

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

Göteborg, Sweden, June 2013

Technical dependencies in practicing Agile in large-

scale Software Development Organizations
 A case study conducted at Ericsson AB

Bachelor of Science Thesis in Software Engineering and Mangement

Nelson Sekitoleko

Felix Evbota

This is the place for a picture.

Make sure you adjust so that the end of this page

is still at ”the end of the paper”.

2

The Author grants to Chalmers University of Technology and University of Gothenburg the

non-exclusive right to publish the Work electronically and in a non-commercial purpose make

it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does

not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author has

signed a copyright agreement with a third party regarding the Work, the Author warrants

hereby that he/she has obtained any necessary permission from this third party to let Chalmers

University of Technology and University of Gothenburg store the Work electronically and

make it accessible on the Internet.

Technical dependencies in practicing Agile in large-scale Software Development

Organizations

A case study conducted at Ericsson AB

Nelson Sekitoleko

Felix Evbota

© Nelson Sekitoleko, June 2013.

©Felix Evbota, June 2013.

Examiner: Ana Magazinius

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover picture taken from: http://www.ambysoft.com/essays/agileRoles.html

Department of Computer Science and Engineering

Göteborg, Sweden June 2013

http://www.ambysoft.com/essays/agileRoles.html

3

Technical dependencies in practicing Agile in large-

scale Software Development Organizations
 A case study conducted at Ericsson AB

Nelson Sekitoleko Felix Evbota

Dept. of computer Science and Engineering Dept. of Computer Science and Engineering

University of Gothenburg, Sweden University of Gothenburg, Sweden

nellysek@gmail.com gusevbfe@student.gu.se

Abstract
Due to the benefits associated with Agile practices,

such as flexibility, responsiveness. Large-scale

software companies have been attracted to scale Agile

practices which has led to software vices like

technical dependencies. This study investigates the

challenges associated with technical dependencies,

and the challenges of communicating technical

dependencies in large-scale Agile software

development. A qualitative research approach was

used to investigate the study. Thematic analysis of the

interview data revealed: Planning, Teams backlog

priority, Attitude and Knowledge sharing, Code

quality, and Merge challenges, as the main challenges

of this study. The main challenges interact with each

other forming a technical dependency loop, and lead

to domino effect, during the development of a

product. The magnitude of the domino effect will

determine the quality of the final product. We

suggested some recommendations such as broadening

initiative, continuous integration among others, to

mitigate the above challenges. Resolving the

challenges of technical dependencies will lead to

effective communication across teams, which will

enable large scale companies realize the benefits of

large scale agility.

Keywords
Technical dependencies, Agile, Cross-Functional

Teams (XFT)

1 INTRODUCTION

1.1 Problem definition
Agile practices provide simple, rapid, and incremental

solutions to big problems by breaking down complex

features into smaller ones. These smaller features are

developed across small, flexible, co-located, or

globally distributed software teams. Such Agile

setting poses a big challenge of technical

dependencies, and communication across teams.

Technical dependencies can be seen in various ways,

such as, dependencies among activities in the

development process, dependencies among different

software artifacts, for example source-code

dependencies across teams [3]. The Agile manifesto

recognizes that despite the availability of processes

and tools, teams should communicate directly in a

face-to-face conversation [15]. However, the

complexity of technical dependencies increase with

the size of the company, which leads to breakdowns

in communication across large-scale Agile teams [3].

Such communication breakdowns leave the original

assumption of face-to-face communication a locked

principle in the Agile manifesto [7]. It is worth noting

that minimizing software technical dependencies

facilitates software understanding, reuse, and testing

[12]. It is on this basis that we investigate how large-

scale Agile teams manage, and communicate

technical dependencies.

This study aims to identify and address the challenges

of technical dependencies across large-scale Agile

software development to enable them communicate

effectively during software development. Effective

communication will enable large-scale companies

realize the benefits of large scale agility, such as mass

production, global presence, and outsourcing [16].

The study addresses the following research questions:

RQ1.What are the challenges associated with

technical dependencies across teams in a large-scale

Agile software development?

RQ2. What are the challenges of communicating

technical dependencies across teams in large-scale

Agile software development?

4

This study contributes to Software Process

Improvement (SPI) literature.

We exclude technical issues such as developing an

application to solve an organizational problem. The

study focuses on Ericsson AB as our case study

setting.

This paper is structured as follows: Section 2

describes Ericsson case, Section 3 describes related

work. Section 4 describes the methodology. In

Section 5 we present the results from the interview

study. In section 6 we discuss the results, and then

conclude the paper with recommendations.

2 Ericsson case
For the purpose of this research, in the next

subsections, we present Ericsson facts, the definition

of technical dependencies used in this paper, Cross-

Functional Teams (XFT), and task break down at

Ericsson.

2.1 Ericsson AB facts
Ericsson AB provides communications networks,

telecoms services, and support solutions used in

global communication. It is ranked the fifth largest

software supplier in the world with 950 million

subscribers in over 180 countries.

2.2 Definition Technical

Dependencies
At Ericsson technical dependencies are artifacts

interactions developers encounter within their teams

or while working with other teams. They exist when a

developer/team needs information regarding technical

aspects of a system from another developer/team in

order to progress in his or her development work.

Technical dependencies usually occur during design,

compile-time, and run-time. Teams usually have

dependencies in areas like source-code, architecture,

hardware and tools.

At Ericsson the most common types of technical

dependencies are:

Planned technical dependencies: these are identified

during the planning phase. They involve identification

of tasks to be done in parallel or in sequence across

teams, and they are explicitly explained to teams

before development begins.

Unplanned Technical dependencies: these are

dependencies that occur by surprise during the actual

development of a product. They may occur due to

failure to implement the original plan.

2.3 Cross-Functional Teams.
XFT is a team which has all core competences needed

for the development of a feature from product

planning to product release. At Ericsson AB an XFT

comprises of roles like, system manager, system

designer, function tester, system testers, and architect.

In Addition, each XFT on a part time basis has a

Scrum-Master, Agile coach, and an Operative Product

Owner (OPO). XFTs teams do not have team leaders

with an ambition of making them self-organized and

empowered over time. This means teams take full

responsibility for the development of their work

package and they are in charge of handling planned

and unplanned technical dependencies.

2.4 Task breakdown
At Ericsson AB, a pre-study of tasks is done, which

involves, task breakdowns, and prioritization,

technical dependencies identification exercises,

among others. During the planning phase the planned

technical dependencies are identified, they are

presented before tasks are assigned to the teams for

actual development.

3 RELATED WORK

3.1 Large Scale agility
Agile methodologies have been primarily

recommended to small, self-organizing, collocated

teams, having ready access to interactive customers

with a view of closing the communication gap

between the business community and the developers

[7], [15]-[18]. Does this mean that large-scale

software companies that do not share these Agile

paradigms are denied of Agile benefits? [16].

Leffingwell [16] recommends that large companies

should learn from the original Agile practices and try

to apply Agile practices to large-scale software

development. Ericsson AB is one the companies that

have applied Agile methodologies on large-scale

through their developed process called Streamline

Development (SD) [18], [19]. Two Other studies that

have been conducted on large-scale agility are

described below:

5

Kettunen and Laanti [7] investigated how and when

agility could be utilized in large-scale software

product development. They proposed the agility

framework which involves organizations

understanding the: (i) goals of agility, for example,

productivity, (ii) means of agility, for example,

software platforms, and (iii) enablers of agility, for

example, human factors, for guiding Software Process

Improvement (SPI) in large-scale software

organizations. They recommend companies to have a

holistic system wide view of software agility in order

to improve software development.

Leffingwell [16] describes seven Agile team practices

that natively scale to large organizations:

1. The define/build/test (d/b/t) component team

2. Two level planning and tracking

3. Mastering the iterations

4. Smaller, and more frequent releases

5. Concurrent testing

6. Continuous integration

7. Regular reflection and adaptation

However despite all the efforts by practitioners to

scale software agility, new vices like technical

dependencies are still potential threats to large-scale

software agility. In the next section, we draw our

focus on understanding how other researchers and

practitioners manage technical dependencies in large-

scale agility.

3.2 Technical dependencies
One of the reasons why cooperative software

development is challenging is because of the large

number of interdependencies, such as

interdependencies among activities in the software

development process, interdependencies among

different software artifacts, and interdependencies in

different parts of the same artifacts [4]. The research

conducted by Babinet and Ramanathan [1] shows that

unpredictability is one of the biggest challenge of

technical dependencies across teams. They stated

that teams find it difficult to know beforehand what

changes, issues, surprises, failures and successes they

will come across during the development of a feature.

In addition to that, Babinet and Ramanathan also saw

conflicting priorities, such as a team depending on a

component that has lower priority in the backlog of

another team, as another challenge of technical

dependencies across teams. Babinet and Ramanathan

pointed out more challenges, such as system

complexity, difficulty in understanding overlapping

and short release cycles, team constant changing of

priority in each sprint.

Research shows that some of the ways of addressing

technical dependencies are release kickoff,

dependency identification exercise, release open

space, Scrum-of-Scrums (SoS), Virtual Architecture

Team (VAT), status report, functional design reviews,

and Continuous Integration [1]. Souza et al. [12] and

Trainer et al. [20] see Ariadne as approach of

addressing technical dependencies. They stated that

Ariadne is a plug-in for Eclipse, and that Ariadne is

used for analyzing software projects for dependencies,

and collects authorship information about projects

relying on configuration management repositories.

Ariadne can translate technical dependencies among

components such as source-code modules into social

dependencies among developers [12],

[20].)Researchers have also adopted an approach of

creating mechanisms in programming languages to

minimize dependencies between software elements

[12].

Parnas [9] points out that information hiding is the

most important approach in minimizing dependencies,

because information hiding motivates several

mechanisms in programming languages, including

data encapsulation, interfaces, and polymorphism.

Information hiding uses the concept of coupling and

design patterns which gives run-time program

dependencies explicit representation as static program

structures, making the dependencies easier to address

[9], [21]. The field of Software Engineering has also

developed tools like configuration management

system and issues-tracking systems to overcome the

problem of technical dependencies [12].

3.3 Communicating technical

dependencies
Communication is an underlying principle that

guarantees organizational success [13]. Internal and

external communication that is effective stimulates

the performance of a development organization [30].

Dainton and Zelley [13] state that there is no

guarantee that organizations will be successful if they

acquire a particular set of skills because most

organizations have self-contradictory idea about

communication. The basic problem of communication

is to select a message at one point and deliver the

exact message in another point [22].

Johansson and Persson [6] state that there is a

challenge of uncertainty in communicating technical

dependencies. They emphasized that when there is

6

communication between humans; individuals only get

the last grasp of the message that is communicated to

them [6]. Furthermore, Johansson and Persson state

that there is a deception in communication between

individuals, a message can be properly communicated

but the intended receiver may choose not to accept the

message as valid.

 De Souza et al. [4] state that there is a challenge of

limitation with formal approaches, such as software

development process, division of labour, formal

meetings, software engineering tools like

configuration management systems, bug-tracking

tools, and so forth that large-scale Agile teams adopt

to communicate technical dependencies. The same

challenge of limitation is also associated with

informal approaches, such as conventions, partial

check-ins, problem reports (PRs), and e-mails in

communicating technical dependencies [4].

4 METHODOLOGY

4.1 Research approach
We conducted the study using a qualitative research

approach [2], [10]. This being a case study about

understanding the challenges of technical

dependencies, and communicating technical

dependencies across teams at Ericsson, qualitative

research approach was suitable because it was

designed to help researchers understand social and

institutional context from participants point of view

[2], [10].

4.2 Data collection
We interviewed 9 employees at Ericsson AB, who

were selected using a convenience sample [2]. We

chose convenience sample because it was not easy to

gain access to the employees, hence we only focused

on those interviewees that were available. Thus, we

maintained ethical standards because the interviewees

consented to participate in the study [10]. The 9

interviewees were representatives of 30 XFT teams of

5-9 developers developing the same huge complex

product. Some interviewees play one or more roles.

We have masked the names of the interviewees in

accordance with Singer and Vison [11], and Curtis et

al. [3] to maintain confidentiality about their identity.

 We used a semi-structured interview approach to

collect data because it allows for improvisation and

exploration [10], we asked the interview questions

based on the development of the conversation

between us and the interviewees. The interview guide

helped us in ensuring that all questions were covered

irrespective of the order in which they were followed.

The interview questions mainly focused on planned

and unplanned technical dependencies faced by XFT

teams (see appendix 1). We used a voice recorder to

record the conversations while interviewing, which

we later played to carry out a verbatim transcription

of the recorded interviews. Transcribing after

conducting the interviews reduces the risk of having

corrupt data, unlike direct transcription during

interview which increases the risk of corrupt data

[14].

Table 1: Interviewees and their roles

Participants Roles

 A Software designer(a.k.a Programmer)

 B System designer and Scrum master

C Function Tester

D Software designer

E Software designer and scrum master

 F Scrum Master and Architect

G Software designer and scrum master

H Function tester

I System manager, Scrum Master and

Function Tester

4.3 Data analysis
We analyzed the data collected from interviews using

thematic analysis approach [14]. We opted for this

approach because it is a well-known method used in

scientific and social science research with six phases

which are easy to apply [14].

Phase1: Familiarizing ourselves with the data

We transcribed and read the data from the 9

interviews.

Phase2: Generating initial codes

We coded the data from the perspective of the

research questions [14]. The table below shows an

extract of the code generated from particular part of

the interview transcript.

7

Table 2: Sample of interview transcript and generated codes

Sample of interview transcript Generated codes

Yeah it is too little technical people

involved in assigning out the tasks

to different teams (8.01), that is the

problem, because if only managers

and project managers do this, they

don’t know much about the code, I

think maybe we want more

technical people then we can be

better.........

Too little technical people

involve in giving out tasks

Phase3: Searching for themes

We grouped all the initial codes we generated into

different groups that we referred to as initial themes

or challenges of our research questions. To see all

initial themes, see appendix 3.

Phase 4: Reviewing Themes:

We reviewed the initial themes, regrouped and refined

them by cross checking the interview data and the

generated codes in phase 1 and phase 2. Five main

themes were extracted and refined from initial themes

in phase 3.

Table 3: sample table representing how we grouped the codes to

generate five main themes.

Codes Challenge/theme

 Some people prefer to

focus on their own task
thereby not having

product general picture

which lead to inefficient
communication and

dependencies

 People who are so
protective of their work

and end up saying that is
your problem

 Some team members do
not want to share

knowledge and tools due

to fear of providing
support. ……….

 Attitude and

knowledge sharing

challenge

Phase 5: Defining and naming themes.

A consensus was reached about the five themes.

Which we named the main challenges of our research

questions presented in the results section.

Phase 6: Producing the report:

 We presented, and discussed the five main

challenges, and made recommendations.

5 RESULTS
The analysis of the interview data revealed five main

challenges associated with technical dependencies,

and communicating technical dependencies, across

large-scale Agile software development namely:

C1. Planning challenge

C2. Teams backlog priority challenge

C3. Attitude and knowledge sharing challenge

C4. Code quality challenge

C5. Merge challenge

A further analysis of the five main challenges

revealed that they can be grouped into three

categories: working practices, mindset, and

technical action. The challenges were grouped

depending on when they occur, and the impact they

have on development of the product.

Figure 2 illustrates a visual representation of the

main challenges and categories as those which are:

technical challenges that arise as a result of teams

depending on different software artifacts such as code

and communication challenges that arise as result of

the way teams communicate technical dependencies

Figure 2 visual representation of the main challenges and

categories

Example from Fig 2, C3-Attitude and knowledge

sharing challenge is high towards the communication

challenges axis and low on technical challenges axis,

which implies that C3 is strongly a communication

challenge.

8

Detailed explanation of the main challenges

and the categories they form

The main challenges and categories are elaborated

explicitly using actual statements of the interviewees

on how they manage technical dependencies.

I. Working practices

These are challenges that relate to the way of working

in the organization. For example, how tasks are

divided and prioritized. The challenges in this

category include:

Planning challenge

From the perspective of our interviewees, the ability

to plan and predict the future minimizes the

occurrence of technical dependencies during product

development. However, coming up with plan that

correctly predicts the future, and implementing that

plan across teams still remains a challenge in software

development. This planning challenge is reflected in

our interviewee’s view who stated that, managers do

not plan and allocate tasks to teams in the appropriate

way because they do not know much about the code.

Our interviewees mentioned that there are instances

where a task that is supposed to be assigned to a

single team, is instead split and assigned to several

teams, thereby creating unnecessary dependencies that

would have been avoided.

Failure to have the right plan will lead to unplanned

technical dependencies during the actual product

development. Our interview data revealed that

unplanned technical dependencies are minimal across

teams but when they occur, they lead to changes in

requirements and time-plan. They also said that it is

difficult to locate the exact source of unplanned

technical dependencies.

Team backlog priority challenge

 This challenge arises as a result of planning issues.

When unplanned technical dependencies arise teams

have to try to update the new changes into their

current plan. These changes arise from the new

requests for components from other teams that were

not planned before. These unplanned requests lead to

conflicts in the product backlog. Our interviewees

gave two scenarios when they were requested: (1)

To implement a component which was not in their

backlog and (2) to deliver a component in their

backlog earlier than planned since another team

realized that they were dependent on the component.

According to our interviewees, the above scenarios

led to re-prioritizing of tasks in their backlog. Our

interviewees stated that, changing priorities in their

backlog usually destabilizes their work plan, because

they need to assign resources to the unplanned

requests, thereby leading to delays and late deliveries.

Other interviewees said that constant changing of

priorities usually make their burn-down charts look

bad.

II. Mindset:

 These are challenges that relate to the way

individuals or teams perceive and respond to issues

that arise during the development of a product. For

example, when unplanned technical dependencies

arise, what attitude does a team member shows

towards resolving or communicating the technical

dependencies to other teams. In this category we

have:

Attitude and knowledge sharing challenge

 In large-scale Agile software development,

knowledge sharing among the XFTs is vital to enable

the XFTs have a good communication and

coordination. If knowledge is not properly circulated,

it will lead to a challenge of communicating technical

dependencies. Our interviewees stated that:

 Some interviewees do not have the

opportunity to say what they want in

company meetings, for example, tasks

presentation meetings, because of the

multitude of people in the meeting. The

interviewees claimed they do not get

opportunity to express their “burning issues”

or raise vital questions.

 The experienced personnel that are involved

in difficult are too busy to be approached.

Our interviewees also expressed concern about some

of their colleagues’ attitude towards knowledge

sharing. Their opinions are presented below:

 People who are so protective of their work,

 and do not want to provide support to others.

 The people that know much about the code,

but are not good at explaining when someone

ask for help

 People that do not want to share knowledge

and tools because of the idea that people will

keep seeking help from them.

 People that prefer to focus on their own task

thereby not having adequate knowledge of

9

the entire product, that usually lead to

inefficient communication and dependencies

 People who are shy that usually do not

understand when they communicate in

meetings. They claimed that people who are

shy to talk might have ideas that would have

enhanced the knowledge of others.

During development some people forget easily what

was agreed upon in scrum meeting, thereby not be

able to work in accordance with what was agreed on.

Some of our interviewees claimed it is a challenge

with knowledge sharing, since those people did not

absorb what was discussed in meeting. From the

perspective of our interviewees it is clear that attitude

and knowledge sharing is a challenge of technical

dependencies and communicating technical

dependencies.

III. Technical action

These are challenges relating to technical issues that

require technical resolutions. For example, when team

A delivers an incompatible component to the main

branch and it causes many conflicts. Team A is

advised to re-develop another component.

C4: Code quality challenge

In software companies, products are mainly defined

by the lines of codes written and fully tested before

release. Therefore good code quality will lead to

quality products that can compete favorably on the

market. However in large scale software development,

maintaining good quality code remains a challenge.

Our interviewees stated that despite the existence of

Subversion (SVN) control tools, too many people

involved in the same code make changes in the code

which can end up as conflicts in the other teams.

Their common view was, “such changes make it

difficult to maintain a stable version of code, hence

reducing code quality and creating more technical

dependencies”. Function testers specifically shared an

opinion that such changes make testing more complex

because they have to rewrite test cases many times.

The prevailing view among our interviewees was that

providing good quality code is difficult because of

technical dependencies.

C5: Merge challenge

In large scale Agile software development merging of

work packages is a problem because of the many self-

organized teams working to deliver an integrated

working product to the customers. Our interviewees

demonstrated a scenario in which teams develop work

packages independently for 2-3 months without

knowing what is happening in the main branch. At

delivery teams get conflicts since many changes have

been made in the main branch, hence creating

dependencies which at times may only be resolved by

engaging other teams. Some respondents pointed out

that resolving merging conflicts is not so problematic

but the tools they use like IBM Rhapsody makes code

merging unnecessary difficult. Other interviewees

were concerned with the difficulties in identifying the

source of the conflict.

Other concerns expressed by interviewees were about

incompatible dependent components they ordered

from other teams that resulted in merge conflicts. This

leads to project re-planning or re-developing that

usually leads to late deliveries. The views of the

interviewees above provide evidence that merge

conflict is a result of technical dependencies.

6 DISCUSSION
In this section the main findings of the study are

discussed, and compared to the findings of other

researchers about the challenges of technical

dependencies and challenges of communicating

technical dependencies in large-scale Agile software

development.

A further analysis of the main challenges and the

categories reveals that they interact with one another

to form a technical dependency loop, and lead to a

domino effect during the development of a product. It

is worth noting that this conclusion was reached by

the authors of this paper after a critical analysis of the

challenges and categories

Figure 3: Illustration of the Technical dependency loop

The magnitude at which the challenges reinforce and

impede [24] each other will determine the quality of

10

the final product. For example, the working practice

of an organization has influence on the type of

mindset individuals in the organization have, and this

type of mindset will greatly influence the quality of

products in the organization.

Explanation of the technical dependency loop and

the Domino effect

During the planning phase if close attention is not

paid to the way tasks are divided and prioritized, there

are high chances of identifying only few technical

dependencies. When these tasks are deployed to the

teams, during development unplanned technical

dependencies will begin to arise, which indicates that

there were planning difficulties (C1). This planning

challenge is similar to what Babinet and Ramanathan

[1] saw in their research. They used the term

unpredictability. They claimed that the biggest

challenge of technical dependencies is

unpredictability. They emphasized that it is

“impossible to anticipate all the issues, surprises,

changes, failures and successes that teams will

encounter during software development

Teams will struggle to fit these unplanned technical

dependencies into their current product backlog,

thereby leading to conflicts in their backlogs (C2).

Conflicting priorities is a situation whereby a certain

team depends on a feature that has a lower priority in

another team’s backlog [1]. Interviews data showed

Unplanned technical dependencies destabilize teams’

plan, lead to time wasting, delays and late deliveries.

Ciborra [26] and Mathiassen [27] refer to such

planning conflicts as drifting forces that drift

technology away from original plans. Similarly

Boehm and Turner [25] refer to such conflicts as

organizational antibodies, which are also similar to

what is described in chaos stage in the Satir-Change

Model [28].

At this stage new plans are inserted into the product

backlog due to the unplanned technical dependencies

that have arisen. This may create a sense of chaos and

confusion [28] across the involved teams because

everyone will not agree to the new plans.

Development will progress smoothly if the involved

teams and managers are willing to frequently

communicate and share knowledge about the new

changes in the product backlog. Our interview data

showed that technical and experienced people are too

busy to be approached, and some team members are

so protective of their work due to fear of providing

supporting. This confirms that there is knowledge

sharing problems (C3).

 Souza et al. [12] also noticed challenge of knowledge

sharing when they used two scenarios to vindicate the

issues of lack of awareness: (1) Manager’s lack of

awareness of evolving social dependencies, and (2)

developers’ lack of awareness of evolving code

dependencies.

With this breakdown in communication and reduced

knowledge circulations these conflicts (unplanned

technical dependencies) will be unknown to some

teams. It will be more difficult for these teams to

resolve them since they do not know the sources. This

will lead to spontaneous changes in the code,

reducing its quality (C4). This challenge was not

revealed anywhere in the technical dependencies

literature.

When code quality challenge is not resolved at this

stage teams will most likely submit low quality code

to the main branch for integration. This will lead to

integration problems (C5), where issues like

incompatible components will arise, which may lead

to a project re-planning. Majority of our interviewees

expressed a strong dissatisfaction with the IBM

Rhapsody tool when it comes to code merging. (See

section 5). We think that the reason why other

researchers in related work did not show anything to

confirm merge challenge might be because they did

not conduct a research in a setting where developers

use Rhapsody to merge codes. Finally, there are

findings of other researchers about technical

dependencies that we did not confirm in this research.

For instance Babinet and Ramanathan [1] saw system

complexity as a challenge of technical dependencies,

but our findings did not confirm it.

 From the explanation above it is evident that the main

challenges and categories of this study form a

technical dependency loop that eventually lead to a

domino effect.

Drawing our perspective on the discussion above on

how technical dependency challenges create a domino

effect we conclude that: (details on these conclusions

can be found in the recommendation section)

11

 Identification and resolving of technical

dependencies should be a continuous process

rather than a planning phase activity

 Technical dependencies issues should be

frequently communicated to all teams and

managers

 Identifying technical dependencies should be

a combined effort by all stakeholders on a

given project

 Technical dependencies identified and not

resolved at a given phase will spread to other

phases. If they are resolved the technical

dependencies loop will be broken for all

further phases.

 Time should be set aside to identify, resolve

and reflect on technical dependencies

Threats to Validity
A. Internal validity

In quantitative research, much emphasis seems to be

placed on using random sampling to select

interviewees to mitigate threats to internal validity [2].

On the contrary in a case study which is a strategy to

qualitative research, Creswell [23] stated that there is

no total agreement on the sample size of a qualitative

research, but recommended that 3-5 interviewees be

used for case study research. So, because we did not

conduct quantitative research, using a convenience

sample to select 9 interviewees for our research did

not cause any threats to the internal validity [10] of

our findings. However there might be the following

threats:

● Not being able to come up with all of the

important challenges of technical

dependencies.

● Not being able to come up with all of the

important challenges of communicating these

technical dependencies

B. External validity

 Contrary to threats to internal validity, since the

strategy we are using in this qualitative research is a

case study, which has the intention to enable

analytical generalization, whereby the findings can be

extended to other cases that have common

characteristics [10]. Thus, the threat to external

validity [2], [10] to the findings of this study is

minimized.

In relation to section 6.1, it is also noteworthy that the

fact that our findings are, to a large extent overlapping

with the findings of other researchers, increases the

external validity of the challenges we elaborated on in

section 5.

C. Construct validity

The threat to construct validity [10] is also minimized

in this study because there is an alignment in the

interpretation of the ideas discussed in the interview

questions between us and the interviewees at Ericsson

AB. In addition, we conducted a pilot test on the

interview questions between us, and two more people.

We also ensured that the way in which we carried out

our investigation was in accordance with our research

questions.

D. Reliability

We mitigated threats to reliability [10] as follows:

 By having clear interview questions

 By coding the interviews data using thematic

analysis [14]

 The academic supervisor assigned to us and

our contact person at Ericsson reviewed the

codes and themes we generated.

7 RECOMMENDATIONS
 In this section, we present the recommendations

based on the our interview finding and related work,

that will help to mitigate the impact of the challenges

of technical dependencies, and challenges of

communicating technical dependencies in large-scale

Agile software development. The recommendations

are presented below following the order of the main

challenges of this study.

7.1.1 Planning challenge, and team backlog

priority challenge
1. Forming and Involving the Design Architects

(DAs) team in the planning phase

 At Ericsson this is not fully implemented across all

teams. However our participants shared a view that

the Design Architects team will be composed of

software designers(coders who build components)

from each XFT who will: (1) participate in the

planning phase, (2)conduct regular meeting to share

views on the issues that are happening in XFTs, and

(3) share this information with XFTs.

We believe involving DAs in the planning phase will

minimize planning challenges, because DAs know

much about the code, so they will form a strong

planning team that will be able to do the following:

12

 Identify technical dependencies

 Allocate tasks to teams with only necessary

technical dependencies

 Reduce the knowledge sharing gap between

the planning team and XFTs because DAs

will directly communicate planning issues in

the teams.

 Identify a team which has the expertise to

accomplish a particular task, and whether to

split a specific task and assign it to different

teams, or assign the entire task to a single

team.

 In cases where unplanned technical

dependencies come up, DAs will be able to

guide the XFTs to manage continuous

changing of priorities in teams’ backlog.

 2. Frequent checkpoint meetings

 To identify unplanned technical dependencies that

come as a result of planning challenges.

We would also suggest they think about the use

Ariadne. Ariadne is a plug-in for Eclipse that

automatically show all the technical dependencies and

the developers that have to coordinate with one

another as a result of source-code dependencies [12].

7.1.2 Attitudes and knowledge sharing

challenge (C3)
3. Broadening initiative

This initiative involves each XFT member to learn an

additional role. For example, a software designer also

develops competence in function testing. Our

interviewees believe that broadening initiative will

mitigate technical dependencies among members

since they will have a variety of skills to address most

of the dependencies issues that arise, on either an

individual basis or on team basis.

We believe that broadening initiative will increase

fast knowledge circulation because there will be no

need for several people queuing to meet just limited

people that have expertise in a specific role. However

we caution organizations to provide regular short

courses to avoid broad competences because this is

one of the challenges we foresee that might result

from broadening initiative in the long run.

4. Pool teams and competence broadening forums

 We recommend after the implementation of the DAs

teams, organization should extend this practice to all

other roles in the XFTs. For example, formation of the

test and integration pool comprising of tester from

each XFT, documentation pool, and Scrum-master

pool. These pools will help in developing best

practices, coordinate processes, increase circulation of

knowledge, and sharing of experiences in the XFTs.

The pools should also be supplemented with

competence broadening forums were XFTs meet pool

members to share and solve issues.

6. Using Scrum-of-Scrums (SoS), whereby

representatives of one XFT attend scrum meetings of

other XFTs, thereby getting to know what they are

working on and how they depended on one another.

We believe SoS is good for sharing information

between different XFTs, but there are other

alternatives, such as, Town Hall Meeting (THM) and

Open Space Technology (OST) [8], [29] that Agile

practitioners believe work better than SoS. So, we

would recommend the use of THM and OST for

effective communication and coordination. OST

creates an atmosphere where people can express their

burning issues [29].

7. Managing silence by Sandberg and Mathiassen

[5], to address the issue of people who are shy to

contribute in meetings. One of the ways to get the shy

people to contribute to meeting is by asking the

person that is shy what his or her opinion is on the

issue that is being discussed [5].

8. Early interaction across teams: Some

interviewees suggested that managers should arrange

interaction meetings before a project kicks off like,

fika, parties or after work with an intention of getting

teams to know each other and start interaction early

enough. So when dependencies arise individuals are

already aware of each other.

9. Change of teams physical structures

 One participant suggested that teams should work in

an open space instead of cubical rooms, and then

create silent rooms for individual or teams that need

total silence. This will increase physical interaction

and knowledge sharing between individuals. Also

teams doing similar work should be co-located to

enable them easily access one another.

7.1.3 Code quality challenge (C4)

10. Automated script finding tools

This involves automatic sending of messages to

individuals whenever changes are made in the same

13

area of code they are developing. This was suggested

by our interviewees. They urge that this will make

other developers to be aware of the changes and

effects of these changes, so that they can start to

adjust to these changes in their daily developments.

We also believe this will help in finding sources

conflicts, and also address test inefficiency issues.

We also recommend that managers, project managers,

system designers, and DA should come to a consensus

on the optimum number of system designers that can

be in the same code.

7.1.4 Merge challenge (C5)

11. Continuous Integration (CI): Our interviewees

mentioned that they have started frequent delivering

of source-code to the main branch, and writing

Trouble Reports (TR) to address merge challenge.

We believe that frequent delivering of source-code,

TR, and CI are good ways to address merge

challenge.

We also suggest the replacement of IBM Rhapsody

with another tool because of its limitation in the

merging of source-code or teams should be given

more training on how to use it

8 CONCLUSION AND FUTURE

WORK
This paper reports the findings of a case study

conducted at Ericsson AB, Sweden on the challenges

associated with technical dependencies, and

communicating technical dependencies, across large-

scale Agile software development. The study was

investigated using a qualitative research approach [2]

which involved interviewing 9 participants at Ericsson

AB. A thematic analysis of the interview data

revealed: Planning, Teams backlog priority, Attitude

and knowledge sharing, Code quality, and Merge

challenge as the main challenges of this study. These

challenges interact with each other forming a

technical dependency loop, and lead to domino effect,

during the development of a product. The magnitude

of the domino effect will determine the quality of the

final product. We suggested some recommendations

such as broadening initiative, continuous integration,

automated script finding among others, to mitigate the

above challenges. We believe if the results of this

study are put in practice there will be effective

communication across teams, which will enable large

scale companies realize the benefits of large scale

agility.

Finally, we hope to see our study is replicated in

another similar research setting, such as Volvo IT and

others to see if their findings will be similar to what

we came up with.

9 ACKNOWLEDGMENT
 We would like to extend our thanks to Ericsson

AB, and the Department of Computer Science and

Engineering, Software Engineering Division,

Chalmers | University of Gothenburg for facilitating

this research. In particular we would like to thank the

following people:

 1. Anna Sandberg Börjesson: Change Program Driver

at Ericsson AB for her support and guidance, and

mostly being the lead organizer of interviews we

conducted at Ericsson. In additional we also thank our

interviewees for their contribution to this research,

2. Professor Michel R.V.Chaudron: Department of

Computer Science and Engineering, Chalmers and

Gothenburg University, Sweden, for the academic

supervision and guidance throughout the development

of this research.

3. Associate Professor Helena Holmström Olsson:

Department of Computer Science, Malmö University,

Sweden, for the guidance in the initial thesis

proposition.

10 REFERNCES
[1] E. Babinet and R. Ramanathan, "Dependency

Management in a Large Agile Environment," in Agile,

2008. Agile '08. Conference, 2008, pp. 401-406.

[2] J. W. Creswell, Research Design: Qualitative,

Quantitative, and Mixed Methods Approaches: SAGE

Publications, 2009.

[3] B. Curtis, H. Krasner, and N. Iscoe, "A field study of the

software design process for large systems," Commun. ACM,

vol. 31, pp. 1268-1287, 1988.

[4] C. R. B. de Souza, D. Redmiles, G. Mark, J. Penix, and

M. Sierhuis, "Management of interdependencies in

collaborative software development," in Empirical Software

Engineering, 2003. ISESE 2003. Proceedings. 2003

International Symposium on, 2003, pp. 294-303.

[5] A. B. Sandberg and L. Mathiassen, "Managing

Slowdown in Improvement Projects," Software, IEEE, vol.

25, pp. 84-89, 2008.

14

[6] B. J. E. Johansson and P.-A. Persson, "Reduced

uncertainty through human communication in complex

environments," Cogn. Technol. Work, vol. 11, pp. 205-214,

2009.

[7] P. Kettunen and M. Laanti, "Combining Agile software

projects and large-scale organizational agility," Softw.

Process, vol. 13, pp. 183-193, 2008.

[8] C. Larman and B. Vodde, Scaling Lean and Agile

Development: Addison Wesley Professional, 2009.

[9] D. L. Parnas, "On the criteria to be used in decomposing

systems into modules," Commun. ACM, vol. 15, pp. 1053-

1058, 1972.

[10] P. Runeson and M. Höst, "Guidelines for conducting

and reporting case study research in software engineering,"

Empirical Softw. Engg., vol. 14, pp. 131-164, 2009.

[11] J. Singer and N. G. Vinson, "Ethical Issues in

Empirical Studies of Software Engineering," IEEE Trans.

Softw. Eng., vol. 28, pp. 1171-1180, 2002.

[12] C. R. d. Souza, S. Quirk, E. Trainer, and D. F.

Redmiles, "Supporting collaborative software development

through the visualization of socio-technical dependencies,"

presented at the Proceedings of the 2007 international ACM

conference on Supporting group work, Sanibel Island,

Florida, USA, 2007.

[13] M. Dainton and E. D. Zelley, Applying communication

theory for professional life: a practical introduction: SAGE

Publications, Incorporated, 2011.

[14] V. Braun and V. Clarke, "Using thematic analysis in

psychology," Qualitative Research in Psychology, vol. 3,

pp. 77-101, 2006/01/01 2006.

[15] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn,

W. Cunningham, M. Fowler, et al., "Manifesto for Agile

software development," 2001.

[16] D. Leffingwell, Scaling software agility: best practices

for large enterprises: Addison-Wesley Professional, 2007.

[17] K. Conboy and B. Fitzgerald, "Toward a conceptual

framework of Agile methods: a study of agility in different

disciplines," presented at the Proceedings of the 2004 ACM

workshop on Interdisciplinary software engineering

research, Newport Beach, CA, USA, 2004.

[18] P. Tomaszewski, P. Berander, and L. O. Damm, "From

Traditional to Streamline Development—opportunities and

challenges," Software Process: Improvement and Practice,

vol. 13, pp. 195-212, 2008.

[19] K. Petersen and C. Wohlin, "The effect of moving

from a plan-driven to an incremental software development

approach with Agile practices," Empirical Softw. Engg., vol.

15, pp. 654-693, 2010.

[20] E. Trainer, S. Quirk, C. d. Souza, and D. Redmiles,

"Bridging the gap between technical and social

dependencies with Ariadne," presented at the Proceedings

of the 2005 OOPSLA workshop on Eclipse technology

eXchange, San Diego, California, 2005.

[21] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,

Design patterns: elements of reusable object-oriented

software: Addison-Wesley Longman Publishing Co., Inc.,

1995.

[22] C. E. Shannon and W. Weaver, The mathematical

Theory of communication: University of Illinois, 1949.

[23] J. W. Creswell, Research Design: Qualitative,

Quantitative, and Mixed Methods Approaches: SAGE

Publications, 2003.

[24] D. Koutsikouri, A. R. J. Dainty, and S. A. Austin, "

Critical success factors for multidisciplinary engineering

projects," presented at the Proceedings of the 22nd Annual

ARCOM Conference, Birmingham, Uk, 2006.

[25] B. Boehm and R. Turner, "Management challenges to

implementing Agile processes in traditional development

organizations," Software, IEEE, vol. 22, pp. 30-39, 2005.

[26] C. Ciborra, From control to drift: the dynamics of

corporate information infrastructures: Oxford University

Press on Demand, 2000.

[27] G. Tjørnehøj and L. Mathiassen. (2008, Between

control and drift: negotiating Improvement in a small

software firm. 21(1), 69-90.

[28] M. G. Weinberg, Ed., Quality software management.

Dorset House Publishing: New York., 1997, p.^pp. Pages.

[29] C. Larman and B. Vodde, Practices for Scaling Lean

and Agile Development: Addison Wesley Professional,

2010.

[30] M. E. Sosa, S. D. Eppinger, M. Pich, D. G.

McKendrick, and S. K. Stout, "Factors that influence

technical communication in distributed product

development: an empirical study in the telecommunications

industry," Engineering Management, IEEE Transactions on,

vol. 49, pp. 45-58, 2002

