CHALMERS ‘ UNIVERSITY OF GOTHENBURG

SWAP-IFC

Secure Web Applications with Information Flow Control

Master of Science Thesis in Computer Science

ALEXANDER SJOSTEN

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
Goteborg, Sweden, February 2015

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

SWAP-IFC
Secure Web Applications with Information Flow Control

ALEXANDER SJOSTEN

© ALEXANDER SJOSTEN, February 2015.

Examiner: ANDREI SABELFELD

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Goteborg, Sweden February 2015

Abstract

This thesis explores the possibility to create a library in Haskell which en-
ables a static analysis with regards to information flow control. This library
should then be compiled with Haste and produce secure JavaScript code
with regards to information flow control. In doing so, the compiled code
should be able to be run through JSFlow information flow control-enforcing
JavaScript interpreter with no halted execution due to information leakage.

In order to create the library, three different prototypes were developed.
From these prototypes, the most promising was selected. Once a proper li-
brary implementation, which involves integration with Haste and code gen-
erated towards JSFlow, had been created, thorough testing was performed
to verify correctness.

Creating a secure web application with regard to information flow control
poses a big challenge and there has been a lot of research in the area of
information flow control. When creating a web application, a language like
JavaScript is usually used. Since JavaScript is deployed in the browser and
can gain access to sensitive information, securing JavaScript application with
regards to information flow control is crucial and to help with this, a dynamic
interpreter called JSFlow has been developed at Chalmers University of
Technology.

However, it is not enough to secure JavaScript with regards to informa-
tion flow control. Research has been made to help strengthen the weak type
system of JavaScript. The research includes creating new languages and
creating compilers. The compiler Haste generates JavaScript code from the
high-level, strict statically typed language Haskell.

Acknowledgements

I would like to give thanks to Andrei Sabelfeld for acting as my examiner for
this thesis and providing valuable input. I would also like to thank Anton
Ekblad for his supervision and sharing his knowledge when giving advice
and valuable feedback on the draft of the report; Daniel Hedin for helping
out with questions about JSFlow. I would also like to thank my opponents
Anders Nordin, Hannes Sandahl and Daniel Eddeland for their feedback
during my presentation. Finally, a big thank goes to all computer scientists
in our lunch room Monaden for great laughs and good discussions about
everything and nothing.

Alexander Sjosten, February 26, 2015, Gothenburg

Contents

1 Introduction

1.1 Problems with JavaScript
1.2 Information Flow Control
2 Background

2.1 Problems with JavaScript - part deux
2.1.1 Weak dynamic typing
2.1.1.1 Attempts to solve the type problem

2.1.2 Sensitive information in the browser
2.1.2.1 Attempts to solve the information problem .

2.2 Haste e
2.3 JSFlow.
2.3.1 Explicit low
2.3.2 Implicit low oL
2.3.3 Example of coding for JSFlow
2.3.4 Flows in a pure functional language

2.4 Non-interference o0
2.5 Declassification o
2.6 Related Work oo
2.6.1 LabeledIO,
2.6.2 Seclib
2.6.3 LMonad
264 RDR
2.6.5 Why another library?

3 Goal and limitations

3.1 Goal
3.2 Limitations o

CONTENTS

4 Prototypes 15
4.1 FEmbedded Domain Specific Language 15
4.2 Non-monadic 15
4.3 Monadic e 17

5 Implementation 18
5.1 The Flow type 18

5.1.1 Monad instance 19
5.1.1.1 Monad laws and Flow 19

5.1.2 Functor instance 20
5.1.2.1 Functor laws and Flow 21

5.1.3 Applicative instance 22

5.2 Controlling the flow, 24
5.2.1 Declassification of flows 24
5.2.2 Non-interference of flows 26

5.3 Handling side effects 26
5.3.1 JSFlow and side effects 26
5.3.2 SwaplFC and side effects 27

5.4 Integrating with Haste 28
5.4.1 Modifications done to Haste 30

6 Testing of the implementation 31
6.1 7Naive” testing of the primitives 31
6.2 Unittesting o 31
6.3 Testing SwapIlFC with QuickCheck 32

7 Future work 35
7.1 Full communication for SwapIFC to JSFlow 35
7.2 More primitives for SwaplFC 36
7.3 Add support for Haste.App 36
7.4 Remove the apply function in generated code 37
7.5 More features for JSFlow 37
7.6 End-to-End information flow control 38

8 Conclusions 40
References 42

Appendix A Structure of SwaplIFC library 47

Appendix B Instance implementation 48

Appendix C Num instance in Flow type 50

Appendix D Tests 52

ii

Introduction

When developing a web application, there are numerous issues the applica-
tion writer must consider. One of the most used languages when designing
the front-end of a web application is JavaScript [1], a dynamically typed,
multi-paradigm programming language [2]. Unfortunately, JavaScript suf-
fers from a couple of drawbacks and attacks towards the language through
Cross-Site Scripting (XSS) were on the third place on the OWASP Top 10
list of most common attacks in 2013 [3]. In an XSS attack, the attacker man-
ages to inject JavaScript code into websites that are considered secure [4, 5].
These injections can do anything from harmless pranks (e.g. showing an
alert box) to redirecting the non-suspecting user to a fake website to steal
valuable information. When an attack like XSS succeeds, the culprit is usu-
ally non-escaped input from the users. If a website includes the user input
verbatim, an attacker can insert input that will be treated as code by the
victim [5]. Examples of valuable information retained by the browser for an
attacker are cookies and session tokens which can be used to gain access to
e.g. personal information and passwords.

1.1 Problems with JavaScript

From a security standpoint with regards to information flow control, JavaScript
suffers from two big problems, namely

o It uses weak typing, i.e. it can do both implicit and explicit type
conversions depending on the operation, often violating the principle
of least surprise (e.g. + does not always mean addition of two numbers)
and leading to hard to find bugs. This is explained more in depth in
Chapter 2.1.1.

e [t can gain access to sensitive information from the browser.

CHAPTER 1. INTRODUCTION

There are more problems with JavaScript in general, e.g. bad scoping se-
mantics, poor support for the functional paradigm and a lack of modularity.
Since those problems are not that important from a information flow secu-
rity standpoint, it is not in the scope of this report. The curious reader can
read more about those problems in [6].

1.2 Information Flow Control

Confidentiality in any system is important. Unfortunately, there are few
built in mechanisms for ensuring end-to-end confidentiality policies in pro-
gramming languages like JavaScript [7]. The general idea behind informa-
tion flow control is to tag the data with one of two security levels; high or
low. These levels can be seen as either private data (high security level) or
public data (low security level). Figure 1.1a shows the flow in an application
developed with the core language of JavaScript. In JavaScript, there is no
way of controlling the flow by dividing the different values of the applica-
tion into either a high or low context. It is more of a straight line from
the input to the output. However, if an implementation of a system that
enforces information flow control were in place, the flow could be seen as in
Figure 1.1b. The only flow that is not allowed is a flow from a high context
to a low context. All the other flows, i.e. low to low, low to high and high
to high, are valid. A system that enforces information flow control will help
ensuring end-to-end confidentiality.

_— > - - = - ’ ——
Input Output Highinput| ~~. _~ _- High output
i >] S=Z
Low input| _ -~ =~ . |Low output
e ~—
(a) Normal information flow (b) Controlled information flow

Figure 1.1: Different kinds of flow in a web application

Background

As mentioned in Chapter 1, JavaScript has several shortcomings. This chap-
ter will explain those shortcomings in more detail. It will also introduce two
of the tools that will be used in this project; Haste [6] and JSFlow [8, 9, 10].
Finally, some terminology and related work will be presented.

2.1 Problems with JavaScript - part deux

From a security standpoint JavaScript suffers from weak dynamic typing
and having access to sensitive information in the browser.

2.1.1 Weak dynamic typing

There are several odd features one can use in JavaScript due to the weak
dynamic typing. Where a statically typed language (e.g. Java) would give
a compile error, the JavaScript code will be run and perhaps succeed but
with unexpected results. Figure 2.1 shows a logical error that is caught at
compile time in Java. If the code in Figure 2.1 would be allowed to run, it
would be up to the runtime environment to determine how the code would
be interpreted. The same error in JavaScript is shown in Figure 2.2. Since
JavaScript does not have any static type checking the decision on how to
interpret the code will be made at runtime. Instead of failing and raising a
runtime error, JavaScript will convert the true value into a number which in
this case corresponds to the number 1. Hence the addition will be evaluated
to 3. Situations like that, where a clear type error is allowed to propagate
and potentially change the state of the application should be considered
dangerous and prone to producing bugs.

Another issue with the weak type system in JavaScript can be seen
in Figure 2.3. It is perfectly legal to compare a function with an array
in JavaScript. The code in Figure 2.3 will evaluate to true. This can
in turn make it very difficult to find potential bugs since JavaScript will

CHAPTER 2. BACKGROUND

int a = 2;
boolean b = true;
a + b; // This should not be allowed to be run

Figure 2.1: Logical error in Java

var a = 2;
var b true;
a + b; // This will evaluate to 3

Figure 2.2: Logical error in JavaScript

try to convert values of different types to the same types and then make
the comparison. In e.g. Java, the comparison in Figure 2.3 would not go
through the type checker.

(function(x) { return x * x; }) > [1,2,3];

Figure 2.3: Weird comparison in JavaScript

In principle, weak typing is when a programmer can mix different types.
In some cases it can make sense to allow it, e.g. adding an integer and a
float value. It is not only in JavaScript that the examples in Figure 2.2
and Figure 2.3 would go through a ”compilation phase”. Other dynamic
languages such as FErlang, Python and Ruby would allow those examples
through the compiler. However, Erlang, Python and Ruby all have type
checking at runtime and those examples would generate an error at runtime.

One could argue that it is rather silly examples. Who would ever com-
pare a function with an array? The example in Figure 2.4 shows exactly
why weak typing is a bad thing. Assume that a user inputs Alice as the
name and 42 as the age. The example in Figure 2.4 would gladly write

” Alice is now 42 years old. In 20 years Alice will be 4220 years old!”

to the console. This is because + is not only addition, it is also concatenation
and if one of the operands is a string, + will always convert the second
operand to a string and do a concatenation.

2.1.1.1 Attempts to solve the type problem

There have been several attempts of providing a more secure type system
to JavaScript, everything from creating a statically typed language that

CHAPTER 2. BACKGROUND

var name = prompt("What is your name?", "");

var age = prompt("What is your age?", "");

console.log(
name + " is now " + age + " years old. In 20 years " +
name + " will be " + (age + 20) + " years old!"

)

Figure 2.4: Weak types in JavaScript

compiles to JavaScript to a compiler from an already existing programming
language and compile it to JavaScript to a static type checker. Examples of
attempted soultions are

e TypeScript [11], a typed superset of JavaScript that compiles to plain
JavaScript.

e TeJaS [12, 13], which allows you to annotate type signatures as com-
ments in the JavaScript code and then type checks the code.

e GHCJS [14] and Haste [6, 15], which compiles from Haskell, a stati-
cally typed, high-level functional programming language [16], to JavaScript.

2.1.2 Sensitive information in the browser

The browser has access to several different types of sensitive information and
can be used by an attacker to get the sensitive information. JavaScript can
gain access to e.g. cookies, send HTTP requests and make arbitrary DOM
(Document Object Model) modifications. If untrusted JavaScript is executed
in a victim’s browser, the attacker can, among other things, perform the
following attacks:

e Cookie theft, where the attacker can gain access to the victim’s
cookies that are associated with the current website.

o Keylogging, where the attacker can create and register a keyboard
event listener and send the keystrokes to the attacker’s own server in
order to potentially record passwords, credit card information etc.

e Phishing, where the attacker can insert fake forms by manipulating
the DOM and fool the user to submit sensitive information which will
be redirected to the attacker.

CHAPTER 2. BACKGROUND

2.1.2.1 Attempts to solve the information problem

The current solution to secure the sensitive information JavaScript has ac-
cess to as of now is to sandbox the script and run it in a secure environment.
There are mainly three ways of doing this.

e Wrap the script inside a call to with and pass a faked window object
and execute the code with eval.

e Use an iframe and set the sandbox attribute to either not allow scripts
to run or allow the scripts to run within that iframe only. Unfortu-
nately, as explained in [17], iframes have some issues as well.

e Use existing tools to help sandbox third party code, such as:

— JavaScript in JavaScript [17], an interpreter that allows an
application to execute third-party scripts in a completely isolated,
sandboxed environment.

— Caja [18], a compiler to make third party code safe to embed
within a website.

2.2 Haste

Haste (HASkell To Ecmascript compiler) is a compiler that compiles the
high-level language Haskell to JavaScript. The Haste compiler is plugged
into the compilation process from GHC, the Glasgow Haskell Compiler. As
can be seen in Figure 2.5, Haste starts its compilation process after GHC
has done some code optimization. From the optimized code from GHC,
Haste will create an AST, Abstract Syntax Tree, for JavaScript. The AST
will then be optimized and after the optimization process in Haste is done
the actual JavaScript code will be generated.

When compiling the Haskell source code with Haste, the compilation
process will result in a JavaScript file. If Haste.App, a client-server commu-
nication framework for Haste, is used, the compilation process will create
the source code for the client in JavaScript and a server binary [15].

2.3 JSFlow

JSFlow is an interpreter written in JavaScript that dynamically checks the
JavaScript code at runtime to ensure information flow security. Currently,
JSFlow supports full information flow control for EFCMA-262 v5, the stan-
dard which JavaScript is built upon, apart from strict mode and JSON
(JavaScript Object Notation).

Within information flow security, there are two types of flow that must
be checked - explicit flow and implicit flow. Even though there are several

CHAPTER 2. BACKGROUND

Step Operation GHC/Haste
1 Parse GHC
2 Type check GHC
3 Desugar GHC
4 Intermediate code generation GHC
5 Optimization GHC
6 | Intermediate code generation (JS AST) Haste
7 Optimization Haste
8 Code generation to JavaScript Haste

Figure 2.5: The compilation process for the Haste compiler

different ways an attacker can gain information about a system (e.g. via
timing attacks where the attacker analyzes the computation time to gain
information about the system), only explicit and implicit flows for compu-
tations are considered. JSFlow does not provide security for e.g. timing
attacks and due to this, handling timing attacks and other side-channel
attacks will be outside of the scope for this thesis.

2.3.1 Explicit flow

With explicit flow, one means when a data in a high context leaks informa-
tion to a low context explicitly. An example can be seen in Figure 2.6a where
the value of the high variable h is leaked to the low variable 1. Obviously
this should be illegal when information flow security is applied and explicit
flows are not difficult to find when dynamically checking the code. When
data is written to a variable, one simply must keep track of the context of
the variable and the context of the data. If the variable is in low context
and the data is in high context an error should be produced and execution
of the JavaScript code should be stopped. All other scenarios (high variable
with high data, high variable with low data and low variable with low data)
are allowed.

2.3.2 Implicit flow

Implicit flows occurs when e.g. a language’s control structure is used in
combination with side effects to leak information. Figure 2.6b shows an
example of an implicit low. The variable 1 will get the value 1 if and only
if the variable h is an odd number. Otherwise 1 will have the value 0.
A dynamic system that will handle implicit flows must associate a security
context with the control flow [9]. In Figure 2.6b, the body of the if statement

CHAPTER 2. BACKGROUND

should be executed in a secure context and therefore the variable 1 must be
a secure variable in order for the flow to be valid.

h := h mod 2;
1 :=0;
if h =1 then 1 := 1;
1 :=h else skip;
(a) Explicit flow (b) Implicit flow

Figure 2.6: Implicit and explicit flow

2.3.3 Example of coding for JSFlow

When creating a web application in JavaScript that JSFlow should be able
to check, there is only one function that the programmer must know about -
the upg function. The function upg is used when lifting a computation into
a high context. In Figure 2.7, the variable h is lifted into a high context
by calling upg on the data to be stored to h. Due to the call to upg, the
variable h will be a high variable containing the number 42. As can be seen
with the variables 1, which is a low variable, and t, which is a high variable,
the default level for a compuation is low unless JSFlow infers that a variable
must be high due to part of the compuation being high.

// Variable 1 is a low variable of value 2
var 1 = 2;

// Variable h is a high variable of value 42
var h = upg(42);

/* Variable t must be a high variable due to h
being high */
var t = 1 + h;

Figure 2.7: Creating high and low variables in JavaScript with JSFlow
The upg function will take a computation (in Figure 2.7 the compuation

is simply the number 42) and bind that value to the assigned variable (in
Figure 2.7 the variable h) and put the variable in a high context.

CHAPTER 2. BACKGROUND

2.3.4 Flows in a pure functional language

Even though there are two different flows in JavaScript (implicit and explicit
flows), there is only one type of flow in a pure functional programming lan-
guage like Haskell, an explicit flow [19]. As described in Chapter 2.3.2, an
implicit flow depends on control structures in combination with side effects
in order to leak information. However, even though a pure functional pro-
gramming language like Haskell contains control structures, a pure function
does not contain side effects. A control structure like an if-statement can
be interpreted as a regular function returning a constant value. This means
that a function like

f :: HInt -> LInt
f x = if x ‘mod‘ 2 == 0

then 42

else -42

will look like an implicit flow but is in fact an explicit flow. Note that, in
this case HInt stands for a High Int and LInt stands for a Low Int. An
if-then-else can be rewritten as a regular function [20]

myIf :: Bool -> a -> a -> a
myIf True bl = bl

myIf False _ b2 = b2

where bl and b2 are the different branches. The different branches are of
type a, which in this case can be any arbitrary expression. Rewriting the
function f using myIf can be done as follows:

f :: HInt -> LInt
f x = myIf (x ‘mod‘ 2 == 0) 42 (-42)

where a constant value, either 42 or -42, is returned. Since there are no
side effects in a pure function like f, there can be no implicit flows. Every
flow will be explicit, which in turn makes it easier to create a structure in
the type system that keeps track of the flow.

2.4 Non-interference

The principles of non-interference were introduced by Goguen and Meseguer
in 1982 [21] who defined non-interference to be

“one group of users, using a certain
set of commands, is noninterfering
with another group of users if what

CHAPTER 2. BACKGROUND

the first group does with those
commands has no effect on what the
second group of users can see.”

When talking about non-interference with regards to information flow con-
trol, one means a property that states that the public outcome does not
depend on any private input. An attacker should not be able to distinguish
between two computations from their outputs if the computations only vary
in the secret input.

As an example of non-interference, assume the following function where
something of type Char is of high value and something of type Int is of low
value:

fOk :: (Char, Int) -> (Char, Int)
fOk (c, i) = (chr (ord c + i), i + 42)

The function £0k preserves confidentiality since it does not leak any valuable
information about the value c. In this case, preserving the confidentiality
of ¢ means that no information of c is leaked. It is said to be non-interfered
since the public result (the Int value) is independent of the value of c. If
the function instead was defined as

fBadl :: (Char, Int) -> (Char, Int)
fBadl (c, i) = (c, ord c)

it would not be non-interfered because the confidentiality is broken. Infor-
mation about c is leaked through the low Int and the corresponding decimal
value of the ASCII number of c is returned as the second value of the tuple.

Unfortunately, information leakage is seldom as explicit as in the £Bad1
function. An attacker might be clever and attempt

fBad2 :: (Char, Int) -> (Char, Int)
fBad2 (c, i) = (c, if ord ¢ > 31 then 1 else 0)

which would give information about whether or not the variable c is a print-
able character (the ASCII values of printable characters start at 32 [22]) [19].
Just as with £Bad1, fBad2 does not satisfy the non-interference property.

2.5 Declassification

A system that satisfies the non-interference policy is a very strict system. A
system usually needs some kind of controlled release of confidential data. As
an example, imagine a login system. A user’s password should be handled
as confidential data when the user attempts to login. If the login succeeded
the user should be authenticated and redirected whereas if the login failed
the user should be prompted with a message saying the username/password

10

CHAPTER 2. BACKGROUND

combination was incorrect. If the system was non-interfered, there could be
no message explaining to the user that the username/password was incorrect
since that output would rely on confidential data. Another example could
be when a credit card is being used for online payment. In the order receipt
it is not uncommon to include the last four digits of the credit card number.
Again, this is something that can not be done if the system is non-interfered
since a credit card number should be considered confidential.

Unfortunately, there is no way for the non-interference policy to distin-
guish between intended release of information and release that occurs due
to an attack or programming error. In order to allow controlled information
leak one can use declassification policies. Taking the example of the credit
card explained above and assuming a function getLastFour that takes a
secret credit card number h as an argument and returns a secret value con-
taining the last four digits of the credit card number, producing an intended
information release to the variable 1 can be achieved by calling a declassify
function:

1 := declassify(getLastFour(h))

However, just allowing declassification everywhere can be dangerous. In
theory, an attacker could compromise the declassification and extract more
information than intended. Due to this, work on classifying the declassifica-
tion into four different dimensions has been presented in [23]. The proposed
dimensions are

e What information is released.

e Who controls the information release.

e Where in the system the information is released from.
e When the information is released.

and these should be seen as recommendations for how to build the declassi-
fication policies in systems.

2.6 Related Work

There has been research within information flow control and libraries have
been created in order to help enforce information flow policies and secure
both confidentiality and integrity of the information. Some of the most
relevant findings for this project will be described below.

2.6.1 Labeled IO

Labeled 10 (LIO) is a library created in Haskell for dynamic information
flow control [24]. Compared to the library created for this thesis, LIO keeps

11

CHAPTER 2. BACKGROUND

track of a current label, which is an upper bound of the labels of all data
that can be observed or modified in the evaluation context. One can also
bound the current label with a current clearance, where the clearance of
a region of code can be set in advance to provide an upper bound of the
current label within that region. LIO attempts to close the gap with static
analysis, which even though it has its advantages (fewer run-time failures,
reduced run-time overhead etc.) has a problem when new kinds of data (e.g.
user input) can be encountered at runtime, and dynamic systems.

2.6.2 Seclib

Seclib is a light-weight library for information flow control in Haskell [19, 25].
Just as with the library created in this thesis, Seclib is based on monads and
all private data lives within the created monad. However, compared to the
library in this thesis, Seclib creates two different monads, Sec and SeclO,
where SeclO is an extended IO monad (an I0 monad wrapped in a Sec
monad). Seclib was designed to be a small, lightweight library and consists,
as of Jan. 29 2015, of only 342 lines of code.

2.6.3 LMonad

LMonad [26] is a library tailored to provide information flow control for web
applications written in Yesod, a framework for creating web applications
in Haskell [27]. It is a generalization of LIO and provides a Monad Trans-
former [28], which in theory means it can be ”"wrapped around” any monad.
Programmers can define their own information flow control policies and af-
ter defining them, LMonad guarantees that database interactions follow the
policies.

2.6.4 RDR

RDR is a monad for Restricted Delegation and Revocation which builds on
the DLM (Decentralized Label Model) to provide information flow control.
DLM allows declassification in a decentralized way [29] and consists of four
important parts [30]:

e Principles, which is an entity with power to change and observe cer-
tain aspects of the system. A principle p can delegate authority to
a principle ¢ and the actions taken by ¢ is implicitly assumed to be
authorized by p. The principals can have different security policies
which makes the system modular.

e Reader policy, which allows the owner of the policy to specify which
principals who are allowed to read a given piece of information. This
is a confidentiality policy.

12

CHAPTER 2. BACKGROUND

o Writer policy, which allows the owner of the policy to specify which
principals who may have influenced the value of a given piece of infor-
mation. This is an integrity policy.

e Labels, which is a pair of a confidentiality policy and an integrity policy.
It is the labels that are used to anotate programs.

The purpose of RDR is to extend restricted delegation and revocation
to information flow control. The main principle is to allow information flow
to a predefined chain of principals, but keeping a right to revoke it at any
time. The RDR monad is built by using a Reader monad over the IO monad.
One of the ideas of RDR is to see restricted delegation as declassification and
protected values should only be allowed to be read by using a valid principal
and due to the DLM, mutually-distrusting principals should be allowed to
express individual confidentiality and integrity policies [31].

2.6.5 Why another library?

As explained above, there are already working libraries for information flow
control so why would another library be needed? Even though the current
libraries are good, they lack one part - integration with a dynamic system.
The library will help close the gap between static control for information
flow control and already created tools for dynamic check of information
flow control (JSFlow) and created tools for securing JavaScript from the
viewpoint of a type system (Haste).

13

Goal and limitations

This chapter will describe the goals and limitations of the thesis.

3.1

Goal

The goal of the thesis is to create a library that will help close the gap be-
tween static and dynamic checks for information flow control. In particular,
this will be done by extending Haste to produce JavaScript code targeting
JSFlow.

3.2

Limitations

The following areas will not be considered in this thesis:

DOM support.

Support for Haste.App, which will include HTML5 with Websockets.
Dynamic information flow control.

Side-channel attacks towards a system (e.g. timing attack).

Securing any communication outside of the JavaScript that is to be
generated by Haste.

More than two security levels.

14

Prototypes

For this project, three different prototypes were developed. There are not
many differences between the non-monadic and the monadic version and for
the final implementation the monadic version was chosen.

4.1 Embedded Domain Specific Language

The first prototype developed was a deeply embedded domain specific lan-
guage (EDSL) [32]. In theory, an EDSL is a embedded language within
another language. In this case, the library would be a EDSL within Haskell.
In a deep EDSL, an abstract syntax tree is created to represent a program
while in a shallow EDSL, language constructs are mapped directly to their
semantics [33].

In the prototype, the different operations allowed were translated to con-
structors of a data type called Expr, where Expr represented expressions.
Even though an EDSL is very powerful it suffers from a major drawback. It
is difficult to gain access to features from the main language. An example
is recursion, something that exists in Haskell, that needs to be implemented
again within the EDSL (usually as a constructor which needs to be inter-
preted). Due to the constraint of not being able to use language-specific
features without implementing them again and the increased overhead of
defining every action that should be allowed within a datatype, this proto-
type was quickly disposed of.

4.2 Non-monadic

In the non-monadic prototype, the first thing that needed to be tested was
different implementations for a type that defines a flow. The first version can
be seen in Figure 4.1 and contained a State monad from a tuple containing a
tag and a value to an internal state. The internal state were to keep track of

15

CHAPTER 4. PROTOTYPES

the program counter (pc) and all active scopes (activeScopes). By keeping
track of an internal state and the program counter, one could check if a
computation leaks information or not. This has several drawbacks. First,
it is complex; a program counter and keeping track of the internal state are
not needed for a statical analysis - it can be done within the type system
of Haskell. Second, keeping track of every variable is very tedious from the
library that is to be created since Haste will generate variable names when
the application is compiled. Having a dynamic representation of variable
names within the created library will therefore not be necessary.

type Ident = String
type Scope a = Map Ident (Tag, Term a)

data Tag = High | Low

data InternalState a = InState { pc :: Tag
, activeScopes :: [Scope al

}

newtype Flow level a = Flow (State (level, a) (InternalState a))

data LType a where

LInt :: Tag -> Int -> LType (Tag, Int)
LString :: Tag -> String -> LType (Tag, String)
LBool :: Tag -> Bool -> LType (Tag, Bool)

data Term a where
TType :: Term (LType a)
TApp :: Term a -> Term a

Figure 4.1: First attempt at a Flow type

The prototype shown in Figure 4.1 was revised to what is shown in
Figure 4.2. As in Figure 4.1, it contained a State monad but this time it
was from a tuple containing a tag and a value to a list of tuples of tags
and values. In principle, a state is used to keep track of the different data
values (i.e. computations) and their respective tags. This would then be
used to ensure that no information was leaked. Since Haste makes a lot of
computations that is encapsulated within the IO monad, it was later decided
to have the Flow type use the IO monad instead of the State monad. How
Flow was implemented can be seen in Chapter 5.1.

In order to use the Flow type properly, several help functions were imple-

16

CHAPTER 4. PROTOTYPES

newtype Flow tag a = Flow (State (tag, a) [(tag, a)l)

Figure 4.2: Second attempt at a Flow type

mented. It turned out that one of the help functions was similar to the bind
operator for monads while other help functions were similar to the functions
in the Applicative and Functor instances. With that in mind, the logical
step was to attempt to write a monadic version of the Flow type.

4.3 Monadic

The monadic prototype was a continuation of the non-monadic version ex-
plained in the previous section. The only difference was that a Monad
instance was implemented for the Flow type, making it possible to combine
an action (i.e. something of the Monad type) and a reaction (i.e. a function
from a computation of the action to another action). In short, this is the
bind operator, (>>=). It also makes it easy to encapsulate a value into a
monadic value. The type signatures of these actions can be seen in Fig-
ure 4.3. After implementing the monadic operations and deciding on the
monadic version, the work was continued by implementing Applicative and
Functor instances. The continuation of this work is described in Chapter 5.

return :: Monad m => a -> m a
(>>=) :: Monadm=>ma->(a->mb) >mb

Figure 4.3: Type signatures for the mandatory functions for Monadic in-
stance

17

Implementation

The implementation of the library (hereby referred to as SwapIFC') consists
of several modules which a user is allowed to use in order to create programs
which are secure with regards to information flow control. The standard
implementation of SwaplFC consists of a type Flow, which is a flow in the
program (i.e. data with a high or low tag). It also provides the user with
standard operations, e.g. adding two flows if the flows are of such a type
where addition is valid.

Currently, SwaplFC has a representation of all the standard operations
within the following Haskell types:

e Num
e Frac
e Bool
e Iq

e Ord

The Monad, Functor and Applicative instances for the high and low flow
can be seen in Appendix B and an example of how the standard operations
for the Num type in Haskell can be found in Appendix C. An overview of
the structure of SwapIFC can be seen in Appendix A.

5.1 The Flow type

The Flow type is defined as a newtype in Haskell, i.e. a definition that can
only contain one constructor. The Flow type became

newtype Flow tag a = Flow (IO a)

18

CHAPTER 5. IMPLEMENTATION

and even though it has a tag in the definition (the variable tag in the left
hand side), it does not contain a tag on the right hand side. Instead, the
tag is implemented as a phantom type [34]: a type which does not appear
on the right hand side of a type definition and so has no representation on
the value level. A phantom type can be checked by the type checker but
it can not be used by the user via e.g. pattern-matching. This means that
from a value standpoint, the Flow type is simply a container for IO actions
and the rules for the information flow control are implemented in the type
checker alone. However, from a user standpoint, the Flow type is a tagged
computation. An example of how to add five to a Flow of high value is

addFiveFlow :: Flow High Int -> Flow High Int
addFiveFlow f = do

let b = mkHigh 5

f .+. Db

where a new Flow (the variable b) is created and added with the given Flow
f.

5.1.1 Monad instance

Two separate monad instances were created in order to be able to handle
potential code generation towards Haste, one for high and one for low flow.
If Haste was the compiler, then the high flow needed to be compiled with a
call to the upg function in JSFlow.

Every Monad created in Haskell must also be a Functor and an Ap-
plicative by the Functor-Applicative-Monad proposal. Starting from GHC
7.10, every Monad that is not a Functor or Applicative will generate a com-
pile error [35]. Due to the Functor-Applicative-Monad proposal, the created
Monad for the Flow type is a Functor and an Applicative as well.

5.1.1.1 Monad laws and Flow

If the Flow type is implemented correctly as a monad, it should satisfy the
following three laws [36]:

1. return a >=k == k a
2. m >>= return == n
3. m>= (Ax => k x>=h) == (m>>=%k) >>=nh

The first monadic law is easy to prove. It can be done in two steps:

Flow (I0 a) >>=k
k a

1. return a >>= k

19

CHAPTER 5. IMPLEMENTATION

where the transformation on line 1 is due to the definition of return in
SwaplFC and the transformation on line 2 is due to the definition of (>>=)
in SwaplIFC.

The second law is just as easily shown.

1. m >>= return
2.
3.

Flow (I0 a) >>= return
return a
Flow (IO a)

The transformation between lines 1 and 2 is due to the definition of (>>=)
and the transformation on line 3 is due to the definition of return.

To show that the third law is satisfied, it is enough to show that the left
hand side and the right hand side evaluate to the same value. The left hand
side is evaluated as:

Flow (I0 a) >>= (A\x -> k x >>= h)
(Ax => k x >>=h) a
k a>=h

1. m >>= (Ax -> k x >>= h)
2.
3.

where the transformation between lines 1 and 2 is due to the definition of
(>>=). It is simple lambda-calculus to apply the value a to the function
Ax -> k x >>= h on line two and it is through this the result on line 3 is
derived.

Similarly, deriving the right hand side will yield

1. (m >>= k) >>=h = (Flow (I0 a) >>=k) >=nh
2. =k a>>=h

where the transformation between lines 1 and 2 is due to the definition of
(>>=). As can be seen, the left hand side yields the same result as the right
hand side and the two sides are therefore equal.

At first glance, the third law can be non-intuitive. However, due to the
type signature of (>>=), m must be of type Monad m => m a, k x must be
a monadic value (which indicates that the function k must have the type
signature (Monad m => a -> m b) and h must have type (Monad m => b
-> m c¢). Due to this, it should be allowed to havem >>= k since that would
mean (Monad m => m a >>= (a -> m b)) which would type check. The
result of m >>= k is of type Monad m => m b and since h has type signature
(Monad m => b -> m c), it is valid to have (m >>= k) >>= h.

5.1.2 Functor instance

In order for the Flow type to be an instance of Functor, the function fmap
must be implemented. When defining a functor, one can see it as transform-
ing a pure function into a monadic function (if the functor is also a monad).
If a type is an instance of both the Monad and Functor classes, then the
implementation of fmap must obey the following law:

20

CHAPTER 5. IMPLEMENTATION

fmap :: Functor f => (a ->b) > f a->fb
fmap f ioa = ioa >>= return . f

which uses the (>>=) and the return functions of the monad instance [36].
Since the Flow type should not be allowed to be transformed into something
that is not a monad, this is the implementation of fmap SwaplFC will use.

5.1.2.1 Functor laws and Flow

In order for the Flow type to have a proper implementation of fmap, there
are two laws that must be obeyed [37], namely

1. fmap id == 1id
2. fmap (f . g) == fmap f . fmap g

In order to see that the functor implementation satisfies the first law, it can
be simplified:

1. fmap id = Ax -> x >>= return . id
2. = Ax -> x >>= (return . id)
3. = \x -> x >>= return

4 = \x > x

5 = id

where the transformations on line 2 is due to precedence of function com-
position, line 3 is due to the fact that (return . id) has the type (Monad
m => a -> m a). Line 4 uses the second monadic law and line 5 uses the
fact that a function that takes one argument and does nothing but returning
that argument is by definition the id function.

For the second law, expanding the left hand side and the right hand side
will show that the results are equal. The left hand side is expanded as

1. fmap (f . g) = Ax => x >>= return . (f . g)
2. = Ax -> x >=return . £ . g

where the first transformation on line 1 is due to the definition of fmap and
the transformation on line 2 is due to the fact that (.) is right-associative.

The right hand side expansion is more interesting:

1. fmap £ . fmap g = Ax -> fmap f (fmap g x)

2 = Ax -> (fmap g x) >>= return . f

3 = Ax -> (x >>= return . g) >>= return . f

4. = Ax -> x >>= (\y -> return (g y) >>= return .
5. = Ax -> x >>= (\y -> (return . f) (g y))

6 = Ax => x >>= (Ay -> return £ (g y))

7 = Ax -> x >= (return . £ . g)

8 = Ax > x >=return . f . g

21

)

CHAPTER 5. IMPLEMENTATION

where the transformations on lines 1-3 are simply re-writing using the def-
inition of fmap. The transformation between lines 3 and 4 is due to the
monad associativity law (the third law shown in Chapter 5.1.1.1) and trans-
formation on line 5 is due to the left associativity law (the first law shown
in Chapter 5.1.1.1). On line 6, a simple application of the argument g y
is performed and lines 7-8 are due to the fact that Ax -> £ (g x) ==
g.

As can be seen, the functor instance implementation does satisfy the
functor laws.

5.1.3 Applicative instance

The Applicative instance is implemented simply by using primitives from
the Monad class by having

pure = return
(<*>) ap

In order for a instance of Applicative to be correctly implemented, the fol-
lowing laws must be satisfied:

pure id <*> v = v

pure (.) <*> u <*> v <> w = u <> (v <> w)
pure f <*> pure x = pure (f x)

u <*> pure y = pure ($ y) <*> u

W N -

The first law:

1. pure id <*> v = return id ‘ap‘ v
2. Flow id ‘ap‘ v
3. =v

The first law is very straight-forward. It is basically the same as applying a
value to the id function, which of course will yield the same value.

When proving the second law, the best course of action is to evaluate
the two sides one by one and show they evaluate to the same expression.
The left hand side of the second law can be evaluated as

pure (.) <*¥> u <*> v <*> w = return (.) ‘ap‘ u ‘ap‘ v ‘ap®
Flow (.) ‘ap‘ u ‘ap‘ v ‘ap‘ w
Flow ((.) w) ‘ap‘ v ‘ap‘ w
Flow ((.) u v)‘ap‘ w

Flow (u . v) ‘ap‘ w

Flow (u (v w))

1.
2
3.
4.
5
6

where the transformation on lines 1 and 2 are due to the definitions of pure
and <*>. On lines 3 and 4, the values of u and v are applied to the Flow

22

w

CHAPTER 5. IMPLEMENTATION

(.). Line 5 is a transformation that can be done since the function (.) can
be written infixed. Finally, the value in w is applied.

The right hand side of the second law is evaluated as

1. u <x> (v <> w)
2.
3.

u ‘ap‘ (v ‘ap‘ w)
u ‘ap‘ Flow (v w)
Flow (u (v w))

where the transformation on line 1 is due to the definition of <*> and the
transformations on lines 2 and 3 are due to evaluation of the ap expressions.
The third law is not tricky but is it not straight-forward.

pure f <*> pure x = return f ‘ap‘ return x
(Flow £) ‘ap‘ (Flow x)
Flow (f x)

return (f x)

1.
2.
3.
4

The key is to note that £ must be a function of type (a -> b) and x must
be of type a. Due to this, it is trivial to make the transformations on line
2 ("wrapping” the values in the Flow monad) and applying Flow x to Flow
f on line 3. On line 4, we go back from Flow (f x) to return (f x) since
these are equivalent.

The fourth law is very straight-foward. Once again, in order to prove
the fourth law the right hand side and the left hand side will be evaluated
individually.

1. u <> pure y = u ‘ap‘ return y
2. u ‘ap‘ (Flow y)
3. Flow (u y)

The first transformation on line 1 is due to the definitions of <*> and pure
respectively. On line 2, we use the fact that return will "wrap” the value
of y into the Flow monad. Finally, on line 3 the function ap is evaluated.

Evaluating the right hand side for the fourth law is just as easilly done.

[4

return ($ y) ‘ap‘ u
Flow ($ y) ‘ap‘ u
Flow (u y)

1. pure ($ y) <> u
2.
3.

Again, the transformations are rather straight-forward. Line 1 is due to the
definitions of pure and <*> and lines 2-3 are due to how the evaluation order
is. Note that ($ y) is a partially applied function where ($) has type (a
-> b) -> a -> b. Due to this, the partially applied function ($ y) will
have the type (a -> b) -> b.

There are two more laws for applicatives that state that if the applicative
is also a monad, then the following properties must hold:

23

CHAPTER 5. IMPLEMENTATION

pure = return
(<*x>) ap

and it is trivial to see that these properties do hold since it is the exact
implementation of the Applicative instance for Flow.

5.2 Controlling the flow

Even though there are only two types of tags for the flow, they need to
be thoroughly controlled. In order to model this, the language extensions
MultiParamTypeClasses [38] and FunctionalDependencies [39] were used.
Normally, a class instance in Haskell can only take one argument, but with
the extension MultiParamTypeClasses, a created class can take several ar-
guments. In the case for the class FlowBool, i.e. a class that contains all
operations for the Haskell type Bool wrapped in the Flow type, it is created
as

class FlowBool t1 t2 t3 | t1 t2 -> t3 where
—-- Function implementations of boolean operators

where t1, t2 and t3 are the arguments. As can be seen, given two tags, t1
and t2, it is possible to derive the resulting tag t3. This functionality is due
to the extension FunctionalDependencies. In order for Haskell to know how
the different type variables relate to eachother, instance definitions must be
added:

instance FlowBool High High High
instance FlowBool High Low High
instance FlowBool Low High High
instance FlowBool Low Low Low

The instance definitions give the rules for the Haskell type system which
types the type variables can have and how to derive the resulting type. As
can be seen, the only way for a FlowBool to produce something of low value
is when the two type variables t1 and t2 are low. As soon as either t1 or
t2 or both are high, the result will be high. This holds for all classes in
SwaplFC.

5.2.1 Declassification of flows

When looking at the declassification dimensions mentioned in Chapter 2.5,
SwaplFC implements the who and the what dimension. The only person
who can declassify information is a person who has access to the trusted
code base (see Appendix A) and the only data that can be declassified is
data that is tagged as high value. This is due to the fact that declassifying
a low value makes no sense and if it is done then the programmer might

24

CHAPTER 5. IMPLEMENTATION

not know exactly what he/she is doing. Due to this, a compile error will
be given if declassification of low data occur. However, there is no limit as
to when a person can declassify data or where a person can declassify data
from.

There is also no way to declassify data without using the declassification
function in the trusted code base. Without the primitives declassify and
upgrade, there should not be possible to use any operations within SwaplFC
to accidently declassify or upgrade data. One could imagine a programmer
that does not know exactly how to handle the data and accidently creates
a bug. Could it be possible to downgrade a flow from high to low using
(>>=)7 The (>>=) operator has the following type signature:

(>>=) :: Monad m=>ma->(a->mb) >mb
Assume the programmer has a Flow High called fHigh, i.e.
fHigh :: Flow High

There exists a function mkLow that, given a value, creates a Flow Low in-
stance with the given value, i.e.

mkLow :: a -> Flow Low a

Now, assume the programmer accidently tries to use (>>=) and mkLow to
downgrade a Flow High a to a Flow Low a. He/she could try to create the
following malicious function:

blooperFunction :: a -> Flow Low b
blooperFunction x = mkLow x

and attempt to combine fHigh with blooperFunction:
fHigh >>= blooperFunction

with the hopes of getting something of type Flow Low a. However, this
will not be possible as the compiler will produce a compile error. This is
understandable if one looks at how the type signature is for the innocent
yet malicious expression:

(fHigh >>= blooperFunction) :: Flow High a
-> (a -> Flow Low b)
-> Flow 777 b

There are two different monad instances for the Flow type, one for high and
one for low values and each has its own implementation of (>>=). Since the
first argument to (>>=) is of type Flow High a, the compiler can deduce
that it must use the implementation of (>>=) that exists in the Flow High
monad instance. That means that the second argument, the function, must

25

CHAPTER 5. IMPLEMENTATION

be of type (a -> Flow High b). However, the second argument in this
accidental attempt is of type a -> Flow Low b and due to this, accidental
declassification can not be done by using (>>=). Note that this holds the
other way around as well, i.e. there is no way to upgrade a value of type
Flow Low ato Flow High a by using (>>=). Instead the function upgrade
must be used.

5.2.2 Non-interference of flows

Due to the functional dependencies and the instance definitions, using only
the primitives and not having access to the trusted code base will lead to
non-interference. However, non-interference can not be guaranteed within
the trusted code base due to the declassification primitive and the unsafe
operations (unsafeShow to show the value of a flow and unwrapValue that
will strip the flow and IO monad and return the pure value). The tests
described in Chapter 6 shows that the confidentiality level of a flow is indeed
preserved when using the primitives in SwaplFC.

5.3 Handling side effects

Handling side effects in any language is a challenge from a security point of
view. Potential shared states can be altered, data can be printed or excep-
tions could be thrown indicating an error has occurred. From the viewpoint
of information flow control, all of these side effects must be monitored closely.

5.3.1 JSFlow and side effects

In order to handle side effects, JSFlow keeps track of a program counter
label (pc). The program counter reflects the confidentiality level for guard
expressions controlling branches (e.g. an if-statement) in the program and
prevents the modification of less confidential values. This is exactly how
the implicit flows are handled in JSFlow as well. More formal, it must hold
that:

Vge € GuardExpressions : ge. > pc

where GuardEzpressions is the set of expressions within the specified guard
and ge. is the confidentiality level for the expression ge. If any violations
occur, the execution will halt. In short, given two tags, the pc’s tag ¢ and
the computation’s tag t’, the following holds:

t == High, t’ == High ==> Valid
t == High, t’ == Low ==> Not Valid
t == Low, t’ == High ==> Valid
t == Low, t’ == Low ==> Valid

26

CHAPTER 5. IMPLEMENTATION

5.3.2 SwaplIFC and side effects

Side effects in SwapIFC is implemented by creating a newtype called FlowRef,
which is a wrapper around IORef. The FlowRef takes a tag and a value and,
just as the Flow type, wraps the value around a standard Haskell structure,
in this case an IORef. The tag for the FlowRef is a phantom type, just as
for the Flow type.

The FlowRef is implemented as

-— newtype for IORefs within Flow
newtype FlowRef tag a = FlowRef (IORef a)

newFlowRef :: a -> Flow t (FlowRef t a)

readFlowRef :: FlowRef t a -> Flow t a

writeFlowRef :: FlowRef t a -> a -> Flow t ()
modifyFlowRef :: FlowRef t a -> (a -> a) -> Flow t ()

and follows the exact same pattern as IORef does in the standard Haskell
library. When creating a new FlowRef, the function newFlowRef must be
called. Since newFlowRef returns a FlowRef within a Flow computation and
the tag t is the same, then it is guaranteed that the side effect contained
in the FlowRef can only be modified in the same context as the Flow it
is wrapped inside. The function readFlowRef will read the given FlowRef
and wraps the value in a Flow computation and the function writeFlowRef
will, given a FlowRef and a value, write the given to the given FlowRef and
wrap the result in a Flow computation. Since the base of FlowRef is IORef,
the standard function writeIORef will be used internally and due to this,
a unit-type is used in the Flow computation. Finally, modifyFlowRef will
given a FlowRef and a function apply the function to the value inside the
FlowRef. Again, the return type will be a Flow computation of unit-type.

Comparing the strictness of the handling of side effects between JSFlow
and SwaplIFC, one can see that SwaplFC is indeed stricter. Where JSFlow
demands the computations to be in at least as high a context as the pc,
SwaplFC demands the computations to be in exactly the same context.
Given two tags, the current flow’s tag ¢ and the FlowRef’s tag t’, the fol-
lowing holds for SwapIFC:

t == High, t’ == High ==> Valid
t == High, t’ == Low ==> Not Valid
t == Low, t’ == High ==> Not valid
t == Low, t’ == Low ==> Valid

The function that will run the flow has the following implementation:

runFlow :: Flow t () -> I0 ()
runFlow (Flow ioa) = do

27

CHAPTER 5. IMPLEMENTATION

res <- try ioa
case res of
Left err -> let e = err :: SomeException
in return ()
Right () -> return ()

When running the Flow computation, the IO computation will be evaluated
and as can be seen, the implementation uses Haskell’s unit-type. Due to
this fact, there is no way to extract any actual value. The only thing that
can be done is to run the IO computation. Information will not leak in
the current implementation even when exceptions occur. This means that a
person with malicious intent will not notice any difference when executing
a program that throws an exception and a program which does not throw
an exception.

5.4 Integrating with Haste

In order to integrate SwaplFC with Haste, a communication between SwaplFC
and Haste had to be created. This is done by using a preprocessing direc-
tive, the same preprocessing directive that Haste will set if the compilation
process is done with Haste. The key difference for how SwapIFC should
behave between GHC and Haste is the return of the high flow within the
Monad instance. The main difference is highlighted in the following code
snippet:

#ifdef __HASTE__

return = Flow . upg
t#else

return = Flow . return
#endif

If the program is compiled with Haste, then the computation given to return
will be executed within the function upg

upg :: a —> I0 a
upg = fmap fromOpaque . ffi "upg" . toOpaque

which makes a FFI (Foreign Function Interface) call in order to wrap the
compiled JavaScript code with a call to the JSFlow function upg. It is made
opaque in order to avoid any conversions: the value is sent to JavaScript
as it is and is returned as it was rather than being converted to something
more JavaScript friendly. This process does not have to be done with a low
flow type since it should be executed as normal code by JSFlow. The full
implementation of the Monad instance can be seen in Appendix B.

The same principle as with upg was used to implement lprint, a function
that prints the value and the corresponding tag in JSFlow. The function in
SwaplIFC which communicates with JSFlow was implemented as

28

CHAPTER 5. IMPLEMENTATION

lprintHaste :: Show a => a -> I0 ()
lprintHaste = ffi "lprint" . show

Unfortunately, this solution combined with Haste will produce a corner case
in JavaScript. Haste has some static runtime functions. One of these func-
tions is a function which applies arguments to a function (call it A for apply).
This in turn ”builds” functions by function application. It takes a function
(call it £) and its arguments (call them args) as argument and applies f to
args. Note that A is only called if f is either over-saturated (i.e. applied to
too many arguments), under-saturated (i.e. applied to too few arguments)
or if the arity of £ can not be defined. If £ is under-saturated, A will return
a closure waiting for the rest of the arguments. If f is over-saturated it
will be applied with the expected arguments and the result will be applied
to the rest of the arguments. Otherwise £ will be fully applied to args.
However, if the arity can not be defined, it will get the value of the length
field. Arguments to a function in JavaScript are optional to define [40] and
even though they are not defined they can still be reached. In the following
example

function g() {
lprint (arguments[0]);
}

the function g takes an argument but it is not defined in the parameter
list. But every function in JavaScript have an argument object assiciated
to it [41], so calling g(42); will indeed work since the value 42 will be at
arguments [0]. But checking the length field by calling g.length will yield
0. This will cause a problem since the code generated from Haste will check

if(f.arity === undefined) {
f.arity = f.length;
b

but if the function £ does not have variables in the arguments list, f.1length
will be 0.

The problem with printing using 1print is solved by supplying an anony-
mous function through the FFI like below:

lprintHaste :: Show a => a -> I0 ()
lprintHaste = ffi "(function(x) { lprint(x); })" . show

where the anonymous function has a variable in the arguments list. This
means that the length of the function will be 1 and the problem explained
above will not occur.

29

CHAPTER 5. IMPLEMENTATION

5.4.1 Modifications done to Haste

Since JSFlow only supports ECMA-262 v5 in non-strict mode and does
not support JSON [8], some modifications to Haste were needed in order
to produce JavaScript source code which followed the ECMA-262 v5 stan-
dard [42]. The code generation of Haste needed to be altered in order to not
produce code for the JSON library and ECMA features that are introduced
in ECMA-262 v6. Haste allows for ArrayBuffers to be produced, but since
the concept of ArrayBuffer is in draft mode for ECMA-262 v6 [43, 44] they
can not be supported by the current version of JSFlow. However, since crip-
pling every user of Haste by removing features is not a good idea, a flag was
added in case a user wants to compile towards JSFlow. This means that
Haste will produce JavaScript source code with features that are introduced
in ECMA-262 v6 unless the user tells the compiler to produce source code
that can be dynamically checked by JSFlow.

30

Testing of the
implementation

The testing part of the project was done in two different ways, namely
with unit tests and randomized tests. While the unit tests are manu-
ally written tests, the random tests for SwaplFC were generated by using
QuickCheck [45, 46].

6.1 ”Naive” testing of the primitives

One does not need to write unit tests or randomized tests in order to test
the primitives in SwapIFC to validate that no information leak can occur.
All that is needed is to write functions that captures every potential sce-
nario. For the (.+.) primitive of two flows, the valid flows can be seen
in Figure 6.1. However, if one attempted any of the following flows that is
present in Figure 6.2, it would yield a compile time error due to the typeclass
FlowNum not being defined for those cases. FlowNum is only defined to allow
information flow like the ones in Figure 6.1. This holds for every primitive
in SwaplFC. This is of course not a feasible solution and because of this,
unit testing and random testing with QuickCheck was done.

6.2 Unit testing

A slightly more clever way of testing compared to the naive testing described
above is unit testing. The main principle of the unit testing is to isolate parts
of a program or library and show its correctness by conducting tests on the
specific part. For SwaplFC, the unit testing consisted of 202 tests which
tested every primitive of SwapIFC. Given that all 202 tests yielded a correct
result, the probability that the primitives behave correctly is considered
high. However, unit testing is manual testing and it can be difficult to find

31

CHAPTER 6. TESTING OF THE IMPLEMENTATION

testFNumLL :: Num a => Flow Low a -> Flow Low a -> Flow Low a
testFNumLL = (.+.)

testFNumLH :: Num a => Flow Low a -> Flow High a -> Flow High a
testFNumlH = (.+.)

testFNumHL :: Num a => Flow High a -> Flow Low a -> Flow High a
testFNumHL = (.+.)

testFNumHH :: Num a => Flow High a -> Flow High a -> Flow High a
testFNumHH = (.+.)

Figure 6.1: Valid flows for add primitive

testFNumLL’ :: Num a => Flow Low a -> Flow Low a -> Flow High a
testFNumLL’ = (.+.)
testFNumLH’ :: Num a => Flow Low a -> Flow High a -> Flow Low a
testFNumLH’ = (.+.)
testFNumHL’ :: Num a => Flow High a -> Flow Low a -> Flow Low a
testFNumHL’> = (.+.)
testFNumHH’ :: Num a => Flow High a -> Flow High a -> Flow Low a
testFNumHH’ = (.+.)

Figure 6.2: Invalid flows for add primitive

edge cases and because of this, random tests using QuickCheck were also
conducted.

6.3 Testing SwaplFC with QuickCheck

In order to test SwaplFC with QuickCheck, every operator for the different
Flow instances needed to be modeled as a constructor of a datatype. The
probability distribution for each operator within an instance is uniformed.
The general algorithm for the FlowNum instance tests can be seen in Fig-
ure 6.3. Note that the oneof function is a function that will pick one of the
elements in the list at a uniform distribution and the randomlinteger func-
tion simply generates a random integer. The walidate function will return
true if and only if the result of the operand op applied to the flows flow1,
flow2 will generate the same value as the normal operand corresponding to
op applied to the normal values corresponding to the flows, vall, val2 and

32

CHAPTER 6. TESTING OF THE IMPLEMENTATION

if the tag is being preserved. The preservation of the tag means that if any
of the operands have a high tag, then the result must have a high tag. An
example of this is the following:

let a = mkHigh 42
let b = mkLow 10
let ¢ a .+. b
return (tag of c =

High && value of c == 42 + 10)

let d = mkLow 42
let e = mkLow 10
let f = a .<. b

return (tag of f == Low &% value of f == 42 < 10)

The tags are only part of the type system and because of this some
of the unsafe functions must be used in order to validate the tags. The
unsafe functions used in the tests are unwrapValue in order to check the
computed flow value and unsafeShow in order to get a string representation
of the flow value. The string representation will be the value followed by
?_<T>", where T is either H or L for high values and low values respectively.
In the example above, unsafeShow a will yield the string "42_<H>" and
unsafeShow d will yield the string ”42_<L>"”.

Each test function is repeated 100000 times with random values and the
source code for the FlowNum random tests can be found in Appendix D.

33

CHAPTER 6. TESTING OF THE IMPLEMENTATION

Algorithm 1 Testing FlowNum in SwaplFC algorithm

function TESTNUMBoTHLOW
op < oneof([Add, Sub, Mul, Neg, Abs, Sig])
(vall,val2) < (randomInteger,randomInteger)
flowl < mkLow(vall)
flow2 + mkLow(val2)
return Validate flowl flow2 op vall val2 Low
end function
function TESTNUMBOTHHIGH
op < oneof([Add, Sub, Mul, Neg, Abs, Sig|)
(vall,val2) < (randomInteger,randomInteger)
flowl <~ mkHigh(vall)
flow2 «+ mkHigh(val2)
return Validate flowl flow2 op vall val2 High
end function
function TESTNUMMIXEDHIGHLOW
op < oneof([Add, Sub, Mul, Neg, Abs, Sig|)
(vall,val2) < (randomInteger, randomlInteger)
flowl <+~ mkHigh(vall)
flow2 < mkLow(val2)
return Validate flowl flow2 op vall val2 High
end function

Figure 6.3: Pseudo code for the testing of FlowNum in SwaplFC

34

Future work

No matter how satisfied one is, there is always more work that can be done.
In this section, several different suggestions for how to proceed in the future
will be presented. The suggestions are not only about how to make SwapIFC
better, but also other potential work within the area of information flow
control.

7.1 Full communication for SwapIFC to JSFlow

At the moment, code that is generated for high flows will not work with
JSFlow. The reason for this is due to the runtime function A along with
what the actual code generation of the Haskell code generates. A simple
program for a high flow is

main = runFlow $ lprint (mkHigh 42)
which, when being executed in JSFlow should yield the output
(<>):42_<T>

However, the generated code will create an error in JSFlow, stating that
Ywrite context <T> not below return context <>”. This error is comming
from the line return f; in the A function. The error is due to the following
code

B(A(new T(function(){
return _n/* Haste.Foreign.$wunsafeEval */("upg");

b, 0o, 421, _1))

which is the code that calls the A function with the arguments. Here, the
value 42 will be upgraded to a secure value. However, the return context,
i.e. where the call to A is made, is in a low context. Since it is not allowed
to return a high value to a low context, this will produce an error.

35

CHAPTER 7. FUTURE WORK

Due to this, the most critical future work will be to get a full communi-
cation with high values working for JSFlow.

7.2 More primitives for SwaplFC

A library for a language is never completed until it easily supports the entire
language. For SwaplFC, an easy yet time consuming extension would be to
add classes and primitives for more standard classes of Haskell. Adding
support for handling strings and lists within the Flow monad is an easy
next step to do. However, adding a class for every standard Haskell class
would be tedious, so looking more on if it is possible to have a more general
class within the Flow monad and easily lift values into it could also be a
good next step.

As of now, if a programmer want to use primitives for lists within a
Flow instance he or she must write the entire function him/herself. This
is something one should be able to assume a library should handle. As of
right now, it can be handled using the Applicative instance. A very simple
example of adding the primitive (++), which given two lists concatenates
them, is

flowConcat :: Applicative f => f [a] -> f [a] -> f [a]
flowConcat f1 £f2 = (++) <$> f1 <*> f2

However, it has a major drawback. Since it uses Applicative and there
are two different Applicative implementations (one for High and one for
Low), both flows (f1 and £2) must have the same tag. So as of right now,
a programmer who uses SwaplFC must either implemement the missing
primitives him/herself or accept that all operands must be of the same type
(in this case the same tag).

7.3 Add support for Haste.App

When using Haste one can use Haste.App to perform program slicing [15].
The point of the program slicing is to help the programmer to split the
application between the server side and the client side. Haste.App introduces
three monads, App, Client and Server where Client is the monad for the
client side and Server is the monad for the server side. App is the monad that
ties an application together [47]. When using Haste.App and compiling with
Haste, the compiler will produce client side code (i.e. JavaScript code) for
everything in the Client monad while producing a binary file for the server
side for everything within the Server monad. This allows a programmer to
write code as one application while during the compile phase have it split.
Currently, SwapIlFC does not support Haste.App. Even though it could
work, no work has been done to support Haste.App and therefore a good

36

CHAPTER 7. FUTURE WORK

idea in the future would be to look at Haste.App and ensure that SwapIFC
does indeed support Haste.App.

7.4 Remove the apply function in generated code

The function that is designed to handle function application in the generated
JavaScript code from Haste has a flaw. As described in Chapter 5.4, Haste
currently has a problem with an edge case in JavaScript. Whenever there
is a function that should be applied to an argument list, but the function
does not have an explicit argument list, Haste will run into problem, i.e.
any function that has the property

function f() {
// Do stuff here..
}

applied to an argument will yield a problem for Haste. The apply function
A is part of the staticly generated runtime code that Haste generates. The
function A takes a function and its argument list as arguments:

function A(f, args) {
/...
X

Since the code that is generated using FFI with 1print from SwaplFC was
translated as

s = B(A(new T(function(){
return _n/* Haste.Foreign.$wunsafeEval */("lprint");

B, [br = E(C), 1))

where the argument £ to A can be seen as

function lprint() {
/] ...
}

and the argument args to Ais [.r = E(_r), _]. The argument £ will have
a length of 0 and due to this, the arguments in args will not be applied to
the function £.

7.5 More features for JSFlow

As JSFlow only supports ECMA-262 v5 in non-strict mode and does not
support JSON, a natural continuation would be to add and implement sup-
port for strict mode and JSON communication. Information flow control for

37

CHAPTER 7. FUTURE WORK

JSON objects imposes a big challenge. JSON objects are used to simplify
data transfer over a network and is both easy to read/write for humans and
easy to parse for computers [48]. It consists of key, value pairs, where a key
(a string) is mapped to a value. An example of a simple JSON object is

{

"firstName" : "Sherlock",
"lastName" : "Holmes",
"alive" : false,
"children" : [],
"address" : {
"streetName" : "Baker Street",
"streetNbr" : "221 B",
"city" : "London",
"country" : "England"
1,
"spouse" : null

}

where the key "firstName" is mapped to the string "Sherlock" and the key
"address" is mapped to a JSON object containing the information about
the address. The challenges from an information flow control viewpoint is
how to effectively guarantee that no private information is leaked through
JSON objects?. It is easy to see it is not trivial to guarantee information
flow security through JSON, but should be considered as a natural next
step for a dynamic system designed to guarantee information flow control
in JavaScript.

Another feature for JSFlow would be to start add what is new in ECMA-
262 v6, e.g. adding support for ArrayBuffer which represents a generic,
fixed-length binary data buffer [43]. Added support for HTMLS with Web-
sockets and make it compatible to run in a browser should of course also be
considered as important features to add.

7.6 End-to-End information flow control

JSFlow can help check the JavaScript code of an application. However, cur-
rently there is no system that ensures a cross-origin end-to-end information
flow control. As mentioned in Chapter 2.6, work has been done to create
good information flow control libraries in Haskell. An example is LMonad,
which provided information flow control for Yesod, including database inter-
actions. There has also been work on securing database communication in
LINQ using F# with SeLINQ [49], which would help track information flow
across the boundaries of applications and databases. As a proof of concept,
a type checker for a subset of F# was implemented. A good continuation

38

CHAPTER 7. FUTURE WORK

would be to generalize the end-to-end communication. There are several
ways this can be done.

e Build a dynamic system for information flow control in back-end com-
munication (e.g. database communication).

e Create a compiler which compiles from a high-level language to e.g.
the database query language to guarantee type safety and use the
aforementioned tool to guarantee run-time information flow control.

e Model the system in e.g. Haskell and enable the rich type system to
create a static analysis of the model to ensure no information leakage
occurs.

Combining communication towards an information flow controlled database
(as SeLINQ) with the extension mentioned in Chapter 7.3 could in theory
give a static guarantee that the communication within the system will be
free from information leakage. However, in order to do this, an adequate
interface for database communication must be added as well as support
for Haste.App. If one assumes a dynamic system (as SeLINQ), one could
have a dynamic check for the front-end (using JSFlow) and the database
communication (using SeLINQ). The only communication that will not have
a dynamic information flow control would be the binary file that is the server.
However, if one could validate that the static guarantee is indeed correct, a
dynamic guarantee might not be needed.

39

Conclusions

This thesis attempted to explore how to effectively combine already created
tools for securing JavaScript with focus on information flow control. While
some success has been made with the implementation of a library and code
generation towards JSFlow for all low flows, as explained in Chapter 7, there
are still work and improvements to be done.

As explained in Chapter 4, there are numerous ways one could go about
to create a library for information flow control. The fact that a monadic
version was chosen had to do a lot with how easy it would be to add more
features. Once the foundation is set, adding more primitives is rather trivial.

SwaplFC has a large set of primitives. It has an implementation of
several standard classes in Haskell. One can also use SwaplFC and make
standard computations without using the primitives but it comes at a cost.
As explained in Chapter 7.2, using the Applicative instance is a good option
if one needs primitives that are not implemented in SwapIFC. However, the
cost is that one is stuck with one label - one can not combine flows with
different tags using the Applicative instance.

When compiling with Haste, SwapIFC does fully support JSFlow with
regards to low flows. Due to how the generated code is handled, support for
high flows are currently not supported. However, in order for SwaplFC to
be considered "ready”, full support for JSFlow must be implemented.

Due to the extensive testing of SwapIFC, one can make an argument that
it does indeed behave correctly. However, since no support for high flows are
present in the compiled code, full testing of the code generation could not
be done. Due to this, it is impossible to say if the code generation works or
not. The primitives do not allow for ”downgrading” of a flow, this is a fact
due to the tests. But more tests must be conducted on the code generation,
especially after full support for high flows has been implemented.

I believe that the focus for future work should be the following (with
rank):

40

CHAPTER 8. CONCLUSIONS

6.

. Add support for side effects using IORef.

Add full support for high flows (this might include removing the A
function in the generated code).

Add support for Haste.App.

. End-to-end communication, including database communication.

More features for JSFlow (in particular add support for JSON and
have JSFlow run in a browser).

More primitives for SwaplFC.

Even though SwaplIFC solves a subset of the problem set out in this thesis,
it might be worth to look at potential restructuring. In theory, it could be
possible to remove all primitives and simply use the IO monad.

The source code for SwapIlFC can be downloaded and looked at from
https://github.com/alexandersjosten/swap-ifc.

41

https://github.com/alexandersjosten/swap-ifc

1]

Bibliography

I. Spectrum, S. Cass, N. Diakopoulus, Top 10 Programming Languages,
[Accessed Oct. 24, 2014] (2014).

URL http://spectrum.ieee.org/computing/software/
top-10-programming-languages

Morzilla, About JavaScript, [Accessed Oct. 24, 2014] (2014).
URL https://developer.mozilla.org/en-US/docs/Web/
JavaScript/About_JavaScript

OWASP, OWASP Top 10 2013, [Accessed Oct. 21, 2014] (2014).
URL https://www.owasp.org/index.php/Top_10_2013-Top_10

OWASP, Cross-site Scripting (XSS), [Accessed Oct. 21, 2014] (2014).
URL https://www.owasp.org/index.php/Cross-site_Scripting_
(X8S)

J. Kallin, I. L. Valbuena, Excess XSS - a comprehensive tutorial on
cross-site scripting, [Accessed Oct. 21, 2014] (2013).
URL http://excess-xss.com/

A. Ekblad, Haste, [Accessed Oct. 24, 2014] (2014).
URL http://haste-lang.org/

A. Sabelfeld, A. C. Myers, Language-Based Information-Flow Security.
URL http://www.cse.chalmers.se/~andrei/jsac.pdf

D. Hedin, L. Bello, A. Sabelfeld, A. Birgisson, Jsflow, [Accessed Oct.
30, 2014] (2014).
URL http://chalmerslbs.bitbucket.org/jsflow/

D. Hedin, A. Sabelfeld, Information-flow security for a core of
javascript.
URL http://www.cse.chalmers.se/~andrei/jsflow-csf12.pdf

42

http://spectrum.ieee.org/computing/software/top-10-programming-languages
http://spectrum.ieee.org/computing/software/top-10-programming-languages
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://excess-xss.com/
http://haste-lang.org/
http://www.cse.chalmers.se/~andrei/jsac.pdf
http://chalmerslbs.bitbucket.org/jsflow/
http://www.cse.chalmers.se/~andrei/jsflow-csf12.pdf

BIBLIOGRAPHY

[10]

D. Hedin, A. Birgisson, L. Bello, A. Sabelfeld, Jsflow: Tracking infor-
mation flow in javascript and its apis.
URL http://www.cse.chalmers.se/~andrei/sac14.pdf

Microsoft, Typescript, [Accessed Oct. 21, 2014] (2012).
URL http://www.typescriptlang.org/

B. S. Lerner, J. G. Politz, A. Guha, S. Krishnamurthi, TeJaS:
Retrofitting Type Systems for JavaScript.
URL http://cs.brown.edu/~blerner/papers/dls2013_tejas.html

TeJaS Git repository, [Accessed Oct. 24, 2014].
URL https://github.com/brownplt/TeJaS

GHCJS Git repository, [Accessed Oct. 24, 2014].
URL https://github.com/ghcjs/ghcjs

A. Ekblad, K. Claessen, A Seamless, Client-Centric Programming
Model for Type Safe Web Applications.
URL http://haste-lang.org/haskelll4.pdf

Haskellwiki, What is Haskell?, [Accessed Oct. 24, 2014] (2013).
URL http://www.haskell.org/haskellwiki/Introduction

J. Terrace, S. R. Beard, N. P. K. Katta, JavaScript in JavaScript (js.js):
Sandboxing third-party scripts.
URL http://jeffterrace.com/docs/jsjs.pdf

M. S. Miller, M. Samuel, B. Laurie, I. Awad, M. Stay, Caja - Safe
active content in sanitized JavaScript.

URL https://google-caja.googlecode.com/files/
caja-spec-2008-06-07.pdf

A. Russo, K. Claessen, J. Hughes, A library for light-weight
information-flow security in haskell.

URL http://www.cse.chalmers.se/~russo/publications_files/
haskell22Ext-russo.pdf

HaskellWiki, If-then-else, [Accessed Jan. 3, 2015] (2008).
URL https://www.haskell.org/haskellwiki/If-then-else

J. Goguen, J. Meseguer, Security policies and security models.
URL https://www.cs.purdue.edu/homes/ninghui/readings/
AccessControl/goguen_meseguer_82.pdf

ASCII Table and Desription, [Accessed Jan. 4, 2015] (2010).
URL http://www.asciitable.com/

43

http://www.cse.chalmers.se/~andrei/sac14.pdf
http://www.typescriptlang.org/
http://cs.brown.edu/~blerner/papers/dls2013_tejas.html
https://github.com/brownplt/TeJaS
https://github.com/ghcjs/ghcjs
http://haste-lang.org/haskell14.pdf
http://www.haskell.org/haskellwiki/Introduction
http://jeffterrace.com/docs/jsjs.pdf
https://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
https://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
http://www.cse.chalmers.se/~russo/publications_files/haskell22Ext-russo.pdf
http://www.cse.chalmers.se/~russo/publications_files/haskell22Ext-russo.pdf
https://www.haskell.org/haskellwiki/If-then-else
https://www.cs.purdue.edu/homes/ninghui/readings/AccessControl/goguen_meseguer_82.pdf
https://www.cs.purdue.edu/homes/ninghui/readings/AccessControl/goguen_meseguer_82.pdf
http://www.asciitable.com/

BIBLIOGRAPHY

[23]

[24]

[30]

[31]

[33]

A. Sabelfeld, D. Sands, Dimensions and Principles of Declassification.
URL http://www.cse.chalmers.se/~andrei/csfw05.ps

D. Stefan, A. Russo, J. C. Mitchell, D. Maziéres, Flexible dynamic
information flow control in haskell.

URL http://www.scs.stanford.edu/~deian/pubs/stefan:2011:
flexible.pdf

A. Russo, Seclib GIT, [Accessed Jan. 4, 2015] (2014).
URL https://bitbucket.org/russo/seclib/src/

J. Parker, LMonad: Information Flow Control for Haskell Web Appli-
cations.
URL http://jamesparker.me/doc/parker-thesis.pdf

Yesod Web Framework, [Accessed Feb. 5, 2015] (2012).
URL http://www.yesodweb.com/

B. O’Sullivan, D. Stewart, J. Goerzen, Real World Haskell, O’Reilly
Media, Inc, USA, 2008, [Chapter 18].

URL http://book.realworldhaskell.org/read/
monad-transformers.html

A. C. Myers, B. Liskov, Protecting Privacy using the Decentralized
Label Model.
URL http://www.cs.cornell.edu/andru/papers/iflow-tosem.pdf

Cornell University, Decentralized label model, [Accessed Feb. 13, 2015].
URL https://wuw.cs.cornell.edu/jif/doc/jif-3.2.0/d1lm.html

D. Hassan, A. Sabry, Encoding Secure Information Flow with Re-
stricted Delegation and Revocation in Haskell.
URL https://www.cs.indiana.edu/~sabry/papers/rdr.pdf

HaskellWiki, Embedded domain specific language, [Accessed Oct. 30,
2014] (2014).

URL https://www.haskell.org/haskellwiki/Embedded_domain_
specific_language

J. Svenningsson, E. Axelsson, Combining Deep and Shallow Embed-
ding for EDSL.

URL http://www.cse.chalmers.se/~emax/documents/
svenningsson2013combining.pdf

HaskellWiki, Phantom type, [Accessed Dec. 8, 2014] (2013).
URL https://www.haskell.org/haskellwiki/Phantom_type

44

http://www.cse.chalmers.se/~andrei/csfw05.ps
http://www.scs.stanford.edu/~deian/pubs/stefan:2011:flexible.pdf
http://www.scs.stanford.edu/~deian/pubs/stefan:2011:flexible.pdf
https://bitbucket.org/russo/seclib/src/
http://jamesparker.me/doc/parker-thesis.pdf
http://www.yesodweb.com/
http://book.realworldhaskell.org/read/monad-transformers.html
http://book.realworldhaskell.org/read/monad-transformers.html
http://www.cs.cornell.edu/andru/papers/iflow-tosem.pdf
https://www.cs.cornell.edu/jif/doc/jif-3.2.0/dlm.html
https://www.cs.indiana.edu/~sabry/papers/rdr.pdf
https://www.haskell.org/haskellwiki/Embedded_domain_specific_language
https://www.haskell.org/haskellwiki/Embedded_domain_specific_language
http://www.cse.chalmers.se/~emax/documents/svenningsson2013combining.pdf
http://www.cse.chalmers.se/~emax/documents/svenningsson2013combining.pdf
https://www.haskell.org/haskellwiki/Phantom_type

BIBLIOGRAPHY

[35]

[45]

HaskellWiki, Functor-Applicative-Monad Proposal, [Accessed Jan. 19,
2015] (2014).

URL https://www.haskell.org/haskellwiki/
Functor-Applicative-Monad_Proposal

Hackage, [Accessed Feb. 6, 2015].
URL http://hackage.haskell.org/package/base-4.7.0.2/docs/
Prelude.html#t :Monad

Hackage, [Accessed Feb. 6, 2015].
URL http://hackage.haskell.org/package/base-4.7.0.2/docs/
Prelude.html#t:Functor

HaskellWiki, Multi-parameter type class, [Accessed Feb. 13, 2015].
URL https://wiki.haskell.org/Multi-parameter_type_class

HaskellWiki, Functional dependencies, [Accessed Feb. 13, 2015].
URL https://wiki.haskell.org/Functional_dependencies

Morzilla, function, [Accessed Feb. 5, 2015] (2015).
URL https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Statements/function

Mozilla, Arguments object, [Accessed Feb. 5, 2015] (2014).
URL https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Functions/arguments

ECMA International, ECMAScript Language Specification (2011).
URL http://www.ecma-international.org/publications/files/
ECMA-ST/Ecma-262.pdf

Mozilla, Arraybuffer, [Accessed Jan. 28, 2015] (2014).
URL https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/ArrayBuffer

ECMA International, ECMAScript Language Specification ECMA-262
6th Edition - DRAFT, [Accessed Jan. 28, 2015] (2014).

URL https://people.mozilla.org/~jorendorff/es6-draft.html#
sec-arraybuffer-constructor

K. Claessen, J. Hughes, QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs.

URL http://www.cse.chalmers.se/edu/course/TDA342_Advanced_
Functional Programming/Papers/QuickCheck-claessen.ps

HaskellWiki, Introduction to QuickCheck, [Accessed Feb. 2, 2015]
(2013).
URL https://wiki.haskell.org/Introduction_to_QuickCheckl

45

https://www.haskell.org/haskellwiki/Functor-Applicative-Monad_Proposal
https://www.haskell.org/haskellwiki/Functor-Applicative-Monad_Proposal
http://hackage.haskell.org/package/base-4.7.0.2/docs/Prelude.html#t:Monad
http://hackage.haskell.org/package/base-4.7.0.2/docs/Prelude.html#t:Monad
http://hackage.haskell.org/package/base-4.7.0.2/docs/Prelude.html#t:Functor
http://hackage.haskell.org/package/base-4.7.0.2/docs/Prelude.html#t:Functor
https://wiki.haskell.org/Multi-parameter_type_class
https://wiki.haskell.org/Functional_dependencies
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer
https://people.mozilla.org/~jorendorff/es6-draft.html#sec-arraybuffer-constructor
https://people.mozilla.org/~jorendorff/es6-draft.html#sec-arraybuffer-constructor
http://www.cse.chalmers.se/edu/course/TDA342_Advanced_Functional_Programming/Papers/QuickCheck-claessen.ps
http://www.cse.chalmers.se/edu/course/TDA342_Advanced_Functional_Programming/Papers/QuickCheck-claessen.ps
https://wiki.haskell.org/Introduction_to_QuickCheck1

BIBLIOGRAPHY

[47]

A. Ekblad, Haste.app, [Accessed Jan. 29, 2015] (2014).
URL https://hackage.haskell.org/package/haste-compiler-0.
4.4.1/docs/Haste-App.html

Introducing JSON, [Accessed Feb. 7, 2015].
URL http://www. json.org/

D. Schoepe, D. Hedin, A. Sabelfeld, SeLINQ: Tracking Information
across Application-Database Boundaries.

URL http://www.cse.chalmers.se/~schoepe/seling/seling_
long.pdf

46

https://hackage.haskell.org/package/haste-compiler-0.4.4.1/docs/Haste-App.html
https://hackage.haskell.org/package/haste-compiler-0.4.4.1/docs/Haste-App.html
http://www.json.org/
http://www.cse.chalmers.se/~schoepe/selinq/selinq_long.pdf
http://www.cse.chalmers.se/~schoepe/selinq/selinq_long.pdf

A

Structure of SwaplIFC library

The SwaplIFC library is divided into two different code bases - the trusted
code base and the non-trusted code base. Within the trusted code base,
all the unsafe operations and declassification and upgrading of values are
permitted and exposed. In the non-trusted code base, the only exposed
modules are the module defining Flow (SwaplF'C.Types) and parts of the
module defining mkHigh, mkLow (SwapIFC.Auxiliary).

The structure for the trusted code base is

SwapIFC.Trusted:
exposed modules:
SwapIFC.Unsafe
SwapIFC.Auxiliary
SwapIFC.Types

whereas the structure for the non-trusted code base is

SwapIFC:
exposed modules:
SwapIFC.Auxiliary (mkHigh, mkLow, lprint)
SwapIFC.Types

47

B

Instance implementation

The implementation for Monad, Functor and Applicative for the Flow type
became:

-- High Flow starts here!
instance Monad (Flow High) where
#ifdef __HASTE__

return = Flow . upg
#else

return = Flow . return
#endif

(Flow ioa) >>= f = Flow $ do
a <- ioa
case (f a) of
Flow iob -> iob

instance Functor (Flow High) where
fmap f (Flow ioa) = Flow $ ioa >>= return . f

instance Applicative (Flow High) where
pure = return
(<x>) = ap

-- Low Flow starts here!
instance Monad (Flow Low) where
return = Flow . return

(Flow ioa) >>= f = Flow $ do

a <- ioa
case (f a) of

48

APPENDIX B. INSTANCE IMPLEMENTATION

Flow iob -> iob

instance Functor (Flow Low) where
fmap f (Flow ioa) = Flow $ ioa >>= return . f

instance Applicative (Flow Low) where

pure = return
(<*>) = ap

49

C

Num instance in Flow type

-— Num instance for Flow
infixl 7 .x*.
infixl 6 .+., .-.
class FlowNum t1 t2 t3 | t1 t2 -> t3 where
-- | Binary addition operator for Flow
(.+.) :: Num a => Flow t1 a -> Flow t2 a -> Flow t3 a
(.+.) = calcNumFlow (+)

-- | Binary multiplication operator for Flow
(.%.) :: Num a => Flow tl1l a -> Flow t2 a -> Flow t3 a
(.*.) = calcNumFlow (%)

-- | Binary subtraction operator for Flow
(.-.) :: Num a => Flow t1 a -> Flow t2 a -> Flow t3 a
(.-.) = calcNumFlow (-)

-- | Unary negation for Flow

fNeg :: (Num a, t17t2, t17t3) => Flow tl1 a -> Flow t3 a
fNeg = appNumFlow negate

-- | Unary absolute value for Flow

fAbs :: (Num a, t17t2, t17t3) => Flow t1 a -> Flow t3 a
fAbs = appNumFlow abs

-- | Unary signum for Flow

fSig :: (Num a, t17t2, t17t3) => Flow tl1l a -> Flow t3 a
fSig = appNumFlow signum

instance FlowNum High High High

50

APPENDIX C. NUM INSTANCE IN FLOW TYPE

instance FlowNum High Low High
instance FlowNum Low High High
instance FlowNum Low Low Low

calcNumFlow :: Num a => (a -> a -> a)
-> Flow tl1 a
-> Flow t2 a
-> Flow t3 a
calcNumFlow op (Flow ioal) (Flow ioa2) = Flow $ do
al <- ioal
a2 <- ioa2
return $ op al a2

appNumFlow :: Num a => (a -> a) -> Flow tl a -> Flow tl a
appNumFlow f (Flow ioa) = Flow $ do
a <- ioa

return $ £ a

o1

D

Tests

-- The FlowNum tests
prop_lowNumExpr :: (NumOp, Int, Int) -> Bool
prop_lowNumExpr (op, vall, val2) =

case op of

Add
Sub
Mul
Neg
Abs

Sig
where

-> (show (flowl .+. flow2) == show (flow2 .+. flowl)) &&
show (flowl .+. flow2) == show (vall + val2) ++ "_<L>"

-> show (flowl .-. flow2) == show (vall - val2) ++ "_<L>"
show (flow2 .-. flowl) == show (val2 - vall) ++ "_<L>"

-> (show (flowl .*. flow2) == show (flow2 .*. flowl)) &&
show (flowl .*. flow2) == show (vall * val2) ++ "_<L>"

-> show (fNeg flowl) == show (negate vall) ++ "_<L>"

-> show (fAbs flowl) == show (abs vall) ++ "_<L>"

-> show (fSig flowl) == show (signum vall) ++ "_<L>"

flowl = mkLow vall

flow2 = mkLow val2

prop_highNumExpr :: (NumOp, Int, Int) -> Bool
prop_highNumExpr (op, vall, val2) =
case op of

Add
Sub
Mul
Neg
Abs

Sig
where

->

(show (flowl .+. flow2) == show (flow2 .+. flowl)) &&
show (flowl .+. flow2) == show (vall + val2) ++ "_<H>"
show (flowl .-. flow2) == show (vall - val2) ++ "_<H>"
show (flow2 .-. flowl) == show (val2 - vall) ++ "_<H>"
(show (flowl .*. flow2) == show (flow2 .*. flowl)) &&
show (flowl .*. flow2) == show (vall * val2) ++ "_<H>"
show (fNeg flowl) == show (negate vall) ++ "_<H>"

show (fAbs flowl) == show (abs vall) ++ "_<H>"

show (£Sig flowl) == show (signum vall) ++ "_<H>"

flowl = mkHigh vall

92

&&

&&

APPENDIX D. TESTS

flow2 = mkHigh val2

prop_mixedNumExpr :: (NumOp, Int, Int) -> Bool
prop_mixedNumExpr (op, vall, val2) =
case op of
Add -> (show (flowl .+. flow2) == show (flow2 .+. flowl)) &&
show (flowl .+. flow2) == show (vall + val2) ++ "_<H>"
Sub -> show (flowl .-. flow2) == show (vall - val2) ++ "_<H>" &&
show (flow2 .-. flowl) == show (val2 - vall) ++ "_<H>"
Mul -> (show (flowl .*. flow2) == show (flow2 .*. flowl)) &&
show (flowl .*. flow2) == show (vall * val2) ++ "_<H>"
Neg -> show (fNeg flowl) == show (negate vall) ++ "_<H>"
Abs -> show (fAbs flowl) == show (abs vall) ++ "_<H>"
Sig -> show (fSig flowl) == show (signum vall) ++ "_<H>"
where flowl = mkHigh vall
flow2 mkLow val2

93

	Introduction
	Problems with JavaScript
	Information Flow Control

	Background
	Problems with JavaScript - part deux
	Weak dynamic typing
	Attempts to solve the type problem

	Sensitive information in the browser
	Attempts to solve the information problem

	Haste
	JSFlow
	Explicit flow
	Implicit flow
	Example of coding for JSFlow
	Flows in a pure functional language

	Non-interference
	Declassification
	Related Work
	Labeled IO
	Seclib
	LMonad
	RDR
	Why another library?

	Goal and limitations
	Goal
	Limitations

	Prototypes
	Embedded Domain Specific Language
	Non-monadic
	Monadic

	Implementation
	The Flow type
	Monad instance
	Monad laws and Flow

	Functor instance
	Functor laws and Flow

	Applicative instance

	Controlling the flow
	Declassification of flows
	Non-interference of flows

	Handling side effects
	JSFlow and side effects
	SwapIFC and side effects

	Integrating with Haste
	Modifications done to Haste

	Testing of the implementation
	"Naïve" testing of the primitives
	Unit testing
	Testing SwapIFC with QuickCheck

	Future work
	Full communication for SwapIFC to JSFlow
	More primitives for SwapIFC
	Add support for Haste.App
	Remove the apply function in generated code
	More features for JSFlow
	End-to-End information flow control

	Conclusions
	References
	Appendix Structure of SwapIFC library
	Appendix Instance implementation
	Appendix Num instance in Flow type
	Appendix Tests

