive to collect but offer larger control. Since 
the objective for this research is to explore, identify and validate factors affecting 
adoption of ML in industry, direct methods in form of interviews was assessed as 
appropriate.  

Stronger conclusions can be drawn by using triangulation i.e. using data from 
several sources [52], therefore we complement the information obtained through 
interviews with document analysis from these companies. The archival documents 
analysed related to the information needs within the organization with respect to 
software defects and information demanded by various stakeholders within the 
organization.  

Semi-structured interviews were conducted with managers responsible for providing 
software defects related information to different stakeholders within the 
organizations, these interviews were also complemented by interviews with 
managers responsible for quality. This setting provides us with both - the 
perspectives of practitioners responsible for delivering the information (roles 
responsible for applying/implementing ML techniques for software defect 
predictions) and the end users of this information who use it at various levels for 
decision support. The interviewees included: 

 Manager at Volvo Cars Group within the department responsible 
for integrating software sourced from different teams and suppliers, 
the manager has more than 20 years of experience working with 
software development and testing. As ensuring safety and quality is 
a major responsibility in this role we refer to this manager by 
(VCG, QM). 

 Team leader responsible for collection, analysis and reporting of 
project status with regard to software defects and their predictions 
(VCG, MetricsTL), the team leader has more than three decades of 
experience in various roles at the company. 

 A senior quality manger whose experience with software (mainly 
within quality assurance) spans more than three decades (Ericsson, 
QM), and 

 Team leader of metrics team at Ericsson; metrics team is the unit at 
Ericsson that provide the measurement systems within the 
organization (Ericsson, MetricsTL).  
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7.11 Factors affecting adoption of ML techniques 
in industry 

The framework for adoption of ML in industry with how each factor is likely to 
affect the probability of this adoption is represented in Figure 81. In the figure (+/-) 
indicates the possibility (hypothesis) of existence of positive/negative relationship 
with medium strength between a given factor and probability of adoption of ML in 
industry; a double (++/--) indicate a strong relationship.  

Figure 81: A framework for ML adoption in Industry 

 

7.11.1 Organizational and ML characteristics  
The factors of ML adoption framework are further broken down to sub-dimensions 
(or attributes) which represents the tangible measures the industrial practitioners can 
use to comment on their level of importance. The attributes for ML and 
organizational characteristics are shown in Figure 82. 
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Figure 82: Overview of attributes which relate to acceptance of ML for defect prediction 

7.11.2 Operationalization of factors 
Factors were operationalized by asking interviewees to give the level of importance 
to each attributes on a five-point Likert-type scale. The levels that could be selected 
were: 

 Very Low (VL) 
 Low (L) 
 Medium (M) 
 High (H) 
 Very High (VH) 

The levels of scale reflect the degree of importance that an attribute has for 
adoption/acceptance of ML techniques for software defect predictions. The levels 
are used in different contexts; Table 45 summarizes the definitions used for each 
level. 
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Table 45: Defining the levels for different contexts 

Level 
Need and importance 
(Table 2) 

Level of Satisfaction 
(Table 3) 

Level of importance 
(Table 4) 

Very Low (VL) 
The information is not 
needed. 

Not satisfactory, 
improvement is needed. 

The attribute is not needed 
for analysis. 

Low (L) 
The information is 
desired, but not 
considered important. 

Not satisfactory, 
improvement is desired. 

The attribute can be 
considered but not 
required. 

Medium (M) 
The information is desired 
and is considered of value 
(if available). 

Satisfactory, but could be 
improved. 

The attribute is useful for 
making the analysis. 

High (H) 
The information is 
deemed as needed and is 
considered important. 

Satisfaction is high. 
The information on given 
attribute is needed for 
making the analysis. 

Very High (VH) 
The information is a must 
and should be provided 
with high accuracy. 

Satisfaction is very high, 
with low scope for further 
improvement. 

Cannot make a decision 
without information about 
this attribute.  

 

7.12 Findings 

7.12.1 Information need and its importance for SDP 
When it comes to defect management in software development, mature 
organizations collect and monitor wide range of defect related metrics. There is also 
need for various types of predictions to manage defects (and software quality) 
effectively and efficiently. The interviewees from two case units were asked to 
indicate the importance of different information needs.  

Table 46: Examples of information need and its importance in industry 

Prediction Needs w.r.t software defects 
VCG 
(QM) 

VCG    
MetricsTL 

Ericsson 
(QM) 

Ericsson 
MetricsTL 

Classification of defect prone files/modules L H VH VH 
Expected number of defects in SW components H H L VH 
Expected defect inflow for a project/release H H L VH 
Release readiness/expected latent defects H VH H VH 
Severity classification of defects VH M H H 

 
Table 46 shows that different organizations information needs can be different – 
among others this is dependent on factors such as how the software is developed, 
tested and verified within an organization. At VCG similar to most OEMs (Original 
Equipment Manufacturers) in automotive domain, Model Based Development 
(MBD) is prevalent. Much of the software in this company is developed using 
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Simulink12 models where code is generally auto-generated from models or sub-
contracted to suppliers. In such environments classification of files/modules prone to 
defects is not the top priority. While for Ericsson which has more code-centric 
approach predicting defect prone files/modules holds very high importance. 

Assessing release readiness is important (High) for both case units as is the case 
with severity classification of defects. It is interesting to note differences in their 
information need due to differences in their software testing and quality assessment 
approach. While at Ericsson finding smaller set of files/modules more prone to 
defects helps testing and quality teams to focus the limited resources to achieve high 
quality, at VCG knowing number of expected defects in a software component or 
expected defect inflow at a given point in time is more useful to mobilize their 
testing efforts to meet high quality demands. 

7.12.2 Current status of each case unit 
The same scale (five-point Likert-type) was used to indicate the level of satisfaction 
with current defect management/prediction systems, familiarity and in-house 
competence of ML techniques. The results are summarised in Table 47. 

Table 47: Current status of each case unit 

Factors 
VCG 
(QM) 

VCG 
MetricsTL 

Ericsson 
(QM) 

Ericsson 
MetricsTL 

Satisfaction with existing systems 
Status information H H H H 
Trend visualization H M M H 
Predictions accuracy M M L H 
Cost (current costs are low) VH VH - VH 
Reliability VH H VH M 

Familiarity and competence with ML techniques 
ML tried in previous project L L - M 
Understanding of the technology L L - M 
Ability to implement algorithms in-house VL M - M 
Academic collaboration M H - M 
Ability to interpret the results H H - M 
Ability to assess quality of results H M - M 

*In the fields marked (-), The Quality Manager interviewed at Ericsson was unable to 
provide assessment with high confidence, thus they are left out from analysis. 
 

                                                      
12
 Simulink® is a block diagram environment for multidomain simulation and Model‐Based Design. Matlab and 

Simulink are products and registered trademark of The MathWorks, Inc. 
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It is observed (from Table 47) that for companies currently not using ML for 
software defect prediction, satisfaction with existing defect monitoring and 
prediction systems is high, while the need to enhance the in-house competence in 
ML techniques is recognised. 

Satisfaction with existing systems 

 Stakeholders such as quality managers within these companies are 
satisfied to a high degree with how the defect related information is 
presented and trend visualized using existing systems. 

 The accuracy of predictions is realized to be satisfactory, while it is 
considered improvements can be made.  

 Cost is an important factor when choosing the prediction method - 
“Cost of obtaining results is very important factor and the current 
systems we use are very cheap to run and maintain”      – QM at 
VCG. 

Since the existing systems have been in place for at least two years in each case, the 
running costs are very low and operational reliability very high. 

Familiarity and competence with ML techniques 

 It is recognised that there is a need for training before ML 
techniques can be used for software defect prediction. The 
improvement potential has also been realised with respect to in-
house competence of implementing such algorithms. 

 Participating companies in the study show medium to high 
confidence with their ability to interpret the results from such 
analysis which is related to the need for training (see point c) 
above). This is due to fact that experts in these organizations have 
deep understanding of their process, products and impact of 
different factors on these gained through experience of multiple 
projects over long periods of time. 

7.12.3 Level of importance of factors  
Table 48 presents the level of the importance of different attributes that affect the 
adoption/acceptance of machine learning algorithms in industry.  
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Table 48: Level of importance of attributes for the case units 

Factors Level of importance 

Attributes 
VCG 
(QM) 

VCG 
MetricsTL 

Ericsson 
(QM) 

Ericsson 
MetricsTL 

Perceived Benefits 
Accuracy in predicting H H VH VH 
Automation of pattern discovery M H VH VH 
Adaptability to different data sets M H VH VH 
Ability to handle large data H H M VH 
Ability to generate new insights H M H H 

Perceived Barriers 
Steep learning curve L VH VH VH 
Inability to recognize new 
patterns 

VH M VH VH 

High cost of mis-predicitons M M VL L 
Low generalizability of 
algorithms 

H H H VH 

Need for high coverage of 
relevant attributes 

M M L VH 

Tool availability 
Compatibility with existing 
systems 

M L H VH 

Availability of open source tools L H M VH 
Low cost of obtaining results VH H H M 
Support/consulting services H M L VL 

External factors 
Adoption by other industries L L L M 
Use by competitors H M L M 

 
It is observed that while there are some variations depending on the case units, 
attributes related to perceived benefits and barriers are considered highly important 
for making adoption decisions. Attributes related to tool availability are deemed 
important but not critical, while external factors had little influence on adoption 
decisions of ML techniques in industry for SDP. Specifically, 

Perceived Benefits 

 Accuracy of predictions, automation, adaptability and ability to 
handle large are generally regarded as high or very high 
importance. Some interesting comments highlight these, “When it 
comes to the benefits, accuracy and automation are the top 
priorities for us” – MetricsTL at Ericsson.  

 Using causal models such as Bayesian Networks that can provide 
range of decision-support and risk assessment capabilities for 
project managers [21] is perceived as an important benefit of ML 
techniques application to SDP.  
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Perceived Barriers 

On the other hand uncertainty over if the ML based techniques can be effective for 
detecting new patterns in the data and concerns over their generalizability are 
barriers that are considered highly important for making adoption decisions.  

 Technology/innovations that need high upfront investment in terms 
of new knowledge acquisition can slow the adoption process. The 
respondents in our study also considered this attribute as highly 
important, except for the QM at VCG, according to him “Steep 
learning curve is not a major problem if only few people (experts) 
need to know it to generate the results as long as they are easy to 
interpret by rest of the stakeholders” – QM at VCG. 

 Mispredictions can be costly for an organization and usually 
considered a barrier for prediction systems, but managers at both 
case units emphasized that this is not a show stopper. “Since all 
predictions generally go through number of experts if the 
predictions are not close to reality they would not be accepted by 
these experts.”  – MetricsTL at VCG.   

Tool availability 

It was revealed that availability of tools is important for organizations, while if the 
tools are open source or proprietary does not have same impact on the adoption of 
new techniques.  

 Information that is relevant to companies with respect to tools is the 
cost of running it (in terms of resources) should be low; i.e. it 
should be fairly easy to feed in the data and generate the results. 

 Availability of support/consulting service for given tool is another 
factor that depends on given company preferences, companies like 
VCG in our case study, prefer to use a sub-supplier to provide 
services which are new to the company and generally incorporate 
them within in-house systems when confidence in their usability 
and effectiveness is well established. “Even if open source tools are 
available, we typically need a vendor in between to do tool 
integration, manage upgrades and do maintenance work – we do 
not have resources for that”    – QM at VCG.  

While at Ericsson, the departments which are supported by a specialized in-house 
team to cater the need of measurement systems, for these departments in order to 
achieve high transparency and provide greater flexibility prefer to develop in-house 
measurement systems than relying on external vendors where possible. 
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External factors 

 When it comes to external factors, adoption of a new 
method/techniques by industries outside of given industrial domain 
have low impact, while the knowledge that similar techniques are 
being used within the domain can highly motivate their evaluation 
within a given company. “We are not afraid of trying new things 
and being the first one, but if it is used in automotive sector and we 
have not tried it surely helps the case”    – QM at VCG. 

 The perspective on some attributes within the company is also 
dependent on the role. This is mainly due to the fact that some roles 
(as quality manger) are consumers of the information/measurement 
system, while in others (as a team leader of metrics team) the 
responsibility is to supply this information (responsible for building 
and maintaining the measurement/prediction systems). 

 The difference can be large for some attributes, while QM is not 
concerned with maintenance aspects, MetricsTL said with respect 
to ML techniques for software defect predictions: “I am not 
confident that maintenance cost is low with respect to competence 
and technology we have today”         – MetricsTL at Ericsson. 

 Explaining it further MetricsTL highlighted “first developing a 
prediction system is time consuming task and further if I have to 
update it often then costs will be too high. Other thing is that we 
change our technology (for e.g. tools) from time to time – so what 
does that mean as a developer of ML based prediction system?”   

7.12.4 Specific challenges in adopting ML 
techniques in industry for SDP 

Apart from common factors identified in previous section, in this section we present 
the specific challenges that were raised during the interviews towards accepting the 
ML techniques for software defect prediction.  

Lack of information to make a strong business case: Does ML techniques save 
company time or will they reduce risk? If so how much? These are some of the 
important questions mangers need - to make a strong business case for motivating 
the use of new techniques within their team and within the company.  

“Time is a critical factor, especially in automotive domain where a new functionality 
is promised to the market long before it is completely ready, then the clock is ticking 
and the product development divisions are expected to deliver on time with superior 
quality” – QM at VCG.  
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If expected time savings or reduction in risk could be quantified for a given 
company, their decision on adoption becomes much easier. 

Uncertainty on applicability of ML when access to source code is not available: 
In cases where software is purchased from suppliers, the access to code and change 
metrics may not be available. It is unclear if ML based algorithms can still be useful 
and effective for SDP.    

How to adapt ML techniques for model driven development: Model driven 
development is predominant in many industries such as aerospace and automotive 
domain model. The question that is yet unanswered for these organizations is if ML 
based prediction systems can be effectively applied for their specific context.   

Some of the important questions are - can we adapt ML based techniques to analyse 
models (e.g. UML, Simulink etc.) for the purpose of defects or quality predictions? 
Or can the metrics obtained from code (which is usually auto-generated from these 
models) be appropriate for SDP using current ML based approaches? 

How to effectively use text base artefacts for SDP: While most ML based 
techniques for SDP use quantitative data, some of the major software artefacts such 
as requirements and defect reports are largely text based. The ability of ML based 
methods to reliably handle textual data will boost confidence of industry in these 
methods, Menzies and Marcus [228] work is a good example of type of work these 
companies want to see more. 

Uncertainty over where ML fits in context of compliance to standards: 
Industrial domains with safety critical software usually follow stringent safety 
standards. For example in automotive domain, ISO 26262 is the new functional 
safety standard which recommends using formal methods for software verification 
and validation for high safety critical applications. How does ML based software 
prediction techniques fit in this framework and how can they contribute towards 
ensuring compliance to such standards is another area currently not well understood 
but important for organizations in such domain. 

7.12.5 Validity 
Threats to validity in this study are addressed in manner as described by Wohlin et 
al. [50]. There exists threat to internal validity to this study with respect to the 
selection of case units – both case units have not adopted ML widely for software 
defect predictions. For example it can be expected that there may be a difference 
between the perceived benefits among companies that have adopted such techniques 
and those that have not. In this study we only report how important these units feel 
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these attributes are for taking an adoption decision thus minimizing the mentioned 
threat. This also aligns well with the objective of this study where our aim is to 
explore and list the important factors and not what the case units in this study’s 
assessment is about ML techniques and tools. 

Threat to construct validity exists with respect to if or not all factors that are 
important for making adoption decisions of ML in industry are taken into account. 
We explored the factors and attributes closely with the companies involved in this 
study. The attributes and model were again validated with the companies involved 
which limit the possibility of miss-interpretation which minimizes the threat to 
construct validity. 

Incorrect conclusions about relationships can pose threat of conclusion validity. The 
presented study is designed as an exploratory case study. We present the perception 
of industry of which factors they deem as important with indications of possible 
relationship to the adoption framework. The future study planned that quantitatively 
assesses these relationships will have to seriously evaluate this threat to validity, but 
for present study it does not pose a major threat. 

Threat to external validity is a major threat to this study, since only two units within 
two large software development organizations are used for validation, but numbers 
of steps are taken to minimize this threat. Firstly the adoption framework is based on 
wider technology adoption/acceptance literature, secondly the model is claimed to 
be only initially validated with these case units, comprehensive validation and 
quantitative assessment is planned as future work. Further using case units from 
widely different industrial domain and using different job roles within the units and 
two stage interviews help minimize the threat to external validity. 

7.13 Conclusions and future work 
In large software development organizations, a software defect prediction is 
important for project and quality mangers to realise the goal of zero known defects 
by the release date. Machine learning techniques offer an alternative to methods 
based on statistical regression or expert opinions. ML based methods have been 
compared to traditional methods for aspect such as predictive accuracy, but for 
companies considering adoption of ML based techniques, a number of other factors 
are also important. 

In this paper we set out to investigate, What are the factors that are important for 
companies to make informed decision to adopt (or not adopt) ML algorithms for the 
purpose of software defect predictions (SDP)? We identified a total of nine 
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important factors and 27 related attributes that affect the adoption of ML based 
techniques for software defect predictions. The framework for adoption of ML for 
SDP is validated using a series of interviews with experts on quality and team 
leaders responsible for providing software defects related information at two large 
software development organizations. 

The results suggest that information needs can be different for different companies 
based on their software development and testing process. The existing systems in 
place for presenting and visualizing information related to software defects are 
deemed satisfactory, they offer low running costs and high reliability. The need for 
training to increase competence in ML techniques is also recognised in these 
companies. The study further show that for adopting ML techniques, predictive 
accuracy and ability to generate new insights from large data are most important 
perceived benefits. At the same time low generalizability and steep learning curve 
are perceived barriers that need to be overcome to gain higher adoption of ML in 
industry. Availability of tools and support services can also accelerate the adoption 
process in this respect.   

Impact of understanding such factors is at multiple levels: for companies themselves 
it explicitly lists the factors that are implicitly deemed important by them when they 
make adoption decisions on ML based techniques/tools. Listing and visualizing 
important attributes for such decisions also makes it easier for mangers to see the big 
picture and objectively evaluate new ML based techniques and tools for their 
usefulness and applicability for a given problem at a given point in time. The 
adoption framework is also useful for companies that provide tools and services to 
larger organizations developing software. With knowledge of important factors they 
can customize their products (e.g. tools) and services offerings to closely fit the need 
of these organizations.   

In future work we plan to quantitatively evaluate the effect size of important 
attributes towards ML adoption decision using large scale survey of companies that 
have already adopted ML techniques and ones that are yet to embrace it.  Research 
with regard to which factors are important for industry and evaluative studies of ML 
based techniques/tools on these factors can complement the existing and on-going 
work on establishing the characteristics of ML techniques and thus contribute 
toward their adoption in industry and society.  

 



Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption 

254 
 

 

  



Rakesh Rana 

255 
 

 

  
Chapter 8: 
Summary of research results 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 



Software Defect Prediction Techniques in Automotive Domain: Evaluation, Selection and Adoption 

256 
 

 

  



Rakesh Rana 

257 
 

 

8 SUMMARY OF RESEARCH RESULTS  

The main results provided in the thesis provide evidence of how software defect 
prediction techniques can be used in the context of automotive software 
development. This section presents the summary of results from individual studies 
included in the thesis, while in next section (8.1) the conclusions drawn from the 
combined results is provided, finally section 8.2 presents the areas for future 
research. 

Results from the overview study of software defect prediction techniques and the 
automotive software life cycle 
The first study presented in chapter 2 provided the overview of software 
development life cycle at the level of full EE (Electronics & Electrical System) 
platform projects. Three distinct phases of life cycle namely concept phase, 
production software development and in-operations phase were identified and 
iterative development in the production software discussed. In particular the study 
resulted in: 

a. Life cycle overview of full EE platform projects in automotive 
domain. 

b. Overview of different software defect prediction techniques 
applicable in automotive domain with their mapping to when they 
can be applied over the platform project timeline. 

c. Classification of defect prediction techniques on basis of what 
purpose they can be used for and at what granularity level they can 
be applied. 

d. A roadmap for using in-operations data for improving the 
efficiency of defect prediction techniques. 

The mapping to project timeline and classification based on the application purpose 
and granularity help with selection of appropriate defect prediction technique. The 
input data needed for each technique and their main advantages and limitations were 
also highlighted to aid industrial practitioners with the selection. The roadmap 
included in the study presents possible future scenario where easy retrieval of in-
operation data can be used to help calibrate software for optimal performance, 
develop and adapt software features based on user interaction data.  

Results from the evaluation of SRGMs in chapter 3 
Chapter 3 was particularly aimed at evaluating SRGMs in the context of automotive 
domain. A set of commonly used models were evaluated at a sub-system level and 
also on multiple EE platform projects from the automotive domain. The models 
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were also evaluated on projects from other industrial domains from the embedded 
domain that help enhance the external validity of the results. In summary the results 
were: 

a. Two of the commonly used parameter estimation techniques 
namely maximum likelihood estimation (MLE) and non-linear 
regression (NLR) were compared and evaluated for their statistical 
properties and practicality for applying SRGMs to defect count 
data. 

b. A balanced metric for measuring asymptote prediction accuracy, 
Balanced Predicted Relative Error (BPRE) was defined which is 
symmetric for over and under predictions unlike more commonly 
used Predicted Relative Error (PRE). 

c. Evaluation of SRGMs on a project from one division at VCG (sub-
system level project) showed the ability of SRGMs to fit the defect 
inflow data.  

d. A set of SRGMs were evaluated on eleven large projects from three 
different industrial domains (including four EE platform projects).  

e. Models that performed best within the tested set for defect count 
prediction and for assessment of release readiness were identified. 
Overall it was observed that Logistic and Gompertz model 
performed well compared to other tested models. 

f. The results also suggested that given software development 
process, the asymptote prediction accuracy could be significantly 
improved by using growth rate from historical projects. 

g. It was shown that using simple trend analysis the shape of defect 
inflow profile for an on-going project could be predicted as early as 
halfway through the project timeline. Predicting the probable shape 
of defect inflow profile is useful in selecting the appropriate SRGM 
for the given on-going project for making defect count predictions. 

h. In another study included in this chapter, the defect inflow 
distribution family was analysed where beta distribution family was 
shown to fit best to the defect inflow from number of projects data 
used in the study. Understanding distribution of historical and on-
going projects within an organization can help in choosing correct 
statistical methods, easy visualization and simulation.  

i. Knowing distribution of historical projects is also useful in 
Bayesian analysis were the information is used for describing the 
prior probabilities.  

Overall in chapter 3 we evaluated SRGMs for their applicability for defect count 
prediction and assessment of release readiness in the automotive domain and found 
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that they provide a viable option for these analyses. Methods for selection of 
appropriate SRGMs for an on-going project were also developed and evaluated.  

Results from the study of consequence of mispredictions in chapter 4 
In chapter 4 we continued with the theme of evaluating SRGMs, but in this chapter 
we focused on the cost/consequences of mispredictions. Since risk of misprediction 
is always present when making any forecasts, understanding the possible 
consequences help practitioners to actively take them into account when they use 
prediction models in practice. The results from the study suggested: 

a. The two main possibilities of misprediction are (i) mispredicting 
the expected defect count (the asymptote) - over or under predicting 
it, and (ii) Mispredicting when the total expected defect count 
would be reached (timing) - early or late predictions. 

b. It was noted in the study that while theoretically the consequences 
would be same for each scenario of misprediction, the 
cost/consequences to a given organization depend on their domain, 
process and organizational structure. The case study at two 
companies (VCG and Ericsson) also summarized the possible 
response action for such scenarios. 

The research question addressed in this chapter provided the balanced view on using 
defect count predictions and assessment of reliability analysis. While most 
predictions and data driven analysis help industrial practitioners make informed 
decisions, but predictions should be made and used with careful consideration of 
possible risks which were explored in this study for case of using reliability models.   

Results from the evaluation of correlation based SDP technique in automotive 
domain 
Having evaluated the applicability and possible risks of using SRGMs, in chapter 5 
we evaluated correlation based defect prediction technique for its applicability in the 
automotive domain. Since EE platform projects tend to be large and span long time 
period, they are also organized into several iterations over which part of software is 
designed, implemented and tested. The study results: 

a. Supported earlier observations that small amount of software 
modules (ECUs/features in our case) account for majority of defect 
counts. 

b. The correlation between number of defects found across integration 
points is found to be moderately-to-very strongly, which may be 
used for building not very accurate, but quick and easy prediction 
rules. 
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c. The pre-release defect count for software modules was strongly 
correlated to defect count at integration point four/five which is 
about midway through the project timeline. 

d. It was also discussed how correlation based model can be used to 
identify software modules that may need further review and/or 
testing. 

Correlation based prediction models can use historical projects data to provide 
simple thumb rule based prediction models that are very easy to apply in practice 
and are also very intuitive for various stakeholders involved.  

Results from the reliability analysis using executable models  
In the next study presented in chapter 6, behavioural models that are produced in a 
Model Based Development (MBD) environment were proposed to be used for early 
assessment of reliability characteristics. The main results of the study were: 

a. A framework using fault injection and mutation based testing was 
proposed for identification of design defects and defects that can 
lead to possible safety case violations (according to the definition 
of ISO 26262 functional safety standard).  

b. Since the proposed assessment can be done early in the project life 
cycle (using executable models), they can provide early feedback to 
designers and caution testers by assessing the efficacy of test suite 
intended to catch possible implementation defects. 

c. The initial validation of framework on miniature cars provided 
encouraging results. 

Fault injection has been long used successfully for assessment of dependability 
characteristics in the hardware domain, while mutation testing has been applied with 
good results for traditional code. With executable models availability in the MBD, 
the proposed framework can be used for early reliability assessment which can lead 
to robust design and software with superior reliability properties. 

Results from chapter 7  
Finally we also looked at machine learning based techniques for software defect 
prediction. While our research in earlier studies have raised questions on the 
applicability of these techniques when access to source code and software evolution 
data is not readily available. Still these techniques are useful within automotive 
domain where software is developed full or part of software is developed in-house. 
A number of earlier studies have presented the evaluation of these techniques with 
promising results, but their adoption in industry is not so widespread. Thus we 
focused our effort on understanding the factors that influence industrial 
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practitioners’ decision to adopt or defer the decision of adopting such techniques. 
The study resulted in: 

a. A framework for adoption of machine learning based techniques in 
industry which is based on the technology adoption and acceptance 
models. 

b. The framework was adapted for the specific case of software defect 
prediction resulting in identification of nine main attributes and 
number of sub-attributes for each main factor. 

c. Guidelines for using framework for evaluating a new potential 
machine learning based technique for adoption as well as using the 
framework for comparative purposes between two techniques/tools 
were provided. 

d. The initial validation of framework at two partner companies (VCG 
and Ericsson) highlighted several important factors that affect the 
adoption decisions at industry. 

Understanding of factors important in adoption decisions serves multiple purposes, 
firstly it helps in identifying possible areas of research that can address information 
gaps and thus accelerate the technology transfer process. Secondly it provides tool 
developers and vendors to prioritize features according to the demands of their 
intended users and finally it provides industrial practitioners with an objective 
framework that can help them evaluate potential new techniques and/or alternative 
tools for adoption. 

8.1 Conclusions   
We set out this project with the following main goal: 

To evaluate how software defect prediction techniques can be effectively applied 
over the software development life cycle within the automotive domain. 

 
While software developed within automotive domain is highly diverse, we focused 
mainly at the level of full EE (Electronics & Electrical system) platform projects. In 
the thesis we started with reviewing the software development process, life cycle of 
EE platform projects and commonly used software defect prediction techniques. The 
review of development process and constraints specific to automotive domain limits 
application of some of these techniques thus we placed special emphasis on 
techniques that could be applied under given constraints. The series of studies 
presented in the thesis resulted in evaluation of techniques for defect count 
prediction and assessment of release readiness. 
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The thesis shows that testing data driven models such as software reliability growth 
models and correlation based predictions can be used for defect count predictions, it 
was specifically shown that: 

a. The shape of defect inflow profile can be predicted using simple 
trend analysis about midway through the project timeline. 

b. SRGMs can be used for defect count prediction and release 
readiness assessment for large software development projects 
(within embedded and specifically in automotive domain). 

c. Using historical data, predicting shape of defect inflow profile and 
analysis of defect distribution of historical projects can help with 
selection of appropriate SRGMs. 

d. Correlation based models can potentially be used for predicting 
defect count in upcoming iteration and also predicting pre-release 
defect count. 

The applied aspect of applying these models in the context of automotive domain 
such as parameter estimation method, selecting best performance model from set of 
selected models and choosing an appropriate model for predictions were also 
evaluated as part of the thesis. The evaluation was done to provide objective 
assessment of these techniques to support decisions on optimal allocation of test 
resource and with decisions related to release timing.  

Moreover a framework combining fault injection with mutation based testing 
approach applied at the executable behavioural models was proposed and validated. 
The framework support early identification of design defects and identification of 
possible implementation defects capable of violating safety goal requirements. 
Testing behavioural models for possible design defects and testing efficacy of test 
suite with mutation testing potentially provides a narrow feedback loop for designers 
to improve and develop robust designs with superior reliability characteristics. By 
evaluating the efficacy of test suite early, it is possible to avoid potential design and 
implementation defects from slipping over.  

Finally an adoption framework for machine learning based models for software 
defect predictions was developed and validated. ML based techniques can support 
parts of software development within automotive domain especially sections of 
organizations with in-house software development. The adoption framework 
highlighted important factors such as setup, running and maintenance costs. 
Understanding of these factors and the adoption framework is useful for various 
stakeholders including researchers evaluating such techniques, tool vendors and 
organizations looking to adopt these techniques or tools based on them.  
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Overall in the thesis we evaluated number of different software defect prediction 
techniques that can be applied over software development life cycle in the 
automotive domain. It was shown when they can be applied, for what purpose and at 
what granularity level they can be applied. A set of these techniques were evaluated 
for their performance for the objective of supporting optimal resource allocation 
decisions and release readiness assessment. Using defect prediction techniques and 
frameworks for early identification of design and possible implementation defects 
can lead to better allocation of limited test resources and release of mature software 
with superior reliability characteristics.   

8.2 Future research  
The research in this thesis opens several directions for further research, particularly 
in collaboration with industry. The thesis provides a basis for evaluating 
applicability of software defect predictions in the automotive domain for supporting 
questions of high practical importance. A set of techniques were evaluated in this 
thesis and new frameworks proposed and validated, nonetheless a number of open 
questions and areas for further research are identified, these can be grouped into 
separate, although not mutually exclusive categories.  

8.2.1 A comprehensive comparison of different 
software defect prediction techniques within 
embedded domain using data from large set of 
cross-company projects.  

The main research direction stemming from the thesis is the comprehensive 
comparison of different software defect prediction techniques within the embedded 
software domain using large number of projects from representative sample of 
companies from this domain. In particular, the ambitious research goal could be 
achieved by studies focusing on: 

a. Setup of open databases similar to Tukutuku [229] and Promise 
repository [230] which is open for researchers, but also promote 
commercial organizations to add anonymised project and defect 
data, and 

b. Using cross-company database for benchmarking and comparative 
evaluation of different techniques. 
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8.2.2 Defining and validating product metrics for 
behavioural models in domain specific 
languages. 

Another research direction that can be pursued is the definition of important product 
metrics for behavioural models in Domain Specific Languages (DSL) and their 
validation. A number of industrial domains specifically within the embedded 
software use various DSLs such as Matlab/Simulink for modelling purposes. Often 
these models are executable and made at implementation level details (behavioural 
models) which are used for generation of code that goes into the final systems. 
While number of metrics have been defined and validated for sequential and object 
oriented code to measure size, complexity, coupling etc., similar metrics are not yet 
well defined and validated for behavioural models. Validated metrics for such 
models will enable enhanced monitoring and control of software evolution 
properties developed using DSLs. It will also pave the path for application of 
regression and machine learning based defect prediction and classification 
techniques that use product metrics and thus cannot be used in such cases.  

8.2.3 Industrial validation and further exploration of 
using fault injections and mutation based 
approaches on behavioural models for 
dependability evaluations. 

The use of behavioural models is widespread in the automotive and many other 
industrial domains such as aerospace. Also models are usually developed early in 
the development lifecycle, thus increasing their use for verification and validation 
can not only enhance the dependability characteristics of the software under 
development, but also contribute towards shorter development cycle hence reducing 
market lead time. Use of approaches such as fault injection and mutation testing and 
frameworks based on them need to be validated on industrial scale projects and their 
performance and possible contribution evaluated. 
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