

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

Göteborg, Sweden, June 2013

Evaluating Domain-Driven Architectural Designs and

Non-Functional Architectural Attributes for Windows

Phone 8 Mobile Applications

Bachelor of Science Thesis in Software Engineering and Management

MOZHAN SOLTANI

RETTA SHIFERAW SIYOUM

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Evaluating Domain-Driven Architectural Designs and Non-Functional

Architectural Attributes for Windows Phone 8 Mobile Applications

© MOZHAN SOLTANI, June 2013.

© RETTA SHIFERAW SIYOUM, June 2013.

Examiner: MICHEL CHAUDRON

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden June 2013

Evaluating Domain-Driven Architectural Designs∗ and
Non-Functional Architectural Attributes for Windows

Phone 8 Mobile Applications

Mozhan Soltani
Software Engineering and Management

Dept. of Computer Science and Engineering
Chalmers University and University of

Gothenburg
mozhan.soltani@gmail.com

Retta Shiferaw Siyoum
Software Engineering and Management

Dept. of Computer Science and Engineering
Chalmers University and University of

Gothenburg
rsabitirta@gmail.com

ABSTRACT
Most IT companies are interested in investigating new mo-
bile technologies as mobile devices are noticeably prevalent
these days. In this study, we collaborated with Volvo IT to
identify the extent of conformance to domain-driven archi-
tectures when developing Windows Phone 8 (WP8) applica-
tions, as well as to find out what non-functional attributes
can be applied to these applications.

We took the Action Design Research (ADR) strategy to de-
velop a purchasing order system prototype and investigate
the applicability of security, performance, and maintainabil-
ity to Windows Phone 8 applications. We found that while
the Model-View-ViewModel (MVVM) pattern brings high
maintainability to WP8 applications, these applications can
still conform to a domain-driven architecture with, at least,
the user interface, domain, communication, and service com-
ponents, and fulfill high levels of security as well as perfor-
mance.

Due to the limited time frame of the study, we did not con-
sider other non-functional attributes, such as integrability,
robustness, and simplicity, for WP8 applications. Those at-
tributes can be investigated in future research.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Domain-specific architectures, Patterns, Model View View-
Model pattern

∗Domain-driven architecture is an architectural design that
is focused on the core domain and domain logic. In this
archutecture, the design is based on a model of a domain
and the model is a system of abstractions that describes
certain aspects of a domain. We will elaborate on domain-
driven architectures in section 3, Architectural Designs.

; D.4.6 [Operating Systems]: Security & Protection
; D.4.8 [Operating Systems]: Performance

Keywords
Windows Phone 8, Domain-Driven Architecture, Model View
View-Model Architecture, MVVM

1. INTRODUCTION
In recent years, mobile devices have become noticeably ubiq-
uitous and the number of mobile operating systems has in-
creased. Therefore, mobile devices have become a prevalent
platform for business applications. Many companies adopt
mobile technologies in order to increase their responsiveness
to meet a wider range of customer demands [13, 18, 20, 21].
To adopt the mobile technologies, companies need to inves-
tigate certain technical aspects so that the new mobile tech-
nologies would conform to their standards and principles.
For instance, these companies typically have particular de-
velopment standards and architectural principles to conform
in their software applications in order to be highly consistent
and time efficient.

Similar to other IT companies, Volvo Group IT Governance
promotes a software architectural framework that consists
of two parts:

• A generic domain-driven architectural design called
Volvo Group Target Architecture (VGTA)

• A set of non-functional attributes, including security,
performance, and maintainability

Due to the generic structure of this framework all the ap-
plications at Volvo Group are supposed to conform to it,
regardless of the domain or platform they are intended for.
Therefore, it is essential to realize the extent to which new
mobile technologies can conform to this framework.

In this study together with Volvo IT, as the industrial part-
ner of the research, we intend to find out the extent of
conforming to domain-driven architectural frameworks while
developing Windows Phone 81 applications. We also intend

1Windows Phone 8 (WP8) is the second generation of the

1

to identify the non-functional attributes that can be applied
to these applications. Therefore, we ask the following re-
search questions:

1. To what extent is it feasible to conform to a domain-
driven architectural framework, which includes the user
interface, domain, communication, and service compo-
nents, while developing a Windows Phone 8 applica-
tion?

2. What non-functional attributes can be applied to Win-
dows Phone 8 applications?

To answer the questions, we took the action design research
strategy [4, 16] to develop a Windows Phone 8 application,
and evaluate it against VGTA. The application conforms to
the MVVM2 architectural pattern and provides the main
functionalities of a typical purchasing order system; create,
update, read, and delete order.

Due to the limited time frame of the study, we considered a
subset of the architectural attributes that were included in
the architectural framework. We looked into the applicabil-
ity of security, performance as well as maintainability, and
left the rest for the future studies.

The report is structured as follows: In section 2, we will
explain why and how we followed the action design research
methodology to develop the prototype and obtain the in-
tended knowledge. In section 3, we will present knowledge
about domain-driven architectures and the Volvo Group ar-
chitectural framework, as well as explain the MVVM ar-
chitectural pattern and the architectural advantages that it
supports. Research findings will follow, in which we will
explain the architectural design and attributes of the appli-
cation prototype as well as the architectural attributes that
Microsoft supports for Windows Phone 8 applications. In
section 5, we will answer the research questions, and at the
end, in section 6 we will provide our conclusions.

2. RESEARCH METHODOLOGY
In the following sections, we motivate the choice of the
Action Design Research (ADR) strategy (Section 2.1) and
present the research process (Section 2.2) that we used, fol-
lowing ADR, to frame the research problem, develop the
purchasing order system prototype, and draw the final con-
clusions.

2.1 Motivation for ADR
To perform the qualitative evaluations [14] and answer the
research questions, we found Action Design Research (ADR)
[4, 16] to be a suitable strategy through which we could

Windows Phone mobile operating system from Microsoft.
It was released in October 2012, and is among the popular
mobile platforms nowadays [24].
2MVVM is an architectural pattern used in software engi-
neering that originated from Microsoft as a specialization of
the presentation model design pattern [7, 5]. It facilitates
a clear separation of the development of the graphical user
interface from the development of the business logic or back
end logic known as the model. This pattern is recommended
for developing Windows Phone 8 applications.

conduct iterative developments and evaluations, as well as
contribute to a general knowledge about the Windows Phone
8 applications. The following two main incentives formed
the basis for choosing ADR:

• ADR requires the researchers to conduct iterative and
inseparable building, intervention, and evaluation dur-
ing the second stage of the research process. This
phase leads to gaining an in-depth understanding of
organizational values, expectations, and assumptions.
In addition, the researchers can benefit from the iter-
ative reshaping practices to validate their findings and
increase the credibility of the study [16].

• ADR requires the researchers to generalize the out-
comes of the study, during the fourth stage of the re-
search process, and contribute to the knowledge about
a class of field problems, rather than challenges that
are specific to an organization [16].

Figure 1: Stages and Principles of ADR

2.2 Research Process
Following ADR, we took the following four steps: 1) Prob-
lem Formulation, 2) Building, Intervention, and Evaluation,
3) Reflection and Learning, and 4) Formalization of Learn-
ing. We elaborate on these steps in the following sections.

2.2.1 Problem Formulation
Typically IT companies expect a large number of requests
from their customers with respect to new technologies. There-
fore, they are required to investigate the new technologies in
order to stay responsive and fulfil the customer and market
requirements. The need for this investigation provided the
impetus for the present research.

2

At the stage of the problem formulation, we collaborated
with a mentor from Volvo IT to realize the problem scope,
frame the research problem, and identify the solution pos-
sibilities. This stage drew on two principles: 1) practice-
inspired research, which emphasizes on viewing the field
problem when it comes to defining the research problem, and
2) theory-ingrained artifact, that emphasizes that ensemble
artifacts, created and evaluated using ADR, are informed by
theories [4, 16]. Conforming to these principles, we specified
the research aims as well as the research questions (presented
earlier in section 1) and formed the initial design theories.
The design theories comprised of the following:

• Using the Windows Phone 8 emulator on which we
could debug and run the prototype

• Conforming to the MVVM architectural pattern for
developing the prototype

• Implementing the basic functionalities of create order,
read order, update order, and delete order in the pro-
totype

2.2.2 Building, Intervention, and Evaluation
At this stage, we perceived the formulated problem as well
as the theoretical premises that were adopted in the former
stage and began implementing the application prototype.
We used secondary data sources [1] (books and articles on
MVVM) to realize the MVVM architectural pattern and
follow it in the prototype. This stage drew on three prin-
ciples of 1) reciprocal shaping, 2) mutually influential roles
and 3) authentic and concurrent evaluation, which together
emphasize the inseparability of building and evaluation in
this strategy [4, 16]. Following these principles, in order
to develop an in-depth understanding of expectations from
Volvo IT and apply them appropriately, we delivered mul-
tiple versions of the prototype iteratively. In each iteration
we, together with our mentor from Volvo IT, evaluated the
application and planned for further reshaping until all four
functionalities of create, read, update, and delete order, as
well as communication with a backend for saving and receiv-
ing the orders were implemented properly.

2.2.3 Reflection and Learning
As figure 1 illustrates, this stage occurs in parallel with the
first two former stages. It moves conceptually from building
a solution to a particular problem to applying that specific
knowledge to a broader range of problems [4, 16]. Reflec-
tion and learning draws on the guided emergence principle
which emphasizes that the ensemble artifact reflects both
the preliminary design and its ongoing reshaping. At this
stage, we used secondary data sources about VGTA (offi-
cial documents from Volvo IT) to gain an understanding
about specific architectural qualities that it imposes on the
applications. In addition, we studied the architectural at-
tributes that Microsoft supports for WP8 applications. We
ensured that the contribution to knowledge is identified by
conscious reflection on our research questions and design
theories, in terms of MVVM, VGTA, and the associated
architectural principles, as well as evaluating the emerging
prototype against the reflected knowledge.

2.2.4 Formalization of Learning
At this stage, we used secondary data sources (mainly arti-
cles) to gain knowledge about domain-driven architectural
frameworks. We then generalized the study and contributed
to the field knowledge about architectural perspectives of
Windows Phone 8 applications. We conducted the general-
ization by casting VGTA to a domain-driven architectural
framework and answering the first research question on the
extent of conformance to such frameworks when it comes
to developing Windows Phone 8 applications. In addition,
we answered the second research question on the applicable
non-functional attributes by identifying the architectural at-
tributes that we could address in the application prototype
as well as those that Microsoft supports for WP8 applica-
tions.

3. ARCHITECTURAL DESIGNS AND AT-
TRIBUTES

This section is divided into two main parts. In the first
part, we explain domain-driven architectures and the Volvo
Group architectural framework, which consists of VGTA as
an instance of a domain-driven architectural design as well
as a number of non-functional attributes. In the second
part, we explain the MVVM architectural pattern and the
advantages that it brings to Windows Phone 8 applications.

3.1 Domain-Driven Architecture
Domain-driven architectures are used to develop software for
complex needs and enhance specific domains. In the process
of developing these architectural designs, design and devel-
opment work together to create a better solution. Technical
and domain experts collaborate in an iterative manner to
promote a conceptual model that addresses particular do-
main problems. The primary focus of the technical and do-
main experts is on the core domain and domain logic. Good
design accelerates the development, while feedback from the
development process enhances the design. In this approach,
domain is the subject area to which the user applies a soft-
ware program, and model is a system of abstractions that
represents the target domain and can be used to solve the
domain-related problems [7, 9].

The model is an essential part of designing a domain-driven
architecture to deal with the complexity of the project. All
thinking processes about the domain are synthesized in the
model, therefore the model must be communicated to the
technical and domain experts precisely and completely so
that the collected knowledge is shared among them. To
express the domain model, team members should develop
ubiquitous language around it and use diagrams, pictures,
use cases, etc to spread the gathered knowledge in the model
appropriately [7, 9].

For a successful design process, it is important that the
project has access to domain experts, and the project team
has experience and interest in object-oriented design and
programming. In addition, communication is paramount for
the success of the project when building a domain model. A
core principle in the process of domain-driven design is to
use a language based on the model. Since the model is the
common ground, it is appropriate to use it as the building
ground for this language. This language is ubiquitous and

3

appears consistently in all forms of the communication. It
will create the premise for the design team to function well
[7, 9].

In the process of building the model, patterns that are com-
monly used are referred to as building blocks of the domain-
driven design [7, 9]. These patterns include layered archi-
tecture, aggregate, service, repository and factory. More-
over, typically domain-driven designs include, at least, user
interface, domain, communication, and service components
which have their own responsibilities in the software design.

In what follows (Subsection 3.1.1), we will explain the Volvo
Group architectural framework and elaborate on Volvo Group
Target Architecture (VGTA), which can serve as a generic
domain-driven architectural design for the applications of
Volvo Group. In addition, we outline the architectural prin-
ciples that are associated to the non-functional attributes of
the framework.

3.1.1 Volvo Group Architectural Framework
Volvo Group IT Governance promotes a software architec-
tural framework that consists of a generic domain-driven
architectural design as well as a set of non-functional at-
tributes3 that includes security, performance, and maintain-
ability. In this section, we will explain the architectural
design and the components that it embraces, as well as
the architectural principles that are associated to the non-
functional attributes of the framework.

3.1.1.1 Volvo Group Target Architecture. The archi-
tectural design is called Volvo Group Target Architecture
(VGTA) and is comprised of six types of components. The
components are either technical or business-related logical
constructs and consist of:

• User interface component

• Workflow component

• Domain component

• Gateway component

• Proxy component

• Utility component

In what follows, we explain the responsibilities and commu-
nication rules that are defined in VGTA for these compo-
nents.

User Interface Component The user interface (UI) com-
ponent contains UI presentation and UI workflow function-
ality. It uses services provided by the domain and workflow
components. Services to be consumed by the user interface
should be specifically designed to meet both performance
and usability requirements of the user interface. Therefore,
services provided to the user interface should be tailor-made

3Considering the time frame of the study, we decided to
focus on a subset of these attributes which we found the
most addresable.

Figure 2: Volvo Group Target Architecture

for this component to avoid a talkative protocol and make
the development process more efficient.

Workflow Component A workflow component is merely
responsible to coordinate a sequence of actions that are
needed to move a workflow forward. This component spans
over multiple domain components to complete a business ac-
tion, however it must not contain any business logic itself.
The functionality of a workflow component involves calling
a number of different services from domain components. It
can also call services from other workflow components de-
pending on the required action to be performed. To maxi-
mize scalability and promote simplicity, it is recommended
to use asynchronous messaging when designing a workflow
component.

Domain Component A domain component represents a
set of business concepts, such as order and customer. The in-
ternal information model of a domain component is detailed
in a domain model, e.g. an order domain model. Each do-
main component owns it’s data by having separate databases
or separate data schemas. Data schemas contain the tables
corresponding to the domain model entities. The databases
and the domain entities can only be reached through the
service facade of the domain component.

It is important that the business logic within a domain com-
ponent can change without affecting it’s users. Therefore,
the functionalities of a domain component should only be
reachable through a service interface. The service inter-
face can simply consist of a class interface that hides the
internal behavior of the domain component. The following
summarizes the rules to consider when designing a domain
component:

4

• Each domain component can only be accessed through
its service interface which hides the domain’s internal
structure.

• The services of a domain component are accessed through
synchronous calls.

• Transformation of external information models into in-
ternal format should not be done in the domain com-
ponent, it is the responsibility of gateway and proxy
components.

• Only the domain component can change it’s own data.

• A domain model shall not directly operate on another
application’s information model.

• Within the same application, no information model
transformation is required.

Gateway Component Typically in an application only one
gateway component is used which is responsible for receiv-
ing service calls and events from external sources, such as
external applications. A gateway component does the nec-
essary transformations between the messages received from
external sources and the internal services of domain and
workflow components. The information model of external
sources should be isolated from the information models that
are used internally by the domain and workflow components
in the application.

Proxy Component A proxy component is responsible for
accessing the external services outside of the application.
While this component isolates it’s consumers, workflow and
domain components, from the external information model, it
should not contain any business logic. A proxy component
makes the necessary transformations between the internal
information concepts and the information concepts of the
consumed external services. The external data models are
data descriptions, e.g. XML declarations, that provide the
information of how to interpret data from an external appli-
cation.

Utility Component The utility component delivers gen-
eral functionalities and application-wide services that do not
directly belong to any domain component within an ap-
plication, e.g. security, and log. It can also contain base
classes, utilities, constants and exceptions that should be
shared application-wide and do not fit into any of the other
component types. A utility component is a library of generic
functionalities and should not contain any business logic.

3.1.1.2 Non-functional attributes. Non-functional at-
tributes of the Volvo architectural framework address secu-
rity, performance, and maintainability. In what follows, we
outline the architectural principles that are associated to
these attributes.

Security

• The platform to keep the sensitive information must
be secured from malware attacks.

• Applications must be isolated from each other and can
not access the memory used by other applications.

• It should be possible to develop and distribute the ap-
plications within an organization privately.

• Confidentiality and integrity of data must be protected
from unauthorized data access or unintended informa-
tion disclosure.

Performance

• Applications must have the least talkative communi-
cations with each other.

• Applications must have optimized memory usage.

• Applications must respond to the user within an ac-
ceptable time.

Maintainability

• Applications must contain autonomous components and
support continuous functional modifications and im-
provements.

• Applications must support unit testing by promoting
modularity.

3.2 MVVM Architectural Pattern
Model-View-ViewModel (MVVM) is a software architectural
pattern that originated from Microsoft as a specialization of
presentation model design pattern, and is recommended for
developing Windows Phone 8 applications [2, 5]. MVVM
helps cleanly separate the business and presentation logic of
the application from its user interface (UI). This can make
the application easier to test, maintain, and evolve. It can
also greatly improve code re-use opportunities and allow de-
velopers and UI designers to more easily collaborate when
developing their respective parts of the application [2, 5, 6].
Using the MVVM pattern, the UI of the application and the
underlying presentation and business logic is separated into
three separate classes:

• View encapsulates the UI and UI logic. It is a vi-
sual element, such as a window, page, user control,
or data template that defines the controls contained in
the view as well as their visual layout and styling. View
is responsible to define the structure and appearance
of what the user sees on the screen. It references the
view model through its DataContext property. The
controls in the view are bound to the properties and
commands exposed by the view model. The code be-
hind the view can define UI logic to implement visual
behavior that is difficult to express in XAML or that
requires direct references to the specific UI controls
defined in the view [2, 5, 6].

• ViewModel encapsulates presentation logic and state,
as well as relies on the binding system for communi-
cating with the view. The view-model takes care of

5

moving data from the model to the view and commu-
nicating user gestures to the model from the view. It
has no direct reference to the view or any knowledge
about the view’s specific implementation or type. The
view model implements properties and commands to
which the view can data bind and notifies the view of
any state changes through change notification events.
The properties and commands that the view model
provides define the functionality to be offered by the
UI, but the view determines how that functionality
is to be rendered. Typically, there is a one-to many-
relationship between the view model and the model
classes. The view model may choose to expose model
classes directly to the view, so that controls in the view
can bind data directly to these classes. In this case, the
model classes will need to be designed to support data
binding and the relevant change notification events.
The view model is testable independently of the view
and the model [2, 5, 6].

• Model encapsulates the application’s business logic
and data. Business logic is defined as any application
logic that is concerned with the retrieval and manage-
ment of application data and for making sure that any
business rules that ensure data consistency and validity
are imposed. To maximize re-use opportunities, mod-
els should not contain any user task-specific behavior
or application logic. Typically, the model represents
the client-side domain model for the application. It
can define data structures based on the application’s
data model as well as any supporting business and val-
idation logic. The model may also include the code
to support data access and caching, though typically
a separate data repository or service is employed for
this [2, 5, 6].

MVVM is largely based on Model View Controller (MVC)
and Model View Presenter (MVP) patterns, which were
the two most common architectural styles before MVVM
emerged. This pattern addresses some of the limitations of
MVC and MVP and combines some of their strengths [23].
In what follows we elaborate on MVC and MVP architec-
tural patterns and explain the advantages of using MVVM
over them.

3.2.1 Model View Controller
Model View Controller (MVC) is a software architecture
pattern which separates the representation of information
from the user’s interaction with it [23]. This pattern con-
sists of three components:

• View is responsible for displaying data and collecting
user input. The view gets its data from the model in-
cluding notifications that data has been updated and
needs to be refreshed. These notifications are imple-
mented using an observer pattern. When the user in-
teracts with the view through gestures, the view is re-
sponsible for collecting those gestures and forwarding
them along to the controller for processing.

• Model contains business entities and the data that
UI displays. The model is responsible for notifying the

Figure 3: Model-View-View Model Architectural
Pattern

view of changes in state which is generally done with
an observer pattern.

• Controller is responsible for taking user input and
communicating it to the model for processing. The
controller typically implements a use case and alters
the model depending on the user actions.

In this pattern, the view can be synchronized with the model
through using observers and subscribing to changes in model
[23]. As figure 4 shows, the controller does not know any-
thing about the view, however the view can switch between
controllers and a single controller can be used by multiple
views. This form of coupled relationship among the com-
ponents of MVC brings disadvantages to this architectural
style. Following MVC,

• the view logic and the view state are both tightly cou-
pled in the view, making them difficult to test or share,

• only the code for the model can be re-usable, and

• memory leaks might occur when using .Net events.
This is because in .NET, events only support using
strong references and not weak references. When an
observer object, view, subscribes to an event on a sub-
ject object, model, the subject keeps a reference in
the form of a delegate (or function pointer) to the ob-
server. In .NET, memory management is handled by
the garbage collector and the garbage collector will
not collect any object as long as another object has a
strong reference to it. This means that the view sub-
scribing to the model’s events will cause those models
to hold strong references to the views. These strong

6

Figure 4: Model View Controller Architectural Pat-
tern

references will prevent the garbage collector from col-
lecting the views, causing the views to leak memory.

3.2.2 Model View Presenter
The MVP pattern is a derivative of MVC that was engi-
neered to facilitate automated unit testing and improve the
separation of concerns in presentation logic [23]. MVP con-
sists of three components:

• View, that is the user interface (UI) of the software.
program

• Model, that is the actual data that the presenter will
request and get displayed in the view. It is responsible
for obtaining the data so it is the one that reads files
or connects to a database.

• Presenter, which is an entity that can manipulate
the model as well as present the data to the view and
update it.

The goal of using the MVP design pattern is to separate
the responsibilities of the application in such a manner as
to make the application code testable and maintainable [23].
Moving view state and view logic to the presenter makes it
much easier to factor logic and code out of the UI layer for
more streamlined, and reusable code that is easier to test.

The main difference between MVC and MVP is that, in
MVP the presenter refers back to the view while in MVC
the controller does not do so. It is important to note that
the presenter has no knowledge of the actual UI layer of the
application. The presenter knows it can talk to an interface,

Figure 5: Model View Presenter Architectural Pat-
tern

but it does not know or care what the implementation of that
interface is [23]. This promotes reuse of presenters between
disparate UI technologies and makes it easier to mock the
views and run unit tests. However, two shortcomings of
MVP still remain:

• MVP uses a lot of events, and as we discussed for
MVC, events can cause memory leaks.

• A lot of code remains untested in the view.

3.2.3 Advantages of MVVM
As we mentioned earlier, MVVM is largely based on MVC
and MVP architectural patterns. In comparison with MVC
and MVP, MVVM can have a number of advantages, includ-
ing:

• Increased testability: Testability is improved as all
view logic is now testable from unit tests [2].

• Less code: The amount of code required to manage
the view decreases, as the developer no longer has to
deal with boilerplate code behind code. This code in-
volves a lot of casting and error checking in production
quality code. Less code means fewer bugs, less code to
maintain, and fewer unit tests to write [2].

• Increased decoupling: When using the pure ap-
proach, the developer no longer needs to have the view
and mediator (view model, presenter, or controller) be
explicitly aware of each other. The view does have
a reference to the view model, however, under pure
MVVM, it is not necessary for the view to be aware of
the type of the view model [2].

7

• Allows for streamlined development processes:
Developers and designers can work independently on
the same application views. This is because of the
decoupling in this pattern and also because the devel-
oper can create a view model that exposes the needed
data points and have the view model properties return
design-time data. This allows designers to work on
the look of the application while the view model and
model are being built [2].

4. RESEARCH FINDINGS
This section is divided into two main parts. In the first
part, we explain the prototype in terms of its architectural
design and the architectural attributes that it fulfills. In the
second part, we explain how Microsoft supports security and
performance attributes for Windows Phone 8 applications.

4.1 Purchasing Order System Prototype
A purchasing order system is designed to help manage the
purchasing and receiving of stock for a business, and also
prevent unauthorized purchases from taking place. To eval-
uate the extent of conformance to a model-driven archi-
tectural design and identify the applicable architectural at-
tributes to a Windows Phone 8 application, we developed a
Windows Phone 8 application called Purchasing Order Sys-
tem (POS). The POS application provides the functional-
ities of create order, read order, update order, and delete
order, as well as communication with a backend to save and
retrieve the data about the created orders. When the ap-
plication starts, it communicates to the backend to retrieve
the orders that the user might have already saved. The user
can then see the list of orders, update them, or add a new
one. To add a new order, the user should specify order date,
delivery date, and order status. In addition, each order can
be associated to multiple parts that the user can specify at
the time of creating or updating the order item. To specify
the parts, the user should provide the part name and part
quantity either at the time of creating or updating an order.
When the user terminates the application, the list of orders
that he has made will be sent to the backend to be saved.

4.1.1 Prototype Architecture
To develop the application, we used the Visual Studio 2012
development environment, from Microsoft, which supports
different programming languages such as C, C++, and C#

[17]. We followed the MVVM architectural pattern, due
to the certain architectural advantages that it supports for
Windows Phone 8 applications, and separated the applica-
tion UI from application logic. We made the application UI
in XAML4, using the Microsoft Blend tool, and wrote the
application logic in C#. In addition, we used the Windows

4Extensible Application Markup Language (XAML) is a
declarative XML-based language created by Microsoft [3].
XAML elements map directly to Common Language Run-
time object instances, while XAML attributes map to Com-
mon Language Runtime properties and events on those ob-
jects. XAML files can be created and edited with visual de-
sign tools like Microsoft Expression Blend, Microsoft Visual
Studio, and the hostable Windows Workflow Foundation vi-
sual designer. They can also be created and edited with
a standard text editor, a code editor like XAMLPad, or a
graphical editor like Vector Architect.

Phone 8 emulator5 to debug and run the application. The
prototype consists of the following components, from the
MVVM perspective:

• View: This component is responsible for the applica-
tion presentation and contains the seven pages of the
prototype. The pages are xaml files that include UI
controls and are associated to xaml.cs files. Xaml.cs
files are responsible for UI logic as well as the visual
behavior of the controls, and include the code-behind
of the pages. In addition, the controls of these pages
are data bound to the properties that the view model
exposes from the model of the application.

Figure 6: The Order List and Create Order Pages
of the POS Application

• ViewModel: This component is responsible for trans-
ferring the order data and part data to the pages of the
application. Using C# code, it implements the INo-
tifyPropertyChanging and INotifyPropertyChanged in-
terfaces to update the controls of the pages when the
data is changed in the model component. It also com-
municates user actions, for creating, reading, updat-
ing, and deleting the orders or their associated parts,
to the model of the application. Using interfaces, the
view model is loosely coupled to the other components
of the application, therefore, it is simple to unit test,
modify, and re-use the code of this component.

5Windows Phone Emulator is a desktop application that
emulates a Windows Phone device [22]. It provides a virtu-
alized environment in which one can debug and test Win-
dows Phone applications without a physical device. It also
provides an isolated environment for application prototypes.

8

In addition, the view model of the POS prototype in-
cludes a separate component, called Order Service.
This component includes the services for communi-
cating with the backend and uses the HttpClient6 li-
brary to send HTTP requests and receive HTTP re-
sponses asynchronously. This library supports porta-
bility across the Microsoft platforms, therefore, using
this library adds to the code re-use possibilities of the
application.

• Model: This component contains the application data,
related to the created orders and parts, and is respon-
sible for managing this data, using C# code. It uses
the LINQ to SQL7 framework to map the data objects
to SQL relational tables. The model includes two data
schemas, order and part, that define the properties of
order and part entities. The following code snip shows
part of the order data schema in which “orderId“ is
defined as a primary key:

namespace SamplePOS . Model
{

[Table (Name = ”Orders ”)]
pub l i c c l a s s Order :
INotifyPropertyChanged ,
INoti fyPropertyChanging
{

pub l i c Order ()
{

p a r t t s = new EntitySet<Part>(
rev =>
{

NotifyPropertyChanging (”Partt s ”) ;
rev . Order = t h i s ;
} ,
rev =>
{

NotifyPropertyChanging (”Partt s ”) ;
rev . Order = n u l l ;
}
) ;

}

// Define order id
pr i v a t e s t r i n g order Id ;
[Column(IsPrimaryKey = true ,
DbType = ”nvarchar (20) ” ,
CanBeNull = f a l s e ,
AutoSync = AutoSync . OnInsert)]

pub l i c s t r i n g OrderId
{

get { return order Id ; }
6HttpClient is a part of .NET Framework 4.5 and Windows
Store apps that provides developers an extremely easy way
to connect with services across the internet including REST-
based services [8].
7In LINQ to SQL, the data model of a relational database is
mapped to an object model expressed in the programming
language of the developer. When the application runs, LINQ
to SQL translates into SQL the language-integrated queries
in the object model and sends them to the database for
execution. When the database returns the results, LINQ to
SQL translates them back to objects that the developer can
work with in his own programming language [15].

s e t
{

i f (order Id != value)
{

NotifyPropertyChanging (”OrderID ”) ;
o rder Id = value ;
NotifyPropertyChanged (”OrderID ”) ;
}
}
}

. . .
}
}

Figure 7: POS Prototype from the MVVM Perspec-
tive

4.1.2 Prototype Architectural Attributes

4.1.2.1 Maintainability. As we explained the architec-
tural structure of the POS prototype, the view model com-
ponent of the prototype uses interfaces for communicating

9

with the view and model components, and therefore it is
loosely coupled with them in terms of data format and logic.
This separation makes it simpler to unit test, modify, and
re-use the view model as well as the model components, and
leads to a high level of maintainability.

4.1.2.2 Performance. Since the Order Service of the
view model uses asynchronous HTTP communication with
the backend, the application becomes loosely coupled with
the backend in terms of time and therefore, the availability
of the backend can have less influence on the performance
of the prototype. However, during the runtime the appli-
cation uses a local database to save and retrieve the orders
as well as their associated parts. This also increases the
performance of the prototype as accessing data through the
local database takes place faster than accessing it through
communication with the backend.

In addition, as Microsoft Developer Center recommends [11],
the prototype uses JPG images since the JPG decoder is
much faster than the PNG decoder8. The prototype uses
Tap and DoubleTap event handlers, whenever the user se-
lects an order to update or see the associated parts, and
displays the list of orders using LongListSelector control.
These event handlers and the list control are recommended
in Windows Phone 8 applications for better performance
[11].

4.2 Supported Non-Functional Attributes in Win-
dows Phone 8

4.2.1 Security
Windows Phone 8 is designed with a holistic and defense-
in-depth approach to security design to help protect against
malware, data leakage, and other threats [12, 19]. In what
follows we bring the approaches and techniques that Mi-
crosoft has utilized to support a high level of security in
Windows Phone 8:

4.2.1.1 System Integrity. Windows Phone 8 employs a
secured boot process and code signing to help assure plat-
form integrity. Applying these features, only validated soft-
ware products would be allowed to execute, therefore, the
operating system will be protected from malware attacks.
Using secure boot technology, all boot components are as-
signed to digital signatures so that only authorized code can
execute to load the Windows Phone operating system.

The next layer of defense is provided when a boot manager
component takes over to complete the boot process. The
boot manager requires all code in the operating system, in-
cluding drivers and applications, to be signed by Microsoft
before the device becomes ready and the user can start using
the phone [12, 19].

4.2.1.2 Chambers and Capabilities. Windows Phone
introduces a chambered security model to provide the advan-
tages of attack surface reduction, and isolation. The cham-

8Windows Phone supports JPG and PNG image formats.

bered model uses isolation to achieve the principle of least
privilege. Under this principle, each chamber provides an
isolation boundary within which a process can run, as well
as a security policy which defines the operating system ca-
pabilities that the running process within the chamber can
call [12, 19]. This technique leads to a number of security
advantages:

• Each application receives only the needed capabilities
to perform it’s use cases.

• Applications become isolated from each other and can
not access the used memory or stored data of other
applications.

4.2.1.3 Enterprise Line-of-Business Applications. Or-
ganizations may require the possibility to develop and di-
rectly distribute their custom applications to employees. With
Windows Phone 8, organizations can register with Microsoft
to obtain the tools to develop, package, sign, and distribute
applications to employees. They can use a validated process,
without having to submit their applications to the Windows
Phone Store [12, 19].

4.2.1.4 Data Protection. Windows Phone 8 includes
several features to help protect against unauthorized data
access or unintended disclosure. These features follow:

• Phone PIN: Access to a Windows Phone can be con-
trolled through a PIN, that users can set through the
Lock Screen Settings [12, 19]. In addition, additional
security functionalities can be configured using Ex-
change ActiveSync (EAS) policy for password length,
password complexity or other parameters.

• Remote Wipe: If a Windows Phone becomes lost
or stolen, a remote wipe of the device can be done by
using either the Exchange Server Management Console
or Outlook Web App [12, 19]. In addition, an EAS
policy can be set to wipe a phone after a configurable
number of unsuccessful PIN attempts.

• Device Encryption: To help keep everything, such
as documents or passwords, safe, Windows Phone 8
can be configured to use Bitlocker technology to en-
crypt all internal storage, including operating system
and data partitions. When device encryption is turned
on, any file saved to the phone is also encrypted auto-
matically. If a PIN-protected Windows Phone is lost
or stolen, the combination of device lock and data en-
cryption makes it difficult for an unauthorized party to
retrieve sensitive information from the phone [12, 19].

• Data Leak Prevention: Windows Phone 8 offers
native support for Information Rights Management
(IRM), which allows content creators to assign rights
to Microsoft Office documents or email messages they
send [12, 19]. When IRM is employed, the data in
rights-protected documents or email messages is en-
crypted so that it can only be viewed by authorized

10

users. IRM can also be used to limit other rights to
a document or message, such as preventing the docu-
ment or message from being copied or printed.

4.2.2 Performance

4.2.2.1 Windows Phone 8 Core. Windows Phone 8 is
the first mobile operating system from Microsoft that uses
Windows NT kernel 9, which is the same kernel that runs
Windows 8. Using the NT kernel, Windows Phone 8 can
now support multi-core CPUs of up to 64 cores, as well as
1280x720 and 1280x768 resolutions, in addition to the base
800x480 resolution already available on Windows Phone 7
[24]. Developers can take advantage of this feature and cre-
ate high performance applications in terms of responsiveness
and resource usage.

4.2.2.2 Application Performance Considerations. It
is important to consider performance when creating Win-
dows Phone 8 applications since it has a limited central pro-
cessing unit and graphics processing unit, compared to a
desktop or laptop PC [10, 11]. To optimize performance
of apps on Windows Phone 8, several changes were made
to the way that XAML processes graphics and other ob-
jects. In what follows, we explain the techniques to consider
and tools to use for developing high performance Windows
Phone 8 applications:

• App Monitoring tool: This tool helps developers
identify issues such as slow startup time, slow response
time to input, and high battery drain.

• EnableRedrawRegions tool: In the page construc-
tion, the EnableRedrawRegions property can be set to
true so that a developer can visually see what regions
of the application are being drawn. Developers can
use this feature to performance tune the applications.
Using the EnableRedrawRegions tool, when a region is
completely drawn, it is shaded with a color. The col-
ored regions indicate that the CPU and not the GPU is
used to perform the drawing. When the CPU is used to
draw, it is called software drawing. Software drawing
is normal, because everything must be drawn by soft-
ware the first time it is displayed, however, developers
should be careful about excessive software drawing.

• Images: There are several considerations for selecting
and including proper images for a better performance.

– There are two supported image formats for Win-
dows Phone 8: JPG and PNG. In general, the
JPG decoder is much faster than the PNG de-
coder and should be used for images that are fully
opaque. Images that use transparency should be
stored as PNG because JPG does not support
transparency.

9Windows NT is a family of operating systems produced
by Microsoft, the first version of which was released in
July 1993. It was a powerful high-level-language-based,
processor-independent, multiprocessing, multiuser operat-
ing system with features comparable to Unix [24].

– In Expression Design, developers can create com-
plex visuals and export these visuals as XAML
or as image files. When the visuals are static, the
developers should consider storing them as an im-
age instead of XAML. In contrast to decoding and
rendering an image, XAML can potentially re-
quire more processing. Using XAML for a visual
requires parsing the XAML, creating the object
in the visual tree, and rendering the object.

– Due to the limited screen resolution of Windows
Phone, another way to optimize performance is
to limit the image size to 2000x2000 pixels, which
is the size limit of images in the Windows Phone
environment.

• User Input: User input in Windows Phone includes
manipulation events, gesture events, mouse events, and
touch events. Unless there is a specific need, manip-
ulation events and gesture events, Tap, Double Tap,
and Hold, are recommended for better performance.

• Progress Controls: It is recommended to use a progress
indicator when performing a time-consuming opera-
tion to indicate to the user that the application is work-
ing. For this purpose, ProgressIndicator and Progress-
Bar are the optimized controls that are recommended
to be used.

4.2.2.3 Performance Requirements. Before Windows
Phone 8 applications are published in the Windows Phone
Store, they must meet certain performance requirements set
by Microsoft. These requirements include:

• Application launch time: Applications must render
the first screen within 5 seconds after launch and then
they must be responsive to the user input within 20
seconds.

• Application responsiveness: If an application per-
forms an operation and it is unresponsive for more than
three seconds, then the application must display a vi-
sual progress bar or busy indicator.

5. DISCUSSION
This section is divided into two main parts. In the first part,
we map the POS architecture to VGTA and answer the first
research question on the extent of conformance to domain-
driven architectures when developing Windows Phone 8 ap-
plications. In the second part, we consider the architectural
attributes that POS fulfills as well as those that Microsoft
supports for Windows Phone 8 applications, and answer the
second research question on the applicable architectural at-
tributes to Windows Phone 8 applications.

5.1 Extent of Conformance to a Domain-Driven
Architecture

From the perspective of a domain-driven architecture, the
POS prototype may consist of the following components:

11

• Presentation Model: contains the view and view-
model components, and can be corresponded to the
user interface component of VGTA.

• Domain Model: contains the model component which
includes the order domain component. The model can
also include a warehouse part which can hold the infor-
mation about the stored items. The domain model can
be corresponded to the domain component of VGTA.

• Order Service Proxy: handles the communication
with the backend to send and receive the order items.
The order service proxy can be mapped to the proxy
component of VGTA.

• Order Service Gateway: could be responsible for
providing services to other applications. Due to the
limited scope of POS, the order service gateway was
not implemented in the prototype. However, in case
that it is implemented, it can be mapped to the gate-
way component of VGTA.

• Utility: could be responsible for general functionali-
ties, e.g. providing username and password. Due to
the limited scope of the prototype, the utility compo-
nent was not implemented. However, in case it is im-
plemented, it can be corresponded to the utility com-
ponent of VGTA.

Figure 8: POS Prototype from the VGTA Perspec-
tive

POS Prototype VGTA
Presentation Model User Interface Component
Domain Model Domain Component
Order Service Proxy Proxy Component
Order Service Gateway Gateway Component
Utility Utility Component

Table 1: Mapping POS prototype to VGTA

As we explained, domain-driven designs use common archi-
tectural patterns, such as the layered pattern, and include,
at least, the conceptual components of user interface, do-
main, communication, and service. We consider VGTA as

a generic domain-driven architecture, in which the commu-
nication components are called gateway, and proxy, and the
service component is referred to as utility.

As we pointed in section 3.2, it is recommended to follow
the MVVM architectural pattern for developing Windows
Phone 8 applications due to the architectural advantages
that it supports. Our study shows that following MVVM,
it becomes simple to run unit tests, re-use code, as well as
modify the applications, and therefore, the applications will
fulfill maintainability to a high extent.

We argue that while it is a right practice to follow the
MVVM architectural pattern for developing Windows Phone
8 applications, it is feasible to conform to a domain-driven
architectural design that includes the user interface, domain,
communication, and service conceptual components.

5.2 Applicable Non-Functional Attributes to
Windows Phone 8 Applications

Considering the findings of the study, that we presented in
the previous section, we explain how Windows Phone 8 ap-
plications can fulfill security, performance, and maintain-
ability:

• Security:

– The secured boot process of Windows Phone 8
helps the platform the keep the sensitive infor-
mation secured from malware attacks.

– The chambered security model leads to isolated
applications which can not access the memory
and data of each other.

– It is possible to develop and distribute custom
applications in organizations by registering to Mi-
crosoft and obtaining the required tools.

– The techniques that Microsoft promotes for phone
PIN, remote wipe, data encryption and data leak
prevention lead to the possibility of protecting
data from unauthorized data access or unintended
data disclosure.

• Performance:

– Using local databases in Windows Phone 8 appli-
cations can lead to less talkative communications
among them.

– Memory usage can be optimized in Windows Phone
8 applications as these applications can have de-
fault caps on the amount of memory, which varies
depending on the type the mobile device.

– The performance requirements on Windows Phone
8 applications from Microsoft, the application launch
time and responsiveness requirements, enforce the
applications to render the first screen within 5
seconds, respond to the user input within 20 sec-
onds, and in case that an operation takes more
than three second to execute, the applications
must display a progress indicator. Therefore, as
long as an application is certified and published
in Windows Phone Store, it is guaranteed that

12

the application will have proper interaction with
users.

• Maintainability:

– Following the MVVM architectural pattern, the
components of Windows Phone 8 applications will
be loosely coupled and separated from each other
in terms of logic. Therefore, they will be au-
tonomous and it is possible to fulfill continuous
functional modifications.

– Following the MVVM architectural pattern leads
to significant separation of concerns and there-
fore, it will be simple to re-use code, and run unit
tests in Windows Phone 8 applications.

Considering the study results and the aforementioned knowl-
edge about the supported architectural attributes, we argue
that Windows Phone 8 applications can fulfill security, per-
formance, and maintainability to a high extent.

6. CONCLUSIONS
In this study, we collaborated with Volvo IT to identify the
extent to which Windows Phone 8 applications can conform
to domain-driven architectures, as well as to realize what
non-functional attributes can be applied to these applica-
tions.

We considered a software architectural framework that Volvo
Group IT Governance promotes. This framework consisted
of Volvo Group Target Architecture (VGTA) and a set of
non-functional attributes from which we chose only security,
performance, and maintainability to look into, due to the
limited time frame of the study. We developed a purchasing
order system application prototype in which we followed the
Model View View-Model (MVVM) architectural pattern be-
cause of the non-functional qualities that it supports for the
Windows Phone 8 applications. In addition, we looked into
the non-functional qualities that Microsoft has considered
for Windows Phone 8 applications.

We realized that while it is a right practice to implement the
MVVM pattern for Windows Phone 8 applications, these ap-
plications can still conform to a domain-driven architectural
design such as VGTA that include, at least, user interface,
domain, communication, and service components. More-
over, we found out that Windows Phone 8 applications can
fulfill high security, performance, and maintainability, due
to the significant support that Microsoft provides in terms
of security and performance, as well as the significant sepa-
ration of concerns that MVVM supports for these applica-
tions.

7. ACKNOWLEDGMENTS
We would like to kindly thank Volvo IT and our industrial
supervisor, Johan Westlund, for providing us with this re-
search topic and supporting us during the development of
the POS prototype with invaluable feedbacks. We would
also like to thank our university supervisor, Morgan Erics-
son, for his constructive guidances and feedbacks throughout
the research. We cordially thank Jon Kristensen for provid-
ing us with the opportunity to use a communicating backend
for the POS prototype.

References
[1] W. C. Booth, G. G. Colomb, and J. M. Williams. The

craft of research. University of Chicago Press, Chicago,
2008.

[2] B. Brumfield. Developer’s guide to Microsoft Prism 4
: building modular MVVM applications using Windows
Presentation Foundation and Microsoft Silverlight. Mi-
crosoft, 2011.

[3] M. Dalal and A. Ghoda. XAML Developer Reference.
O’ Reilly Media, Inc., 2011.

[4] A. Debbiche, A. Treptow, and Y. He. Towards a generic
reference architecture for mobile applications. Unpub-
lished bachelor’s thesis, University of Gothenburg, Swe-
den.

[5] A. Ghoda. Windows 8 MVVM Patterns Revealed: cov-
ers both C# and JavaScript approaches. Apress, 2012.

[6] J. Gossman. Introduction to model/view/view-
model pattern for building wpf apps. http:

//blogs.msdn.com/b/johngossman/archive/2005/

10/08/478683.aspx, 31 May 2013.

[7] K. B. Hoffmann. Domain driven design in action. Un-
published master’s thesis, University of Kopenhagen.

[8] I. Landwerth. Portable httpclient for windows phone.
http://blogs.msdn.com/b/bclteam, 18 May 2013.

[9] F. Marinescu and A. Avram. Domain-Driven Design:
Quickly. LULU Press, 2007.

[10] Microsoft. App memory limits for windows phone
8. http://msdn.microsoft.com/en-us/library/

windowsphone/develop/jj681682(v=vs.105).aspx,
10 May 2013.

[11] Microsoft. App performance consideration for win-
dows phone. http://msdn.microsoft.com/en-us/

library/windowsphone/develop/ff967560(v=vs.

105).aspx, 10 May 2013.

[12] Microsoft. Windows Phone 8 : The Right Choice for
Business. Microsoft Corporation, 2013.

[13] Y. Natchetoi, V. Kaufman, and Y.Karabulut. Service-
oriented architecture for mobile collaboration. Inter-
national Conference on Collaborative Computing: Net-
working, Applications and Worksharing, pages 371–375,
2008.

[14] M. Q. Patton. Qualitative Research Evaluation Meth-
ods. SAGE Publications, Inc, 2001.

[15] J. Rattz and A. Freeman. Pro LINQ: Language Inte-
grated Query in C# 2010. Apress, 2010.

[16] M. K. Sein, O. Henfridsson, S. Purao, M.Rossi, and
R.Lindgren. Action design research. Mis Quarterly,
35:37–56, 2011.

[17] M. Snell and L. Powers. Microsoft Visual Studio 2012
Unleashed. Sams Publishing, 2012.

[18] C. C. Teng and R. Helps. Mobile application develop-
ment: Essential new directions for it. Information Tech-
nology: New Generations, pages 471–475, April 2010.

13

[19] P. Thurrott and R. Rivera. Windows 8 Secrets. John
Wiley & Sons, Inc., 2012.

[20] S. TorkAbadi. Towards a generic reference architecture
for mobile applications. Unpublished bachelor’s thesis,
University of Gothenburg, Sweden.

[21] B. Unhelkar and S. Murugesan. The enterprise mobile
applications development framework. IT Professional,
12:33–39, 2010.

[22] D. Vaughan. Windows Phone 8 Unleashed. Sams Pub-
lishing, 2013.

[23] R. Vice and M. S. Siddiqi. MVVM Survival Guide for
Enterprise Architectures in Silverlight and WPF. Packt
Publishing, 2012.

[24] A. Whitechapel and S. McKenna. Windows Phone 8
Development Internals. Microsoft, 2013.

14

