

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, August 2013

1

The practical defending of malicious reverse engineering

Bachelor of Science Thesis in the Programme Software Engineering&Management

Ce Wang
Siyang Suo

2

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

The practical defending of malicious reverse engineering

Ce Wang
Siyang Suo

© Ce Wang, August 2013.
© Siyang Suo, August 2013.

Examiner: Rogardt Heldal

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Cover: Cover picture taken from: http://www.librait.net/index.php?id=52

Department of Computer Science and Engineering
Göteborg, Sweden August 2013.

http://www.librait.net/index.php?id=52

3

Abstract

Reverse engineering of software binary codes have
reached an advanced state that can be effectively used
by developers and attackers alike. In recent years,
reverse engineering for harmful purpose appears to be
commonplace and it has significant cost influence on
industry sales and profitability. To accomplish this, the
issues of useful software protection are becoming more
and more popular.

This paper covers the working process of reverse
engineering and the list of existing software protection
technologies, we also implemented interview study to
collect the result of software protection using situation
in real companies. The aim of this study is to provide
useful information about practical software protection
technologies to against malicious reverse engineering.
Furthermore, we suggest several software protection
technologies to against malicious reverse engineering.

Keywords: reverse engineering, software protection.

I. Introduction
With the rapid development of computer and network
technology, many new and advanced development
technologies and design have been cited in the software
development of thousands of shareware and commercial
software. However, attackers are frequently trying all
kinds of means to dig out the secret of these core
technologies. If attackers steal these technologies,
obtaining that knowledge can also reveal business
strategies, thus harming the company in the competitive
market. Therefore, in order to prevent their work
achievements from easily being "drawing", various
protection or encryption mechanisms are adopted.

From the paper (Chikofsky and Cross, 1990) prompting
by Chikofsky and Cross, they defined “Reverse
engineering is the process of analyzing a subject system
to create representations of the system at a higher level of
abstraction.". In fact, there are several approaches to
reverse engineering (Drumm, 2009), two main approaches
are representative. In the first situation source code is
available, but other artifacts of the program such as
documentation are poor or even no longer supported, the
process of discovering these artifacts through source code
can be seen as reverse engineering. In the second situation

everything is available but the source code, which is
opposite to the first case and the process of accessing the
code level is regarded as reverse engineering.

There is a lot of research about software crack defending,
and reverse engineering technology was one of sufficient
defending solutions (Treude et al, 2011) due to its
working mechanism. On the other hand, reverse
engineering could also be a weapon for attackers
(Coakley, Freeman, and Dick, 2005). During our research
we confirmed that reverse engineering has already been
involved in some business dispute due to the authority
issue.

The focus of this research is Reverse Engineering by
people with malicious purpose. Our problem is to study
the practical defending of reverse engineering. Therefore
we design an interview study in two Chinese software
companies and the most famous Chinese software
protection technical exchange on-line forum.

Research questions:

 How does the attacker use reverse engineering on
software products and corresponding protection
technologies?

 What software protection technologies can be used
in practice to protect developers from malicious
reverse engineering?

The paper is organized as follows: Section 2 the
theoretical background about RE working mechanism and
software protection methods. Section 3 describes the
methodology that was used to collect and present the
finding of the study. Section 4 presents the results of the
interview study. Section 5 we discuss our finding based
on the literature review and interview result. Finally,
section 6 presents the conclusion of our study.

II. Background

Reverse engineering

The aim of reverse engineering is to extract information
about software that is not revealed by the developer
through any public interface. This information can be of
various uses to the third-parties, and is often gathered for
malicious activity.

4

Before the release of software, the source code program is
always transformed into an object code program by
compilation process. The object code is composed of code
section and data section of the program, the code sections
contain the information of machine code instructions of
the program, and data sections contain the initialized and
uninitialized data for the program (Hassan, Jiang and
Holt, 2005). However, the code and data are represented
in the same way in the object code (i.e., as a series of
bytes), this makes it hard to distinguish them (Cifuentes,
2000).

Reverse engineering is able to invert the engineering
process, this gives an ability to reverse engineer attempts
to evaluate its functionality and determine how its
internals are structured in order to obtain some
information about the products’ design. As the reverse
engineering tools became more powerful, however,
attackers began using them to automatically reverse
engineer software developed by others (Colin, 2005;
Chris et al., 2005; Coakley, Freeman, and Dick, 2005).

The reverse engineering can be implemented in
documentation level and object code level (Drumm, 2009).
In documentation level, the inverse process is depending
on the program’s documentation (Software requirement
specification, software design specification，UML, etc).
Nonetheless, the malicious reverse engineering are mainly
focus on the object code level, there are three object code
reverse engineering technologies were found during the
research: obtaining the source code, emulation, and binary
translation, each detailed in the following subsections.

Obtaining the source code

The software reverse engineering process can be seen as
two phases to obtain the source code: disassembly using
disassemblers and decompilation using decompilers (Kim
et al., 2010；Kruegel et al., 2004；Cifuentes, 2000;
Drumm, 2009). The source codes of software application
are often transformed to object codes by to prevent access
of proprietary algorithms or to make tampering with
licensing verification procedures more difficult (Kruegel
et al., 2004). The task of the disassembly phase is the
extraction of the symbolic representation of the
instructions (assembly code) from the program’s binary
image (Hsieh et al., 2001). This process transfers the
unreadable object code to the readable assembly code,
which will be easily to understand and as a stepping-stone

for the transition of software’s source code. The
disassembly techniques can be categorized into two main
classes: static and dynamic process (Kruegel et al., 2004;
Colin, 2005). Static Disassembly aims to recover
assembly language instructions from a software program
without the invocation of the executable file, and dynamic
disassembly is the process that the program is executed on
some input and each executed instruction is monitored
and decoded into its assembly equivalent (Colin, 2005).

On the other hand, the Decompilation is the process that
takes as input a program in the form of an executable file,
and produces a high level language representation of the
program (Emmerik and Waddington 2004), The aim of
this process is to produce a high-level language program
that performs the same function as the executable
program. The structure of a decompiler requires three
modules (Yu, 2001):

- Front-end module: a machine- dependent module
that reads in the program loads it into virtual
memory and parses it.

- The Universal Decompiling Machine: a machine
and language- independent module that analyses
the program in memory.

- Back-end module: a language-dependent module
that writes formatted output for the target
language.

The output of this process is the source code of the target
program, but the quality of the generated code is normally
not the same as the original source code (Cifuentes, 2000).
The meaningful variable names and comments are
normally missing, however, it also provide wide
information of understanding the original software
methods.

Both disassembly and decompilation belong to the static
analysis, however, in order to fully understand the
software, both static and dynamic analysis needs to be
extracted (Drumm, 2009; Sun et al., 2012; Stroulia and
Systä, 2002). Static information describes the structure of
the software in the way it is written in the source code,
while dynamic information describes its run-time
behavior. The dynamic analysis can produce sequential
information, information about concurrency, code
coverage, memory management and leaks (Stroulia and
Systä, 2002). And for reverse engineering technology
itself, if the attackers have a clear map of the structure,
then it would accelerate the analysis procedure and

5

provide fast response for helping attackers remove the
copy protection (Treude et al, 2011).

The most common used dynamic analysis is debugging
(Drumm, 2009). Debugging is not a solitary and
independent system, it is composed of multiple, layered
debugging subsystems that collectively facilitate the
debugging process, a canonical debugging system include
a hardware layer beneath a software layer, and a not-to-
be-underestimated human layer (Lesk, Stytz, and Trope,
2002).

Debuggers are able to set the breakpoints in the code by
trace and record the code execution, in order to evaluate
and manipulate the objects at those breakpoints.
Recording these objects and understanding how the code
traces through a certain path is the key to getting a good
reversing (Drumm, 2009).

One important characteristic of software system is that
there are a lot of performances –related properties, which
are extremely important for assessing a software overall
quality (Stroulia and Systä, 2002). However, these
properties are usually not visible by static analysis, but
they become apparent when it is analyzed by dynamic
behavior. Such properties are like: memory management,
code usage, and efficiency. Both static and dynamic views
contain the information about software artifacts and their
relations.

Emulation

Another process of reversing the object code is Emulation.
Emulation is the process of running a program for a
machine (the source machine) on another machine (the
target machine) by decoding source machine code
instructions and simulating the functionality of such
instructions on the target machine (Cifuentes, 2000), the
working flow is shown in figure 2. One of the biggest
advantages of emulation is that it would convert a binary
program for a real instruction set architecture (ISA)
(Sharif et al., 2009).

At the begging, the emulation was mainly used for the
programs which were written in assembly code and could
not be migrated to the new machine without considerable
time and expense in rewriting of the code. In recent years,
the emulation on malicious purpose is focused on game
consoles. Developers of popular game machines are suing
or threatening to sue companies that make emulators for

those machines (Cifuentes, 2000). For example, in 1999,
Sony sued Connectix Corp for development of an
emulator of the PlayStation machines which runs on a
Macintosh. And the District Court issued an injunction
against Connectix to prevent it to use the PlayStation
BIOS in their emulator (Cifuentes, 2000).

Binary Translation

The binary translation is the process that automatically
translating executable code for a source machine to a
target machine by emitting native machine instructions

Object
code

Disassembler

Assembly
code

Emulator New Object
code

Figure 2: The Emulation Process

Source
code

Compiler

Assembly
code

Assembler

Object
code

Object
code

Disassembler

Assembly
code

Decompiler

Source
code

Figure 1: The compilation Process and The
Decompilation Process

6

for the target machine, instead of emulating the source
instructions (Cifuentes, 2000). The translator is able to
generate functionally equivalent assembly code for the
target machine, this feature can be used by the competitor
to steeling the core function of the software. This
technology provides ability to solve the software-
inheritance problem and ISA-compatibility between
different computers architecture (Shan, Guo, and Pang,
2012). The process is shown in Figure 3.

There are two ways to perform a binary translation
process: statically and dynamically (Cifuentes, 2000;
Shan, Guo, and Pang, 2012). Static approach involves the
generation of a target object code program that can be run
on the target machine, this normally need the help of a
run-time interpreter for untranslated pieces of code. The
dynamic approach does not involve the creation of a
target binary code program, but only the dynamic
execution of the generated code while the translation is
taken places. Dynamic translation is in a sense similar to
emulation, but it generates native code and optimizations
of frequently executed pieces of code, resulting in more
efficient techniques than emulation (Cifuentes, 2000).

Software protection

The group of mechanisms applied to software programs to
aid them against malicious reverse engineering is called
software protections (Kim et al., 2010; Colin, 2005). The
proprietary software is distributed in a low-level
representation from of the original program, all potential
intellectual property within a software program is

distributed in encoded form for execution if the
environment is assumed as untrusted (Colin, 2005).
Various technologies are developed in order to make the
extraction of intellectual properties from binaries as
difficult as possible, most of those techniques used to
protect computer viruses in the late 1980s and early 1990s
against detection and removal have been applied to the
protection of modern software systems against reverse
engineering (Colin, 2005). Even though these techniques
can not eliminate the chance of reverse engineering, they
can make the process more costly (Kim et al., 2010).

Economics can change substantially when a competitor
cheaply and rapidly reverse engineers a pioneering design
of others (McLoughlin, 2008). Their development costs
are largely replaced by reverse engineering costs, if that
costs is small, would enable the new product to easily
undercut the pioneer device in price. This action will both
shorten the market lead and sales of the pioneer company.
On the other hand, the piracy by crack action will directly
affect the profits of the companies. From engineering
perspective, one promising solution to the problem of
design theft and product piracy is to incorporate reverse
engineering protection into the design of new products
(McLoughlin, 2008; Oorschot, 2003). Overall, during the
literature review, we found that the current software
protection technologies which can against reverse
engineering are: obfuscation, anti-debugging, tool
detection, packing, encryption, self-checking,
Steganograph, binary modification, and anti-virtualization.

Software Obfuscation is the technique to obscure the
control flow as well as data structures that contain
sensitive information and is used to mitigate the threat of
reverse engineering (Schrittwieser and Katzenbeisser,
2011). Basically the purpose of the obfuscation is to
makes the code more complex and confusing (Linn and
Debray, 2003), it transforms a program into an equivalent
but more complex structure that is more difficult to
understand (Kim et al., 2010). It is the most widely used
and heavily researched mechanism of software protection
(Colin, 2005), and it is a powerful tools to against
disassembly (Lin and Debray, 2003). Regarding to the
target goals for the obfuscation, the methods can be
categorized as follows: layout, data, and control
obfuscations, and preventive transformation (Kruegel et
al., 2004; Colin, 2005).

Object
code

Disassembler

Assembly
code

Translator

New Object
code

Disassembler

New Assembly
code

Figure 3: The Binary Translation Process

7

Anti-debugging is a technique to disable or confuse the
attacking debugger (Kim et al., 2010). Anti-debugging
techniques can determine if it is being debugged by
identifying artifacts whether from the hardware, software,
or human layers (Lesk, Stytz and Trope, 2007). If the
developers can identify which debuggers the reverse
engineering is likely to use, then they can write the
program to determine if and when the execution
environment is under control of these debuggers. The
anti-debugging techniques can be classified as follows
(Kim et al., 2010):

- API-based: checking for the existence of a
debugger by analyzing the system information.

- Exception-based: to check if there is any
exceptions are interfering.

- Process and thread blocks: check if the process
and thread blocks have been manipulated.

- Modified code: check to see if there are any
breakpoints which handled by debugger by
analysis code modifications.

- Hardware- and register- based: check for
hardware breakpoints and CPU register.

- Timing and Latency: check the time taken for the
execution of instructions.

Packing is the process of known cryptographic and non-
cryptographic transforms to a software program such that
it is distributed in non-traditional from and decoded prior
to execution (Colin, 2005). The tools used in this process
are executable packer or executable compression, which
can pack the source code into binaries or machine- code.
Originally, packing was used to minimize the size of
execution code for saving storage resources, in today,
because compress code cannot be directly disassembled,
so packing is widely used as an anti-reverse engineering
technique (Kim. 2010).

Self-checking is the technique that verify no modification
of instructions or data has occurred by the insertion of
integrity verification statements within given source code
segments (Colin, 2005).

Steganography is science of writing hidden messages
that guarantee the messages are only available for
intended recipient, it also can be a means to protect
software (Kim et al., 2010). It utilizes redundancy in
instruction representation and ordering to encode
messages within a software program for version tracking

purpose (Colin, 2005). It is always used to identify the
original owner of a stolen software package (Colin, 2005).

Binary modification is one of the most basic protection
techniques, it stripped or added a executable file to
software structure, in order to confuse the reverse
engineering process (Kim et al., 2010).

Encryption, developers are always stored the important
source code or data in an encrypted form, in order to
protect the privacy of them (Kim et al., 2010). The
complexity of the encryption algorithm makes it greatly
enhance the protection of critical information, if the
crackers want to restore the encrypted information in a
relatively short period of time is rather difficult.

Tool detection is the process that inserting specific code
segments into a software program where the code can
check the operating system characteristics for the run-
time identification of reverse engineering tools (Kim et al.,
2010). It is mainly used in anti-debugging to detect
debuggers (Colin, 2005).

Anti-virtualization is the technique to prevent the
attackers use virtual machines to study activities and
techniques (Chen et al., 2008). Attackers can use
virtualization to manipulating memory objects during run-
time to exploit multiple execution paths of software and
build a full view of the software behavior. And other
advantage of using virtual machines is that attackers often
attempt to distinguish systems running on virtual
machines from those running on plain machines, so they
can avoid potential monitoring by adversaries (Chen et al.,
2008).

III. Methodology
This section provides the details of the research design for
the study. We choose to conduct both literature review
and interview study to achieve the research goals. The
result of literature review is shown in Background section
and the result of interview is shown in Findings setiction.

Literature review

Literature review is aiming to help the researchers to
organize the essential understanding about reverse
engineering process and existing software protection

8

technologies. In the literature review, we mainly focused
on obtaining information on the proposed literature.

Source of information

The research was processed automatically by search
engines of specific proceedings and journal papers. Each
literature was reviewed by two researchers. The sources
of the literature are well-known digital libraries, the
reason of choosing these libraries is because they can
provide a large amount of articles with reasonable good
quality regarding the research conducted. The following
digital libraries were used:

- IEEEXplore
(http://ieeexplore.ieee.org/Xplore/guesthome.jsp)

- Springerlink
(http://link.springer.com/)

- ACM Digital Library (http://dl.acm.org/dl.cfm)
- Scisence direct (http://www.sciencedirect.com/)
- Wiley InterSciene:

(http://eu.wiley.com/WileyCDA/Section/index.ht
ml)

At the end, 20 articles from those sources were used
during the literature review.

Search criteria

The selection criteria were decided in order to reduce the
likelihood of bias and validity of resource. The search is
based on three steps:

- Identify the keywords for searching: <reverse
engineering> <software protection>.

- Search for synonyms of the key words, such as
<against reverse engineering>, <reverse
engineering resistant>, <software encryption>
<disassembling>.

- Combine the different search terms together as
one search term, such as <reverse engineering
software protection>, <reverse engineering
software encryption>, <software protection
against reverse engineering>, <disassembling
software protection> and so on.

By the search strategy presented above, there was a
massive amount of the articles found in the database.
Therefore, the include criteria were used to determine
which literature will be used during the research, and

exclusion criteria were used to determine which literature
will be excluded.

Include criteria:

- The studies that describe the software protection
in the context of reverse engineering;

- The studies that describe the process of reverse
engineering from coding or binary aspect;

- The studies that describe the defending
technologies for reverse engineering in coding or
binary level;

- Only work published in English between 2000
and 2013 will be accepted.

- Literature must be peer reviewed.

Excluded Criteria:

- The studies describing software protection
technologies but unrelated with reverse
engineering.

- The studies that describe the process of reverse
engineering in documentation aspect (Software
requirement specification, software design
specification, UML diagram).

- The studies that describe the defense of reverse
engineering in documentation aspect (Software
requirement specification, software design
specification, UML diagram).

- The studies that are part or sections of a book.

Data extraction

The data collection focuses on solving the first research
question. By reviewing the articles, our focus is on the
issues of the process of reverse engineering and the
correspondent software protections applied on reverse
engineering.

Interview

The aim of the interview is to investigate the software
protection technologies and reverse engineering more
depth.

Research design

The data sources of the interview are two Chinese
software development companies which are located in
Beijing, and the most famous on-line software
protection technical exchange forum. The first company

http://ieeexplore.ieee.org/Xplore/guesthome.jsp
http://link.springer.com/
http://dl.acm.org/dl.cfm
http://www.sciencedirect.com/
http://eu.wiley.com/WileyCDA/Section/index.html
http://eu.wiley.com/WileyCDA/Section/index.html

9

founded in 2000 and has around 180 employees now,
their product is on-line downloader and provide the
service of online storage. Two interviewees from this
company are responsible for the product and web
security, both of them have more than 5 years working
experience in this area. The Second Company
established in 2006 and owns around 80 employees,
their product is PC game software. The two
interviewees from this company are working on the
software security department. The other two
interviewees are the moderators of the online forum,
they put the software reversing as a hobby and they
reversed some small program at their off hours.

The four interviewees from companies were
interviewed face-to-face, and the other two interviews
were conducted through online chatting software.

The interview question is attached in appendix.

Data analysis

We conducted the thematic analysis to analyze the
collected data which guided by Braun and Clarke (2006).
Thematic analysis as the most common form of
qualitative research and it focus on examining and
recording patterns of the data. The process of data
analysis is followings:

1. We went through the data and locate the raw data.
2. We went through the data again and generate the

initial codes.
3. We categorize the codes into different themes.
4. Refine and review the themes.
5. We defining the names of each theme and started

the writing.
6. Producing the report.

Threats to validity

The potential threat of the interview is that the two
software companies were selected through convenience
sampling instead of random sample. However, in this case,
the software protection is a common and widely used
technology, it does not depends on specific company
culture. In order to guarantee the validity of result, we
include two reverse engineering enthusiasts in the study.

IV. Findings
This section presents the results obtained from the
thematic analysis on the data collected through the
interviews.

Harm of malicious reverse engineering

From the response of our interviewees, the interesting
thing is that the reverse engineering of entire competitor’
software really isn’t as popular in the software industry as
one would expect. There are various reasons for this
phenomenon, however, the main reason is that “software
is too complex, so the reverse engineering for competitive
purposes in many cases is thought to be such a
complicated and enormous process, which is
uneconomical for the software development budget, It is
always easier to independently develop the own software
than reverse engineer the entire product from others.”

Although there is one common phenomenon in software
industry, software companies developed most of the
application independently, but they reversed highly
complex or unusual components from other product and
implemented into their own product. They can apply a
decompilation process and recompile the new binary code
which have same functions but with seemingly different
code. The harm of this behavior is that “it will stifle the
innovation”, since the creative technologies can be easily
attained by competitors, the developers will have little
incentive to invest in development.

Reverse engineering also can be used as a tool to develop
malicious software. Developers always reverse engineer
the operating system or software to find the vulnerabilities
in order to break the defense layers, “people can use the
malicious program to gain sensitive information and take
the control of the system.”

Most of all, all the interviewees agreed that the piracy
is the biggest threat of malicious reverse engineering.
The attackers could use reverse engineering to remove
the copy protection of the software. Piracy is highly rely
on cracking technology, which is the process of breaking
the copy protection, is essentially one kind of reverse
engineering. “According to statistics released by
authoritative department, the economic cost by piracy is
around 50 billion every year.” One interviewee describes
the current status of pirated software: “Under the

10

open architecture of today’s computer program, it is
impossible to develop a copy protection technology which
is completely uncrackable. Even though it can be done in
software-level, but crackers can still attack your
program in hardware-level.”

Programming language and reverse engineering
(pp.33)

There are two interviewees from the software security
technology forum expressed the idea that “During the
reversing process, in order to fully understand the
program, you need to start analyze the underlying
operation of the program, this is highly rely on the
specific programming language during the development.”
In this case, the important thing about programming
languages is to understand how the language abstracts
the underlying machine, for example, C language
provides enough low-level perspective on machine level,
the code can directly running on the target processor. On
the other hand, Java language provides a separation
between the code and underlying processer, instead it
highly relay on the Virtual Machine. In this section, we
will introduce the relationship between the reverse
engineering and few currently most popular programming
languages.

C

C language provides a directly control of memory
pointers. When you run a program, the compiler will
create specific platform program binaries, which include
the machine code in the own native language of target
processors.

 “C language is easy to be reversed because it shortens
the distance between the programmer and the machine.
C code is similar to the machine code and the C
compiler can directly translate the code to machine code
and only add little Auxiliary code.” So if you can
understand machine code of the C program, it will be
easily reconstructing the source code written by C
language from the binaries.

C ++

C++ language is an extension of C language because
they shared the basic syntax. C language put emphasis on
design an arithmetic process to obtain the output, but

then, the primary consideration of C++ language is to
construct an object model which can fit the
corresponding problem domain. Therefore people can get
the output by accessing the object’s state information.

“Reverse engineer a C++ program is similar to working
with C program, but the programmer should focus on the
class hierarchy, constructor calls, and identifying class
method calls.”

Java

Java is an object-oriented programming language, it
compile Java bytecode rather than native assembly
language. The Java code is interpreted by Java Virtual
Machine.

“The Java bytecode contain more information than the
machine code created by native processor. Decompilation
can be used on Java classes, the output is source-code-
level representation of the program, which is much easier
to understand than assembly language representation.”

C#

C# is another object-oriented programming language, C#
code can be compiled to a bytecode format which was
called Microsoft Intermediate Language (MSIL). MSIL
code contain the detailed information of the data type of
the program. The MSIL runs on the CLR (common
language runtime), which is another runtime
environment like Virtual Machine in Java.

“Sometimes you need to learn the CLR-MSIL language if
you intend to reverse a C# program, but most of time
it is unnecessary to read the MSIL code manually, the
decompilation p ro cess can generate a high-level
language representation of the program, which is easily to
read.”

Basic requirement for a successful reverse
engineering

“Reverse engineering can be divided in two phases:
system-level and code-level.”

System-level reversing is the process of running a variety
of tools, using different operating system services to gain

11

information, checking the executable file of program
and tracking the input and output of the program. Most
of the information is from the operating system,
system-level reversing helps to determine the program
structure and locate the interested area. Code-level
reversing is a complex process of extracting the program
design and code algorithms from binary code, it not only
requires the engineer master the reverse engineering
technologies, but also have a considerable understanding
of software development, CPU and operating system.
This section represents the basic requirement of a
successful reverse engineering.

Low-level software

Low-level software is the generic name for the
infrastructure of the software. In order to successfully
implement a reverse engineering, it demands to have an
indepth understanding of low-level software. Because
“the low-level information is all you can use during the
reversing, high-level information are always deleted
before the software hand over to the customers.” After all,
the reverse engineering tools are only responsible for
displaying the information. The useful information
extracted by the engineer i s from the result of reverse
engineering tools, so the reverse engineering developers
should have enough low-level software knowledge in
order to extract such information. Following low- level
software plays a significant role during the reverse
engineering.

Assembly language

Some developers call assembly language “the reverse
engineering language”, because for most of the program,
assembly language is the only way to obtain the original
source code. Each operation of the software is
corresponding to its own assembly code, the developer
can obtain the information about how the operation is
achieved by analyzing the assembly code. However,
assembly language is a platform-specific language, each
platform has its own assembly language. The reverse
engineering developers cannot choose which assembly
language they want to analyze.

Date management

All the operation of a software program requires input
data, intermediate data room, and returned data. “In order

to understand a program, you must aware of the data
management inside the program”. For reverse
engineering, the developers should be familiar with the
low- level perspective of data management, which is
from the machine’s perspective. Because the high-level
perspective (from software developers perspective)
information were removed from the binary code before
submit to customers. To understand the data
management from machine’s perspective is far more
difficult than from human’s perspective, because many
high-level programming languages hide a large number
of information about data management, so the developers
have to observe the data flow from low-level constructs
such as stacks, heaps, and registers.

Compilers

Compiler is the program that accept source code file
and generate the corresponding machine code file.
“The biggest challenge of compilers during reversing is
that modern compilers include optimization function,
the compilers use various technologies to minimize the
size of source code and increase the execution
performance. The optimized code is usually violated
the design thinking, which makes it difficult to
understand.” To solve this problem, the engineer
should improve the awareness of compilers processing
model and the way of compilers understand the source
code.

Bytecode

In Java language, it compiles bytecode instead of
machine code, the Virtual Machines provide the ability to
read the bytecode and execute the operation described in
bytecode. Compare with machine code, the bytecode
contains more information, such as in .Net executable
files, it includes highly detailed data type information,
which called metadata. From the metadata, we can get the
information about classes, function parameters, local
variable types and other information about the program.
“This feature enable developers to develop a very
efficient decompilers, it can restore an excellent
readability high-level language representation from
bytecode files.”

Control flow

“A good understanding of control flow statements will
help you to reconstruct the logic behind those

12

statements.” Control flow is an abstract representation
of all possible execution sequence of events. By study
control flow, it increases the ability to read the code and
understand how the operations are achieved.

Reverse engineering tools

Reverse engineering cannot be implemented without the
right tools, “Now, there are hundreds of reverse
engineering tools, some of them are free and some of
them cost thousands dollars, however, there is no one
tool includes all the features of reverse engineering. You
need to choose a set of tools to achieve a reverse
engineering goal.”

System monitoring tools

System monitoring tools are used to display the
information of application and environment, which
collected by operating system. Such information includes
monitor networking activity, file accesses, registry
accesses, I/O channels, etc. That information helps to
understand the program structure.

Disassemblers

Disassemblers translate the binary machine code into a
readable assembly code.

Decompilers

The purpose of decompilers is to produce a high-level
language code from program executable binary files.
However, “we cannot get the exactly same source code of
the original program, because some important
information was deleted during the compiling.”

Debuggers

Debuggers allow user to keep track of the program’s
runtime execution. “The advantage of debugger is that it
can execute a piece of code in the program and then
pause, so the user can observe and even change the state
of the program, and then the user can execute the next
section of code. Developers can observe the exact
process of the program under a relatively slow speed.”

Anti-reverse engineering technologies

All the interviewees agreed that “To completely prevent
reverse engineering is impossible, all we can do is
increases the difficulty of the reversing, so the attacker
may give up the idea”. On the other hand, “Each anti-
reversing method comes at a price, this price sometimes
take up lots of CPU time, sometimes increase the size of
code, sometimes may affect the stability of the program.”

“To be able to effectively prevent reverse engineering, the
developers should use a combination of different
approaches”：

- Eliminating Symbolic Information. The aim
of this approach is to delete any useful textual
information from the program. For example, in
the bytecode of Java language, it contains a large
number of meaningful information such as class
name, class member names, global objects’ name,
and so on. All those information is extremely
important for the attackers. “We can use an
obfuscator to rename the entire symbolic name
into meaningless characters”.

- Obfuscating the program. The idea of this
approach is to modify the layout, logic, data,
and organization in order to decrease the
readability of the program, all the action is
under the context of remain the program feature
unchanged.

- Embedding anti-debugger code. The purpose
of this approach is to perform some operation
to damage the debugger or fail the debugger
process when the system detects a debugger is
tracking the program.

During the interview, all the interviewees agreed that
currently most useful technologies to against reverse
engineering are: anti-debugging, code obfuscation, code
encryption and disassemblers confusing technology.

Anti-debugging technology

Strength: Most of the revering working is done in
debugger process, without debugging, it is very difficult
to understand the program’s structure and code execution
state.

Weakness: anti-debugging is a platform-specific
technology and heavily rely on the specific operating
system. Another weakness is that sometimes the anti-

13

debugger may make false judgment and cause
malfunction in the program even though no debugger is
present.

Process: Embedding specific debugger checking code into
the program. The operating system provide some API of
detecting debuggers for the program, for example,
IsDebuggerPresent is a Windows API can be used to
detect if the program is traced by debuggers. The
developers can call this API in the program, if the return
is TURE, and then the system can stop the debuggers.
“The more effective way is to achieve this function
internally, inside the program code, in this case, your
function cannot be easily found by attackers.” There are
also some native APIs can be used to detective debuggers.

Another method is t o use trap flag. Since the all
kind of debuggers are using trap flag to step through the
execution of software program, so” the developer can
add the trap flag code in the program, and then check
the exception. If there is no exception that means your
program is likely traced by debuggers.”

Code obfuscation

Strength: “Obfuscated code is difficult to decompile, even
though the decompilation is successful, the attackers are
difficult to understand the real program’s semantics.”
The obfuscated code still follows the original file format
and instruction set, the executed results are same as it
before obfuscation. The variables, functions, and class
names are transformed into English code after the
obfuscation, so the code is very difficult to read. On the
other hand, the obfuscation is not reversible. The
information which does not affect the system operation
will be lost permanently, the loss of that information
make the program more difficult to understand.

Code Obfuscation is not rely on the specific platform, it
achieved by modifying the code to hide the intend
information. From 6 interviewees, 5 of them agreed that
code obfuscation is currently most powerful
technologies to against reverse engineering. “This
technology is greatly extended the time and difficulty of
the reversing”.

Weakness: Increase the size of code, slower execution
speed, and increase memory runtime consumption.

Process: The software companies always use automatic
obfuscator to make the transformations. Comparing
with manually obfuscation, it can obfuscate the whole
program rather than one part of the program. Automatic
obfuscation is implemented after the compile process.

Code encryption

Strength: complicate the analysis process, prevent static
analysis, a mature technology and easy to implement.

Weakness: In most situations, the decryption logic and
decryption key are inside the executable file, once the
attackers find that information, the encryption is useless.
Some unpacker program can decrypt the program.

Process: The process of this technology is to encrypt the
program before delivering to customers and embedding
the decryption code in to the executable file. The
program will decrypt the code in runtime before it is
executed.

In order to against the unpacker program, “A good
strategy is to calculate the decryption key during the
runtime of program.” To design the algorithm, the
developers can maintain multiple global variables, which
can be accessed and modified by different part of the
program. Those variables can be a part of the complex
mathematical formula during the decryption. In this
method, the program will generate many keys and it is
difficult for attackers to gain all the keys, the attackers
need all the decryption keys to start the static analysis of
the reverse engineering.

Disassembler confusing technology

Strength: this technology can confuse the disassemblers,
so that the output of the disassemblers will contain many
errors, such as directive dislocation and the output is not
aligned with the object code.

Weakness: “Disassembler confusing is not as powerful as
code obfuscation, code encryption, and anti-debugging,
experienced attackers can solve this technology easily.”
Some advanced disassemblers (IDA Pro) allow the users
add disassembly hits, so the disassembler will prompt the
user when the error is present.

14

Process: This technology is able to confuse the
disassembler that takes the invalid data as the beginning
of an instruction, this makes the disassembler lose the
synchronization. Once the disassembler loss the
synchronization, each instruction cannot find the
corresponding start address and end address of machine
code. To accomplish this, the programmer can embed the
junk byte (useless byte) or false branches, those data will
confuse the disassemblers and force them generate the
error output.

Other software protection technologies

“There are many other software protection technologies,
some of them are not mature enough to integrate into the
software development, some of them perform the almost
the same function as those four technologies, but they do
not have the equally effective results.” For example, self-
checking, tool detection, and anti-virtualization are also
the dynamic analysis as anti-debugging, they share the
same purpose to determine whether the program is traced
or not. Binary modification and control flow
transformations are both aiming to confuse the reverse
engineering process, “But they don’t have strong effect as
code obfuscation”. Steganography is not widely used in
software development, only one interviewee heard of this
technology but not familiar with it.

A Theoretical Unbreakable model

The theoretical unbreakable model requires two
conditions: first, “The encryption key is long enough
and the decryption algorithm is security enough, the
decryption algorithm should not be e a s i l y f o u n d b y
attackers” .Nowadays, this is a solution for this condition,
the decryption algorithm is stored in the external
devices such as USB flash drive. The user needs to plug
in the USB flash drive to decrypt the sensitive
information. However, this solution is not convenience
for the customer and cannot prevent the second problem.
“How to avoid expose the decrypted data from the
attackers after the decryption.” This problem is the
major challenge for software protection, in recent year,
there is some improvement in this area, such as trusted
computing (the data of the program can only use on the
user’s system), but this technology is not well accepted by
many software protection experts.

V. Discussion

In this section, we prevent the points we found during the
research.

Weak link in software protection

One reason that restricts the development of software
protection technology is software developers do not have
clear understanding of software protection technology.
The lack of experience and knowledge of developing fully
functional software protection models directly affect the
security of the software.

Despite developers’ personal reasons, some software
factors also led the restriction. First, nowadays the
system’s complexity, build-in scalability and universal
connectivity of software are growing up quickly, these
three growing trends make the software security issue
more pressing than before. Secondly, with the increase of
functional module, the combination of components and
development tools also increase the software vulnerability.
Thirdly, the customer interactions message might expose
the software processing mechanism, which leaves
potential problems for the software security.

Recommendations on software protection

1. Strengthen the link between hardware and

software

For some software include highly sensitive information,
increasing the cooperation between hardware and
software protection technology is a good way to prevent
the reverse engineering. Embedding the decryption code
in the USB flash driver is not a convenient way for user to
use the program, user should carry the driver all the time
and there will be lots of trouble once the driver is lost. We
think mount decryption hardware into the user’s
computer maybe a better way, the decryption algorithm
is stored inside the hardware and that information should
in great security level. In this case, attackers need user’s
computer to implement the decryption process and
reverse engineering. This method requires the good
cooperation between the software companies and
computer manufacturers.

2. Design own method of packing, compression,

and obfuscation

15

The reverse engineering tools are updated frequently, the
common method of packing, compression and
obfuscation are quickly involved inside those tools.
Using the own method may confuse the reversing tools to
generate the false output. If the software company does
not have time and energy to develop such method, the
developers should try to avoid the popular tools for those
technologies.

3. Add randomization checking into the software

protection.

The program can run the security checking at a random
time instead of at the software start time. This also can
be used to against piracy, in addition to check the
registration code at boot time, the system can also
check the registration code at some point of runtime in
a random time.

4. Decentralize the check registration and security

code

The developer should avoid calling same function or
determine same global flag for registration checking or
any other software protection technology. Otherwise, the
attacker only needs to change one part of your code to
crack the program.

5. Online verification

If the software requires internet service, the developer
can add some code in to program to access information
from the online database, that information is necessary
for the program execution, and cannot be forged.

6. File and function re-naming

The developer should avoid use direct name on functions
or files, such as checkingLocialTime() 、 key.dat. All
software protection related character string cannot directly
store in clear text in the executable file, it is better to
dynamically generate these strings.

7. Distinguish the trial version and full version

For many software programs, the only difference between
the trial version and full version is the validation of
license. Once the attacker cracked the trial version, they
get the full version of the software. The better way is to

distinguish the two versions and add more software
protection technologies in full version.

8. Service-oriented

Try to make the software as a service, not only a
technology in itself. If the software is only a technology,
once the software is cracked the user does not need the
software company anymore. On the other hand, if it is
a service, even though the user has the cracked
version of the software, they still need the service from
the company and ask for technical support. Through this
strategy will decrease the losses of cracking.

Feature of software protection

We believe the software protection development has a
long way to go. Software system is the open architecture
program, all the process of hardware and software can be
observed, this makes hiding software protection
technologies extremely difficult. By appropriate means
and technologies, those protection methods can be
removed by reverse engineering. In the short feature, we
think the best way to protect the unique technology is
increase the relevant law protection. Stronger legal
sanctions can constrain the attackers’ behavior.

VI. Conclusion

Software engineers originally developed the first reverse
engineering tools to help automating the debugging
process their software. Nowadays, some purposes of
reverse engineering include security auditing, removal of
copy protection, and circumvention of access restrictions.
Many software developers worry about their applications
being reverse engineered, so the issue of useful software
protection is becoming more and more popular. The
powerful software protection will keep the attackers away.

By the literature review, we present the common object
code reverse engineering: obtaining the source code,
emulation, and binary translation. We summarize the
current software protection technologies: obfuscation,
anti-debugging, anti-virtualization, packing, tool detection,
encryption, self-checking, Steganograph, and binary
modification.

From the interview, we describes the ham of malicious
reverse engineering, the relationship between the

16

programming language and reverse engineering, the basic
requirements of a successful reversing, the approach and
currently most powerful software protection to against the
reverse engineering.

The result of this study can provide useful information to
companies which are trying to improve or research
complementary software protection technologies. It will
help the companies to learn more about how the reverse
engineering is attacking the software and what their
choices are to prevent the attacks. And the individual
author of shareware can also use the information from the
study to protect their software.

A major limitation of this study is that the reverse
engineering is a complicated and extensive process, we
only list the main techniques to study. Another limitation
is due to the limited time and scope of this research, only
6 interviewees are involved in the survey study.

In future work, we would like to research this field in
depth, for example, design a survey study to observe what
software protection technologies are used in different
companies. Implement a reverse engineering in practice,
so we will have a better clue of how the reverse
engineering works. We also hope to study the relevant
law about against the malicious reverse engineering.

Acknowledgement
The authors wish to thank all the teachers in SE&M
department for three years of education and help. Many
thanks to Francisco G. de Oliveira Neto for his time and
assistance in the supervision.

Reference:

Business software alliance (BSA). (2010). 2010 piracy
study. Eighth annual BSA Global Software.

Braun, V and Clarke, V., (2006) Using thematic
analysis in psychology. Qualitative research in
psychology, 3(2):77-101.
Cifuentes, C., (2000). The Impact of Copyright on the
Development of Cutting Edge Binary Reverse
Engineering Technology. Software Engineering Australia.

Colin W. Van Dyke., (2005)., Advance in Low-Level
Software Protection, Ph. D. Thesis, Oregon State
University.

Coakley, C., Freeman, J., and Dick, R., (2005), Next-
Generation Protection against Reverse Engineering,
Anacapa Science, Inc.

Chen, X., Mao, Z. M., Bailey, M., Nazario, J., (2008).
Toward an Understanding of Anti-virtualization and Anti-
debugging Behavior in Modern Malware. Proceedings of
DSN-DCCS. pp177-186.

Chikofsky, E. J. & Cross, J. H., II (1990). "Reverse
Engineering and Design Recovery: A Taxonomy". IEEE
Software 7 (1): 13–17.

Drumm, P. M, (2009). Reverse Engineering Tools and
Practices in Software Maintenace. Enterim LLC.

Emmerik, M. V., Waddington, Trent., (2004). Using a
Decompiler for Real-World Recovery. IEEE computer
society. pp. 27-36.

Hassan, A. E., Jiang, Z. M., Holt, R. C., (2005). Source
versus object code extraction for recovering software
architecture. Reverse engineering, 12th Working
Conference on. Pp.7-11.

Hsieh, W. C., Engler, D., and Back, G., (2001). Reverse-
Engineering Instruction Encodings. In Proceedings of
11th USENIX Security Symposium.

Kruegel, C., Robertson, W., Valeur, F., Vigna, G., (2004).,
Static Disassembly of Obfuscated Binaries, Proceedings
of the 13th USENIX Security Symposium, San Diego, CA.

Kim, M. J., Lee J. Y., Chang, H. Y., Park, Y., Park, M.,
Wilsey, P. A., (2010). Design and Performance
Evaluation of Binary Code Packing for Protecting
Embedded Software against Reverse Engineering. IEEE
Computer Society, pp. 80-86.

Lesk, M., Stytz, M. R., Trope, R. L. (2002). Software
Protection through Anti-Debugging. IEEE computer
society, pp.82-84.

Linn, C., Debray, S., (2003). Obfuscation of Executable
Code to Improve Resistance to Static Disassembly.
Proceedings of the 10th ACM Conference on Computer
and Communications Security (CCS), pp.290-299.

17

McLoughlin, I., (2008). Secure embedded systems: the
threat of reverse engineering. 14th IEEE International
Conference, pp.729- 736.

Oorschot, P. C. V., (2003). Revisiting Software Protection.
Proceedings of the 6th International Conference, ISC 2003.
Pp.1- 13.

Schrittwieser, S., Katzenbeisser, S., (2011). Code
Obfuscation against Static and Dynamic Reverse
Engineering. Information Hiding, computer science,
Volume 6958, pp.270-284

Shan, Z., Guo, H. R., and Pang, J. (2012) BTMD: A
Framework of Binary Translation based Malcode
Detector. IEEE computer society, pp. 39-43

Sharif, M., Lanzi, A. Giffin, J., Lee, W. (2009).
Automatic Reverse Engineering of Malware Emulators.
IEEE computer society. pp.94-109.

Sun, X. X., Chen, H., Wen, Y., Huang, M. H., (2012).
Reversing Engineering Data Structures in Binary
Programs: Overview and Case Study. 2012 Sixth
International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing. pp.400-404.

Stroulia, E., Systä, T., (2002). Dynamic analysis for
reverse engineering and program understanding. ACM
SIGAPP Applied Computing Review, Volume 10 Issue 1,
pp.8-17

Treude, C., Fernando, F. F., Storey, M. A., and Salois, M.,
(2011). An Exploratory Study of Software Reverse
Engineering in a Security Context. IEEE Computer
society. pp. 184-188.

Yu, X., (2001). Decompilation of Binary Programs &
Structuring Decompiled Graphs. The University of
Arizona.

APPENDIX

Those questions were translated from the original Chinese
version.

Interview Questions:

Can you introduce yourself?

Do you have any working experience about reverse
engineering or anti-reverse engineering?

Can you tell us the threat or the harm of the malicious
reverse engineering?

From business perspective, which malicious reverse
engineering is more harmful for the organization, from
business competitor or hacker?

Do you familiar with the process of reverse engineering?

What are the key factors of a successful reverse
engineering?

Which software protection technologies do you thinks is
most powerful for against reverse engineering?

Do those technologies have any weakness?

What do you think the future of software protection
technologies?

	A Theoretical Unbreakable model
	title.pdf
	Bachelor of Science Thesis in the Programme Software Engineering&Management

	title.pdf
	Bachelor of Science Thesis in the Programme Software Engineering&Management

