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Plant pathogen defense: Signalling, resistance and cell death

Oskar N. Johansson

ABSTRACT

Pathogenic microorganisms are present everywhere in nature and infect both animals and plants. Phyto-
pathogenic microorganisms cause diseases on plants, and are responsible for crop loss amounting in the 
order billions of dollars annually. Plants have however co-evolved with these organisms and have consec-
utively been forced to develop mechanisms that prevent disease. The plant immune system unlike that of 
animals lack adaptive cells and rely on the innate immunity of each plant cell. There is however no doubt 
in the effectiveness of the plant immune system as most plants are healthy most of the time.  

The plant immune system consists of two main tiers of defense responses; the MAMP triggered im-
munity (MTI) and the Effector triggered immunity (ETI).  MTI is triggered by recognition of microbe 
associated molecular patterns MAMPs. MTI strengthens the cell by producing antimicrobial substances, 
proteins and by fortifying the cell wall. This stops the majority of non-adapted microbes. A subset of 
microbes have adapted to these measures and evolved effector proteins that subdue the MTI responses. 
Again, plants have responded, by evolving resistance (R) proteins that recognize effector activity and 
mount the swift responses that are ETI. The plant responses during ETI are commonly termed the hy-
persensitive response (HR) and culminate in programmed cell death of the infected and sometimes sur-
rounding cells. 

The thesis has approached the plant disease resistance response in four ways. The first focused on 
improving methods for quantifying the programmed cell death response during ETI (Paper I) and lipid 
analysis by chromatography (Paper II). These methods are then used in the following pappers. The sec-
ond part focused on signalling during the HR. Signalling on gene regulation level (Paper III) and various 
parts of lipid metabolism (Paper IV, V and VI) during the HR was pursued. The main results from these 
studies include the high redundancy identified among Arabidopsis thaliana phospholipase D isoforms 
in producing the lipid phosphatidic acid, the identification and initial characterization of the enzyme 
(AGAP1) that is responsible for producing head group acylation of lipids in A. thaliana and the report-
ed involvement of a chloroplast localized 13-lipoxygenase in initiating the HR related programmed cell 
death in A. thaliana. 

The third part of the thesis proposes a role in the HR in A.thaliana for two reactive molecules; indole 
acetonitrile (Paper VII) and sulforaphane (Paper VIII). Both compounds induce cell death when infil-
trated into leaves and studies using mutants suggest that absence of these compounds result in a reduced 
cell death response. A redox related mechanism for these compounds is suggested. The fourth and final 
part of the thesis aimed to investigate if novel components could be identified in post penetration re-
sponse against powdery mildew funguses. Much less is known on the relative dependence of MTI and 
ETI of this system, the results from Paper IX suggest that besides the known involvement of the protein 
EDS1, additional components are present. 

In conclusion, this thesis contributes with insight into different aspects of how lipid-, redox- and hor-
mone signalling contributes to resistance and cell death in plants.
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ABBREVIATIONS
Arabidopsis	 Arabidopsis thaliana
Bgh		  Blumeria graminis pathovar (pv) hordei
DAMP		 Danger-associated molecular patterns
DGDG		 Digalactosyl diacylglycerol
dnOPDA	 Dinor-oxo-phytodienoic acid
Ep		  Erysiphe pisi
ETI		  Effector-triggered immunity
ET		  Ethylene
GSH		  Reduced glutathione
GSSG		  Oxidized glutathione
Hpa		  Hyaloperonospora arabidopsidis pv arabidopsis
HR		  Hypersensitive response
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LOX		  Lipoxygenase
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MAMP	 Microbe-associated molecular pattern
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MTI		  MAMP-triggered immunity
NB-LRR	 Nucleotide binding-leucine rich repeat
OPDA	 	 12-oxo-phytodienoic acid
PA		  Phosphatidic acid
PC		  Phosphatidylcholine
PCD		  Programmed cell death
PE		  Phosphatidylethanolamine
PG		  Phosphatidylglycerol 
PLC		  Phospholipase C
PLD		  Phospholipase D
PRRs		  Pattern recognition receptors
Pst		  Pseudomonas syringae pv tomato
R-proteins	 Resistance proteins
ROS		  Reactive oxygen species
SA		  Salicylic acid 
SAR		  Systemic acquired resistance
T3SS		  Type III secretion system

The nomenclature of this thesis follows the TAIR (www.arabidopsis.org) recommendation for gene, mutant 
and protein names. Wild type alleles of genes are capitalized and italicised (ex. PEN1), whereas mutant 
alleles are lowercase and italicised (ex. pen1-1). Protein gene products are capitalized  (ex. PEN1). Bacteria 
expressing a specific effector protein (using Avr prefixes) are reffered to by colon separation (ex. Pst:Av-
rRpm1).  
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Plants and their diseases are an important part of human history

D
iseases as divine intervention

Utilization of plants have played a major role throughout the evolution of humans, and shaped the develop-
ment of human society in profound ways. Plants provide essential nutritional value, act as medicinal resour-
ces as well as being used for recreational purposes and as building material.  Since the rise of agriculture as 
part of human food production, outbreaks of plant disease epidemics have had severe consequences when 
harvests have been lost. Such losses have historically been attributed to the wrath, anger or plain mischief of 
gods and deities, punishing humans for lack of sacrifice or obedience (Stakman 1957). We find traces of this 
in all major religions today, from the monotheistic Christian, Muslim and Jewish God to the gods of poly-
theistic Hinduism and Shintoism. Several passages in scripture describe the anger of the gods by giving the 
plants diseases, such as the book of Haggai of the Old Testament, “I smote you and every work of your hands 
with blasting wind, mildew and hail; yet you did not come back to Me,’ declares the Lord” (Haggai 520BC). 

Being a divine punishment, the idea of prevention was to please the gods in various ways, by performing 
rituals or sacrificing tribute. One of the major events of the 6th century was the extreme weather pheno-
menon of 535-536. Most of the northern hemisphere was covered with a haze of ash and dust, likely from 
a volcanic eruption. The veil blocked out much of the sunlight and preceded a harsh winter, and several 
consecutive cold years (Larsen et al. 2008). This was naturally attributed to the wrath of gods and the suc-
ceeding famine caused a significant population loss, as documented in both eastern- and western historical 
documents (Graslund and Price 2012, Richardson 2001). In Scandinavia at the time, where Viking culture 
was in its infancy, an excavation has revealed a large deposit of several kilograms of gold dating back to the 
period, suggested to have been a divine offering to please the gods after the cataclysmic event (Axboe 1999). 
In Norse pagan mythology, predominating in pre-Viking and Viking culture in Scandinavia at the time, such 
offering would likely have been used for paying tribute to the æsir Freyr, vowing for a better harvest that 
would not be lost due to disease or drought. Would the harvest ever fail, as in the case of the year 536, the 
farmer could rest assured that Freyr would pay the ultimate price during the times of Ragnarök, being slain 
by the fire giant Surtr (Sturluson 1220). Taken together this illustrates the profound measures humans have 
been willing to take in order to ensure good harvests. 

Understanding how loss of plants occurs due to herbivores such as insects or mollusks has historically 
been straightforward. The nature of plant diseases however, remained elusive until the development of mi-
croscope in the 1600s. Until then, the presence of the microbial world was largely unknown and likely fueled 
the interpretation of disease outbreak as divine intervention or spontaneous generation. The Greek philo-
sopher Theophrastus, father of botany, is one of the earliest contributors to the study of plant pathology and 
described how rusts, smuts and other diseases struck roman crops and how measures were taken to prevent 
these (Howard 1996). The devastating effects of fungal rust caused by Puccinia Sp. culminated in the crea-
tion of a supernatural deity that ruled over disease outbreaks. As a result, Romans performed annual rituals 
in the end of April known as “Robigalia”, to please the god of rust, Robiga (Zadoks 1985).

Acknowledgement of the microbial world by development and refinement of the microscope and lenses 
by Robert Hooke (1635-1703) and Antonius van Leeuvenhook (1632-1723) in combination with emerging 
philosophical ideas during the enlightenment shifted the paradigm from divine interpretations to science 
based explanations and relinquished the need for religious sacrifice (Agrios 2005). However it took another 
century before the independent nature of disease-causing microbes found on diseased plants were identified 
independently by Micheli and du Monceau in the early 18th century (Micheli 1729, Monceau 1728). Until 
then, spores were believed to be part of- or produced by the plant itself. Though it took another two decades 
before the French scientist Tillet convinced the scientific community that these spores were the origin of 
plant disease (Tillet 1755). Scientific endeavor during the succeeding centuries described several causes of 
plant diseases and ascribed them to microbial pathogens. 

As intercontinental trade- and commerce expanded, new plants, their fruit and their diseases traveled 
fast across the globe, a concept known as the Grand/Columbian Exchange (Crosby 2003). Bringing back 
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diseases to Europe from trade routes originating in South America proved catastrophic when the oomycete 
Phytophthora infestans was introduced in the 1840s (Andrivon 1996). Given the monumental importance 
of potato in common peoples´ diets throughout central and northern Europe, the blight initiated by the 
oomycete caused the death of more than one million people in Ireland alone, and the emigration of several 
millions across Europe to America (Goodwin et al. 1994). 
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Disease prevention 
Strategies to prevent crop loss have been employed during the course of human history, in parallel to religi-
ous sacrifice. Important milestones in this struggle have been the development of crop rotation and intro-
duction of pesticides. Selective breeding for enhanced resistance and higher yield throughout history have 
dramatically changed the genetic makeup of domesticated plants (Bai and Lindhout 2007, Jiao et al. 2014). 
The gene as mediator of traits was until the last century unknown. Resistance breeding was in many cases 
successful, however increased yield and resistance have not always gone hand in hand. Thus there has been 
a desire for tools to prevent crop loss due to pests. 

Development of pesticides to combat insects and disease causing pathogens has been the weapon of choi-
ce during the last centuries, besides manually removing pests and washing plants. Farmers in early societies 
depended on very crude pesticides such as sulfur and later arsenic and mercury, methods  even referred to 
in Homers renowned Odyssey (Shankar 2012, Torgeson 1967). Attempts to control pests by usage of toxic 
plants have been employed as early as 2000 BC, with various results, until more sophisticated alternatives 
such as tobacco extracts were developed during the 16th and 17th century (Thacker 2002). During the last 
century, development of synthetic pesticides and their usage on crop plants have provided ample restriction 
of pest proliferation but have resulted in devastating effects to the environment. The effects of DDT usage 
and that of other pesticides in nature throughout the 20th century are beginning to be realized. Pesticide 
usage has been linked not only to environmental effects but exposure upon distribution is associated with 
increased risk of developing diseases such as cancer (Alavanja et al. 2003), respiratory problems (Hoppin et 
al. 2006) and neural ailments (Mostafalou and Abdollahi 2013). 

Plant pests still pose a very real threat. The prevalence and outbreak of disease vary with environmental 
conditions and distribution of infectious agents. Predominance of large scale monocultures that lack genetic 
variance renders many cultivated plants potentially even more susceptible to disease outbreak. As of today, 
the yield loss of crop plants due to pathogens, herbivores and weeds are high. Direct loss as a consequence 
of these threats is estimated to average in the 20-40% range annually (Savary et al. 2012). Contribution of 
the respective categories vary somewhat, pathogenic microbes reduces crop yield in the range 10-20% over 
all, whereas slightly higher losses are attributed to herbivores. However, these numbers do not reflect the 
dramatic loss in some species, for instance, as much as 50-80% of cotton production can be lost due to pest 
damage (Oerke 2006).  These numbers do not take into account post-harvest losses, which would increase 
the amount additionally. Plant diseases thus result in a substantial economic damage. Estimates for soy 
bean demonstrate that 250 million USD worth of produce is lost annually in USA due to disease outbreaks 
(Wrather and Koenning 2006).  Parasitic plants, particularly Striga sp. (Witchweeds) are also a cause of great 
concern worldwide. Striga sp. affects as much as 40% of cereal crops, causing losses of more than 10 billion 
USD in Africa alone (Scholes and Press 2008, Westwood et al. 2010). Currently, crop losses of cereal plants 
including barley, rye, oats and wheat in Scandinavia are predominately caused by fungal pathogens.  More 
specifically, outbreaks of head blight and leaf blotch caused by Fusarium sp. and powdery mildew caused by 
Blumeria sp. are the main cause of the problems in Scandinavia  (Savary, et al. 2012). In addition to direct 
crop loss, many fungi, including Fusarium sp. produces a multitude of mycotoxins that make the surviving 
plants unsuitable for human- or animal consumption (Desjardins and Proctor 2007).

Increased levels of atmospheric carbon dioxide during the forthcoming century will likely lead to an 
elevated temperature and more extreme weather conditions worldwide (Stocker 2013). Global warming will 
have consequences on crop production and on the interactions of plant with their respective pathogens. 
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IPCC-models estimate that an elevated temperature of four degrees will be the consequence of the expected 
increase in carbon dioxide levels in Scandinavia. It is believed that the effects of global warming are in favor 
of the plant pathogens and not plants themselves, although a slight increase in yield in healthy plant is also 
expected (Roos et al. 2011, Savary, et al. 2012). The result of globally increased temperature is expected to 
lead to a worldwide crop loss of over 15% (Oerke 2006).  

Strategies to reduce crop losses in addition to dispersing pesticides have been used with some efficiency 
(Lin 2011). Interestingly, just increasing diversity by co-cultivating multiple varieties of the same species has 
been shown to be successful in many instances, reducing crop loss to rice blast outbreak by over 80% (Zhu et 
al. 2000). Co-cultivation of plant species from one or two different families can also be used to reduce spread 
of disease.  Either by mixing directly to reduce dispersal of diseases or by surrounding fields with non-crop 
plants that attracts predatory insects (Mitchell et al. 2002, Rea et al. 2002, Thomas et al. 1992). 

To increase yield and reduce use of pesticides, understanding plant resistance mechanisms will ultimately 
lead to strategies that can reduce crop- and timber loss due to pathogens. The results herein consist mainly 
of fundamental research and have further progressed the understanding of interactions between organisms 
in general and plant and their pathogens in particular. In addition, the thesis describes the refinement of 
several methods for studying plant pathogen interactions. 
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Unicellular organisms were the principal form of life for a very long time. Even then, organisms competed 
for nutrients and living space. The process, known as natural selection, makes competitive organisms more 
likely to pass on their genes to subsequent generations (Darwin 1859). Organisms less well adapted are ruth-
lessly overthrown by more competitive organisms. Modern endosymbiontic theory describes how ancestral 
prokaryotic cells engulfed other prokaryotic cells to give rise to the first eukaryotic common ancestor 1.5-2 
billion years ago (Mast et al. 2014). Thus, the concepts of cooperation, hostility and varying degrees of inte-
ractions between cells are as old as the history of life itself. 

Plants are descendants of green algae, the first eukaryotic photosynthetic organisms, originating from 
the engulfment of a prokaryotic cyanobacterial ancestor, giving rise to the chloroplast (Keeling 2010). The 
plant life niche has since given them a unique position as the main producers of oxygen and biomass on 
land. This makes them essential for all higher organisms and liable to attack from a wide variety of entities. 
Thus, organisms across both the eukaryote and bacterial domain of life utilize varying ways of parasitizing 
on plants in order to gain carbohydrates produced in photosynthesis. 

Insects and larger herbivores and insects feed on plants to retrieve nutrients. Many plants rely on produc-
tion of secondary metabolites that discourage the myriad of herbivores and pathogens that hope to feed of 
them. Such metabolites can be directly toxic, even lethal, taste foul or cause enough problems to deter from 
eating. These molecules are produced either beforehand or upon attack and are not normally required for 
plant life. Secondary metabolites not only target assailants directly, several examples of plants releasing vola-
tile organic compounds that attracts predators of the attacking herbivores have been discovered (Halitschke 
et al. 2008). Phytochemicals can affect almost all known animal organ systems, including muscle- and lung 
tissue (Lee et al. 2014). Compounds, like digitoxin can cause cardiac arrest even in small doses (Yang et al. 
2012). Psychoactive compounds including mescaline, cocaine and nicotine interfere with the chemistry of 
the brain and nervous systems (Danielson et al. 2014, Heien et al. 2005, Kyzar et al. 2012).  The molecular 
specificity of many of these secondary metabolites makes them useful for both medical- and recreational 
use or as potent poisons.  

Microbial pathogenic assailants lack the forceful measures of herbivores and instead invade plant tissue 
to proliferate on or within, causing disease. To combat attacks from the diversity of pathogenic microorga-
nism, plants must use somewhat different strategies than those used against herbivores. 

Microbial pathogens use these diverse strategies of entrance, infection and dispersal and are usually di-
vided into groups depending on their lifestyle. The crudest way of attack means killing the plant and feed of 
dead plant tissue. This lifestyle is termed necrotrophy and is a major source of post-harvest crop loss (Laluk 
and Mengiste 2010). These organisms release cell wall degrading enzymes, toxic metabolites and have been 
known to hijack the plant host´s cell death machinery to overcome plant defenses and kill host cells (Govrin 
and Levine 2000, Mengiste 2012). Mechanistically this is performed in many different ways, for instance, 
the necrotrophic fungi Sclerotinia sclerotiorum perturb the oxalic acid homeostasis to initiate autophagy 
(Kabbage et al. 2013), other organisms secrete RNAs that tamper with plant transcription activity (Weiberg 
et al. 2013).

The opposite strategy is represented by biotrophic pathogens, which are dependent on living hosts for 
sustained life. Biotrophic pathogens do not kill their plant host under the infection process and are depen-
dent on living plant cells to be able to utilize its nutrients. Hemi-biotrophs start their infection process as 
biotrophs but over time turn into necrotrophy as the plant cells die, as a result of strain caused by the infec-
tion. Biotrophs and hemi-biotrophs therefore have evolved sophisticated methods to circumvent detection, 
suppress plant defenses and reprogram the gene expression of the host (Koeck et al. 2011). 

The interaction of plant and microbial organisms is highly complex. Not only does it include pure para-
sitism in the case of pathogens, but also various degrees of mutualism. Mutualistic relationships between 
organisms have evolved several times throughout history and denote a successful way of increasing fitness 

Plants pathogen co-evolution2.1

Pl
an

ts 
ha

ve
 ev

ol
ve

d 
de

fe
ns

es



r7

Oskar N. Johansson

for both organisms. Organisms living on (ectophytes) and within plants (endophytes) without causing di-
sease and eliciting defense responses are an important component of both developmental- and biotic inte-
raction processes (Reinhold-Hurek and Hurek 2011). Several such favorable interactions are known to exist 
in plants, and the bacterial population on the leaf surface is  in the order of millions of bacteria per gram 
leaf (Lindow and Brandl 2003). Endophytic actinobacteria can induce defense responses that prevent seve-
ral fungal strains from causing disease (Conn et al. 2008). Hence, these functions resemble the microbiota 
of the gut- and skin of humans that helps fend of pathogens. Even highly pathogenic Pseudomonas sp. are 
known to proliferate as ectophytes for extended periods until beneficial conditions of increased moisture 
or open wounds appear, and pathogenesis is initiated (Hirano and Upper 2000, Lindow and Brandl 2003). 
Favorable conditions often also require that a sufficient bacterial concentration has been reached; activating 
quorum sensing mediated potentiation of virulence factors (Chatterjee et al. 2007).

Bacterial pathogens enter plants either via wounds or through natural openings, such as stomata. Pseu-
domonas sp. actively contributes to wounding by expressing INAZ genes that promotes formation of ice 
crystals that damages cells (Baertlein et al. 1992). 

Stomatal aperture is varied in the plant by altering osmotic potential in guard cells surrounding the pore. 
Regulation of stomata aperture is a tightly controlled procedure influenced by light, carbon dioxide and 
abscisic acid (ABA) (Shimazaki et al. 2007). Recognition of bacterial pathogens encourages rapid stomatal 
closure to prevent entry. Adapted phytopathogenic bacteria have evolved toxins that force stomata to open 
and allow them access to the plant tissue. The polyketide coronatine, a jasmonic acid-isoleucine analog, 
is used by Pseudomonas sp. to overcome stomata closure mechanisms and promote virulence (Geng et al. 
2012, Melotto et al. 2006). Coronatine also reduces the production of indole glucosinolates by targeting the 
expression of the transcription factor MYB51 involved in regulation of their biosynthesis (Geng, et al. 2012, 
Millet et al. 2010). Interestingly MYB51 was one of the transcription factors identified in Paper III to be 
down regulated in Arabidopsis thaliana by the bacterial effector protein AvrRpm1, and breakdown products 
of indole glucosinolates were suggested to be involved in plant defense signalling (Paper VII). 

To travel between plants, some bacteria attach to aerosols and are dispersed by wind and rain while oth-
ers use biological vectors (Lindemann and Upper 1985). Biological transmission presents yet another route, 
since transmission can occur also upon contact between vectors (Mann et al. 2011). Some bacteria infect 
both plants and their insect vectors and cause disease in both organisms (Nadarasah and Stavrinides 2011). 
Insects that harbor plant pathogenic bacteria performed pro bono, the insects use these microbes to suppress 
defenses elicited by feeding (Chung et al. 2013). 

Most bacterial pathogens also produces other toxins that subdue plant cells and promote infection, inclu-
ding syringomycin, tabtoxin and phaseolotoxin from Pseudomonas sp. and albicidin from Xantomonas sp. 
(Tarkowski and Vereecke 2014). In addition to toxins, many pathogens secrete enzymes that enhance viru-
lence by detoxifying secondary metabolites or that are able to interfere with plant cell signalling (Duca et al. 
2014, Fan et al. 2011). In Paper VIII the compound sulforaphane was found to be released from A. thaliana 
tissue during defense responses. Adapted Pseudomonas sp. have been shown to harbor SAX (Survival in 
Arabidopsis Extracts) genes, which detoxify released compounds (Fan, et al. 2011), including sulforaphane. 
This promotes virulence, since sulforaphane have direct antimicrobial properties against bacteria (Tierens et 
al. 2001). Paper VIII. Furthermore Pseudomonas sp. can convert indole acetonitrile (IAN), studied in Paper 
VII, into indole-3-acetic acid (Kiziak et al. 2005). Reduced levels of indole acetonitrile impede activation of 
plant cell death and instead promote bacterial growth. 

Fungal- and oomycete pathogens are the causal agents of many important diseases worldwide. Spores 
from families of rust- and mildew causing fungi, including Blumeria sp. and Puccinia sp.,  are wind disper-
sed across continents to invade new terrain (Brown and Hovmoller 2002). Other fungi proliferate in soil 
and infect plant roots or seeds. Pathogenic fungi and oomycetes have evolved mechanisms for entering plant 
cells and are not always dependent on wounds or natural openings. Once landed, the fungal spore germina-
tes and the process of penetrating the plant cell wall ensues. 

Plant viruses are not nearly as well understood as those infecting humans. In general, plant viruses are 
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small , in the 200-500 nm range, and rod-shaped (Agrios 2005). Most plant viruses depend on passive trans-
mission via insect- or nematode vectors. Other parasites are found even within members of the plant king-
dom. Parasitic plants use invasive means of acquiring nutrients and water from other plants. Most parasitic 
plants do not photosynthesize themselves but instead utilizes a specialized root structure, also known as a 
haustorium, which attaches to- and protrudes into the target plant vascular systems for retrieval of water 
and nutrients (Yoder and Scholes 2010). Consequently, parasitic plants present photosynthetic plants with 
yet another threat that they have to be able to cope with. 

A shortage of mobility options makes plants disinclined to relocate in response to threats. Neither do 
plants possess the circulatory systems that mammals do. Hence, the possibility to have specialized immune 
cells is not an option, but has instead forced plants to rely on defensive capabilities within all individual cells. 

Plants may appear pleasing to our eyes, they do however harbor an inhospitable micro- and macro en-
vironment to deny other organisms access. Perennial plants often produce thick bark supplemented with 
secondary metabolites. Its constituents comprise, but are not limited to cellulose, hemicellulose, lignin, 
tannins and suberin. These structures prevent outside access to living tissue and provide support for vertical 
growth (Alfredsen et al. 2008). Some plants produce thorns and spikes that are part of the herbivoral defense 
by deter from feeding. Most plants produce a thick waxy surface on the leaf, the cuticle. The hydrophobic 
nature of the cuticle makes it inhospitable to microbes. To further deter pathogens, the cuticle is sequestered 
with molecules that impede microbes (Bednarek and Osbourn 2009). Additionally plants regulate the cutic-
le ectobiota, either by varying the levels of polyphenols that chelate iron ions, reducing the availability of the 
much needed Fe3+ (Karamanoli et al. 2011) or by harboring non-virulent ectophytic bacteria that interfere 
with pathogenic quorum sensing (Dulla et al. 2010).  

Co-evolution of plant and their microbial enemies over the course of time has resulted in adaption of 
pathogens to overcome plant defenses. Once microbes successfully adapts to plant defenses, the selective 
pressure shifts to the plant population to refine its methods of defense. Selective pressure has shifted back 
and forth between the assailant and the defending plant as an ever raging evolutionary battle. This is descri-
bed in the zigzag model in which progressively stronger and more adaptive responses have been evolved in 
both plant and pathogens (Jones and Dangl 2006). 

Secreted proteinaceous effectors that interfere with defense signalling have been the weapon of choice 
for most microbial pathogens. Plants have in turn evolved means of monitoring effector activity by evolving 
resistance (R) proteins. The idea of one pathogenic component being recognized by one plant resistance 
component, known as the gene-for-gene concept, was introduced in the 1940s by Flor and associates (Flor 
1942). Though, the genetic relationship was elucidated later on. Harboring a large set of effectors that ef-
fectively overcome plant defenses might seem advantageous for the pathogen, however there is a flipside. 
Recognition of microbial effectors initiates a second wave of defenses, stronger than those elicited by mere 
recognition of microbes. Increasing the number of effectors result in a larger number of plant species evol-
ving mechanisms to recognize them and has resulted in some assailants gradually becoming more adapted 
to a specific plant species (specialists) and harmless to the majority of other plants. On the other hand, some 
pathogens lack the specialized tools to overcome certain plants defenses but are instead able to attack a lar-
ger set of plant species (generalists). 

The concept is known as host range and is most easily exemplified by two well-known herbivores, koala 
bears (Phascolarctos cinereus) that eat mainly Eucalyptus sp.  (low host range) and goats (Capra aegagrus) 
that are known to eat more than thousand different plants (high host range) (Barrett and Heil 2012). By 
adapting to a low host range, but becoming more specialized in overcoming a certain plants´ defenses, 
pathogens and herbivores increase their competitiveness on available host plants, as most others will fail 
attacking it.
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Figure 1. Collapse of leaf tissue as a response to bacterial infection. Left side of the leaves  (Black dot) are inoculated with a P. sy-
ringae suspension. Upon recognition (A) the entire left side of the leaf collapses (Red arrows), whereas plants lacking the cognate 
resistance protein do not trigger cell death and do not collapse (B). This enables bacterial growth that gives the leaves a slightly 
yellow hue. 

2.2The hypersensitive response
The term hypersensitiveness was coined by Stakman in 1915 and it refers to the apparent overreaction plants 
upon inoculation with non-adapted pathogens (Stakman 1915). The term hypersensitive response (HR) 
has since been used as a term to describe the multitude of phenomena associated with the stronger defense 
reaction elicited by recognition of microbial effectors. The most drastic feature of the HR, as a consequence 
of effector recognition, is the execution of genetically programmed cell death (PCD), which causes the ma-
croscopic collapse of whole leaves (Figure 1, Stakman 1915). Sacrifice of individual cells and an intricate cell 
death program exists in most organisms and likely arose before the emergence of multicellular organisms, 
as a defense against viral pathogens (Engelberg-Kulka et al. 2006).

PCD was originally described in the 1960s, in tadpole developmental processes (Tata 1966) and imple-
mentation of cell death programs are an important part of many developmental and stress related responses 
in multicellular organisms. Plants are no exception, sacrifice of a single and in some cases the surrounding 
cells is the result of a minute, controlled response from the plant. Like mammalian cells, plant cells excrete 
molecules that promote cell survival. If not present in high enough concentration, cells will initiate cell de-
ath (McCabe et al. 1997). Perturbation of this homeostasis by pathogen interaction or other stimuli can ini-
tiate PCD. Discovery of lesion mimetic mutants that are hypersensitive to such stimuli has been a useful tool 
for elucidating programmed cell death routes in plant cells. Many such mutants exhibit enhanced resistance 
towards and activate defenses at a lower microbial inoculum (Lorrain et al. 2003).  Local PCD will trap the 
feeding structures of obligate biotrophs in the dead cell causing the fungus, oomycete or parasitical plant to 
eventually run out of energy and die, saving the rest of the plant from colonization. In some infections, cell 
death per se does not seem to affect the proliferation of pathogens (Shapiro and Zhang 2001, Paper VII, 
VIII), possibly as a consequence of the pathogens hemi-biotrophic lifestyle. Transport of signals to remo-
te plant tissues are reduced when cell death is lacking, even if resistance locally is not affected, and hence 
spread of resistance to neighboring cells and remote tissue is reduced in the absence of PCD (Shapiro and 
Zhang 2001). Several bacterial effectors are known to actively inhibit cell death (Jamir et al. 2004), including 
the hemi-biotrophic bacteria Pseudomonas syringae. Hence, these bacteria likely prefer living cells that they 
can actively retrieve nutrients from. 

In plants, PCD is classified into two categories depending on the morphological changes that transpire 
during cell death progression. For a long time there was a quest for plant apoptosis like mechanisms, similar 
to those of mammalian cells. Following animal apoptosis, phagocytes engulf cellular remains of cells. The 
latter is clearly not present in plants. Similarly, plants lack the specific cysteine proteases, caspases, which 
orchestrate cell death in mammalian cells. Thus, this search has not borne fruit, and it is generally presu-
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Figure 2.  Ultrastructure of plant cells before (A) and two hours after (B) infection with P. syringae expressing the effector Avr-
Rpm1 that is recognized by the plant. Recognition induces programmed cell death of the plant cell. Characterizing features of 
this include degradation of organelles such as the chloroplast (Green arrow) and plasma membrane release from cell wall (Red 
arrows). Additionally plasma membrane rupture and release of cellular content is clearly visible (B-Red arrow). 

med that plants lack apoptosis mechanisms. The two classes of PCD differ in one central aspect, that being 
whether or not the vacuolar membrane, the tonoplast, ruptures and releases cell degrading enzymes (van 
Doorn 2011). PCD displaying tonoplast rupture is referred to as autolytic cell death. Autolytic cell death 
resembles what transpires in mammalian- and yeast cells during cell death with autophagic features. There 
are a number of events directly foregoing autolysis; the number of small lytic vacuoles in the cytosol are in-
creased, many cellular organelles are degraded, and the chromatin within the nucleus is condensed (Figure 
2) (van Doorn et al. 2011). 

The hypersensitive response related programmed cell death (HR-PCD) presents a unique case. It shares 
some features with PCD types associated with animal cells, including apoptosis and additionally retains uni-
que features (Coll et al. 2011). This is likely a consequence of the sturdy cell walls that surround plant cells 
and intercellular compartments such as chloroplasts and vacuole.

Non-autolytic cell death is the other type of cell death mechanism in plants and it resembles mammalian 
necrosis. This necrotic like cell death is not to be misinterpreted as accidental damage. In contrast, non-au-
tolytic cell death is preceded by an increase in cellular ROS, swelling of mitochondria, shrinkage of cell 
volume and rupture of the plasma membrane (van Doorn, et al. 2011). 

Disease resistance is increased throughout the plant2.3
Once defenses are mounted at the local level, resistance is increased also throughout the plant (systemic 
acquired resistance, SAR). This enhances the chance of surviving recurring pathogen exposures. Primed 
basal resistance shift the focus of plant responses during the defense from triggering cell death to actual 
resistance, since the plant will have additional time to produce antimicrobial proteins and low molecular 
weight compounds (Fu and Dong 2013). 

Epigenetic covalent modifications of the DNA molecule, such as methylation of cytosine residues and 
indirect modification of histone proteins that alter DNA folding and chromatin structure have been shown 
to extend the enhanced resistance across generations (Chinnusamy and Zhu 2009, Dowen et al. 2012) ma-
king the activation swifter on succeeding infections (Slaughter et al. 2012). Additionally, it has been shown 
that the genetic recombination activity increases after viral infection, thus increasing variability as well as 
resistance in subsequent generations (Kathiria et al. 2010)
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Even though the SAR phenomenon has been known for more than a century, the quest for the mobile 
signal that mediates SAR is still ongoing. Salicylic acid (SA) was among the first proposed and exogenous 
application of SA mimics the response during SAR (Vanloon and Antoniw 1982). However, grafting ex-
periments using plants expressing NAHG, a bacterial protein able to degrade SA, suggested that while SA 
is required both locally and systemically it is not the mobile signal that activates SAR (Gaffney et al. 1993, 
Vernooij et al. 1994). Also the SA derivative Methyl Salicylate (Me-SA) and the phytohormone jasmonic 
acid (JA) was suggested to act as mobile signals (Park et al. 2007). Later studies showed that Me-SA is dis-
pensable for SAR induction, and while JA can induce SAR, it is not the mobile signal (Attaran et al. 2009, 
Truman et al. 2007). Two other compounds that have been proposed to be involved in SAR signalling are 
azelaic acid (AZA) and glycerol-3-phosphate (G3P). These compounds were initially believed to be mobile 
signals that mediated SAR as they are translocated through the petiole (Chanda et al. 2011, Jung et al. 2009). 
Though, G3P cannot initiate SAR on its own when applied exogenously, and later studies showed that while 
it is not the mobile signal, G3P is required for SAR activation (Mandal et al. 2011, Yang et al. 2013). AZA 
on the other hand can stimulate SAR when sprayed onto leaves, however, it primes the plant by promoting 
G3P production and is not the mobile signal (Yu et al. 2013). More recently, the hormone auxin (Truman 
et al. 2010), pipecolic acid (Navarova et al. 2012) and the diterpenoid dehydroabietinal (Chaturvedi et al. 
2012) was suggested to be involved in SAR signalling. Hence, the pursuit of the signal is not ended, and it is 
becoming more apparent that it is not as simple as one single component being translocated and perceived. 

Recently, other, more exotic stimuli has been proposed to induce resistance. For instance, mycorrhizal 
symbiosis prime defenses against pathogens. Plants perceive signals from their mycorrhizal symbionts, ac-
tivating gene expression, initiate production of secondary metabolites and activate other parts of resistance 
signalling (Cameron et al. 2013, Veresoglou and Rillig 2012, Zamioudis and Pieterse 2012). Other stimuli 
that induce resistance include mechanical stimulus and possibly the sound of being chewed (Appel and Co-
croft 2014, Gus-Mayer et al. 1998, Jayaraman et al. 2014). Many plants alert not only distal parts of itself but 
also neighboring plants, both within the same species and that of others. Tomato plants for instance have 
when subjected to attack been shown to alert neighboring tomato plants connected to a common mycorrhi-
zal network (Babikova et al. 2013, Song et al. 2014). 

Resistance signalling throughout the plant





METHODS AND MODELS IN 
PLANT PATHOLOGY

3



r 14

Plant pathogen defense: – Signalling, resistance and cell death

Model systems3.1

Since it is impossible to study every plant pathogen interaction, plant pathologists have turned to model 
systems that have allowed deeper study of a few interactions in detail. Based on these models, investigation 
of- and generalization to other plants can be made. Hence, models might not reflect reality in each and every 
aspect but provide a framework to start from. To be able to investigate plant pathogen interactions, methods 
that allow researchers to assess the levels of infection and defense signalling are required. Described below 
are the models and methods used in this thesis.

A key model within the plant molecular biology community since several decades is a small weed-like plant 
in the Brassicaceae family, the thale cress, Arabidopsis thaliana (hereafter Arabidopsis). Arabidopsis has se-
veral advantages as a model over other plants and was the first plant to get its genome sequenced, revealing 
about 27000 protein coding loci (Arabidopsis Genome 2000, Swarbreck et al. 2008). Among the advantages 
in addition to being fully sequenced is that it is diploid, has a short generation time, self-pollinates, is easy to 
manually pollinate, produces plenty of seeds and requires a small amount of seed storage- and plant growth 
space. During the first decade of the 2000s several initiatives to generate knock out lines of the genome have 
resulted in a very high degree of coverage. These lines can now easily be obtained online from stock centers 
(Scholl et al. 2000). Most of these knock out lines are based on insertions of transfer DNA (T-DNA) into the 
genes by a modified version of the bacterial pathogen Agrobacterium tumefacienas. Depending on where in 
the gene the T-DNA is inserted, transcript level and/or activity of the gene product may vary considerably. 
Optimally T-DNA insertions terminate the gene encoded trait by producing a transcript without function. 

Figure 3.  Model of Pst infection (A). Bacteria are recognized by membrane bound receptors and trigger defense responses (MTI). 
Adapted bacteria inject effector proteins through the type three secretion system (T3SS) that interfere with defense responses. 
Plants have in turn evolved resistance (R-Proteins) that monitor the integrity of the defense responses. If perturbations is detected 
a stronger defense response is initiated (ETI), that leads to programmed cell death and resistance. Infected mesophyll cells of 
Arabidopsis prior (B) and 4 hours after (C) infection. Cells are stained with trypan blue that selectively stains dead cells. 
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This is not always the case, sometimes T-DNA insertion cause knockdown of transcript level or results in no 
effect at all (Wang 2008). T-DNA insertion mutants are used in Paper IV, VI, VII and VIII.

Different climatic conditions throughout the world have given rise to ecotypes of plants from the same 
species, adapted to local environments. This is true also for Arabidopsis, and has contributed to a large ge-
netic diversity. Two of these ecotypes commonly used, also in these studies, are Wassilewskija (Ws-0) from 
Belarus and Coloumbia (Col-0) from Germany. 

Several model systems for plant pathogen interaction studies have been developed and can now be consi-
dered established models. Four such pathogens; one hemi-biotrophic bacteria, two biotrophic fungi, one 
biotrophic oomycete (Pseudomonas syringae  pv tomato (Pst), Blumeria graminis pv Hordei (Bgh), Erysiphe 
pisi pv Pisi (Ep), Hyaloperonospora arabidopsidis pv arabidopsis (Hpa)) have been used as models in combi-
nation with Arabidopsis in this thesis. 

The Pst bacterium is small, rod shaped, Gram negative, similar in size to the human gut bacteria Esche-
richia coli (E. coli) and is readily cultivated on nutrient plates. Pst causes leaf spots on its host plants and each 
pathovar are known to infect in the order of 50 plant species (Katagiri et al. 2002). The pathovar used in this 
thesis originates from tomato (Solanum lycopersicum) but readily infects Arabidopsis. 

Upon entry to the plant, Pseudomonas sp. make their way to cells by whipping motions of their polar 
flagella. As water is the medium of motility, apoplastic water potential plays a significant role once bacteria 
have entered the plant. Hence, adapted strains of Pseudomonas sp. alter their cell wall glycosylation pattern 
and increase their excretion of polysaccharides to retain water by forcing hydration of these molecules 
(Beattie 2011, Wright and Beattie 2004). (Wright and Beattie 2004). Once a bacterium is close to target cells, 
attachment structures are produced that anchor the bacterial cell to the plant cell wall and facilitates injec-
tion of effectors (Duque et al. 2013), (Figure 3). 

Some of the better studied effectors-R-protein pairs include the Pst effectors AvrRpm1 and AvrRps4 and 
their respective R-proteins RPM1 and RPS4. As such, plant responses following recognition of AvrRpm1 
have been the chief focus of this thesis (Paper I-VIII). RPM1 together with at least one other R-protein, 
RPS2 monitor the integrity of the plasma membrane resident protein RIN4 (RPM1 interacting protein 4), 
involved in regulating defense responses and targeted by at least four Pst effectors (AvrRpm1, AvrB, AvrRpt2 
and HopF2) (Axtell and Staskawicz 2003, Liu et al. 2009, Mackey et al. 2003, Mackey et al. 2002, Wilton et 
al. 2010). In addition, another type of Pst effector, AvrRps4, was included in some experiments (Paper I, VI 
and VII) as a contrasting effector to investigate a broader set of signalling transduction events, as AvrRps4 
targets EDS1 (Enhanced Disease Susceptibility 1)  (Bhattacharjee et al. 2011). Loss of either RPM1 or EDS1 
results in several orders of magnitude increased in planta growth of Pst expressing the effectors (Pst:Av-
rRpm1 and Pst:AvrRps4 respectively) (Paper VII). 

One approach to study the effect of an effector-R protein interaction independently of the pathogen 
is to use a transgenic, dexamethasone-inducible system (DEX). The system harbors the bacterial effector 
AvrRpm1 transformed into the plant genome under a dexamethasone inducible promoter DEX:AvrRpm1 
(Mackey, et al. 2002). The system expresses AvrRpm1 in all cells that come in contact with dexamethasone 
and thus produces a slightly stronger response from the plant as to that of  the whole bacteria, the DEX sys-
tem is used in Paper II, III and VIII. The system removes any responses triggered by the bacterium itself or 
other effectors that are expressed. 

If plant tissue is left to float in a body of water after bacterial inoculation, ions released during HR readi-
ly leak into the apoplast and will diffuse into the water.  Changes to the electrolyte quantity can readily be 
quantified using an electrode that measures electric conductance. This readout has been used with much 
success since its development, to assess the ability of plants to mount defense reactions (Mackey, et al. 2002). 
Mode of Pst inoculation typically entails delivery of a bacterial suspension through the stomata by syringe-, 
vacuum- or spray inoculation. Incremental adaptions and advances to the procedure have been developed 
ever since. There is always room for developing new as well as refining- and perfecting existing methods 
to obtain additional, faster or more consistent information. The development of a vacuum based delivery 
method described in Paper I. Various aspects affecting the outcome of the released electrolytes were in-
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vestigated by establishing a vacuum based method of bacterial infiltration. This method proved to be both 
faster and more consistent than tried and true syringe inoculation. Using the developed method, evidence 
is provided for a shift in onset and amplitude of HR related release of electrolytes by altering either the tem-
perature of Pst culturing, composition of cultivating material or inoculum titer. Additionally the bacterial 
titer effect on HR kinetics was modelled. The kinetics of the HR was successfully fitted to a weibull-box cox 
function to describe this. 

The highly synchronous infection process to study HR induced by Pst described in Paper I have proven 
fast and convenient throughout the studies presented herein and is used in Paper III, IV, V, VI VII and 
VIII. As it is possible to infiltrate large quantities of plant material, it is also conceivable that downstream 
isolation and quantification of molecules with low prevalence can be performed. Additionally, it is possible 
to pre-treat the leaf material with toxic substances without manual handling of a syringe, as is exemplified 
by radioactive labeling in Paper I.

The effect of bacterial pre-culturing conditions presents an interesting finding. However, it is not im-
mediately apparent why Pst optimal growth condition is different from that of optimal virulence. This is 
possibly due to Pst reaching stationary growth phase earlier when cultivated favorably.  The other important 
find is that the inoculum titer not only has an effect on the amplitude of released electrolytes, but also affects 
the temporal aspect of cell death initiation, and thus likely the infection process. Therefore, components 
such as culturing temperature, culturing media and bacterial titer are all important aspects to consider when 
assaying mutants for capability of initiating HR. 

To study plant defenses against non-adapted obligate biotrophic fungi, the barley (Hordeum vulgare) 
pathogen Bgh is commonly used in combination with Arabidopsis. Bgh belongs to the fungi responsible for 
causing powdery mildew on plants, characterized by a white powder appearing on leaf surfaces, consisting 
of fungal hyphae and conidia. The Bgh genome was recently sequenced and analysis of the genome structure 
revealed an estimated size in the range of 140 MBp, encoding more than 200 predicted effector proteins 
(Spanu et al. 2010). 

In contrast to most bacteria, biotrophic powdery mildews reside on the outside of the plant. Once fungal 
spores land on the plant epidermis they produce a germination tube that assesses physical- and molecular 
ques including hardness, chemical composition and hydrophobicity of the leaf surface (Glawe 2008). Fungal 
spores secrete lipases that use plant epidermal wax constituents to produce a set of aliphates that mediate 
adherence of the fungal spore to the plant cuticle (Carver et al. 1999, Feng et al. 2009). The degraded pro-
ducts of the cuticular waxes serve as germination ques for nearby spores and promote advancement of the 
fungal virulence process (Carver, et al. 1999, Hansjakob et al. 2010). Once attached, many fungal spores 
produce a penetration structure, an appressorium, which uses brute force to push through the plant cell wall 
(Howard et al. 1991), others grow through the stomata or use a combination thereof. Penetration is followed 
by invagination of the plant plasma membrane and construction of a feeding structure, haustoria (Figure 4) 
(Glawe 2008). From haustorial structures, fungal spores are able to obtain energy and construct secondary 
hyphae and later asexual conidiospores. Bgh lifestyle is complex and involves both asexual reproduction on 
leaf surfaces and sexual reproduction on leaf surfaces or during dispersion (Glawe 2008). 

Bgh is readily cultivated on susceptible varieties barley. Traditional plant breeding has produced barley 
varieties with various degree of resistance to Bgh. In these studies the Barbro variety was used except for the 
study where spore quality was assayed. Powdery mildew spores are wind-dispersed in nature and can easily 
be released from the plant by shaking or blowing. Thus, by blowing/shaking infected plants over neighbo-
ring plants, fungal spores are readily transferred onto new plants. The infection of Arabidopsis is performed 
by putting the plants close to each other on the ground in a random pattern. A large cardboard box with an 
opening in the top is placed over the plants. Once in place, infected barley plants are shook above the hole in 
the box. Shaking releases a cloud of fungal spores that slowly reaches the plants, mimicking wind dispersal. 
This contraption is known as the settling tower and is used in Paper VI, VII and IX. 

The other pathogenic powdery mildew that has been used in these studies is Erysiphe pisi, Ep. This fungus 
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is cultivated on its host plant the green garden pea (Pisum sativum), the Kelvedon wonder variety. While the 
life cycle and infection strategy is similar, the morphology of Ep spores is somewhat different from Bgh. Ep 
spores are slightly larger, produce a different type of germination tube and a morphologically different haus-
torium (Falloon et al. 1989). Furthermore Ep spores are more firmly attached to the fungal mycelium on pea 
plants than Bgh is on barley. Thus, the settling tower method is unsuitable for infection of Ep. Instead, a soft 
brush is used to collect spores from the pea plants and then used to sprinkle them above each Arabidopsis 
plant to be infected (used in Paper IV, VI and IX). A similar mode of cultivation is used for the oomycete 
Hyaloperonospora arabidopsidis, Hpa, though spores are cultivated on susceptible lines of Arabidopsis and 
put in a water suspension instead of being blown during infection process (used in Paper VII and VIII). 

Bgh spores are unable to penetrate Arabidopsis epidermal cell walls in all but 10-20% of the interactions. 
Spores that penetrate are efficiently stopped by post penetration defenses including PCD of the infected 
plant cell. Ep spores are to a higher degree able to overcome Arabidopsis penetration defenses but are even-
tually stopped by PCD and post penetration defenses before any new spores can be produced.  

Since the culturing conditions of bacteria were found to have a large impact on the outcome of the HR 

Figure 4.  Model of powdery mildew infection. Spores landed on plant epidermal surfaces (black arrow) produces primary germ 
tubes that asses the surface. The appresorium forms and tries to penetrate the plant cell wall. Plant defenses are mounted, hall-
marked by deposition of callose at the site of the penetration attempt. Failure to stop the penetration results in fungal invagination 
of the plasma membrane and construction of a haustorial feeding body. Nutrients are translocated from the plant into the haus-
torium and into the fungal spore. This results in advancement of the fungal hyphal network (red arrow) and finally construction 
of asexual conidiospores. Successful penetration attempts can be stopped by the plant by activation of programmed cell death 
(green arrow)
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(Paper I) an investigation of fungal culturing, i.e. the plant cultivar was pursued in Paper IX. Three Swedish 
cultivars, Barbro, Mitja and Gustav with varying susceptibility to Bgh were selected for further investigation. 
Staining of barley leaves, show the dramatic difference between the varieties in terms of resistance. Hence, 
the Gustav variety, being the most resistant, also allowed production of the fewest conidial spores. However 
these spores were more virulent when exposed to the pen1 eds1 mutant that is impaired in both penetration 
and post-penetration resistance. Barbro being the least resistant of the three produced a throng of fungal 
spores that were significantly less virulent than both the Gustav and Mitja varieties. 

Results from Paper IX suggest that the age of the spores is important for their ability to infect Arabidop-
sis. Spores would form more rapidly on a susceptible cultivar and thus be comparatively older than spores 
formed on a more resistant cultivar. This presents a significant find and warrant further investigation. If a 
subset of susceptible plants were to be co-cultivated with resistant varieties, the spores would possibly be less 
virulent on the majority of the field population and induce resistance before the more virulent spores from 
the resistant plant reach the leaf surface. 

Visual-, genetic- and biochemical assessment of infection and defense response3.2

The microscopic nature of plant pathogens demands use of microscopes to visually assess the progress of 
infection in many cases. A traditional technique for visualization is trypan blue staining, used in Paper I, 
IV, VI, VII, VIII and IX. Detached leaves or whole plants are submerged in an acidic phenol based trypan 
blue solution, boiled and consecutively de-stained in chloral hydrate (Keogh et al. 1980, Koch and Slusaren-
ko 1990). Trypan blue selectively enters dead cells through ruptured membranes, providing an exclusion 
method of assaying the viability of cells. Additionally, the staining solution surrounds fungal structures and 
seeps into cavities of plant structures providing much needed shading and opaque to otherwise transparent 
cells. Subcellular structures have been visualized by electron microscopy as wavelengths of electrons are 
but a fraction of that of light. This gives significantly higher resolving power and has been used to visualize 
structural changes of chloroplasts during HR (Figure 2 and Paper VI).   

Fluorescent probes are commonly used in order to visualize small molecules. For instance, the sugar 
polymer callose, produced to enhance the cell wall, can be visualized by staining with aniline blue, Figure 
7. Reactive oxygen species such as singlet oxygen can be visualized using the probe Sensor Green, (Paper 
VI). To investigate the localization of proteins a key technique is the use of fluorescently labeled tags. In 
Paper V such a reporter (green fluorescent protein, GFP) was fused to the acyl transferase studied to verify 
its localization to the cytosol. 

Cellular activity can be measured and monitored in many different ways. The methods presented here 
are those used within the work presented. At the level of gene regulation, activity is routinely performed 
using reverse transcription quantitative polymerase chain reaction (qPCR, used in Paper VI and Figure 
9) or arrays (used in Paper III). Arrays can hybridize RNA or cDNA from transcribed genes and report 
transcript level of all of the genes on the array while qPCR specifically quantifies one gene at a time through 
amplification of transcripts of selected genes. 

In order to quantify small organic molecules the method used throughout this thesis has been mass 
spectrometry coupled to either gas- or liquid chromatography (used in Paper I, II, IV, V, VI VII and VIII). 
Chromatography separates analytes by polarity and a mass selective detector quantifies ionized molecular 
species. As plants contain many different lipid species, many with nearly or exactly identical mass, it is im-
perative that the methods used for quantifying them are able to accurately separate different compounds 
with structural similarity. 

A method for separating and quantifying polar lipids with close- or similar mass, including oxygenated 
lipids from plant tissue, based on gradient systems used in (Nilsson et al. 2012) was established (Paper II). 
While high resolution instruments are able to accurately perform this, this method uses a more affordable 
triple quadrupole mass detector. The method is based on liquid chromatography separation coupled to 
electro spray ionization and consecutive mass spectrometry. 



As the improved separation successfully could identify several novel lipids as well as known isobaric 
lipids it was used to monitor changes to the lipidome during the plant defense reaction. Many strongly in-
duced lipid species could be identified and characterized. Additionally, Paper II provide evidence that novel 
oxygenated SQDG, PG and PI species are formed during the hypersensitive defense reaction. The lipid-pro-
filing method has been used in Paper IV, V, and VI.
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Initiation of defense responses is dependent on robust means of recognizing that plant cells are under at-
tack. This is mainly achieved through proteins that recognize conserved molecular cues from microbes and 
herbivores. These cues are not only found on microbes that cause disease, but often also in many non-pat-
hogenic organisms. In bacteria, such cues can comprise flagellin (Felix et al. 1999), peptidoglycan (Erbs 
et al. 2008, Gust et al. 2007), lipopolysaccharides (Newman et al. 1995), peptides (Oome et al. 2014) and 
non-methylated CpG DNA (Yakushiji et al. 2009). Viral coat proteins (Bendahmane et al. 1995), fungal- 
and oomycete cell wall fragments (Felix et al. 1993, Klarzynski et al. 2000, Pearce and Ride 1982, Sharp et 
al. 1984), various fatty acids, enzymes and molecular cues from eggs of insects (Hilker and Meiners 2006, 
Mattiacci et al. 1995) represent other molecular patterns that can be perceived by plant receptors and induce 
resistance. These molecular moieties fall into the common category of microbe associated molecular pat-
terns (MAMPs) or herbivore associated molecular patterns (HAMPs). Another set of molecules not directly 
associated with pathogens or herbivores but by the activity of these are the DAMPs, danger associated mole-
cular patterns (Boller and Felix 2009). DAMPs include for instance the plant´s own cell wall fragments and 
certain peptide fragments, as these suggests that a pathogen or herbivore is degrading the plant cells (Ryan 
and Pearce 2003). There are still several cues that are known to be recognized, but where either the receptor 
or downstream signal transduction are unknown (Felix and Boller 2003, Zipfel 2014). 

MAMPs, HAMPs and DAMPs are readily recognized by a category of proteins termed pathogen recog-
nition receptors (PRRs). Plants appear to rely solely on reception at the plasma membrane, in stark contrast 
to mammalian PRRs where both cytosolic and membrane bound PRRs have been identified (Zipfel 2014). 
Mammalian and plant receptors are not evolutionary related but a result of convergent evolution (Boller 
and Felix 2009). Two types of PRRs are commonly found in plants, receptor kinases (RK) and receptor 
like proteins (RLP). RKs have an exterior N-domain consisting of a ligand binding structure, often of the 
leucine rich repeat (LRR) type. The LRR structure is generally associated with protein-protein interactions, 
and thus suited for recognizing microbial molecular cues (Padmanabhan et al. 2009). RKs span the plasma 
membrane and the cytosolic C-terminal has the structure of a Ser/Thr kinase but often with a modified 
catalytic site (Dardick and Ronald 2006, Robatzek and Wirthmueller 2013). The other category of PRRs, 
the RLP, resemble RKs but lack the cytosolic kinase domain, therefore requiring additional components for 
further signal transduction (Zipfel 2014). PRRs have various structures, and signal transduction require-
ments, although several PRRs are known to form heteromeres with the receptor BAK1 (Shan et al. 2008). 
Recognition of MAMPs, HAMPS and DAMPs initiate what is known as MAMP triggered immunity, MTI.

The first described bacterial MAMP was a section of the bacterial flagella, consisting of 22 amino acid 
residues, the flg22 epitope (Felix, et al. 1999). Flg22 was shown to be recognized by the plant plasma mem-
brane receptor kinase FLS2 (Sun et al. 2013, Zipfel et al. 2004). Mammalian innate immune system also re-
cognizes flagellin. Though, there is variation as to what part of the flagella that is recognized, both between 
the animal- and plant kingdom and within the plant kingdom itself. Rice (Oryza sativa) recognize the flg22 
peptide, but trigger a stronger defense response when sensing the full length flagella (Boller and Felix 2009, 
Smith et al. 2003, Takai et al. 2008). 

Flg22-FLS2 interaction and signal transduction is used as a model for threat perception in plants (Figure 
5). Upon recognition, FLS2 interacts with two other receptors, BAK1 (also known as SERK3) and BKK1 
(SERK4), a kinase (BIK1), BIK1 related proteins (PBS1, PBL1 and PBL2) and two U-Box E3 ubiquitin 
ligases (PUB12 and PUB13) to form a large complex (Lu et al. 2011, Lu et al. 2010, Roux et al. 2011). In 
unperturbed plants, FLS2 is associated with BIK1 in the plasma membrane. Association of FLS2-BIK1 with 
BAK1 occurs within seconds of flg22-FLS2 interaction, resulting in the release of FLS2-BIK1 association 
(Chinchilla et al. 2007, Lu, et al. 2010, Schulze et al. 2010). FLS2-BAK1 is then trans-phosphorylated and 
subsequent phosphorylation results in BIK1, and its homologues being phosphorylated. Phosphorylated 
BIK1 released from FLS2 is able to phosphorylate NADPH oxidases and facilitate early Ca2+ influx (Li et al. 

PART I - The plant is under attack4.1
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Stress associated transport of cellular electrolytes was one of the earliest responses identified in plant pat-
hogen interactions, established already in the first quarter of the 1900s (Atkinson et al. 1985). Since this 
was widely presumed to be due to dead cells losing their integrity and releasing their electrolytes, it was not 
until the late 1970s that it was discovered that this was a selective active transport for specific ions (Palta et 
al. 1977). Eight years later Atkinson and colleagues established that this process was used also for defense 
reactions triggered in tobacco cells inoculated with Pseudomonas  sp. (Atkinson, et al. 1985). The electrolyte 
inflow following MAMP recognition consists primarily of calcium ions (Ca2+) and protons whereas the out-
flow involve chiefly potassium ions (K+) by ATP dependent K+/H+ exchange mechanisms (Figure 5). This 
acidifies the cytosol while leaving the apoplast slightly alkaline (Boller and Felix 2009). To compensate for 
the shift in electric potential, a considerable amount of anions, primarily chloride, is transported cross the 
membrane (Zimmermann et al. 1999). 

 
Calcium signalling
Within seconds of a threat being identified by PRRs there is an influx of Ca2+ into the cytosol. This flow of 
Ca2+ appears to have varying strength and temporal duration in response to different MAMPs, resulting 
in slightly different cellular responses (Boudsocq et al. 2010). Initiation of Ca2+ signalling is believed to be 
dependent on PRR mediated activation of cyclic nucleotide gated channels (Ali et al. 2007). Though, the 
full array of Ca2+ channels involved is still poorly characterized.The biochemical-, hydration- and selective 
binding properties of Ca2+ render it vital for many cellular processes.  

Increased cytosolic Ca2+ concentration is an ancestral conserved signal, from before the separation of 
plants and animals (Williams 2006). However, downstream responses to these concentration changes have 
diverged over the course of the millennia. Calcium-dependent protein kinases are responsible for a lar-
ge portion of the transcriptional activation that is associated with the Ca2+ inflow in response to MAMPs 
(Boudsocq, et al. 2010). Modifications of the phosphorylation pattern of the proteome changes the spatial 
distribution of proteins and this in turn promotes further signal transduction.  Another prominent type of 
proteins that reacts to calcium inflow is the Calmodulins. These acts as regulators and commonly work in 
association with members of transcription factor families including Calmodulin binding transcriptional 
activators, CAMTAs (Yang and Poovaiah 2002) and other Calmodulin binding proteins (Wang et al. 2009). 

Reactive oxygen species signalling
Following ion fluxes over the plasma membrane, rapid production of reactive oxygen species (ROS) ensues, 
Figure 5. ROS are stronger oxidants than molecular O2 and will damage cellular components if left unhand-
led. At least ten different processes in plant cells can produce ROS (Mittler 2002). During the oxidative burst 
the balance between processes that produce and detoxifies ROS shifts, hence the cellular redox is altered 
to an oxidative state. The ROS burst during MTI is primarily comprised of hydrogen peroxide (H2O2) and 
superoxide ions (O2

-) produced by peroxidases and NADPH oxidases, respectively (Bindschedler et al. 2006, 
Daudi et al. 2012, O’Brien et al. 2012, Torres et al. 2002). Rose (Rosa sp.) and bean (Phaseolus sp.) cells ap-
pear to have different requirement for NADPH oxidases and peroxidases depending on the pathogen they 
are exposed to (Bolwell and Wojtaszek 1997). Thus, a preference of one over the other pathway for different 
plant-pathogen pairs appear to exist (Choi et al. 2007, Yun et al. 2012). 

O2
- can be dismutated into H2O2 either via enzymatic conversion by superoxide dismutases (SOD) or 

spontaneously (Karpinska et al. 2001). Alternatively, O2
- can generate hydroxyl- (HO∙) or hydroperoxyl ra-

dicals (HOO∙) catalyzed by transition metal ions through the Fenton reaction (Asada 1999). The NADPH 
oxidases RbohD and RbohF are required for proper ROS production during MTI in Arabidopsis. Since 

PART II - Defenses are initiated 4.2

2014), initiating the production of reactive oxygen species and defense signalling. 
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Figure 5.  Model of defense responses triggered upon recognition of microbial molecular cues. Recognition initiates 
assembly of the PRR complex that in turn activates calcium channels, MAPK cascades, ROS, PA, NO, ET, JA, SA and 
PAD4 signalling. The responses are exist in an inrinsic network with many steps affecting the response of others. 
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mutants of RbohD and RbohF were only associated with a minor increase of bacterial growth in the case of 
RbohF, it is generally considered that ROS per se do not possess any major antimicrobial activity in the con-
centrations accumulated in the apoplast during MTI in Arabidopsis, or that pathogens are able to detoxify 
produced ROS (Chaouch et al. 2012). 

Nitric oxide signalling
Nitric oxide (NO) is produced in response to MAMPs. The biosynthetic origin of NO in plants remains vei-
led, however, it is likely produced both in mitochondria and chloroplasts (Galatro et al. 2013, Vanlerberghe 
2013). NO acts as a signalling compound in several kingdoms of life and its role in signal transduction has 
been extensively studied. The broad usage of NO reflects its attractiveness as a signalling molecule. NO 
has an almost non-existent dipole moment and no actual charge, hence it readily diffuses across biological 
membranes. NO forms metal-nitrosyl complexes with transition metals ions, primarily iron (Fe2+/Fe3+) ions, 
resulting in modification of proteins containing heme groups or 4Fe-4S clusters (Mur et al. 2006). 

Apart from inorganic ions, NO reacts with S-nitrosoglutathione (GSH), producing GSNO, that serves as 
a stable NO pool. Reduction of GSNO into GSSG and NH3 are in turn initiated by the enzyme GSNOR1 in 
Arabidopsis as yet another regulatory step (Feechan et al. 2005, Malik et al. 2011). Additionally, NO bind 
cysteine residues of proteins, producing a double bonded nitrosothiol group resulting in S-nitrosylation, a 
common post transcriptional modification of proteins in many organisms (Gonorazky 2014, Scheler et al. 
2013). S-nitrosylation has been suggested to be part of the regulation of NADPH oxidase, ascorbate peroxi-
dase and catalase activity (de Pinto et al. 2013, Yun et al. 2011b). Hence, NO can adjust ROS production (Fa-
res et al. 2011, Maldonado-Alconada et al. 2011, Yun et al. 2011a). In parallel, the production of NO seems 
to be partly dependent on ROS production (Rasul et al. 2012). The chemistry of NO is complex as it readily 
reacts also with superoxide ions, resulting in the production of peroxynitrite (ONOO-) that can react with 
tyrosine residues of proteins, converting them into 3-nitro-tyrosine, another common post transcriptional 
modification (Scheler, et al. 2013). Peroxynitrite itself is involved in triggering programmed cell death in 
plants in response to some pathogens (Alamillo and Garcia-Olmedo 2001). This taken together suggests that 
there are tight mutual control mechanisms (crosstalk) between NO and ROS. 

Phospholipase signalling
Both phospholipase C (PLCs) and phospholipase D (PLDs) are activated almost immediately upon Ca2+ in-
flux and produces the signalling lipid phosphatidic acid (PA) within seconds (Testerink and Munnik 2011). 
Hydrolysis of phosphatidylinositolphosphates, performed by PLCs results in production of diacylglycerol 
(DAG), that is phosphorylated into PA by diacylglycerol-kinase (DAGK), Figure 6 (Walton 1995, van der 
Luit et al. 2000). PLDs on the other hand hydrolyses structural membrane phospholipids like PC and PE to 
directly produce PA (Gonorazky 2014). The two pathways present the plant with an opportunity to have two 
temporally separated pulses of PA production. Initial PA production peaks within minutes and represents 
a transient increase in PA catalyzed by both types of phospholipases (Yamaguchi et al. 2005). In contrast, 
the second burst initiates after the first hour, is stronger, longer lasting and is dependent solely on PLDs. PA 
is used not only in MTI signalling transduction but also in developmental processes, nutrient sensing and 
pollen tube growth, and serve various functions in other eukaryotes (Testerink and Munnik 2011). 

Production of PA is dependent on NO production for some but not all MAMP responses (Laxalt et al. 
2007, van der Luit, et al. 2000). PA is known to stimulate NADPH oxidase activity by directly binding to 
arginine residues, increasing ROS production (Zhang et al. 2009).  Hence, there is crosstalk also between PA, 
ROS and NO.  PLD dependent production of PA is inhibited by addition of primary alcohols such as n-bu-
tanol, as PLD prefer short chain primary alcohols , instead of water that is used to produce PA. Non primary 
alcohols are unable to do this (Ella et al. 1997). Thus, addition of n-butanol favors production of phosphati-
dylbutanol instead of PA (Figure 6). As previously shown, addition of n-butanol prior infection resulted in 
reduced penetration resistance against Bgh (Pinosa et al. 2013). Even though there are 12 isoforms of PLDs 
known in Arabidopsis, only PLDδ is involved in MTI-triggered cell wall based defenses against penetration 
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attempts of Bgh (Pinosa, et al. 2013). Using a similar approach Paper IV provide evidence that the same is 
true also for another non-host powdery mildew, Ep. Thus, broadly activated PA signalling during cell wall 
based defenses against fungi appear to depend on the sole contributor PLDδ in Arabidopsis. 

MAPK signalling
PRR recognition of their respective cues activates mitogen activated protein kinases (MAPKs, Figure 5) 
independent of ROS and NO production. MAPK phosphorylation cascades represent a common signalling 
theme among eukaryotes, and are involved in a variety of responses in plants. MAPK signalling commonly 
consists of three tiers of sequential phosphorylation events. This is initiated by phosphorylation of first le-
vel, the MAPKK kinases (MAP3K or MEKKK), by a receptor or receptor interacting protein. The MAP3Ks 
phosphorylates members of the second level, the MAPK kinases (MAP2K or MKK) which in turn phosp-
horylate MAPKs. Phosphorylation of MAPK stimulates its kinase activity and hence phosphorylation and 
thereby activation of transcription factors and other signalling nodes (Meng and Zhang 2013). This results 
in more than a thousand genes being either up or down-regulated as a response to MAMP elicitors (Zipfel, 
et al. 2004).

Two parallel MAPK cascades are triggered by FLS2 recognition of flg22, EFR recognition of elf18 and 
several other MAMP recognition events in Arabidopsis (Meng and Zhang 2013, Nicaise et al. 2009). The 
actual mechanics behind the initiation of the MAPK cascades by FLS2-BAK1 and other receptor complexes 
or their respective interaction partners is still unknown. The first MAPK cascade consists of a yet undescri-
bed MAP3K, MKK4/MKK5 and finally MPK3/6. The activities of MKK4 and MKK5 are partly redundant, 
adding to the robustness of the signalling cascade. Phosphorylation of MPK3 and MPK6 activates transcrip-
tion of a distinct set of genes, different from those activated by ROS and Ca2+ (Asai et al. 2002). The other 
MAPK cascade involves MEKK1, MKK1/2 ending with MPK4 (Huang et al. 2000, Matsuoka et al. 2002, Qiu 
et al. 2008). 

Figure 6.  Model of PA production during defense responses in plants. Two pathways have been discovered. The first include PLD 
enzymes cleaving phospholipids like PC or PE to directly yield PA. The other produce PA through two consecutive steps from 
phosphatidylinositolphosphates. PLC cleaves the phosphate attached head group to yield diacylglycerol that is phosphorylated 
by DAGK into PA. PLD prefers primary alcohols to water and will in the presence of such yield phosphatidylalcohols like PBut.  
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Regulation of these phosphorylation events presents a control-mechanism that prevents MAMPs from 
non-pathogenic microbes from activating unnecessary defenses.  If a sufficient threshold level is not reached 
by the signalling cascades, MAPK signalling are down-regulated within the hour (Tena et al. 2011). Plant 
phosphatases of Ser/Thr-, Tyr- and dual acting classes are all involved in the regulation of MAPK-signalling. 
Depending on the elicitor, the time before down regulation differs significantly (Meng and Zhang 2013). 

Hormonal signalling
A set of hormonal signal realms are known to contribute to activation of MTI. MAMP activated defenses 
are dependent primarily on SA, JA and ethylene (ET) (Tsuda et al. 2009).  In addition a fourth realm exists, 
embodied by defenses dependent on the protein PAD4 (Phytoalexin Deficient 4) (Glazebrook et al. 2003, 
Jirage et al. 1999). PAD4 forms a complex with EDS1 and SAG101 (Senescence Associated Gene 101) and 
requires these partners for initiating defenses (Wagner et al. 2013, Zhu et al. 2011). Though, there are ex-
amples of PAD4 mediated signalling by a yet unknown mechanism that does not require EDS1 or SAG101 
(Pegadaraju et al. 2007). These four realms contribute to between 50% and 80% of MTI and exist in a com-
plex inter-regulatory network that provides the robustness of the MTI (Kim et al. 2014, Tsuda, et al. 2009). 

Brassinosteroids, gibberellins and cytokinins in general enhance resistance through activation of SA rela-
ted defense while auxins have the opposite effect (Robert-Seilaniantz et al. 2011).  Abscisic acid on the other 
hand appears to increase resistance against biotrophs and decrease it against necrotrophs. 

SA is produced in the chloroplast both beforehand and de novo upon elicitation. The hormone is stored 
in the vacuole, conjugated to sugar groups. In plants, SA can be produced by two separate still not fully elu-
cidated pathways, though, in plant disease signalling, the main route works through the protein ISOCHO-
RISMATE SYNTHASE 1, ICS1/SID2 (Figure 5)  (Vlot et al. 2009). 

Several mechanisms have been proposed to explain the SA signalling. SA can for instance bind directly 
to catalase and ascorbate peroxidase, enzymes involved in degrading ROS, and also directly affect ROS pro-
duction in the chloroplast (Mateo et al. 2006). The NPR (Non expressor of Pathogenesis Related proteins) 
proteins have been proposed as the major players in the downstream SA responses.

The cellular receptor of SA has been elusive, but both NPR3 and NPR4 directly bind SA itself as well as 
NPR1 (Fu et al. 2012, Moreau et al. 2012). NPR1 exists in the cytosol as an oligomer, upon monomerization 
it enters the nucleus and activates defense transcription in collaboration with TGA transcription factors 
(Johnson et al. 2003, Zhou et al. 2000). Oligomerization is accomplished by cysteine bridges and facilitated 
by GSNO modification (Tada 2009). These sulfur bridges can be broken by changes to the cellular redox 
facilitated by cellular ROS (Mou et al. 2003). 

Several other proteins are known to be involved in modifying SA related signalling during the effector 
triggered signalling. For instance the proteins FMO1 (Flavin-dependent monooxygenase 1) and ALD1 
(AGD2-like defense response protein 1). FMO1 primarily acts through regulation of EDS1 by a yet un-
discovered mechanism and through regulation of ALD1 transcription, whereas ALD1 is believed to act by 
producing pipecolic acid (Navarova, et al. 2012).  

In addition to transcription factor activation, MAPK signalling stimulates production of the gaseous plant 
hormone ET via stimulation of ET biosynthesis enzymes (Li et al. 2012). ET in turn influences the levels of 
other defense hormones. The ETHYLENE INSENSITIVE PROTEIN 3 (EIN3) and its accomplice, EIN3-like 
1 (EIL1), both transcription factors, repress the SA biosynthetic gene ICS1 by binding its promoter (Chen et 
al. 2009). Thus, ET can significantly reduce the suppressive effect of SA on the JA pathway (Leon-Reyes et al. 
2010). It is generally considered that SA is the main hormone required for defenses against biotrophs, while 
JA is used against necrotrophs. Thus, ET fine tune responses to be effective against necrotrophic pathogens 
rather than biotrophic, evidenced by the notion that virulent strains of Pseudomonas sp. display less severe 
virulence in ein2 mutants (Bent et al. 1992). 
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Activation of MTI results in transcriptional reprogramming to enhance disease resistance long term. St-
rengthening- and mending compromised parts of the cell wall are an important part of MTI. Many higher 
plants synthesize and deposit the (1-3)-β-D-glucan callose. In Arabidopsis callose is produced primarily 
by the protein glucan synthase like 5 (GSL5 also known as PMR4) and to a lesser extent another still un-
characterized GSL (Jacobs et al. 2003).  Deposition of callose to the cell wall is a hallmark of fungal- and 
oomycete penetration resistance, Figure 7 (Bozkurt et al. 2012, Ellinger et al. 2013). Callose prevents spore 
penetration attempts, but callose is deposited in response to bacterial assailants as well (Ham et al. 2007, 
Hauck et al. 2003). 

Upon pathogen challenge, such as that of Bgh and Ep, GSL5 is recruited to the site of infection. Callose 
and other toxic metabolites are believed to be transported via secretory vesicles in multi vesicular bodies to 
the site of attack (Bohlenius et al. 2010, Eggert et al. 2014, Ellinger, et al. 2013, Nielsen et al. 2012). Transport 
of these vesicles is assisted by syntaxins and exocyst proteins. Forward genetic screens identified the syntax-
in SYP121 (PEN1) to be important for penetration resistance, whereas loss of the closely related homologue 
SYP122 has no effect on this (Assaad et al. 2004, Collins et al. 2003). This mechanism appears conserved 
between mono- and eudicot plants, as orthologues are found in both genera, evidenced by presence of the 
PEN1 homologue ROR1 in barley (Collins, et al. 2003).  PEN1 ends up in the papillae structure consisting 
mainly of callose that is produced to prevent fungal spores from penetrating the cell wall. Vesicles from 
the trans-Golgi network export not only callose but also toxins and small RNAs that suppress pathogens 
through host induced gene silencing, HIGS (Nowara et al. 2010). PEN1 acts in close collaboration with the 
soluble N-ethylalemide sensitive factor adaptor protein SNAP33 and the two vesicle-associated membrane 
proteins VAMP721 and VAMP722 to form the ternary SNARE complex that facilitates vesicle fusion to the 
plasma membrane. At the membrane, exocyst (EXO70) proteins assist SNARE-membrane attachment (He 
and Guo 2009, Ostertag et al. 2013, Pecenkova et al. 2011).  

Plant MLO (Mildew resistance locus O) proteins are required for penetration success of many powdery 
mildews (Huckelhoven and Panstruga 2011). These proteins are known to be involved also in bacterial- and 
oomycete triggered cell death and resistance, and have been proposed to be targeted by bacterial effectors 
(Kim and Hwang 2012, Lewis et al. 2012). MLO proteins likely act through calcium signalling as they tend 
to accumulate at the site of penetration attempts and interact with the calcium binding protein Calmodulin 
(Bhat et al. 2005, Kim et al. 2002).  Mutation of MLO genes results in broad and durable resistance to pow-
dery mildews also in field settings (Lyngkjaer et al. 2000). Loss of MLOs results in elevated transcriptional 
levels of indole glucosinolate biosynthesis genes as well as general defense genes (Consonni et al. 2010). 

Figure 7.   Deposition of callose in response to Pst (A) and Bgh (B) visualized by anniline blue staining and fluorescence micros-
copy.

PART III - Non-adapted pathogens are stopped by MAMP triggered immunity4.3
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Thus, MLO proteins act as negative regulators of penetration defenses. The exact function of MLOs in healt-
hy plants is elusive, but their occurrence in higher plants and even some algae vouch for an important yet 
unknown function (Devoto et al. 1999).  

Callose deposition in Arabidopsis in response to flg22 and other, but not all MAMPs, is dependent on 
the breakdown of the secondary metabolites indole-3-glucosinolate (I3G) and its derivative 4-methoxy-in-
dole-3-glucosinolate (4M3IG) into their respective products (Clay et al. 2009) or production of SA and ROS 
(Luna et al. 2011, Nishimura et al. 2003).  Involvement of glucosinolate breakdown products is emphasized 
by flg22 initiating production of the transcription factor of MYB51, involved in regulating transcription of 
indole glucosinolate biosynthetic genes and consequently production of both I3G and its derivative 4M3IG 
(Clay, et al. 2009, Gigolashvili et al. 2007). Hydrolysis of the sugar group in indole glucosinolates  is believed 
to be performed by the myrosinase PEN2 in Arabidopsis, originally identified to be involved in penetration 
resistance against non-adapted powdery mildews (Lipka et al. 2005). Glucosinolates have been presumed to 
be produced primarily as a defense mechanism against herbivores but recent evidence supports a broader 
role (Bednarek and Osbourn 2009). Paper VII show that one of the breakdown products of indole glucosi-
nolates, in form of IAN can initiate cell death in plant tissue and Paper VIII shows that the same is true for 
one of the products of glucoraphanin degradation, the isothiocyanate sulforaphane. 

Many of the PEN2 hydrolysis products are toxic to fungal pathogens and these are believed to translocate 
into the apoplast facilitated by the membrane bound ABC transporter PDR8 (PEN3). Removal of either 
PEN2 or PEN3 results in loss of penetration resistance in Arabidopsis towards non adapted fungi such as 
Bgh and Ep. The broad spectrum mildew resistance in the mlo mutants is dependent on both the PEN1 and 
PEN2/PEN3 pathways (Consonni et al. 2006). Combination of mutations in either PEN2 or PEN3 together 
with PEN1 results in a slightly increased penetration rate compared to the single mutants. The triple pen1 
pen2 pen3 mutant did not confer any further loss of resistance when investigated but instead occasionally 
displayed runaway cell death and other phenotypes (Paper VII)

MTI also entails the transcription of pathogenesis related proteins (PR). PR proteins are found in all 
studied plants and consist of a diverse range of proteins with the common theme of being expressed in re-
sponse to biotic stress. These include several chitinases (PR3, PR4, PR9, PR11) that breakdown fungal cell 
wall constituents, proteinases (PR7), nucleases (PR10) and several others proteins with defense related or 
yet unknown function (PR1, PR2, PR5, PR6, PR8, PR12-17) (Sels et al. 2008).

Biotrophic plant pathogens must overcome MTI, and reprogram plants to surrender nutrients in order to 
proliferate within or in close proximity of plant cells. By evolving strong preformed- and inducible defenses, 
plants have put significant selective pressure on microbial pathogens to do this. This evolutionary pressure 
has resulted in several strategies to overcome and suppress MTI. Certain bacteria, including Xantomonas sp. 
produce biofilms consisting of polysaccharides that chelate Ca2+ ions, reducing the effectiveness of the ion 
flux, as less Ca2+ are able to enter the plant cell (Aslam et al. 2008). Others produce detoxifying enzymes that 
breakdown antimicrobial compounds or signalling molecules, Paper VIII (Fan, et al. 2011).

Pathogenic bacteria have evolved means of delivering protein molecules into host cells by exaption of 
the ancient flagella export system (Abby and Rocha 2012).  The structure is known as the type III secre-
tion system (T3SS) and is one of several secretion systems that exports proteins from the bacteria into the 
environment, but T3SS of phytopatogenic bacteria is used specifically for translocating bacterial proteins 
into the plant cytosol. The T3SS is anchored within, span both membranes of the gram negative bacterium 
and even extends a significant distance from the outer membrane (Galan and Wolf-Watz 2006). T3SS are 
encoded by a set of genes termed HRC in Pseudomonas sp. Disruption of any of these genes results in loss 
of bacterial effector translocation and virulence (Huang et al. 1993). Effector translocation through TTSS is 
initiated- and completed during the first ten minutes of bacterial attachment to cells (Mills et al. 2008). Thus, 
effectors delivery is fast enough to subdue plant MAMP recognition signalling.  

PART IV - Adapted pathogens overcome MAMP triggered immunity 4.4
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Assembly of the FLS2-BAK1-BIK1-PUB12/13 complex is dependent of BAK1 phosphorylation of the 
BIK1 (Lu, et al. 2011). To overcome the MTI induced by recognition of flg22 by the FLS2-complex, bacterial 
T3SS effectors from both Pseudomonas and Xanthomonas sp. have been shown to interfere with the phosp-
horylation of BAK1 (Shan, et al. 2008, Xiang et al. 2011) and kinase activity of BIK1 and RIPK, another 
kinase (Feng et al. 2012). 

Numerous components of the plant defense system, in addition to PRR complexes are known to be tar-
geted by pathogenic effectors, and many pathogens use several effectors for the same target. Indeed, Pseu-
domonas sp. are known to target most MTI responses, including ET signalling (Cohn and Martin 2005), JA 
production (He et al. 2004), vesicle trafficking (Nomura et al. 2011), MAPK signalling (Cui et al. 2010) and 
many more.  

Other microbial pathogens use different means of effector delivery, as their lifestyle differs from that of 
bacteria. Penetration of plant cell walls by fungal- and oomycete spores results in production of a haustorial 
feeding structure and presumed subsequent secretion of effectors into the colonized plant cell (Catanzari-
ti et al. 2006, de Jonge et al. 2011). The number of putative effectors is staggering. Oomycete- and fungal 
pathogens carry several hundred predicted effector coding genes to manipulate and reduce plant defenses 
(Kamoun 2006, Spanu, et al. 2010)

While there is an assortment of potential effector targets within plants, it appears to be a high degree 
of overlap of cellular targets, also between pathogens that are evolutionary very divergent (Mukhtar et al. 
2011). This reflects bottlenecks of plant MTI signalling, where a larger number of PRRs converge at certain 
nodes and activates similar sets of cellular responses.  In contrast to the narrow range of effector targets, the 
structural and functional diversity to promote virulence is highly variable. 

This is evidenced by the effectors used in this thesis. The effector AvrRpt2 from Pst is a cysteine protease 
that cleaves off the C-terminus of RIN4 (Axtell et al. 2003, Kim et al. 2005a) while AvrB and AvrRpm1 pro-
motes phosphorylation of RIN4 via the kinase RIPK (Mackey, et al. 2002).  

Once MTI is suppressed there is an active shift in plant transcriptional behavior, orchestrated by the pat-
hogen. For instance, both bacterial and fungal pathogens initiate production of the plant SWEET type sugar 
transporters to retrieve carbohydrates from plant cells (Skibbe et al. 2010, Streubel et al. 2013). In Paper 
III at least 133 transcription factors, including WRKY family members, appears to be targeted by effector 
activity. 

The aim of Paper III was to investigate early transcriptional changes in genes coding for transcription 
factors against the Pst effector AvrRpm1. To this end the transgenic DEX system that expresses AvrRpm1 
in planta following dexamethasone treatment was used. Messenger RNA was isolated at 15, 30, 60 and 120 
minutes after induction of AvrRpm1 in both Col-0 and rpm1 backgrounds. A custom cDNA array was used 
to analyze changes in expression. Changes corresponding to either effector recognition or non-recognition 
were filtered and clustered to identify temporal patterns in the respective gene sets. 23 genes were shown to 
be differentially regulated between recognition and non-recognition of AvrRpm1 by RPM1. Among these 
genes were a large portion of WRKY transcription factors, usually associated with defense transcriptional 
activity (Eulgem 2006). Thus, effectors like AvrRpm1 actively suppress resistance genes as early as 15 minu-
tes after introduction to plant cells in Arabidopsis.

Considering that the Arabidopsis genome contains more than 27000 genes (Swarbreck, et al. 2008) it is 
surprising that only a narrow range of transcription factor genes responds to recognition of AvrRpm1. Pa-
per III suggests that only 76 transcription factor genes respond to recognition of AvrRpm1 by RPM1 within 
the first two hours. This corresponds to ≈0.3% of the genome and ≈7% of the array (1027 genes). In contrast, 
almost twice that number of transcription factors (133) is altered in the absence of RPM1. Some of these 
changes likely represent reprograming that promotes bacterial proliferation. 
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PART V - Plants recognize pathogenic effectors 4.5
Plants have devised a set of resistance proteins (R-Proteins) that recognizes effectors or effector activity and 
initiates a stronger defense response than that activated by MAMPs, the effector triggered immunity (ETI).  
A single effector-R-protein interaction pair is required for ETI to initiate. An interaction that is crucial for 
plants not to succumb to the efficiency of pathogenic effectors. 

Most known R-proteins share a common LRR structure, similar to the PRRs consisting of a nucleotide 
binding domain (NB) and a variable N-terminal structure. NB-LRR receptors have one out of two types 
of N-terminal structures: either a coiled-coiled domain (CC-NB-LRR type) or a domain resembling ani-
mal Toll interleukin-1 receptors (TIR-NB-LRR type). Some evidence however points to the existence of 
other N-terminal structures (Meyers et al. 2003). CC-NB-LRR and TIR-NB-LRR vary in their respective 
downstream signalling component requirements. However, the exact mechanisms from effector reception 
to execution of the ETI is sparsely known. Examples of direct transcriptional activation by R-proteins do 
exist, but this is to date not considered the norm (Cui et al. 2014). 

Plants do not possess an R-protein for every potential effector from every potential pathogen. This would 
be both evolutionary costly and crowd the cytosol with R-proteins. Likewise, it makes little sense for plants 
to produce a molecular memory like that of mammals, since infected cells would never encounter new in-
fectious agents. This line of reasoning gave rise to the so called guard theory (Jones and Dangl 2006). The 
theory states that it is not always the effector protein per se that is detected by the plant but the disruptions 
thereof. Thus, R-proteins “guard” central cellular processes and monitor perturbations thereof. Hence, the 
same R-protein could be used to monitor perturbations of the same cellular process by effectors from dif-
ferent pathogens. To date, examples of both direct- (Deslandes et al. 2003, Dodds et al. 2006) and indirect 
recognition (Bhattacharjee, et al. 2011, Kim et al. 2005b) of effectors by R-proteins have been found.  

Several studied R-proteins seem to work in pairs in a type-unspecific manner, sharing downstream signal 
transduction. This includes the TIR-NB-LRR type RPP2A and RPP2B that recognize oomycete effectors 
(Eitas and Dangl 2010). There are also those that have a broader role such as the RPS4 and RRS1. They form 
a TIR-NB-LRR pair that recognizes effectors of both bacterial- and  fungal origin (Narusaka et al. 2013). 
Many effectors have multiple targets in the plant, evidenced by the ability of AvrRpt2 to promote virulence 
in rin4 mutants and studies that have shown that AvrB targets the chaperone RAR1 in addition to RIN4 
(Belkhadir et al. 2004, Lim and Kunkel 2004, Shang et al. 2006)

TIR-NB-LRR type R-proteins depend on the protein EDS1 (Falk et al. 1999) and mutants lacking EDS1 
do not induce a defense reaction in response to the cognate effectors (Zhang et al. 2004). The TIR-NB-LRR 
R-protein RPS4 senses the action of the bacterial effector AvrRps4 on EDS1 in Arabidopsis (Bhattachar-
jee, et al. 2011). EDS1 and RPS4 forms a complex with AvrRps4, EDS1-RPS4-AvrRps4, that migrates into 
the nucleus to initiate transcriptional changes, possibly by interacting with another TIR-NB-LRR protein, 
RRS1, and members of the WRKY family transcription factors (Garcia et al. 2010, Heidrich et al. 2011, 
Schon et al. 2013). Thus, EDS1 functions both as a virulence target and as an active component of TIR-NB-
LRR mediated ETI through the EDS1-RPS4-AvrRps4 complex. 

In contrast, CC-NB-LRR type receptors like RPM1 are with a few exceptions not dependent of EDS1. 
Instead, most CC-NB-LRRs rely on NDR1 (NO DISEASE RESISTANCE 1) NDR1 resides in the plasma 
membrane and likely acts as an adaptor between RIN4, R-proteins and possibly other components (Day 
et al. 2006, Gassmann and Bhattacharjee 2012, Hatsugai et al. 2009). Thus, EDS1 and NDR1 represent two 
signal transduction pathways for effector triggered responses that R-proteins from TIR-NB-LRR and CC-
NB-LRR classes depend on respectively. 

The two signalling nodes EDS1 and NDR1 differ in mode of action for activating HR-PCD. EDS1 seem to 
be activating mainly the autophagic like machinery of the cell, through the ATG (Autophagy related genes) 
genes (Hofius et al. 2009).  There is still some controversy to the mechanism of autophagy genes involvement 
as ATGs seems to promote both pro-death and pro-cell survival processes (Hofius et al. 2011).  

Cell death activation downstream of NDR1 entails recruitment of the proteasome degradation machi-
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nery, resulting in fusion of the tonoplast and plasma membrane. The fusion event is dependent on the 
PBA1 caspase-like activity, as part of the proteasome, possibly degrading negative regulators of the process 
(Hatsugai, et al. 2009). This releases vacuolar processing enzymes, VPEs that exhibit caspase1-like activity 
and help degrade cell content (Hatsugai et al. 2004). In addition, a pair of proteases, known as metacaspases 
(MC1 and MC2), are believed to be involved in regulation and activation of HR-PCD downstream CC-
NB-LRRs (Coll et al. 2010). MC1 act positively on cell death activation and MC2 negatively by regulating 
MC1 activity. Metacaspases themselves do not have any actual caspases-1 like activity, since their active site 
prefers lysine or arginine instead of aspartic acid (Lam and Zhang 2012). However, only MC1 requires an 
active catalytic site for active functionality, whereas MC2 does not (Coll, et al. 2010). 

Loss of the PBA1 and VPEs causes an actual loss of resistance against some bacterial assailants, whereas 
other caspases-like genes seems dispensable (Coll, et al. 2010, Hatsugai, et al. 2009, Rojo et al. 2004). How 
the metacaspases contributes to regulation and activation of cell death has been studied to some extent. 
Metacaspase 1 (MC1) physically interacts with the protein LSD1 (lesions simulating disease resistance re-
sponse), a zinc-finger transcription factor (Coll, et al. 2010). LSD1 was originally found as a lesion mimetic 
mutant, hypersensitive to multiple stimuli. It initiates cell death upon contact to ROS-, light- and pathogens 
treatment (Dietrich et al. 1994, Jabs et al. 1996). Mutants in LSD1 accumulate high levels of superoxide and 
salicylic acid and are dependent on this for their hypersensitivity, and dependent on MC1 for the mechanis-
tic activation of this cell death (Coll, et al. 2010). Hence, LSD1 is a cellular hub that negatively regulates cell 
death by its interaction with MC1, bZIP10, catalases and presumably several other mechanisms (Kaminaka 
et al. 2006, Li et al. 2013). 

This difference in cell death activation is further strengthened by the results of Paper VII. The pen3 
mutant was shown to elicit less HR-PCD as compared to Col-0 when subjected to Pst:AvrRpm1 and Pst:Av-
rRps4. These effectors are recognized by RPM1 and RPS4 respectively. Another paper investigating the same 
mutant (Kobae et al. 2006), found it to have no apparent phenotype against Pst expressing the effector Av-
rRpt2. While RPS4 are solely dependent on TIR-NB-LRR downstream signalling RPM1 has been suggested 
to activate both TIR- and CC-NB-LRR signalling (Hofius, et al. 2009). In contrast, RPS2 which recognizes 
the action of AvrRpt2 is entirely dependent on CC-NB-LRR signalling. Thus, PEN3 appears to be involved 
in one but not the other type of cell death activation. This is further supported by slower cell death response 
against Hpa in Paper VII. 

PART VI - The hypersensitive response, the heart of effector triggered immunity4.6
There is no strong demarcation between the MTI and ETI in plant immune responses, as is illustrated by 
the similar biphasic production of PA and ROS, cytosolic Ca2+ increase and MAPK signalling (Andersson 
et al. 2006b, Lamb and Dixon 1997, Yamaguchi, et al. 2005). ETI represents a strong, prolonged, fast, and 
genetically robust response whereas MTI on the other hand initiates earlier but are dependent on a few key 
proteins.  (Cui, et al. 2014). 

Transcriptional regulation of ETI
There is likely a rapid transcriptional regulation already minutes after effector recognition as a consequence 
of R-protein mediated activation of defense responses. As these changes likely set the stage for the whole 
HR, Paper III pursued further investigation of this.

Paper III identified important transcriptional activity already 15 minutes after recognition of AvrRpm1. 
These changes have previously been overlooked by other studies that have focused on sampling after two 
hours and later. The well-defined temporal patterns of transcription of these genes vouch for a minute con-
trol of the events succeeding effector recognition. Three temporal profiles with an initial down regulation 
and two with an initial up-regulation were identified among the genes uniquely responding to AvrRpm1 
recognition by RPM1. Among these, as well as those that responded with dissimilar expression depending 
on the presence or absence of RPM1, ten genes were selected for further investigation. 

The selection criteria resulting in the ten genes included genes responding strongly positive to effector 
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recognition and genes that not been ascribed an established role in early ETI. In order to rapidly screen for 
involvement in defense reactions a method that required no stable knockout of genes i.e. transient oligonuc-
leotide mediated silencing was used. This technique relies on oligonucleotides with a phosphorothioate 
(PTO) modification, which prevent breakdown by nucleases. The oligonucleotides are designed in a fashion 
such that they selectively bind to mRNA of selected genes. The ten genes were assayed for involve-ment in 
HR, as measured by release of electrolytes. This was performed by exposing PTO silenced plants to Pst:Av-
rRpm1. This assay resulted in two genes that when treated with antisense oligosnucleotide displayed reduced 
cell death compared to sense oligonucleotide treatment. These genes encode a ring finger protein (RHC1A) 
and a WKRY transcription factor (WRKY54). Further studies are needed to establish the role of these two 
transcription factors in the early signalling of ETI. 

Signalling during the hypersensitive response
Accumulation of ROS (Lamb and Dixon 1997) and PA (Andersson, et al. 2006b) occurs also during ETI 
signalling. The first wave peaks within the first hour of effector recognition and peter out during the second. 
The second pulse initiates at four hours after recognition, peaks at a much higher level and remains high for 
several hours. The initial pulse of PA is presumably produced chiefly by PLCs, whereas the second is depen-
dent on PLDs (Andersson, et al. 2006b). PA then partakes in NO and ROS crosstalk in the same manner as 
in MTI. MTI associated penetration resistance seems to be partially dependent on the PLDδ isoform against 
both Bgh (Pinosa, et al. 2013) and Ep (Paper IV). Further exploration in Paper IV examined if this was the 
case also for effector triggered signalling against Pst:AvrRpm1.  

As previously mentioned, n-butanol is known to specifically inhibit PLD activity by routing PLD enzy-
matic activity towards phosphatidylbutanol instead of PA (Figure 6). The preference of n-butanol over water 
of PLD was confirmed by quantification of phosphatidylbutanol in butanol treated plants. A level of 0.8% 
n-Butanol was sufficient to completely abolish the cell death response in Arabidopsis towards Pst:AvrRpm1 
(Andersson, et al. 2006b), whereas tert-butanol did not reduce it significantly. T-DNA insertion mutants in 
genes encoding the 12 isoforms of PLD were inoculated with Pst:AvrRpm1 and subsequent monitoring of 
released electrolytes as well as measurement  of in planta growth of bacteria. No single or any of the tested 
multiple mutants did exhibit any large alteration in terms of released electrolytes as compared to Col-0. 
Several single mutants instead had a minor shift compared to wild type. This can be interpreted as a high 
degree of redundancy among the PLD isoforms in effector triggered signalling, evidenced by no reduced 
ability of the plant with regards to resistance. 

The overlap of PLD activity in ETI triggered by recognition of Pst:AvrRpm1 (Paper IV) stands in contrast 
to the sole contribution of PLDδ to PLD activity in MTI responses against powdery mildews. This might be 
expected by the robustness of the ETI response in contrast to that of MTI. This is reflected also by the full 
resistance against virulent Pst of all PLD mutants. 

Oxidant and anti-oxidant systems
In addition to ROS being produced by NADPH oxidases and peroxidases during ETI, photosystems in ch-
loroplasts and the respiration chains in mitochondria contribute. Hence, light play an important role in ROS 
accumulation and the outcome of ETI (Karpinski et al. 2003). Accumulation of ROS such as superoxide and 
consecutive cell death in wild type Arabidopsis is dependent on the EDS1-PAD4 complex, a basic leucine 
zipper transcription factor (bZIP10) and activation of cell wall peroxidases and peroxisomal catalase activity 
for several effectors (Bindschedler, et al. 2006, Kaminaka, et al. 2006, Li, et al. 2013, Rusterucci et al. 2001). 
Catalase proteins are responsible for detoxification of cellular hydrogen peroxide into oxygen and water thus 
serves as a safeguard during oxidative bursts. 

It is believed that the singlet oxygen (1O2) accumulating during ETI originates from the photosystems 
in the chloroplast and that it contributes to spontaneous lipid peroxidation in parallel to that mediated by 
lipoxygenases (LOX) (Zoeller et al. 2012). Hence, ETI activated in darkness results in reduced levels of ROS 
and thus reduced levels of PR gene transcripts compared to what is observed during defense responses acti-
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Figure 8.  Several processes contribute to reactive oxygen species (Red pointy circles) in plants. Some of these can be converted 
into each other or taken care of by the glutathione-ascorbate antioxidant system. Orange boxes indicate enzymes and red letters 
on atoms indicate where on the molecule the reaction takes plase

vated during daylight (Genoud et al. 2002). 
Production of ROS during ETI activates an antioxidant system consisting of a redox flux from NADPH 

through reduced (GSH) and oxidized glutathione disulfide (GSSG) to reduced ascrobate (ASC) and oxidi-
zed dihydro-ascorbate (DHASC) (Spoel and Loake 2011), Figure 8. To some extent, the glutathione system 
can be replaced by the NADPH dependent thioredoxin system (Marty et al. 2009). Presence of glutathione 
biosynthesis is however required for proper elicitation of programmed cell death (Hiruma et al. 2013). The 
respective redox pairs are not interchangeable with each other, in contrast, they are dependent on directio-
nal electron flow (Spoel and Loake 2011). These antioxidant systems serve as an important buffer for cellular 
redox status, preventing an accidental cell response to the inadvertently produced ROS and provide a redox 
threshold for signalling. Levels of ascorbate and glutathione are regulated by light and diurnal rhythms, and 
both serve multiple purposes, glutathione primarily as a sulfur- or electron donor in various biosynthetic 
reactions and ascorbate as an enzyme cofactor (Bartoli et al. 2006, Dutilleul et al. 2003, Foyer and Noctor 
2011).  To generate the massive ROS bursts, plants generate molecules that affect and diminish the respective 
antioxidant system pairs. Paper VIII aimed to isolate compounds that could mediate a signal for triggering 
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local cell death upon pathogen elicitation. This search resulted in such a compound.  
By submerging leaf tissue containing the DEX:AvrRpm1 system in water and fractioning the water solu-

tion after elicitation, the molecule 4-methylsulfinylbutyl isothiocyanate (sulforaphane) was identified. Sul-
foraphane is conjugated to a sugar group in unstressed cells and belongs to a group of compounds known as 
glucosinolates. Glucosinolates are restricted to species, primarily within the Brassicaceae family (Agerbirk 
and Olsen 2013). The presence of these compounds in plants has been known since the 1960s (Larsen 1965) 
and they are characterized by a thioglucose group bound to a carbon atom that is attached to a variable 
group and an sulphonated ketoxime group (Natella et al. 2014). Breakdown of glucosinolates are initiated 
by hydrolysis of the sugar group. The sugar group makes the glucosinolate a more stable storage compound 
and enables quick activation upon wounding or pathogen defense. 

The biosynthetic pathway for sulforaphane is not fully understood. Hence, lack of mutants in biosynt-
hetic genes posed a difficult obstacle when investigating its role in ETI. To resolve this, two different sets of 
mutants was used to investigate the role of sulforaphane during ETI in Arabidopsis, myb28 and myb29 that 
acts as transcription factors for aliphatic glucosinolate biosynthesis (Beekwilder et al. 2008) and the tgg1 and 
tgg2 mutants that lacks the myrosinases involved in glucosinolate breakdown into aglycones (Barth and Jan-
der 2006). Both sets of double mutants produced very low levels of sulforaphane in response to Pst:AvrRpm1 
and as a result possess reduced capacity to trigger cell death against Pst:AvrRpm1 and Hpa, and reduced 
resistance against Hpa. 

In Paper VIII it is suggested that sulforaphane could act as a signalling compound at the local level of 
pathogen infection. Sulforaphane signalling presumably does not work in a ligand-receptor fashion but 
instead presumably through sulforaphane binding to GSH. This in turn would deplete its antioxidant capa-
city as has been suggested in mammalian systems (Valgimigli and Iori 2009), thus speeding up ROS trigge-
red immune responses by inducing a shift in redox state. 

Transcriptional behavior of the PEN genes against biotic stress encouraged an investigation of their role 
in effector triggered signalling further. Loss of function mutants in the PEN genes display an attenuated 
cell death response against Pst:AvrRpm1, Pst:AvrRps4 and the Hpa isolate Cala2 (Paper VII). Mutations in 
PEN1 and PEN3 have known indirect effects with regard to the SA pathway being upregulated (Stein et al. 
2006, Zhang et al. 2007). Enhancement of the SA pathway could prime the plant prior to the bacterial assay, 
resulting in resistance rather than cell death. No increase in SA levels was observed in the plants, priming or 
other indirect effects from losing the genes cannot completely be ruled out as explanation.

Thus, Paper VII focused on pursuing the pathway PEN2 is a part, that of indole glucosinolates and their 
breakdown products. One of the compounds downstream of indole glucosinolate hydrolysis is indole aceto-
nitrile, IAN (Wittstock and Halkier 2002). Infiltration of IAN, was shown to induce cell death in plants (Pa-
per VII). It is tempting to speculate that IAN have similar mode of action as that of sulforaphane. This could 
possibly suggest a role of indole glucosinolate breakdown products in ROS signalling, i.e. by contributing to 
reduction of the glutathione pool during the HR. This notion is not very far-fetched, as it is already known 
that IAN binds GSH in the biosynthesis of the secondary metabolite camalexin (Su et al. 2011). Moreover, 
two mutants in genes in the indole glucosinolate biosynthesis chain (ugt74B1 and cyp79B2/cyp79B3) display 
significantly less cell death when inoculated with Pst:AvrRpm1 compared to wild type. .

The PEN genes have previously been shown to be involved in cell wall based MTI responses, Paper VII 
extends these roles to include also effector triggered signalling against Pst and Hpa. In addendum to Paper 
VII, exposure to indole acetonitrile does indeed induce ATG6, PR1, GST1 and VPEγ transcripts (Figure 9) 
further strengthening its involvement in HR signalling. The same system do not appears to be active during 
cell death triggered by recognition of effectors produced by the oomycete Hpa, as pen2 does not appear to 
trigger less cell death than wild type against the Hpa isolate Cala2. This system was instead shown to depend 
on PEN3 for full cell death and resistance. 
Plant species lacking glucosinolates presumably have other electrophilic compounds with functional simi-
larities. This is evidenced by the presence of benzoxazinoid compounds in many grass species such as wheat 
and maize (Pedersen et al. 2011). These compounds, including 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-
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a variety of lipids. A portion of these structural lipids are converted upon abiotic and biotic stress. Hence, 
the hitherto presented PA is but one of several lipids induced by plants during HR. 

Lipids with oxygenated fatty acids, oxylipins, are produced during the HR (Vu et al. 2012, Zoeller, et al. 
2012, Paper II and VI). One group of oxylipins with a prominent role in defense is the jasmonates. Jasmo-
nates are important signalling compounds in wounding and several developmental processes, including 
flowering and germination in addition to their role in HR (Wasternack and Hause 2013). They are formed 
through several consecutive enzymatic steps (Figure 10). First, 13-lipoxygenases (13-LOX) produces a hy-
droperoxide group on a polyunsaturated fatty acid by addition of molecular oxygen. Second, hydroperoxi-
des are transformed into epoxy groups by AOS (Allene Oxide Synthase) and cyclized by AOC (Allene Oxide 
Cyclase). These steps results in production of oxo-phytodienoic acid (OPDA) and are performed in the 
chloroplast (Wasternack and Hause 2013). OPDA can then be reduced and undergo chain shortening in the 
peroxisomes to yield the phytohormone JA. The produced JA can be further converted into volatile methyl 
jasmonate that translocases throughout the plant to induce stomatal closure (Gehring et al. 1997, Seo et al. 
2001).  JA is also transformed into an isoleucine amino acid conjugates (JA-lle), the active form of JA (Fon-
seca et al. 2009). JA-lle is then perceived by binding to the JA receptor COI1 (Coronatine insensitive 1) that 
works in association with the E3 ubiquitin ligase complex SKP1-Cullin (Pieterse et al. 2012). Upon binding 
JA-lle, the complex initiates ubiquitination and degradation of repressor genes and subsequent transcription 
of JA responsive genes. 

OPDA (C18), its C16 analogue (dinor (dn)-OPDA) and JA each have signalling properties of their own 
(Dave and Graham 2012, Taki et al. 2005). Hence, OPDAs do not act as mere intermediates, supported by 
the notion that OPDA is not perceived by this COI1, explaining the different set of genes being activated 
upon OPDA exposure as compared to JA (Wasternack and Hause 2013). Instead OPDA and other oxylipins 
have been suggested to act as electrophiles (Farmer and Davoine 2007), a similar mode of action as that of 
sulforaphane and IAN (Paper VII and VIII). OPDA conjugated to GSH are produced and transported to 
the vacuole upon exposure to Pst:AvrRpm1, proposing regulatory mechanisms between ROS and OPDA/
JA signalling during HR (Davoine et al. 2006, Ohkama-Ohtsu et al. 2011). If OPDA is formed on bound 
fatty acids (Nilsson, et al. 2012) it is likely cleaved off by a phospholipase before exhibiting any signalling 
properties. MGDG, SQDG and DGDG can all undergo head group acylation in response to cold and biotic 
stimuli (Vu et al. 2014, Vu, et al. 2012). Species throughout the plant kingdom attaches acyl chains to the 
head group of lipids (Acyl-MGDG, Acyl-DGDG, Acyl-SQDG etc.). Paper V report that while head group 

Figure 9.  Relative fold change of genes involved in effec-
tor triggered signalling 24 h post exposure to IAN to that of 
mock treated plants. qPCR performed as described in Paper 
VI. Error bars indicate SD, n=4. 

3-one (DIMBOA) from maize are often stored in the vacuole conjugated to sugars in a similar manner as 
many glucosinolates. Moreover, DIMBOA has been shown to deplete the GSH pool to prevent its antiox-
idant capacity (Dixon et al. 2012).

Lipid signalling
Membrane lipids are an integral part of cell structure 
and signalling during defense responses (Shah 2005). 
Chloroplast membranes contains a high proportion of 
lipid species containing one (monogalactosyl diacyl-
glycerol, MGDG) or two consecutive galactose heads 
(digalactosyl diacylglycerol, DGDG) or in some cases 
a more exotic sulfoquinovosyl group (sulfoquinovosyl 
diacylglycerol, SQDG) esterified to a glycerol back-
bone. In addition to the head group, two fatty acids 
are esterified to the glycerol molecule. The head group 
and the two fatty acids are highly variable in terms of 
length, structure and level of saturation, giving rise to 
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acylation seem widespread, oxidized lipid species (OPDA and dnOPDA) on either head or glycerol backbo-
ne appear to be confined to a narrow range of plants. Many but not all members of the Brassicaceae family 
produce galactolipids with oxidized fatty acids during HR (Andersson et al. 2006a, Hisamatsu et al. 2005). 
The function of these compex lipids, known as arabidopsides, are not fully known. Arabidopsides have anti-
microbial properties on their own, as well as acting as signalling lipids and possibly as reservoirs for OPDA 
(Kourtchenko et al. 2007). 

Presence of acylated galactolipids in plants have been known for several decades but their synthesis has 
remained enigmatic, until recently, when this was pursued in detail in Paper V. Oat was shown to produces 
high levels of lipids with acylated head groups upon wounding. Fractionated oat protein extracts were assay-
ed for acyl transferase activity. An active fraction was isolated, digested and subjected to mass spectroscopic 
analysis. Peptide fragments were matched against an oat EST sequence database. This resulted in a hit of 
a putative phospholipase with an orthologue in the Arabidopsis genome (At2g42690). Two independent 
T-DNA insertion mutants in this gene in Arabidopsis were unable to produce lipid species with acylated 
head groups. Furthermore, the coding sequence of the gene from Arabidopsis was transformed into E.coli 
fused to a hexahistidine tag. The enzyme was overexpressed and extracted from E. coli and subjected to 
affinity- and size exclusion chromatography. Head group acylation activity was confirmed in vitro by in-
cubating MGDG from Spinach (Spinacia oleracea) with the purified protein extract. The T-DNA insertion 
mutants did not display any apparent morphological differences compared to wild type. Previous reports 
have indicated that the very same gene might be involved in UV-light response (Lo et al. 2004). Array 
data retrieved from GeneVestigator supports a role in light response, and also towards several pathogens. 
When subjected to Pst:AvrRpm1 the mutant leaks slightly more electrolytes compared to wild type. Though, 
T-DNA insertion mutants in the gene coding for the acyl transferase do not appear to affect resistance either 
to Pst:AvrRpm1 or the herbivore Spodoptera littoralis.  

In conclusion, acylated lipids are formed in plants during HR, both by interaction of virulent and non-vi-
rulent pathogens (Paper V) and this investigation thus resolves the old question of how acylated lipids are 
formed in plants. Supporting this conclusion are that the cloned AGAP1 undoubtedly have acyl transferase 
activity on MGDG in vitro, as monitored by extraction of lipids and quantification by LC-MS/MS and that 
T-DNA insertion mutants in the gene produce negligible levels upon wounding. 

The enzyme LOX2 is the main contributor of 13-LOX activity during HR, while the other three 13-LOX-
es are only able to produce minute amounts, and their activities are not induced upon effector recognition 
(Chauvin et al. 2013). It is well established that lipid signalling comprises an important part of HR (Testerink 
and Munnik 2011). Paper II showed that AOS produces a specific set of lipids upon recognition of AvrRpm1 
in planta that is absent in the dde2-2 mutant. Investigation of the HR lipidome proposes a specific compo-
sition of lipids, dependent on LOX2 activity, being produced during HR, different from that dependent on 
AOS (Paper VI). 

Lipid profiling of loss of function mutants in LOX2 (lox2-1), AOS (dde2-2) and FAD378 (fad3 fad7 
fad8) in response to Pst:AvrRpm1 was performed using the method developed in Paper II. The result from 
electrolyte leakage upon exposure to Pst:AvrRpm1 encouraged this investigation. The dde2-2 and fad3 fad7 
fad8 mutants did not display any alteration to the pattern of released electrolytes. However, the lox2-1 mu-
tant was delayed in this release of electrolytes by several hours. Consecutive electron microscopy and PAR 
measurements confirmed the delay both structurally and biochemically. This vouched for a role for LOX2 
activity separate of that in OPDA and JA production. The specific composition of the lipidome obtained 
in lox-2-1 supports such a parallel role (Paper VI). The simplest explanation would however be that fatty 
acids containing hydroperoxides actively binds GSH and perturb the GSH/GSSG system as proposed for 
sulforaphane and IAN (Paper VII, VIII) (Davoine, et al. 2006), and that LOX2 is responsible for producing 
the majority of these during early HR. This mechanism has been suggested for 13-LOX products at later 
time points (Davoine, et al. 2006). Thus, production of singlet oxygen was monitored during HR by usage of 
a fluorescent probe. Indeed, the production singlet oxygen was delayed in lox2-1. 
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Conclusions and outlook4.8

Sequencing of plant and plant pathogen genomes as well as progress in biochemical and molecular metho-
dology during the last decades has elucidated many key concepts of plant pathogen interactions. This thesis 
contributes with insight into several signalling routes during the hypersensitive response and the genetic 
components that mediate these. The first part of the thesis focused on the development and enhancing of 
techniques for analyzing HR (Paper I) and HR related lipid signalling (Paper II). The second part focused 
on early transcriptional regulation (Paper III), lipid signalling (Paper IV, V) and lipoxygenase activity (Pa-
per VI). The third and final part examined components activated later during HR, which are involved in 
triggering cell death (Paper VII, VIII and IX). 

However, as additional components are elucidated new questions can be posed. These will have to be 
investigated further by future studies. Paper I described the development of a vacuum method for infiltra-
ting plant material with bacteria and the importance of bacterial culturing conditions and inoculation titer. 
How these parameters in detail affect the HR remain to be investigated. A metabolomic- or transcriptomic 
study of Pst prior and during infection could give insight as to what constitutes the difference between these 

Little is known about the cellular events that transpire in the plant post penetration of a fungal spore. It is 
known that EDS1 play an important role in post penetration resistance against non-adapted powdery mil-
dews, and that localized cell death of infected epidermal cells is key in stopping spores from proliferating 
(Lipka, et al. 2005, Stein, et al. 2006). It has also been suggested that the PEN proteins could have a role in 
post penetration in addition to their role in cell wall based penetration defense (Paper VII, (Collins, et al. 
2003). Paper IX investigated the roles of EDS1 and other SA associated proteins in post penetration further. 

To this end, pen1 mutants in combination with mutations in SID2, EDS1, FMO1 and ALD1 in various 
combinations were used. The pen1 mutation enables more than 90% penetration success rate and allow 
studies of defenses subsequent the penetration event. Only mutants containing eds1 were affected in post 
penetration resistance against Bgh, whereas mutant lines including both eds1 and fmo1 independently, were 
compromised against Ep. Finally, an attempt was made to identify novel genes in post penetration resistan-
ce. Over 5000 seedlings from a EMS mutagenized M2 population of pen1 eds1 plants were screened for 
increased post penetration resistance phenotypes against Ep., resulting in multiple plants with mutations 
causing increased susceptibility. 

Paper IX thus complements previous knowledge of EDS1 involvement in post-penetration resistance, 
by adding the involvement of FMO1 in the Arabidopsis-Ep interaction. Two genes in addition to EDS1 that 
contribute to post-penetration resistance both to Ep and Bgh were presented and has to be investigated fur-
ther. As EDS1 has been shown to be targeted by Pst effectors (Bhattacharjee, et al. 2011),  in planta growth of 
bacteria was monitored in the selected EMS mutants. Interestingly, four of these mutants were more suscep-
tible to virulent Pst than pen1 eds1, suggesting a broad role in plant disease resistance. Subsequent studies 
will have to determine the genetic identity of these components and whether they trigger ETI or MTI based 
defenses. 

Post penetration – ETI or MTI?4.7

The notion that lox2-1 shows delayed production of ROS in Paper VI suggests a redox mediated mecha-
nism. Singlet oxygen induces transcription of EDS1 and stimulates ET and JA biosynthesis (op den Camp et 
al. 2003). Both OPDA and JA previously have been ruled out as downstream compounds of singlet oxygen 
signalling (Przybyla et al. 2008), this leaves EDS1 or other components of redox signalling responsible for 
the delay. However, future studies will have to determine if there is a causal relationship between the various 
ROS, light and LOX2 activity. 
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Figure 10.  Biosynthetic chain of oxylipins in Arabidopsis. The fatty acid desaturases FAD7 and FAD8 introduces 
a third double bond on the fatty acids of MGDG (18:2, 18:2) to form MGDG (18:3, 18:3). These compounds can be 
cleaved of by phospholipase A (PLA) to yield free α-linolenic acid. The lipoxygenase LOX2 introduces molecular 
oxygen to form a lipid peroxides(hydroperoxyoctadecatrienoic acid, HPOT). AOS then creates an unstable epoxy 
group to form (oxidooctadecatrienoic acid, EOT). This compound is cyclized by AOC to yield oxophytodienoic 
acid, OPDA. OPDA can through several steps then be converted into JA. In parallel  to free fatty acids, Arabidopsis 
has been shown to produce OPDA on bound fatty acids to yield a group of oxylipins known as Arabidopsides. 
Both MGDG and Arabidopsides can undergo head group acylation by the enzyme AGAP1 using either oxidized 
or non-oxidized fatty acids. 
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conditions. Paper II also describes the development a method. This proved effective in separating isobaric 
lipid species. This method was used to analyze lipidome of the HR in Arabidopsis. Several novel lipid species 
were identified, but what are the functions of these? This question was partially addressed in Paper VI but 
needs to be addressed by future studies using other mutants in the biosynthesis pathway and possibly by 
feeding experiments. 

Paper III, IV, V and VI focused on early signalling. Interestingly there are several early patterns of trans-
cription identified in Paper III. What role do the respective transcriptional patterns play? And what acti-
vates the transcription of these genes? Knockout of all of the genes in the respective cluster by constructing 
quadruple- or quintuple mutants would be an interesting project, however tedious. It would nevertheless 
help in answering what role they do play. The other question would easiest be answered using proteomics.

Lipid signalling is extremely important during early initiation of cell death as shown by the abolishment 
of this upon n-butanol addition. Several PLD isoforms are responsible for this as shown in Paper IV. What 
produced PA actually does in the cell would be an interesting follow up. It would however also be interesting 
to investigate how PLD isoforms contribute to insect chewing. Paper V identified the main contributor of 
galactolipid head group acylation in plants. The enzyme, AGAP1 was previously classified as a phospholipa-
se, but this paper suggests it has dual roles. The study also delimited the presence of OPDA and head group 
acylated lipids throughout the plant kingdom. What is the role of the acylated lipid species? What other pos-
sible transferase activities does the enzyme possess? Knockout of AGAP1 in Arabidopsis has not proven very 
fruitful, only minor phenotypes could be observed. It would therefore be interesting to create knockouts in 
other, distant relatives and investigate a role there. Paper VI shows that a certain lipoxygenase is crucial for 
timely induction of cell death in Arabidopsis. This is presumably due to less creation of lipid hydroperoxides 
that can antagonize the GSH/GSSG system. An interesting experiment would be to monitor redox changes 
in real time using cell cultures and optical tweezers in lox2-mutants and wild type, both transformed with 
the redox sensor RoGFP. This would offer a real time redox based system that can monitor the redox state 
throughout HR in the presence and absence of LOX2. 

Thus, Paper V and VI together established knowledge to what parts of the JA biosynthetic chain (Figure 
10) that are important for elicitation of HR-PCD during ETI. Loss of trienoic fatty acids (in fad3 fad7 fad8) 
as well as OPDA (dde2-2) was only associated with minor delay of HR-PCD, whereas loss of lipid 13-peroxi-
des (lox2-1) was shown do delay HR-PCD with several hours. Loss of head group acylated lipids on the other 
hand  (agap1-1) did instead confer increased HR-PCD and could possibly serve as a regulatory mechanism. 

Paper VII extended the role of the PEN genes to include ETI. It also provided evidence that this partly 
could be attributed to loss of indole glucosinolate breakdown products. Several questions remain, do the 
pen1 and pen3 mutations have indirect effects that make them trigger less cell death. Do indole acetonitrile 
use the same mode of action as sulforaphane to affect cells? The mode of action of indole glucosinolates and 
their breakdown products are straightforward using feeding experiments combined with transcriptomics 
and redox sensors. The question regarding indirect effects of pen mutations is somewhat trickier to answer; 
one way to resolve this would be to use a quantitative proteomic approach. That could reveal absence or 
presence of proteins involved in priming defense. Paper VIII identified the isothiocyanate sulforaphane and 
described it a role in local defense responses through depletion of the GSH pool and thus shifting the redox 
status of the cells. What cellular signalling do sulforaphane invoke when perceived by surrounding cells? 
What role, if any, do the other antioxidants play in detoxification of sulforaphane? These questions need to 
be addressed in future studies. Studying sulforaphane in vitro in combination with other antioxidants or 
with mutants in biosynthetic genes of antioxidants could give clues as to their role, whereas a transcriptomic 
or proteomic level study could reveal what response feeding of sulforaphane triggers. 

Post penetration defenses still have many questions that need addressing. To date it is not entirely clear 
whether it is resemble ETI or MTI. Paper IX identified novel components in the post penetration resistance 
and investigated the role of the SA associated gene network EDS1, SID2, FMO1 and ALD1. Additionally 
Paper IX reports that cultivation conditions affect Bgh in a manner similar to that found for Pst in Paper 
I. What are the additional components of post penetration resistance against powdery mildews? How do 
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they relate to EDS1? Whole genome sequencing or backcrossing and mapping will reveal the identity of the 
components, and combinatory studies with EDS1 will disclose their relation, if any.  

The field of plant pathogen interactions in general would benefit from further characterization of the 
mechanics behind execution of the programmed cell death in detail and elucidation of the relation of these 
and those of animal- and fungal cells. 
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Växter producerar inte bara vackra blommor utan är den näringskälla alla landlevande djur är beroende av. 
Mikroskopiska organismer som bakterier och svampar är också beroende av denna näring. En del av dessa 
har anpassat sig till att direkt söka näring hos växter och orsakar därför död och sjukdom hos de växter de 
infekterar. Sjukdomsalstrande mikroorganismer är ett stort problem världen över och orsakar bortfall av 
i storleksordningen 10-20% av den totala skörden. Så varför ser man så få sjuka växter ute i naturen? Det 
beror bara delvis på att du är ute för lite, svaret ligger dock framförallt i att växter under miljoner år anpassat 
sig till detta och utvecklat ett effektivt försvar. Detta gör att de flesta växter är friska större delen av tiden. 
Men växter har väl inget immunförsvar kanske du tänker? Jodå, växter har ett immunförsvar som ger dom 
fullgott skydd mot de flesta sjukdomsframkallande mikroorganismer. Eftersom växter inte kan förflytta sig 
och dessutom saknar specifika immunceller behöver varje cell av växten kunna försvara sig själv. På cellnivå 
kan växtceller känna av när mikroorganismer finns närvarande och förstärka cellväggen, producera giftiga 
försvarsmolekyler och stänga sina klyvöppningar. 

Mikroorgansimer som orsakar sjukdom har under evolutionen utvecklat sätt att ta sig runt växtcellernas 
försvar. Ofta genom att producera så kallade effektorproteiner som tar sig in i växtcellen där de försvårar 
och i vissa fall förhindrar försvaret från att fungera. Växten har i sin tur utvecklat proteiner som kan känna 
av dessa effektorer och signalera till cellen att aktivera ett starkare försvar. Denna förstärkta försvarsreaktion 
kallas den hypersensitiva responsen, HR och resulterar i effektormedierad immunitet. En central funktion 
under HR är för den infekterade växtcellen att begå självmord genom genetiskt programmerad celldöd. Det 
verkar kanske korkat att ta död på celler, men det är en mekanism som finns i alla organismer och som effek-
tivt stoppar många inkräktare i växter. I min avhandling har jag studerat komponenter växtcellen behöver 
för att signallera att den borde starta denna process.

Den första delen av avhandlingen handlar om vidareutvecklingen av metoder för att infiltrera bakterier 
och mäta celldöd (Papper I) samt separera lipider med kromatografi (Papper II). Dessa metoder används 
sedan i resterande arbeten. Lipider låter ju märkligt kanske du tycker, men de är viktiga byggstenar i alla 
celler och bygger upp dess membran. Lipider består oftast av en ryggrad bestående av en glycerolmolekyl, 
en vattenälskande huvudgrupp och två fettälskande kolvätekedjor. 

Den andra delen av avhandlingen handlar tidig signalering under HR, dels på genregleringsnivå (Papper 
III) dels på lipidnivå. Flera komponenter av lipidsignalering undersöktes. Dels de enzymer som är med och 
producerar signallipiden fosfatidsyra (PA) under HR (Papper IV), dels hur vanligt det är med oxiderade 
lipider i växtvärlden (Papper V), vilket enzym som är ansvarigt för att fästa fettsyror på den delen av lipiden 
som är vattenälskande, något som resulterar i acylerade lipider (Papper V). I Papper VI undersöktes dess-
utom hur ett enzym som fäster syre på lipider bidrar till att cellen initierar celldöden genom förändringar i 
växcellens redoxpotential. Ännu ett jobbigt ord, redoxpotential, förenklat kan man beskriva det som ett mått 
på hur oxidativ miljön är inne i cellen. 

Den sista delen av avhanlingen beskriver hur två molekyler, indol acetonitril (Papper VII) och sulforafan 
(Papper VIII) och proteiner i deras produktionskedja föreslås påverka den cellulära miljön genom för-
ändringar i redoxpotentialen och därigenom bidra till celldöd och försvar. Slutligen undersöktes hur olika 
delar av salicylsyra relaterade proteiner bidrar till den programmerade celldöden i försvaret mot svampar 
(Papper IX). 

Sammanfattningsvis kan man säga att avhandlingen har gett insikt i hur olika aspekter av redox- lipid- 
och hormonsignallering bidrar till celldöden hos växter. 

Växt-patogenförsvar: Signalering, resistens och celldöd
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