
Digital Filter Design Using Semidefinite
Programming

Examensarbete för kandidatexamen i matematik vid Göteborgs universitet

Kandidatarbete inom civilingenjörsutbildningen vid Chalmers

Jimmy Johansson

Fabian Samuelsson

Moa Samuelsson

Institutionen för matematiska vetenskaper
Chalmers tekniska högskola
Göteborgs universitet
Göteborg 2014

Digital Filter Design Using Semidefinite
Programming

Examensarbete för kandidatexamen i matematik vid Göteborgs universitet

Fabian Samuelsson

Examensarbete för kandidatexamen i tillämpad matematik inom matematikpro-
grammet vid Göteborgs universitet

Jimmy Johansson

Kandidatarbete i matematik inom civilingenjörsprogrammet Teknisk matematik
vid Chalmers

Moa Samuelsson

Handledare: Kin Cheong Sou
Examinator: Maria Roginskaya

Institutionen för matematiska vetenskaper
Chalmers tekniska högskola
Göteborgs universitet
Göteborg 2014

Abstract

This thesis explores an optimization based approach to the design problem of digital

filters. We show how a digital filter in the form of a discrete linear time-invariant

causal system can be characterized by a non-negative trigonometric polynomial, which

in turn can be represented by a positive semidefinite matrix known as Gram matrix

representation. This allows us to utilize the framework of linear conic optimization,

especially semidefinite programming to obtain filters based on given specifications and

optimal with respect to some property of the filter. The optimization is carried out with

respect to minimizing the stopband energy as well as the passband ripple. We cover

both FIR and IIR filters. The model is implemented in MATLAB using the modelling

language CVX and solved using SeDuMi.

Sammanfattning

I den här rapporten presenteras en optimeringsbaserad metod för design av digitala

filter. Vi visar hur filter som beskrivs av diskreta linjära tidsinvarianta kausala system

kan representeras som icke-negativa trigonometriska polynom, vilka i sin tur kan repre-

senteras av positiva semidefinita matriser, s̊a kallade Grammatriser. Det här möjliggör

användadet av linjär konoptimering, speciellt semidefinit programmering för att ta fram

filter baserade p̊a givna specifikationer som är optimala med avseende p̊a n̊agon egenskap

hos filtret. Optimeringen utförs med avseende p̊a att minimera energin i stoppbandet

samt att optimera för ett s̊a platt passband som möjligt. Vi behandlar b̊ade FIR och

IIR filter. Optimeringsmodellen implementeras i MATLAB med hjälp av modellerings-

spr̊aket CVX och löses med hjälp av SeDuMi.

Preface

We would like to thank our supervisor Kin Cheong Sou for his supervision and valuable
comments throughout this project.

During this project, a journal as well as a time log have been kept describing the progress
of the group as well as the individual contributions.

The following lists the individual contributions of each group member:

Jimmy Johansson:

Sections 1, 2, 3.1, 3.3, 4, 5. CVX implementation. TikZ figures.

Fabian Samuelsson:

Sections 1, 4.1, 4.2.2, 6, 7.4, 8. Spectral factorization algorithms. 2D filters.

Moa Samuelsson:

Sections 1, 3.1, 3.2, 7. MATLAB implementation. MATLAB figures. 2D filters.

vi

List of Notation

N the natural numbers, N = {1, 2, 3, . . . }
Z the integers, Z = {. . . ,−2,−1, 0, 1, 2, . . . }
R the real numbers
C the complex numbers
z̄ complex conjugate of z
Re z real part of z
Im z imaginary part of z
arg z argument of z, i.e ϕ if z = reiϕ

log x the natural logarithm of x
degP the degree of the polynomial P
‖v‖2 the Euclidian norm of the vector v
‖x‖∞ the supremum norm of the signal x
Θn

k n× n elementary Toeplitz matrix
Toep(a0, a1, . . . , an) symmetric Toeplitz matrix with diagonals a0, a1, . . . , an
S
n space of symmetric n× n matrices

trA trace of the matrix A
detA determinant of the matrix A
AT transpose of the matrix A

AH hermitian transpose of the matrix A, AH = AT

A � 0 the symmetric matrix A is positive semidefinite
δn Kronecker’s delta
δ(x) Dirac delta function
F(f) Fourier transform of the function f
H(f) Hilbert transform of the function f

Abbreviations

LTI Linear time-invariant
FIR Finite impulse response
IIR Infinite impulse response
BIBO Bounded input bounded output
ROC Region of convergence
DFT Discrete fourier transform
FFT Fast fourier transform
IFFT Inverse fast fourier transform

vii

Contents

1 Introduction 1

1.1 Background . 1
1.2 Aim . 1
1.3 Method . 2
1.4 Basic definitions . 2
1.5 Contents . 2

2 Discrete-time signals and systems 4

2.1 Discrete-time signals . 4
2.2 Linear time-invariant systems . 4

2.2.1 Constant coefficient difference equation systems 8
2.2.2 Stability . 9
2.2.3 Energy . 10

3 Trigonometric polynomials 12

3.1 Trigonometric polynomials . 12
3.2 Gram matrix representation . 14
3.3 Non-negativity on intervals . 16

4 Mathematical optimization 20

4.1 General theory . 20
4.2 Conic optimization and semidefinite programming 21

4.2.1 Duality . 22
4.2.2 SeDuMi . 23

5 Filter optimization 24

5.1 FIR filters . 24
5.1.1 Magnitude optimization . 24
5.1.2 Linear phase filters . 27

5.2 IIR filters . 28

6 Spectral factorization 30

6.1 Method using roots of R(z) . 30
6.2 Kolmogorov’s method . 30

7 Implementation 33

7.1 CVX . 33
7.2 Implementation . 33
7.3 MATLAB function . 37
7.4 Comparison . 38

8 Discussion 40

viii

1 Introduction

1.1 Background

Digital filters are important in signal processing applications including for example averaging,
denoising and anti-aliasing. The idea behind a filter is to let signals of certain frequencies
pass unaffected and suppress signals of unwanted frequencies. One example of a digital filter
is a low-pass filter, that attenuates signals of high frequencies. Figure 1 shows an example of
a signal with high frequency noise and the signal after it is filterated using a low-pass filter.

0 100 200
−2

0

2

Noisy signal

Samp le s

A
m
p
li
t
u
d
e

0 100 200
−2

0

2

F i l trated signal

Samp le s

A
m
p
li
t
u
d
e

Figure 1: Example of noisy signal that is filtrated.

This can for example be utilized for removing high frequency noise in audio and video sig-
nals. The ideal low-pass filter would be designed such that it rejects all signals above a
certain frequency and leaves signals with other frequency components unaffected. The range
of rejected frequencies, [ωs, π], is referred to as the stopband while the range of unaffected
frequencies, [0, ωp], is called the passband. However, an ideal low-pass filter is not physically
realizable as we shall see, and therefore there is a need for design techniques where the filter is
designed to perform as close as possible to given specifications. A desired specification is not
always possible, hence trade-offs between different properties of the filter has to be considered.

In this work we shall consider digital filters that are special cases of discrete linear time-
invariant causal systems. Mathematically, a discrete linear time-invariant causal system can
be described by its transfer function

H(z) =

n∑

k=0

hkz
−k, hk ∈ R, k = 0, 1, . . . , n, (1.1)

where z is a complex number. Evaluated on the unit circle, i.e. z = eiω, ω ∈ [−π, π], the
modulus of the transfer function, |H(eiω)|, determines how the amplitude of signals with
different frequencies are attenuated. Therefore |H(eiω)| is called the amplitude response of
the system [1]. Figure 2 shows the amplitude response of an ideal filter together with a filter
designed such that the deviation of the amplitude response is bounded by εp and εs in the
passband and stopband respectively.

1.2 Aim

The aim of this project is to develop an optimization based algorithm for determining the
coefficients, h0, h1, . . . , hn, of the transfer function, H, for a digital low-pass filter based on
given specifications. We formulate this optimization problem as:

minimize f(H)

subject to
∣
∣|H(eiω)| − 1

∣
∣ ≤ εp, ∀ω ∈ [0, ωp],

|H(eiω)| ≤ 1 + εp, ∀ω ∈ [ωp, ωs],

|H(eiω)| ≤ εs, ∀ω ∈ [ωs, π],

(1.2)

where f(H) denotes some quantitative property of H that we want to minimize.

1

Freq uency

M
a
g
n
it
u
d
e

ω p ω s π
0

ε s

1 − ε p

1

1 + ε p

Figure 2: Example of an ideal (black) and designed (blue) low-pass filter with frequency
response specifications (red).

1.3 Method

The algorithm is implemented in MATLAB as a function where design specifications are
provided by the user and the computed filter coefficients are returned if possible, i.e., the
corresponding problem is feasible and can be solved in an efficient manner.

The application of semidefinite programming to digital filters is due to a characterisation
of the transfer function in terms of what is known as trigonometric polynomials as described
in Section 3. We will show that the square of the frequency response of a finite impulse
response digital filter can be expressed as a positive trigonometric polynomial. A positive
trigonometric polynomial can in turn be characterized by a semidefinite matrix called the
Gram matrix [2]. The semidefinite program is based on finding optimal Gram matrices such
that the constraints in (1.2) are satisfied.

1.4 Basic definitions

Definition 1.1. The space of real symmetric n×n matrices will be referred to as Sn. Given a
symmetric matrix, Q ∈ S

n, we say that Q is positive semidefinite if vTQv ≥ 0 for all v ∈ R
n.

The notation Q � 0 will be used to denote positive semidefinite matrices.

In this work we shall frequently encounter a generalization of the polynomials known as
Laurent polynomials.

Definition 1.2. An expression in the form

a−mz−m + · · ·+ a−1z
−1 + a0 + a1z + · · ·+ anz

n,

with indeterminate z ∈ C and where a−m, . . . , a−1, a0, a1, . . . , an are constant complex coef-
ficients, is called a Laurent polynomial [3].

If A is a Laurent polynomial, then P (z) = zmA(z) is a polynomial of degree n + m. Note
that A and P share the same zeros on C\{0}. In this work we shall encounter two important
cases of Laurent polynomials known as causal polynomials and trigonometric polynomials.

1.5 Contents

This work is divided into the following parts.
Section 2 presents the necessary theory to understand the frequency description of discrete-

time signals and systems. The outline of is largely inspired by [4, pp. 26-36], but it has been
modified to cover discrete-time signal and systems.

2

Section 3 covers the theory of trigonometric polynomials and is based on [2]. It will
be shown that the amplitude response of a filter can be represented by a trigonometric
polynomial and that a transfer function can be obtained through a process known as spectral
factorization.

In Section 4, basic mathematical optimization theory is presented and semidefinite pro-
gramming is introduced in the context of linear cone programming.

Section 5 presents the optimization model for the filter design problem utilizing the theory
established from the previous sections. The optimization is carried out with respect to the
stopband energy as described in [2], but we will also cover ripple minimizaion in the passband.

Section 6 covers the numerical methods on spectral factorization needed for obtaining the
filter coefficients from the amplitude response, using theory presented in [5] and [6].

In Section 7, the MATLAB implementation of the results from Section 5 is presented
together with the results from some filters designed using the algorithm.

3

2 Discrete-time signals and systems

In this section, we present the mathematical treatment on discrete-time signals and systems.
Notions such as the frequency content of a signal shall be made precise, and we will derive the
transfer function from the fundamental properties of linear systems and see how it determines
the output of the system.

2.1 Discrete-time signals

Definition 2.1. A discrete-time signal can be regarded as a function Z → C. The value of
a signal x at time n will be referred to as xn.

In practice, a signal is in general real-valued, but allowing complex values allows us to utilize
the relation between the complex exponentials and the trigonometric functions. One would
also expect a signal to have a beginning, i.e. it takes the value 0 for all times less than some
given time. As a simple convention we will define this time as n = 0. For reasons that will
become apparent later, we shall refer to such signals as causal. A visual representation of
two signals is shown in Figure 3.

For signals that are bounded, i.e. xn ≤ M for all n and some constant M , we define the
supremum norm,

‖x‖∞ = max
n

|xn|.

Equipped with the supremum norm, the space of bounded signals becomes a normed space.

(a)

n

xn

(b)

n

yn

Figure 3: An example of a signal, x, (a), and its causal counterpart, y, (b).

2.2 Linear time-invariant systems

The mathematical formulation of filters is made through operators called linear systems.

Definition 2.2. A linear system, L, is a linear operator on the space of signals, that to each
signal x, called the input, maps a signal L(x), called the output. Linearity means that for
arbitrary signals x and y and scalars α and β,

L(αx+ βy) = αL(x) + βL(y).

This property is also known as the superposition principle.

An important class of linear systems are those that, given a bounded signal, produces a
bounded output. This property is known as stability.†

†Stability is commonly referred to as bounded input bounded output stability (BIBO) in the literature [1].

4

Definition 2.3. A linear system, L, is said to be stable if there exists a constant C such
that for an arbitrary bounded signal x,

‖L(x)‖∞ ≤ C‖x‖∞.

Stability is crucial in both practice and theory. For example, one expects the output of a
filter to be bounded given any bounded input. For theoretical purposes, stability will be used
as it can be shown that stability of a system, L, is equivalent to L being continuous.

Theorem 2.4. A linear system, L, is stable if and only if L is a continuous operator.

Proof. Suppose that L is stable and let (xk) be a sequence of bounded signals such that
xk → x, k → ∞ for some bounded signal x, i.e. ‖xk − x‖∞ → 0, k → ∞. From the linearity
and the fact that L is stable, it follows that there exists a constant C such that

‖L(xk)− L(x)‖∞ = ‖L(xk − x)‖∞ ≤ C‖xk − x‖∞,

hence L(xk) → L(x), k → ∞, i.e. L is continuous. We shall not make direct use of the
reverse implication, but a proof can be found in e.g. [7, p. 27].

Given a stable system, L, continuity gives that the linearity can be extended to infinite linear
combinations of signals x1, x2, x3, . . . :

L

(
∞∑

k=0

αkx
k

)

= L

(

lim
n→∞

n∑

k=0

αkx
k

)

= lim
n→∞

L

(
n∑

k=0

αkx
k

)

=

∞∑

k=0

αkL(x
k).

For convenience, the notation xn for the signal x will frequently be used. This has the
advantage that a signal, x, shifted in time by k can be expressed as xn−k. Consequently the
output of such a signal will be written as L(xn−k).

†

Definition 2.5. Let yn = L(xn). L is said to be time-invariant if yn−k = L(xn−k) for all k
and signals x.

In words, time-invariance states that the properties of the system does not change with time.

Definition 2.6. The unit impulse, δn, is the signal that takes the value 1 for n = 0 and zero
otherwise. The impulse response, h, of L is defined as hn = L(δn). An example of a causal
impulse response is illustrated in Figure 4.

n

hn

Figure 4: Example of a causal impulse response, h.

We will show that a linear time-invariant (LTI) system is completely determined by its
impulse response. In other words, if the impulse response of a system is known, then the
output, y, for every input, x, can be determined. First we observe that the value of a signal,
x, at time n is given by

xn =
∞∑

k=−∞

xkδn−k

†Compare with the common notation of f(x) for the function f . The function f shifted by x0 can then
be expressed as f(x− x0).

5

since δn−k = 0 except for k = n. This can be interpreted as x being a linear combination of
shifted unit impulses with the values of x as weights. Assuming that L is stable, the output,
y, at time n is then given by

yn = L(xn) = L

(
∞∑

k=−∞

xkδn−k

)

=

∞∑

k=−∞

xkL(δn−k) =

∞∑

k=−∞

xkhn−k.

The third equality follows from the linearity and continuity of L and the last from the fact
that L is time-invariant. The last expression is known as the convolution of x and h and
is usually denoted by x ∗ h. Note that convolution is commutative, i.e. x ∗ h = h ∗ x. We
formulate the preceding result in the following theorem.

Theorem 2.7. If L is an LTI system, then

L(x) = h ∗ x (2.1)

for all inputs x.

The impulse response is closely related to what is called the transfer function of an LTI
system, which we will define next.

Definition 2.8. Let x be a signal. The Z-transform of x, denoted by X, is defined as

X(z) =

∞∑

k=−∞

xkz
−k,

for complex numbers, z.

Definition 2.9. Let L be an LTI system with impulse response h. The Z-transform of h,
denoted by H, is called the transfer function of L and is given by

H(z) =

∞∑

k=−∞

hkz
−k.

The transfer function arises naturally in what is called the eigenfunction property for LTI
systems.

Theorem 2.10. Let L be an LTI system with transfer function H. Signals of the form zn,
z ∈ C, are eigenfunctions of L with eigenvalue H(z).

Proof. Using the signal zn as input gives

L(zn) =

∞∑

k=−∞

zn−khk = zn
∞∑

k=−∞

hkz
−k = H(z)zn.

An important special case of zn are the complex exponentials eiωn, which can be used to
model sinusoidal signals. For example, the output of the signal sinωn is given by

L(sinωn) = ImL(eiωn) = ImH(eiω)eiωn = Im |H(eiω)|ei(ωn+φ)

= |H(eiω)| sin(ωn+ φ) where φ = argH(eiω).
(2.2)

We see that the output of a sinusoidal signal is another sinusoidal signal of equal frequency
but with different phase and amplitude differing by the factor |H(eiω)|. In other words, the
modulus of the transfer function evaluated on the unit circle determines how the amplitude
of sinusoidal signals of different frequencies are affected. Viewed as a function of ω, H(eiω) is
called the frequency response of L, while |H(eiω)| is known as the amplitude response and the
phase characteristics argH(eiω) is known as the phase response [8]. For a signal consisting
of a linear combination of sinusoidal signals, the superposition principle gives that an LTI

6

system will act on each separate signal amplifying or suppressing the amplitude of each signal
according to the value of the amplitude response.

In equation (2.2) it was implied that the signal had been active since −∞. It turns out
that this idea can be used even if this is not the case. What remains is to show how an LTI
system acts on arbitrary signals, which in general are not sinusoidal or even periodic. The
idea lies in decomposing the input into eigenfunctions of the system and utilize the linearity
of the system. A formal exposition of this possibility is based on the following theorem.

Theorem 2.11. (Inverse Z-transform) An arbitrary signal, x, can be expressed as

xn =
1

2πi

∮

C

X(z)zn−1 dz

where X is the Z-transform of x and C is a closed curve that encircles the origin and is
contained within the region of convergence of X.

Proof. Since X is an analytic function, the result follows immediately from a generalization
of Cauchy’s integral formula.

If the region of convergence includes the unit circle, change of variables gives

xn =
1

2π

∫ π

−π

X(eiω)eiωn dω. (2.3)

We see that an arbitrary signal can be represented as an infinite superposition of complex
exponentials with frequencies ranging from −π to π with X(eiω) determining the amplitude
of each frequency component. We may say that X(eiω) describes the frequency content of
the signal x. We now show how this is used in generalizing (2.2) to arbitrary signals. Let x
be the input for a linear system with transfer function H. The Z-transform of the relation
in equation (2.1) gives

Y (z) =
∞∑

n=−∞

ynz
−n =

∞∑

n=−∞

∞∑

k=−∞

xkhn−kz
−n =

∞∑

k=−∞

xkz
−k

∞∑

n=−∞

hn−kz
−(n−k)

=

∞∑

k=−∞

xkz
−k

∞∑

n=−∞

hnz
−n = H(z)X(z),

hence convolution of signals correspond to multiplication of the transforms. Using this and
expressing y as in equation (2.3) gives

yn =
1

2π

∫ π

−π

Y (eiω)eiωn dω =
1

2π

∫ π

−π

H(eiω)X(eiω)eiωn dω,

hence we see that, just as in (2.2), the transfer function determines the effect on each fre-
quency.

For many purposes, e.g. real-time systems, it is essential that the output of a system at time
n does not depend on future values of the input. This motivates the following definition.

Definition 2.12. An LTI system L is said to be causal if the output, yn, only depends on
the input values xk for k ≤ n.

The following theorem provides a necessary and sufficient condition for an LTI system to be
causal in term of its impulse response.

Theorem 2.13. An LTI system, L, is causal if and only if its impulse response is causal,
i.e. hn = 0 for all n < 0.

Proof. According to equation (2.1), the value of the output, y, at time n is given by

yn =
∞∑

k=−∞

hkxn−k.

It follows that yn is independent of xk, k > n, if and only if hn = 0 for n < 0.

7

Given a causal signal, x, and a causal system with impulse response h, the following formula
gives the value of the output, y, at time n:

yn =

n∑

k=0

hkxn−k. (2.4)

Example 2.14. The ideal low-pass filter rejects all signals above a certain frequency. De-
noting this frequency as ωs, the transfer function is given by

H(eiω) =

{

1, |ω| < ωs,

0, ωs ≤ |ω| ≤ π.

Using (2.3), the impulse response is given by

hn =
1

2π

∫ ωs

−ωs

eiωn dω =
sinωsn

πn
.

Since hn = 0 does not hold for all n < 0, the system is not causal, hence a causal ideal
low-pass filter does not exist.

LTI systems can be categorized into finite impulse response (FIR) and infinite impulse re-
sponse (IIR) systems, the difference being that the impulse response for the FIR system has
finitely many non-zero values. In practice, FIR and IIR system have their own advantages
and disadvantages as we shall see.

2.2.1 Constant coefficient difference equation systems

Given an FIR system, the output can be computed using (2.4), i.e. the constant coefficient
difference equation

yk = h0xk + h1xk−1 + · · ·+ hnxk−n.

It is easily verified that any constant coefficient difference equation of this form constitute
a FIR system and that the impulse response is given by the coefficients h0, h1, . . . , hn. The
transfer function is given by the Laurent polynomial

H(z) =

n∑

k=0

hkz
−k,

hence we shall refer to Laurent polynomials of this kind as causal polynomials.

Example 2.15. A simple example of a FIR low-pass filter is given by

yk =
xk + xk−1

2
.

The amplitude response is given by

|H(eiω)| =
√

1

2
+

1

2
cosω

and is illustrated in Figure 5. Although very simple, it is clear that the filter tends to suppress
signals of higher frequencies.

For IIR filters, computing the output using (2.4) is not practical as the number of operations
increases for each time step. It may not even be possible as there might not exist a closed
form expression for h. In this work, we will work with systems of the form

b0yk + b1yk−1 + · · ·+ bmyk−m = a0xk + a1xk−1 + · · ·+ alxk−l

with initial conditions yn = 0 for n < 0. The transfer function can be computed by taking
the Z-transform of both sides:

(b0 + b1z
−1 + · · ·+ bmz−m)Y (z) = (a0 + a1z

−1 + · · ·+ alz
−l)X(z),

8

0 π

2
π

0

1
2

1

Freq uency

M
a
g
n
it
u
d
e

Figure 5: Amplitude response for the filter yk = (xk + xk−1)/2.

thus we end up with the rational transfer function

H(z) =

∑l
i=0 aiz

−i

∑m
j=0 bjz

−j
.

IIR filters have the advantage over FIR filters that they can be designed give the same
magnitude performance as FIR filters but with fewer parameters [2, p. 211]. However, the
issue of ensuring stability arises when designing IIR filters, something that is not present in
the FIR case.

2.2.2 Stability

We continue the theory on the stability concept first presented in Section 2.1.

Theorem 2.16. A causal LTI system, L, is stable if and only if its impulse response, h,
satisfies

∞∑

k=0

|hk| < ∞. (2.5)

Proof. Assume that h satisfies (2.5) and let x be a bounded input with ‖x‖∞ = C for some
constant C.

|yn| ≤
n∑

k=0

|hk||xn−k| ≤ C

∞∑

k=0

|hk|

for all n, hence y is bounded. To prove the converse statement, we assume that L is stable.
Let

xn =

{
h−n

|h−n|
, h−n 6= 0,

0, h−n = 0.

Then

y0 =

∞∑

k=0

hkx−k =

∞∑

k=0

|hk| ≤ ‖y‖∞

since y is bounded, hence (2.5) holds.

As FIR filters have impulse responses with finitely many non-zero values, it immediately
follows that FIR filters are inherently stable.

Stability can also be expressed in terms of the transfer function.

9

Theorem 2.17. An LTI system is stable if and only if its transfer function converges abso-
lutely on the unit circle.

Proof. Let H be the transfer function of an LTI system. If H converges absolutely on the
unit circle, (2.5) is satisfied since

∞∑

k=0

|hk| =
∞∑

k=0

|hke
−iωn|.

Perhaps the most useful sufficient criterion for stability is given by the following theorem.

Theorem 2.18. An LTI system is stable if all poles of its transfer function are contained
inside the unit circle.

Proof. Let L be an LTI system with transfer function H and let z0 be the pole with the
largest magnitude. H is absolutely convergent for all z with |z| > |z0|, hence the region
of convergence includes the unit circle and L is stable. An illustration of the region of
convergence (ROC) is displayed in Figure 6.

ROC

Figure 6: The transfer function of an LTI system is absolutely convergent for all z outside
the circle determined by its outermost pole.

2.2.3 Energy

An important quantity concerning signals is energy. Basically, the energy of a signal is
proportional to the physical concept of energy determined by the application of the signal.

Definition 2.19. The energy of a signal x is defined as

E =

∞∑

k=0

|xk|2

provided the sum exists.

It turns out that there is a close relation between the energy of a signal and its frequency
content.

Theorem 2.20. Let x be a signal and X its Z-transform. Then

E =
1

2π

∫ π

−π

|X(eiω)|2 dω.

10

Proof. Using the relation (2.3), it results that

∞∑

k=0

|xk|2 =

∞∑

k=0

1

4π2

∫ π

−π

X(eiω)eiωk dω

∫ π

−π

X(eiω′)e−iω′k dω′

=
1

2π

∫ π

−π

X(eiω)

∫ π

−π

X(eiω′)
1

2π

∞∑

k=0

ei(ω−ω′)kdω′dω

=
1

2π

∫ π

−π

X(eiω)

∫ π

−π

X(eiω′)δ(ω − ω′)dω′dω

=
1

2π

∫ π

−π

|X(eiω)|2dω.

Given an LTI system with transfer function H, we define the stopband energy, Es, as

Es =
1

π

∫ π

ωs

|H(eiω)|2 dω. (2.6)

The stopband energy is a common measure of the performance of a low-pass filter [2], which
will be utilized in the optimization applications.

11

3 Trigonometric polynomials

Consider the transfer function, H, for a causal system,

H(z) =

n∑

k=0

hkz
−k, hk ∈ R, k = 0, 1, . . . , n,

and define a function, R, as R(z) = H(z)H(z−1). Since the square of the amplitude response
is given by

|H(eiω)|2 = H(eiω)H(eiω) = H(eiω)H(e−iω),

R(z) = |H(z)|2 on the unit circle, i.e. when z = eiω, ω ∈ [−π, π]. The expression for R is
given by

R(z) =

n∑

k=−n

rkz
−k,

where r−k = rk and

rk =
n∑

m=k

hm−khm, k = 0, 1. . . . , n. (3.1)

R is known as a trigonometric polynomial [2], which will be the topic of this section. The
main theorem will be the Riesz-Fejér spectral factorization theorem, which states that a
trigonometric polynomial that is non-negative on the unit circle can be factorized as R(z) =
H(z)H(z−1), where H is a causal polynomial. In terms of linear systems, it results that,
given an amplitude response, there exists a corresponding transfer function, which can be
obtained through spectral factorization.

For purposes related to optimization, we shall cover a representation of non-negative
trigonometric polynomials known as the Gram matrix representation as well as establish
conditions for trigonometric polynomials that are non-negative on intervals.

3.1 Trigonometric polynomials

We will begin with the basic concepts of trigonometric polynomials. For completeness we
will take a more general approach and not restrict ourselves with the case of the coefficients,
rk, k = 0, 1, . . . , n, being real.

Definition 3.1. A trigonometric polynomial of degree n is defined as

R(z) =

n∑

k=−n

rkz
−k r−k = r̄k, rk ∈ C, k = 0, 1, . . . , n, z ∈ C. (3.2)

Since r−k = r̄k, we can write R in (3.2) as

R(z) = r0 +

n∑

k=1

(rkz
−k + r̄kz

k). (3.3)

On the unit circle, we obtain

R(eiω) = r0 +
n∑

k=1

|rk|(eiϕke−ikω + e−iϕkeikω)

= r0 + 2
n∑

k=1

|rk|
ei(kω−ϕk) + e−i(kω−ϕk)

2
︸ ︷︷ ︸

=cos(kω−ϕk)

= r0 + 2

n∑

k=1

ak cos kω + bk sin kω,

12

thus explaining the name trigonometric polynomial. When the coefficients, rk, k = 0, 1, . . . , n,
are real, the trigonometric polynomial, R, will only consist of cosine terms with ak = rk.

Before we proceed with the Riesz-Fejér spectral factorization theorem, we shall make two
useful observations. First, we note that

R(1/z̄) =

n∑

k=−n

rkz̄k =

n∑

k=−n

r̄kz
k =

n∑

k=−n

r−kz
k =

n∑

k=−n

rkz
−k = R(z), (3.4)

hence if z is a zero of R, then so is 1/z̄. The relationship between 1/z̄ and z is illustrated in
Figure 7. We shall refer to 1/z̄ as the unit circle mirror of z.

z

1/z̄

Figure 7: z and its unit circle mirror 1/z̄.

Secondly, consider the causal polynomial

H(z) =

n∑

k=0

hkz
−k, (3.5)

and define

H̄(z) =
n∑

k=0

h̄kz
−k. (3.6)

Then, evaluated on the unit circle,

H̄(e−iω) =

n∑

k=0

h̄ke
ikω =

n∑

k=0

hke−ikω = H(eiω). (3.7)

Theorem 3.2. (Riesz-Fejér spectral factorization theorem) A trigonometric trigonometric
polynomial, R, defined as in (3.2) is non-negative on the unit circle if and only if R can be
expressed as

R(z) = H(z)H̄(z−1), (3.8)

where H, called the spectral factor of R, is a causal polynomial, (3.5), and H̄ is defined as in
(3.6).

Proof. (⇐) We have that
R(z) = H(z)H̄(z−1),

and by equation (3.7) we get that

R(z) = H(z)H(z) = |H(z)|2,

hence R is non-negative on the unit circle.

13

(⇒) Observe that znR(z) is a polynomial of degree 2n, which can be factored into a product
of 2n monomials. Recall from equation (3.4), that if z is a zero of R, then so is 1/z̄. Therefore
we propose that R can be factorized as

R(z) = cz−n
n∏

k=1

(z − zk)(z − 1/z̄k) (3.9)

for some constant c. However, since 1/z̄ = z for z on the unit circle, equation (3.9) is valid
if and only if the zeros on the unit circle have even multiplicities. To show that this is the
case, assume that z0 = eiω0 is a zero on the unit circle of multiplicity m and express R as a
power series about z0:

R(z) =

∞∑

k=m

ck(z − z0)
k.

It follows that
dn

dωn
R(eiω) =

{

acn, n = m,

0, n < m,

for some constant a. From the taylor expansion for R(eiω) around ω0 it follows that R(eiω)
changes sign about ω0 unless m is even. This contradicts the non-negativity condition.

Factoring out −z/z̄k, for k = 1, 2, . . . , n, from the second parenthesis in (3.9), it results
that

R(z) = d
n∏

k=1

(z − zk)(z
−1 − z̄k) (3.10)

where d is given by

d = c

n∏

k=1

−1

z̄k
.

By evaluating (3.10) on the unit circle, it follows that d ≥ 0 since, on the unit circle, R is
non-negativea and (z − zk)(z

−1 − z̄k) = |z − zk|2. By letting

H(z) =
√
d

n∏

k=1

(z − zk), (3.11)

it results that R(z) = H(z)H̄(z−1).

For a non-negative trigonometric polynomial with real coefficients, we observe that if z is a
zero, then so is z̄. Hence the spectral factor, H, consists of pairs of the form (z − zk)(z −
z̄k) and therefore has real coefficients. We have therefore shown that given an amplitude
response, there exists a corresponding transfer function given by the spectral factor, H, of
R(z) = |H(z)|2. The above proof provides a method of constructing the transfer function
corresponding to a given amplitude response, namely through (3.11). The factorization is
not unique since H may involve zeros both inside or outside the unit circle. However, for
stability purposes, we shall exclusively deal with the factorization involving the zeros inside
or on the unit circle. This factorization is known as the minimum phase system [8].

3.2 Gram matrix representation

Every trigonometric polynomial R of degree n defined as in (3.2) can be represented as

R(z) = ζTn (z
−1) ·Q · ζn(z), (3.12)

where ζTn (z) is the canonical basis
[
1 z z2 . . . zn

]T
and Q is a Hermitian matrix called

the Gram matrix, see definition 3.13. We denote G(R) the set of all Gram matrices associated
with R(z).

14

Definition 3.3. A Hermitian matrix Q is a square matrix where elements

qij = qji ∀ i,j q ∈ C (3.13)

or
Q = QT

(3.14)

Example 3.4. Consider the trigonometric polynomial R of degree 2 with real coefficients
rk. Then

R(z) =
[
1 z−1 z−2

]





q00 q01 q02
q10 q11 q12
q20 q21 q22









1
z
z2





is equal to

q20z
−2 + q10z

−1 + q21z
−1 + q00 + q11 + q22 + q01z + q12z + q02z

2

Identify the coefficients to

R(z) = r2z
−2 + r1z

−1 + r0 + r1z + r2z
2,

using (3.13), gives
r0 = q00 + q11 + q22
r1 = q01 + q12
r2 = q02

We see that rk, in this case, is equal to the sum of the k:th diagonal, which will be the
case in general.

Definition 3.5. A matrix where each diagonal has constant entries, i.e.












a0 a1 a2 . . . an

a−1 a0 a1
. . .

...

a−2 a−1 a0
. . . a2

...
. . .

. . .
. . . a1

a−n . . . a−2 a−1 a0












is called a Toeplitz matrix. The special case when the elements of the k:th diagonal is 1 and
the others are 0 is refered to as the elementary Toeplitz matrix and is denoted Θn

k .

Example 3.6.

Θ3
0 =





1 0 0
0 1 0
0 0 1



 Θ3
1 =





0 1 0
0 0 1
0 0 0



 Θ3
2 =





0 0 1
0 0 0
0 0 0





Theorem 3.7. For any trigonometric polynomial R ∈ C and some Q ∈ G(R),

rk = tr[ΘkQ], (3.15)

where Θk is the elementary Toeplitz matrix and tr[ΘkQ] is the trace of the matrix product.

Proof. We know from (3.12) that

R(z) = ζT (z−1) ·Q · ζ(z).

Since the trace is invariant for cyclic permutations, i.e. tr[ABC] = tr[CAB] where A,B and
C are matrices, we have that

tr[ζT (z−1) ·Q · ζ(z)] = tr[ζ(z) · ζT (z−1) ·Q].

15

ζ(z) · ζT (z−1) =








1
z
...
zn








[
1 z−1 . . . z−n

]
=









1 z−1 . . . z−n

z 1
. . . z−n+1

...
. . .

. . .
...

zn zn−1 . . . 1









=
n∑

k=−n

Θkz
−k. (3.16)

We get

R(z) =

n∑

k=−n

tr[ΘkQ]z−k

hence
rk = tr[ΘkQ]

A causal polynomial can be represented asH(z) = hT ζ(z−1), where h =
[
h0 h1 . . . hn

]T

contains the coefficients of H.

Theorem 3.8. A trigonometric polynomial R of degree n is non-negative on the unit circle
if and only if there exists a positive semidefinite matrix Q ∈ G(R) such that rk = tr[ΘkQ].

Proof. (⇐) If there exists a Q � 0, that is vTQv ≥ 0 ∀v and v is a vector, such that
rk = tr[ΘkQ], then we have

R(eiω) =
[
1 e−iω . . . e−inω

]
·Q ·








1
eiω

...
einω







= ζH(eiω) ·Q · ζ(eiω) ≥ 0

where ζH is the complex transpose of ζ.
(⇒) If R is non-negative, then from the spectral factorization (Thm 3.2) we have that

R(z) = H(z)H̄(z−1) = hT ζ(z−1) · hHζ(z) = ζ(z−1) · hhH · ζ(z).

Hence
Q = hhH � 0

is a positive semidefinite Gram matrix of rank 1 associated with R.

3.3 Non-negativity on intervals

We now turn to trigonometric polynomials with real coefficients that are non-negative on
intervals on the unit circle. Although the square of an amplitude response for a causal LTI
system is given by a trigonometric polynomial that is non-negative on the unit circle, the need
for trigonometric polynomials that are non-negative on intervals are essential for expressing
the constraints of the filter design problem as will be shown in Section 5.

First we will prove a general theorem that polynomials that are non-negative on intervals
can be expressed as a weighted sum of squares of two polynomials. This theorem is then
generalized to include trigonometric polynomials that are non-negative on intervals on the
unit circle. The proofs of these results rely on a transformation between intervals of the
unit circle and the real axis, which we will discuss first. For z = eiω, ω ∈ [0, π], define the
transformation

x =
z + z−1

2
= cosω. (3.17)

Note that (3.17) is a bijective mapping between [0, π] and [−1, 1]. For non-negative integers
k, define

Tk(x) =
zk + z−k

2
. (3.18)

16

To express Tk in terms of x we observe that

zk+1 + z−(k+1) = (z + z−1)(zk + z−k)− (zk−1 + z−(k−1)).

Therefore the recurrence relation

Tk+1(x) = 2xTk(x)− Tk−1(x), k ∈ N,

holds. Using (3.18), we obtain T0(x) = 1 and T1(x) = x. Inductively it results that Tk,
k = 0, 1, . . . are polynomials of degree k. In the literature, Tk, k = 0, 1, . . . are known as
Chebyshev polynomials of the first kind [9]. From the transformation (3.17), we obtain a
correspondence between polynomials with real coefficients and trigonometric polynomials. If
P is a polynomial with real coefficients, then R defined as R(z) = P (x), x = (z + z−1)/2, is
a trigonometric polynomial. If P (x) ≥ 0 for x ∈ [−1, 1], then R is non-negative on the unit
circle.

Theorem 3.9. Let P be a polynomial of degree 2n, n ∈ N, such that P (x) ≥ 0 for all
x ∈ [a, b]. Then P can be expressed as

P (x) = F (x)2 + (x− a)(b− x)G(x)2,

where F and G are polynomials with degF ≤ n and degG ≤ n− 1.

Proof. First we assume that [a, b] = [−1, 1], hence we want to prove that

P (x) = F (x)2 + (1− x2)G(x)2. (3.19)

Using the transformation x = (z + z−1)/2 we define R as in the previous paragraph, R(z) =
P (x). Observe that R is a trigonometric polynomial that is non-negative on the unit circle
since P is non-negative on [−1, 1]. By Theorem (3.2), there exists a causal polynomial, H,
such that R(z) = H(z)H(z−1). Relabelling, H can be written as

H(z) =

2n∑

k=0

hkz
−k = z−n

2n∑

k=0

hkz
−(k−n) = z−n

n∑

k=−n

ckz
−k

= z−n
n∑

k=−n

(ak + bk)z
−k = z−n(A(z) +B(z)),

where A and B are Laurent polynomials with coefficients satisfying a−k = ak and b−k = −bk.
This is well defined since the system

ck = ak + bk

c−k = ak − bk

is consistent. It follows that A(z−1) = A(z) while B(z−1) = −B(z). R can now be expressed
as

R(z) = H(z)H(z−1) = A(z)2 −B(z)2. (3.20)

Returning to x, we obtain, using (3.18),

A(z) = a0 + 2

n∑

k=0

ak
zk + z−k

2
= a0 + 2

n∑

k=0

akTk(x) = F (x),

where F is a polynomial with degF ≤ n. For B we factor out (z−1 − z) from (z−k − zk) and
note that the quotient is a trigonometric polynomial.

B(z) =
n∑

k=1

bk(z
−k − zk)

= (z−1 − z)
n∑

k=1

bk(z
−k+1 + · · ·+ zk−1)

=
z−1 − z

2
G(x),

17

where G is a polynomial with degG ≤ n− 1. Since

(
z−1 − z

2

)2

=

(
z−1 + z

2

)2

− 1,

we obtain
B(z)2 = (x2 − 1)G(x)2.

Returning to x in (3.20), we obtain the expression in (3.19).
For the general case, we use the transformation

x =
(b− a)t+ a+ b

2
,

that maps [−1, 1] to [a, b]. Then

P̃ (t) = P

(
(b− a)t+ a+ b

2

)

≥ 0

for t ∈ [−1, 1], hence there exists polynomials F̃ and G̃ such that

P̃ (t) = F̃ (t)2 + (1− t2)G̃(t)2.

To express P as a function of x, we use

t =
2x− a− b

b− a
,

and compute the factor (1− t2):

(1 + t)(1− t) = (x− a)(b− x)
4

(b− a)2
.

After relabelling, it results that

P (x) = F (x)2 + (x− a)(b− x)G(x)2.

The corresponding characterization of trigonometric polynomials that are non-negative on
intervals of the unit circle is given in the following theorem.

Theorem 3.10. Let R be a trigonometric polynomial with real coefficients of even degree, n,
such that R(eiω) ≥ 0 for all ω ∈ [α, β] ⊆ [0, π]. Then, on the unit circle, R can be expressed
as

R(eiω) = R1(e
iω) + (cosω − cosα) (cosβ − cosω)R2(e

iω), (3.21)

where R1 and R2 are non-negative trigonometric polynomials with degR1 ≤ n and degR2 ≤
n− 2.

Proof. Let z = eiω, ω ∈ [0, π] and define

R(z) = P (x)

using the transformation (3.17). Since R(eiω) ≥ 0 for ω ∈ [α, β], it follows that P (x) ≥ 0 for
x ∈ [cosα, cosβ]. By the previous theorem, there exists polynomials F and G of degree n/2
and n/2− 1 respectively such that

P (x) = F (x)2 + (x− cosα)(cosβ − x)G(x)2.

Observe that F (x)2 is a polynomial with real coefficients of degree n. Returning to z, using
the correspondence between polynomials with real coefficients and trigonometric polynomials,
it results that

F (x)2 = F (cosω)2 = R1(e
iω),

where R1 is a trigonometric polynomial of degree n. The same argument gives G(x)2 =
R2(e

iω), where R2 is a trigonometric polynomial of degree n− 2.

18

Finally we extend the Gram matrix representation to include trigonometric polynomials that
are non-negative on intervals.

Theorem 3.11. Let R be a trigonometric polynomial with real coefficients of even degree n
such that R(eiω) ≥ 0 for all ω ∈ [α, β] ⊆ [0, π]. Then there exist positive semidefinite matrices
Q1 ∈ S

n+1 and Q2 ∈ S
n−1 such that the coefficients satisfy

rk =trΘn+1
k Q1+

tr

((

−
(

ab+
1

2

)

Θn−1
k +

a+ b

2
(Θn−1

k−1 +Θn−1
k+1)−

1

4
(Θn−1

k−2 +Θn−1
k+2)

)

Q2

)

.

where a = cosα and b = cosβ.

Proof. The result follows by considering the Gram matrix representation of the non-negative
trigonometric polynomials R1 and R2 in (3.21) and taking into account the factor (cosω −
a)(b− cosω). For z on the unit circle, we expand the expression as

(
z + z−1

2
− a

)(

b− z + z−1

2

)

= −
(

ab+
1

2

)

+
a+ b

2
(z + z−1)− 1

4
(z2 + z−2).

The last term in (3.21) is a linear combination of functions of the form zmR2(z). If the
coefficients for R2 are given by r2,k = trΘn−1

k Q, then the coefficients for zmR2(z) are obtained
by the shift r2,k = trΘn−1

k−mQ. For example, the coefficients for zR2(z) are given by r2,k =

trΘn−1
k−1Q. The result follows after adding up all terms.

We will abbreviate the formula for the coefficients for a trigonometric polynomial that is
non-negative on [α, β] ⊆ [0, π] as

rk = gk(Q1, Q2;α, β).

We extend the Gram matrix representation in this fashion and write

rk = gk(Q)

for the coefficients of a trigonometric polynomial that is non-negative on the unit circle. Note
that gk is linear with respect to (Q1, Q2) and Q respectively.

19

4 Mathematical optimization

In this section we present the basic theory of mathematical optimization. In particular we
shall introduce the concept of cone programming that allows us to solve optimization problems
involving positive semidefinite matrices, which we have seen arises in the characterization of
non-negative trigonometric polynomials.

4.1 General theory

Mathematical optimization or mathematical programming concerns the study of the problems
of the type: find x∗, provided it exists, such that

f(x∗) = min
x∈S

f(x),

where S is a set and f is a real valued function defined on S. If inf
x∈S

f(x) = −∞, the problem

is said to be unbounded. If S is empty, the problem is said to be infeasible. Note that x∗

does not need to exist even if S is non-empty.
In this work, we will assume that S is a subset of a real vector space, V , and f is a real

valued function defined on V . For optimization problems the following notation is often used:

minimize f(x)

subject to gi(x) ≤ ai, i = 1, 2, . . . ,m,

hj(x) = bj , j = 1, 2, . . . , n,

x ∈ S,

(4.1)

where f : V → R is called the objective function, gi(x) : V → R, i = 1, 2, . . . ,m and
hi(x) : V → R, i = 1, 2, . . . , n are the inequality and equality constraint functions and
the constants a1, a2, . . . , am and b1, b2, . . . , bn are the limits of the constrains. If V = R

n

and all f , gi, i = 1, 2, . . . ,m, hi, i = 1, 2, . . . , n in (4.1) are linear functions, i.e. satisfying
f(αx+βy) = αf(x)+βf(y) for all x, y ∈ R

n and α, β ∈ R, and S is a polyhedron, then (4.1)
is said to be a linear program.

Definition 4.1. The set S ⊆ V is said to be a convex set if

λx+ (1− λ)y ∈ S

holds for all x, y ∈ S and λ ∈ (0, 1).

The geometric meaning of a convex set is that all points on the line segment connecting two
points in the set also lies in the set, as can be seen in Figure 8.

x

y

λx+ (1− λ)y

Figure 8: An example of a convex set.

Definition 4.2. Let S be a convex set. f : S → R is said to be a convex function if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀x, y ∈ S, ∀λ ∈ (0, 1).

20

If all functions f, gi, i = 1, . . . ,m in (4.1) are convex functions and hj , j = 1, 2, . . . , n, are
linear, then (4.1) is said to be a convex program. An essential property of a convex program
is that any locally optimal solution is also a globally optimal solution. This is very useful in
practice since numerical methods finds locally optimal points.

Proof. Let x ∈ S be a local minimum and let y ∈ S be arbitrary. By the convexity and the
fact that x is a local minimum, there exists a λ ∈ (0, 1) such that f(x) ≤ f(λx+ (1− λ)y) ≤
λf(x) + (1 − λ)f(y). It follows that f(x) ≤ f(y), hence x is a global minimum since y is
arbitrary.

4.2 Conic optimization and semidefinite programming

We have seen that a non-negative trigonometric polynomial can be characterized by a positive
semidefinite matrix. Optimization of a linear objective function with semidefinite matrices
is known as semidefinite programming. We will introduce semidefinite programming in a
somewhat broader sense known as linear cone optimization, which we will see unifies the
notions of some of the most common optimization programs.

Definition 4.3. K ⊆ V is said to be a cone if λx ∈ K holds for all x ∈ K and λ ≥ 0.

Definition 4.4. Let V , W be vector spaces and K ⊆ V be a cone. Let f be a linear
functional defined on V , A : V → W a linear mapping and b ∈ W . An optimization problem
of the form

minimize f(x)

subject to Ax = b,

x ∈ K

(4.2)

is said to be a linear cone program.

If K is convex then (4.2) becomes a convex program. A linear program is a special case of
a linear cone program. Namely, if cT ∈ R

n is the matrix for f in the standard basis and
V = R

n, W = R
m, K = {x ∈ R

n : x ≥ 0}, A ∈ R
m×n, and b ∈ R

m, then (4.2) takes the
familiar form

minimize cTx

subject to Ax = b,

x ≥ 0.

(4.3)

Semidefinite programming is a special case of convex programming where a linear objective
function is optimized over a subset of the cone of positive semidefinite matrices. We will
show that a semidefinite program can be put in the form (4.2).

Theorem 4.5. K = {X ∈ S
n : X � 0} is a convex cone.

Proof. Let X,Y ∈ K. For arbitrary v ∈ R
n and λ ≥ 0, we have that vTλXv ≥ 0 since

vTXv ≥ 0. This shows that K is a cone. For arbitrary v ∈ R
n and λ ∈ (0, 1),

vT (λX + (1− λ)Y)v = vTλXv + vT (1− λ)Y v ≥ 0

since λ ≥ 0 and (1− λ) ≥ 0, hence K is a convex set.

A semidefinite program can be expressed as

minimize trCX

subject to trAiX = bi, i = 1, 2, . . . ,m,

X � 0,

where X ∈ S
n. Altough slightly different, this is consistent with (4.2) as the trace is a linear

function.

We have seen that linear cone programs unifies both linear and semidefinite programs. In
this work, we will encounter a third type of optimization problem known as second order
cone programming.

21

Definition 4.6. Let y ∈ R
n be the decision variable and let c ∈ R

n and A ∈ R
m×n. The

constraint
‖Ay‖2 ≤ cT y (4.4)

is known as a second order cone constraint.

It can easily be shown that second order cone constraints constitute convex cones. In this
work we shall encounter an application of second order cone constraints where we wish to
minimize the norm of the decision variable x. Such an objective is not linear but by letting

y =
[
xT γ

]T
and choosing A and c in (4.4) such that

‖x‖2 ≤ γ,

‖x‖2 is minimized by minimizing the linear objective γ.

4.2.1 Duality

In this section we present the duality theory for linear cone programs. Although we shall
not make use of these results directly in the coming sections, it will provide us with some
insight on how numerical methods on solving linear cone programs uses duality in order to
determine whether an approximate solution is close enough to the optimal solution as well
as how to determine when a problem is infeasible.

Let c ∈ R
n, A ∈ R

m×n, b ∈ R
m and let K ⊆ R

n be a cone. We will refer to the
optimization problem

minimize cTx

subject to Ax = b,

x ∈ K

(4.5)

as the primal program. Note that (4.5) provides a unifying notation for combinations of
linear, semidefinite and second order cone programs. For each primal program, there exists
what is called a dual program. The dual program has some interesting properties as we shall
see. The dual program can be derived using the following constructive approach. First we
form a Lagrange function, L, by moving the constraints to the objective function together
with a Lagrange multiplier y ∈ R

m:

L(x, y) = cTx− yT (Ax− b)

= cTx− (AT y)Tx+ bT y

= (c−AT y)Tx+ bT y.

Next we define what is known as the dual cone of K.

Definition 4.7. The dual cone, K∗, of K is defined as

K∗ = {y ∈ R
n : yTx ≥ 0, ∀x ∈ K}.

A visual representation of the relation between a cone and its dual cone is illustrated in
Figure 9. Proceeding by minimizing L with respect to x, it results that

inf
x∈K

L(x, y) =

{

bT y, c−AT y ∈ K∗,

−∞, otherwise.

We arrive at our first important result, known as weak duality.

Theorem 4.8. (Weak duality) If c−AT y ∈ K∗, then bT y ≤ cTx for all x ∈ R
n and y ∈ R

m.

Proof.
cTx− bT y = cTx− (Ax)T y = xT c− xTAT y = xT (c−AT y) ≥ 0

since c−AT y ∈ K∗.

22

0

K
K∗

Figure 9: K and its dual cone, K∗.

In words, weak duality tells us that bT y provides lower bounds on the primal objective
function for y such that c − AT y ∈ K∗. This is of importance in numerical solutions as
we know that the primal solution can not be better than bT y. The obvious step is then
to compute the lower bound that lies closest to the primal solution. We arrive at the dual
program:

maximize bT y

subject to AT y + s = c,

s ∈ K∗.

(4.6)

It would be desirable to conclude that the optimal objective value for the dual program co-
incides with the primal counterpart, i.e. bT y∗ = cTx∗, a concept known as strong duality.
Strong duality is in general not the case but there exists a sufficient condition for strong
duality known as Slater’s condition [10, p. 226].

Our second application of duality arises from the question of the existence of solutions to the
primal problem. We shall make use of a part of a result known as Farkas’ lemma.

Theorem 4.9. If the system Ax = b, x ∈ K, is feasible, then the system bT y < 0, AT y ∈ K∗

is not.

Proof. Assume that (4.5) is feasible and take c = 0. From weak duality, bT y ≤ 0 if −AT y ∈
K∗. Replacing y with −y, it follows that bT y ≥ 0 if AT y ∈ K∗.

Given a program to solve, we wish to either find a feasible solution or otherwise conclude that
the program is infeasible. Theorem 4.9 provides us with a way of proving that a program is
infeasible by finding one solution to the system bT y < 0, AT y ∈ K∗. Such a solution is called
a certificate of infeasibility [10, p. 259].

4.2.2 SeDuMi

SeDuMi is an add-on software for MATLAB that solves symmetric cone programs. SeDuMi
uses an primal-dual interior point method, in this the optimization is done for both the primal
and dual problem simultaneously. The optimal solution is found by going through the inside
of the primal and dual feasible sets. SeDuMi uses a method called central path to find a new
search direction in each iteration. An initial feasible solution, or a certificate of infeasibility,
is found using the self-dual embedding technique. Details on how SeDuMi works are found
in [11].

23

5 Filter optimization

This is the first section devoted to optimization methods for discrete-time filters. Based
on the theory presented in the previous sections, we will show how the design of a low-
pass filter can be posed as an optimization problem in terms of the transfer function. The
characterization of filters in terms of trigonometric polynomials will be used to set up linear
matrix constraints involving semidefinite matrices which allows us to utilize the framework
of linear cone programs to design filters subject to different constraints. We shall consider
both FIR filters and IIR filters with rational transfer functions.

5.1 FIR filters

5.1.1 Magnitude optimization

As shown in Section 2, the transfer function for an FIR filter of order n is given by

H(z) =

n∑

k=0

hkz
−k, hk ∈ R, k = 0, 1, . . . , n.

Suppose that edges ωp and ωs defining the passband, [0, ωp], and the stopband, [ωs, π], for
a lowpass filter are given. Typical constraints on the amplitude response are then given by
∣
∣|H(eiω)| − 1

∣
∣ ≤ εp for all ω ∈ [0, ωp] and |H(eiω)| ≤ εs for all ω ∈ [ωs, π], i.e. the maximum

deviation of the amplitude response with respect to the ideal low-pass filter is bounded by
εp and εs in the passband and stopband respectively. As discussed in Section 2, a typical
measure of the performance of a low-pass filter is the suppression of energy in the stopband,
Es, which we will take as our objective function. Formulated as an optimization problem we
have:

minimize Es

subject to
∣
∣|H(eiω)| − 1

∣
∣ ≤ εp, ∀ω ∈ [0, ωp],

|H(eiω)| ≤ 1 + εp, ∀ω ∈ [ωp, ωs],

|H(eiω)| ≤ εs, ∀ω ∈ [ωs, π],

(5.1)

where we have imposed an additional constraint in the transition band for the amplitude
response to satisfy |H(eiω)| ≤ 1 + εp for all ω ∈ [0, π]. The constraints in (5.1) constitute an
allowed region for the amplitude response. An example of this is illustrated in Figure 10.

0 ω p ω s π

ε s

1 − ε p

1

1 + ε p

Freq uency

M
a
g
n
it
u
d
e

Figure 10: The allowed region for the amplitude response defined by the constraints (5.1).

In order to solve (5.1), the constraints as well as the objective function must be formulated
in terms of the filter coefficients. We will use the theory developed in Section 3 to pose (5.1)

24

as a linear cone program involving semidefinite matrices. First we observe that

|H(eiω)|2 = H(eiω)H(e−iω) = R(eiω), (5.2)

where R is a trigonometric polynomial. That is, the squared amplitude response is given by
a trigonometric polynomial. In terms of R, the inequalities in (5.1) can be expressed as

(1 + εp)
2 −R(eiω) ≥ 0, ∀ω ∈ [0, π],

R(eiω)− (1− εp)
2 ≥ 0, ∀ω ∈ [0, ωp],

ε2s −R(eiω) ≥ 0, ∀ω ∈ [ωs, π],

R(eiω) ≥ 0, ∀ω ∈ [0, π].

(5.3)

Observe that all left hand sides are by themselves trigonometric polynomials. In terms of
the Gram matrix representation, the non-negativity requirement is equivalent according to
Theorem 3.11 to the existence of positive semidefinite matrices satisfying

(1 + εp)
2δk − rk = gk(Q1),

rk − (1− εp)
2δk = gk(Q2, Q3; 0, ωp),

ε2sδk − rk = gk(Q4, Q5;ωs, π),

rk = gk(Q6), k = 0, 1, . . . , n,

Q1 � 0, . . . , Q6 � 0,

where δk denotes Kronecker’s delta.
From (2.6), the stopband energy in terms of R is given by

Es =
1

π

∫ π

ωs

R(eiω) dω.

Using

R(eiω) = r0 + 2

n∑

k=1

rk cos kω,

we obtain

Es = r0

(

1− ωs

π

)

− 2

n∑

k=1

rk
sin kωs

kπ
. (5.4)

We observe that Es is linear in terms of the coefficients, rk. Expressed as a linear cone
program, (5.1) takes the form

minimize r0

(

1− ωs

π

)

− 2

n∑

k=1

rk
sin kωs

kπ

subject to (1 + εp)
2δk − rk = gk(Q1),

rk − (1− εp)
2δk = gk(Q2, Q3; 0, ωp),

ε2sδk − rk = gk(Q4, Q5;ωs, π),

rk = gk(Q6), k = 0, 1, . . . , n,

Q1 � 0, . . . , Q6 � 0.

(5.5)

By Theorem 3.2, for R satisfying the inequalites, the transfer function can be obtained via
spectral factorization. Details for this procedure will be discussed in Section 6.

Apart from minimum energy in the stopband, another desirable characteristic for a low-pass
filter would be that it leaves signals within the passband unaltered as much as possible or,
in other words, it has a maximally flat amplitude response in the passband. The constraints
governing the amplitude response in the passband are given by

R(eiω) ≤ (1 + εp)
2,

R(eiω) ≥ (1− εp)
2,

(5.6)

25

for ω ∈ [0, ωp]. However, due to the quadratic expressions, we must be able to rewrite the
nonlinear constraints in a way that is consistent with the linear cone program as discussed
in Section 4. The approach will be based on minimizing the maximum deviation from 1 of
the amplitude response in the passband. We will show that this is acheived by minimizing
the auxiliary variable γ subject to the constraints

R(eiω) ≤ γ,

R(eiω) ≥ γ − 4ε,

(1 + ε)2 ≤ γ,

(5.7)

where ε is another auxiliary descision variable. Note that (5.7) implies ε ≥ 0. Let α ≥ 0
denote the maximum deviation from 1 of the amplitude response in the passband. We will
show that the optimal γ is given by γ = (1 + α)2, hence, by minimizing γ, the maximum
deviation will be minimized as well. First we observe that γ = (1 + α)2 satisfies all three
inequalities for example with the choice of ε = α as this gives

R(eiω) ≤ (1 + α)2,

R(eiω) ≥ (1 + α)2 − 4α = (1− α)2,

which is consistent with the definition of α. To show that this is the optimal γ, we analyse two
separate cases. Suppose that the maximum deviation from 1 of the amplitude response in the
passband is attained when |H(eiω)| ≥ 1. Then the first inequality implies that (1 + α)2 ≤ γ,
hence we conclude that γ = (1 + α)2 is optimal. Suppose now instead that the maximum
deviation from 1 of the amplitude response in the passband is attained when |H(eiω)| ≤ 1.
Suppose that γ < (1 + α)2. Then the third inequality gives that (1 + ε)2 < (1 + α)2, hence
ε < α. Combined with the second inequality, it follows that (1−α)2 ≥ γ−4ε ≥ (1+ε)2−4ε =
(1 − ε)2 > (1 − α)2 since α ≤ 1 in this case. We have reached a contradiction, hence we
conclude that γ = (1 + α)2 is optimal also in this case.

We are still left with a non-linear inequality in (5.7),

γ − (1 + ε)2 ≥ 0. (5.8)

Such constraints can, however, be transformed into a linear matrix inequality. We will show
that (5.8) is equivalent to

X =

[
1 1 + ε

1 + ε γ

]

� 0. (5.9)

That (5.9) implies (5.8) is obvious since X � 0 implies detX ≥ 0. The reverse implication is
proven by showing that (5.8) implies that X has non-negative eigenvalues. Recall that the
eigenvalues, λ, of the 2× 2 matrix X are given by the characteristic equation

λ2 − λ trX + detX = 0.

Combining the facts that trX ≥ 0 and detX ≥ 0, it follows that the eigenvalues of X are
non-negative. With the modified constraints in the passband together with the objective
function γ, the linear cone program for minimal ripple in the passband takes the form:

minimize γ

subject to γδk − rk = gk(Q1),

rk − (γ − 4ε)δk = gk(Q2, Q3; 0, ωp),

ε2sδk − rk = gk(Q4, Q5;ωs, π),

rk = gk(Q6), k = 0, 1, . . . , n,

Q1 � 0, . . . , Q6 � 0,
[

1 1 + ε
1 + ε γ

]

� 0.

26

5.1.2 Linear phase filters

Consider the trigonometric polynomial, H̃, with real coefficients,

H̃(z) =

n∑

k=−n

h̃kz
−k, h̃−k = h̃k ∈ R, k = 0, 1, . . . , n,

and define the transfer function

H(z) = z−nH̃(z) =
2n∑

k=0

hkz
−k, (5.10)

where the vectors of coefficients, h and h̃, are related via

h = Ph̃, P =



















0 0 · · · 0 1
0 0 · · · 1 0
...

... . .
. ...

...
0 1 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1



















, (5.11)

with P ∈ R
(2n+1)×(n+1). For ω such that H̃(eiω) ≥ 0, we have that

|H(eiω)| = |e−inω||H̃(eiω)| = H̃(eiω), (5.12)

and
argH(eiω) = arg e−inωH̃(eiω) = arg e−inω = −nω.

In other words, the phase response for a filter with transfer function defined as in (5.10) is a
linear function over intervals where H̃(eiω) ≥ 0. Such filters are known as linear phase filters
[8]. Linear phase filters have the advantage of delaying all frequencies by the same amount,
thus avoiding phase distortion. To see this, consider again (2.2). The output of the signal
sinωk is given by

|H(eiω)| sin(ωk − ωn) = |H(eiω)| sinω(k − n),

thus each signal, regardless of frequency, is delayed by n (the order of H̃) time steps.
In terms of h̃, the constraints in (5.1) can be expressed as

(1 + εp)δk − h̃k = gk(Q1),

h̃k − (1− εp)δk = gk(Q2, Q3; 0, ωp),

εsδk − h̃k = gk(Q4, Q5;ωs, π),

h̃k + εsδk = gk(Q6, Q7;ωs, π), k = 0, 1, . . . , n,

Q1 � 0, . . . , Q7 � 0.

We only require the filter to have linear phase in the passband, hence the condition |H̃(eiω)| ≤
εs in the stopband is sufficient as given by the last two constraints.

For linear phase filters, ripple minimization becomes especially simple, as the quadratic
factors are replaced with linear ones due to (5.12). Taking εp as our objective function, the
linear cone program takes the form

minimize εp

subject to (1 + εp)δk − h̃k = gk(Q1),

h̃k − (1− εp)δk = gk(Q2, Q3; 0, ωp),

εsδk − h̃k = gk(Q4, Q5;ωs, π),

h̃k + εsδk = gk(Q6, Q7;ωs, π), k = 0, 1, . . . , n,

Q1 � 0, . . . , Q7 � 0.

27

Energy minimization is still possible, but since the optimization is carried out with respect to
h̃, we must be able to express the stopband energy, Es, in terms of h̃. Define a trigonometric
polynomial, R, as R(z) = H(z)H(z−1), and recall that R is equal to the squared magnitude
response on the unit circle. We shall use the formula for the stopband energy in terms of the
coeffcients, rk. Using elementary Toeplitz matrices, the expression for the coefficients (3.1)
can be written as the quadratic form rk = hTΘ2n+1

k h. Using the expression for the stopband
energy in terms of rk, (5.4), it results that

Es =

2n∑

k=−2n

ckrk = hT

(
2n∑

k=−2n

ckΘ
2n+1
k

)

h = hTCh, (5.13)

where C = Toep(c0, c1, . . . , c2n) is a symmetric Toeplitz matrix with elements

ck =







1− ωs/π, k = 0,

− sin kωs

kπ
, k = 1, 2, . . . , 2n.

Finally, from (5.11) we obtain the expression for the stopband energy in terms of h̃. Es =
h̃T C̃h̃, where C̃ = PTCP . The standard way of handling minimization of a quadratic form
is to introduce it in a second order cone constraint bounded by an auxiliary variable. From
(5.13) and the fact that Es ≥ 0, it results that C̃ � 0, hence C̃ is diagonalizable with
non-negative eigenvalues and therefore there exists a square root C̃1/2. Through the linear
transformation y = C̃1/2h̃ and the second order cone constraint ‖y‖2 ≤ γ, we observe that
minimizing the auxiliary variable γ, Es is minimized as well. The linear cone program for
minimum stopband energy for a linear phase filter takes the form

minimize γ

subject to (1 + εp)δk − h̃k = gk(Q1),

h̃k − (1− εp)δk = gk(Q2, Q3; 0, ωp),

εsδk − h̃k = gk(Q4, Q5;ωs, π),

h̃k + εsδk = gk(Q6, Q7;ωs, π), k = 0, 1, . . . , n,

y = C̃1/2h̃,

‖y‖2 ≤ γ,

Q1 � 0, . . . , Q7 � 0.

Note that the vector of filter coefficients, h, is obtained from the simple transformation (5.11)
thus no spectral factorization is required in this case.

5.2 IIR filters

In this section we consider IIR filters with rational transfer functions, i.e.

H(z) =

∑l
i=0 aiz

−i

∑m
j=0 bjz

−j
=

A(z)

B(z)
. (5.14)

As it can be shown that the stopband energy for (5.14) can not be expressed as a convex
function in terms of the filter coefficients [2], we can not use the linear cone program to do
energy minimization. However, a feasibility problem for a magnitude constrained filter can
be constructed using the same ideas used earlier.

As in Section 5.1.1, we shall work with the square of the amplitude response:

|H(eiω)|2 =
A(eiω)A(e−iω)

B(eiω)B(e−iω)
=

Ra(e
iω)

Rb(eiω)
,

28

where Ra and Rb are trigonometric polynomials. The inequalities in (5.1) can immediately
be generalized using (5.3), hence

(1 + εp)
2Rb(e

iω)−Ra(e
iω) ≥ 0, ∀ω ∈ [0, π],

Ra(e
iω)− (1− εp)

2Rb(e
iω) ≥ 0, ∀ω ∈ [0, ωp],

ε2sRb(e
iω)−Ra(e

iω) ≥ 0, ∀ω ∈ [ωs, π],

Ra(e
iω) ≥ 0, Rb(e

iω) ≥ 0, ∀ω ∈ [0, π].

(5.15)

However, the cancellation of the denominator, introduces the trivial solution in (5.15). Since
multiplication by a constant in (5.14) does not change the transfer function, this issue is
resolved by imposing a normalization constraint:

m∑

j=0

b2j = 1.

From (3.1), it follows that this is equivalent to the simple condition rb,0 = 1. The linear
cone feasibility program can now be expressed as to find coefficients ra,0, ra,1, . . . , ra,l and
rb,0, rb,1, . . . , rb,m such that

(1 + εp)
2rb,k − ra,k = gk(Q1),

ra,k − (1− εp)
2rb,k = gk(Q2, Q3; 0, ωp),

ε2srb,k − ra,k = gk(Q4, Q5;ωs, π),

ra,k = gk(Q6), k = 0, 1, . . . ,max(l,m),

rb,0 = 1, rb,k = gk(Q7), k = 1, 2, . . . ,max(l,m),

Q1 � 0, . . . , Q7 � 0.

The filter coefficients a0, a1, . . . , al and b0, b1, . . . , bm are obtained via spectral factorization
of Ra and Rb respectively. We require H to be stable, hence the zeros of the spectral factor B
must be contained on or inside the unit circle. This is always possible according to Theorem
3.2 but to ensure stability, the zeros must lie strictly inside the unit circle.

29

6 Spectral factorization

In Section 5.1.1 the optimization was done with respect to the squared frequency response,
|H(eiω)|2 = R(eiω). The transfer function H is obtained from R by spectral factorization.
The existence of the spectral factors of R is proved by Theorem (3.2). However the task to
obtain the spectral factors in practice is not trivial, there exist many methods to do this.

6.1 Method using roots of R(z)

The most straightforward method is more or less given by the proof of (3.2):

1. Find the 2n zeros of R(z).

2. The zeros are pairs of unit circle mirrors, choose one root from each pair, for minimum
phase choose the roots inside or on the unit circle, call them s1, . . . , sn.

3. Construct H̃(z) = h̃0z
n + h̃1z

n−1 + · · ·+ h̃n =
∏n

k=1(z − sk).

4. Set H(z) = a(h̃0 + h̃1z
−1 + · · · + h̃nz

−n), observe that H(z) has the same roots as
H̃(z) and that H(z)H(z−1) and R(z) have the same roots for all values of the constant
a 6= 0.

5. To get R(z) = H(z)H(z−1) we set a =
√

r0/
∑n

k=0 h̃
2
k, since in

H(z)H(z−1) = a2(h̃0 + h̃1z
−1 + · · ·+ h̃nz

−n)(h̃0 + h̃1z + · · ·+ h̃nz
n)

the constant term is a2
∑n

k=0 h̃
2
k.

In practice this method is stable only for trigonometric polynomials of low order (n < 20).
For higher orders this method causes errors due to bad performance in the construction of a
polynomial from its roots. There exist a number of other methods for spectral factorization
that works well for large polynomials as well, in this project a method based on the Hilbert
transform is used.

6.2 Kolmogorov’s method

The Hilbert transform method, or Kolmogrov’s method, uses the Hilbert transform and the
(complex) logarithm to compute the frequency response. We assume that R (and H) has no
roots on the unit circle i.e R(eiω) 6= 0 for ω ∈ [0,π].

Definition 6.1. The Hilbert transform of a function f is defined by

H(f(t)) =
1

π

∫ ∞

−∞

f(x)

t− x
dx

where the integral is taken as Cauchy principal value [6]. The Hilbert transform can be
expressed as the convolution

H(f(t)) = f(t) ∗ 1

πt
.

Consider the minimum-phase spectral factor, H, which can be written as

H(eiω) = |H(eiω)|ei argH(eiω).

Since H has no zeros on the unit circle we can take the logarithm of both sides

logH(eiω) = log |H(eiω)|+ i argH(eiω).

It can be shown that logH(eiω) is an analytic signal and that the Hilbert transform can be
used to compute the phase [5],

argH(eiω) = −H(log |H(eiω)|).

30

Note that this is only true for a minimum-phase spectral factor. We know that

|H(eiω)| =
√

R(eiω) ⇐⇒ log |H(eiω)| = 1

2
logR(eiω).

The frequency response of H is given by

H(eiω) =
√

R(eiω)e−iH(1

2
logR(eiω)).

Theorem 6.2. (Relation between the Fourier transform and the Hilbert transform)

F(H(f(t))) = −i sgn(t)F(f(t))

where

sgn(t) =







1, if t > 0,
0, if t = 0,
−1 if t < 0.

Proof. Hilbert transform of f(t) is the convolution between f(t) and 1
πt so we can use the

convolution Theorem [12]
F(f ∗ g) = F(f)F(g).

From [13] we know the Fourier transform of 1
πt ,

F(
1

πt
) = −i sgn(t).

This gives

F(f(t) ∗ 1

πt
) = F(f(t))F(

1

πt
) = −i sgn(t)F(f(t)).

In practice the results above is implemented using the discrete Fourier transform, DFT,
which is the Z-transform (see Section 2) evaluated on the unit circle sampled at a finite num-
ber of equally spaced points. The DFT can be computed using the fast Fourier transform,
FFT. The algorithm is described in the following steps.

1. Choose N much larger than n e.g. the smallest power of 2 > 100n, where n is the order
of R. N is the number of points for which we will sample R to be able to use the FFT,
take N as a power of 2 to improve performance of FFT.

2. Compute {xn} = x0,x1, . . . ,xN such that

xl =
1
2 logR(eiωl)

for N points on the unit circle, ωl = 2πl/N, l = 0,1, . . . ,N − 1.

3. Compute the Hilbert transform, by first computing an FFT.

{Xn} = FFT ({xn}).

In this transfer domain, using the discrete variant of the relation in Theorem 6.2, the
Hilbert transform is computed as

Yk =







−iXk, if k = 1, . . . ,N2 − 1,
0, if k = 0,N/2,
iXk, if k = N

2 + 1, . . . ,N − 1.

4. The phase response of the sampled points is obtained by going back to original domain,
using the inverse fast Fourier transform IFFT, {yn} = IFFT ({Yn}).

31

5. The frequency response of the spectral factor is given by H(eiωl) = exl−iyl .

6. In the same manner as in Theorem 2.11, we use IFFT to calculate the (approximate)
impulse response of H(z), IFFT (e{xn}−i{yn}), and take the first n + 1 coefficients as
filter coefficients, h0, . . . ,hn.

32

7 Implementation

This section gives an example of the MATLAB implementation of the results from Section
5 and results from some filters designed using the algorithm. The complete MATLAB code
can be found in the Appendix.

7.1 CVX

CVX is a modelling language implemented in MATLAB to solve convex optimization prob-
lems.

Example 7.1. An example of CVX syntax.

1. begin_cvx sdp % Semidefinite programming mode

2. % Decision variables.

3. variable x(m)

4. variable Q(n) semidefinite

5.

6. % Objective function

7. minimize c*x

8.

9. % Constraints

10. A*x == b1

11. trace(A2*Q) == b2

12. cvx_end

7.2 Implementation

The optimization problem described in equation (5.5), magnitude design of low pass FIR
filter such that energy in the stop band is minimized, will serve as example for describing the
implementation in detail. It follows the structure presented in Example 7.1.

The decision variables are defined as

variable r(n+1)

variable Q1(n+1,n+1) semidefinite

variable Q2(n+1,n+1) semidefinite

variable Q3(n-1,n-1) semidefinite

variable Q4(n+1,n+1) semidefinite

variable Q5(n-1,n-1) semidefinite

variable Q6(n+1,n+1) semidefinite

where n is the degree of the filter. The objective function simply writes

minimize c*r

where c is a vector of elements

ck+1 =







1− ωs/π, k = 0,

−2 sin kωs

kπ
, k = 1, 2, . . . , n

hence c*r is the stopband energy as in equation (5.4).
The constraints are implemented as

for k = 0:n

(1 + ep)^2 * not(k) - r(k+1) == sum(diag(Q1,k));

r(k+1) - (1 - ep)^2 * not(k) == sum(diag(Q2,k)) + ...

trace(intervalmatrix(n,k,0,wp)*Q3);

es^2 * not(k) - r(k+1) == sum(diag(Q4,k)) + ...

trace(intervalmatrix(n,k,ws,pi)*Q5);

r(k+1) == sum(diag(Q6,k));

end

33

and corresponds directly to the constraints of (5.5). Note that not(k) has the same property
as the Kronecker delta. The function intervalmatrix(n,k,a,b) returns the matrix

(

−
(

cos a cos b+
1

2

)

Θn−1
k +

cos a+ cos b

2
(Θn−1

k−1 +Θn−1
k+1)−

1

4
(Θn−1

k−2 +Θn−1
k+2)

)

,

see Section 3.3. It in turn uses the function eltoep(n,k) that returns an elementary Toeplitz
matrix Θn

k as in Definition 3.5. The last step is to spectral factorize r using the algorithms
presented in Section 6. For details on the functions see code in the Appendix. The algorithms
that solves for minimizing ripple in the passband, for linear phase filters (referenser) and for
IIR filters are similar and can all be found in the Appendix.

Figure 11-15 show the result using each of these algorithms for one specification.

0 0 .2π 0 .3π π

0 .05

0 .9

1

1 .1

Freq uency

M
a
g
n
it
u
d
e

Figure 11: Frequency response of received filter when minimizing the energy in the stopband
for n = 20, ωp = 0.2, ωs = 0.3, εp = 0.1, εs = 0.05 using FIR magnitude filter design. The
stopband energy is Es = 6.604 · 10−5 (implementation in Appendix).

34

0 0 .2π 0 .3π π

0 .05

1

Freq uency

M
a
g
n
it
u
d
e

Figure 12: Frequency response of received filter when minimizing the ripple in the passband
for n = 20, ωp = 0.2, ωs = 0.3, εs = 0.05 using FIR magnitude filter design. The maximum
deviation in the passband is εp = 0.037 and the stopband energy is Es = 8.7204 · 10−4

(implementation in Appendix).

0 0 .2π 0 .3π π

0 .05

1

Freq uency

M
a
g
n
it
u
d
e

Figure 13: Frequency response of received filter when minimizing the ripple in the passband
for n = 20, ωp = 0.2, ωs = 0.3, εs = 0.05 using FIR linear phase filter design. The maximum
deviation in the passband is εp = 0.0775 and the stopband energy is Es = 8.7187 · 10−4

(implementation in Appendix).

35

0 ω p ω s π

0 .05

0 .9

1

1 .1

Fre q uency

M
a
g
n
it
u
d
e

Figure 14: Frequency response of received filter when minimizing the energy in the stopband
for n = 50, ωp = 0.2, ωs = 0.25, εp = 0.1, εs = 0.05 using FIR linear phase filter design. The
stopband energy is Es = 8.7651 · 10−6 (implementation in Appendix).

0 0 .21π π

0 .025

0 .95
1

1 .05

Freq uency

M
a
g
n
it
u
d
e

Figure 15: Frequency response of received filter for IIR magnitude filter design with l = 10,
m = 20, ωp = 0.2, ωs = 0.22, εp = 0.05, εs = 0.025 (implementation in Appendix).

36

0 100 200

−2

−1

0

1

2

Noisy signal

Samp le s

A
m
p
li
t
u
d
e

0 0.5 1
0

0.5

1

Disc re te Fourie r tran sf orm

Fre q uency

M
a
g
n
it
u
d
e

0 100 200

−1

−0.5

0

0.5

1

F i l trated signal

Samp le s

A
m
p
li
t
u
d
e

0 0.5 1
0

0.5

1

Disc re te Fourie r tran sf orm

Fre q uency

M
a
g
n
it
u
d
e

Figure 16: Signal cos 0.15πn with high frequency noise and its frequency contents (blue) that
is filtrated by a low-pass filter of degree 20 given as in Figure 11 (red).

7.3 MATLAB function

The optimization algorithms for each filter design are assembled into a MATLAB function
optimalfilter. The function takes the input arguments:
n degree of the filter
wp upper boundary of the passband, [0,wp·π]
ws lower bound of the stopband, [ws·π,π]
ep tolerated deviation from 1 in the passband
es tolerated deviation from 0 in the stopband
options stringmap containing user defined options

The variable options handle choices between optimization type (magnitude/linear), mini-
mization approach (energy/ripple) and spectral factorization method (hilbert/using roots),
where the first mentioned in each parenthesis is default (default/optional). There is also an
option to plot the frequency response of the optimized filter together with the boundaries.
The function returns two arguments [h s] where h is a vector with the filter coefficients and
s contains the status of CVX. The function does not handle exceptions.

37

7.4 Comparison

Here we show a small comparison with another filter design method, called the Hamming
window method. The idea of a windowing method filter is to multiply the impulse response
of an ideal filter like the one in Example 2.14 with the an finite length window function in
order make an causal FIR filter. So the impulse response of the filter, hn, can be written as

hn = ĥnwn

where ĥn is the ideal filter impulse response and wn is the window function. The Hamming
window function is defined as

wn =

{
0.54− 0.46 cos(2πnM), if 0 < n < M,

0, otherwise.

Here M is the order of the filter. We chose to use Hamming window method in this comparison
since it is a common and easy way to design digital FIR filters. In MATLAB it is implemented
in the Signal Processesing Toolbox as the function fir1. Figure 17 and Table 1 shows an
example of a FIR filter, designed to minimize energy in the stopband, compared with a
FIR filter designed using Hamming window method. The optimization filters are of squared
magnitude design with ωp = 0.4π, ωs = 0.6π and the tolerances εs = εp = 0.1, for the
Hamming window method the filters was designed with 0.5π as cutoff frequency.

Table 1: Computation time and stopband energy.
Filter type Order Computation time Stopband energy, Es

Optimal 10 0.74 s 3.22 · 10−5

Hamming window 10 0.0013 s 2.70 · 10−3

Optimal 20 1.17 s 3.01 · 10−9

Hamming window 20 0.0016 s 8.66 · 10−5

Optimal 30 1.94 s 4.62 · 10−11

Hamming window 30 0.0017 s 1.38 · 10−6

38

Fre q uency

M
a
g
n
it
u
d
e

0 0 .4π 0 .6π π
0

1

0 0 .5π π
0

1

Fre q uency

M
a
g
n
it
u
d
e

0 0 .4π 0 .6π π
0

1

Fre q uency

M
a
g
n
it
u
d
e

0 0 .5π π
0

1

Fre q uency

M
a
g
n
it
u
d
e

Figure 17: Frequency response of optimal filter (left) compared with Hamming-window filter
(right) of order 10(first row) and 30 (second row).

39

8 Discussion

This work gives an optimization based approach to the design of digital filters. All the theory
needed is presented and the algorithm is implemented in MATLAB using the modelling
language CVX and solved using SeDuMi. The algorithm was implemented for both FIR and
IIR filters. For FIR filters the optimization was carried out with respect to minimizing the
stopband energy as well as the passband ripple. Throughout the work only low-pass filters
were considered, however the design of high-pass or band-pass filters is completely analogous
once the constraints have been altered accordingly.

The produced MATLAB implementation for the different types of filters works well in
practice. In Section 7.4 an FIR filter, designed to minimize energy in the stopband, was
compared with an existing filter design method, the Hamming window method. It is not
possible to draw any general conclusions from this comparison since there exist various other
filter design methods, all with different advantages and drawbacks. The main drawback of
this optimization based algorithm is the computation time, the benefits is that it is exact, in
the sense of constraints, and optimal in some way.

The main focus in the implementation of the algorithm was to make it work and aspects
like computation time/efficiency was not prioritised. One way to speed up computation is to
use the Gram pair representation, where two smaller semidefinite matrices are used instead of
one large, see [2]. One aspect of filters that we have not considered is how the phase response
affects the quality of the filtered signal. We have shown how to design linear and minimum
phase filters but not discussed in detail why such properties are desirable.

A great amount of work was put into investigating conditions for the existence of solutions to
the filter design problem. Necessary conditions for the problem can improve the algorithm,
since failure to satisfy a necessary condition implies directly that the problem is infeasible.
For example, a necessary condition might be that the order of the filter must be high enough
depending on the maximum deviation in the pass- and stopband as well as the width of the
transition band. Our main approach was to try to utilize the properties of trigonometric
polynomials. We also explored polyhedral relaxations of semidefinite programs in order to
find easier problems whose infeasibility would imply infeasibility of the original problem.
However no useful results were found. Necessary or sufficient conditions for feasibility is an
area that could be researched more.

A natural step for further developing this work would be to design filters for multidimensional
signals. We looked into the two-dimensional case, which can be used to filter images for
example. Much of the theory can be generalized to the two-dimensional case, but some
aspects are different, e.g is it not possible to do spectral factorization and optimize the
squared magnitude response [2]. Due to the time frame of this project it was not possible to
complete an algorithm for two dimensional signals.

40

References

[1] Ronald W. Schafer Alan V. Oppenheim. Discrete-Time Signal Processing. 3rd ed. Pear-
son Education, 2010.

[2] Bogdan Dumitrescu. Positive Trigonometric Polynomials and Signal Processing Appli-
cations. Springer, 2007.

[3] Eric Weisstein. Laurent Polynomial. url: http://mathworld.wolfram.com/LaurentPolynomial.
html.

[4] Kjell Holmåker. “Tillämpningar av komplex analys och fourieranalys”. Matematiska
institutionen, Chalmers & GU.

[5] Julius O. Smith III. Spectral Audio Signal Processing. 2011. url: https://ccrma.
stanford.edu/~jos/sasp/Minimum_Phase_Filter_Design.html.

[6] Mathias Johansson. “The Hilbert transform”. MA thesis. Växjö University.

[7] Piotr Mikusinski Lokenath Debnath. Hilbert Spaces with Applications. Elsevier Aca-
demic Press.

[8] Julius O. Smith III. Introduction to Digital Filters with Audio Applications. url: http:
//ccrma.stanford.edu/~jos/filters/.

[9] Eric Weisstein. Chebyshev Polynomial of the First Kind. url: http://mathworld.
wolfram.com/ChebyshevPolynomialoftheFirstKind.html.

[10] Lieven Vandenberghe Stephen Boyd. Convex Optimization. Cambridge University Press,
2004.

[11] Jos F. Sturm. Implementation of Interior Point Methods for Mixed Semidefinite and
Second Order Cone Optimization Problems. Tech. rep. Department of Econometrics,
Tilburg University, The Netherlands., 2002.

[12] Eric Weisstein. Convolution Theorem. url: http://mathworld.wolfram.com/ConvolutionTheorem.
html.

[13] Eric Weisstein. Fourier Transform–Inverse Function. url: http://mathworld.wolfram.
com/FourierTransformInverseFunction.html.

41

Appendix

FIR magnitude filter design - stopband energy minimization

%% FIR magnitude filter design - minimizing energy in stopband

clear

%Degree of filter

n = 20;

%Pass- and stopband limits

wp = 0.2*pi;

ws = 0.3*pi;

%Tolerated deviations in pass- and stopband

ep = 0.1;

es = 0.05;

%Coefficients such that c*r is the energy in the stopband of the filter

c = zeros(1,n+1);

c(1) = (1 - ws/pi);

for k = 1:n

c(k+1) = -2*sin(k*ws)/(k*pi);

end

%cvx_solver sedumi

cvx_begin sdp

%Decision variables

variable r(n+1)

variable Q1(n+1,n+1) semidefinite

variable Q2(n+1,n+1) semidefinite

variable Q3(n-1,n-1) semidefinite

variable Q4(n+1,n+1) semidefinite

variable Q5(n-1,n-1) semidefinite

variable Q6(n+1,n+1) semidefinite

%Objective function

minimize c*r

%Constraints

for k = 0:n

%Globally upper boundary

not(k)*(1 + ep)^2 - r(k+1) == sum(diag(Q1,k));

%Lower boundary in the passband

r(k+1) - not(k)*(1 - ep)^2 == sum(diag(Q2,k)) ...

+ trace(intervalmatrix(n,k,0,wp)*Q3);

%Upper boundary in the stopband

not(k)*es^2 - r(k+1) == sum(diag(Q4,k)) ...

+ trace(intervalmatrix(n,k,ws,pi)*Q5);

%Global positivity of R

r(k+1) == sum(diag(Q6,k));

end

cvx_end

%Spectral factorize r to receive the filter coefficients

h=hfactor(r);

FIR magnitude filter design - ripple minimization

%Degree of filter

42

n = 20;

%Pass- and stopband limits

wp = 0.2*pi;

ws = 0.3*pi;

%Tolerated deviations in stopband

es = 0.05;

cvx_begin sdp

cvx_solver sedumi

%Decision variables

variable r(n+1)

variable Q1(n+1,n+1) semidefinite

variable Q2(n+1,n+1) semidefinite

variable Q3(n-1,n-1) semidefinite

variable Q4(n+1,n+1) semidefinite

variable Q5(n-1,n-1) semidefinite

variable Q6(n+1,n+1) semidefinite

variable t

variable ep

variable X(2,2) semidefinite

%Objective function

minimize t

%Constraints

X(1) == t

X(2) == 1+ep

X(3) == 1+ep

X(4) == 1

for k = 0:n

not(k)*t - r(k+1) == sum(diag(Q1,k))

r(k+1) - not(k)*(t-4*ep) == sum(diag(Q2,k))...

+ trace(intervalmatrix(n,k,0,wp)*Q3)

not(k)*es^2 - r(k+1) == sum(diag(Q4,k))...

+ trace(intervalmatrix(n,k,ws,pi)*Q5)

r(k+1) == sum(diag(Q6,k))

end

cvx_end

%Spectral factorize r to receive the filter coefficients

h = hfactor(r);

FIR linear phase filter design - ripple minimization

%% Linear phase ripple minimization

clear all

%Degree of filter

n = 20;

ntilde = n/2;

%Pass- and stopband limits

wp = 0.2*pi;

ws = 0.3*pi;

%Tolerated deviation in pass- and stopband

es = 0.05;

43

%P matrix to relate h and htilde (h = P*htilde)

I = eye(ntilde+1);

P = [rot90(I);I(2:end,:)];

cvx_begin sdp

cvx_solver sedumi

%Decision variables

variable htilde(ntilde+1)

variable ep

variable Q1(ntilde+1,ntilde+1) semidefinite

variable Q2(ntilde+1,ntilde+1) semidefinite

variable Q3(ntilde-1,ntilde-1) semidefinite

variable Q4(ntilde+1,ntilde+1) semidefinite

variable Q5(ntilde-1,ntilde-1) semidefinite

variable Q6(ntilde+1,ntilde+1) semidefinite

variable Q7(ntilde-1,ntilde-1) semidefinite

%Objective function

minimize ep

%Constraints

for k = 0:ntilde

not(k)*(1+ep) - htilde(k+1) == sum(diag(Q1,k))

htilde(k+1) - not(k)*(1-ep) == sum(diag(Q2,k))...

+ trace(intervalmatrix(ntilde,k,0,wp)*Q3)

not(k)*es - htilde(k+1) == sum(diag(Q4,k))...

+ trace(intervalmatrix(ntilde,k,ws,pi)*Q5)

htilde(k+1) + not(k)*es == sum(diag(Q6,k))...

+ trace(intervalmatrix(ntilde,k,ws,pi)*Q7)

end

cvx_end

%Receive the filter coefficients h from htilde

h = P*htilde;

FIR linear phase filter design - stopband energy minimization

% Linear phase energy minimization

clear all

%Degree of filter

n = 50;

ntilde = n/2;

%Pass- and stopband limits

wp = 0.2*pi;

ws = 0.25*pi;

%Tolerated deviation in pass- and stopband

ep = 0.1;

es = 0.05;

%Coefficients such that c*r is the energy in the stopband of the filter

c = zeros(1,n+1);

c(1) = (1 - ws/pi);

for k = 1:n

c(k+1) = -sin(k*ws)/(k*pi);

end

%P matrix to relate h and htild e (h = P*htilde)

I=eye(ntilde+1);

44

P = [rot90(eye(ntilde+1)); I(2:end,:)];

%Calculate squareroot of ctilde

ctildesqrt = sqrtm(P’*toeplitz(c)*P);

cvx_begin sdp

cvx_solver sedumi

%Decision variables

variable htilde(ntilde+1)

variable aux

variable Y(ntilde+1)

variable Q1(ntilde+1,ntilde+1) semidefinite

variable Q2(ntilde+1,ntilde+1) semidefinite

variable Q3(ntilde-1,ntilde-1) semidefinite

variable Q4(ntilde+1,ntilde+1) semidefinite

variable Q5(ntilde-1,ntilde-1) semidefinite

variable Q6(ntilde+1,ntilde+1) semidefinite

variable Q7(ntilde-1,ntilde-1) semidefinite

% Objective function

minimize aux

% Constraints

for k = 0:ntilde

not(k)*(1 + ep) - htilde(k+1) == sum(diag(Q1,k))

not(k)*(ep - 1) + htilde(k+1) == sum(diag(Q2,k))...

+ trace(intervalmatrix(ntilde,k,0,wp)*Q3)

not(k)*es - htilde(k+1) == sum(diag(Q4,k))...

+ trace(intervalmatrix(ntilde,k,ws,pi)*Q5)

htilde(k+1) + not(k)*es == sum(diag(Q6,k))...

+ trace(intervalmatrix(ntilde,k,ws,pi)*Q7)

end

Y == ctildesqrt*htilde;

norm(Y)-aux <= 0

cvx_end;

%Receive the filter coefficients h from htilde

h = P*htilde;

IIR filter design

clear

% Numerator order

l = 10;

% Denominator order

m = 20;

% Pass and stopband specification

wp = 0.2*pi;

ws = 0.22*pi;

% Tolerated deviation in pass and stopband

ep = 0.01;

es = 0.05;

n = max(m,l);

cvx_begin sdp

% Decision variables

variable ra(n+1)

variable rb(n+1)

variable Q0(n+1,n+1) semidefinite

variable Q1(n+1,n+1) semidefinite

45

variable Q2(n-1,n-1) semidefinite

variable Q3(n+1,n+1) semidefinite

variable Q4(n-1,n-1) semidefinite

variable Q5(n+1,n+1) semidefinite

variable Q6(n+1,n+1) semidefinite

%Constraints

for k = 0:n

(1+ep)^2*rb(k+1) - ra(k+1) == sum(diag(Q0,k))

ra(k+1) - (1-ep)^2*rb(k+1) == sum(diag(Q1,k))...

+ trace(intervalmatrix(n,k,0,wp)*Q2)

es^2*rb(k+1) - ra(k+1) == sum(diag(Q3,k))...

+ trace(intervalmatrix(n,k,ws,pi)*Q4)

ra(k+1) == sum(diag(Q5,k))

rb(k+1) == sum(diag(Q6,k))

rb(1) == 1

if k > l

ra(k+1) == 0

end

if k > m

rb(k+1) == 0

end

end

cvx_end

a=hfactor(ra);

b=hfactor(rb);

Functions used by the algorithm

function theta = eltoep(n,k)

% ELTOEP Elementray toeplitz matrix.

% theta = ELTOEP(n,k) returns an elementary n-by-n toeplitz matrix with

% ones on the k:th diagonal

theta = zeros(n);

d = ones(n,1);

theta = full(spdiags(d,k,theta));

end

function M = intervalmatrix(n,k,a,b)

% INTERVALMATRIX The interval matrix for rk.

M = (-(cos(a)*cos(b) + 0.5)*eltoep(n-1,k) + ...

0.5*(cos(a) + cos(b))*(eltoep(n-1,k-1) + eltoep(n-1,k+1)) - ...

0.25*(eltoep(n-1,k-2) + eltoep(n-1,k+2)));

end

Spectral factorization using roots

function h = specfactor(r)

%SPECFACTOR Spectral factorization algorithm

% Takes the coeffients of R(z) as input and the output is the coefficients of

% H(z) such that R(z)=H(z)H(z^-1) and H is minimum phase.

n=length(r)-1;

rz=[r(end:-1:2);r];% R(z)*z^n

rootz=roots(rz);

tol =0.0001; %error tolerance to find roots on the unit circle

rin = rootz(abs(rootz)<1-tol); %roots inside the unit circle

46

ron = rootz((abs(rootz)<=(1+tol)) & (abs(rootz)>=(1-tol))); %roots on the unit circle

[~,k]=sort(angle(ron)); %sort the roots on the unit circle to just take one of the

% pair of roots that actually are the same.

ron = ron(k(1:2:end));

ri=[rin;ron];

htilde=poly(ri); % Creates a polynomial of the picked roots

a=0;

for k=1:n+1 % a is a constant to rescale the coefficients

a=a+htilde(k)^2;

end

a=sqrt(r(1)/a);

h=real(a*htilde)’;

end

Hilbert factorization

function h=hfactor(rr)

%HFACTOR Spectral factorization using the Hilbert transform algorithm

% Takes the coeffients of R(z) as input and the output is the coefficients of

% H(z) such that R(z)=H(z)H(z^-1) and H is minimum phase.

n = length(rr);

mult = 100;

N=2^nextpow2(n*mult); % choose N >> n, power of 2 to improve performance of FFT.

xl = zeros(N,1);

for i=0:N-1

xl(i+1) = log(response(rr,(2*pi*i/N)))/2; % xl = 1/2 log (R (e^(i omega_l)))

end

X = fft(xl); %fast Fourier transform of xl

XX = [0; X(2:N/2)*-1; 0; X(N/2+2:N)]; % Hilbert transform

XX = XX * 1i;

yl = real(ifft(XX)); % inverse fast Fourier transform

h = real(ifft (exp(xl-1i*yl))); % inverse fast Fourier transform

%to recieve the coefficients of H(z)

h = h(1:n); % return the first n:th coefficients

end

function s=response(r,w)

% Frequency response of R (with coeffients r) for frequency w

s=r(1);

n=length(r)-1;

k=1:n;

s=s+2*cos(k*w)*r(2:end);

end

Final program

function [h,s] = optimalfilter(n,wp,ws,ep,es,options)

%MYFILTER returns the optimal filter coefficients if possible due to specifications

%n, wp, ws, ep, es, options.

%n - degree of the filter

%wp - sets passband [0,wp*pi]

%ws - sets stopband [ws*pi,pi], ws must be greater than wp

%ep - the maximum tolerated deviation from 1 in the passband

%es - the maximum tolerated deviation from 0 in the stopband

47

%options - a string map, choose between ’magnitude’(default) or ’linear’ phase,

%choose between minimizing ’energy’ in the stopband or ’ripple’ in the passband,

%spectral factorize using ’Hilbert’ transformation (default) or by

%’spectral’, that is method using roots, note that this method only is stable

%for n<20

%choose to ’plot’ the result with ’boudaries’

%Define constants

wwp = wp*pi;

wws = ws*pi;

c = zeros(1,n);

c(1) = (1 - wws/pi);

for k = 1:n

c(k+1) = -2*sin(k*wws)/(k*pi);

end

if ismember(’Linear’, options) || ismember(’linear’, options)

n = n/2;

c=zeros(1,n);

c(1) = (1 - wws/pi);

for k = 1:2*n

c(k+1) = -sin(k*wws)/(k*pi);

end

end

cvx_precision(’high’)

cvx_begin sdp

%Decision variables

variable r(n+1)

variable Q1(n+1,n+1) semidefinite

variable Q2(n+1,n+1) semidefinite

variable Q3(n-1,n-1) semidefinite

variable Q4(n+1,n+1) semidefinite

variable Q5(n-1,n-1) semidefinite

variable Q6(n+1,n+1) semidefinite

if ismember(’Linear’, options) || ismember(’linear’, options)

I = eye(m+1);

P = [rot90(I);I(2:end,:)];

if ismember(’energy’,options) || ismember(’Energy’, options)

ctildesqrt = sqrtm(P’*toeplitz(c)*P);

% Additional decision variable

variable Q7(n-1,n-1) semidefinite

variable Y(n+1)

variable aux

% Objective function

minimize aux

% Constraints

for k = 0:n

not(k)*(1 + ep) - r(k+1) == sum(diag(Q1,k))

not(k)*(ep - 1) + r(k+1) == sum(diag(Q2,k))...

+ trace(intervalmatrix(n,k,0,wwp)*Q3)

not(k)*es - r(k+1) == sum(diag(Q4,k))...

48

+ trace(intervalmatrix(n,k,wws,pi)*Q5)

r(k+1) + not(k)*es == sum(diag(Q6,k))...

+ trace(intervalmatrix(n,k,ws,pi)*Q7)

end

Y == ctildesqrt*r;

norm(Y)-aux <= 0

else

% Additional decision variable

variable Q7(n-1,n-1) semidefinite

variable ep

% Objective function

minimize ep

% Constraints

for k = 0:n

not(k)*(1+ep) - r(k+1) == sum(diag(Q1,k))

r(k+1) - not(k)*(1-ep) == sum(diag(Q2,k))...

+ trace(intervalmatrix(n,k,0,wwp)*Q3)

not(k)*es - r(k+1) == sum(diag(Q4,k))...

+ trace(intervalmatrix(n,k,wws,pi)*Q5)

r(k+1) + not(k)*es == sum(diag(Q6,k))...

+ trace(intervalmatrix(n,k,wws,pi)*Q7)

end

end

cvx_end

h = P*r;

s=cvx_status;

else

if ismember(’ripple’,options) || ismember(’Ripple’,options)

variable aux

variable X(2,2) semidefinite

variable ep

minimize aux

X(1) == aux

X(2) == 1+ep

X(3) == 1+ep

X(4) == 1

for k = 0:n

not(k)*aux - r(k+1) == sum(diag(Q1,k))

r(k+1) - not(k)*(aux-4*ep) == sum(diag(Q2,k))...

+ trace(intervalmatrix(n,k,0,wwp)*Q3)

not(k)*es^2 - r(k+1) == sum(diag(Q4,k))...

+ trace(intervalmatrix(n,k,wws,pi)*Q5)

r(k+1) == sum(diag(Q6,k))

end

else

% Objective function

minimize c*r %minimize energy in the stopband

% Constraints

for k = 0:n

49

not(k)*(1 + ep)^2 - r(k+1) == sum(diag(Q1,k));

r(k+1) - not(k)*(1 - ep)^2 == sum(diag(Q2,k))...

+ trace(intervalmatrix(n,k,0,wwp)*Q3);

not(k)*es^2 - r(k+1) == sum(diag(Q4,k))...

+ trace(intervalmatrix(n,k,wws,pi)*Q5);

r(k+1) == sum(diag(Q6,k));

end

end

cvx_end ;

s = cvx_status;

% choose spectral factorization algorithm

if ismember(’spectral’,options) || ismember(’Spectral’,options)

h=specfactor(r);

else

h=hfactor(r);

end

end

% Plot solution

if ismember(’plot’,options)

figure()

w = linspace(0,pi,5000);

y = r(1)*ones(1,5000);

if ismember(’linear’,options) || ismember(’Linear’,options)

for k = 1:n

y = y + 2*r(k+1)*cos(k*w);

end

plot(w,y)

else

for k = 1:n

y = y + 2*r(k+1)*cos(k*w);

end

plot(w,sqrt(y))

end

xlabel(’Frequency’,’interpreter’,’latex’)

ylabel(’Magnitude’,’interpreter’,’latex’)

axis([0 pi 0 1.2*(1+ep)])

% Plot boundaries

if ismember(’boundaries’,options)

hold on

line([wws pi], [es es],’Color’,[1 0 0], ’LineStyle’,’--’)

if ismember(’energy’,options) || ismember(’Energy’,options)

line([wws wws], [1+ep es],’Color’,[1 0 0], ’LineStyle’,’--’)

line([0 wws],[1+ep 1+ep],’Color’,[1 0 0], ’LineStyle’,’--’)

line([0 wwp],[1-ep 1-ep],’Color’,[1 0 0], ’LineStyle’,’--’)

line([wwp wwp],[1-ep 0],’Color’,[1 0 0], ’LineStyle’,’--’)

axis([0 pi 0 1.2*(1+ep)])

end

end

end

end

50

