

Comparison of IndexedDB and SQLite Based on
Developers’ Concerns

Bachelor of Science Thesis in Software Engineering and Management

SORUSH AREFIPOUR

MASSIH MOZAHHEBI

The Author grants to Chalmers University of Technology and University of Gothenburg the non-exclusive right to publish the
Work electronically and in a non-commercial purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text, pictures or other
material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a company),
acknowledge the third party about this agreement. If the Author has signed a copyright agreement with a third party regarding
the Work, the Author warrants hereby that he/she has obtained any necessary permission from this third party to let Chalmers
University of Technology and University of Gothenburg store the Work electronically and make it accessible on the Internet.

Comparison of IndexedDB and SQLite Based on Developers’ Concerns

SORUSH AREFIPOUR
MASSIH MOZAHHEBI

© SORUSH AREFIPOUR, December 2013.
© MASSIH MOZAHHEBI, December 2013.

Examiner: MORGAN ERICSSON

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

 1

Comparison of IndexedDB and SQLite Based on Developers’ Concerns

Sorush Arefipour
Department of Computer Science and Engineering

University of Gothenburg
Gothenburg, Sweden
sorush@student.gu.se

Massih Mozahhebi
Department of Computer Science and Engineering

University of Gothenburg
Gothenburg, Sweden

gusmozse@student.gu.se

Abstract— The recent development of web applications has
caused companies and developers to have more alternatives
while choosing a new solution. The aim of this study is to
compare IndexedDB, the local storage of the latest web
applications’ standard “HTML5”, with Android SQLite. This
comparison is designed to clarify the position of web
application against native application in the field of local data
storage according to developers’ concern that are obtained
through exploratory interviews and Volvo Group Target
Architecture (VGTA). The investigation is conducted using
mixed method approach and for data collection literature
review and prototype testing were used; also we utilized
thematic analysis along with descriptive analysis for data
analyzing.

Keywords: Android, HTML5, IndexedDB, SQLite, Security,
Performance

I. INTRODUCTION
There has always been a competition between native and

web applications due to the cross-platform nature of web
applications and access of native application to operating
system’s features. However, being cross-platform would be a
great advantage in web application but developers do not
neglect web applications’ weaknesses because of this
advantage. One of the weaknesses of web applications that
developers are dealing with is local data storage, which
would lead them to use native applications (Pilgrim, 2010).
Recently, HTML5 has introduced a new local data storage
feature, which is known as IndexedDB, to address
developers’ needs for local data storage in web applications
(Mozilla, 2013).

The purpose of this thesis is to compare HTML5’s

IndexedDB and Android SQLite databases based on software
developers’ concerns and Volvo Group Target Architecture
(VGTA). These concerns were obtained through exploratory
interviews, where according to our interviewees performance
and security were the most important concerns. A mixed
approach of qualitative and quantitative research was chosen
to cover these concerns (Creswell, 2009). Between the two
popular mobile operating system, Google Android and Apple
iOS, we chose Android since Apple iOS does not support
IndexedDB at the time of this research. Since, Android ships
with SQLite (Android Developers, 2013), therefore, we
chose SQLite to compare with IndexedDB. Our contribution

to the community is to determine how well web applications’
local storage compete with native application’s local storage
and its shortcomings and strengths. The research questions of
this study are:
1. What concerns do developers have for choosing a local

storage solution?
1.1. How is the performance of IndexedDB compared to

SQLite?
1.2. How is the security of IndexedDB compared to

SQLite?

This thesis is structured as follows; Section 2 represents
theoretical background to familiarize readers of this paper
with technologies that was investigated in this thesis. Section
3 represents research method, where the chosen approaches
and their processes are explained explicitly. In Section 4,
results of both qualitative and quantitative approaches are
demonstrated. Following to that, in Section 5 results are
being discussed and finally, Section 6 will represent
conclusion and outlook of the thesis.

II. THEORERTICAL BACKGROUND
This section outlines theoretical background about the

two databases, which will be compared in this research. In
the following, characteristics, features, and shortcomings of
IndexedDB, in Subsection 2.1, and SQLite, in Subsection
2.2, will be discussed. In addition, Subsection 2.3 will
describe VGTA document briefly.

A. IndexedDB
IndexedDB (formerly WebSimpleDB) is an API for

client-side data storage, which is able to store structured
data. In 2009, Oracle proposed IndexedDB as new web
browser’s standard interface for local databases (Oracle
Corp, 2013). In this type of database, data is stored as a key-
value pair but keys can be referred as properties of objects
that are stored in the values.

In general there is no limitation on capacity of

IndexedDB but every browser has different policy on
capacity. As an example, FireFox does not force any
limitation, however it asks for permission for storing files
bigger than 50MB (Mozilla, 2013). Also, Google Chrome

 2

lets web application to use 20% of shared storage pool1,
though it is not possible to query for more space (Google
Developers, 2013).

IndexedDB is an object-oriented NoSQL database, which

sets it apart from most traditional relational databases.
NoSQL databases are schemaless, where saving and
retrieving is not following traditional structured query
language (SQL). Moreover, IndexedDB is not a relational
database (RDBMS), where tables contain rows and columns
(table-oriented). In fact, it is an object database (ODBMS2)
that represents and treats data in the form of objects, which is
called “objectstore”(Mozilla, 2013).

As shown in Figure 1, ODBMS eliminates process of

copying and translating data between programming
languages and databases.

Figure 1. RDBMS vs. ODBMS (Cattell and Barry, 1997)

IndexedDB API can be used via JavaScript in order to

enter, retrieve, remove, and update data. This API is using
DOM3 events to provide status of database operations. All
primitive JavaScript data types (String, Date, etc.) and
hierarchical objects such as JSON4 are supported as an entry
in this API (Laine, n.d.). In addition to primitive data types,
IndexedDB is using BLOB to save and retrieve files
including images, videos, etc. A BLOB represents a file-like
object of immutable, raw data. BLOB represents data that
isn't necessarily in a JavaScript-native format (Mozilla,
2013).
 IndexedDB is still considered as a draft version (W3C,

1 Shared storage pool can be up to half of free memory of a device
2 Object-oriented database management system

3 Document Object model is a platform- and language-neutral interface that will allow

programs and scripts to dynamically access and update the content, structure and style of

documents (W3C, 2013).
4 JavaScript Object Notation

2013), however, it is expected that easy to use libraries will
be built on top of the API. According to Mozilla developer
network (2013), IndexedDB is missing a few features such
as:

• Internationalized sorting: Not all languages sort
strings in the same way; so internationalized sorting
is not supported.

• Synchronizing: The API is not designed to take
care of synchronizing with a server-side database.

• Full text searching: The API does not have an
equivalent of the LIKE operator in SQL.

IndexedDB is built on a transactional database model

(Kimak, Ellman and Laing, 2012). Transactional database
model prevents overwrite of data or interference of two or
more executing processes on the same resource. This
prevention happens in situations like when a user opens two
instances of a web application in different tabs
simultaneously, and applies distinct modification on the
same resource (Mozilla, 2013).

B. SQLite
SQLite is an open source embedded relational database.

It is referred as an embedded database, since it symbiotically
coexists inside the application it serves rather than a
standalone process (Owens, 2006). SQLite is licensed as
“Public Domain”, where there is no ownership or copyright
rule in this type of license and it is free to be used in
proprietary and free softwares (GNU, 2013). The size
limitation of a SQLite database is 140 Terabytes (SQLite,
2013). Kreibich (2010) describes some of the significant
features of SQLite as:

• Serverless: SQLite does not need a separate server
process or system to operate. The SQLite library
accesses its storage files locally or on a server.

• Zero Configuration: Since no server is needed,
thus no configuration needs to be done between
server and client. Creating an SQLite database
instance is as easy as opening a file.

• Cross-Platform: The entire database instance
resides in a single cross-platform file, requiring no
administration.

• Self-Contained: A single library contains the entire
database system, which integrates directly into a
host application.

• Small Runtime Footprint: The default build is less
than a megabyte of code and requires only a few
megabytes of memory. With some adjustments,
both the library size and memory use can be
significantly reduced.

• Transactional: SQLite transactions are fully
ACID 5 -compliant, allowing safe access from
multiple processes or threads.

5 ACID (Atomicity, Consistency, Isolation, Durability) assures database’s transactions to be

processed reliably (USING SQLite).

 3

SQLite inherits most of SQL features that are listed in
SQL-92 standard (IBM, 1992), however it lacks features
such as: RIGHT and FULL OUTER JOIN, Complete
ALTER TABLE support, Complete trigger support, Writing
to VIEWs, GRANT and REVOKE (SQLite, 2013). These
concepts are not in the scope of this thesis, and
complementary information can be found on SQLite official
website.

C. Volvo Group Target Architecture
Volvo Group has documented ten architectural principles

and obliges developers and designers to follow these
principles in order to increase the quality of their products.
These principles are as follows:

1) Conformity to standards: Drive usage of open and

industry standards at Volvo.

2) Autonomous and loose coupling, between
components and applications: Flexible subsystem and
granular component setup, avoiding monoliths.

3) Simplicity in solutions and work methods: Clean

solutions from technical, application and user perspective.

4) Strive for usage of existing Volvo services: Whenever
possible avoid application specific infrastructure and instead
use already existing services at Volvo.

5) Robust solutions: Strive for robust solutions securing

uptime.

6) Performance focus from the start: Strive for good
performance in solutions from the start.

7) Secure solutions: Strive for secure solutions from the

start.

8) Good integration solutions: Follow Volvo Group
integration policies and guidelines.

9) Usage of Agile work methods and design principles:

Use Agile system development and implementation
principles.

10) Maintainable solutions: Deliver maintainable

solutions to Maintenance.

III. RESEARCH METHOD
This research was an empirical investigation solicited by

Volvo IT. In spring 2013, the company had a plan to perform
a wide research around the capability of web applications
using HTML5. This project was divided into smaller
subprojects to cover multiple aspects of using HTML5 to

develop web applications. One of the subprojects was
analyzing IndexedDB to determine if it can fulfill the
company’s requirements according to VGTA document. For
this mean, we decided to compare IndexedDB with SQLite.

In order to determine our comparison’s criteria, we
decided to find out mobile application developers’ concerns
for choosing a database. These concerns were obtained by
conducting exploratory qualitative interviews (Creswell,
2009), where interview questions were designed based on
VGTA. Following to that, we evaluated these two databases
based on these concerns.

According to the conducted interviews, the important

quality attributes for developers were performance and
security. In fact, the common point of view among all
interviewees implied that performance plays an important
role while choosing any solution especially in enterprise
systems. As a matter of fact, our interviewees considered
performance as system’s response time. In addition, one of
Volvo IT’s software architect mentioned his own experience
about security issues of some solutions that they were
dealing with, which forced them to stop using those solutions
to protect their credential data. Therefore, we based our
comparison on performance and security of the two
databases. For this mean, we chose quantitative research
method (Creswell, 2009) to measure performance of SQLite
and IndexedDB statistically. On the other hand, we chose
qualitative approach to compare security of these two
databases, in order to obtain deep understanding of
underlying causes of the differences between the two
databases.

A. Data Collection

1) Exploratory Interviews
Interviews were semi-structured, which means that some

questions were prepared in advance. However, some
improvisational questions were asked when there were vague
points during interviews. We chose interviewees based on
their level of experience to cover different aspects of our
research. Therefore, we chose two junior software
developers with less than one year of experience, a senior
software developer with 5 years of experience, and one
software architect with more than 25 years of experience in
the field of software developments. Interview questions are
available in Appendix.

2) Measuring Performance

To collect data for indexedDB and SQLite’s performance
comparison, we decided to perform different benchmarks on
both DBs. These benchmarks were aimed to measure the
amount of time, which is required to perform specified
number of queries on both databases. For this mean, we
developed two prototypes, a native Android application
using SQLite database and a web application developed in
HTML5 using IndexedDB. Both prototypes are available at

 4

website:
http://web.student.chalmers.se/~seyedma/indexeddbspeedtest.

Our benchmarks were based on CRUD (create, retrieve,
update, delete) operations of databases. In addition, we
considered indexing, which can have impact on benchmark’s
results, to achieve more reliable results. All test queries were
applied on simple tables and objectstores of the both
databases, where no joining or sub-queries were involved.
The data that we used to perform the benchmarks was JSON
and XML text files, which their size would not exceed 1
megabyte. Although, all benchmarks were performed on
small amount of data and cannot measure how well these
databases can handle large scale data but they can provide
guidelines and set basic operational expectations (Oracle,
2006). In order to generate data for our benchmarks, we used
Databasetestdata.com website.

The two host platforms for our benchmarks were:

1. LG Nexus 5 phone with a Quad-core 2.3 GHz
Krait 400 CPU, 2GB RAM, 16GB Internal
memory, running Android 4.4.2 (Kitkat).

2. ASUS Nexus 7(first generation) tablet with a
Quad-core 1.2 GHz Cortex-A9 CPU, 1Gb
RAM, 32Gb Internal memory, running Android
4.4.2 (Kitkat).

Both devices were using default configuration without

any optimizations. All background processes and
applications were terminated to prevent I/O speed
manipulation, and to get more precise results during all tests.
IndexedDB benchmarks were executed on the latest version
of Google Chrome browser (version 31.0.1650.59), which
was the latest version by the time of benchmarking. Also,
SQLite version 3.4.0 was used for SQLite benchmarks.

3) Literature Review on Security

Data collection for security was conducted using
literature review technique to identify the previous works,
which had been done in this field. According to Creswell
(2009), literature review becomes a basis for comparing and
contrasting findings of a qualitative study. To collect our
sources for literature review, we searched through digital
libraries to find relevant articles, books, and journals. Also,
since IndexedDB is introduced recently and there are not
adequate sources in this area, we also used blogs, and bug
reports. Table I presents the searched libraries and number of
found articles from each.

Sources Related Selected

IEEEXplore 16 9
ACM 11 5
Other 18 12

TABLE I. QUANTITY OF PAPERS AND BOOKS FOUND AND SELECTED.

The following are the search terms that we used for
collecting related resources:

“HTML5”, “Android”, “IndexedDB”, “SQLite”, “Security”,
“Relational database”, “Object-oriented database”,
“IndexedDB” AND “Security”, “SQLite” AND “Security”,
“IndexedDB” AND “Vulnerabilities”, “SQLite” AND
“Vulnerabilities”.

B. Data Analysis

1) Quantitative Data Analysis
We used descriptive statistics to analyse our captured

data through benchmarking. Babbie (2009) states, “bivariate
analysis is not only simple descriptive statistical analysis, but
also it describes the relationship between two different
variables”. Since there were two variables included in our
tests, which are “Time” and “Number of queries”, bivariate
statistical analysis was suited for our purpose to summarize
and represent our collected data on graphs.

2) Qualitative Data Analysis

The collected data, in qualitative part, was analyzed
using thematic analysis. Braun and Clarke (2006) describe
thematic analysis as “a method for identifying, analyzing and
reporting patterns (themes) within data”. After collecting raw
data through literature review, all data was reviewed several
times in order to extract patterns, which are known as codes.
Following to that, common concepts of the extracted codes
with their linked data were identified and reviewed to
determine suitable themes for them. If at anytime during data
analysis a new code were merged, we did not start over our
analysis and treated the merged code separately or if it were
possible, we would include it in one of the existed themes.

IV. RESULT

A. Performance Measurement
In this subsection, we present result of benchmarks on

both SQLite and IndexedDB databases. For this mean, we
divided our results according to each basic operation of a
database, which are “insert”, “select”, “update”, and
“delete”. Benchmark of each operation is represented on two
distinct graphs, where one is dedicated to an unindexed
table/objectstore and the other one is dedicated to an indexed
table/objectstore. In fact, both prototype used two
tables/objectstores, which have the same structure and
consist of three string attributes, but in one of them two
attributes were used as “index” in the table/objectstore.

Each graph is a relation of number of queries and the

amount of time to execute them, where time is measured in
millisecond. Execution time in all graphs is average of
performing each benchmark ten times. We performed each
benchmark with three different number of queries that are
1000, 3000, and 10,000. All benchmarks are performed on
two hosts for both databases, therefore, every graphs consists

 5

of twelve bars. However, processing 10,000 entries in local
databases of portable devices is rare, but we considered this
amount to examine both databases on high load of data.

There are different performance tests to measure

performance of a database but to conduct a performance
comparison on IndexedDB and SQLite, which have different
structures, we selected those that are applicable on both
databases. In addition, the same database’s schema was used
in both developed prototypes to have an equal testing
environment.

Performance test 1: Insert

In this performance test, the time of inserting set of tuples
into a table or an objectstore is being measured. Less
execution time indicates higher performance.

Figure 2. Unindexed insert benchmark

Figure 3. Indexed insert benchmark

Performance test 2: Select

In this performance test, selection criteria segregates 100
tuples on each iteration. For instance, in a 1000 entry
table/objectstore, this test iterates 10 times and on each
iteration it selects 100 tuples to have a full scan of the table
or the objectstore. Less execution time indicates higher
performance.

Figure 4. Unindexed select benchmark

Figure 5. Indexed select benchmark

Performance test 3: Update
This performance test updates one non-index attribute of

all 100 tuples on each iteration. For instance, in a 1000 entry
table/objectstore, this test iterates 10 times and updates one
attribute of all 100 tuples, to update all tuples of a table or an
objectstore. Less execution time indicates higher
performance.

Figure 6. Unindexed update benchmark

Figure 7. Indexed select benchmark

 6

Performance test 4: Delete
This performance test deletes 100 tuples from a

table/objectstore on each iteration. For instance, in a 1000
entry table/objectstore, this test iterates 10 times and deletes
100 tuples on each iteration, to delete all entries of a table or
an objectstore. Less execution time indicates higher
performance.

Figure 8. Unindexed delete benchmark

Figure 9. Indexed delete benchmark

B. Security Evaluation
There are number of security features available such as:

access control, authentication, data encryption, audit, and
input validation in order to protect data of a database from
security vulnerabilities (Kimak, Ellman and Laing, 2012;
Okman, et al., 2011; Liu and Gong, 2013). In the following,
comparison of IndexedDB and SQLite for each feature is
brought.

1) Access Control
In database context, access control specifies the

privileges, which each user of a database has, to access to
specific set of data or actions (Bertino and Sandhu, 2005).
There are different models of access control such as:
Discretionary access control (DAC), where the model is
governing the accesses of a subject to data based on the
subject’s identity and authorization rules, Mandatory access
control (MAC), which regulates accesses to data by subjects
on the basis of predefined classifications of subjects and
objects in the system, and Role-based access control
(RBAC), where in this model subjects are having different
accesses to data according to their role in a system (Bertino
and Sandhu, 2005).

Our investigation indicates that there is no form of access
control in SQLite and the whole database is stored in a single
file, which can be accessed and modified by anyone who has
READ/WRITE permission in the system (Liu and Gong,
2013). On the other hand, although, IndexedDB does not
have any access control mechanism but it is utilizing Same-
origin-policy (SOP), which is a feature of web browsers to
prevent access to data from other domains than its original
one (Kimak, Ellman and Laing, 2012). However, Saiedian
and Broyle (2011) state that the SOP is not the correct
security mechanism and requires redesign to meet the access
control requirements of Web-based assets but it is the only
security mechanism in web browsers against potential
security threats (Kimak, Ellman and Laing, 2012).

2) Authentication

Authentication is any process by which someone is
allowed to go where they want to go, or to have information
that they want to have (Needham and Schroeder, 1978).
Authentication usually requires user’s username and
password to give the requested privileges to the user.

Neither SQLite nor IndexedDB have implemented
authentication mechanism, therefore, in order to increase the
security of stored data, it is suggested to implement
authentication on the application layer to prevent access of
unauthorized parties to a database.

3) Encryption
Encryption is the process of encoding data in order to

prevent unauthorized parties from reading the data (Barrett
and Silverman, 2001). Encryption process needs a KEY to
perform encryption and decryption on data, where the key
should be kept secure. In an application, data can be
encrypted on database layer and be encoded and decoded
respectively during storing and retrieval or on application
layer.

According to our research, SQLite does not have any

encryption implementation within its source code but there is
an interface reserved for encryption (Liu and Gong, 2013).
Furthermore, SQLite website introduces SQLite Encryption
Extension (SEE) as a library for encrypting data on database
level. In addition to SEE that is official encryption
implementation of SQLite, there are number of encryption
libraries available for SQLite such as: SQLCipher,
SQLiteCrypt, wxSQLite, etc. On the other hand, IndexedDB
also lacks data encryption within its source code. One of the
suitable and easy to use JavaScript encryption libraries that
we suggest is “Stanford Javascript Crypto Library”.

4) Audit

Database auditing is the process of recording and
monitoring users’ actions to prevent or stop any security
threads (Stephens, 2009). The same as authentication, audit
is not implemented in the both databases; however, it can be
implemented on application layer. Also, it is possible to use
logging system of OS, if such a feature is available.

 7

5) Input Validation
Input validation or data validation is the process of

validating all the input data before an application using it
(Kimak, Ellman and Laing, 2012). No or inefficient input
validation can lead to “Code Injection”, where attackers
insert a piece of code into an application to change the
behaviour of the application (Kimak, Ellman and Laing,
2012). SQL injection is one of the common types of code
injections.

SQLite introduces “check constraint” as an approach to

validate data before storing it in a database (Kreibich, 2010).
Check constraint is attached to column definition or specified
as a table constraint. On the other hand, IndexedDB is not
utilizing any form of input validation and it is threatened by
code injection. In order to mitigate code injection
vulnerability, we suggest implementing input validation on
application layer.

Table II summarizes our findings about IndexedDB and

SQLite databases’ security and provides some
recommendations.

Security Technique IndexedDB SQLite

Access Control
Not implemented -

Utilize SOP

Not implemented

Authentication

Not implemented -
Should be

implemented on
application layer

Not implemented -
Should be

implemented on
application layer

Encryption

Not implemented -
External libraries

available

Not implemented -
Official and

external libraries
available

Audit Not implemented

Not implemented

Input Validation

Not implemented -
Should be

implemented on
application layer

Check Constraint

TABLE II. SECURITY FEATURES OF INDEXEDDB AND SQLITE

V. DISCUSSION
In this section we discuss the result of our literature

findings and benchmarks and map them to developers and
Volvo Group’s concerns that are brought in VGTA
document.

According to our benchmarks, IndexedDB performed
slower in all of the defined performance tests. Both SQLite

and IndexedDB executed “insert” queries almost in the same
amount of time and the differences between them were
neglectable, however, the difference slightly increased in
10,000 entries. SQLite performed “select” queries
significantly faster compared to IndexedDB. Interestingly,
the execution time of selecting in 1000 entries is
approximately 20 times faster in SQLite but the difference is
decreasing in 3000 and 10,000 entries. Also, SQLite has
shown a better performance for “update” and “delete”
queries and the difference in all three data sets is tangible.
From security perspective, both databases are closely at the
same level, with IndexedDB taking advantage of SOP
mechanism and SQLite having built-in “input validation”.
However, it should be considered that IndexedDB API is still
under development and it is expected to improve in the
future.

Our overall results indicate that for a large corporation

like Volvo Group, which usually works with enterprise
systems, IndexedDB is not recommended because of its low
performance. In addition, security of both databases cannot
address Volvo Group’s security requirements, especially
while dealing with credential data. However, IndexedDB is
an applicable solution to those applications, where security
and performance of them are in low priority and structure of
the database is needed to be loos.

A. Threats to Validity
The result of our research can be affected or biased by

factors such as: researchers’ background, collected data, etc.
Here we discuss four threats we identified and how we
managed to mitigate them.

1) Raw data selection

Raw data selection should be ensured to be unbiased. We
aimed to collect all type of related data without assigning any
restriction to them such as: date of publication, number of
pages, and etc. For all the papers, abstracts and conclusions
were reviewed to ensure if they are relevant to our topic.
Moreover, all selected books were partially read to select
suitable ones for our research.

2) Missing data

However, we put our full effort to collect all available
data, but there are still missing resources in our literature
review data pool. To minimize this threat, data collection
was done iteratively, even while analyzing captured data.

3) Prototypes optimization
Unoptimized prototypes would effect on the result of our

benchmarks. In order to lower the risk of this threat, pair-
programming technique was used in development phase and
all codes were reviewed to find possible flaws.

4) Unreliable measurements

The results of benchmarks in both prototypes are
dependent on background processes of their host
environments such as: Android memory controller, Java

 8

garbage collector, Google Chrome JavaScript engine, and
etc. To cope with this threat, we performed each
performance test ten times and calculated the average.

VI. CONCLUSION AND OUTLOOK
HTML5 is a recent technology, where few researches

have been conducted in this area. In this investigation, the
aim was to compare HTML5’s local data storage mechanism
“IndexedDB” with “SQLite” on Android devices. This
comparison was performed based on Volvo Group and
developers’ concerns while choosing a solution for local data
storage, where these concerns were captured through
exploratory interviews. This study has found that IndexedDB
is noticeably slower in performance and at the same security
level compared to SQLite. However, different solutions are
being chosen according to projects’ requirements, therefore,
IndexedDB would fit to those projects, where performance is
not the main concern.

The outlook of this research is to improve the quality of

the research by creating more optimized prototypes, and
defining more consistent performance tests along with
collecting more data about security of both databases, since
additional research is needed to understand security issues in
depth. Also, the existing data would be updated by release of
any new version of the databases.

CONTRIBUTION
The main contribution is the comparison of IndexedDB

and SQLite, in order to determine if web applications can
compete with native applications in the field of local data
storage, which shows that currently, SQLite is the preferable
local storage.

ACKNOWLEDGEMENT
We would like to appreciate the effort of our academic

supervisor Eric Knauss and also our industrial supervisors
Micael Andersson and Mohamed Seifeddine who helped us
to make this research possible and also thanks the
interviewees who gave us their valuable time.

REFERECES
Anon, 2013. android.database.sqlite | Android Developers.
[online] Available at:
<http://developer.android.com/reference/android/database/sq
lite/package-summary.html> [Accessed 8 Dec. 2013].

Anon, 2013. Authentication and Authorization - Apache
HTTP Server. [online] Available at:
<http://httpd.apache.org/docs/2.2/howto/auth.html>
[Accessed 2 Dec. 2013].

Anon, 2013. Basic concepts - IndexedDB | MDN. [online]
Available at:

<https://developer.mozilla.org/en-
US/docs/IndexedDB/Basic_Concepts_Behind_IndexedDB>
[Accessed 13 Nov 2013].

Anon, 2013. Blob - Web API reference | MDN. [online]
Available at:
<https://developer.mozilla.org/en-US/docs/Web/API/Blob>
[Accessed 2 Nov 2013].

Anon, 2013. Categories of Free and Nonfree Software -
GNU Project - Free Software Foundation. [online] Available
at:
<https://www.gnu.org/philosophy/categories.en.html#Public
DomainSoftware> [Accessed 15 Dec. 2013].

Anon, 2013. Implementation Limits For SQLite. [online]
Available at: <http://www.sqlite.org/limits.html> [Accessed
8 Nov. 2013].

Anon, 2013. IndexedDB | MDN. [online] Available at:
<https://developer.mozilla.org/en-US/docs/IndexedDB>
[Accessed 5 Nov. 2013].

Anon, 2013. Indexed Database API. [online] Available at:
<http://www.w3.org/TR/IndexedDB/> [Accessed 23 Nov
2013].

Anon, 2013. Managing HTML5 Offline Storage - Google
Chrome — Google Developers. [online] Available at:
<https://developers.google.com/chrome/whitepapers/storage
#temporary> [Accessed 2 Dec 2013].

Anon, 2006. Oracle Berkeley DB: Performance Metrics and
Benchmarks. [pdf] Redwood Shores: Oracle. Available at:
<http://www.oracle.com/technetwork/products/berkeleydb/b
erkeley-db-perf-128909.pdf>[Accessed 14 Nov. 2013].

Anon, 2013. SQL Features That SQLite Does Not
Implement. [online] Available at:
<http://www.sqlite.org/omitted.html> [Accessed 15 Dec.
2013].

Babbie, E. R., 2009. The Practice of Social Research. 12th
ed. Unknown: Wadsworth Publishing.

Barrett, D. J. and Silverman, R. E., 2001. SSH, the Secure
Shell: The Definitive Guide. Sebastopol: O’Reilly.

Bertino, E., and Sandhu, R., 2005. Database Security,
Concepts, Approaches, and Challenges, IEEE Trans.
Dependable and Secure Computing, 2(1), pp.2-19.

Braun, V. and Clarke, V., 2006. Using thematic analysis in
psychology. Qualitative Research in Psychology. 3(2),
pp.77-101

Cattell, R.G.G., Barry, D.K. eds., 1997. The object database

 9

standard: ODMG 2.0. San Francisco: Morgan Kaufmann
Publishers.

Creswell, J. W., 2009. Research design: Qualitative,
Quantitative, and Mixed Methods Approaches. 3rd ed, Sage
Publications: London.
Kimak, S., Ellman, J., & Laing, C., 2012. An Investigation
into Possible Attacks on HTML5 IndexedDB and their
Prevention. Liverpool: PGNET.

Kreibich, J.A., 2010. Using SQLite. Sebastopol: O’Reilly.

Laine, M., n.d. Client-Side Storage in Web Applications.
[pdf] Aalto: Department of Media Technology, Aalto
University. Available at:
<http://media.tkk.fi/webservices/personnel/markku_laine/cli
ent-side_storage_in_web_applications.pdf> [Accessed 16
Nov. 2013].

Liu, H., and Gong Y., 2013. Analysis and Design on
Security of SQLite. International Conference on Computer,
Networks and Communication Engineering: Beijing.

Needham, R.M., Schroeder, M.D., 1978. Using encryption
for authentication in large networks of computers.
Communications of the ACM, 21(12), pp.993-999.

Okman, L., Gal-Oz, N., Gonen, Y., Gudes, E., Abramov, J.,
2011. Security Issues in NoSQL Databases. Trust, Security
and Privacy in Computing and Communications (TrustCom),
IEEE 10th International Conference. pp.541-547.

Oracle Corp, 2013. WebSimpleDB API. [online] Available
at: <http://www.w3.org/TR/2009/WD-WebSimpleDB-
20090929/> [Accessed 2 Nov. 2013].

Owens, M., 2006. The Definitive Guide to SQLite.
Unknown: Apress.

Pilgrim, M., 2010. Dive Into HTML5. Unknown: Apress.

Stephens, R., 2009. Beginning Database Design Solutions.
Unknown: Wiley Publishing Inc.

Saiedian, H., and Broyle, D., 2011. Security Vulnerabilities
in the Same- Origin Policy: Implications and Alternatives.
Computer Journal. 44(9), pp.29-36.

APENDIX
Interview questions:

1. Have you done any web application project personally or
within your company?

1.1. If yes:
1.1.1. Why did you decide to do web application
instead of native one?

 1.1.2. What approach did you use for storing data?
 If Server-side: why?

If Client-side:

1.1.3. Have you used HTML5 LocalStorage within
the project? (Why?)
1.1.4. How was learning curve of using HTML5
LocalStorage? (Simplicity)

1.1.5. Have you faced any security issues when
using HTML5 LocalStorage? (Explain) (Security)

1.1.6. How do you evaluate performance of
HTML5, specifically LocalStorage? (Performance)

1.1.7. How was the situation while modifying some
part of the application? (Modifiability)

1.1.8. How was coping with runtime error
handling? (Availability)

1.2. If no: (These questions are asking to check if what
interviewees mention, is implemented in HTML5)

1.2.1. What were the reason you decide to go for native
application over web application?

1.2.2. Have you faced any security issues when using
native application’s Storage? (Explain) (Security)

1.2.3. How was the situation while modifying some part
or maintaining the application? (Modifiability)

1.2.4. How was coping with runtime error handling?
(Availability)

These questions are asking according to the situation:

- Do you have any experience with NoSQL database? (if yes,
how do you evaluate it?)

- Do you have any experience with Object-oriented
database? (if yes, how do you evaluate it?)

- Do you have any experience with Offline API of HTML5?
(if yes, how do you evaluate it?)

