
 

The clinical importance of non-HLA 
specific antibodies in kidney 

transplantation 

 

 

Ayeda Almahri 

2015 

 

 

 

 

Laboratory for Transplantation and Regenerative Medicine, 

Department of Clinical Chemistry and Transfusion Medicine 

Institute of Biomedicine, the Sahlgrenska Academy 
 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ISBN -– 978-91-628-9311-8 

Printed by Ale Tryckteam, Bohus 2015 

  

 
 

 

 

 

 

 

 

 

To my parents, brothers and sisters, your support have sustained me throughout my 

whole life. 

To my dear husband Humaid Almahri, you made me stronger with your words and 

advice. 

Love you all! 

  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ISBN -– 978-91-628-9311-8 

Printed by Ale Tryckteam, Bohus 2015 

  

 
 

 

 

 

 

 

 

 

To my parents, brothers and sisters, your support have sustained me throughout my 

whole life. 

To my dear husband Humaid Almahri, you made me stronger with your words and 

advice. 

Love you all! 

  



 
 

 

The clinical importance of non-HLA specific antibodies in kidney 

transplantation 

Institute of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine 
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Abstract 

The clinical significance of human leukocyte antigen (HLA) antibodies (Abs) for 

hyperacute, acute and chronic antibody-mediated rejection (AMR) of kidney 

allografts has been clearly demonstrated. AMR occurs in the absence of donor-

reactive HLA Abs. It is not known how common the problem of AMR by non-HLA 

Abs is because of lack of suitable assays for their detection. It is believed that the non-

HLA Ab population, although heterogenic, is likely to target antigens on donor organ 

endothelial cells (ECs). We have been involved in the clinical introduction of a flow 

cytometric (FC) crossmatch (XM) test that permits the detection of Abs reactive with 

endothelial precursor cells (EPC) isolated from donor peripheral blood. In this context 

the EPCs may function as surrogates for mature vascular ECs. 

The work in this thesis describes the adaptation of the EPCXM to detection of 

complement-fixing HLA and non-HLA Abs using complement fragment-specific 

antibodies and flow cytometry, describes the outcome of the EPCXM in relation to the 

conventional lymphocyte XM (LXM), degree of HLA sensitization and 

transplantation outcome in patients evaluated for living donor (LD) kidney 

transplantation (Tx), and assesses the long-term renal graft function in patients with a 

positive EPCXM pre-transplant. 

In the first paper, we investigated whether EPCs could be used for detection of 

complement-fixing Abs and if complement factor and IgG deposition on co-purified T 

and B cells correlated to the outcome of the T- and B-cell complement-dependent 

 
 

 

cytotoxicity (CDC) XM. Incubation of EPCs with HLA Ab-positive serum samples 

resulted in deposition of complement factors C3c and C3d, but not C1q nor C4d, on 

EPCs and co-purified lymphocytes. The amount of C3c deposition and IgG binding 

on EPCs and T cells, but not B cells, correlated. The specificity and sensitivity for C3d 

deposition on co-purified T cells vs the T CDC assay were 69% and 72%, while for B 

cells the sensitivity was considerably lower. In the second paper, we show that 32% of 

the LD patients had IgG and/or IgM-binding donor EPCs in their pre-Tx sera. 

Twenty-five percent of the patients were EPCXM IgM+. Of the patients with negative 

LXM tests, 25% had EPC Abs mainly of IgM class not reactive with HLA. There was 

no difference in rejection frequency or serum creatinine levels between the EPCXM 

positive and negative groups, which is in contrast to earlier published results. 

However, the clinical protocols used in the second paper included Ab pre-Tx 

treatments such as B cell depletion and Ab removal. The pre-Tx EPCXM positive 

group had significantly more patients with delayed graft function. In the manuscript 

we show that the difference in serum creatinine and glomerular filtration rates 

observed between EPCXM positive and negative groups at three and six months post-

Tx disappears hereafter and during the four-year follow-up. 

The detection of complement factors on EPCs and lymphocytes by flow cytometry 

allowing detection of complement-fixing non-HLA and HLA Abs widens the 

diagnostic repertoire that can be offered patients undergoing kidney transplantation 

and should thereby improve their clinical management. Prospective studies with 

appropriate control groups are needed to establish whether pre-treatments aiming at 

removing anti-EC Abs, as detected by the EPCXM pre-Tx, have a beneficial effect on 

short- and long-term graft survival. 
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Populärvetenskaplig sammanfattning 

Bakgrund: Patienter med kraftigt nedsatt njurfunktion behöver dialys för att 

överleva, ofta flera gånger i veckan. Genom njurtransplantation förbättras patientens 

livskvalitet och hen kan i allmänhet gå tillbaka till ett fullt yrkesverksamt liv. En 

fruktad komplikation vid njurtransplantation är avstötningsreaktionen, d.v.s. den 

reaktion där patientens immunsystem försöker stöta bort njuren. Denna reaktion 

orsakas bl.a. av antikroppar som känner igen de s.k. transplantationsantigenerna 

(HLA), vilket är strukturer som finns på alla kroppens celler och som oftast skiljer sig 

åt mellan olika individer. I en del fall kan antikroppar mot andra strukturer, vilka ofta 

sitter på kärlens insida på de s.k. endotelcellerna, än HLA orsaka 

antikroppsförmedlad avstötning. 

Syfte: Arbetet i denna avhandling har syftat till att förfina en ny metod för att hos 

patienter inför njurtransplantation upptäcka antikroppar riktade mot den donerade 

njurens endotelceller, och att undersöka hur dessa antikroppar korrelerar till risken 

för avstötning och nedsatt funktion hos den transplanterade njuren. 

Material och metoder: Patienternas HLA typ bestämdes med genetiska metoder 

(PCR) och om de hade HLA antikroppar eller inte avgjordes med cellbaserade 

metoder och solid fasmetoder. Förenlighet mellan patient och donator testades i s.k. 

korstester i vilka eventuella antikroppar i patientserum får binda till donatorns 

lymfocyter (en celltyp i blod som bär HLA antigen). Avläsningen av korstesten sker i 

mikroskop eller med s.k. flödescytometri. Den senare är en känslig metod för att 

undersöka om patientantikroppar bundit till donatorcellerna. Vidare användes och 

vidareutvecklades en ny korstestmetod som möjliggör detektion av antikroppar mot 

endotelcellsliknande celler från donatorn. 
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Resultat och diskussion: I det första arbetet vidareutvecklade vi det 

flödescytometriska korstestet som möjliggör identifiering av antikroppar mot 

donatorns endotelceller till att också identifiera de antikroppar som kan aktivera 

komplement. Denna typ av antikroppar är mer potenta och utgör en större risk för 

avstötning. I det andra arbetet visade vi att patienter med antikroppar detekterade i 

endotelcellskorstestet i högre grad hade njurar som kom igång senare efter 

transplantationen och t.o.m. ibland förlorades. I manuskriptet har vi följt 

njurtransplanterade patienter över tid för att se hur njurfunktionen hos de patienter 

som hade endotelcellsantikroppar utvecklades över tid. Den skillnad i njurfunktion vi 

såg tre och sex månader efter transplantationen mellan grupper med och utan 

endotelcellsantikroppar försvann från ett år efter transplantation och fortsatt under 

den fyraåriga uppföljningen. 

Sammanfattning: Vi har vidareutvecklat ett test som möjliggör identifiering av en 

antikroppspopulation som tidigare ej kunnat identifieras och som kan bidra till 

försämrad funktion, och i värsta fall avstötning, av njurtransplantat. 
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Introduction 

I. Kidney Transplantation 

Organ transplantation (Tx) is performed in order to replace a diseased or damaged 

organ with a healthy one. Patients with end-stage renal diseases (ESRD) are treated 

either by dialysis or kidney transplantation. ESRD occurs when both kidneys are no 

longer functional because of defective kidney filtering capacity leading to 

accumulation of waste products, perturbed salt balance and hormonal deregulation 

[1]. Symptoms of ESRD may remain mild or absent until kidney function drops to less 

than 20% of normal [2]. Symptoms can be significant and include, but are not limited 

to, weight loss, nausea or vomiting, general malaise, fatigue, headache, hiccups, 

itching, decreased urination, easy bruising or bleeding, lethargy, difficulty breathing, 

and seizures. Causes of ESRD include diabetes, high blood pressure and 

atherosclerosis, autoimmune diseases (e.g. lupus), genetic disorders (like polycystic 

kidney disease), infections, post-renal obstruction of the urinary tract, and exposure 

to toxic substances (e.g. antibiotics, chemotherapy, dyes used for contrast in radio 

imaging, analgesics, fungal toxins) [3]. 

Kidney transplantation is done in order to correct ESRD and in the majority of cases 

kidney transplantation allows the patient to return to a normal life and full time work 

[4]. The kidney donor can be living (e.g. a parent, sibling or a child of the recipient, a 

friend or spouse), or a deceased donor [5, 6]. 

In 1954 the first successful kidney transplantation was performed using an identical 

twin brother as donor. The graft functioned well without immunosuppressive drugs 

for 9 years until relapse of the underlying disease [7]. Complications sometimes seen 

following kidney transplantation include those related to the surgical procedure and 

vi
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secondary complications caused by the life-long immunosuppressive treatment. They 

can also be classified as short term (vascular thrombosis, narrowing of the renal 

artery, obstruction of the ureter, urine leakage, acute rejection) or long-term (chronic 

rejection and negative effects caused by the immunosuppression including diabetes, 

high blood pressure, cancer and infections) complications [8-10]. 

Despite an ever increasing success rate of kidney transplantation which to a large part 

can be ascribed ever better and more effective immunosuppressive drugs, there is still 

room for improvements. 

II. Renal allograft rejection 

Increased serum creatinine post-transplant may suggest allograft rejection, but other 

conditions such as surgical complications, infections and drug toxicity can impair 

renal graft function and lead to a rise in serum creatinine [11]. Histopathological 

assessment of biopsies taken from the transplanted kidney is key to the diagnosis, 

and the morphology may influence the choice of therapy and subsequent prognosis 

[12, 13]. Besides evaluation of the histology of the biopsy, detection and specificity 

determination of donor-specific antibodies is important in order to determine 

whether the rejection is predominantly T-cell or antibody-mediated. Subclinical 

rejections, i.e. rejections not associated with a rise in serum creatinine, may be evident 

only upon examination of the biopsy. 

Renal allograft rejection can be divided into acute T-cell mediated rejection (ACR), 

acute antibody-mediated rejection (AMR) and chronic rejection (CR) based on biopsy 

morphology and the presence of donor-specific antibody [14, 15]. AMR can be either 

hyperacute (HAR) occurring within minutes to hours, or acute occurring within days 

to weeks after transplantation. Donor-specific HLA antibodies have also been 
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implicated as a pathogenic factor in CR, which sometimes occur years after 

transplantation [16]. It should be emphasized though that many times a mixture of T-

cell and antibody-mediated pathology contribute to rejection and that acute and 

chronic rejections may not be distinct events but rather represent a continuum of 

events [17]. The type of rejection of renal grafts can also be classified according to the 

histopathological picture found in the biopsy. This so called Banff classification (Table 

1) of renal allograft biopsies grades the degree of interstitial infiltration of 

mononuclear cells, the number of mononuclear cells per tubular cross section, and the 

degree of arteritis in case of acute T-cell mediated rejection, and the degree of 

interstitial fibrosis and tubular atrophy in case of chronic rejection [17]. Complement 

factor C4d+ staining, the presence of circulating donor-specific antibodies (DSA) and 

morphologic evidence of acute tissue injury such as acute tubular necrosis (ATN)-like 

minimal inflammation, capillary and/or glomerular inflammation and/or 

thrombosis, or transmural arteritis are diagnostic criteria for AMR [18, 19]. 
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Table 1 Banff 97 diagnostic categories for renal allograft biopsies—Banff’07 update 

Banff’s 
classification 

Degree of rejection Characteristics and subtypes 

Normal   
Antibody-mediated 
rejection 
 

Acute AMR  
 

C4d+, DSA 
Type I: ATN-like minimal inflammation 
Type II: capillary and/or glomerular 
inflammation  
Type III: transmural arteritis  

Chronic active AMR C4d+, DSA, glomerular double contours 
and/or peritubular capillary basement 
membrane multilayering and/or 
interstitial fibrosis/tubular atrophy 
and/or fibrous intimal thickening in 
arteries 

Borderline ”Suspicious” TCMR  Tubulitis (t1, t2 or t3) with interstitial 
infiltration (i0 or i1) 
Interstitial infiltration (i2 or i3) with 
mild (t1) tubilitis 

T-cell-mediated 
rejection  

Acute TCMR 
 

 Type IA: i2 or i3 and t2 
 Type IB: i2 or i3 and t3 
 Type IIA: mild-to-moderate intimal 

arteritis (v1) 
 Type IIB: severe intimal arteritis (v2) 
 Type III: ”transmural” arteritis and/or 

arterial fibrinoid change, necrosis and 
lymphocytic inflammation (v3) 

Chronic active TCMR Arterial intimal fibrosis with 
mononuclear cell infiltration in fibrosis, 
formation of neo-intima 

Interstitial fibrosis 
and tubular 
atrophy (IFTA)  
 

 Interstitial fibrosis and tubular atrophy 
Grade I: mild 
Grade II: moderate  
Grade III: severe 

Other Changes not due to 
rejection 

Chronic/sclerosing allograft 
nephropathy, recurrent diseases, toxic 
changes, and infection 

Modified from Solez et al [19]. 
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Acute cellular rejection 

A rapid rise in serum creatinine may be caused by acute cellular rejection. Besides the 

increase in serum creatinine, patients may retain fluids, i.e. gain weight, develop fever 

and graft tenderness. The incidence of ACR is approximately 5-10% in the first year in 

unsensitized patients [20]. ACR is histologically characterized by an accumulation of 

mononuclear cells, mostly CD4+ and CD8+ T cells, in the intersititium, the tubules 

(causing tubulitis) and sometimes in the arteries (causing arteritis) [21, 22]. 

T cells cause cell damage by release of cytotoxic granules containing perforin and 

granzyme A and B, by engaging the Fas-FasL receptor pair and by releasing 

inflammatory cytokines (IFN-γ, TNF-α) and chemokines (CCL5/RANTES, 

CCL3/MIP-1) [23]. Tubulus infiltrating T cells and macrophages in tubulitis make 

tubular cells go into apoptosis as revealed by an increased number of TUNEL+ cells. 

Subendothelial and intimal infiltration of T cells and macrophages is characteristic of 

endarteritis, a hallmark of ACR [24] .The latter is detected in 25-40% of renal biopsies 

taken on the suspicion of ACR and is rarely found in stable grafts [25]. At times, also 

glomerulitis is found in ACR cases. 

Antibody-mediated rejection 

Antibody-mediated rejection can be divided into hyperacute (HAR) and acute 

antibody-mediated rejection (AMR) depending on the kinetics of the rejection. 

HAR is a very dramatic response that occurs immediately after transplantation 

usually within the first hours and sometimes immediately after release of the vascular 

clamps. It is caused by pre-existing host antibodies that bind to antigens, commonly 

human leukocyte antigens (HLA) or blood group ABH antigens present on the graft 
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endothelium [26, 27]. Following antibody binding, complement is fixed, activated and 

the membrane attack complex (C5b-C9) deposited on the cell surface causing cell 

lysis/necrosis [28]. Platelet aggregation and the formation of microthrombi contribute 

to cessation of blood flow, and endothelial cell retraction cause leakage of red cells 

and fluid out in the interstitial tissue. The kidney becomes cyanotic and swollen. 

Grafts that have undergone HAR have to be removed and replaced with another 

graft. However, improvements in cross-matching techniques and specificity 

determinations of HLA antibodies have made HAR a rare event [29]. 

Acute AMR is caused by antibodies binding to donor HLA or non-HLA expressed on 

endothelial cells. It is characterized by a rapid rise in serum creatinine which may 

occur days to weeks or even years after transplantation. It is believed that antibodies 

may contribute to acute rejection episodes in at least 25% of the cases [20]. Antibodies 

may act in concert with T-cells in an otherwise predominant ACR or may act alone in 

an AMR without clear signs of ACR. In sensitized patients, i.e. in patients previously 

transplanted, transfused or with earlier pregnancies, and in patients with poor 

compliance the humoral component may be even more significant. 

Antibodies bound to the endothelium will activate complement causing endothelial 

cell injury, release of von Willebrand factor (vWF) and surface expression of P-

selectin, which promote platelet aggregation and the formation of microthrombi. In 

addition, cytokines (IL-1α, IL-8), chemokines (CCL2), and the chemoattractants, C3a 

and C5a, which cause leukocytes to adhere to glomeruli (glomerulitis) or to dilated 

peritubular capillaries (margination) will be released [28]. The complement factors 

C4d, which is also a histopathological biomarker for AMR (see below), and C5b, 

which initiates the assembly of the membrane-attack complex, causes localized 

endothelial necrosis and apoptosis. In severe cases microthrombi, with hemorrhage 
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and arterial wall necrosis and infarction, occurs [28]. In order to rescue such grafts 

early diagnosis and treatment are necessary. 

Deposition of the complement factor C4d, an inactive fragment of C4b, in the majority 

of peritubular capillaries in a ring formed pattern is a diagnostic hallmark of AMR. 

The recognition of the significance of C4d deposition and novel diagnostic tools for 

detection and specificity determination of DSA, have dramatically increased our 

ability to diagnose AMR [30]. Donor-specific class I or II Abs are present in 

around 90% of the patients with C4d deposition. In ABO incompatible 

transplantation C3d deposition is associated with acute inflammation, while C4d 

deposition in this patient group can be seen even in histologically normal grafts [31]. 

The ability of DSA to cause AMR is highly associated with its ability to fix 

complement. Thus, IgG3 and IgG1 DSA are more pathogenic than IgG2 and IgG4 

DSA [32]. In this context novel diagnostic tools that enable identification of 

complement fixing DSA may become increasingly important [33]. 

Treatment options for AMR includes besides high dose steroids and proliferation 

inhibitors, removal of antibodies (plasmapheresis or immunoadsorption), 

immunoglobulin injections, B-cell depleting antibodies (anti-CD20), complement 

inhibitors such as the anti-C5 antibody (eculizumab) and proteasome inhibitors 

(bortezomib) [34, 35]. 

Chronic rejection 

Cellular or humoral mechanisms or a combination of both may contribute to chronic 

rejection (CR), which occurs months or years after transplantation. The morphologic 

characteristics of chronic rejection can be seen in the glomeruli as glomerulopathy, in 

turn recognized ultra structurally as duplication or multilamination of the glomerular 
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basement membrane, and in the vessels as peritubular capillaropathy with features 

similar to those of the glomerulopathy and, in the arteries as transplant arteriopathy 

which is characterized by thickening of the arterial intima [36]. In addition, kidneys 

undergoing chronic rejection may develop interstitial fibrosis and tubular atrophy 

[37]. The majority of glomerulopathy cases are associated with HLA class II DSA in 

serum and between 30-50% of these have C4d deposition in the peritubular capillaries 

[28, 38]. When glomerulopathy is accompanied by DSA and C4d deposition it is 

diagnostic of a chronic humoral rejection (CHR) [36]. Early AMR in sensitized 

patients is a risk factor for later glomerulopathy and accumulation of mononuclear 

cells in peritubular capillaries as seen in CHR is also a risk factor for later graft failure 

[39]. Transplant arteriopathy may develop either as a consequence of a C4d+ or – CR. 

In the latter case macrophages and CD3+ T cells may be seen in the neointima [20]. 

III. Mechanisms of allorecognition 

The alloreactive immune response is initiated by T cells recognizing foreign HLA 

antigens, which are widely expressed on different cell types. The importance of HLA 

for allorecognition and rejection is reflected in the fact that grafts from HLA identical 

siblings have significantly longer survival times than grafts from HLA non-identical 

donors [24, 40]. Host T cells can directly recognize donor HLA on graft cells (direct 

pathway of antigen presentation) or following processing in host antigen-presenting 

cells (APC; indirect pathway of antigen presentation) [20]. The TCR on CD4+ T cells 

bind peptides presented by HLA class II antigens, while TCRs on CD8+ T cells bind 

peptides presented by HLA class I [41]. Besides engagement of the T cell receptor, so 

called costimulatory molecules on the T cell need to be engaged by their cognate 

ligands, e.g. CD28/CTLA4:CD80/CD86, CD40:CD154, ICOS:ICOSL, OX40:OX40L, 

and CD27:CD70, in order for the T cell to be activated [42, 43]. Novel 
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immunosuppressive drugs inhibiting costimulatory receptors, e.g. CTLA4Ig, are 

currently being explored for use in transplant patients. 

Because costimulation is needed for T cell activation to occur, APC, especially 

dendritic cells (DC), carrying ligands for T cell costimulatory molecules are essential 

triggers of the alloresponse [42]. T cell activation by DC takes place in the regional 

lymph nodes and spleen following migration of DC there from the graft [44]. Both 

donor and host DC can initiate the alloresponse [45]. The latter DCs migrate into the 

graft from the circulation and once they have taken up antigen, they migrate via the 

lymph to the draining lymph node; a process guided by chemokines 

(CCL19/CCL21:CCR7) [46]. 

CD4+ T cells develop into helper T cells (TH cells) following activation. They help in 

the maturation of B cells into plasma cells (and production of DSA) and memory B 

cells as well as in the maturation of macrophages [47]. CD8+ T cells or cytotoxic T 

cells are important effector cells in ACR. They mediate cytotoxicity via release of 

cytotoxic granules containing perforin and granzyme A and B or via secretion of toxic 

cytokines such as TNF-α and β [48]. 

Cross-talk between the innate and adaptive immune systems is important for a potent 

alloresponse to occur. The inflammatory reaction caused by ischemia and 

reperfusion, and by the surgical trauma itself, potentiates the immune response by 

recruiting immune cells including APC to the graft [49]. Further, increased expression 

of ligands for toll-like receptors (TLR), damage-associated molecular-pattern (DAMP) 

receptors and other innate inflammatory molecules promote maturation and 

activation of dendritic cells [50, 51]. The complement system, in particular C3a and 

C5a, can directly activate intra-graft T cells and antigen-presenting cells (APC) [52-
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55]. Donor-specific HLA antibodies may contribute to graft rejection not only by 

binding to graft cells and subsequent activation of complement, but also through 

binding of Fc receptors that may promote antigen uptake in APC and initiate 

antibody-dependent cellular cytotoxicity (ADCC) by NK cells [56]. 

IV. The HLA system 

The major histocompatibility complex (MHC) on chromosome 6 in humans is a 

complex 4 Mb genetic region including more than 200 genes and encoding the human 

leukocyte antigens (HLA) [57]. HLA controls the activity of the immune system by 

presenting self and non-self peptides to the immune cells of the host. HLA class I 

antigens are found on all nucleated cells, while class II antigens are to be found 

mainly on APC. The former presents peptides generated inside the cell following 

digestion in the proteasome of for example viral antigens, while the latter presents 

antigens taken up from outside the cell [58]. Peptide loaded class I antigens are 

recognized mainly by the T cell receptor on CD8+ T cells and by the killer cell 

immunoglobulin-like receptors (KIR) of NK cells, while peptide-bearing class II 

antigens are recognized by the TCR mainly on CD4+ T cells [58]. The class III region 

of the MHC complex encodes, among other proteins, cytokines (e.g. TNF-α) and 

components of the complement system (C2, C4, factor B) [59]. The MHC class I region 

carries three loci encoding the HLA-A, -B, and C antigens, which are all structurally 

similar. HLA class I antigens are made up of a heavy alpha chain of 45kDa controlled 

by a gene in the relevant MHC locus (Fig. 1). It is associated with a smaller chain of 

12kDa called β2-microglobulin. In July of 2014 there were approximately 2,800, 3,500 

and 2,300 distinct alleles of HLA-A, -B and -C respectively [60]. There are three 

distinct HLA class II antigens, DR, DQ and DP, each composed of one α and one β 

chain (Fig. 1). There are four different DRβ genes, DRβ1, DRβ3, DRβ4 and DRβ5 [61]. 
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Fig. 1 The HLA class I and HLA Class II molecules 

The strongest evidence that the HLA system is indeed the major histocompatibility 

system relevant for matching in transplantation comes from the fact that kidney or 

bone marrow grafts exchanged between HLA identical siblings survive almost as 

long as grafts between identical twins and far better than grafts exchanged between 

mismatched siblings or other relatives [62]. Advances in immunogenetics and 

histocompatibility testing have facilitated the clinical transplantation of solid organs 

and tissues. Improved definition of HLA antigens, alleles, and haplotypes has 

clarified the diversity of the HLA system among different racial/ethnic populations 

[63]. 

V. HLA antibodies 

Antibodies, also called immunoglobulins, are large Y-shaped proteins, which 

function to identify and help remove foreign antigens or microbes such as viruses and 

bacteria (Fig. 2). Every different antibody recognizes a specific foreign antigen. This is 

because the two tips of its “Y” are specific to each antigen, allowing different 

antibodies to bind to different foreign antigens [64]. 
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Fig. 2 Antibody structure 

Antibodies are produced by the immune system in response to the presence of an 

antigen. Antigens can be carbohydrates like the blood group ABH antigens, lipids, 

e.g. phosphocholine or proteins. Antibodies are found circulating in blood, but are 

also present in the tissue interstitium and the various mucosae of the body [65]. There 

are five distinct classes of antibody namely IgG, IgA, IgM, IgD and IgE. They differ in 

size, charge, amino acid composition and carbohydrate content, but they share a 

similar basic structure [66]. The antibody molecule is bi-functional, the Fab 

component is used to bind antigen while the Fc region mediates the biological effect 

and is designated the effector region [67]. There are four IgG subclasses (IgG1, 2, 3, 4). 

IgG1 and G3 are most efficient activators of complement. IgG and IgM have been 

shown to mediate graft rejection [68]. Interestingly, IgA HLA antibodies may have a 

protective effect [69, 70]. 
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Antigen binding by antibodies is their primary function and can result in protection 

of the host. Examples include neutralization of invading viruses or bacteria. Even 

though recent research has shown that binding of cell surface-expressed antigens, e.g. 

HLA, can directly activate cells [71], the most significant biological effects mediated 

by antibodies are a consequence of their effector functions mediated by the Fc part 

[72]. Usually the ability to carry out a particular effector function requires that the 

antibody bind to its antigen. The effector functions include complement fixation and 

activation, and Fc receptor binding [72, 73]. 

The immune system responds to HLA antigens that are non-self. Healthy individuals 

may carry anti-HLA antibodies as a consequence of sensitization via pregnancies, 

blood transfusions or a previous transplant. It has been claimed that 15-25% of 

women develop HLA antibodies after their first pregnancy and 50-60% after their 

second pregnancy [74]. Likewise, the frequency of patients acquiring HLA antibodies 

following blood transfusions increase with the number of transfusions and may 

approach 70% in patients having had 20 transfusions and more [74]. With increasing 

number of mismatches between donor and patient in their first transplant, patients 

have higher PRA levels at relisting [75]. Thus, the benefits of better HLA matching at 

first transplant on lifetime with graft function are significant [75]. 

Patients with HLA antibodies and a high PRA value are less likely to receive a 

transplant because of a positive pre-transplantation crossmatch, and may also reject 

their grafts more readily even if the pre-transplantation crossmatch is negative [76]. 

As described above, donor-specific antibodies (DSAs) to HLA antigens can cause 

acute AMR after kidney transplantation [75]. The clinical impact of HLA antibodies is 

related to their antigen specificity, complement fixing ability, immunoglobulin class 

and subclass, and titer [77]. Antibodies against HLA-A, -B, -Cw, -DRB1, -DRB3-5 and 
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Fig. 2 Antibody structure 
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Antigen binding by antibodies is their primary function and can result in protection 

of the host. Examples include neutralization of invading viruses or bacteria. Even 

though recent research has shown that binding of cell surface-expressed antigens, e.g. 

HLA, can directly activate cells [71], the most significant biological effects mediated 

by antibodies are a consequence of their effector functions mediated by the Fc part 
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second pregnancy [74]. Likewise, the frequency of patients acquiring HLA antibodies 

following blood transfusions increase with the number of transfusions and may 
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–DQB1 can all cause AMR, while more studies are needed in order to clearly link 

HLA-DPB and –DQA specific antibodies to AMR [77]. Interestingly, class II specific 

antibodies have been associated with the development of transplant glomerulopathy 

[78]. The ability of DSA to fix complement as inferred by C4d deposition in biopsies 

appears to be a poor prognostic marker for graft survival such that patients with DSA 

and C4d deposition in their cardiac grafts had worse graft survival than patients with 

DSA and no C4d deposition or patients without DSA but with C4d deposition [79]. 

The ability of preformed, low-level, DSA to trigger C4d fixation in vitro on single 

antigen beads in patients with negative conventional crossmatch tests is predictive for 

AMR. Assessment of C4d deposition on single antigen beads is potentially a powerful 

tool for risk stratification prior to transplantation and may allow identification of 

unacceptable donor antigens, or patients who may require enhanced 

immunosuppression [76]. Stastny et al have presented data suggesting that the donor-

specific HLA antibodies of IgM type is predictive of transplant rejection in renal 

transplant recipients and susceptibility to coronary arteriopathy in heart grafts [80]. 

The most disputed topic in HLA antibody diagnostics relates to the mean 

fluorescence intensity (MFI) in the single antigen bead assay and what MFI is 

clinically significant. It has been suggested that the outcome of the single antigen 

bead assay should be interpreted in light of the crossmatch results, clinical outcome 

data and the clinical protocol of each center [77]. 

A number of programs and protocols have been implemented in order to make 

highly sensitized patients transplantable. They include the acceptable mismatch 

program of Eurotransplant, which is an algorithm that matches donor kidneys based 

on their HLA type and the HLA antibody repertoire of the patient [81]. In order to 

increase the availability of live donors to sensitized patients whose donor is 
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unacceptable because of DSA, paired kidney exchange programs have been 

established. Thus, two or more donor-recipient pairs can crosswise offer each other 

matched kidneys [82]. In addition, various desensitization protocols have been 

proposed that involves removal of DSA by plasmapheresis or immunoadsorption 

followed by prevention of the resynthesis of HLA antibodies by administration of 

intravenous immunoglobulins (IVIg) [83]. 

New treatment options such as eculizumab, an inhibitor of terminal complement 

activation, decreases the incidence of early AMR in sensitized renal transplant 

recipients (ClincalTrials.gov number NCT006707) [84]. 

VI. The complement system 

Complement activation can occur in three ways by the classical pathway, the lectin 

pathway, and by the alternative pathway. Both the classical and alternative pathways 

converge on the activation of the C5 convertase, the activity of which results in the 

production of C5b [85]. Antibody-mediated cytotoxicity is enhanced through 

activation of complement via the classical complement pathway, which is initiated by 

the binding of the C1q component to the Fc portion of IgM, IgG1 or IgG3. The final 

product of complement activation, the membrane attack complex composed of C5b-

C9 subunits, creates a pore in the cell membrane resulting in cell lysis and death [86, 

87]. Besides the presence in the circulation, complement factors such as C3 may be 

produced locally in the graft, for example in tubular epithelial cells, and contribute to 

both humoral and cellular rejection [88]. Complement activation is an important 

contributor to AMR, and C4 deposition in the graft as revealed by histological 

examination of a biopsy is an essential diagnostic criteria for AMR [89]. 
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VII. Alloantigens beside HLA (non-HLA) including endothelial cell 

antigens 

The fact that kidneys transplanted between HLA identical siblings can be lost in HAR 

or AMR suggests that other antigenic systems besides HLA may be important targets 

of DSA [90]. Further support for this idea comes from patient cases experiencing 

AMR despite negative lymphocyte crossmatch tests [77], which is the standard test 

for detection of donor-specific HLA antibodies. In addition, it has been shown that 

there is a correlation between increased PRA % and poor long term renal graft 

survival in recipients of grafts from HLA identical siblings, which suggests that non-

HLA immunity contributes to poor graft survival [91, 92]. Because endothelial cells of 

the graft are important targets for donor-reactive antibodies, it is likely that 

autologous or allogeneic endothelial cell antigens mediate this interaction [93]. Non-

HLA of potential clinical importance for organ allograft rejection include, but are not 

limited to, major histocompatibility complex (MHC) class I chain-related antigens 

A/B (MICA/B) [94], the angiotensin II type 1 receptor [95], the endothelin type A 

receptor [96], and the cytoskeletal elements vimentin, actin, tubulin and cytokeratin 

(reviewed in [77, 97]). Antibodies specific for MICA/B have been claimed to be 

associated with increased renal graft loss by some investigators [98-100]), while 

Scornik et al found no correlation between anti-MICA antibodies and C4d+ renal 

rejection [101]. The antigen is expressed on endothelial cells and monocytes [92]. An 

association between agonistic angiotensin II type 1 (AT1)-receptor (AT1R) antibodies 

and corticosteroid-resistant vascular rejection along with malignant hypertension has 

been shown [102]. However, their exact pathogenic role is unclear [102]. 

Assays by which anti-endothelial cell Abs (AECAs) can be detected have in general 

been laborious and time-consuming, which has made them impractical for clinical use 
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[103-107]. Patients who had experienced antibody-mediated rejections despite 

negative LXM had in high frequencies Abs against EPCs isolated from the blood of a 

panel of third party donors by paramagnetic beads carrying Abs specific for the Tie-2 

receptor [98]. In a prospective, multicenter kidney transplantation (KTx) trial, it was 

shown that the presence of donor-reactive anti-EPC Abs (AEPCA), as detected by the 

use of a novel crossmatch (XM) kit (XM-ONE®; AbSorber AB, Stockholm, Sweden) 

based on this method, was strongly associated with acute rejections and increased 

serum creatinine levels at 3 and 6 months post-Tx [108]. 

 

VIII. Immunological evaluation 

HLA typing 

Currently, typing of the HLA-A, -B and -DRB1 loci is required in solid organ 

transplantation by the national Organ Procurement and Transplant Network in the 

U.S. and by the European Federation for Immunogenetics in Europe. Within 

Scandiatransplant, a Nordic organ exchange organization, the centres are required to 

type also the HLA-C and –DQB1 loci. For solid organ transplantation, typing on the 

antigen level (low resolution) is usually sufficient even though improved solid phase 

immunoassays (SPI) now allows detection of allele-specific antibodies which in turn 

may necessitate typing with high resolution in order to say whether the antibody is 

donor-specific or not. 

Serological typing used to be the method of choice for determining the HLA type of a 

patient or donor. Serological typing was usually done in a microcytotoxicity format 

with target T or B cells from the individual to be typed and a panel of sera (also 
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monoclonal antibodies were used) with HLA antibodies of known specificity. The 

read-out was done in the fluorescence microscope following addition of rabbit serum 

as a source of complement and the fluorochromes, acridine orange and ethidium 

bromide [109]. Serological typing was cheap and gave information on expression 

levels of the different HLA, but was limited by the lack of resolution (rare antigens 

and alleles were not resolved) and availability of typing sera [109]. 

Currently, molecular techniques have completely taken over and replaced the 

serological techniques much thanks to the introduction of the polymerase chain 

reaction (PCR). The techniques in use are sequence specific primer (SSP)-PCR, 

reversed sequence specific oligonucleotide (rSSO)-PCR and sequence based typing 

(SBT) that relies on the classic chain termination technique according to Sanger [109]. 

Novel next generation sequencing (NGS) techniques are slowly being introduced and 

are expected to resolve the problem of typing ambiguities and offer increased high 

throughput [109]. SSP-PCR offer quick turnaround times and does not require 

expensive equipment [110]. It relies on primer extension using primers which in their 

3’ end hybridizes to an antigen- or allele-specific polymorphic sequence. A set of 

primer pairs is used to obtain allele resolution. The readout is accomplished by 

agarose gel electrophoresis and allows detection of the specific amplicon - which 

varies in size - expected out of each reaction [109]. A reaction control is included and 

is comprised of a primer pair annealing to non-polymorphic sequences. In rSSO-PCR 

the specific oligonucleotide probes are presented by the solid phase, most commonly 

the microbeads of the Luminex™ platform [111, 112]. PCR-amplified and biotinylated 

DNA corresponding to exon 2 and 3 for class I and exon 2 for class II are then allowed 

to hybridize to the specific probes coated on the colour-coded beads [109]. Colour-

coded beads with hybridized amplicons are detected by streptavidin-phycoerythrin 
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in the Luminex™ fluoroanalyzer [109]. A clear advantage of the rSSO-PCR method is 

that it can be automated and easily adapted for high throughput typing, while high 

resolution typing is limited by the high number of probes needed [109]. SBT is the 

most robust method by which high resolution typing can be achieved [109]. Usually it 

starts by amplifying exon 2 and 3 for class I and exon 2 for class II, after which the 

sequencing is performed with sequence-specific primers, DNA polymerase and a 

mixture of deoxynucleotides and the four dideoxynucleotides each labelled with a 

distinct fluorochrome [109]. Following the sequencing reaction, generated DNA 

fragments of different size are separated and identified by capillary electrophoresis 

[109]. The sequence of new alleles can be obtained (which is not the case for the SSP-

PCR and rSSO-PCR methods), but SBT is suffering from cis/trans and phase typing 

ambiguities [109]. Such ambiguities can be resolved by combining different 

techniques or by using additional, group-specific primers [109]. All three methods 

need powerful, user-friendly softwares in order to interpret the raw data and require 

access to an updated HLA allele database [109]. 

 

HLA antibody detection and specificity determination 

The detection of HLA antibodies in patients awaiting an organ transplant is crucial to 

the risk assessment performed on each patient pre-transplantation. HLA antibody 

detection and specificity-determination is either accomplished by the use of T and B 

cell panels from donors well-typed with regard to their HLA phenotype, or by solid 

phase immunoassays (SPI). In the latter, pooled or single HLA antigens are 

coated/bound to a solid surface for example an ELISA plate or a microbead [109]. 
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Prior to the introduction of SPI, patient serum was investigated with regard to the 

presence of HLA antibodies by the use of complement-dependent cytotoxicity (CDC) 

on panels of cells from well characterized donors in terms of their HLA type [109]. 

The term panel reactive antibodies (PRA) refers to the width of reactivity of the 

patient serum; i.e. a serum reacting with 10 of 40 cells in a panel would have a PRA of 

25%. A disadvantage of the cell-based serologic assessment of PRA is the difficulty 

associated with finding a representative cell panel also containing cells from donors 

with rare HLA types known to be present in the population [109]. It is cheap, but 

labour intensive. Detecting DSA with the cell panel suggests a patient at higher risk 

than a patient having antibodies only detected in the SPI, because only antibodies that 

can fix complement and that are present in sufficient amounts will give a positive 

response in the CDC panel [109]. HLA class I antibodies are identifiable by the 

microcytotoxicity assay, but HLA class II antibodies often remain unidentified due to 

the overlapping distribution of MHC class I and II antigens [109]. 

SPI has revolutionized HLA antibody detection and specificity-determination. They 

usually come in three formats. HLA antibody screening assays containing pools of 

different HLA class I and II antigens from multiple individuals are used to detect the 

presence or absence of HLA antibodies in a rapid and specific manner, and do not 

typically provide any information on the HLA specificity of the detected antibodies 

[109, 113]. In the second format single HLA class I or class II haplotypes from a panel 

of well-typed individuals are selected in order to obtain a broad representation of 

HLA antigens [109]. The antibody response in this format has been shown to correlate 

well with crossmatch results [114]. In the third format, single HLA class I or II 

antigens purified from cell lines expressing it are coated on the solid phase surface 

[109]. This format has become a very powerful tool for specificity determination of 
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individual HLA antibodies. A disadvantage is its lack of robustness with inter-lab, 

day-to-day, inter-technician and lot-to-lot variation [109]. As mentioned above 

different platforms can be used in the SPI; ELISA plates, microbeads or glass slides as 

used in an array format. The Luminex™ multiplex platform has become particularly 

popular and offers a high throughput format with a high resolving power based on 

the ability of the fluoroanalyzer to distinguish 100 or more distinct microbeads based 

on their fluorescence. SPI can simultaneously detect and distinguish MHC class I and 

class II antibodies, thus providing information that was previously problematic to 

obtain. The FlowPRA test consists of a pool of microparticle beads that are coated 

with a full HLA class I or class II phenotype, and which can be analyzed in a 

conventional flow cytometer [115, 116]. The percentage of panel-reactive antibodies 

(PRAs) can be determined by calculating the percentage of beads that react positively 

with patient sera. 

The crossmatch test 

Through the introduction of the cytotoxic crossmatch test in the 1960s the hyperacute 

rejection with its rapid and irreversible destruction of the graft could be avoided 

[117]. Hyperacute rejections are therefore rare today. However, also levels of donor-

specific antibodies lower than those detected by the CDC crossmatch can cause acute 

and chronic AMR, so more sensitive crossmatch techniques are currently used in the 

clinic in order to identify patients at risk for immune antibody-mediated graft 

damage [118]. Donor T- and B-cells are used in both the CDC and flow cytometric 

(FC) crossmatch tests in order to detect both class I and class II DSA. 

Crossmatch tests are used primarily for organ transplant candidates to assess the 

suitability of a potential donor. They may also be used for platelet refractory patients 
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and hematopoietic stem cell transplantation candidates with aplastic anaemia who 

may have developed anti-HLA antibodies because of repeated blood transfusions. 

 

Complement-dependent cytotoxicity crossmatch 

The CDC crossmatch is usually performed in a microcytotoxicity format using 

immunoisolated T and B cells from the donor, patient serum, rabbit serum as a source 

of complement, and with readout in a fluorescence microscope following addition of 

the vital dye ethidium bromide and acridine orange [117]. Antibodies specific for 

class I antigens will result in a positive T and B cell CDC crossmatch, while antibodies 
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detection of donor-specific HLA antibodies [109]. It detects IgG antibodies 

irrespective of whether they are complement-fixing or not. Usually a multiplex 

format is used by which T and B cells can be detected by CD3 and CD19 specific 

monoclonal antibodies carrying different fluorochromes, while detecting bound IgG 
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general the strength of the reaction is expressed as the median channel shifts (on a 

linear or logarithmic scale) between the sample and a negative control serum. In 

order to accomplish better accuracy between tests the response can be expressed as 

molecules of equivalent soluble fluorochrome (MESF) by comparing the sample 

fluorescence with that of a standard curve obtained with a set of beads with known 

fluorochrome amounts [109]. 

 

Testing for Abs against non-HLA including anti-endothelial cell antibodies 

As discussed above, antibodies against non-HLA can also cause AMR. Because there 

is no consensus around which antigen is the most important non-HLA, there is no 

standard protocol or test available for detection of all clinically important non-HLA 

antibodies. Besides the commercially available endothelial precursor cell crossmatch 

(described below), there is a Luminex™-based assay available for detection of anti-

MICA antibodies and an ELISA for semi-quantification of AT1R antibodies [119]. 
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Aims of the thesis 

1. To adopt the endothelial precursor cell crossmatch test for detection of antibody-

induced complement factor deposition on EPCs and co-purified lymphocytes by 

multicolour flow cytometry. 

2. To correlate the outcome of the endothelial precursor cell crossmatch in relation 

to the conventional lymphocyte crossmatch, the degree of HLA sensitization and 

transplantation outcome in patients evaluated for living donor kidney 

transplantation. 

3. To assesses the long-term renal graft function in patients with a positive 

endothelial precursor cell crossmatch pre-transplant. 

  



 
 

38 

Aims of the thesis 

1. To adopt the endothelial precursor cell crossmatch test for detection of antibody-

induced complement factor deposition on EPCs and co-purified lymphocytes by 

multicolour flow cytometry. 

2. To correlate the outcome of the endothelial precursor cell crossmatch in relation 

to the conventional lymphocyte crossmatch, the degree of HLA sensitization and 

transplantation outcome in patients evaluated for living donor kidney 

transplantation. 

3. To assesses the long-term renal graft function in patients with a positive 

endothelial precursor cell crossmatch pre-transplant. 

  

 
 

39 

Methodological considerations 

 

This part of the thesis presents additional information and methodological 

considerations regarding some novel experimental procedures used in paper I-III. 

Further experimental details can be found in Materials and Methods for each paper. 

Endothelial precursor cell crossmatch assay 

In the late 1990’s a 10-year old patient at the Tx-center of Karolinska, Huddinge 

unexpectedly lost three renal grafts early after transplantation despite negative 

lymphocyte crossmatch tests before transplantation [120]. The patient was found to 

have anti-endothelial cell antibodies (AECA) in pre- and post-Tx serum samples as 

determined by flow cytometric staining of cultured human umbilical vein endothelial 

cells (HUVEC).  

Fig. 3 Isolation of Tie-2+ EPC from peripheral blood using XM-ONE® kit. 
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This dramatic event was the starting point for the development of routine assay for 

detection of AECA [98]. The key step in this method is the immuno-magnetic 

isolation of Tie-2 positive endothelial precursor cells from the peripheral blood of the 

donor (Fig. 3). 

These cells express a panel of endothelial markers such as von Willebrand factor 

(vWF) and vascular endothelial growth-factor receptors (VEGF R1 and R2) [98]. They 

also express HLA class I and II antigens which is of relevance for the interpretation of 

EPCXM outcome as discussed further below. In addition to EC markers, a 

subpopulation of Tie-2+ cells also expresses the monocytic marker CD14 [121]. The 

Tie-2+ cells constitute ∼ 2% of peripheral blood mononuclear cells (PBMC) and 

display functional capacity in vivo as shown by Nowak et al [122]. Although the Tie-

2+ cells isolated by the commercial kit, XM-ONE® (AbSorber AB, Stockholm, 

Sweden), do express several EC markers (but not all) it is still unknown how well 

they represent the kidney endothelium and whether they display clinically relevant 

antigens [123]. For instance it is not known whether the Tie-2+ cells can be used for 

identification of antibodies directed against known EC targets such as MICA, 

vimentin, collagen V and the angiotensin II type I receptor [124]. Tie-2+ EPC express 

low levels of MICA and it is unclear whether these levels permit detection of those 

antibodies [98]. 

The endothelial crossmatch assay (EPCXM) is performed as described in figure 4a 

(left panel). The identification of Tie-2+ cells in the flow cytometric assay is based on 

forward and side scatter gating as shown in figure 5a. Occasionally, the EPC 

population appears elongated and its position is shifted upwards (Fig 5b). The reason 

for this cell population shift is not clear. Interestingly, in two patients the shift was 

undetectable in serum collected after immunoadsorption. 
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Fig. 4 Schematic description of EPCXM and EPCXM complement assay 

Besides the isolated EPCs, a second population of cells with lower FSC and SSC 

characteristics is co-purified (Fig 5a, indicated with an arrow). These cells are 

lymphocytes (e.g CD3+ T and CD19+ B cells) as described previously [125]. The 

frequencies of co-isolated lymphocytes constitute around 10-20% of the isolated cells. 

Importantly, the Tie-2 antigen is not expressed on lymphocytes [121]. The isolation of 

lymphocytes is Tie-2 independent and can be reduced by additional washing steps 

[125]. For some applications, this rather high number of “unwanted” cells obtained 
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after immuno-magnetic separation can be problematic. However, here in this 

application it is advantageous since it enables simultaneous crossmatching of both 

EPCs and lymphocytes [125]. This finding form an important basis for the work 

described in Paper I as discussed in detail below. 

 

Fig. 5 Identification of EPC by FSC/SSC gating (a) and a shifted EPC population as 

sometimes seen in the FSC/SSC dot plot (b) 

Flow cytometric complement deposition assay 

The lymphocytotoxicity assay developed in the mid 1960’s has been the assay of 

choice ever since for detection of complement-fixing HLA antibodies [117]. The assay 

detects only HLA antibodies with high enough avidity and IgG subclass to induce 

cytolysis. This type of assay read-out may thus result in lack of detection of less 

favorable antibodies unable to fully activate lysis. In particular, anti-EPC antibodies, 

which have been shown to be of predominately IgG2 and IgG4 subclass, may thus be 

missed [126]. 

An alternative strategy to identify complement-fixing antibodies besides cell lysis 

observed under the microscope, is to measure complement fragment deposition by 
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flow cytometry [127]. In this assay, complement factors (e.g C1, C4 and C3) are 

deposited (bound) on the cell surface as a result of initial activation by IgG or IgM 

antibodies. This concept was picked-up by Scornik et al who presented exciting data 

on its potential usefulness in assessment of HLA antibodies in the context of kidney 

transplantation [128]. Apart from these two publications no follow-up studies have to 

our knowledge been performed to further optimize this assay.  

Inspired by the work of Scornik and colleagues we here describe flow cytometric 

measurement of complement deposition on cells isolated with the XM-ONE® kit (Fig. 

4b). Cells were stained with negative and positive control serum, and test serum for 

30 minutes. Thereafter cells were incubated with normal human serum (devoid of 

HLA antibodies) for 20 minutes at 37 °C as the source of complement. It is important 

to choose a serum potent enough to induce sufficient levels of complement 

deposition. We used serum prepared, and stored in aliquots at -70 °C. A new aliquot 

of frozen serum was thawed for each new experiment. We noticed differences in 

activity between different serum donors (data not shown). Screening of serum for 

complement activity can either be performed on a panel of cells from different donors 

or by measurement of complement activity by ELISA [129]. This step is of 

considerable importance for assay standardization before implementation as clinical 

routine test. Another crucial step in the optimization of the assay is the choice of anti-

complement binding antibody. As described in more detail in the Results and 

Discussion section below we found that antibodies specific for C3 fragments were the 

best choice to obtain a sufficient level of staining. 

As shown in paper I, 30-50% of lymphocytes (but not EPCs) were found to be non-

viable (i.e. propidium iodine positive) upon binding to HLA antibodies. Note that 

gating of T and B cells were based on CD3/SSC and CD19/SSC gating including both 
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viable and non-viable cells. As suggested by Spiller, cell lysis can be prevented by 

using complement-active serum lacking the terminal components C5 to C9 [127]. 

The main obstacles that we experienced with EPCXM complement deposition assay 

were i) few B cells after Tie-2+ isolation, ii) high complement factor background 

staining on EPCs and B cells, iii) occasionally undetectable C3 deposition for 

unknown reason(s) even with positive control serum. We do not know whether the 

latter occurs due to technical failures, variability among donor cells regarding 

expression of complement inhibitory factors or lack of the appropriate HLA antigens 

for complement activation. It is, however, advisable to screen the positive control 

serum with alternative techniques such as CDC or the Luminex®-based C1q assay 

[130, 131]. In addition, isolation of cells from HLA typed donors would obviously 

facilitate result interpretation. None of these “confirmatory” analyses were performed 

here (paper I). 

The EPCXM complement deposition assay enable, as described in paper I, 

simultaneous detection of IgG binding and complement factor deposition on the cell 

surface. The IgG binding ratio (MFI test serum/MFI negative serum) was generally 

high using positive control serum. We noticed though that the signal-to-noise ratio 

was increased upon heat inactivation of the serum complement (data not shown). The 

reason for this is not known but one explanation could be that complement proteins 

(e.g C1) partially block the IgG binding by secondary antibodies. Heat inactivation 

may abrogate this blockage and enable proper IgG binding. A similar mechanism has 

been proposed as an explanation for the prozone effect seen in single antigen bead 

assays [132]. 
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Results and discussion 

 

Paper I 

Here in paper I we describe the development of a novel flow cytometric assay for 

determination of complement fixing and non-fixing antibodies. This crossmatch assay 

is based on the use of donor Endothelial Precursor Cells (EPCs) isolated by 

commercially available XM-ONE® kit. Furthermore, T and B cells co-isolated with 

EPC, as described previously [108] were included as a second and third type of donor 

cells. Initial experiments on PBMC stained with CD3 and CD19 formed the basis for 

additional validation of the assay with specific focus on the use of the XM-ONE® kit. 

The initial experiments with PBMC were promising, and supported previously 

published data on the deposition of complement on T cells derived from PBMC [128]. 

Deposition of complement on B cells, which has not been shown previously, was also 

demonstrated. These experiments show that presence of complement fixing HLA 

class II antibodies in patient serum could be detected with this methodological 

approach. However, the level of specific complement deposition was considerably 

lower than on T cells. There was substantially higher background staining on B cells 

than on T cells. It means that on B cells there is less difference in signal strength 

between HLA antibody positive and negative serum samples. High level of IgG 

background staining on B cells is also well documented in the conventional B cell 

crossmatch assay [128]. The presence of Fc-receptors on B cells is thought to 

contribute to this background. Treatment of PBMC, including both T and B cells, with 

the enzyme pronase can reduce this background considerably. It is not known 

whether this could be a potential way to circumvent high background staining for 
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complement factors on B cells. Notably, it has been suggested that treatment with 

pronase may enhance the level of sensitivity for lysis by reducing complement 

regulatory proteins [133, 134]. It may also affect the degree of complement factor 

deposition. Although the use of pronase is beneficial for interpretation of the B cell 

crossmatch assay there are concerns regarding its effect on other cell surface proteins 

apart from CD20 and Fc-receptors [128]. HLA expression and/or structure may also 

be affected by pronase treatment, which could potentially induce incorrect 

crossmatch interpretation [135]. 

Next, we addressed whether EPC and co-purified lymphocytes could be used as 

targets for determination of complement factor deposition. These experiments 

showed that certain anti-complement factor antibodies worked better than others. For 

instance the C1q and C4d antibodies did not result in any clear deposition on 

lymphocytes. Lack of C1q deposition on lymphocytes has previously been shown by 

Watanabe and Scornik [128]. However, they could demonstrate deposition of C4d. 

The discrepancies between our results may lie in the choice of complement factor 

antibodies or other assay differences. In contrast, C3c and C3d antibodies were found 

to give strong signals on EPC T cells and EPCs, with somewhat lower signal on B 

cells. The reason for differences in staining levels between C3c/d and C1q (and C4d) 

may be explained by amplification of C3 signal that occur within the complement 

pathway through the action of the C3 convertase [127]. It is therefore of importance, 

as demonstrated here, to put emphasize on the choice of complement factor 

antibodies, both with regard to clonal origin and specificity, in order to optimize the 

performance of the assay further. 

The deposition of C3 is an early step in the complement pathway which ends in the 

generation of lytic components, which form pores in the cell membrane and disrupt 
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cell integrity [127]. Propidium iodine (PI) is one of several markers that can be used 

for assessment of cell viability [136]. PI efficiently penetrates non-viable cells and bind 

to DNA. We found that lymphocytes were efficiently stained with PI (alongside with 

C3c and C3d deposition) whereas no PI+ EPCs were detected (see figure 2D, paper I) 

despite high levels of C3c and C3d. This suggests that EPCs have the ability to 

withstand the complement-induced lysis. The mechanism behind this lack of EPC 

lysis was not analyzed further in this paper. However, it could at least partly be due 

to high levels of complement inhibitory receptors (e.g. CD46 and CD55) acting 

downstream of C3c/d deposition. Interestingly, human umbilical vein endothelial 

cells (HUVEC) have been shown to express as much as four times more CD59 than 

lymphocytes [133]. It could thus be of interest to determine the level of these 

inhibitory receptors on EPCs and on co-purified lymphocytes in relation to 

complement deposition. Preliminary data from our group indicate that CD55 (but not 

CD 46 nor CD59) is expressed at considerably higher levels (∼ 4-5 times) on EPC 

compared to T cells (M. Alheim, unpublished). However, additional experiments 

need to be performed to verify these initial findings. 

It is common practice as part of validation of new assays to compare with currently 

available techniques. Therefore our next step was to compare the above described 

flow cytometric complement deposition assay with the conventional complement 

dependent cytotoxicity assay (CDC). It is important to emphasize, already at this 

stage, that several differences between CDC and the EPCXM complement assay exists 

including isolation of targets, kinetics and assay read-out. In addition, the source of 

complement in these two assays differs considerably. 

We determined the outcome of the CDC test vs C3d complement deposition on EPCs 

as well as on T and B cells co-isolated with EPC in the XM-ONE® test. In a previous 
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study we had shown that T and B cells isolated with XM-ONE® and T and B cells 

within bulk PBMC express similar levels of HLA class I and II molecules [125]. 

Importantly, there was a correlation between lymphocyte XM (LXM) and XM-ONE® 

LXM. This shows that T and B cells co-purified with XM-ONE® can be used for 

crossmatching. In this study complement factor deposition (C3d) on EPCXM T cells 

and CDC T cell (lysis) correlated; the specificity and sensitivity being 69% and 72%, 

respectively. However, as shown in Table 2 (paper I) discrepant results between T/B 

CDC crossmatch and EPCXM T and B cells were observed. In 41% of the T and/or B 

cells CDC+ crossmatches no C3d+ EPCXM T or B cell could be detected. The reason 

for this high percentage of CDC+/EPCXM- crossmatch tests is not clear but several 

non-mutually exclusive explanations can be envisioned. First, it is well known that 

the CDC assay, in particular the B cell CDC, have a tendency to exhibit a high degree 

of background. We found that in 31% of the CDC+ B cell XMs no C3d deposition or 

IgG binding was observed. Importantly, the majority of those sera were negative for 

HLA IgM which may indicate that a large number of false positive B cell CDC 

crossmatch tests were observed. As discussed above, the signal-to-noise ratio for 

complement deposition on B cells are low which may cause insufficient levels of 

sensitivity, particularly evident with low avidity antibodies. 

The result from paper I show that both T and B cells co-purified during the isolation 

of Tie-2+ EPCs can be used as targets for determination of complement deposition on 

HLA class I and HLA class I+II expressing cells, respectively. More importantly we 

show that the XM-ONE® kit can potentially be used as an assay for determination of 

both HLA and non-HLA antibody-induced complement factor deposition. 

Interestingly, in 30% of CDC T-/B-− crossmatch tests using sera without HLA class I 

or II antibodies resulted in positive C3d staining on EPC. This finding suggests that 
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non-HLA antibodies present in kidney patients are able to induce deposition of 

complement on EPC. However, it would be of interest to formerly verify the presence 

of non-HLA antibodies in those sera by other techniques. Optimally, one would select 

a panel of HLA antibody negative sera with EPC reactivity (IgG or/and IgM) and 

optimize this assay further. In particular it would be of interest to investigate the 

efficacy of various IgG subclasses (IgG1 to 4) on complement deposition [137]. 

Jackson et al has shown that anti-endothelial antibodies consisted predominately of 

complement non-fixing IgG2 and IgG4 subclasses [126]. 

  



 
 

48 

study we had shown that T and B cells isolated with XM-ONE® and T and B cells 

within bulk PBMC express similar levels of HLA class I and II molecules [125]. 

Importantly, there was a correlation between lymphocyte XM (LXM) and XM-ONE® 

LXM. This shows that T and B cells co-purified with XM-ONE® can be used for 

crossmatching. In this study complement factor deposition (C3d) on EPCXM T cells 

and CDC T cell (lysis) correlated; the specificity and sensitivity being 69% and 72%, 

respectively. However, as shown in Table 2 (paper I) discrepant results between T/B 

CDC crossmatch and EPCXM T and B cells were observed. In 41% of the T and/or B 

cells CDC+ crossmatches no C3d+ EPCXM T or B cell could be detected. The reason 

for this high percentage of CDC+/EPCXM- crossmatch tests is not clear but several 

non-mutually exclusive explanations can be envisioned. First, it is well known that 

the CDC assay, in particular the B cell CDC, have a tendency to exhibit a high degree 

of background. We found that in 31% of the CDC+ B cell XMs no C3d deposition or 

IgG binding was observed. Importantly, the majority of those sera were negative for 

HLA IgM which may indicate that a large number of false positive B cell CDC 

crossmatch tests were observed. As discussed above, the signal-to-noise ratio for 

complement deposition on B cells are low which may cause insufficient levels of 

sensitivity, particularly evident with low avidity antibodies. 

The result from paper I show that both T and B cells co-purified during the isolation 

of Tie-2+ EPCs can be used as targets for determination of complement deposition on 

HLA class I and HLA class I+II expressing cells, respectively. More importantly we 

show that the XM-ONE® kit can potentially be used as an assay for determination of 

both HLA and non-HLA antibody-induced complement factor deposition. 

Interestingly, in 30% of CDC T-/B-− crossmatch tests using sera without HLA class I 

or II antibodies resulted in positive C3d staining on EPC. This finding suggests that 

 
 

49 

non-HLA antibodies present in kidney patients are able to induce deposition of 

complement on EPC. However, it would be of interest to formerly verify the presence 

of non-HLA antibodies in those sera by other techniques. Optimally, one would select 

a panel of HLA antibody negative sera with EPC reactivity (IgG or/and IgM) and 

optimize this assay further. In particular it would be of interest to investigate the 

efficacy of various IgG subclasses (IgG1 to 4) on complement deposition [137]. 

Jackson et al has shown that anti-endothelial antibodies consisted predominately of 

complement non-fixing IgG2 and IgG4 subclasses [126]. 

  



 
 

50 

Paper II 

As described in previous sections, the EPCXM assay (XM-ONE®) enables the 

detection of donor reactive HLA and non-HLA antibodies in patients undergoing 

evaluation for living donor (LD) transplantation. Data from a multicenter clinical trial 

published in 2011 showed that EPC antibodies as defined by the XM-ONE® pre-

transplantation are associated with and increased incidence of early rejections and 

increased serum creatinine levels at 3 and 6 months post-Tx [108]. The multicenter 

study was conducted between June 2005 and October 2006 on patients negative for 

lymphocyte crossmatch tests, both CDC and FCXM (when performed). The Tx-center 

at Karolinska, Huddinge and Gothenburg (data presented in paper III) participated in 

that study. Here in paper II we report data from Karolinska Tx-center on the EPCXM 

performed between February 2007 and December 2009. The data presented in this 

paper include all patients irrespective of immunization status, both lymphocyte 

crossmatch negative and positive ones. The patient (n=99) demographics is 

summarized in Table 1 (paper II) and show that the EPCXM+ and EPCXM− groups 

were comparable. A few exceptions can be noted though; i) higher frequencies of 

females were found to be EPCXM+, ii) a higher frequency of EPCXM+ patients 

received treatments pre-Tx compared to EPCXM− patients, and iii) there were 

differences in the immunosuppression protocol between the EPCXM groups. All in 

all 199 EPCXM were performed on 177 patients. Sixty-four out of 199 crossmatches 

(32%) were found to be EPCXM positive (16/64 IgG+, 35/64 IgM+ and 13/64 

IgG+/IgM+). In our study we observed a high frequency (25%) of EPCXM IgM+ 

crossmatches. In the majority of cases the IgM antibodies were not reactive to HLA. 

The significance of IgM antibodies in transplantation is not clear. There are reports 

suggesting that AECA IgM is associated with increased risk of rejection [108]. 
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However, there are also reports unable to find any correlation between presence of 

IgM and increased incidence of rejection [126]. Notably, autoantibodies, 

predominantely IgM, have been suggested to play a role in graft rejection [138]. In 

our study we found that 27% of allo-EPCXM IgM+ were positive also for auto-

EPCXM IgM. 

Standard lymphocyte crossmatch tests (CDC and FCXM) were performed for the 

majority of patients that were crossmatch tested with XM-ONE®. Of patients with 

CDC T−/B− 24% were found to be EPCXM+ (5% IgG+; 15% IgM+; 4% IgG+/IgM+) 

and of patients with negative T and B cell FCXM, 20% were EPCXM+ (0% IgG+; 14% 

IgM+; 6% IgG+/IgM+). In the CDC and FCXM negative group of patients, 18% had 

IgM Abs and 7% both IgG and IgM Abs binding donor EPC. No patient with IgG Ab 

alone was detected. These results show that in 20-25% of the living donor (LD) 

patients with negative in LXM had detectable EPC antibodies. In the multicenter 

study, AECA were found in 24% of patients [108]. Although there may exist 

differences in the patient inclusion criteria and study design comparable results (22-

40%) have been reported by others [126, 139, 140]. Xavier et al found that EPCXM+ 

patients had increased risk of graft rejection. Notably, this study was performed 

retrospectively on third-party EPC which suggests that EC antigens are broadly 

expressed and less donor-specific than HLA. However, data from Zitzner et al show 

that sera reacting against one donor may not necessarily bind to another donor [139]. 

 

Panel reactive HLA class I and II antibodies were determined in 125 of the sera used 

for EPCXM. As summarized in Table 3, paper II, around one-third of the EPCXM+ 

was found in each sensitization group (non-sensitized, sensitized and highly 
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sensitized). For sera without EPCXM IgG reactivity the frequencies for these three 

groups were 76%, 16% and 8%, respectively. There was more sensitized and highly 

sensitized patients in the EPCXM+ than in the EPCXM− group (Fisher exact test: 

p=0.0002). This finding was expected since the Tie-2+ EPC isolated with XM-ONE® 

express HLA class I and II. Notably, the expression levels on Tie-2+ EPC are lower, 

particularly for HLA class II, than on B cells [125]. EPCXM positive reactions may be 

due to HLA and/or non-HLA antibodies. Determination of donor specific anti-HLA 

antibodies in patient sera will obviously give valuable information. Another strategy 

to discriminate between HLA and non-HLA antibodies using XM-ONE® assay is to 

include anti-CD3 and CD19 antibodies in the staining protocol as described above in 

paper I. In case of an EPCXM+ IgM, gating on the co-isolated lymphocyte population 

may provide some guidance for interpretation of results. If the lymphocyte 

population proves to be negative it strongly indicates the presence of IgM+ non-HLA 

antibodies. 

In the multicenter clinical trial in which only patients with negative pre-transplant 

lymphocyte crossmatch tests were included, it was found that EPCXM+ (IgG or IgM) 

patients experienced an increased risk of acute rejections and increased serum 

creatinine [108]. In our study described here we did not find any difference in the 

frequencies of rejections in the EPCXM+ and EPCXM− group of patients. Nor did we 

observe any significantly differences in serum creatinine levels at 1 or 3 months post-

Tx. The reason for this discrepancy is not known. However, a large percentage (58%) 

of the EPCXM+ patients received pre-treatment that may have affected the incidence 

of acute rejections. Interestingly, there were more patients with EPCXM+ and pre-

treated that experienced delayed graft function as compared to the EPCXM− group. 

Another important observation was that the EPCXM+ patients with DSA had higher 
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levels of serum creatinine 1 and 3 month compared to the EPCXM− patients with 

DSA. This finding did not reach statistical significance and should be interpreted with 

caution. One interpretation is that presence of non-HLA antibodies together with 

donor specific HLA antibodies may influence transplantation outcome [141, 142]. 
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Paper III 

The transplantation center at Sahlgrenska University Hospital, Gothenburg, Sweden 

was one of six centers that participated in the multicenter prospective XM-ONE® 

clinical trial in 2005-2006 [108]. Here in paper III we present 4-year follow-up data 

from those fifty-three patients (n=53) that were recruited at Sahlgrenska. Twenty-

eight of the patients received a kidney from a live donor. The majority of patients 

(83%) in the multicenter study were transplanted with a living donor kidney. At 

Sahlgrenska a large part of the patients (47%) were transplanted with a deceased 

donor. The patients included were all negative in the CDC XM which was the 

inclusion criteria for all participating centers in the multicenter study. Here we also 

performed FCXM on 32 out of 53 patients. Twelve percent (12%) were positive in the 

T cell FCXM and 9% in B cell FCXM. 

Seven patients were EPCXM positive (7/53; 13%). Notably, no IgM+ EPCXM were 

observed. This observation is different from the experience of other centers 

participating in the multicenter study. As discussed above in paper II, relatively large 

frequencies (25%) of the patients at Karolinska, Huddinge were EPCXM IgM+. 

Furthermore, 20% of the patients at Northwestern University in Chicago (also a 

participant in the multicenter study) were EPCXM IgM+ [139]. Similar data have been 

reported by Annette Jackson at John Hopkins in Baltimore. The reason for these inter-

center differences could be the disease history (e.g. autoimmune disorders) or 

ethnicity of the patients. The patient group studied here in paper III is small and a 

bigger patient cohort may clarify this issue. 

Although the EPCXM enable detection of donor specific anti-endothelial antibodies 

the assay design do not allow discrimination between HLA antibodies and non-HLA 
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as discussed above. Patients recruited to this study were negative in CDC but 3 of 7 

EPCXM+ patients (43%) were positive in T cell FCXM suggesting the presence of 

donor-specific HLA antibodies (for details see Table 1 in Paper III). This interpretation 

is supported by data showing that a high proportion (57%) of EPCXM+ patients was 

sensitized. The role of complement non-fixing HLA antibodies in graft survival is still 

debated [143-145]. Many Tx-centers do not consider those antibodies as an 

immunological risk factor. Nevertheless, the presence of HLA antibodies in EPCXM+ 

patients complicates the interpretation of data on graft rejection and function in our 

study. 

In this study 5 out 7 EPCXM+ patients experienced rejection within 3 months. Apart 

from one “borderline” they were all classified as acute T cell mediated Type IIA 

rejections. The rejections were diagnosed within one week after Tx. The EPCXM− 

patients (5/46) rejected after approximately 3 weeks. No rejection occurred in the 

EPCXM+ patient group beyond 3 months post-Tx. Concordant results have been 

reported by others [126, 139]. EPCXM+ patients in our study had lower glomerular 

filtration rate (GF) at 6 months but this statistically significant difference was lost after 

1 year and beyond. Serum creatinine levels were increased in the EPCXM+ group at 3 

and 6 month suggestive of perturbed kidney function. However, the serum creatinine 

differences between EPCXM+ and EPCXM− groups were not observed at later time 

points. This is in line with patient data presented by Jackson et al [126]. The reason for 

improved survival and kidney function late after Tx is not clear. One reason could be 

extended or beneficial immunosuppression given to EPCXM+ patients.  
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Concluding remarks 

• Complement factors C3c and C3d, but not C1q nor C4d, were easily detected on 

EPCs and co-purified lymphocytes following incubation with serum containing 

HLA antibodies 

• The amount of C3c deposition and IgG binding on EPCs and T cells, but not on B 

cells, correlated 

• The specificity and sensitivity for C3d deposition on co-purified T cells vs the T 

CDC assay were 69% and 72%, while for B cells the sensitivity was considerably 

lower 

• In our cohort of patients evaluated for living donor kidney transplantation, 32% 

had IgG and/or IgM-binding donor EPCs in their pre-Tx sera 

• Of the patients with negative lymphocyte crossmatch tests, 25% had EPC Abs 

mainly of IgM class not reactive with HLA 

• The pre-Tx EPCXM positive group had significantly more patients with delayed 

graft function 

• It appears as if differences in serum creatinine and glomerular filtration rates 

observed between EPCXM positive and negative groups early on after 

transplantation disappears beyond 6 months post-Tx 
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Future perspectives 

• To validate the clinical significance of the EPCXM adopted for detection of 

complement-fixing anti-EPC antibodies as a risk assessment tool in kidney 

transplantation 

• To assess the ability of the EPCXM to detect non-HLA antibodies induced post-Tx 

and the clinical significance of such antibodies 

• To further develop the EPCXM such that it allows detection of non-HLA 

antibodies in the presence of HLA antibodies 

• To assess whether there is an overlap in terms of antigens recognized by the 

EPCXM and known non-HLA, like MICA/B, AT1R and others 

• To identify the antigens recognized by antibodies giving rise to a positive EPCXM 

• To develop a solid phase immunoassay with antigens identified as targets for 

anti-EPC antibodies 
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