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Abstract 

 Unified Modeling Language (UML) Class diagrams (CD) are a large part of the software 

development industry in relation to design. To be able to research UML, academia needs to have 

access to a database of UML diagrams. For building such a database, automatic classification of 

UML diagrams would be very beneficial. This research is of a design nature, and focuses on 

investigating CD classification: what features set them apart from other similar diagrams; how 

these features can be extracted through image processing; and what kind of accuracy is 

achievable with said features, using the Support vector machine (SVM) algorithm, and 

comparing it to several different machine learners (ML).  The extracted features that this paper 

proposes for classification -- in conjunction with the chosen ML -- returns, on average, over 

ninety percent accuracy in classifying UML Class diagrams. 

 

 

1 Introduction 

In software development, UML CDs are used to design and illustrate the structure of 

software. It’s a very important tool when an engineer needs to understand the basic structure of a 

system -- e.g. when a new engineer, that is unfamiliar with a system, needs to maintain it. They 

are becoming ever more prevalent within industry and academia -- where model-driven 

development is becoming a common practice -- and it can be said that they have become an 

integral part of it. For the furtherment of research and development of UML CDs, images of 

relevant UML diagrams from industry and academia need to be gathered into a database. For this 

to be possible it is necessary to have automatic classification of CD images. In this paper we 

propose a CD classifier that determines if an image is a CD or not. The classifier operates by 

extracting relevant information about the image and processing that information with a machine 

learner. 

 

1.1 Purpose of study 

The purpose of this study is to aid academic researchers in the accumulation of relevant 

UML diagrams.  It is important for researchers to have an overview of UML usage, knowing in 

what direction it is going, in relation to development-tool usage and trends. To achieve this,  they 

need to have access to a vast repository of images that represent design diagrams from the 

industry and academia. This study will focus on researching methods in image feature extraction, 

for automatic classification of UML CDs. Additionally, the hope is, that it might be possible to 

add on to this research, making it possible to detect other types of diagrams -- of interest to 

researchers in academia -- such as UML Sequence diagrams. 

 

1.2 Research questions 
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This paper will focus on answering one main research question and four sub-questions: 

How can classification of UML diagram images be automated? 

1. What features in an image can be help classify an UML Class diagram, or exclude similar 

images? 

2. How do Support Vector Machines compare to a subset of different machine learning 

algorithms in classifying UML Class diagrams?  

3. What level of accuracy can be expected with said classification? 

4. What subset of the proposed features have the most effect in classifying UML Class 

diagrams? 

 

1.3 Background 

Unified Modeling Language [11] is a general-purpose modeling language. It includes 

various diagrams for use in visualized design within the software engineering field. These 

diagrams include, in addition to CDs: Sequence Diagrams; Use Cases; and State Machines. 

 

Support Vector Machines [8] are a method of supervised ML. It creates one or more 

hyperplanes in multidimensional space which is then used for tasks including, but not limited to, 

classification and regression. The hyperplane that is at the furthest distance from any training 

data point, provides a functional margin by which to classify a new entry. The wider the margin, 

the more accurate the classifier. 

 

Hough transformation (HT) [5] is a method for detecting lines and curves in images. 

Initially, the image is thresholded -- resulting in a black and white image. Then, an external 

method is used for extracting edges within the image, most commonly the Canny edge detector 

[6] (as is the case here). The outcome of the image thresholding and edge detection is then the 

foundation that HT builds upon. The algorithm finds lines by transforming the edge image, 

resulting in two factors that determine the line search. Instead of using x and y, the position is 

expressed in the form of the direction theta and the distance r from the focal point. The focal 

point that is used, is generally the center point of the image. Edges that are mapped to the same 

theta and r, are then considered to illustrate a line. 

 

Suzuki85 (S85) [7] is border-following algorithm for use in the processing of digitized 

binary images, that uses a sort of topological analysis. It is an extension to a previous border-

following algorithm [9] that discriminates between the outer borders and hole borders of a binary 

image. The extensions are: putting a unique mark on each border, rather than adopting the 

procedure for every border; and adding a procedure for obtaining the parent border of the 

currently followed border. The image is scanned and when a pixel (x,y) is found that satisfies the 

condition for the border-following starting-point, it is assigned an identifiable number. The found 

border is then followed from the starting point and the pixels on the border are marked. 
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Ramer–Douglas–Peucker (RDP) [10] is an algorithm that produces a polygon with a 

small number of edges for arbitrary two-dimensional digitized curves. A curve segment is 

approximated by a straight-line segment that connects its start and end points. The purpose of 

this is to find a comparable curve with fewer points -- resulting in a subgroup of points that 

determine the original curve. 

 

OpenCV [11] is an image processing library that has C, C++, Python and Java support 

and runs on multiple operating systems. It has many purposes and can be used in various image 

processing tasks, including implementations of image processing algorithms. 

 

Magick++ [13] is a C++ library that is part of the ImageMagick image-processing 

library. It is a multipurpose library with various features related to image processing. 

 

Weka [14] is a machine learning software developed at the University of Waikato, New 

Zealand. It includes tools for testing and visualizing various machine learning algorithms. 

 

1.4 Criteria for success 

 This research aims to fulfil three success percentages: first, the tests should result in 90% 

average overall accuracy on classifying an image; secondly, the success rate on discriminating 

negative images should be, on average, 95%; and thirdly, CDs should be identified with 85% 

accuracy, on average. 

 

1.4 Outline of thesis 

 This paper is organized as follows. In section 2 the research methodology is described 

and discussed and in section 3, related work is covered. Then, an overview of the classifier is 

described in section 4, and section 5 dictates the approach for implementing the classifier, with 

the design of the software illustrated in section 6. In section 7, the classifier is validated through 

image collection and testing, and the results of the research are then put forth in section 8. 

Finally, section 9 and 10 include discussion and conclusion, respectively. 

 

 

2 Methodology 

We will employ a design research methodology [21] and build upon existing techniques 

of image processing and feature extraction, to develop a solution to a problem that is previously 

unaddressed, as we can see in section 3 - related work. We will build a repository of preliminary 

test-cases and experiment with techniques to process them, extracting the desired information. 

Lastly, we will evaluate the prototype, producing quantitative benchmarks and statistical 

analysis. 

 

The requirements of this research can be described with one underlying theme; a 

computational program that takes in a path to an image and classifies that image as a CD, by 
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returning true or false. There are two non-functional requirements that have to be addressed in 

this research: limitations on computation time; and success ratio in classification. 

 

To address this research problem, other previous work will be investigated to gain insight 

into the status of this problem within the field. Experiments will then be done on various types of 

features -- in an iterative fashion -- that can be used to classify CDs, in an effort to find the most 

useful features.  

 

 

3 Related work 

In recent years, research has been conducted on detecting diagram features, varying in 

method and approach. This section will focus on investigating prior research on the subject, 

mainly focusing on the objectives of said research and comparing them with the objective of the 

research put forth in this paper. 

 

In [1], the authors propose a tool for processing finalized computer images and extracting 

CD features from the image. The objective of this is to take in images (such as JPEG) that 

represent CDs and translate them into XMI format, for use in UML CASE tools. To that end, the 

feature extraction in this research focuses on specific elements of the diagram -- in addition to 

the common characteristic between multiple CDs diagrams -- like identifying the role of each 

element in the model, and types of relations between the elements. This differs from the research 

that this paper covers because, when classifying if an image is a UML CD or not, eliminating 

features also need to be detected, and less focus needs to be put on identifying specific roles or 

relations between elements. The type of relation is not as important, but the relation itself is 

important. 

 

In [2], the authors propose a method for online recognition of hand drawn UML 

diagrams. The system takes input from electronic devices and diagnoses pen strokes (hand 

movements) into UML elements -- the features being detected based on the movements. The 

research differs from what this paper covers, since [2] focuses on detecting the elements as they 

are being drawn, as opposed to detecting them in finalized images. 

 

In [3], the authors propose a system for recognizing and automatic learning of sketched 

graphic symbols in engineering drawings. The objective of this research is to combine pattern 

recognition techniques with machine learning concepts in order to be able to learn and recognize 

new symbols in engineering diagrams. This research differs from the one in this paper, since the 

system takes images representing diagrams and finds symbols in them, as opposed to taking in 

any type of image and classifying if set image is of a specific diagram type. 

 

In [4], the authors present a method for converting network-like image-based engineering 

diagrams into engineering models. It takes in either sketches or computer generated images that 
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represent engineering diagrams and converts them. They focus on being able to take in various 

types of diagrams, including UML. The image processing and feature extraction has similarities -

- to the one proposed in this paper -- in finding diagram elements and relations between them, 

but, as is the case with [1], the difference lies in the fact that they are not looking for 

discriminating factors in the image -- the assumption is that the image represents a diagram, and 

the objective is to transform those features, instead of classifying them. 

 

 

4 Overview of the classifier 

Diagrams come in all shapes and forms (Figure 1), and it is important to distinguish 

between them -- to be able to classify the right diagram images as UML CDs. For this reason, it 

was important to look at not only CDs, but also other different but similar diagrams such as 

Entity–relationship models (E/R), UML Sequence diagrams and Flowcharts amongst others, 

when finding the right features. 

 

 
Figure 1: (1) UML Class diagram, (2) UML Sequence diagram, (3) Flow chart, (4) E/R model 

 

CDs have three key factors that can be used to describe them: (1) they consist of classes, 

in the form of rectangles; (2) the classes are related to each other in the form of connecting lines; 

and (3) the classes are divided into sections with the name of the class, attributes and operations. 

The 3rd describing factor is, though, not general. It does not apply to all classes within the 

diagram, but in almost all UML CD there are classes divided in this manner. As can been seen in 

Figure 1, the 1st and 2nd of the defined characteristics of UML Class diagrams can apply to 

many types of diagrams or charts. Because of that it was also important to extract more 

information from the image, than only information that is descriptive of CD. As a result, other 
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geometrical shapes had to be extracted as well: ellipses; rhombuses; and triangles. That 

information would then also be used in the calculation of the image features. 

 

The extracted shapes and lines are used to generate statistical information about the 

image, which is then used in conjunction with SVM to determine if the image is a CD. The 

classifier takes in a path parameter to an image, either a URL or a folder path and returns true or 

false. If the input file is not found or corrupted, exception is not outputted, but instead, it returns 

false. It was implemented in this fashion, because the program would be used with a web crawler 

and exception handling was not considered necessary. 

 

 

5 Approach 

To be able to classify an image, two things had to be done. First, shapes and lines from 

the image had to be extracted and secondly, the gathered information had to be transformed into 

features that could be used to determine if an image is a CD or not. Additionally, to avoid 

prolonged processing time on complex photographs, images have to pass a pre-check before 

being processed: the most frequent color in the image has to represent at least 10% of the image; 

and the image’s color-histogram median value must be above 100. Both of these figures were 

obtained by observation of trends within our dataset. A view of the overall framework can be 

seen in Figure 2. 

 

OpenCV is used for processing the image, and execution of external algorithms for 

extracting preliminary lines and shapes. OpenCV does not support all of the desired image 

formats, so the Magick++ library is used to process the image formats that OpenCV does not 

support, converting them into JPEG if the format is other than PNG or JPEG. As a result, all the 

most common image formats [13] are supported. 
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Figure 2: Overall framework 

 

 Figure 2 illustrates the different stages of the classification process: preprocess; 

extraction of shapes and lines; feature calculation; and classification through SVM. This is 

covered in more detail in the following sections. 

 

5.1 Constraints 

 Execution time of the image processing was a non-functional requirement. It was decided 

that the time it took to classify an image should not exceed ten seconds. Some images are more 

complex than others, so this is defined as a weak constraint -- meaning the ten seconds were to 

be considered on average in the test set, but not for any given image.  

 

 Content comprehension could not be taken into account in this research because of time 

constraints. That means that textual analysis of the image was not processed and included in the 

extracted features. The result is that images that have exactly the same features as CDs but differ 

in textual content, are therefore classified as CDs. 

 

 Because this classifier will be used with a web crawler to gather UML CD images into a 

database, eliminating non-CD images has greater value than including CD images. 
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5.2 Image processing 

Shape and line extraction is carried out in conjunction with three external algorithms: 

Hough transform; Suzuki85; and Ramer–Douglas–Peucker. The contours that S85 finds are used 

to find various shapes and are subsequently broken down into straight lines. By doing this in 

conjunction with HT it was possible to better assure that as many lines where detected as 

possible. The lines are then processed, so that horizontal and vertical lines, that are on the same 

axes and represent the same line, are joined together into a single line. Rectangles that are not 

caught using S85 are then extracted by finding horizontal lines that are parallel and in the same 

position on the x-axis, and have the same two vertical lines intersecting them on each end.  

 

RDP is used to find different types of shapes. If it finds a polygon that might possibly be 

one of the sought after shapes, a validation takes place. The coordinates are investigated to see if 

it fits the criteria of any of the shapes: rectangles should have four 89° < x < 91° corners; 

rhombuses should have four 60° < x < 120° corners; triangles should have three 40° < x < 100° 

corners; and in case of ellipses, all of the points in polygon need to fit into the ellipse equation 

(Appendix B). 

 

 
A. Original image 

 
B. Hough transform 

 
C. Contours 

 
D. Joined lines #1 
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E. Joined lines #2 

 
F. Extracted elements 

Figure 3: Image process 

 

Figure 3 shows the basic steps of the image process. This picture was chosen because it is 

a good example for demonstrating why lines were joined between the two algorithms. As can be 

seen in picture B in Figure 3, with HT, many of the rectangle lines are not extracted, or the 

extracted lines are segmented and/or incomplete. Such lines make it very difficult to find the 

rectangles in the image. S85 returns an unlimited amount of points in each contour -- multiple 

lines segments, in other words. The extracted contours from S85 can be seen in picture C. By 

examining that picture, it is apparent that the algorithm catches more of the lines than HT -- it 

does not miss any of the desired lines, because it seems to catch everything in the image. The 

lines are joined in three phases: (1) the contours that are found are split into lines, and horizontal 

and vertical lines are extracted; (2) horizontal and vertical lines that HT finds are collected and 

joined with (1); and (3) lines, found by HT, that are not vertical or horizontal are collected and 

joined with (1). After phase 1 and 2 (picture D in Figure 3), rectangles are collected through the 

method previously explained in this section. After the rectangles have been collected, phase 3 

(joining lines; picture E) is conducted, and then all lines within shapes are removed. 

 

It was to be expected, that the algorithm would not be able to catch all rectangles in the 

image. By comparing the extracted rectangles in the image (picture F in Figure 3) to the original 

image (picture A), it is apparent that the extraction misses two of the classes in the image. The 

reason for this is the HT line detection misses important lines. If the rectangles in question are 

examined in picture B, it can be seen that the sides of the rectangle are missing and, additionally, 

the detected lines are segmented and incomplete. It could be expected, that these rectangles 

would be found, based on visually examining picture D -- as is the case with the other rectangles 

with missing line segments the picture. Based on that image (D), it is hard to explain why those 

rectangles are missed, not the others, but most likely the joining of the lines did not result in four 

complete lines that represent a rectangle in x and y coordinates, and within the previously 

detailed rectangle restriction. 
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 To find connecting lines between various shapes, lines that intersect said shapes are 

gathered. These intersecting lines are then followed until another intersection is found or to the 

end of said line. If another intersection is found, the line is added as a connecting line between 

the two intersected shapes -- if a connecting line between those two shapes does not exist. As can 

be seen in picture F in Figure 3, the connecting lines do not follow the shortest distance between 

the rectangles. When the search for connecting lines is conducted, all directions are followed 

until the line’s end is reached, or a connection is found. The first route that is found between the 

shapes is the one that is added. This was done intentionally, because finding the shortest distance 

was not considered important in the image processing, since the extracted features only involved 

the percentage of connections -- the distance was not calculated. 

 

Color distribution is gathered by examining all the pixels in the image. Colors are 

grouped together based on their RGB colors, and to join similar colors, the 255 RGB range is 

divided by 15, resulting in 17 to the power of 3, color combinations. The reason for joining 

similar colors was to get the background color of image as one color, and the number 15 was 

used because the numbers were integers and dividing 255 by the chosen number had to result in 

an even number.  

 

A native function of OpenCV is used to extract the histogram of all images, and the 

median value is found by the use of a simple loop system that first calculates the sum of the 

values, and then loops again to find the position of that sum divided by two. 

 

 

5.3 Feature extraction 

It was considered important that the extracted features would not be affected by unrelated 

information. Information that does not discriminate CDs from other diagrams, should not affect 

the outcome. For example, one CD may have three rectangles and another CD may have 25 

rectangles, but in both images the rectangles are likely to cover a similar portion of the image. So 

instead of counting different extracted elements, the extracted features are represented in the 

form of ratios and percentages relative to the image. The extracted features, and explanations of 

the ratios and percentages, can be seen in Table 1. 

 

Feat. no. Name Description 

F01 Rectangles’ portion of image, 

percentage 

Calculated by dividing the sum of the area of all 

the rectangles with the area of the image itself 

F02 Rectangle size variation, 

ratio 

Calculated by dividing the rectangle size standard 

deviation with the rectangle average size 

F03-06 Rectangle distribution, 

percentage 

The image is divided into four equally sized 

sections and the area of the rectangles inside the 
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sections is then divided by the total area of the 

rectangles. The 4 sections sum up to 100% 

F07 Rectangle connections, 

percentage 

Calculated by counting all rectangles that are 

connected to at least one rectangle, and dividing 

that number with the total amount of rectangles in 

the image 

F08-10 Rectangle dividing lines, 

percentage 

The rectangles are split into three groups, with 

rectangles that have: no dividing lines (F08); one 

or two dividing lines (F09); or three or more 

dividing lines (F10). This produces three numbers 

that represent the percentage of rectangles within 

each group 

F11/F12 Rectangles 

horizontally/vertically 

aligned, ratio 

Sides of rectangles, horizontal (F11) and vertical 

(F12), that are aligned with sides of other 

rectangles are counted. The numbers are then 

divided with the number of detected rectangles in 

the image -- resulting in two ratios on rectangle 

horizontal and vertical alignments 

F13/F14 Average horizontal/vertical 

line size, ratio 

Average size of horizontal (F13) and vertical 

(F14) lines that are larger than ⅔ of the images 

width or height, divided by the images width or 

height, respectively 

F15 Parent rectangles in parent 

rectangles, percentage 

Rectangles that have rectangles within them can 

possibly be packages. This feature is the 

percentage of the area of those parent rectangles 

that is within other parent rectangles 

F16 Rectangles in rectangles, 

percentage 

This feature is calculated in the same manner as 

F15, but with rectangles, instead of parent 

rectangles 

F17 Rectangles height-width ratio The average ratio between the height of the 

rectangles and the width of the rectangles 

F18 Geometrical shapes’ portion 

of image, percentage 

The same as F01, but with rhombuses, triangles 

and ellipses 

F19 Lines connecting geometrical 

shapes, ratio 

The number of connecting lines from shapes, 

other than rectangles, divided by the number of 

detected shapes in the image 

F20 Noise, percentage Detected lines that are outside of rectangles, 

divided by the number of all detected lines 
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F21-23 Color frequency, percentage Three most frequent colors in the image are 

found. Then a percentage out of all appearing 

colors is found for the three colors 

Table 1: Extracted features 

 

5.4 Classification 

SVM was chosen as a machine learner, for several reasons. The classifier has constraints 

on processing time, and SVMs are efficient in that respect. They also don’t need large data sets 

to be trained properly and they can handle complex, non-linear classification. 

 

 
Chart 1: Information gain 

 

Information Gain is the expected  reduction in entropy caused by  partitioning the 

examples according to a  given attribute. In other words, it tells us how much information can be 

gained from an attribute, to aid in the accuracy of the ML's classification.  

 

 Based on Chart 1, there are four features that have little effect on the classification. As a 

result, these features were removed and tests were implemented again. But that did not increase 

the accuracy of classifier, but instead reduced the accuracy in the tests, especially with regards to 

non-CD images. That resulted in those features being reinstated, because -- as they were intended 

for -- they helped eliminate false-positives. Those features were created to help eliminate images 

that had similar features to CDs, but where the rectangles were, for example, aligned or within 

other rectangles, which should not occur in a CDs. 

 

 The most crucial feature is the percentage of rectangles that have one, or two, dividing 

lines (the 3rd defined feature of CDs). Additionally, the 4th most important feature, for 

discrimination, is the percentage of rectangles with no dividing line. The second most important 

feature is noise, also for eliminating purposes. Noise is information that is not within rectangles, 

and the higher that ratio is, the more it reduces the likelihood of the image being a CD. As 

expected, since CDs generally have a high rectangle coverage, F01 is one of the three most 
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important features, ranked no. 3. The last of the five most influential features is F02 (rectangle 

size variation), because images with a high variation in the size of rectangles is less likely to be a 

CD. 

 

 

6 Software design 

 The software is divided into two main sections: machine learning (ML); and image 

processing (IP). A UML Class diagram of the system can be seen in Figure 4. Within the ML 

part of the software, there are two actions: train (Class: MLTrainer); and classify (Class: 

UMLClassifier). As the names suggests, train trains the ML by taking in positive and negative 

images, and constructs a support vector machine. The classifier takes in an image, or set of 

images, and classifies them as CDs or not, using the generated SVM. These actions are 

performed using the OpenCV machine learning library. The ML interacts with the image 

processing section of the software (Class: ImageProcess). It sends an image’s path to the IP and 

is returned a list of features that represent the image, and uses that for classification. The IP class 

is the center of the system, interacting with all of the other classes. The class CalcFuns is a static 

class that performs all of the necessary calculations that happen throughout the image process 

and feature extraction and is used by most of the other object classes. The other three classes 

underneath CalcFuns, in the software CD, are object classes that perform the actions that their 

names indicate. To illustrate their role within the design, OpenCV and ImageMagick libraries are 

represented as classes within the diagram.  
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Figure 4: UML Class diagram 

 

 

7 Validation 

The images that were used in the validation process were collected by using Google 

image search. The image collection consisted of two separate accumulation phases: collecting 

images that represented CDs; and collecting non-CD images and images that represented similar 

diagrams. To search for CDs the phrase ‘UML Class diagram’ was used. Additionally there were 

various search strings concatenated with the phrase following them, such as: hospital; transport; 

and communication. That was done to have a wide variety of CDs and also to be able to 

accumulate a larger data set, while avoiding duplicates. Images that have features that can be 

found in CDs and are of a similar nature were considered important, to test the accuracy of the 

classifier. As a result, various types of diagrams, charts, blueprints and maps were included in 

the negative image set -- comprising a large portion of the negative images. To find these 
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images, various search strings were constructed and used in the image search -- including, but 

not limited to: diagram; blueprint; sequence diagram; chart; flow chart; E/R model; and 

architectural diagram. It was verified that no duplicates were found in the set -- done by 

examining the extracted features, visually comparing images with similar features, and removing 

those that proved to be duplicates. The end-result was a collection of 650 CDs and 650 non-CDs 

-- 1300 images in total. Samples of the images can be seen in Appendix A, table C and D. 

 

Three different tests were performed on the accuracy of the classifier. The average 

accuracy of those tests was 92%. 

 

Test Overall Negatives Positives 

Test A 93.85% 95% 92.59% 

Test B 90.19% 86.15% 94.23% 

Test C 92.12% 91.92% 92.31% 

Average 92.05% 91.02% 93.04% 

Table 2: Classification test results 

 

To test the classifier the image set was split randomly, 60% for training and 40% for 

testing. Test B is nearly opposite to Test A, where the training and testing set in Test A were 

swapped and then images were randomly moved from the testing into the training set, to split it 

60/40. Finally, Test C was implemented in the same manner as Test A, by randomizing the 

images again. The results can be seen in Table 2. Further tests are presented later in this chapter. 

 

It is apparent that Test B, relative to the other two tests shows markedly reduced accuracy 

in classifying non-CDs. Opposingly, Test C had the lowest accuracy in classifying CDs, although 

Test A wasn’t much more accurate. Test B is nearly the opposite of Test A (which shows the 

best results), which can indicate that the Test A training set has a better set of images to learn 

from, then Test B has, or that the negative test set in Test B was more challenging for the ML. 

The average and standard deviation of the positive training set features can be seen in Table A in 

Appendix A. 

 

8.1 False-positives in Classification tests 

This section will examine a sample of 5 false-positive images in the classification tests, 

focusing on investigating why they were classified as CDs, based on the extracted features and 

visual examination. The extracted features from those images can be seen in Table B, in 

Appendix A. 

 

Image #1 (Table B in Appendix A; Figure 5) depicts a diagram structured in much the 

same way as a CD, and includes two of the three main characteristics of a CD; a large portion of 

the image is covered by rectangles and the rectangles are connected to each other. The structure 

is so similar in fact, that if we compare the features extracted from image #1 to the average 
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features of positive training set (Table A in Appendix A), it is within the bounds of the standard 

deviation in 20 of 23 features. The average deviation of these features from the average of 

positive training set is approx. 35%. The machine learner can be expected to accept any image 

that so closely resembles a class diagram. To combat this issue and further develop the classifier, 

textual analysis of the images would have to be employed. 

 

 
Figure 5: Image #1 

 
Figure 6: Image #2 

 

Image #2 (Table B in Appendix A; Figure 6) is a blueprint. There is a subset of similar 

images in the test-set, depicting maps and various types of blueprints. Visually, this image does 

not resemble a CD, and of the extracted features, 12 where outside of the standard deviation in 

the positive training set. Additionally, only three of the top ten features in the information gain 

chart where within the standard deviation. Based on this, it is hard to explain why this image is 

classified as a CD without an in-depth investigation of the SVM. 

 

 
Figure 7: Image #3  

Figure 8: Image #5 
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Image #3 (Table B in Appendix A; Figure 7) is a sequence diagram. When we examine 

the extracted features from the image we can see that the most important feature (F09 in Chart 1) 

is close to being inside the st. dev. of the positive training set. The noise in the image is closely 

outside of the st. dev. of positive training set. When we look at rectangle distribution (F03-F06; 

ranked 7-10 in Chart 1) we see that the distribution between the sections are uneven, but still 

they are all close to being within the st. dev. of training set. The features F01 and F02 are ranked 

3 and 5, respectively, in Chart 1 and the image is only 0.3% from the average of F01 (rectangle 

coverage), which might be one of the reasons why it is classified as a CD. But, when you 

examine rectangle size variation (F02), it is far outside the st. dev. of the positive training set -- 

almost double the amount. The result is, that the image does not, visually, resemble a CD, but the 

extracted features on the other hand do, at times. Of the 650 collected non-CD, 72 were 

Sequence diagrams. 

 

Image #5 (Table B in Appendix A; Figure 8) resembles a CD. It has six rectangles that 

cover a large portion of the image and all but one of the rectangles are connected to another 

rectangle. When we examine the features that were extracted from the image, we see that 5 

features (F6; F8; F9; F13; F21) fall outside of the standard deviation of the positive training set. 

Of these 5 features, 3 are in the top half of the Information gain chart (Chart 1), with F09 and 

F08 being no. 1 and no. 4, respectively. Based on that it could be expected that the ML would 

reject this image, but as mentioned before, this image has resembles CD’s and a false-positive 

would always be a possibility without textual analysis. 

 

 

Figure 9: Image #4 
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Image #4 (Table B in Appendix A; Figure 9) includes two of the three defined 

characteristics of a CD. It has rectangles that cover a large portion of the image and are 

connected to other rectangles -- F01 and F07 are well within the st. dev. of the positive training 

set. The 3rd defined (rectangle dividers) characteristic (F09) falls well outside of the st. dev of 

the training set, and the ML could be expected to reject this image based on that. The distribution 

of the rectangles would also be expected to have the same effect, since two of the four sections 

are outside the st. dev. of the positive training set. It rates within the bounds of standard deviation 

for 15 of the 23 features extracted from positive images. If we cross-reference these features with 

our information gain analysis in Chart 1, we see that four of them are in the top ten with regards 

to information gain. These are rectangles’ portion of image, rectangle size variation, rectangle 

connections and noise. The average deviation of these four from their respective features’ 

average is only approximately 11%. The fact remains, that this image has great similarities 

(visually) with a CD and the ML might always have been expected to misjudge this image as a 

CD, without textual analysis. Of the 650 collected non-CDs, more than half of them had 2 of the 

3 previously defined UML CD features in section 4. 

 

8.2 Cross-validation and randomized tests 

 In order to test the feature extraction better, tests were implemented using Weka [14]. 

These tests might be a better indicator on the success of the feature extraction, but it is not 

possible to examine the false positives in this setting. 

 

In addition to the chosen ML algorithm, SVM [15], five other algorithms were tested: 

Random forest [16]; J48 [17]; Logistic regression [18]; Simple cart [19]; and Decision table [20]. 

This was done to get a better view of success of the feature extraction, and to compare SVM with 

the other five algorithms. 

 

Algorithm Overall Negatives Positives 

SVM 91.15% 92.90% 89.38% 

Random forest 91.54% 92.77% 90.31% 

J48 90.23% 90.31% 90.15% 

Logistic regression 91.31% 91.38% 91.23% 

Simple cart 91.00% 92.00% 90.00% 

Decision table 90.54% 90.46% 90.62% 

Table 3: Cross-validation test (10-fold) 

 

 The first of the two tests was a cross-validation test. That consists of the average of ten 

tests. The ML is trained with 90% of the image set and tested on the remaining 10% -- the image 

set is split into 10 sections and this is repeated for all sections. As can be seen in Table 3, the 

overall result for SVM was 0.90% less accurate than the average of the tests conducted using the 

classifier. But, the success in discriminating negative images was, though, 1.88% better than the 

average of classifier tests. Additionally, we can see that SVM does well in comparison with the 
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other five ML. Only Random forest scores better overall, by 0.39%, but none of the other 

algorithms score better in discriminating negative images, which was considered an important 

constraint on the classifier. This test can be viewed as a good indicator of the success and 

accuracy of the feature extraction, because it tests the images in small portions, with a large 

training set each time, and covers many possible arrangements of the data set. 

 

Algorithm Overall Negatives Positives 

SVM 91.54% 92.97% 90.15% 

Random forest 91.92% 92.19% 91.77% 

J48 88.65% 90.23% 87.12% 

Logistic regression 91.15% 91.80% 90.53% 

Simple cart 89.23% 90.23% 88.26% 

Decision table 89.42% 88.77% 90.15% 

Table 4: 60/40 randomized test 

 

 The second test was done by randomizing the images and then training and testing -- 

similar to the tests that were conducted on the classifier. The main randomized test, that included 

the other five ML, also had 60/40 split for training/testing. As we can see in Table 4, the 

accuracy of SVM increases a little from the cross-validation test (Table 2). Additionally, the 

SVM stays above the other ML’s in relation to success in classifying negative images -- as it 

does in the cross-validation test. 

 

 When the results of the randomized Weka tests are compared to the average of the 

classification tests, it can be seen that the overall accuracy is 0.51% less accurate in the Weka 

tests. The accuracy on negative images is 1.95% better in the Weka tests though. This can be 

viewed as a positive indicator, since the original goal was 95% accuracy on negative images -- it 

misses that mark by 2.03%, as opposed to 3.98% in the classification tests. 

 

 
Chart 2: SVM Randomized tests 
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 To get a better overview of the SVM, seven different randomized tests were implemented 

in Weka. The result of these tests can be seen in Chart 2, which consists of various 

training/testing splits. What is apparent in the tests is that when the size of the training set is 

increased, the success ratio increases. Specifically, it can be seen that in the 80/20 test, the 

success on negative images is the highest. This corresponds well to the goals of the classifier: 

having high overall success rate, but focusing more on having high success rate in negative 

images. These findings strongly indicate that, to train the ML with all of the 1300 images before 

usage would increase the accuracy. 

 

 

8 Results 

RQ0: 

 On a basic level, there are four steps to automating the classification of  UML CDs. The 

first step is image processing, where relevant preliminary lines and shapes are extracted from the 

image. The second step is processing the extracted lines and shapes, resulting in descriptive 

features. The third step is training, where your machine learner of choice is trained, using the 

data you’ve extracted from a set of relevant images. Lastly, you must conduct testing to ascertain 

the accuracy of your classifier. If the result are adequate, success has been achieved.  

 

RQ1: 

 Chart 1, in section 5.1, demonstrates the information gain of each of the extracted 

features, where each feature is ranked between 0 and 1 -- the closer the feature is to 1, the more 

influence it has. As was discussed in the previous section, eliminating all of the four features that 

score 0 in the chart, did not increase the success of the classifier. To test this further, 4 tests were 

implemented to test the effect of removing each of the features. The tests were 10-fold cross-

validation tests. This can be seen in Chart 3, along with the test results with all features. 

 

 
Chart 3: Cross validation of elimination tests 
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 All of the features did have positive effects on the outcome, with the exception being 

F12. By removing F12, the overall success percentage increased from 91.15% to 91.38%, and it 

scored better in classifying negative images by 0.47%. As a result, F12 was removed from the 

feature extraction. 

 

RQ2: 

 The chosen algorithm, SVM, scored highest in classifying negative images. Table 2, in 

the previous section, demonstrates the comparison of five different algorithms, through 10-fold 

cross-validation tests. SVM scored second overall, 0.39% behind Random Forest -- but 0.13% 

better in negative images. Additionally, in the 60/40 randomized tests (Table 4, section 7), the 

SVM scored 0.65% better than Random Forest on negative images, but the same in overall 

accuracy. Since negative accuracy was considered more important than positive accuracy, the 

SVM was considered a good fit. 

 

RQ3: 

There are three accuracy measurements to be considered when assessing the results; 

overall; negatives; and positives. As previously stated, the most important of these is negative 

accuracy. Positives’ accuracy must of course be reasonably high, but since the lowest such 

accuracy number throughout the testing is 86.15%, the negative accuracy becomes the sole 

criteria for accuracy assessment. The highest recorded positives’ accuracy tested, was 95% in 

Test A, table 2. However, tests B and C, where only the training/testing images are randomly 

changed, returned considerably worse results with regard to negative accuracy, lowering the 

average of the tests down to 91.02%. For the most reliable test results, we look to the 10-fold 

cross-validation test. Using that technique maximises the potential of the image database, 

effectively giving the largest possible training set, as well as the largest possible testing set. 

Based on that test, the classifier reached  a negative accuracy of 92.90%.  

 

RQ4:  

 When examining the top 3, 6, and 10 features (from Chart 1), in Chart 4, it is apparent 

that when features are added, the success ratio raises. Specifically, the negative success raises in 

proportion to the overall success rate -- aligned with the success-rate goals of this research. 
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Chart 4: Set-test, SVM cross-validation tests 

9 Discussion 

 The main limitation of the classifier is content comprehension. Diagrams that have the 

same visual characteristics as CDs are likely to be returned as positives. The time-constraints on 

this research did not allow for investigation and implementation of textual analysis, which could 

have prevented many of the false-positives that might occur. That would likely increase the 

success rate of the classifier. 

 

 There were two main fields that this paper covered: image processing and feature 

extraction; and machine learning. The former involved various issues that had be addressed in an 

effort to successfully implement the classifier. Mainly, the problem had to do with an external 

algorithm that was used to extract lines from the image -- Hough transformation. The problem 

lay in the output of the algorithm. It missed line segments and did not return all of the necessary 

lines to process the image correctly. This was addressed by joining Suzuki85 with the algorithm 

and joining together lines that represented the same straight lines. Based on various tests on 

machine learners we can see that the SVM was a good fit for this classifier and that, the larger 

the training set is, the more accurate the classifier becomes. 

 

In the beginning of this research, it was considered a priority to eliminate false-positives, 

even if it meant increasing the number of false-negatives. The classifier was intended for the 

gathering of images depicting UML CDs into a database, and false-negatives don’t compromise 

the integrity of said database, as false-positives do. In the initial planning phase, the desired 

outcome would have at least a total accuracy of 90%, minimum 95% accuracy on negative 

images, and minimum 85% accuracy on positive images. The authors may have been a bit 

optimistic about the accuracy on negative images, when the textual analysis isn’t included in the 

research. Without that kind of analysis, diagrams that have the same features as CDs will always 

be difficult to distinguish. As a result, the cross-validation results show a 92.90% accuracy on 

negative images, and the average accuracy in the classification tests resulted in 92.05% accuracy 

on negative images -- missing the goal by 2.10% and 2.95%, respectively. On the positive side, 

that is not far from the goal, and by adding the text analysis to the classifier we can expect the 

success rate to go well beyond the desired outcome. 
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There are two things that can be considered when we think about future work in relation 

to this classifier: increased success rate by adding textual analysis; and, classifications of 

different types of diagrams. These two are not mutually exclusive. To classify different, but 

similar, diagrams, new features have to be researched, and the textual analysis would help in 

classifying those diagrams also. These various types of diagrams can include, but not limited to: 

UML Sequence diagrams; UML State machines; and UML Use cases. 

 

 

 

 

10 Conclusion 

 In this paper we propose a classifier of UML Class diagrams. This classifier can be of 

interest to academia, who focus on researching CDs. We demonstrate what features in an image 

help classify it as a CD, and how to collect these features through image processing. 1300 images 

were collected for testing, with them equally divided between CDs and non-CDs. The features 

are then tested with -- in addition to the chosen SVM -- five Machine learners, to compare the 

success of the classification. Cross-validation testing on the MLs results in SVM being 2nd (0.39 

less) in overall accuracy, but 1st in success on negative (0.13 more) images -- with a 91.15% 

overall success rate. Randomized 60/40 tests also return SVM second -- 0.38 less in overall then 

Random forest, but 0.78 better negative success -- with 91.54% correct classifications. 
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Appendix A: 

 

Features Average Std. dev. 

F01 0.306 0.124 

F02 0.611 0.321 

F03 0.262 0.092 

F04 0.260 0.094 

F05 0.231 0.093 

F06 0.247 0.100 

F07 0.755 0.192 

F08 0.213 0.209 

F09 0.747 0.213 

F10 0.040 0.088 

F11 0.032 0.073 

F12 0.026 0.089 

F13 0.246 0.075 

F14 0.322 0.128 

F15 0.0001 0.002 

F16 0.008 0.025 

F17 0.795 0.347 

F18 0.00003 0.0002 

F19 0.017 0.178 

F20 0.203 0.127 

F21 0.733 0.165 

F22 0.067 0.068 

F23 0.018 0.020 

Table A: Test A, positive training set 
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Features Image #1 Image #2 Image #3 Image #4 Image #5 

F01 0.381 0.496 0.305 0.274 0.339 

F02 0.749 1.131 1.702 0.641 0.362 

F03 0.186 0.208 0.361 0.101 0.324 

F04 0.273 0.296 0.162 0.423 0.356 

F05 0.249 0.034 0.332 0.054 0.236 

F06 0.291 0.462 0.146 0.422 0.084 

F07 0.615 0.9 0.923 0.777 0.667 

F08 0.846 0.5 0.538 0.979 0.5 

F09 0.153 0.4 0.462 0.021 0.5 

F10 0 0.1 0 0 0 

F11 0.077 0.2 0 0.128 0 

F12 0.462 0.4 0 0.085 0 

F13 0.303 0.342 0.330 0.172 0.385 

F14 0.364 0.317 0.323 0.254 0.312 

F15 0 0.144 0 0 0 

F16 0.02 0.134 0.065 0.011 0 

F17 0.848 2.066 0.435 0.802 0.464 

F18 0 0 0 0.0002 0 

F19 0 0 0 0 0 

F20 0.18 0.368 0.393 0.265 0.096 

F21 0.804 0.713 0.741 0.922 0.957 

F22 0.067 0.079 0.025 0.053 0.014 

F23 0.003 0.032 0.01 0.002 0.0009 

Table B: false-positives in test set 
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Table C: Sample of negative images 
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Table D: Sample of positive images  
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Appendix B: 

 

Ellipse equation: 

 
a = width, b = height 

 


