

University of Gothenburg

Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, June 2013

Evaluating the Haxe Programming Language
Performance comparison between Haxe and platform-specific languages

Bachelor of Science Thesis in Software Engineering and Management

STEPAN STEPASYUK
YAVOR PAUNOV

The Author grants to Chalmers University of Technology and University of Gothenburg the non-
exclusive right to publish the Work electronically and in a non-commercial purpose make it accessible
on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain
text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a
company), acknowledge the third party about this agreement. If the Author has signed a copyright

agreement with a third party regarding the Work, the Author warrants hereby that he/she has obtained
any necessary permission from this third party to let Chalmers University of Technology and University

of Gothenburg store the Work electronically and make it accessible on the Internet.

Evaluating the Haxe Programming Language

Performance comparison between Haxe and platform-specific languages

STEPAN STEPASYUK,
YAVOR PAUNOV.

© STEPAN STEPASYUK, June 2013.
© YAVOR PAUNOV, June 2013.

Examiner: RICHARD TORKAR

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering

SE-412 96 Göteborg
Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden June 2013

Evaluating the Haxe Programming Language
Performance comparison between Haxe and platform-specific languages

Stepan Stepasyuk
Gothenburg University

Department of Computer Science and Engineering
Gothenburg, Sweden

stepan.stepasyuk@gmail.com

Yavor Paunov
Gothenburg University

Department of Computer Science and Engineering
Gothenburg, Sweden

yvr.paunov@gmail.com

Abstract

The goal of this paper is to evaluate the performance of Haxe, a
cross-platform programming language. By applying an experi-

mental method and a statistical test, we measure and analyze the
performance associated with compiling Haxe source code to five
of its targets. We find a significant difference in performance

between Haxe-compiled and target-specific language code on four
out of five targets, two of which in favour of Haxe and two
against it. Our findings are useful for developers who are consid-

ering adopting the language with the intent of replacing their
current development toolbox with it.

Keywords: evaluation, performance, language design, experi-

ment, statistical testing

1. Introduction

The recent years have seen a growing demand for cross-platform

development solutions1, especially in the mobile sector where new
platforms come out rather often and a big part the market is frag-
mented. In order to reach a wider audience, applications have to

target multiple platforms and thus must be developed multiple
times. This requires more effort from the developers and creates
additional development and maintenance costs [1]. Tools that

simplify this process already exist in great numbers and focus on
different domains such as web, desktop and mobile.

One such tool is Haxe, a language with the ability to compile

to a number of different platforms. Although not a complete
cross-platform solution by itself, Haxe can greatly ease the pro-
cess. For instance, platform-specific code still needs to be written

but conditional compilation makes an abstraction layer easy to
implement. Haxe can be useful when targeting a single platform,
as well because many of its features are lacking on its targets

This paper aims to test how the performance of programs
compiled from Haxe compares to code written in the platform-
specific languages. This led to the following research question:

Is there a significant overhead related to compiling Haxe source
code?

The targets used during the testing were Flash, C++, PHP, Ja-
vaScript, and Java. The architecture and the inner workings of the

compiler, although of potential interest for a future study, are not
within the scope of the paper.

1
http://software.intel.com/en-us/blogs/2013/03/07/cross-platform-

development-what-the-stats-say [Accessed: 25 May 2013]

2. Background

2.1 Haxe

Haxe2 is a strictly typed object-oriented language whose standard
libraries are licensed under the “two-clause” BSD license while
the compiler is under GPLv2+ in order to “keep it free open soft-

ware”3. Advertised mainly for its multiplatform nature Haxe
compiles to a number of different programming platforms, includ-
ing JavaScript, Flash, PHP, C++, and NekoVM and provides

experimental support for C# and Java. The practical implications
of this are that Haxe code can be compiled for applications run-
ning on desktop, mobile and web platforms. Haxe comes with a

standard library that can be used on all supported targets and
platform-specific libraries for each of them.

2.1.1 Multiplatform

The biggest selling point of Haxe is its multiplatform nature, a

noticeable benefit of which is saving the trouble of switching
languages. For example, in a web-development project where
PHP is used for back-end and JavaScript for front-end. By using

Haxe, it is possible to develop for both platforms using the same
language.

Moreover, Haxe provides features missing in the languages of

some of the target platforms. For instance, it provides enumera-
tions that are missing from ActionScript 3 and PHP and type
safety missing in loosely typed languages such as PHP and JavaS-

cript.

2.1.2 Comprehensive type system

The Haxe type system comes with several different groups of
types. For example, basic types like class or enum. The class type

is similar to that in other object-oriented languages. It supports
inheritance and can implement interfaces. The enum type which
works in a similar way to that in Java.

Haxe also allows for more advanced types like the anonymous
structure that represents a list of fields, which do not refer to a
specific class. Structures can be made reusable by using the

typedef keyword.
Haxe is a strictly typed language. However, there are several

ways to get around compile-time type checking. One of them is by

using the untyped keyword, which disables type checking for the
specified block of code. Another option is to use the Dynamic

2
 http://haxe.org/doc/intro [Accessed: 25 May 2013]

3
 http://haxe.org/doc/license [Accessed: 25 May 2013]

http://software.intel.com/en-us/blogs/2013/03/07/cross-platform-development-what-the-stats-say
http://software.intel.com/en-us/blogs/2013/03/07/cross-platform-development-what-the-stats-say
http://haxe.org/doc/intro
http://haxe.org/doc/license

type when declaring variables. A variable of the Dynamic type
can hold a value of any other type. Moreover, an infinite number

of fields can be added to a Dynamic variable. All of those will
also be Dynamic unless a type parameter is given, in which case
all fields will be of the specified type.

2.1.3 Code embedding

It is possible to use code written in some of the targeted languages
while writing Haxe. This can be done with JavaScript, PHP, C#
and Java. It is important to note that since C# and Java are exper-

imental targets, code embedding for these targets is discouraged4.
Code embedding can be achieved by utilizing Haxe magic func-
tions. For example, the functions __js__ and __php__ will embed

JavaScript and PHP code respectively. Using external libraries on
the other targets is possible as well but not as straightforward and
requires certain workarounds5,6.

2.1.4 Compiler metadata

Haxe allows metadata annotation using the @ sign, in which it
shares similarity to that of Java. What makes metadata in Haxe
powerful is that under certain circumstances it can affect the way

the compiler works. In order to mark compiler metadata, a colon
character (‘:’) is added in front of the identifier. A number of
general identifiers can be used on all platforms in addition to a

few platform-specific ones.
Examples of platform independent identifiers include the

@:final annotation, preventing a class from being further extend-

ed. This is similar to the final keyword in ActionScript 37 and
Java8 , providing the same feature. Although, Haxe itself does not
support method overloading, the @:overload identifier allows

overloading of external methods. Other examples of compiler
metadata are the @:macro and @:build identifiers, used to create
macros.

2.1.5 Conditional compilation

Haxe offers the option of choosing which platforms to target with
a given block of code. This can be of use when implementing a
layer of platform abstraction.

3. Methodology

Experimental research [2, 3] was used for this study. More specif-
ically, statistical hypothesis testing [4] was applied. First, null and
alternative hypotheses were stated. After that, a simple perfor-

mance benchmark was conducted on a number of platforms using
a fractal-drawing algorithm. The data obtained from the bench-
mark was then analysed using a non-parametric two-tailed test to

support or reject the null hypothesis.
The main motivation behind using an empirical approach was

that it appeared to be the best method of evaluating performance.

Moreover, traditional experimentation has been judged an integral
part of computer science that practical application cannot replace
[5].

4
 http://haxe.org/doc/advanced/magic [Accessed: 12 June 2013]

5
 http://haxe.org/manual/swc [Accessed: 12 June 2013]

6
 http://haxe.org/doc/js/extern_libraries [Accessed: 12 June 2013]

7
 http://help.adobe.com/en_US/FlashPlatform/reference/action

script/3/statements.html [Accessed: 12 June 2013]
8
 http://docs.oracle.com/javase/tutorial/java/IandI/final.html [Accessed: 12

June 2013]

3.1 Experimental setup

The experimental consisted of comparing the execution time of
Haxe-compiled and platform-specific code on the following tar-

gets:

 Flash

 C++

 Java

 PHP

 JavaScript

The Mann–Whitney U test [6] was used in order to distinguish
the presence of significant statistical difference between the re-
sults. This particular test was selected due to the nature of data to

be compared. Samples of execution times are independent since
execution time of one implementation does not affect the execu-
tion time of another in any way. Moreover, the obtained data is of

a rational level9 because it can be ranked (from shortest to longest
time of execution and vice versa). It is meaningful because we can
compare two given executions and find out which one was the

quickest. It also has an absolute minimum of 0 seconds execution
time, and it is possible to calculate ratios based on it. However,
the absolute minimum is a subject for argument since no execu-

tion time can be exactly 0 seconds in practice. It can be 0.01 or
0.000001 and the amount of zeros between the decimal point and
1 can span infinitely. On the other hand, no algorithm can execute

in less than 0 seconds, for instance -0.1 seconds.
The performed test was two-tailed which means that finding

the presence of significant statistical difference and not its direc-

tion is the main goal of the test [6]. Thus, hypotheses were formu-
lated accordingly. Null hypothesis was stating that overhead in
performance of compiling from Haxe is statistically significant in

comparison to compiling from platform-specific languages. Con-
versely, alternative hypothesis was stating that overhead in per-
formance of compiling from Haxe is statistically insignificant in

comparison to compiling from platform-specific code. The formal
hypotheses of the experiment were defined as follows:

Null hypothesis ():

Alternative hypothesis ():

In those, PSL stands for platform-specific language.

An escape time algorithm used to generate the Mandelbrot
fractal set was executed as part of the experiment. The algorithm

takes three parameters as input:

 Width

 Height

 Maximum number of iterations

Width and height are the number of points in the set, on the

horizontal and vertical axes respectively. Therefore, the total
number of points is the product of the width and the height. The
values used were 550 for the width and 400 for the height. Those

values were chosen, as they were large enough to stress the CPU.
Since in some cases reaching the escape condition might take

an extremely long time, we specify a maximum number of itera-

9
http://infinity.cos.edu/faculty/woodbury/stats/tutorial/Data_Levels.htm

[Accessed: 2 June 2013]

http://haxe.org/doc/advanced/magic
http://haxe.org/manual/swc
http://haxe.org/doc/js/extern_libraries
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/statements.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/statements.html
http://docs.oracle.com/javase/tutorial/java/IandI/final.html
http://infinity.cos.edu/faculty/woodbury/stats/tutorial/Data_Levels.htm

tions for each point in the set. More maximum iterations mean a
more detailed representation of the set, but also a longer time to

calculate it. The algorithm was run using 100 maximum iterations
as, again, that number was judged high enough to stress the CPU.

Each implementation of the algorithm was executed 3 000

times, in order to produce sufficiently large samples [4] and alle-
viate errors. In total 10 implementations were used in the experi-
ment. Among them are five Haxe-compiled and five compiled

from platform-specific languages code. Common logging tools,
available for each of the targets, were used for recording the
execution times. First, Haxe-compiled implementation was run

and its execution times were logged. After that, implementation
for the same platform but compiled from platform-specific lan-
guage code was run and its execution times were logged as well.

These logs were used as samples to compare using the Mann-
Whitney U test.

Two samples were ranked as one combined sample with re-

spect to ranking ties specific for the Mann-Whitney U test. After
that, the sums of ranks for both samples were calculated and used
to determine the U values for both samples:

 ()

 ()

In the above formulas, and represent the count of sample 1
and 2 respectively, is the sum of ranks of sample 1 and is

the sum of ranks of sample 2.
The same equation is to be applied when calculating U for

sample 2.

Since large data samples were obtained during the experiment,
z score was calculated in order to determine the probability of
obtaining the observed result if is true.

 √
 ()

Mann-Whitney U test requires using the lesser of U values to
calculate the z score [6]. The p value is calculated based on the
assumption that data is under normal distribution. If p is less than

significance level, which is 0.05 then is rejected and signifi-
cant difference exists. Otherwise, is accepted.

Depending on whether a significant statistical difference was

discovered between two implementations for the same platform,
an effect size was measured in order to determine the strength of
the relationship between given samples of execution times.

√

In this formula, N is the total count of all samples. The absolute

value of z is to be considered. If r lies in interval between 0.1 and
0.3 then the effect size is small. In case r is greater than 0.3 but
less than 0.5 then the effect size is medium. Finally, if the value of

r is greater than 0.5 then the effect size is large [7, 8].

3.1.1 Environment

The hardware used for testing had the following specifications:

 CPU: Intel Celeron CPU 900 @ 2.2 GHz
 RAM: DDR2 2GB
 OS: Windows 7 Professional SP1 x86

Haxe version 2.10 was used. For running JavaScript tests Mozilla
Firefox 21 was used. Tests for PHP were conducted with the use

of Apache Server 2.2.22 and PHP 5.4.3. Adobe Flex SDK 4.6.0
was used to compile the ActionScript 3 implementation with
Adobe Flash Player 11 as the target. The stage parameters, both

using Haxe and ActionScript 3 were 550 by 400, and 40 frames
per second. The Microsoft 32-bit C/C++ Compiler 16.00 was used
for compiling C++ code, both platform-specific and produced by

Haxe. The JDK 1.7.0 was used to compile Java code. Obtained
execution times were analysed using Microsoft Excel 2007.

3.1.2 Limitations

It is important to note that obtained results were affected by other

applications running in the background while the tests were con-
ducted [9]. Even though the number of background applications
was minimized as much as possible, vital system processes were

left working.
The written code was not optimized for each target individual-

ly. For instance, none of the authors of this study had any previous

experience with C++, which in the end might have affected the
outcome. If this experiment is to be recreated and the test algo-
rithm is to be optimized for each target, the obtained results can

differ from the ones that are found in this study.

4. Results

4.1 C++

The average execution time of a platform-specific implementation

in C++ was 0.061 seconds while Haxe-compiled implementation
was executed in an average of 0.060 seconds. However, the sum
of ranks for Haxe-compiled implementation was 7,387,348 and

the respective parameter for platform-specific implementation was
10,619,252. The p value was calculated to be 0.00, which was less
than 0.05 supporting . There was significant difference between

the two implementations. Haxe-compiled implementation execut-
ed faster more times than platform-specific implementation,
which resulted in the sum of ranks for Haxe-compiled code being

less than respective parameter for platform-specific code. By
following the formula for calculating the effect size r, the value of
0.31 was acquired meaning that the effect size was medium.

Figure 1 demonstrates the comparison between the Haxe-
compiled and the platform-specific implementations.

Figure 1. C++ execution times

4.2 Java

The average execution time of the platform-specific implementa-
tion in Java was estimated to be 0.058 seconds while the Haxe-

compiled implementation was executed in an average of 0.079
seconds. The sum of ranks for the Haxe-compiled code was
13,375,332 and the same parameter for platform-specific code

was 4,627,668. The p value was calculated to be 0.00, which was
less than 0.05 meaning that stands. There was significant
difference between the two implementations. The platform-

specific implementation executed faster almost 3 times more often
than its Haxe-compiled counterpart, which resulted in the sum of
ranks for Haxe-compiled implementation being greater than re-

spective parameter for platform-specific implementation. By
following the formula for calculating the effect size r, the value of
0.84 was acquired meaning that the effect size was large. Figure 2

demonstrates the comparison between Haxe-compiled and plat-
form-specific implementations.

Figure 2. Java execution times

4.3 JavaScript

The average execution time of the platform-specific implementa-

tion in JavaScript was estimated to be 0.164 seconds while the
Haxe-compiled implementation was executed in an average of
0.163 seconds. The sum of ranks for Haxe-compiled implementa-

tion was 8,669,517 and the respective parameter for the platform-

specific implementation was 9,333,484. The p value was calculat-
ed to be 1.00 and was greater than 0.05 meaning that is reject-

ed. There was no significant difference between the implementa-
tions. Haxe-compiled JavaScript code was as fast as the platform-
specific code. Effect size was not calculated since no significant

statistical difference was observed. The figure below demonstrates
the comparison between Haxe-compiled and platform-specific
implementations.

Figure 3. JavaScript execution times

4.4 PHP

The average execution time of the platform-specific code in PHP
was estimated to be 1.405 seconds while Haxe-compiled code was
executed in an average of 11.918 seconds. The sum of ranks for

the Haxe-compiled implementation was 13,501,500 and the re-
spective parameter for the platform-specific implementation was
4,501,500. The p value was calculated to be 0.00, which was less

than 0.05 meaning that is supported. There was significant
difference between the implementations. The sum of ranks for
Haxe-compiled implementation was much greater than respective

parameter for platform-specific implementation meaning signifi-
cantly longer execution times. By following the above-mentioned
formula for calculating the effect size, the value of 0.87 was ac-

quired meaning that the effect size was large. The following fig-
ure demonstrates the comparison between Haxe-compiled and
platform-specific implementations.

Figure 4. PHP execution times

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

1 501 1001 1501 2001 2501 3001

Ex
e

cu
ti

o
n

 t
im

e,
 s

e
co

n
d

s

Number of Executions

Haxe-compiled C++ Hand-written C++

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 501 1001 1501 2001 2501 3001

Ex
e

cu
ti

o
n

 t
im

e,
 s

e
o

nd
s

Number of executions

Haxe-compiled JavaScript Hand-written JavaScript

0

6

12

18

24

30

36

42

1 501 1001 1501 2001 2501 3001

Ex
e

cu
ti

o
n

 t
im

e,
 s

e
co

n
d

s

Number of executions

Haxe-compiled PHP Hand-written PHP

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

1 501 1001 1501 2001 2501 3001

Ex
e

cu
ti

o
n

 t
im

e,
 s

e
co

n
d

s

Number of executions

Haxe-compiled Java Hand-written Java

4.5 Flash

The average execution time of the Flash implementation written
in ActionScript 3 was estimated to be 0.136 seconds while the

Haxe-compiled implementation was executed in average of 0.131
seconds. The sum of ranks for the Haxe implementation was
6,970,574 and the respective parameter for the ActionScript 3

implementation was 11,032,426. The p value was calculated to be
0.00 and was less than 0.05 meaning that stands. There was
significant difference between the two implementations. The sum

of ranks for Haxe was greater than respective parameter for Ac-
tionScript 3 implying longer execution times. By following the
above-mentioned formula for calculating the effect size, the value

of 0.39 was acquired meaning that the effect size was medium.
The figure below demonstrates the comparison between Haxe-
compiled and platform-specific implementations.

Figure 5. Flash execution times

5. Discussions

The only target where no significant overhead was found is Ja-
vaScript. With that in mind, and considering the advantage in

terms of language design, Haxe is a feasible option for developing
projects where performance is a priority.

The Flash target for Haxe turned out to be ahead of Ac-

tionScript 3 with a medium effect size in terms of execution time.
The Haxe compiler performs translating to efficient byte code
better than its ActionScript 3 counterpart, the Adobe Flex compil-

er. This can be beneficial in game development where the Flash
Player is targeted extensively. A downside worth noting would be
that although Haxe is similar to ActionScript 3, it is also different

enough to make a new developer struggle with its peculiarities.
However, the additional features such as the more comprehensive
type system, macros and the ease of remoting with the backend

can make up for that in the long term.
An unexpected result was found from testing the C++ target,

which performed significantly better than platform-specific code.

This, however, is at the expense of control over memory man-
agement, which is done using a garbage collector on the Haxe
C++ target. Although, for an algorithm as small as the one used

for the experiment, this is a non-issue. However, in case manual

memory management is a requirement, then Haxe is not the right
tool10.

The PHP target had the greatest overhead. For that reason, it is
difficult to recommend it for performance-critical applications. It

should be noted here, however, that running an algorithm similar

to the one we used on PHP does not represent a likely real-world

scenario. PHP’s strength lies within data-driven applications

rather than calculations11. A more realistic scenario would include
interaction with a database. In such cases, high maintainability is a

priority [10].

Java code compiled by Haxe also performed significantly
slower, which we attribute to the experimental status of the Java

target at the time of writing of this paper. Currently, manually
writing Java code remains the more viable option due to the per-
formance benefits and a small support for Java API in Haxe12.

Considering the performance on the JavaScript, Flash, and
C++ targets, Haxe can be useful for developing applications
where performance is of importance. However, for the majority of

tasks one has to use each target’s own library, which means that a
large portion of the logic would have to be rewritten. To avoid
that, one can use the NME framework, which allows using a

multiplatform API mirroring the Flash API13.

6. Conclusions

The conducted experiment indicated that Haxe is faster than C++
and ActionScript 3, slower than PHP and Java and runs almost as

fast as JavaScript. Such performance and other features make it a
viable alternative to platform-specific code in a number of pro-
jects where cross-platform abilities matter. It is relatively easy to

start using the language especially if one has experience with
ActionScript 314. A number of community-created libraries and
frameworks expand Haxe’s functionality further and add more

platforms to target.

7. Future Work

We reached interesting results, some of which were unexpected.
For instance, the performance of the Haxe-produced C++ code

was certainly a surprise. A study focusing on the causes behind
such results could definitely build on this one. More specifically, a
study on the architecture and inner workings of the compiler.

Second, a more extensive evaluation of Haxe in terms of its
language design qualities would be an important contribution.
Haxe is contains curious design concepts and has a set of features

rarely found in a single language.
A practical approach would be studying the viability of devel-

oping a code converter for producing Haxe code from other lan-

guages. Such a tool could ease the porting of applications to Haxe
by cutting time and costs required for such a procedure. The
typical process of porting an application would involve re-writing

and adapting its source code [11]. A conversion tool would great-
ly simplify this process by automating it. The community has
already created experimental source code converters such as

ActionScript 3 to Haxe and C# to Haxe.

10

 http://haxe.1354130.n2.nabble.com/How-mature-is-haXe-c

-tp5076513p5079439.html [Accessed: 12 June 2013]
11

 http://www.php.net/manual/en/intro-whatcando.php [Accessed: 12 June
2013]
12

 http://haxe.org/doc/start/java [Accessed: 12 June 2013]
13

 http://haxe.org/forum/thread/3395#nabble-td5814135 [Accessed: 12
June 2013]
14

 http://www.grantmathews.com/43 [Accessed: 12 June 2013]

0

0.05

0.1

0.15

0.2

0.25

0.3

1 501 1001 1501 2001 2501 3001

Ex
e

cu
ti

o
n

 t
im

e,
 s

e
co

n
d

s

Number of executions

Haxe-compiled Flash ActionScript 3 Flash

http://haxe.1354130.n2.nabble.com/How-mature-is-haXe-c-tp5076513p5079439.html
http://haxe.1354130.n2.nabble.com/How-mature-is-haXe-c-tp5076513p5079439.html
http://www.php.net/manual/en/intro-whatcando.php
http://haxe.org/doc/start/java
http://haxe.org/forum/thread/3395#nabble-td5814135
http://www.grantmathews.com/43

References

[1] J. Bishop and N. Horspool, “Cross-platform development: Software
that lasts”, Computer, vol. 39, no. 10, pp. 26-35, 2006

[2] W. F. T ichy, P. Lukowicz, L. Prechelt and E. A. Heinz,
"Experimental evaluation in computer science: A quantitative
study", Journal of Systems and Software, vol. 28, no. 1, pp. 9-
18, 1995.

[3] J. W. Creswell, Research Design: Qualitative, Quantitative, and
Mixed Methods Approaches, 3rd ed., London: Sage
Publications, 2009.

[4] A. Arcuri and L. Briand, "A Hitchhiker's guide to statistical tests for
assessing randomized algorithms in software engineering",
Software Testing, Verification and Reliability, 2012.

[5] W. F. T ichy, "Should computer scientists experiment more?",
Computer, vol. 31, no. 5, pp. 32-40, 1998.

[6] K. Black, Business statistics: Contemporary Decision Making, 6th
ed., 2010.

[7] R. G. Newcombe, Confidence Intervals for Proportions and Related
Measures of Effect Size, vol. 51, CRC Press, 2012.

[8] V. B. Kampenes, T . Dybå, J. E. Hannay and D. I. Sjøberg, "A
systematic review of effect size in software engineering
experiments", Information and Software Technology, vol. 49,
no. 11, pp. 1073-1086, 2007.

[9]

F. I. Vokolos and E.J. Weyuker, Performance testing of software

systems, Proceedings of the 1st international workshop on
Software and performance, pp. 80-87, ACM, 1998.

[10] L. Lundberg, D. Häggander and W. Diestelkamp, “Conflicts and
trade-offs between software performance and maintainability”,
Performance Engineering, vol. 2047, pp. 56-67, Springer Berlin
Heidelberg, 2001.

[11] Mindfire Solutions, Porting: A Development Primer, 2001

