

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering
Göteborg, Sweden, June 2014

Automatic classification of UML Class diagrams

through image feature extraction and machine

learning

Jóel Hjaltason

Ingimar Samúelsson

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party

to let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Automatic classification of UML Class diagrams through image feature extraction

and machine learning

Jóel Hjaltason

Ingimar Samúelsson

© Jóel Hjaltason, June 2014.

© Ingimar Samúelsson, June 2014.

Examiner: Matthias Tichy

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden June 2014

3

Abstract

 Unified Modeling Language (UML) Class diagrams (CD) are a large part of the software

development industry in relation to design. To be able to research UML, academia needs to have

access to a database of UML diagrams. For building such a database, automatic classification of

UML diagrams would be very beneficial. This research is of a design nature, and focuses on

investigating CD classification: what features set them apart from other similar diagrams; how

these features can be extracted through image processing; and what kind of accuracy is

achievable with said features, using the Support vector machine (SVM) algorithm, and

comparing it to several different machine learners (ML). The extracted features that this paper

proposes for classification -- in conjunction with the chosen ML -- returns, on average, over

ninety percent accuracy in classifying UML Class diagrams.

1 Introduction

In software development, UML CDs are used to design and illustrate the structure of

software. It’s a very important tool when an engineer needs to understand the basic structure of a

system -- e.g. when a new engineer, that is unfamiliar with a system, needs to maintain it. They

are becoming ever more prevalent within industry and academia -- where model-driven

development is becoming a common practice -- and it can be said that they have become an

integral part of it. For the furtherment of research and development of UML CDs, images of

relevant UML diagrams from industry and academia need to be gathered into a database. For this

to be possible it is necessary to have automatic classification of CD images. In this paper we

propose a CD classifier that determines if an image is a CD or not. The classifier operates by

extracting relevant information about the image and processing that information with a machine

learner.

1.1 Purpose of study

The purpose of this study is to aid academic researchers in the accumulation of relevant

UML diagrams. It is important for researchers to have an overview of UML usage, knowing in

what direction it is going, in relation to development-tool usage and trends. To achieve this, they

need to have access to a vast repository of images that represent design diagrams from the

industry and academia. This study will focus on researching methods in image feature extraction,

for automatic classification of UML CDs. Additionally, the hope is, that it might be possible to

add on to this research, making it possible to detect other types of diagrams -- of interest to

researchers in academia -- such as UML Sequence diagrams.

1.2 Research questions

4

This paper will focus on answering one main research question and four sub-questions:

How can classification of UML diagram images be automated?

1. What features in an image can be help classify an UML Class diagram, or exclude similar

images?

2. How do Support Vector Machines compare to a subset of different machine learning

algorithms in classifying UML Class diagrams?

3. What level of accuracy can be expected with said classification?

4. What subset of the proposed features have the most effect in classifying UML Class

diagrams?

1.3 Background

Unified Modeling Language [11] is a general-purpose modeling language. It includes

various diagrams for use in visualized design within the software engineering field. These

diagrams include, in addition to CDs: Sequence Diagrams; Use Cases; and State Machines.

Support Vector Machines [8] are a method of supervised ML. It creates one or more

hyperplanes in multidimensional space which is then used for tasks including, but not limited to,

classification and regression. The hyperplane that is at the furthest distance from any training

data point, provides a functional margin by which to classify a new entry. The wider the margin,

the more accurate the classifier.

Hough transformation (HT) [5] is a method for detecting lines and curves in images.

Initially, the image is thresholded -- resulting in a black and white image. Then, an external

method is used for extracting edges within the image, most commonly the Canny edge detector

[6] (as is the case here). The outcome of the image thresholding and edge detection is then the

foundation that HT builds upon. The algorithm finds lines by transforming the edge image,

resulting in two factors that determine the line search. Instead of using x and y, the position is

expressed in the form of the direction theta and the distance r from the focal point. The focal

point that is used, is generally the center point of the image. Edges that are mapped to the same

theta and r, are then considered to illustrate a line.

Suzuki85 (S85) [7] is border-following algorithm for use in the processing of digitized

binary images, that uses a sort of topological analysis. It is an extension to a previous border-

following algorithm [9] that discriminates between the outer borders and hole borders of a binary

image. The extensions are: putting a unique mark on each border, rather than adopting the

procedure for every border; and adding a procedure for obtaining the parent border of the

currently followed border. The image is scanned and when a pixel (x,y) is found that satisfies the

condition for the border-following starting-point, it is assigned an identifiable number. The found

border is then followed from the starting point and the pixels on the border are marked.

5

Ramer–Douglas–Peucker (RDP) [10] is an algorithm that produces a polygon with a

small number of edges for arbitrary two-dimensional digitized curves. A curve segment is

approximated by a straight-line segment that connects its start and end points. The purpose of

this is to find a comparable curve with fewer points -- resulting in a subgroup of points that

determine the original curve.

OpenCV [11] is an image processing library that has C, C++, Python and Java support

and runs on multiple operating systems. It has many purposes and can be used in various image

processing tasks, including implementations of image processing algorithms.

Magick++ [13] is a C++ library that is part of the ImageMagick image-processing

library. It is a multipurpose library with various features related to image processing.

Weka [14] is a machine learning software developed at the University of Waikato, New

Zealand. It includes tools for testing and visualizing various machine learning algorithms.

1.4 Criteria for success

 This research aims to fulfil three success percentages: first, the tests should result in 90%

average overall accuracy on classifying an image; secondly, the success rate on discriminating

negative images should be, on average, 95%; and thirdly, CDs should be identified with 85%

accuracy, on average.

1.4 Outline of thesis

 This paper is organized as follows. In section 2 the research methodology is described

and discussed and in section 3, related work is covered. Then, an overview of the classifier is

described in section 4, and section 5 dictates the approach for implementing the classifier, with

the design of the software illustrated in section 6. In section 7, the classifier is validated through

image collection and testing, and the results of the research are then put forth in section 8.

Finally, section 9 and 10 include discussion and conclusion, respectively.

2 Methodology

We will employ a design research methodology [21] and build upon existing techniques

of image processing and feature extraction, to develop a solution to a problem that is previously

unaddressed, as we can see in section 3 - related work. We will build a repository of preliminary

test-cases and experiment with techniques to process them, extracting the desired information.

Lastly, we will evaluate the prototype, producing quantitative benchmarks and statistical

analysis.

The requirements of this research can be described with one underlying theme; a

computational program that takes in a path to an image and classifies that image as a CD, by

6

returning true or false. There are two non-functional requirements that have to be addressed in

this research: limitations on computation time; and success ratio in classification.

To address this research problem, other previous work will be investigated to gain insight

into the status of this problem within the field. Experiments will then be done on various types of

features -- in an iterative fashion -- that can be used to classify CDs, in an effort to find the most

useful features.

3 Related work

In recent years, research has been conducted on detecting diagram features, varying in

method and approach. This section will focus on investigating prior research on the subject,

mainly focusing on the objectives of said research and comparing them with the objective of the

research put forth in this paper.

In [1], the authors propose a tool for processing finalized computer images and extracting

CD features from the image. The objective of this is to take in images (such as JPEG) that

represent CDs and translate them into XMI format, for use in UML CASE tools. To that end, the

feature extraction in this research focuses on specific elements of the diagram -- in addition to

the common characteristic between multiple CDs diagrams -- like identifying the role of each

element in the model, and types of relations between the elements. This differs from the research

that this paper covers because, when classifying if an image is a UML CD or not, eliminating

features also need to be detected, and less focus needs to be put on identifying specific roles or

relations between elements. The type of relation is not as important, but the relation itself is

important.

In [2], the authors propose a method for online recognition of hand drawn UML

diagrams. The system takes input from electronic devices and diagnoses pen strokes (hand

movements) into UML elements -- the features being detected based on the movements. The

research differs from what this paper covers, since [2] focuses on detecting the elements as they

are being drawn, as opposed to detecting them in finalized images.

In [3], the authors propose a system for recognizing and automatic learning of sketched

graphic symbols in engineering drawings. The objective of this research is to combine pattern

recognition techniques with machine learning concepts in order to be able to learn and recognize

new symbols in engineering diagrams. This research differs from the one in this paper, since the

system takes images representing diagrams and finds symbols in them, as opposed to taking in

any type of image and classifying if set image is of a specific diagram type.

In [4], the authors present a method for converting network-like image-based engineering

diagrams into engineering models. It takes in either sketches or computer generated images that

7

represent engineering diagrams and converts them. They focus on being able to take in various

types of diagrams, including UML. The image processing and feature extraction has similarities -

- to the one proposed in this paper -- in finding diagram elements and relations between them,

but, as is the case with [1], the difference lies in the fact that they are not looking for

discriminating factors in the image -- the assumption is that the image represents a diagram, and

the objective is to transform those features, instead of classifying them.

4 Overview of the classifier

Diagrams come in all shapes and forms (Figure 1), and it is important to distinguish

between them -- to be able to classify the right diagram images as UML CDs. For this reason, it

was important to look at not only CDs, but also other different but similar diagrams such as

Entity–relationship models (E/R), UML Sequence diagrams and Flowcharts amongst others,

when finding the right features.

Figure 1: (1) UML Class diagram, (2) UML Sequence diagram, (3) Flow chart, (4) E/R model

CDs have three key factors that can be used to describe them: (1) they consist of classes,

in the form of rectangles; (2) the classes are related to each other in the form of connecting lines;

and (3) the classes are divided into sections with the name of the class, attributes and operations.

The 3rd describing factor is, though, not general. It does not apply to all classes within the

diagram, but in almost all UML CD there are classes divided in this manner. As can been seen in

Figure 1, the 1st and 2nd of the defined characteristics of UML Class diagrams can apply to

many types of diagrams or charts. Because of that it was also important to extract more

information from the image, than only information that is descriptive of CD. As a result, other

8

geometrical shapes had to be extracted as well: ellipses; rhombuses; and triangles. That

information would then also be used in the calculation of the image features.

The extracted shapes and lines are used to generate statistical information about the

image, which is then used in conjunction with SVM to determine if the image is a CD. The

classifier takes in a path parameter to an image, either a URL or a folder path and returns true or

false. If the input file is not found or corrupted, exception is not outputted, but instead, it returns

false. It was implemented in this fashion, because the program would be used with a web crawler

and exception handling was not considered necessary.

5 Approach

To be able to classify an image, two things had to be done. First, shapes and lines from

the image had to be extracted and secondly, the gathered information had to be transformed into

features that could be used to determine if an image is a CD or not. Additionally, to avoid

prolonged processing time on complex photographs, images have to pass a pre-check before

being processed: the most frequent color in the image has to represent at least 10% of the image;

and the image’s color-histogram median value must be above 100. Both of these figures were

obtained by observation of trends within our dataset. A view of the overall framework can be

seen in Figure 2.

OpenCV is used for processing the image, and execution of external algorithms for

extracting preliminary lines and shapes. OpenCV does not support all of the desired image

formats, so the Magick++ library is used to process the image formats that OpenCV does not

support, converting them into JPEG if the format is other than PNG or JPEG. As a result, all the

most common image formats [13] are supported.

9

Figure 2: Overall framework

 Figure 2 illustrates the different stages of the classification process: preprocess;

extraction of shapes and lines; feature calculation; and classification through SVM. This is

covered in more detail in the following sections.

5.1 Constraints

 Execution time of the image processing was a non-functional requirement. It was decided

that the time it took to classify an image should not exceed ten seconds. Some images are more

complex than others, so this is defined as a weak constraint -- meaning the ten seconds were to

be considered on average in the test set, but not for any given image.

 Content comprehension could not be taken into account in this research because of time

constraints. That means that textual analysis of the image was not processed and included in the

extracted features. The result is that images that have exactly the same features as CDs but differ

in textual content, are therefore classified as CDs.

 Because this classifier will be used with a web crawler to gather UML CD images into a

database, eliminating non-CD images has greater value than including CD images.

10

5.2 Image processing

Shape and line extraction is carried out in conjunction with three external algorithms:

Hough transform; Suzuki85; and Ramer–Douglas–Peucker. The contours that S85 finds are used

to find various shapes and are subsequently broken down into straight lines. By doing this in

conjunction with HT it was possible to better assure that as many lines where detected as

possible. The lines are then processed, so that horizontal and vertical lines, that are on the same

axes and represent the same line, are joined together into a single line. Rectangles that are not

caught using S85 are then extracted by finding horizontal lines that are parallel and in the same

position on the x-axis, and have the same two vertical lines intersecting them on each end.

RDP is used to find different types of shapes. If it finds a polygon that might possibly be

one of the sought after shapes, a validation takes place. The coordinates are investigated to see if

it fits the criteria of any of the shapes: rectangles should have four 89° < x < 91° corners;

rhombuses should have four 60° < x < 120° corners; triangles should have three 40° < x < 100°

corners; and in case of ellipses, all of the points in polygon need to fit into the ellipse equation

(Appendix B).

A. Original image

B. Hough transform

C. Contours

D. Joined lines #1

11

E. Joined lines #2

F. Extracted elements

Figure 3: Image process

Figure 3 shows the basic steps of the image process. This picture was chosen because it is

a good example for demonstrating why lines were joined between the two algorithms. As can be

seen in picture B in Figure 3, with HT, many of the rectangle lines are not extracted, or the

extracted lines are segmented and/or incomplete. Such lines make it very difficult to find the

rectangles in the image. S85 returns an unlimited amount of points in each contour -- multiple

lines segments, in other words. The extracted contours from S85 can be seen in picture C. By

examining that picture, it is apparent that the algorithm catches more of the lines than HT -- it

does not miss any of the desired lines, because it seems to catch everything in the image. The

lines are joined in three phases: (1) the contours that are found are split into lines, and horizontal

and vertical lines are extracted; (2) horizontal and vertical lines that HT finds are collected and

joined with (1); and (3) lines, found by HT, that are not vertical or horizontal are collected and

joined with (1). After phase 1 and 2 (picture D in Figure 3), rectangles are collected through the

method previously explained in this section. After the rectangles have been collected, phase 3

(joining lines; picture E) is conducted, and then all lines within shapes are removed.

It was to be expected, that the algorithm would not be able to catch all rectangles in the

image. By comparing the extracted rectangles in the image (picture F in Figure 3) to the original

image (picture A), it is apparent that the extraction misses two of the classes in the image. The

reason for this is the HT line detection misses important lines. If the rectangles in question are

examined in picture B, it can be seen that the sides of the rectangle are missing and, additionally,

the detected lines are segmented and incomplete. It could be expected, that these rectangles

would be found, based on visually examining picture D -- as is the case with the other rectangles

with missing line segments the picture. Based on that image (D), it is hard to explain why those

rectangles are missed, not the others, but most likely the joining of the lines did not result in four

complete lines that represent a rectangle in x and y coordinates, and within the previously

detailed rectangle restriction.

12

 To find connecting lines between various shapes, lines that intersect said shapes are

gathered. These intersecting lines are then followed until another intersection is found or to the

end of said line. If another intersection is found, the line is added as a connecting line between

the two intersected shapes -- if a connecting line between those two shapes does not exist. As can

be seen in picture F in Figure 3, the connecting lines do not follow the shortest distance between

the rectangles. When the search for connecting lines is conducted, all directions are followed

until the line’s end is reached, or a connection is found. The first route that is found between the

shapes is the one that is added. This was done intentionally, because finding the shortest distance

was not considered important in the image processing, since the extracted features only involved

the percentage of connections -- the distance was not calculated.

Color distribution is gathered by examining all the pixels in the image. Colors are

grouped together based on their RGB colors, and to join similar colors, the 255 RGB range is

divided by 15, resulting in 17 to the power of 3, color combinations. The reason for joining

similar colors was to get the background color of image as one color, and the number 15 was

used because the numbers were integers and dividing 255 by the chosen number had to result in

an even number.

A native function of OpenCV is used to extract the histogram of all images, and the

median value is found by the use of a simple loop system that first calculates the sum of the

values, and then loops again to find the position of that sum divided by two.

5.3 Feature extraction

It was considered important that the extracted features would not be affected by unrelated

information. Information that does not discriminate CDs from other diagrams, should not affect

the outcome. For example, one CD may have three rectangles and another CD may have 25

rectangles, but in both images the rectangles are likely to cover a similar portion of the image. So

instead of counting different extracted elements, the extracted features are represented in the

form of ratios and percentages relative to the image. The extracted features, and explanations of

the ratios and percentages, can be seen in Table 1.

Feat. no. Name Description

F01 Rectangles’ portion of image,

percentage

Calculated by dividing the sum of the area of all

the rectangles with the area of the image itself

F02 Rectangle size variation,

ratio

Calculated by dividing the rectangle size standard

deviation with the rectangle average size

F03-06 Rectangle distribution,

percentage

The image is divided into four equally sized

sections and the area of the rectangles inside the

13

sections is then divided by the total area of the

rectangles. The 4 sections sum up to 100%

F07 Rectangle connections,

percentage

Calculated by counting all rectangles that are

connected to at least one rectangle, and dividing

that number with the total amount of rectangles in

the image

F08-10 Rectangle dividing lines,

percentage

The rectangles are split into three groups, with

rectangles that have: no dividing lines (F08); one

or two dividing lines (F09); or three or more

dividing lines (F10). This produces three numbers

that represent the percentage of rectangles within

each group

F11/F12 Rectangles

horizontally/vertically

aligned, ratio

Sides of rectangles, horizontal (F11) and vertical

(F12), that are aligned with sides of other

rectangles are counted. The numbers are then

divided with the number of detected rectangles in

the image -- resulting in two ratios on rectangle

horizontal and vertical alignments

F13/F14 Average horizontal/vertical

line size, ratio

Average size of horizontal (F13) and vertical

(F14) lines that are larger than ⅔ of the images

width or height, divided by the images width or

height, respectively

F15 Parent rectangles in parent

rectangles, percentage

Rectangles that have rectangles within them can

possibly be packages. This feature is the

percentage of the area of those parent rectangles

that is within other parent rectangles

F16 Rectangles in rectangles,

percentage

This feature is calculated in the same manner as

F15, but with rectangles, instead of parent

rectangles

F17 Rectangles height-width ratio The average ratio between the height of the

rectangles and the width of the rectangles

F18 Geometrical shapes’ portion

of image, percentage

The same as F01, but with rhombuses, triangles

and ellipses

F19 Lines connecting geometrical

shapes, ratio

The number of connecting lines from shapes,

other than rectangles, divided by the number of

detected shapes in the image

F20 Noise, percentage Detected lines that are outside of rectangles,

divided by the number of all detected lines

14

F21-23 Color frequency, percentage Three most frequent colors in the image are

found. Then a percentage out of all appearing

colors is found for the three colors

Table 1: Extracted features

5.4 Classification

SVM was chosen as a machine learner, for several reasons. The classifier has constraints

on processing time, and SVMs are efficient in that respect. They also don’t need large data sets

to be trained properly and they can handle complex, non-linear classification.

Chart 1: Information gain

Information Gain is the expected reduction in entropy caused by partitioning the

examples according to a given attribute. In other words, it tells us how much information can be

gained from an attribute, to aid in the accuracy of the ML's classification.

 Based on Chart 1, there are four features that have little effect on the classification. As a

result, these features were removed and tests were implemented again. But that did not increase

the accuracy of classifier, but instead reduced the accuracy in the tests, especially with regards to

non-CD images. That resulted in those features being reinstated, because -- as they were intended

for -- they helped eliminate false-positives. Those features were created to help eliminate images

that had similar features to CDs, but where the rectangles were, for example, aligned or within

other rectangles, which should not occur in a CDs.

 The most crucial feature is the percentage of rectangles that have one, or two, dividing

lines (the 3rd defined feature of CDs). Additionally, the 4th most important feature, for

discrimination, is the percentage of rectangles with no dividing line. The second most important

feature is noise, also for eliminating purposes. Noise is information that is not within rectangles,

and the higher that ratio is, the more it reduces the likelihood of the image being a CD. As

expected, since CDs generally have a high rectangle coverage, F01 is one of the three most

15

important features, ranked no. 3. The last of the five most influential features is F02 (rectangle

size variation), because images with a high variation in the size of rectangles is less likely to be a

CD.

6 Software design

 The software is divided into two main sections: machine learning (ML); and image

processing (IP). A UML Class diagram of the system can be seen in Figure 4. Within the ML

part of the software, there are two actions: train (Class: MLTrainer); and classify (Class:

UMLClassifier). As the names suggests, train trains the ML by taking in positive and negative

images, and constructs a support vector machine. The classifier takes in an image, or set of

images, and classifies them as CDs or not, using the generated SVM. These actions are

performed using the OpenCV machine learning library. The ML interacts with the image

processing section of the software (Class: ImageProcess). It sends an image’s path to the IP and

is returned a list of features that represent the image, and uses that for classification. The IP class

is the center of the system, interacting with all of the other classes. The class CalcFuns is a static

class that performs all of the necessary calculations that happen throughout the image process

and feature extraction and is used by most of the other object classes. The other three classes

underneath CalcFuns, in the software CD, are object classes that perform the actions that their

names indicate. To illustrate their role within the design, OpenCV and ImageMagick libraries are

represented as classes within the diagram.

16

Figure 4: UML Class diagram

7 Validation

The images that were used in the validation process were collected by using Google

image search. The image collection consisted of two separate accumulation phases: collecting

images that represented CDs; and collecting non-CD images and images that represented similar

diagrams. To search for CDs the phrase ‘UML Class diagram’ was used. Additionally there were

various search strings concatenated with the phrase following them, such as: hospital; transport;

and communication. That was done to have a wide variety of CDs and also to be able to

accumulate a larger data set, while avoiding duplicates. Images that have features that can be

found in CDs and are of a similar nature were considered important, to test the accuracy of the

classifier. As a result, various types of diagrams, charts, blueprints and maps were included in

the negative image set -- comprising a large portion of the negative images. To find these

17

images, various search strings were constructed and used in the image search -- including, but

not limited to: diagram; blueprint; sequence diagram; chart; flow chart; E/R model; and

architectural diagram. It was verified that no duplicates were found in the set -- done by

examining the extracted features, visually comparing images with similar features, and removing

those that proved to be duplicates. The end-result was a collection of 650 CDs and 650 non-CDs

-- 1300 images in total. Samples of the images can be seen in Appendix A, table C and D.

Three different tests were performed on the accuracy of the classifier. The average

accuracy of those tests was 92%.

Test Overall Negatives Positives

Test A 93.85% 95% 92.59%

Test B 90.19% 86.15% 94.23%

Test C 92.12% 91.92% 92.31%

Average 92.05% 91.02% 93.04%

Table 2: Classification test results

To test the classifier the image set was split randomly, 60% for training and 40% for

testing. Test B is nearly opposite to Test A, where the training and testing set in Test A were

swapped and then images were randomly moved from the testing into the training set, to split it

60/40. Finally, Test C was implemented in the same manner as Test A, by randomizing the

images again. The results can be seen in Table 2. Further tests are presented later in this chapter.

It is apparent that Test B, relative to the other two tests shows markedly reduced accuracy

in classifying non-CDs. Opposingly, Test C had the lowest accuracy in classifying CDs, although

Test A wasn’t much more accurate. Test B is nearly the opposite of Test A (which shows the

best results), which can indicate that the Test A training set has a better set of images to learn

from, then Test B has, or that the negative test set in Test B was more challenging for the ML.

The average and standard deviation of the positive training set features can be seen in Table A in

Appendix A.

8.1 False-positives in Classification tests

This section will examine a sample of 5 false-positive images in the classification tests,

focusing on investigating why they were classified as CDs, based on the extracted features and

visual examination. The extracted features from those images can be seen in Table B, in

Appendix A.

Image #1 (Table B in Appendix A; Figure 5) depicts a diagram structured in much the

same way as a CD, and includes two of the three main characteristics of a CD; a large portion of

the image is covered by rectangles and the rectangles are connected to each other. The structure

is so similar in fact, that if we compare the features extracted from image #1 to the average

18

features of positive training set (Table A in Appendix A), it is within the bounds of the standard

deviation in 20 of 23 features. The average deviation of these features from the average of

positive training set is approx. 35%. The machine learner can be expected to accept any image

that so closely resembles a class diagram. To combat this issue and further develop the classifier,

textual analysis of the images would have to be employed.

Figure 5: Image #1

Figure 6: Image #2

Image #2 (Table B in Appendix A; Figure 6) is a blueprint. There is a subset of similar

images in the test-set, depicting maps and various types of blueprints. Visually, this image does

not resemble a CD, and of the extracted features, 12 where outside of the standard deviation in

the positive training set. Additionally, only three of the top ten features in the information gain

chart where within the standard deviation. Based on this, it is hard to explain why this image is

classified as a CD without an in-depth investigation of the SVM.

Figure 7: Image #3

Figure 8: Image #5

19

Image #3 (Table B in Appendix A; Figure 7) is a sequence diagram. When we examine

the extracted features from the image we can see that the most important feature (F09 in Chart 1)

is close to being inside the st. dev. of the positive training set. The noise in the image is closely

outside of the st. dev. of positive training set. When we look at rectangle distribution (F03-F06;

ranked 7-10 in Chart 1) we see that the distribution between the sections are uneven, but still

they are all close to being within the st. dev. of training set. The features F01 and F02 are ranked

3 and 5, respectively, in Chart 1 and the image is only 0.3% from the average of F01 (rectangle

coverage), which might be one of the reasons why it is classified as a CD. But, when you

examine rectangle size variation (F02), it is far outside the st. dev. of the positive training set --

almost double the amount. The result is, that the image does not, visually, resemble a CD, but the

extracted features on the other hand do, at times. Of the 650 collected non-CD, 72 were

Sequence diagrams.

Image #5 (Table B in Appendix A; Figure 8) resembles a CD. It has six rectangles that

cover a large portion of the image and all but one of the rectangles are connected to another

rectangle. When we examine the features that were extracted from the image, we see that 5

features (F6; F8; F9; F13; F21) fall outside of the standard deviation of the positive training set.

Of these 5 features, 3 are in the top half of the Information gain chart (Chart 1), with F09 and

F08 being no. 1 and no. 4, respectively. Based on that it could be expected that the ML would

reject this image, but as mentioned before, this image has resembles CD’s and a false-positive

would always be a possibility without textual analysis.

Figure 9: Image #4

20

Image #4 (Table B in Appendix A; Figure 9) includes two of the three defined

characteristics of a CD. It has rectangles that cover a large portion of the image and are

connected to other rectangles -- F01 and F07 are well within the st. dev. of the positive training

set. The 3rd defined (rectangle dividers) characteristic (F09) falls well outside of the st. dev of

the training set, and the ML could be expected to reject this image based on that. The distribution

of the rectangles would also be expected to have the same effect, since two of the four sections

are outside the st. dev. of the positive training set. It rates within the bounds of standard deviation

for 15 of the 23 features extracted from positive images. If we cross-reference these features with

our information gain analysis in Chart 1, we see that four of them are in the top ten with regards

to information gain. These are rectangles’ portion of image, rectangle size variation, rectangle

connections and noise. The average deviation of these four from their respective features’

average is only approximately 11%. The fact remains, that this image has great similarities

(visually) with a CD and the ML might always have been expected to misjudge this image as a

CD, without textual analysis. Of the 650 collected non-CDs, more than half of them had 2 of the

3 previously defined UML CD features in section 4.

8.2 Cross-validation and randomized tests

 In order to test the feature extraction better, tests were implemented using Weka [14].

These tests might be a better indicator on the success of the feature extraction, but it is not

possible to examine the false positives in this setting.

In addition to the chosen ML algorithm, SVM [15], five other algorithms were tested:

Random forest [16]; J48 [17]; Logistic regression [18]; Simple cart [19]; and Decision table [20].

This was done to get a better view of success of the feature extraction, and to compare SVM with

the other five algorithms.

Algorithm Overall Negatives Positives

SVM 91.15% 92.90% 89.38%

Random forest 91.54% 92.77% 90.31%

J48 90.23% 90.31% 90.15%

Logistic regression 91.31% 91.38% 91.23%

Simple cart 91.00% 92.00% 90.00%

Decision table 90.54% 90.46% 90.62%

Table 3: Cross-validation test (10-fold)

 The first of the two tests was a cross-validation test. That consists of the average of ten

tests. The ML is trained with 90% of the image set and tested on the remaining 10% -- the image

set is split into 10 sections and this is repeated for all sections. As can be seen in Table 3, the

overall result for SVM was 0.90% less accurate than the average of the tests conducted using the

classifier. But, the success in discriminating negative images was, though, 1.88% better than the

average of classifier tests. Additionally, we can see that SVM does well in comparison with the

21

other five ML. Only Random forest scores better overall, by 0.39%, but none of the other

algorithms score better in discriminating negative images, which was considered an important

constraint on the classifier. This test can be viewed as a good indicator of the success and

accuracy of the feature extraction, because it tests the images in small portions, with a large

training set each time, and covers many possible arrangements of the data set.

Algorithm Overall Negatives Positives

SVM 91.54% 92.97% 90.15%

Random forest 91.92% 92.19% 91.77%

J48 88.65% 90.23% 87.12%

Logistic regression 91.15% 91.80% 90.53%

Simple cart 89.23% 90.23% 88.26%

Decision table 89.42% 88.77% 90.15%

Table 4: 60/40 randomized test

 The second test was done by randomizing the images and then training and testing --

similar to the tests that were conducted on the classifier. The main randomized test, that included

the other five ML, also had 60/40 split for training/testing. As we can see in Table 4, the

accuracy of SVM increases a little from the cross-validation test (Table 2). Additionally, the

SVM stays above the other ML’s in relation to success in classifying negative images -- as it

does in the cross-validation test.

 When the results of the randomized Weka tests are compared to the average of the

classification tests, it can be seen that the overall accuracy is 0.51% less accurate in the Weka

tests. The accuracy on negative images is 1.95% better in the Weka tests though. This can be

viewed as a positive indicator, since the original goal was 95% accuracy on negative images -- it

misses that mark by 2.03%, as opposed to 3.98% in the classification tests.

Chart 2: SVM Randomized tests

22

 To get a better overview of the SVM, seven different randomized tests were implemented

in Weka. The result of these tests can be seen in Chart 2, which consists of various

training/testing splits. What is apparent in the tests is that when the size of the training set is

increased, the success ratio increases. Specifically, it can be seen that in the 80/20 test, the

success on negative images is the highest. This corresponds well to the goals of the classifier:

having high overall success rate, but focusing more on having high success rate in negative

images. These findings strongly indicate that, to train the ML with all of the 1300 images before

usage would increase the accuracy.

8 Results

RQ0:

 On a basic level, there are four steps to automating the classification of UML CDs. The

first step is image processing, where relevant preliminary lines and shapes are extracted from the

image. The second step is processing the extracted lines and shapes, resulting in descriptive

features. The third step is training, where your machine learner of choice is trained, using the

data you’ve extracted from a set of relevant images. Lastly, you must conduct testing to ascertain

the accuracy of your classifier. If the result are adequate, success has been achieved.

RQ1:

 Chart 1, in section 5.1, demonstrates the information gain of each of the extracted

features, where each feature is ranked between 0 and 1 -- the closer the feature is to 1, the more

influence it has. As was discussed in the previous section, eliminating all of the four features that

score 0 in the chart, did not increase the success of the classifier. To test this further, 4 tests were

implemented to test the effect of removing each of the features. The tests were 10-fold cross-

validation tests. This can be seen in Chart 3, along with the test results with all features.

Chart 3: Cross validation of elimination tests

23

 All of the features did have positive effects on the outcome, with the exception being

F12. By removing F12, the overall success percentage increased from 91.15% to 91.38%, and it

scored better in classifying negative images by 0.47%. As a result, F12 was removed from the

feature extraction.

RQ2:

 The chosen algorithm, SVM, scored highest in classifying negative images. Table 2, in

the previous section, demonstrates the comparison of five different algorithms, through 10-fold

cross-validation tests. SVM scored second overall, 0.39% behind Random Forest -- but 0.13%

better in negative images. Additionally, in the 60/40 randomized tests (Table 4, section 7), the

SVM scored 0.65% better than Random Forest on negative images, but the same in overall

accuracy. Since negative accuracy was considered more important than positive accuracy, the

SVM was considered a good fit.

RQ3:

There are three accuracy measurements to be considered when assessing the results;

overall; negatives; and positives. As previously stated, the most important of these is negative

accuracy. Positives’ accuracy must of course be reasonably high, but since the lowest such

accuracy number throughout the testing is 86.15%, the negative accuracy becomes the sole

criteria for accuracy assessment. The highest recorded positives’ accuracy tested, was 95% in

Test A, table 2. However, tests B and C, where only the training/testing images are randomly

changed, returned considerably worse results with regard to negative accuracy, lowering the

average of the tests down to 91.02%. For the most reliable test results, we look to the 10-fold

cross-validation test. Using that technique maximises the potential of the image database,

effectively giving the largest possible training set, as well as the largest possible testing set.

Based on that test, the classifier reached a negative accuracy of 92.90%.

RQ4:

 When examining the top 3, 6, and 10 features (from Chart 1), in Chart 4, it is apparent

that when features are added, the success ratio raises. Specifically, the negative success raises in

proportion to the overall success rate -- aligned with the success-rate goals of this research.

24

Chart 4: Set-test, SVM cross-validation tests

9 Discussion

 The main limitation of the classifier is content comprehension. Diagrams that have the

same visual characteristics as CDs are likely to be returned as positives. The time-constraints on

this research did not allow for investigation and implementation of textual analysis, which could

have prevented many of the false-positives that might occur. That would likely increase the

success rate of the classifier.

 There were two main fields that this paper covered: image processing and feature

extraction; and machine learning. The former involved various issues that had be addressed in an

effort to successfully implement the classifier. Mainly, the problem had to do with an external

algorithm that was used to extract lines from the image -- Hough transformation. The problem

lay in the output of the algorithm. It missed line segments and did not return all of the necessary

lines to process the image correctly. This was addressed by joining Suzuki85 with the algorithm

and joining together lines that represented the same straight lines. Based on various tests on

machine learners we can see that the SVM was a good fit for this classifier and that, the larger

the training set is, the more accurate the classifier becomes.

In the beginning of this research, it was considered a priority to eliminate false-positives,

even if it meant increasing the number of false-negatives. The classifier was intended for the

gathering of images depicting UML CDs into a database, and false-negatives don’t compromise

the integrity of said database, as false-positives do. In the initial planning phase, the desired

outcome would have at least a total accuracy of 90%, minimum 95% accuracy on negative

images, and minimum 85% accuracy on positive images. The authors may have been a bit

optimistic about the accuracy on negative images, when the textual analysis isn’t included in the

research. Without that kind of analysis, diagrams that have the same features as CDs will always

be difficult to distinguish. As a result, the cross-validation results show a 92.90% accuracy on

negative images, and the average accuracy in the classification tests resulted in 92.05% accuracy

on negative images -- missing the goal by 2.10% and 2.95%, respectively. On the positive side,

that is not far from the goal, and by adding the text analysis to the classifier we can expect the

success rate to go well beyond the desired outcome.

25

There are two things that can be considered when we think about future work in relation

to this classifier: increased success rate by adding textual analysis; and, classifications of

different types of diagrams. These two are not mutually exclusive. To classify different, but

similar, diagrams, new features have to be researched, and the textual analysis would help in

classifying those diagrams also. These various types of diagrams can include, but not limited to:

UML Sequence diagrams; UML State machines; and UML Use cases.

10 Conclusion

 In this paper we propose a classifier of UML Class diagrams. This classifier can be of

interest to academia, who focus on researching CDs. We demonstrate what features in an image

help classify it as a CD, and how to collect these features through image processing. 1300 images

were collected for testing, with them equally divided between CDs and non-CDs. The features

are then tested with -- in addition to the chosen SVM -- five Machine learners, to compare the

success of the classification. Cross-validation testing on the MLs results in SVM being 2nd (0.39

less) in overall accuracy, but 1st in success on negative (0.13 more) images -- with a 91.15%

overall success rate. Randomized 60/40 tests also return SVM second -- 0.38 less in overall then

Random forest, but 0.78 better negative success -- with 91.54% correct classifications.

11 Acknowledgement

 Special thanks are given to our supervisors, Prof. Michel Chaudron and Truong Ho

Quang, for guidance and help throughout the lifetime of this research. Additionally, we would

like to thank Mohd Hafeez Osman for assistance in relation to machine learners.

12 References

1. B. Karasneh & M. R.V. Chaudron, Extracting UML Models from Images, 39th

Euromicro Conference Series on Software Engineering and Advanced Applications, 2013.

2. E. Lank, J. Thorley & S. Chen, An interactive system for recognizing hand-drawn

UML diagrams, Proceedings of the IBM Center for Advanced Studies Conference, CASCON

2000, Mississauga, Ontario, Canada, November 2000, pp. 1 - 15.

3. B. T. Messmer & H. Bunke, Automatic Learning and Recognition of Graphical

Symbols in Engineering Drawings, First International Workshop University Park, PA, USA,

August 1995, pp. 123-134

4. L. Fu & L. B. Kara, From engineering diagrams to engineering models: Visual

recognition and applications, Computer-Aided Design, Volume 43, Issue 3, March 2011, pp.

278–292

26

5. R. O. Duda & P. E. Hart, Use of Hough transformation to detect lines and curves

in pictures, Magazine Communications of the ACM, Volume 15, Issue 1, January 1972, pp.

11-15

6. J. Canny, A Computational Approach to Edge Detection, Pattern Analysis and

Machine Intelligence, IEEE Transactions, Volume PAMI-8, Issue 6, November 1986, pp.

679-698

7. S. Suzuki & K. Abe, Topological Structural Analysis of Digitized Binary Images

by Border Following, Computer Vision Graphics and Image Processing, Volume 30, Issue 1,

April 1985, pp. 32–46

8. B. E. Boser, I. M. Guyon, and V. N. Vapnik, A training algorithm for optimal

margin classifiers, Proceedings of the fifth annual workshop on Computational learning

theory, ACM, New York, 1992

9. A. Rosenfeld & A. C. Kak, Digital Picture Processing, 2nd edition, Vol. 2,

Academic Press, New York, 1982

10. U. Ramer, An iterative procedure for the polygonal approximation of plane

curves, Computer Graphics and Image Processing, Volume 1, Issue 3, November 1972, pp.

244–256

11. OpenCV - http://www.opencv.org

12. J. Rumbaugh, I. Jacobson and G. Booch, UML Proposal to the Object

Management Group, version 1.1, ad/97-08-02 (1 September 1997)

13. Magick++ - http://www.imagemagick.org/Magick++/

14. Weka 3: Data Mining Software in Java - http://www.cs.waikato.ac.nz/ml/weka/

15. J. C. Platt, Probabilistic outputs for support vector machines and comparisons to

regularized likelihood methods, Microsoft Research, March 1999

16. L. Breiman, Random Forests, Machine Learning, October 2001, Volume 45, Issue

1, pp. 5-32

17. J. R. Quinlan, C4.5: Programs for Machine Learning, 1993, Morgan Kaufmann

Publishers, San Mateo, CA

18. S. L. Cessie, J. C. V. Houwelingen, Ridge estimators in logistic regression,

Journal of the Royal Statistical Society, Vol. 41, No. 1, 1992

19. L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone, Classification and

Regression Trees, 1984, Wadsworth International Group, Belmont, California

20. R. Kohavi, The Power of Decision Tables, Machine Learning: ECML-95 Lecture

Notes in Computer Science, Volume 912, 1995, pp. 174-189

27

Appendix A:

Features Average Std. dev.

F01 0.306 0.124

F02 0.611 0.321

F03 0.262 0.092

F04 0.260 0.094

F05 0.231 0.093

F06 0.247 0.100

F07 0.755 0.192

F08 0.213 0.209

F09 0.747 0.213

F10 0.040 0.088

F11 0.032 0.073

F12 0.026 0.089

F13 0.246 0.075

F14 0.322 0.128

F15 0.0001 0.002

F16 0.008 0.025

F17 0.795 0.347

F18 0.00003 0.0002

F19 0.017 0.178

F20 0.203 0.127

F21 0.733 0.165

F22 0.067 0.068

F23 0.018 0.020

Table A: Test A, positive training set

28

Features Image #1 Image #2 Image #3 Image #4 Image #5

F01 0.381 0.496 0.305 0.274 0.339

F02 0.749 1.131 1.702 0.641 0.362

F03 0.186 0.208 0.361 0.101 0.324

F04 0.273 0.296 0.162 0.423 0.356

F05 0.249 0.034 0.332 0.054 0.236

F06 0.291 0.462 0.146 0.422 0.084

F07 0.615 0.9 0.923 0.777 0.667

F08 0.846 0.5 0.538 0.979 0.5

F09 0.153 0.4 0.462 0.021 0.5

F10 0 0.1 0 0 0

F11 0.077 0.2 0 0.128 0

F12 0.462 0.4 0 0.085 0

F13 0.303 0.342 0.330 0.172 0.385

F14 0.364 0.317 0.323 0.254 0.312

F15 0 0.144 0 0 0

F16 0.02 0.134 0.065 0.011 0

F17 0.848 2.066 0.435 0.802 0.464

F18 0 0 0 0.0002 0

F19 0 0 0 0 0

F20 0.18 0.368 0.393 0.265 0.096

F21 0.804 0.713 0.741 0.922 0.957

F22 0.067 0.079 0.025 0.053 0.014

F23 0.003 0.032 0.01 0.002 0.0009

Table B: false-positives in test set

29

Table C: Sample of negative images

30

Table D: Sample of positive images

31

Appendix B:

Ellipse equation:

a = width, b = height

