
Exploring Code Coverage in Software Testing
and its Correlation with Software Quality
A Systematic Literature Review

Bachelor of Science Thesis in Software Engineering and Management

JOY W. HOLLÉN

PATRICK S. ZACARIAS

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, August 2013

The Author grants to Chalmers University of Technology and University of Gothenburg the non-exclusive right to publish
the Work electronically and in a non-commercial purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text, pictures
or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a company),
acknowledge the third party about this agreement. If the Author has signed a copyright agreement with a third party
regarding the Work, the Author warrants hereby that he/she has obtained any necessary permission from this third party
to let Chalmers University of Technology and University of Gothenburg store the Work electronically and make it acces-
sible on the Internet.

Exploring Code Coverage in Software Testing and its Correlation with Software
Quality

A Systematic Literature Review

JOY W. HOLLÉN

PATRICK S. ZACARIAS

c© Joy W. Hollén, August, 2013.

c© Patrick S. Zacarias, August, 2013.

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone: + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden, August 2013

. .

Exploring Code Coverage in Software Testing and its Correlation
with Software Quality; A Systematic Literature Review

Joy W. Hollén
Software Engineering and Management

University of Gothenburg
Department of Computer Science and Engineering

Gothenburg, Sweden
gustrawi@student.gu.se

Patrick S. Zacarias
Software Engineering and Management

University of Gothenburg
Department of Computer Science and Engineering

Gothenburg, Sweden
gussubpa@student.gu.se

Abstract

As the world around us is increasingly becoming defined by software and the size and complexity of the software
systems increases, as well as our dependance on them, it becomes all the more important that the software is thoroughly
tested in an attempt to guarantee high reliability. In order to measure the thoroughness of testing, code coverage is often
applied as an attempt at measuring the software testing. The paper aims to explore how code coverage is correlated with
software quality and reliability. The paper also examines what code coverage actually is and how the state-of-the-art
suggests the usage of code coverage for optimal result. Through a Systematic Literature Review, with a holistic approach,
the paper concludes that code coverage and software reliability are not directly correlated, but possibly indirectly with
a varying correlation factor. When it comes to recommended code coverage practices and optimal use, the literature
strongly argues for not having code coverage as an absolute goal of the testing, instead using it to evaluate the test suite
and find its flaws so that it can be improved.

. .

1 Introduction & Background

The world is becoming increasingly dependent on soft-
ware due to the IT-revolution. Many products that tradition-
ally were only mechanical now depend on an increasingly
large degree of software. Software is becoming an integral
part in a growing number of important functions in soci-
ety today, controlling everything from toasters and fridges
to important functions in cars, airplanes and huge safety-
critical systems.

From a business perspective, it is imperative to ensure
that the software cannot create liabilities for stakeholders.
No matter if software is developed in-house or outsourced,
software must meet the technical specification of the client
where quality, reliability and cost is determined by the
client prior to order. From a business and Software Qual-
ity Management (SQM) perspective, budgets should also be
considered. As with research and development in general
there are diminishing returns for testing and coverage af-
ter reaching their critical point in terms of efficiency. The
higher the requirements for software reliability the more
extensive and exhaustive the tests will need to be, which
often generates higher costs.

Many factors are involved in the SQM processes. There
is for, instance the budget to consider, system and software
requirements, client specification, team and project orga-
nization as well as integrity and reliability of software. If
bugs are found after release, the cost will be much higher to

correct them compared to eliminating bugs during the early
development process [Newman, 2002]. The adequacy of
a testing process or test suite is increasingly important for
the costs of the project as well as for the resulting software
reliability. Testing is in many cases also an elimination of
risks, which from a business perspective is sound as there
are cases of external software and product audits, for ex-
ample in the case of standards in aircrafts [Administration,
2003].

There are two different types of software verification:
dynamic and static. Static verification is, in general, per-
formed by not executing code and is often connected to a
white-box approach in practice. Dynamic Verification is
performed by executing code to a varying degree and is of-
ten connected to a black-box approach in practice. There
are also practices like code inspection that are harder to cat-
egorize as static or dynamic, because of its non-technical
nature. Code inspection is often just classified as a SQM
practice, as its focus is often on improving quality attributes
like readability and maintainability. However, it can often
be used as Software Verification practice as well, in order
to discover faults in the code. When it is included in Soft-
ware Verification, it is usually categorized as a static prac-
tice, since the code is not run [Bourque et al., 2013]. Code
Coverage is usually applied in white-box approaches, as it
gives insight into the code for its analysis.

At the birth of the IT-industry, a low number of devel-
opers were needed for software development. A project

1

could often involve only one or two developers. Following
the rapid development, projects became increasingly large
in terms of lines of code as well as in terms of the num-
ber of people involved. This has led to the need of larger
test suites, need of more exhaustive tests, larger teams and
more collaboration between teams in other offices, cities
and other countries [Fischer, 2001].

As the IT-industry evolved throughout the last century,
there was a need to rapidly evolve testing methods in order
to ensure quality of software. The significance of delivering
software with minimal errors has become more important
over the years [White, 1987]. However, since the bugs are
unknown until they are found, knowing the effectiveness of
a testing process in catching all the bugs is inherently dif-
ficult. This is where Coverage Testing comes in, not as a
means to test the software directly, but as a means of mea-
suring the performed testing itself [Horgan et al., 1994].
With help of coverage analysis, of both the code and the test
cases, the tester gets an idea of how much of the software
has been executed and how much has not. All depending
on what type of coverage the tester is interested in.

Coverage testing is not necessarily a guarantee of soft-
ware quality or that the code that was run does not contain
any bugs [Williams et al., 2001]. With knowledge about
the software and its structure, coverage measures can give
a good idea of how exhaustive testing of the software has
been and indirectly connects coverage to software quality.

Testing coverage is increasingly relevant for its close
connection to other related fields of fault detection and test-
ing, in general, as is the case with automatic test case gen-
eration and model checking.

This paper will, through a Systematic Literature Review
(SLR) [Kitchenham and Charters, 2007], condense and an-
alyze how testing efforts based on coverage are related to
the resulting software reliability and general software qual-
ity. It will also look into code coverage in general; its prac-
tical meaning and its interpretation. The research will use
holistic approach and will examine what code coverage ac-
tually is [Booth et al., 2003], how it is or should be inter-
preted and the different ways in which coverage is used in
the testing process.

By gathering the latest available research on the topic
and analyzing the state-of-the-art, this paper will enable the
parties of interest to understand how code coverage can af-
fect the outcome of a software and its testing process. The
information gathered can be of use by researchers and com-
panies that are in need of an aid to understand the testing
outcome. In addition, this paper will also suggest new an-
gles, missing research and further studies for improvement.

1.1 Research Questions

• RQ1 What is the state-of-the-art on the correlation be-
tween code coverage in software testing and software

reliability and quality?
• RQ2 What is code coverage, how is it interpreted and

how should it be interpreted?
• RQ3 Are there any combinations of testing practices,

with at least one of them being a coverage practice,
which are recommended for the Software Engineer-
ing industry as being more effective?

1.2 Paper Structure

This paper will have the following struture:

• Section 2 addresses the methodology that was used
for this research; the established framework that it
was based upon, the reasoning behind it and the pos-
sible threats to the validity of this research.

• Section 3 presents the results.
• Section 4 discusses relevant to the research questions

and their relation to each other. This discussion will
be based on the data that was gathered from the liter-
ature review.

• Section 5 concludes the research. The former sec-
tion is rounded off with conclusions or new questions
that justify further research in the field. Furthermore,
the state-of-the-art is analyzed from the perspective
of our topic and research questions, with suggestions
for future research.

Furthermore, this research paper comes with a supple-
ment document which contains the filled in Data Extraction
Forms described in Data Extraction Strategy, Section 2.4,
which connects strongly with both Section 2 and Section
3.

2 Methodology

This research project utilized a methodology that primar-
ily followed Kitchenham’s core framework for Systematic
Literature Reviews [Kitchenham and Charters, 2007]. The
research was customized to fit the authors’ needs and re-
quirements with emphasis on spent resources. Using a stan-
dardized method of analyzing input material for research,
was deemed by the authors to generate higher validity over
other literature selection and analysis methods. The pri-
mary benefits of utilizing the SLR approach were also that
information over a wide array of primary and secondary
sources was able to surface. Consistency in collected data
would provide evidence to support an assumption. Incon-
sistency in collected data would provide bases of further
research where the underlying principles of variation could
be examined. All information was to be treated equally
and this was judged by the authors to allow for an unbi-
ased analysis, effectively increasing validity together with
reliability of this study. This research did not utilize the
aspect of quantitative meta-analysis in SLR suggested by
Kitchenham [2004] due to the project resource limitations.

2

Another purpose of utilizing the SLR approach was to
not only aggregate existing literature and primary informa-
tion sources, but also to provide more evidence-based in-
formation as the cornerstone of this paper in order to in-
crease validity. Identification of gaps in current research
was deemed to become visible with this method. A com-
plementary benefit of using this method was to provide a
framework in which further research can be conducted.

2.1 Search Strategy

The aim for this step was to find as many primary studies
as possible by using an unbiased search strategy [Kitchen-
ham and Charters, 2007]. Five well-known and often used
databases, specifically for computer sciences and software
engineering, were included in order to uncover as many
studies as possible. Most of the chosen databases showed
peer-reviewed results only, which was an important quality
aspect of the research. Table 1 presents the used databases.

Trial searches were executed for the search strategy in
order to obtain mock results and a primary context of the
real search result [Booth et al., 2003, Brereton et al., 2007].
Based off a few papers that were found during the trial
searches, keywords were extracted for the search strategy.
The searches were performed manually for each search
term and the databases were traversed in the order in which
they were listed as seen on Table 1. The only filtering
and sorting criteria used for these searches were those pre-
sented in parentheses for each individual database in Table
1. Paired with the fact that the first 50 hits were considered,
the search terms were designed to be fairly ambiguous. The
authors chose to adapt to the holistic approach of the re-
search in order to not exclude possibly important sources
[Brereton et al., 2007].

The search terms that can be seen in Table 2 were found
to be adequate.

2.2 Study Selection Criteria

This step was to determine which studies were included
or excluded from the research by using criteria and a proce-
dure. The criterion below were the necessary criterion for
a paper to have the possibility of being included. Unless
a paper met these criterias it was automatically excluded
from the study. The procedure also described how selection
criteria would be applied and how disagreements would be
resolved [Kitchenham and Charters, 2007]. When it comes
to the authors having to make subjective assessments, as
described in inclusion criteria below, only two of the final
papers went through this step after careful investigation.

Inclusion Criteria:
• Published within a 20 year timespan (1993-2013)
• Peer-reviewed and published papers only. In cases

where doubts exists, the authors have the last word.
• Papers from the Software Engineering and Computer

Science fields only.

• Papers are available in English.
• Full papers are available.

Selection Procedures:
Step 1 Each author individually selected relevant papers

from the search hits according to the inclusion crite-
ria described previously and any selected study goes
through to Step 2.

Step 2 Each author read the introduction and conclusion
of each paper and ranked them based on relevance
(Yes, Maybe, No) in order to lower the amount of
studies to the 25 most relevant. This final quantity of
relevant papers was chosen arbitrarily based on the
available resources for this research project, as well
as the authors’ estimation of cost in terms of time for
the number of articles. Papers where both authors
had given a “Yes” went straight to step 3 while pa-
pers with only one of the authors had given a “Yes”
were discussed until a decision could be reached on
whether to include the paper or not. If any openings
among the final 25 papers still existed, the authors
considered papers with two Maybes. If openings still
remained, the authors closed the selection with the
number of articles that had gone through at this point.

Step 3 Each author read the papers in its whole, took notes
for internal use, and extracted data for each paper by
filling out the data extraction form defined in Table
4.

2.3 Quality Assessment

This research project’s main effort to do quality assess-
ment on the selected studies was embedded in the inclusion
criteria of the Study Selection criteria in Section 2.2. The
demands for peer-review and publication on the papers, as
well as the timespan of 20 years, kept the papers up-to-
date and helped achieve a minimum quality for the selected
papers. Since this research was considered to be an open-
ended and holistic research project, the authors did not be-
lieve that it was constructive to judge papers based on their
content in terms of ideas and reasoning for quality assess-
ment.

Using a quality assessment ranking, as Kitchenham and
Charters [2007] and Brereton et al. [2007] suggested, to
differentiate the final papers which were selected based on
quality was considered. However, Kitchenham was only
dealing with one kind of study. This enabled her to use
a quality ranking system such as DARE [Kitchenham and
Charters, 2007]. While this study accepts all kinds of stud-
ies that contribute to the understanding of the topic and the
research questions, it was not optimal to use such ranking
system as this would require correct identification of differ-
ent types of studies and implementation of different quality
ranking system for each type of study. In the process of
doing so, an additional avenue for human error that would

3

Figure 1: The figure summarizes the applied methodology for this research.

Name URL
IEEExplore http://ieeexplore.ieee.org/
ACM Digital library http://dl.acm.org
Google Scholar
(No citations, no patents)

http://scholar.google.com

Citeseer Library http://citeseer.ist.psu.edu
Springer Link
(Articles, Computer Science, En-
glish; Do Not include preview-only
content)

http://link.springer.com/

Table 1: Chosen databases

Search Term Synonyms
Code Coverage Test Coverage, Software Coverage
Coverage Testing
Software Quality Coverage Software Reliability Coverage

Table 2: Chosen Search Terms

4

threaten the validity of the research would be created. The
conclusion was therefore not to apply this kind of a quality
assessment method in this literature review. Having consid-
ered the resources allocated for this research project would
be scarce, additional time constraints could not be imple-
mented into the schedule and committed for just one part
of the method applied.

2.4 Data Extraction Strategy

The process of data extraction and the data extraction
form were based and designed on the guidelines for data
extraction put forth in Kitchenham and Charters [2007]
and was clear to both authors well in advance of this phase
of the research, just as Brereton et al. [2007] suggested.
Just as Kitchenham and Charters [2007] mentioned, the
authors of this paper filtered down the guidelines and sug-
gested steps to what was relevant for the topic, the research
questions, the type of research, as well as the size of the re-
search. The process was designed to include the following
steps:

1. Both authors extract and fill in a data extraction form
for each of the selected papers from the literature re-
view.

2. Both agree or disagree on the information of the data
forms.

3. Any disagreement is examined.
4. Record agreed final data.

The resulting template for the data extraction form can
be seen in Table 4.

2.5 Statistics from Study Selection

The statistics from the specified Search Strategy and
Study Selection Criteria, Sections 2.1 and 2.2 respectively,
are presented in Table 3. The data was collected after the
first and last step of the Study Selection procedure.

It was fairly clear from the numbers that there was a
lot of overlap between the separate databases. Given that
the authors actively rejected studies that had already been
found, both during Step 1 and before Step 2 in Data Ex-
traction Strategy, it can be clearly seen that latter databases
had much more difficulty to contribute in terms of num-
ber of studies. Based on previous experiences with these
databases, the authors had expected a database such as IEE-
Explore to initially give a considerable number of poten-
tially relevant hits. The much larger amount of selected
studies was heavily reflected by the fact that it was used
before other databases and the remaining databases’ lower
numbers reflected on that as well.

Some databases proved, much according to the initial as-
sumption of the authors, to be stronger or weaker than oth-
ers on our topic. Citeseer Library only contributed three
unique studies at the initial phase and at the end none of

those had been chosen as part of the total 25 most important
studies. While some databases did prove to be stronger or
weaker than others in terms of selected studies, the search
hit volumes presented in Table 3 should not necessarily be
seen as each database’s strength and potential, but rather
as its capacity to contribute with something new on top of
what all the previous databases contributed.

After Step 1 it could be seen that Google Scholar had
contributed ten unique studies to the selection pool, a fair
amount of studies considering it was being utilized after
both IEEExplore and ACM Digital Library. SpringerLink
performed slightly better than Google Scholar as the fifth
and last database. Following Step 3 of the Study Selection
procedure described in Section 2.2, search results showed
that the quantity of papers found initially did not always
correspond to an equivalent importance after filtration, as
can be seen in Table 3. While IEEExplore had barely one
sixth of the research papers found, Google Scholar had
half of its initial studies and has more than twice as many
as SpringerLink and almost as many as ACM Digital Li-
brary. This confirmed to the authors that including Google
Scholar was a good choice, despite the initial notion of the
authors to increase validity and reliability risks slightly.

2.6 Data Analysis

The first step was to read the papers individually, taking
notes and filling out the data extraction forms specified in
2.4. The notes were part of the internal process followed
by the authors and were not published in this paper unlike
the data extraction forms. The reasoning behind the ad-
ditional note-keeping was that the forms were good struc-
ture on what each individual paper contributed to each re-
search question. However, they were inadequate for taking
more general notes about the papers, demanding more ex-
tended notes useful for designing the discussion and con-
clusion parts of the paper. The authors then discussed and
modified the notes in the data extraction form according to
Section 2.4 Data Extraction Strategy . During this phase,
there were discussions of what the collective trend of re-
sults were, what patterns and hypothesis, what conclusions
could be made out of the data and what relevance the data
had with the research questions as defined in Section 1.1.

2.7 Threats to Validity

From the initial stages of the methodology design to the
completion of the project, the risks - or threats - to the va-
lidity of the paper’s methods as well as its outcome were
considered and discussed. This section presents what the
authors believe to be the greatest of those risks. The presen-
tation is based on the risk categories presented in Runeson
and Höst [2009], meaning Construct Validity, Internal Va-
lidity, External Validity and Reliability. In the case of this
research project and its perceived risks, only two of these
categories were needed; Construct Validity and Reliability.

5

Database Sel. Proc. – Step 1 Sel. Proc. Step 3
IEEExplore 68 11
ACM Digital Library 21 7
Google Scholar 10 5
Citeseer Library 3 0
Springer Link 14 2
Total 116 25

Table 3: Number of studies in contention after Step 1 and 3 of Selection Procedures

2.7.1 Construct Validity

By conducting this research based on a holistic approach
additional risk was added to Section 2.1. The risk implied
that the search strategy had to be ambiguous enough to en-
compass all possibly relevant data within the topic and at
the same time, search terms could not be specific enough
to guarantee that all highly relevant sources had been found
within the number of search hits looked at. The authors
had tried to counteract the increased risk factor by look-
ing at the search hits and considering fifty of them for each
search term in the specified databases. To the best knowl-
edge of the authors, this number of considered search hits
for each search term was to be considered a rather large
size for the amount of resources available to this research
project. While keeping in mind how the search hits for the
different terms were expected to overlap considerately at
that number of search hits, this research design was judged
to counteract or even negate that risk.

2.7.2 Reliability

Considering how risks increase as soon as the human fac-
tor enters a process, there was always the risk that none of
the authors identified a potentially interesting paper as de-
scribed in Section 2.2 Study Selection Criteria. Another
risk was that papers which were not selected could have
been included in the twenty-five top papers. In order to
counteract these risks the search and selection processes
were based on individual work with a comparison and dis-
cussion at the end for the authors to reach a final agree-
ment. However, it is difficult or even impossible, to negate
the risks of a human error. Especially considering that they
are counteracted by actions that include more human sub-
jectivity.

Along the same lines, human errors comes with risk
stemming from the use of Google Scholar as one of the se-
lected databases. Since contents of Google Scholar do not
include peer-reviewed and reliably published items only,
the authors were bound to find cases that left some doubt
on those points. Seeing as how those were important fac-
tors of the research’s inclusion criteria for the Study Se-
lection described in Section 2.2, as well as a fundamental
part in the Quality Assessment presented in Section 2.3,
that additional risk was something to take very seriously,
due to its possible impact on the results and overall valid-
ity of this research. Therefore, in such cases, the authors
agreed to base such decisions on publication source and ci-
tations in reliable sources. In any case where such a paper

did not clearly contribute to the research, the paper was ex-
cluded. The authors believed this to be an acceptable trade-
off since Google Scholar tends to give the user an exhaus-
tive overview of available material across several sources,
even from the less known databases. Fortunately, no such
action was necessary during this procedure.

3 Results

This section presents the results from the Methodology
up to Data Analysis as well as a short summary of the con-
tents of the selected papers.This paper has been submitted
with a separate Supplementary Document which contains
all the filled out data extraction forms that are described in
Section 2.4.

3.1 Results concerning Research Question 1

Most research on the topic concluded that there was
some form of correlation between code coverage and soft-
ware quality, albeit indirect in some cases [Malaiya et al.,
2002, Veevers and Marshall, 1994, Chen et al., 1996, Pi-
wowarski et al., 1993, Chen et al., 1997, Krishnamurthy
and Mathur, 1996, Lyu, 2007]. Many researchers found
that few studies were to be found regarding the funda-
mental relation between code coverage and quality (often
measured in terms of failures and defects) [Mockus et al.,
2009]. This conclusion was often based on software relia-
bility being interpreted and incorporated as the main part of
software quality. Many of the collected conclusions were
based on intuition, empirical observations, isolated cases
and very little in the form of facts and hard data, making
them inconclusive Smith and Williams [2008] and Hamlet
[1994]. Piwowarski et al. [1993] concluded that the corre-
lation is in fact not direct, a case found by Krishnamurthy
and Mathur [1996] as well. Furthermore, the correlation
between code coverage and software quality did not work
in one direction only. Testability can have a severe impact
on coverage level achieved by a well-designed test suite Li
[2005].

The correlation factor between code coverage and soft-
ware reliability does in fact vary not only with the level of
code coverage achieved, [Chen et al., 1996, Krishnamurthy
and Mathur, 1996], or the type of code coverage criterion
applied to a specific piece of code, but also with certain as-
pects of the code, like code complexity, code structure and
its operational profile [Veevers and Marshall, 1994, Gupta

6

and Jalote, 2008, Chen et al., 1996, Garg, 1994, Del Frate
et al., 1995, Mockus et al., 2009]. Gupta and Jalote [2008]
suggests that these factors should be considered when in-
terpreting the results of the coverage analysis, something
which is partly supported by Marick [1999].

According to data found, software quality and soft-
ware reliability had different definitions depending on what
study is examined. While Chen et al. [1996] and Lyu [2007]
mentioned that reliability of a program is defined as prob-
ability that the program does not fail in a given environ-
ment during a given exposure time interval and that it is an
important metric of software quality. Others such as Veev-
ers and Marshall [1994] used reliability as a function of
an idealized coverage metric. Many, if not most of the re-
searchers, used code coverage as an indicator of software
quality and reliability [Smith and Williams, 2008, Horgan
et al., 1994, Gittens et al., 2006].

One popular definition of reliability was to use fault de-
tection as a basis [Horgan et al., 1994, Chen et al., 1996,
Piwowarski et al., 1993], but it was not the only definition
[Del Frate et al., 1995, Lyu, 2007]. Garg [1994] actually
separated the study’s implicit definition of reliability from
fault detection, and found that code coverage had a greater
correlation with this definition of reliability than it had with
fault detection, something that Lyu [2007] had found as
well. In fact, an increase in fault detection did not seem
to guarantee an increase in neither reliability nor code cov-
erage [Krishnamurthy and Mathur, 1996, Del Frate et al.,
1995]. Cai and Lyu [2005] even claimed that there was no
direct correlation between fault detection and code cover-
age at all.

However, Namin and Andrews [2009] found that the
correlation between code coverage and fault detection in-
creased to a certain degree when test suite minimization
was performed on the test suite, keeping the number of
test cases to a minimum for the coverage level. Some re-
searchers had even found that by increasing fault detec-
tion, improving testability and test suites [Horgan et al.,
1994, Marick, 1999, Li, 2005, Chen et al., 1996], reliability
tended to increase. Chen et al. [1996] found that the relia-
bility of a software only increased when a number of faults
were removed from a software. Horgan et al. [1994] stated
on the other hand that a high level of coverage (between 80-
90% coverage) was a crucial step towards software quality
and reliability. This was supported by Barnes and Hop-
kins [2007], indicating that software quality could not be
trusted if coverage was low, and by Mockus et al. [2009],
mentioning that an increase in coverage tended to result in
an increased reliability. Many results found by Lyu [2007]
concluded that high code coverage tends to add high soft-
ware reliability and an increase in reliability comes with an
increase in at least one code coverage measure.

However, Horgan et al. [1994] also saw that there was
a correlation between the number of faults detected during
testing of a version and coverage of a program. Horgan

et al. [1994] did not see the correlation during various test-
ing conditions due to the number of faults detected not be-
ing sufficient enough to draw such conclusion. Cai and Lyu
[2005] showed on the other hand that the effect of code cov-
erage on fault detection varies depending on the testing pro-
file and that the correlation is high when it comes to excep-
tional test cases and low when it comes to normal testing.
Malaiya et al. [2002] highlighted that software reliability
is affected by factors such as testing strategy, the relation-
ship between calendar time and execution time and testing
of rarely executed modules by creating a model. Their re-
search also states that even though one may reach 100%
code coverage it is not necessary that all faults have been
found. Lyu [2007] added that the knowledge and train-
ing a software engineers also affected software reliability
as practitioners tend to perceive software reliability analy-
sis as a non-productive task and are often suspicious about
the reliability numbers obtained by the available reliability
models. Since those numbers, as reliability achievements,
obtained from different projects could rarely be validated.

This research project also found that there has been con-
siderable research in growth models [Chen et al., 1997,
1996, Veevers and Marshall, 1994, Inoue and Yamada,
2004]. One type of growth models that have been given a
lot of attention are the Software Reliability Growth Mod-
els (SRGMs), which attempt to predict the evolution of
software reliability for software under testing. Chen et al.
[1997] enforced the idea that there is a correlation between
software reliability and code coverage by showing that a
SRGM approach based on both time and coverage not only
produced more accurate predictions, but also mitigated the
general SRGM tendency to make overoptimistic predic-
tions. This disadvantage in more general SRGMs is due
to their omission of a testing method’s natural limitations
as the code coverage level increases to higher levels. How-
ever, Li [2005] voiced concerns about the hurdles in getting
SRGMs used in industry settings, starting with the sheer
number of existing models that have all justified their exis-
tence in one way or another, and without any indication
of which one to choose. In some cases however, these
growth models are claimed to be adapted for easy under-
standing and usage, like the model presented in Malaiya
et al. [2002].

3.2 Results concerning Research Question 2

Smith and Williams [2008] refers to previous work to
describe code coverage indirectly by indicating that ”there
should be no possibility that an unusual combination of in-
put data or conditions may bring to light an unexpected
mistake in the program”. Lyu [2007] described code cover-
age as an indication of how completely a test set executes
a software system under test, therefore influencing the re-
sulting reliability measure, and Cai and Lyu [2005] pro-
posed code coverage an indicator of testing effectiveness
and completeness. However, Namin and Andrews [2009]
points out that it is not always true that code coverage is a
good indicator of effectiveness, and it is generally only true
when size is controlled for.

7

Marick [1999] states a strong belief in that code cover-
age analysis in software testing is of great value and can
help practitioners improve the resulting software quality.
As was stated in the paper ”they’re [coverage tools] only
helpful if they’re used to enhance thought, not replace it.”.
However, Marick [1999] insists that code coverage is ap-
plied and interpreted incorrectly more than it is not. This
incorrect usage of code coverage stems to a large degree
from insistence of having coverage results be a direct in-
dicator of software reliability and quality and making the
coverage numbers a main goal of the test suite design pro-
cess. Marick [1999] instead means that code coverage does
not serve as an absolute ruling of quality, but as a guideline
that somebody with domain experience should be able to
interpret as an adequacy criteria for the testing, as well as
use the data to improve general test suite design if any flaws
exist. In essence, test suite design should be done without
focusing on coverage goals, and the results from the cov-
erage analysis should reflect on the test suite adequacy and
not on software quality per se, according to Marick [1999].
Chen et al. [1996] supports this line of thought, stating that
coverage data from the testing process should be used as a
guideline for the testing process’ general effectiveness and
efficiency and not as an absolute ruling of quality. Mean-
while, Kessis et al. [2005] refers to Marick [1999] as well
when stating that coverage analysis is often done wrong,
having the coverage numbers be the absolute goal of the
testing process in respect to code coverage. Furthermore,
both Williams et al. [2001] and Barnes and Hopkins [2007]
also reason along the same lines, stating that 100% cover-
age on its own is not any kind of guarantee and does not
tell the tester anything about the code. It is suggested that
even having two test suites, the same coverage metric and
the same coverage level, it does still not mean that the test
suites are equivalent, neither in effectiveness nor in effi-
ciency.

Possibly being connected to the interpretation and us-
age suggestions by mainly Marick [1999], Hamlet [1994]
presents a theory proposing that reliability or ”trustworthi-
ness” actually consists of two separate parts; the techni-
cal part that could potentially be measured based on e.g.
mean time to failure (MTTF) or fault detection and the sec-
ond part which is called ”dependability” in Hamlet [1994],
which is the part that corresponds to the intuitive property
of ”trustworthiness”, the part that is hard to measure and
open to interpretation and estimation, although its clear de-
pendency on the technical part.

3.3 Results concerning Research Question 3

The results have shown that there is not one particu-
lar practice that is being considered substantially superior
when it comes to testing. Since each testing practice had
been tailored for each research, they all had their own pros
and cons. A research by Gupta and Jalote [2008] devel-
oped a tool which the group used to look into each code
coverage type and used mutation analysis to see the effec-
tiveness and efficiency of each type. During the research,
the group found that predicate coverage showed the best

effectiveness but required more testing effort than block
coverage and branch coverage. While block coverage took
least testing effort at a lower effectiveness, it was found that
it had higher efficiency but with greater variability, possi-
bly making it ill-suited to measure the reliability of a pro-
gram. Barnes and Hopkins [2007] developed a framework
of routines, in terms of reduced collection of datasets, for
the LAPACK suite. The test suite minimization allowed the
researchers to greatly lower the cost, in term of CPU-power
and time, when the suites were executed. Another research
Chen et al. [1996] presented a technique which models the
failure rate with respect to both test coverage and testing
time. Such failure rate was applied to a software reliability
growth model (SRGM) and reliability overestimation was
observed. The new approach by Chen et al. [1996] helped
the SRGM make more accurate predictions, as well as re-
veal the efficiency of a testing profile which helps the de-
velopers conduct a more effective testing scheme. In other
words, it improved the applicability and performance of
the SRGM. Namin and Andrews [2009] on the other hand
found that coverage could be correlated with effectiveness
when size is controlled. By randomly generating test suites
and analyzing plotted correlation between coverage and ef-
fectiveness as the size was held consistent, Namin and An-
drews [2009] could then see if there were any consistent
patterns. The result was not very clear but many test suites
indicated that the correlation was high and seldom close to
zero.

Gittens et al. [2006] suggests that the correlation be-
tween code coverage and software quality starts weaken-
ing after reaching 70% code coverage, while Horgan et al.
[1994] concluded that 80%–90% code coverage had shown
to be crucial in order to achieve software reliability and
software quality in general. However, work has been done
that claims no diminishing returns past 80% code cover-
age, though the cost tends to start increasing exponentially
[Mockus et al., 2009]. Piwowarski et al. [1993] concluded
that 70-80% is the critical point for code coverage in terms
of cost efficiency, even when the coverage metric used is
statement coverage. Using and trusting in relatively weak
coverage metrics like statement, line- or even block cov-
erage is something that Malaiya et al. [1994] warns about,
instead suggesting that 80% branch coverage is often ad-
equate. Kessis et al. [2005] further states that the larger
and more complex the code base is, the more infeasible it
is to achieve code coverage levels around 100%. However,
Marick [1999] goes on and suggests designing test suites
aiming for 100% coverage is not only extremely cost inef-
fective, but also waters down the usefulness of the coverage
analysis in order to achieve it, making the test suite uni-
formly weak at finding flaws and omissions in the testing
process.

Because of cost efficiency concerns, practitioners some-
times do not strive for high code coverage, since coverage
analysis is still often seen as an indirect, non-productive
task in the projects, with no immediate returns [Kessis
et al., 2005]. Piwowarski et al. [1993]’s data does suggest
though, that up until reaching the critical point for code

8

coverage, it is in general worth the resources spent improv-
ing code coverage. It has also been suggested that testers
should consider using combinations of different coverage
criterion, in order to more easily find different types of
faults [Kessis et al., 2005]. However, Marick [1999] does
point out that coverage analysis is more useful to developer
testers than it is for general testers, since the latter have ob-
jectives more based on requirements-level or specification-
level omissions and this type of errors would be caught less
effectively by coverage analysis, if they are caught at all.

The Smith and Williams [2008] survey also shows that
even in the industry, many practitioners do not use code
coverage as a way of measuring testing adequacy in unit
testing, even though a considerable part of them use code
coverage to some extent in testing. Some simply use it be-
cause it is obligatory, others use it out of habit and indoctri-
nation without having considered its meaning for the test-
ing and some actually use it with clear intent, just not as a
stopping criterion in testing.

Code prioritization techniques seem to be among the
most popular approaches and practices in order to try to op-
timize test results with code coverage properties [Li, 2005].
Marick [1999] used code prioritization in the step-by-step
test suite design approach and Kim [2003] uses it as well in
the proposed coverage analysis method. Kim [2003]’s pro-
posal consists of assigning coarse or detailed coverage test-
ing requirements to modules depending on their proneness
to contain faults in the past, optimizing the effectiveness
and efficiency of the testing process based on the statement
that 70% of bugs come from only 20% of modules. It has
also been interpreted from data that code coverage may be
more efficient in finding faults in exceptional test cases than
in normal test cases. However, it requires domain knowl-
edge and code prioritization experience. The better this is
input to the test suite design is, the better the potential ef-
fects of it on the testing process and on the software. How-
ever, the danger in this is that the opposite also applies [Cai
and Lyu, 2005].

Another fairly popular approach concerning code cover-
age in the testing process is test suite minimization, as used
by e.g. Barnes and Hopkins [2007] . Test suite minimiza-
tion is done to improve the efficiency of a test suite without
giving up much of its original effectiveness, effectiveness
that is measured by code coverage.

4 Discussion

This Section discusses the results from the Literature
Search and Selection Procedure, described in Sections 2.1,
2.2 and in Table 1, including some statistics. It also dis-
cusses the contents of the state-of-the-art on these topics,
the selected papers, if there are any patterns in the set of
papers and how they relate to each other.

4.1 Discussion concerning Research Ques-
tion 1

In the discussions conducted in the literature concerning
the topic of Research Question 1, as defined in Section 1.1,
quite a few assumptions are made, with special emphasis on
those that conclude that there is some kind of correlation
between code coverage and software reliability [Malaiya
et al., 2002, Veevers and Marshall, 1994, Chen et al., 1996,
Piwowarski et al., 1993, Chen et al., 1997, Krishnamurthy
and Mathur, 1996, Lyu, 2007]. However, Mockus et al.
[2009] pointed out that many researchers have observed
that there is little to no actual proof to support a direct cor-
relation. In fact, many have found that the correlation factor
between the two varies by quite a bit, being influenced by
factors like e.g. code complexity, code structure and its op-
erational profile [Veevers and Marshall, 1994, Gupta and
Jalote, 2008, Chen et al., 1996, Garg, 1994, Del Frate et al.,
1995, Mockus et al., 2009], among other factors.

Many of these conclusions or assumptions about exis-
tence of a direct correlation are based on intuition and em-
pirical observations, making them very inconclusive, as
stated in Smith and Williams [2008] and Hamlet [1994].
Still, research based on this unproven premise continues to
be performed. However, the authors of this paper agree that
some form of varying, indirect correlation between code
coverage and software reliability seems to exist.

Another area which has received a lot of attention is that
of growth models [Chen et al., 1997, 1996, Veevers and
Marshall, 1994, Inoue and Yamada, 2004], more specifi-
cally SRGMs. The research into SRGMs has reached the
same conclusion of the previous papers ([Malaiya et al.,
2002, Veevers and Marshall, 1994, Chen et al., 1996, Pi-
wowarski et al., 1993, Chen et al., 1997, Krishnamurthy
and Mathur, 1996, Lyu, 2007]) , as models based on both
time and code coverage have been able to make more ac-
curate estimations and avoid the tendency that SRGM’s not
based on coverage usually have tendencies of being overop-
timistic.

However, the authors of this paper found it surprising to
discover while reading the literature that such a basic build-
ing block in this topic, and in fact in the definition of Soft-
ware Quality in general, as the term ”reliability” seems to
not be clearly defined between the different papers. Some
didn’t bother defining it and probably assumed that the term
”reliability” was clear enough, some defined it based on
fault detection Horgan et al. [1994], Chen et al. [1996],
Piwowarski et al. [1993] and others on MTTF [Del Frate
et al., 1995, Lyu, 2007]. While both those definitions can
be argued to be close to the traditional definition of relia-
bility, it is still cause for confusion, as everyone is not writ-
ing about the same reliability. The question is what legiti-
macy one can assume that this work has, because while it
does not invalidate the work done within the actual research
projects, if the premise is wrong, the conclusion may be
wrong. The authors of this paper believe that such an im-
portant term in Software Engineering should not be defined

9

differently from one paper to another and so often that such
a pattern is easily observable. Considering that there is an
ISO standard for software quality [ISO, 2013] as well as the
IEEE definition of software quality [IES, 1998] and SQM
best practice, the authors of the collected data should have
clearly referred their definition of quality and reliability to
the standards as it otherwise is a rather ambiguous term and
can cause a lot of confusion. The actual definition of relia-
bility thus must be discussed due to the large amount of re-
search concerning software reliability and software quality.
It is therefore essential that studies are generally referring
to the same definition of “reliability” and “quality”. Defin-
ing software reliability and software quality in general is
however beyond the scope of this study.

Since software reliability was often based on fault detec-
tion in the papers included in this research project, the au-
thors found it interesting that Garg [1994] and Lyu [2007]
actually found that code coverage as a greater correlation
with what Garg [1994] called ”true” reliability than what
”true” reliability had with fault detection. Other research
papers have supported these findings as well [Krishna-
murthy and Mathur, 1996, Del Frate et al., 1995], and one
even states that there is no correlation between code cov-
erage and fault detection [Cai and Lyu, 2005]. This poses
another interesting question in respect to the research done
and the results obtained where software reliability has been
based on fault detection: Have these research papers even
been using software reliability? This situation is quite un-
expected considering the number of papers that it could af-
fect the results of.

4.2 Discussion concerning Research Ques-
tion 2

Before this discussion addresses how code coverage is be-
ing used and how it should supposedly be used and in-
terpreted, it’s important to discuss what code coverage is.
Fortunately, the definition of code coverage seems to be
fairly straightforward and there seems to be consensus as
far as the selected research papers go, unlike the definition
of software reliability which was presented in Results con-
cerning Research Question 1 and discussed in Discussion
of Research Question 1, Sections 3.1 and 4.1 respectively.
While not many give it enough thought to describe it, and
those that do sometimes rather relate it to the code coverage
goals [Cai and Lyu, 2005] or describe the reason for per-
forming thorough testing [Smith and Williams, 2008], there
are those that describe it more traditionally as a way of eval-
uating the thoroughness and completeness of testing [Lyu,
2007]. The authors of this paper have also noticed that in
the reasoning, it is the latter description that researchers
seem to use, as a way of specifying what has been covered
at least once by testing and what has not. In the search for
software engineering practices that would improve and as-
sess software quality in a product before release, using code
coverage in testing becomes an intuitively justified choice.
In essence, the main argument for coverage analysis has al-
ways been not what it says about the code that is run during
testing, but what it would not say about the testing if code

coverage was not analyzed [Hamlet, 1994].

When it comes to how code coverage is used and inter-
preted, it was presented in Results concerning Research
Question 2, Section 3.2, how claims are stated in Mar-
ick [1999] of how code coverage is often used and inter-
preted incorrectly in practice. Marick [1999] even gives
some very good examples, counter-proposals, and reason-
ing about usual mistakes that are done with code cover-
age. Essentially, the argumentation and reasoning in Mar-
ick [1999] is connected to this paper’s first research ques-
tion, what the correlation is between code coverage, soft-
ware reliability and software quality in general. The in-
terpretation made by the authors of this research paper is
that this argumentation in Marick [1999] follows the line
of thought that there is no direct correlation between code
coverage and software reliability. While many studies have
concluded that there is indirect and varying correlation be-
tween code coverage and reliability, it might be because
of this oversimplification and insistence that says that code
coverage is correlated with reliability, that code coverage is
used in what Marick [1999], with support from Chen et al.
[1996], Kessis et al. [2005] and partially from Williams
et al. [2001], Barnes and Hopkins [2007], states are incor-
rect ways.

What this paper’s authors found most interesting in this
case was that it wasn’t just in the industry that this in-
sistence was done. In fact, excluding the papers [Mar-
ick, 1999, Chen et al., 1996, Kessis et al., 2005] that actu-
ally brought up this question, many of the selected papers
seemed to approach the subject of the correlation between
code coverage and software reliability, as well as the usage
and interpretation of code coverage in software testing, the
exact way that was argued against in Marick [1999]. One
could argue that it is being done for academic purposes in
some cases, which may be true, but in some papers more
than others it’s quite clear that code coverage is being seen
as a direct indicator of reliability or effectiveness (maybe
add reference).

Despite the claimed misuse of code coverage, Marick
[1999] expresses strong belief in code coverage and the
power of coverage analysis in software testing. Instead of
using code coverage as an indicator of reliability (or qual-
ity) and make it into the absolute goal, it is suggested that
code coverage should be used for evaluating and analyz-
ing the test suite, in order to interpret the results with do-
main knowledge and evaluate the test suite. With other
words, code coverage relates directly to test suite design,
which in turn may be the indirect link between code cov-
erage and software quality. By having a well-designed test
suite for the purposes and goals of the testing activities,
one may well achieve the quality and reliability goals that
were being aimed for. Marick [1999] did not explicitly
define what a well-designed test suite is and even stated
that it would be highly influenced by the code itself, re-
quiring domain knowledge. However, it can be interpreted
from its discussion and argumentation that a well-designed

10

test suite should aspire to cover all the major parts of the
code’s structure, adding coverage of features, coverage of
code segments with higher complexity or fault probability
and tests of recoverable errors to that. A well-designed test
should not include test cases which only exist to increase
code coverage. Marick’s own approach also suggests using
a risk-based code prioritization technique in order to focus
the project’s resources where they are of most use.

Another interesting branch of this discussion is the ob-
servation in Li [2005], presented in Results concerning Re-
search Question 1, Section 3.1, claiming that while code
coverage may only be indirectly correlated with reliability
and quality, the code coverage level that a well-designed
test suite can achieve is severely bottlenecked by the soft-
ware’s testability attribute. It is often hard to satisfy high
code coverage goals of a software with low testability, even
if the test suite is well-designed. Naturally, like when code
coverage is an absolute goal, it is possible to reach the level
one wants by adding more test cases which increase the
coverage level. However, as this paper presented in Re-
sults concerning Research Question 1, Section 3.1, Marick
[1999] claimed that this kind of approach to test suite effec-
tiveness only waters down the capabilities of the coverage
analysis of finding flaws in the test suite design, as the test
suite will become uniformly weak and be unable to give
any hints about which parts that needs to be improved.

Finally, and keeping the previous discussion in mind,
these aspects and interpretations of code coverage use may
be connected to the discussion in Hamlet [1994] of two
separate parts of what people intuitively define as the term
reliability, or ”trustworthiness”. In essence, the reasoning
in Hamlet [1994] divided reliability into a technical part,
this is the part that can usually be measured based on e.g.
MTTF or fault detection, and the intuitive part which was
called ”dependability” and which is open for estimation and
interpretation of objective results from the technical parts
on which it is dependent. The latter part can usually not
be objectively measured, without taking utilizing measure-
ments from the technical part. While the results and num-
bers from the technical part may be objective, just as is the
case with other objective numbers, they may be misinter-
preted. This is their danger, when they’re misinterpreted.

It is the belief of this research paper’s authors that prac-
titioners often define reliability as the second part of the
definition in Hamlet [1994], the intuitive part. As the na-
ture of estimating or testing a software for reliability makes
it practically impossible to come up with definitive results
of the reliability, as the measuring methods do not know
when adequacy or maximum level is reached, this turns the
attempts of measuring reliability and quality into code cov-
erage measurements related to e.g. MTTF and fault de-
tection, with other words, the first part of the definition.
Having made such a decision will still not be able to guar-
antee that the results are definitive either, but at least here
objective numbers and results are obtained. This may have
led parts of the field into eagerly trying to correlate code

coverage directly with reliability, in order to reach some re-
sults in their search for an objective result for reliability,
even though research seems to have found little to no hard
facts confirming that they’re directly correlated [Smith and
Williams, 2008, Hamlet, 1994]. In fact, as was presented
in Results concerning Research Question 1, Section 3.1,
most research either concludes or finds strong indications
that the correlation between code coverage and reliability
is varying and indirect [Malaiya et al., 2002, Veevers and
Marshall, 1994, Chen et al., 1996, Piwowarski et al., 1993,
Chen et al., 1997, Krishnamurthy and Mathur, 1996, Lyu,
2007].

Based on the discussion in Hamlet [1994] about the defi-
nition of ”dependability” within reliability, one has to con-
sider if this leads to the discussion in Marick [1999], about
how code coverage should be used for test suite adequacy
and improvement. Perhaps the use of non-definitive mea-
surements from within the technical part of the definition
of reliability in Hamlet [1994] and using it as a definitive
result of ”dependability” is what created the insistence in
both the industry and in parts of the academic world that
code coverage and software reliability are directly corre-
lated, even though no proof of that exists, as was stated
previously in the discussion.

4.3 Discussion concerning Research Ques-
tion 3

This SLR has found that the state-of-the-art research on the
topic of research question 3, as defined in Section 1.1 does
not seem to have any clear suggestion for testing practices
that also include code coverage practices that are recom-
mended as being more effective. While it is true that this
was the research question out of 3 that this study focused
less on, the authors of this paper still believe that by being
so close to the other 2 research questions and by applying
such an wide search strategy, as was described in Section
Search Strategy, 2.1, there is no reason to believe that they
were missed by the literature search. In fact, after having
researched the previous 2 research questions it seems fairly
natural that this is the case. As the most effective testing
practices already vary a lot depending on the software that
is to be tested, adding in the code coverage aspect probably
increases the variability even more, as we have presented
in Results concerning Research Question 1 and Discussion
about Research Question 1, Sections 3.1 and 3.2 respec-
tively, that there are many important factors that can change
the correlation factor between code coverage and fault de-
tection, effectiveness, reliability and even code coverage in
general.

As for the patterns that were observed in relation to re-
search question 3, as defined in Section 1.1, based on the
25 papers that were included in this research paper, code
prioritization was the most popular suggested practice to
perform in unison with code coverage practices in the test-
ing process [Li, 2005, Marick, 1999, Kim, 2003]. This
approach was used both to increase effectiveness of the

11

test suite and increase its efficiency as well. Kim [2003]
added that in general, 70% of the faults exist in 20% of
the modules. This means that with adequate code prioriti-
zation one should be able to increase testing effectiveness
in regard to fault detection by focusing more resources on
the error-prone modules and increase efficiency by focusing
less on modules that are less error-prone. It should be men-
tioned that this study was focused on large-scale industrial
projects and clearly states that its results do not claim that
the suggested approach would work on software projects
of any size. The disadvantage of these approaches as far
as recommending it as part of a systematic testing method
is that code prioritization usually requires considerable do-
main knowledge and experience. The more the better. The
results and effect on the software and the testing process
will always greatly depend on this input to the test suite de-
sign, for better and for worse results. This adds quite a lot
of requirements, subjectivity, and potential risk to a very
central part of the testing process, making it a very risky
general practice recommendation. However, with the right
people involved, the authors of this paper believe it could
have very good results in achieving its general goals.

Another proposed testing practice to use in unison with
code coverage was test suite minimization. This test-
ing practice was mostly proposed in conjunction with
large-scale, complex software systems Barnes and Hopkins
[2007], where increased efficiency without sacrificing ef-
fectiveness is of high value. It is also proposed for aca-
demic purposes, e.g. when one is trying to measure the cor-
relation between code coverage and fault detection [Garg,
1994, Lyu, 2007]. For this latter purpose it works well,
however the interesting thing is that it was argued in Namin
and Andrews [2009] that test cases that don’t add any ad-
ditional coverage to the test suite and just run part of the
code in a different way, may manipulate the correlation re-
sults by finding additional bugs that the first run through
that code piece did not find. Keeping in mind the discus-
sion about correct use and interpretation of code coverage
practices in Marick [1999] which was discussed in Discus-
sion of Research Question 2, Section 4.2, one should not
have code coverage as an absolute goal for the test suite.
The main goal should be having a good test suite and test
process, which is more likely to be achieved if one focuses
on designing a good test suite for the software at hand. If
there are test cases that have proven themselves and their
ability to find unique faults, why then remove those test
cases? Intuitively, unless the cost in terms of lower effi-
ciency is so high that the potential fault detection ability
of these test cases makes them too expensive to be worth-
while, it seems counterproductive to exclude them from the
test case according to this paper’s authors. In fact, what is
happening in such a situation is probably that by giving the
test suite these redundant test cases, the test suite design-
ers have unwittingly given it the capability of partly per-
forming testing according to another coverage criteria and
perhaps even a more thorough one. In fact, trying different
combinations of coverage criterion is even something that
Kessis et al. [2005] suggested in order to more easily find
different types of faults.

However, because of cost efficiency concerns, practi-
tioners sometimes see code coverage or the testing phase
in general as a time consuming, non-productive task with
no imediate returns [Kessis et al., 2005], even though the
data in Piwowarski et al. [1993] seems to suggest that until
reaching the critical point for code coverage in terms of its
trade-off between effectiveness and efficiency, it is gener-
ally worth the resources spent on improving testing results
and code coverage measurements.

Some data was found concerning how the different cov-
erage criterion generally compare, excluding all the other
possible factors that were mentioned at the start of this dis-
cussion. Several suggestions about the coverage criteria
and coverage level that different researchers believe to be
optimal in general have been suggested. Note however, that
in Malaiya et al. [1994] a warning is put forth concerning
the use of the weaker coverage criterion, like statement-,
line- and even block coverage.

In terms of coverage level suggested, it generally ranges
between 70% and 90% with varying criterion. Piwowarski
et al. [1993] suggested that 80% branch coverage is gen-
erally enough, unless one knows that the software is very
reliability-dependent and one needs to aim for higher relia-
bility assurance than just reaching the critical point in cov-
erage analysis between cost and effectiveness. These gen-
eral recommended coverage levels are somewhere around
what the authors of this paper imagined they would find,
after consulting industry contacts prior to conducting this
study.

In terms of criterion, it ranges from statement- and line
coverage, through block coverage and up to branch- and
predicate coverage. Other popular criterion used in re-
search are MC/DC coverage, dataflow criteria like c-use
and p-use, and even up to the level of path coverage. Of
course, the more thorough the criterion and the bigger size
and more complex the software, the faster these more ex-
pensive criteria get out of hand in terms of cost scalabil-
ity. However, it was curious to notice, not only in the pa-
pers used in this research but in many more papers that
were looked at during the selection procedure described
in either Section 2.2 or Table 1, how these selected cri-
teria have changed throughout the years. The authors of
this paper consider if, perhaps in the future, hardware per-
formance, coverage criterion theory and algorithms will
have improved to the point where a coverage criteria like
path coverage may be perfectly feasible to perform even in
large-scale, complex software systems, just as block- and
branch coverage have become. As path coverage is consid-
ered to subsume all the previously mentioned criterion, that
may be the point where a clear answer can finally be given
on which coverage criteria to use.

5 Conclusions

This research paper applied a (SLR) where it took a
holistic approach to explore code coverage and its correla-

12

tion with software reliability. Furthermore, as a literature
review, it should analyze and summarize the state-of-the-art
on these topics and as a study made with a holistic approach
it is the actual exploration and discussion of the topic that
is the main contribution. Nevertheless, the authors did nat-
urally arrive at some conclusions and thoughts stemming
from the Discussion (Section 4) as well. Since the pre-
sentation and discussion of the topics has been divided by
research question, this section will follow that same layout.

• RQ1 What is the state-of-the-art research on the correla-
tion between code coverage in software testing, soft-
ware reliability and software quality in general?

From the discussion, the authors can conclude that the
selected papers show that there is no direct correlation be-
tween code coverage and software reliability. On the other
hand, there seems to be very strong indication that there is
an indirect correlation between the two as a relatively large
amount of the selected papers have reached this conclusion.
Additionally, even SRGMs have become better when in-
cluding code coverage data in their calculations. However,
many are still basing this belief on intuition and base their
research on it without trying to find proof of such a corre-
lation first, as if it was already concluded. If that premise
does not hold, their results may not hold either.

Apart from the discussion of whether the observed rela-
tion between code coverage and software reliability implies
that the correlation is direct or indirect, the main discussion
on this question was actually the basis used for some of
these studies. On the correlation question above there were
unclear premises, but the authors also discovered that even
such a basic building block in any research or discussion
about Software Quality as Software Reliability should be
clear and the same from paper to paper, there are after all
many standards on Software Quality, there is no need to be
ambiguous. As it was mentioned in the discussion, it could
be argued that MTTF and fault detection are still fairly
close to the traditional definition of software reliability and
just a way of measuring it, but it still remains a potential
source of confusion and invalidity of research if researchers
are using the same terminology but defining it differently.
In such a case, research papers could simply call it MTTF
or fault detection as they will need to specify it anyway.
This potential nonalignment between the selected papers
becomes even more apparent when there was actually re-
search stating that code coverage had higher correlation
with reliability than fault detection had with any of them.

• RQ2 What is code coverage, how is it interpreted and
how should it be interpreted?

The discussion, thoughts and conclusions on this ques-
tion revolve a lot around the suggestions and interpreta-
tions of code coverage and its use. There are some very
good arguments and reasoning in the literature about how
to use and not to use code coverage in testing that actually
goes against how code coverage is often used, in the in-

dustry as well as by some researchers. Essentially, practi-
tioners should not design test suites for code coverage and
make code coverage an absolute goal of its own, instead
they should focus on designing as good test suites as they
can. Coverage analysis of testing can give indications and
hints about any potential flaws in the test suite, enabling the
practitioners to improve it. If the test suite is well-designed
for the software under test, code coverage tends to come
on its own, at least if the software’s testability permits the
coverage level to reach the goal.

There may be something else that is often interpreted
into the term reliability that one of the papers calls ”de-
pendability”. ”Dependability” is, in essence, the part of
reliability that is based on intuition and estimation, making
it practically impossible to objectively measure. The au-
thors of this paper concluded it might hold some truth to it,
as it could explain why intuitively people have a tendency
to correlate code coverage with reliability, when in reality
what is being measured is the technical part that is measur-
ing something else.

• RQ3 Are there any combinations of testing practices,
with at least one of them being a coverage practice,
which are recommended for the Software Engineer-
ing industry as being more effective?

There are not any recommended testing practices that in
general are considered more effective than the rest. After
researching the other two research questions, the authors of
this paper believe the reason is fairly clear. The best test-
ing practices already vary with the software and factors like
complexity, code structure, size, so it is hard to recommend
any specific set of practices in general. By adding code cov-
erage practices into the mix even more variability is added
to the decision.

Based on the selected papers in this research, the most
popular practice to research seemed to be code prioritiza-
tion, as a means of increasing both effectiveness and ef-
ficiency. This may sound like a good general recommen-
dation, but as is discussed in the paper it comes with its
downsides in the form of increased requirements, increased
variation in the results and increased subjective decisions in
the testing process that heavily influences the results. For
a general testing practice, the authors of this paper do not
believe it can be recommended.

There were some suggestions of recommended coverage
levels and criteria in the papers, the coverage level gener-
ally ranged between 70% and 90%, while the variations in
criterion varies a little more, with the strongest criterion
being predicate coverage in those suggestions. Just like
the testing practices, such a recommendation would vary
a lot with the focus on reliability, code complexity, code
structure and more. It is very difficult to give a general rec-
ommendation as more effective. The authors of this paper
consider if the technological advances, in form of hard-
ware performance, coverage theory and algorithms, will

13

not make the current recommendations completely obso-
lete in the close future. As stronger criterion, e.g. path cov-
erage, that subsumes all the previous will become feasible
to perform even on larger or more complex code, just as the
recommended coverage criterion have been changing up
until now and criterion that used to be infeasible suddenly
are not. That may be the point where there will be one clear
answer to this question when it comes to coverage criterion.

• State-of-the-art

When it comes to the state-of-the-art on these topics, the
current situation has partly been described in the conclu-
sion for the questions. On the correlation between code
coverage and software reliability a lot of interesting work
has been done, and from many different perspectives on top
of that. What is missing is mostly a definitive conclusion
to the question. The closest thing to that was the conclu-
sion that the correlation between them was not direct, but
there’s no definitive conclusion as to what it is then. Then
of course the reliability term situation. The authors of this
paper are convinced that having researchers agree to use the
same definition for such a basic building block as reliabil-
ity within software quality would immediately improve the
chances of significant advances on this topic.

On the topic of code coverage and its use, there wasn’t
too much to find. While it’s true that Marick [1999] made a
very good case for his perspective of on the topic and some
supported his positions on it, there was not much more to
add to that. The fact that Hamlet [1994] had some very
interesting ideas that connected very well with the opin-
ions on code coverage in Marick [1999]. However, that
was just a coincidence as the Hamlet [1994] paper was ac-
tually about reliability definition and not on code coverage.
Marick [1999] is becoming slightly aged, while still very
relevant, it would be good to get some new ideas into this
topic with ideas from the present state of code coverage
testing.

The recommended testing practices including code cov-
erage practices didn’t really exist. However, as was men-
tioned in the conclusion for Research Question 3, there is
probably a good reason for it, as it is very difficult to recom-
mend general testing practices that should be more effective
than most. Rather the testing practices should probably be
adapted to the software for optimal results. The authors
of this paper are slightly surprised that there was not more
material on recommended coverage criterion and levels for
different types of software, and discussions that compare
the different criterions against each other.

Finally, the authors of this paper can also add that there
were indications that the Literature Search and Selection
Procedures worked well in gathering the state-of-the-art lit-
erature on the topics. In several of our topics, like SRGMs,
reliability correlation or code coverage definition and use,
there was considerable cross-referencing between the pa-
pers. This reinforces the authors’ belief that the methods

used were adequate and managed to do a thorough job col-
lecting papers, while the authors’ relevance ranking as a
final filtration step also worked fairly well.

6 Future Work

First and foremost, the authors strongly believe that a
stricter definition of what reliability is and how it is mea-
sured would greatly improve the chances of considerable
advances on not only the topic of correlation between relia-
bility and code coverage, but other topics based on software
reliability. In fact, it would be a good idea to incorporate
and consider the Hamlet [1994] paper’s ideas on software
reliability definition. One of the main strengths of the re-
search world is that researchers build on each others work
to advance mankind’s knowledge. By having such a basic
building block like software reliability open for different
definitions, it causes confusion as to if different papers are
doing directly comparable research or not and getting com-
parable results or not.

The authors also suggest an extensive primary study of
correlation between code coverage and software reliability
to be made, the aim should be to conclude or reject the
idea that there is an indirect correlation between code cov-
erage and software reliability. For example, a worldwide
or country wide survey could be issued to businesses in the
IT-industry in order to secure current best practice. Another
method would be to perform a large scale quantitative study
of research and literature, encompassing as much as possi-
ble of current research.

There had been a lot of research done on growth models
and especially SRGMs, however the hurdle for adopting an
SRGM in the industry is very big. The authors of this paper
believe that the biggest hurdle by far is just the sheer num-
ber of currently existing models, all of them justifying their
existence with at least one isolated case. The field would
do well with some convergence in order to greatly diminish
the number of existing models, or possibly conclude some
of them that generally work reasonably well.

Seeing that many researchers have different definitions
of software reliability how closely connected software reli-
ability is to software quality, the research area could bene-
fit from identifying, analyzing and suggesting standardized
definitions of Software reliability or Software quality.

Acknowledgements

The authors of this paper would like to thank all the teach-
ers at the University of Gothenburg’s Software Engineering
and Management bachelor programme who have supported
and incentivated the students throughout their education.

In regards to this paper, the authors would especially like
to thank their supervisor Morgan Ericsson for always be-

14

ing available to help, from the conception of the research
project to the submission of this paper. The authors would
also like to thank K. M. Arif Aziz for always being ready
to give feedback on the research in general both before and
throughout the entire research project. Thank you as well
to Kristoffer Chiem for always being there when it comes
to supporting the paper until the very end.

Finally, the authors would also like to thank Justin Wag-
ner and Benjamin No for the countless hours put into re-
viewing the paper towards the end of the project.

References
IEEE standard for a software quality metrics methodology.

IEEE Std 1061-1998, 1998.

Introduction of quality requirement and evaluation based
on ISO/IEC square series of standard. In Trustwor-
thy Computing and Services, volume 320 of Commu-
nications in Computer and Information Science, pages
94–101. Springer Berlin Heidelberg, 2013. ISBN 978-
3-642-35794-7. URL http://dx.doi.org/10.1007/
978-3-642-35795-4_12.

F. A. Administration. Software Approval Guidelines. U.S.
Department of Transportation, 2003.

D. J. Barnes and T. Hopkins. Improving test coverage of
lapack. Applicable Algebra in Engineering, Communi-
cation and Computing, 18(3):209–222, 2007.

W. C. Booth, G. G. Colomb, and J. M. Williams. The Craft
of Research. Univ. of Chicago Press, 3 edition, 2003.

P. Bourque, A. Abran, J. Garbajosa, G. Keeni,
and S. Beijun. Swebok: Guide to soft-
ware engineering body of knowledge v3 (post-
public review). URL https://computer.
centraldesktop.com/home/viewfile?guid=
42805308302A4B36ECC3C678DA51ED7DD384F9D8C&id=
24071291, September, 2013.

P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and
M. Khalil. Lessons from applying the systematic litera-
ture review process within the software engineering do-
main. The Journal of Systems and Software, 80:571–583,
April 2007.

X. Cai and M. R. Lyu. The effect of code coverage on fault
detection under different testing profiles. In Proceedings
of the 1st international workshop on Advances in model-
based testing, A-MOST ’05, pages 1–7. ACM, 2005.

M.-H. Chen, M. Lyu, and W. Wong. An empirical study
of the correlation between code coverage and reliability
estimation. In Proceedings of the 3rd International Soft-
ware Metrics Symposium, 1996., pages 133–141, 1996.

M.-H. Chen, M. Lyu, and W. Wong. Incorporating code
coverage in the reliability estimation for fault-tolerant
software. In Proceedings., The Sixteenth Symposium on
Reliable Distributed Systems, 1997., pages 45–52, 1997.

F. Del Frate, P. Garg, A. Mathur, and A. Pasquini. On the
correlation between code coverage and software reliabil-
ity. In Proceedings., Sixth International Symposium on
Software Reliability Engineering, 1995., pages 124–132,
1995.

G. Fischer. The software technology of the 21st century:
From software reuse to collaborative software design,
2001.

P. Garg. Investigating coverage-reliability relationship and
sensitivity of reliability to errors in the operational pro-
file. In Proceedings of the 1994 conference of the Centre
for Advanced Studies on Collaborative research, CAS-
CON ’94, pages 19–36. IBM Press, 1994.

M. Gittens, K. Romanufa, D. Godwin, and J. Racicot. All
code coverage is not created equal: a case study in pri-
oritized code coverage. In Proceedings of the 2006 con-
ference of the Center for Advanced Studies on Collabo-
rative research, CASCON ’06. IBM Corp., 2006.

A. Gupta and P. Jalote. An approach for experimen-
tally evaluating effectiveness and efficiency of coverage
criteria for software testing. International Journal on
Software Tools for Technology Transfer, 10(2):145–160,
2008. ISSN 1433-2779.

D. Hamlet. Connecting test coverage to software depend-
ability. In Proceedings., 5th International Symposium on
Software Reliability Engineering, 1994., pages 158–165,
1994.

J. R. Horgan, S. London, and M. R. Lyu. Achieving
software quality with testing coverage measures. IEEE
COMPUTER, 27:60–69, 1994.

S. Inoue and S. Yamada. Testing-coverage dependent soft-
ware reliability growth modeling. International Jour-
nal of Reliability, Quality and Safety Engineering, 11(4):
303–312, 2004.

M. Kessis, Y. Ledru, and G. Vandome. Experiences in cov-
erage testing of a java middleware. In Proceedings of the
5th international workshop on Software engineering and
middleware, SEM ’05, pages 39–45. ACM, 2005.

Y. W. Kim. Efficient use of code coverage in large-scale
software development. In Proceedings of the 2003 con-
ference of the Centre for Advanced Studies on Collabora-
tive research, CASCON ’03, pages 145–155. IBM Press,
2003.

B. Kitchenham and S. Charters. Guidelines for performing
Systematic Literature Reviews in Software Engineering.
Technical Report EBSE 2007-001, Keele University and
Durham University Joint Report, 2007.

15

http://dx.doi.org/10.1007/978-3-642-35795-4_12
http://dx.doi.org/10.1007/978-3-642-35795-4_12
https://computer.centraldesktop.com/home/viewfile?guid=42805308302A4B36ECC3C678DA51ED7DD384F9D8C&id=24071291
https://computer.centraldesktop.com/home/viewfile?guid=42805308302A4B36ECC3C678DA51ED7DD384F9D8C&id=24071291
https://computer.centraldesktop.com/home/viewfile?guid=42805308302A4B36ECC3C678DA51ED7DD384F9D8C&id=24071291
https://computer.centraldesktop.com/home/viewfile?guid=42805308302A4B36ECC3C678DA51ED7DD384F9D8C&id=24071291

B. A. Kitchenham. Procedures for performing systematic
reviews. Technical Report TR/SE-0401, ”Department of
Computer Science, Keele University and National ICT,
Australia Ltd, 2004.

S. Krishnamurthy and A. P. Mathur. On predicting reliabil-
ity of modules using code coverage. In Proceedings of
the 1996 conference of the Centre for Advanced Studies
on Collaborative research, CASCON ’96, pages 22–34.
IBM Press, 1996.

J. Li. Prioritize code for testing to improve code coverage
of complex software. In 16th IEEE International Sympo-
sium on Software Reliability Engineering, 2005., ISSRE
2005, pages 10 pp.–84, 2005.

M. Lyu. Software reliability engineering: A roadmap. In
Future of Software Engineering, 2007., FOSE ’07, pages
153–170, 2007.

Y. Malaiya, N. Li, J. Bieman, R. Karcich, and B. Skibbe.
The relationship between test coverage and reliability. In
Proceedings., 5th International Symposium on Software
Reliability Engineering, 1994., pages 186–195, 1994.

Y. Malaiya, M. Li, J. Bieman, and R. Karcich. Software
reliability growth with test coverage. IEEE Transactions
on Reliability, 51(4):420–426, 2002. ISSN 0018-9529.

B. Marick. How to misuse code coverage. In Proceedings
of the 16th Interational Conference on Testing Computer
Software, pages 16–18, 1999.

A. Mockus, N. Nagappan, and T. T. Dinh-Trong. Test
coverage and post-verification defects: A multiple case
study. In Proceedings of the 2009 3rd International Sym-
posium on Empirical Software Engineering and Mea-
surement, ESEM ’09, pages 291–301. IEEE Computer
Society, 2009.

A. S. Namin and J. H. Andrews. The influence of size and
coverage on test suite effectiveness. In Proceedings of
the eighteenth international symposium on Software test-
ing and analysis, ISSTA ’09, pages 57–68. ACM, 2009.

M. Newman. Software errors cost U.S. economy $59.5 bil-
lion annually - nist assesses technical needs of industry to
improve software-testing. http://www.abeacha.com/
NIST_press_release_bugs_cost.htm, 2002.

P. Piwowarski, M. Ohba, and J. Caruso. Coverage measure-
ment experience during function test. In Software Engi-
neering, 1993. Proceedings., 15th International Confer-
ence on, pages 287–301, 1993.

P. Runeson and M. Höst. Guidelines for conduct-
ing and reporting case study research in software en-
gineering. Empirical Software Engineering, 14(2):
131–164, 2009. URL http://dx.doi.org/10.1007/
s10664-008-9102-8.

B. Smith and L. Williams. A survey on code coverage as
a stopping criterion for unit testing. Technical Report
TR-2008-22, Dept. of Computer Science, North Carolina
State University, 2008.

A. Veevers and A. C. Marshall. A relationship between
software coverage metrics and reliability. Software Test-
ing, Verification and Reliability, 4(1):3–8, 1994.

L. J. White. Software testing and verification. Advances in
Computers, 26:335–391, 1987.

T. Williams, M. Mercer, J. Mucha, and R. Kapur. Code
coverage, what does it mean in terms of quality? In
Reliability and Maintainability Symposium, 2001. Pro-
ceedings. Annual, pages 420–424, 2001.

16

http://www.abeacha.com/NIST_press_release_bugs_cost.htm
http://www.abeacha.com/NIST_press_release_bugs_cost.htm
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1007/s10664-008-9102-8

A Templates

Data Item Value Agreement
(Y/N) Additional Notes

Name of paper
Author(s)
Journal

Publication details
Name of database(s)

What data/results
does the paper

provide relevant to
the correlation
between code

coverage practices
and software

quality?
How does the paper
define code coverage

and its
interpretation?
What - if any -

combinations of
testing practices,

including coverage
practices, are
suggested?

Table 4: Template of Data Extraction Form

17

	Introduction & Background
	Research Questions
	Paper Structure

	Methodology
	Search Strategy
	Study Selection Criteria
	Quality Assessment
	Data Extraction Strategy
	Statistics from Study Selection
	Data Analysis
	Threats to Validity
	Construct Validity
	Reliability

	Results
	Results concerning Research Question 1
	Results concerning Research Question 2
	Results concerning Research Question 3

	Discussion
	Discussion concerning Research Question 1
	Discussion concerning Research Question 2
	Discussion concerning Research Question 3

	Conclusions
	Future Work
	Templates

