
XML export and import of Modelica models
Master of Science thesis in Computer Science

NIKLAS LANDIN

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden 2014
Master of Science thesis 2014:09

MASTER OF SCIENCE THESIS IN COMPUTER SCIENCE

XML export and import of Modelica models

NIKLAS LANDIN

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2014

The Author grants to Chalmers University of Technology and University of Gothenburg the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet. The Author warrants that he/she is the author to the Work,
and warrants that the Work does not contain text, pictures or other material that violates
copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let Chalmers
University of Technology and University of Gothenburg store the Work electronically and make
it accessible on the Internet

XML export and import of Modelica models

c© Niklas Landin, 2014
Examiner: Bengt Nordström

Master of Science thesis 2014:09
University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone: +46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden 2014

Abstract

Modelica is a language primarily used for simulation of physical systems but other use cases
such as optimization and control design are increasing. New use cases introduce a different
set of algorithms to work with the models, which means that current Modelica tools can
not implement all these algorithms. Instead it is important to be able to exchange models
between tools. To solve this issue a standardized XML format called Modelica XML is under
development.

In this thesis it is investigated how suitable Modelica XML is for transfer of Modelica models
between different tools. As a part of the evaluation of the Modelica XML format a comparison
with a previous XML format used for model exchange is performed. An implementation of
import and export for the format within the open source Modelica compiler JModelica.org is
performed to test the functionality and performance.

The results from the implementation show significantly smaller XML for Modelica XML
compared to the old format. Furthermore it also demonstrated that the required functionality
of the format for transfer of models is present. The comparison indicates that Modelica XML is
a more expressive and versatile format than the older format. A conclusion that Modelica XML
is a suitable format for representation of Modelica models and model exchange is presented.

Keywords: XML, Modelica, JastAdd, Modelica XML

i

Acknowledgements

I would like to thank my advisor Toivo Henningsson at Modelon for his advice and support
during the thesis. Furthermore I would like to thank Modelon for giving me the opportunity
to carry out this thesis and finally I would like to thank my advisor at the university, Bengt
Nordström.

ii

Contents

Abstract i

Acknowledgements ii

Contents iii

1 Introduction 1
1.1 Purpose . 1
1.2 Goals . 1
1.3 Method . 2
1.4 Scope . 2
1.5 Outline . 2

2 Background 4
2.1 MODRIO and related work . 4
2.2 Data serialization formats . 4
2.2.1 JSON . 4
2.2.2 YAML . 5
2.2.3 XML . 5
2.2.4 Motivation . 5
2.3 Modelica . 6
2.3.1 Optimica . 8
2.4 JastAdd . 8
2.5 JModelica.org . 8
2.5.1 Flat model . 9
2.5.2 Compiler . 9
2.5.3 FMI . 9
2.5.4 JMI . 10
2.5.5 FMUX . 10
2.6 CasADi . 11
2.6.1 Use of MX symbolic . 11

3 Comparison of FMUX and MXML 12
3.1 FMUX format . 12
3.2 Modelica XML . 15
3.3 Comparison of the formats . 17

4 Implementation 21
4.1 Overview . 21
4.2 Export . 22
4.2.1 Structure of the abstract syntax tree . 22
4.2.2 Printer framework . 22
4.2.3 XML generation . 23
4.2.4 Export of Optimica models . 24

iii

4.2.5 Integration with compiler . 25
4.3 Import . 25
4.3.1 XML parsing . 25
4.3.2 CasADiInterface . 26
4.3.3 Construction of model . 27
4.4 Testing . 27

5 Results 28
5.1 Functionality tests . 28
5.2 Performance tests . 29
5.2.1 Time tests . 29
5.2.2 Size tests . 30

6 Discussion 31
6.1 Evaluation of implementation in JModelica.org 31
6.2 Evaluation of MXML . 32
6.3 Conclusion . 32
6.4 Future work . 32

References 34

A Full code of the test models from the result section 36

iv

1 Introduction

Modelica is a language for modeling of physical processes using differential-algebraic equations.
Simulation of systems is the major usage, but Modelica models are increasingly used in other
applications such as optimization and control design[1][2]. New applications introduce a whole
different set of algorithms that are needed to work with the models. A growing number of
algorithms means that Modelica tools will not be able to implement all these algorithms, so
it becomes important to be able to exchange models on symbolic form among different tools.
To satisfy this need a standardized XML format is under development within the European
research project MODRIO, the standardization process is lead by Modelon.

In this thesis the new XML format called Modelica XML (MXML) will be evaluated and
compared with existing formats for model transfer. JModelica.org is a Modelica based open
source platform for simulation and optimization of complex dynamic systems[3]. As a part of
the evaluation the JModelica.org compiler is extended with XML generation for the MXML
format. Since the MXML format is intended to be used for transfer of models the thesis will
also consider import of the generated XML into a runtime toolchain for optimization called
CasADiInterface.

1.1 Purpose

The major motivation for this thesis is to extend the possibilities to transfer models among
different Modelica related tools. A model in Modelica refers to a representation of a problem
with Modelica code. The use of Modelica is growing and as new areas of applications are found,
the current mechanisms for transferring models among different domains are not sufficient.
JModelica.org supports several different export formats but these formats was designed for
export to specific tools and a more generic alternative is needed. A standardized format for
representation of Modelica models would provide such a generic solution.

The need for this can be seen in the JModelica.org system, where the current import into
CasADiInterface is based on extracting a model directly from an instance of the compiler. This
approach may work but it is inconvenient and inefficient since it requires the JModelica.org
compiler to run each time a model is transferred. With the MXML format in place it would be
much easier to generate an XML representation of the model and then make the import from
this XML document.

1.2 Goals

The goal of this thesis is to investigate whether the MXML format is a good format for
representing and exchanging Modelica models among tools and how it compares to the previous
formats that where used for similar tasks. The thesis also aims to show that MXML can
provide the necessary functionality as well as improvements over other formats that are used
for the same purpose.

As a part of this goal the thesis aims to extend the open source Modelica compiler JModel-
ica.org with support for the MXML format. This includes implementation of a compiler backend
for XML generation as well as implementation of an import module into the CasADiInterface
that is under current development. Currently JModelica.org supports several techniques for

1

transferring subsets of models among different tools, but it lacks a way of transferring complete
models. The implementation is an essential part in showing that the MXML format is suitable
for transfer of models and that it can be used within a complex system.

1.3 Method

Initially a literature review was conducted with focus on previous work that was related to
the JModelica.org system and XML formats for representation of Modelica models. The XML
schema description of the MXML format was studied to understand how the format was
structured and how it represented specific parts of a Modelica model. This study coincided
with reading about the Modelica language since it was an essential part to understand the
MXML format. To prepare for the implementation the code structure and techniques used
within JModelica.org was studied and a basic structure for the implementation was proposed.

The implementation was conducted in an iterative manner where features was added and
then tested. Most of the export part was implemented before the work on the import started.
The import was implemented together with the final parts of the export since some design
decisions interfered with both parts.

Towards the end a comparison of the MXML and FMUX formats where conducted. This
included reading the reports about the FMUX format and analyze both the formats. The
implementation was tested to get some data about how the MXML implementation compared
to the other alternatives with regards to performance and functionality. Some tests that
compared the performance of the MXML and FMUX where also conducted. The final part
of the work was to combine the results of the comparison and the implementation to a final
evaluation of the MXML format.

1.4 Scope

The comparison of formats in this thesis is limited to preexisting XML formats that are used
for model transfer. It would be interesting to develop a custom format that is designed with
the purpose of representing Modelica models and compare it to the MXML representation.
However due to the time required to make such a format it is out of scope for this thesis.

Modelica is a complex language that supports a large number of features and to develop
XML export and import for all these features are outside the range of this project. This thesis
will only consider export and import of so called flat models, these are models that are purely
symbolic which means that they do not contain any hierarchical structures.

1.5 Outline

The thesis is divided into six chapters. Chapter 1 introduces the motivation behind the
thesis and the goals. In chapter 2, a background of some related work is given followed
by descriptions of the tools and techniques used in the implementation. The third chapter
provides a comparison between the MXML format and the currently used exchange format,
FMUX. Chapter 4 describes the implementation, it starts by giving an overview of where the
implemented parts are located in the JModelica.org system. This is followed by a description

2

of the implementation of the XML code generator and finally a description of the import into
the CasADiInterface. In Chapter 5 several tests of the implementation are presented together
with the results of the tests. Chapter 6 gives an evaluation of the implementation and the
MXML format followed by a final conclusion and some remarks on possible future work.

3

2 Background

In this chapter some background on previous work is provided as well as an introduction to
the technologies and tools that form the basis of this thesis. First the MODRIO project is
introduced followed by some background on why XML was the chosen format for MXML. In
the next section the Modelica language is described. Then the open source Modelica compiler
JModelica.org will be introduced together with the underlying meta-compilation tool JastAdd.
Finally the algebra system CasADi that is used within the CasADiInterface is explained in
general and the symbolic framework used within the import is described in particular.

2.1 MODRIO and related work

MODRIO is a research project that aims to extend state of the art modeling and simulation
environments to increase dependability and performance throughout their lifecycles. The
project involves 38 partners from six different European countries and is a part of the ITEA
programme. Development and standardization of MXML is a part of a MODRIO financed
project lead by Modelon[4][5].

Within the predecessor of MODRIO, OPENPROD, several interesting results where reached
that relate to this thesis. One example is the extension of the OpenModelica compiler with
generation of XML outlined in the thesis by Shitahun [6]. This closely resembles the generation
that this thesis aims to extend the JModelica.org compiler with but for another format than
the MXML format. This work was expanded upon and the possibility to transfer optimization
problems using XML and solve them with CasADi from the OpenModelica system was shown
in [7].

2.2 Data serialization formats

There exist several different data serialization formats that could be used for representing
Modelica models. Some of the more common are JavaScript Object Notation (JSON), YAML
and XML. Each of these formats have different strengths and disadvantages and to get a better
overview over each of them the formats are briefly described below. A motivation to why XML
was chosen is then given in section 2.2.4.

2.2.1 JSON

JSON is a data serialization format where the data are represented by two different structures.
The first structure is a collection of name-value pairs, which can be represented either with
objects or records in most programming languages. The second structure is an ordered list of
values, which can be represented by an array or list. Since the data representation in JSON
closely resembles constructs used in most programming language the data can trivially be
represented within most programming languages.

JSON is a lightweight format that lacks any markup, which makes it smaller than XML
and other markup based formats. There exist several tools for a wide variety of languages that
provide functionality to parse JSON into language specific objects or constructs. Compared to

4

XML that can be used for several different tasks, JSON is designed with one purpose and that
is as a data interchange format.

2.2.2 YAML

YAML is a data serialization format that is designed to be human readable. YAML has a
structure that resembles JSON and in fact JSON syntax is a subset to YAML, which means
that some YAML parsers can parse JSON documents. Even though the formats are similar
YAML supports a number of features that JSON does not, for example user-defined types
and comments. In YAML whitespace is used to denote the structure of a document. This
means that no brackets or braces are used, which is an intentional design decision to increase
readability. YAML also supports references to other items, which makes it possible to represent
relational data[8].

2.2.3 XML

XML is a markup language that is commonly used as a data-interchange format. An XML
document is divided into markup and content, to differentiate between markup and content
some simple syntactic rules are used. Everything that is contained between a < and a > is
considered markup. This entity is referred to as a tag. There are three different types of tags,
start tags, end tags and empty tags. An element is the content between a start tag and an
end tag. The markup parts of the XML add a substantial overhead that is avoided in both
JSON and YAML since they are specifically designed for data serialization and not as markup
languages.

XML supports validation of documents by providing a reference in the document to a
specification. To specify the allowed structure of an XML document a schema language is used.
The two most common are Document Type Definition (DTD) and XML Schema Definition
(XSD). DTD is the oldest schema language and XML has syntactic support for embedding
DTD:s. XSD is a newer schema language that supports more features than the older DTD.
More detailed constraints on the structure of the XML document are supported as well as a
more complex type system[9].

2.2.4 Motivation

There are several factors that contributed to XML being the format that MXML was based
on. One primary reason was that XML is a well-established format and that a number of
XML formats for different subsets of Modelica already exist[10][11]. Another reason was that
the format needed to be extensible and with an XML schema it is easy to add new features.
Furthermore XSD is a mature technique for specification and it has a proven track record[12].

The main disadvantage with XML over the other formats are that it is verbose and the size
of the documents will be larger than if the other formats where used. Case studies show that
transfer of JSON objects is faster than transfer of XML objects[13]. JSON:s speed advantage
in the study is likely a consequence of more lightweight objects than the XML. It is likely that
YAML objects would be of smaller size than XML as well, albeit not as lightweight as the
JSON objects.

Another approach than using any of the common formats could be to design a custom format.
The main problem with a custom format is that it would require more work to add support for

5

the format in new tools. For XML there exist many tools for parsing and manipulation but
with a custom format each implementation would need to handle these problems by themselves.
Since the developed format is intended to work on a lot of platforms and in many systems it
would require too much work. However if the format was intended to be used only within the
same tool a custom format could be an appropriate solution.

In summary, it is clear that the decision to chose XML was based on the premise that a
well-established and extensible format was needed. Size and performance were not considered
as the primary factors when the format was chosen. From a pure performance aspect the best
decision would probably be to design a custom format, however as mentioned earlier this would
introduce other problems. The use of XML as the format provides the possibility to easily add
metadata about the model, which is something that neither JSON nor YAML is designed to
support.

2.3 Modelica

Modelica is an object-oriented modeling language used for modeling of complex systems using
hybrid differential algebraic equations. It is provided for free and is developed by the non-profit
organization Modelica Association. Modelica has been used in industrial projects since 2000
and several new versions of the language have been released since the first version in 1997.
Modelica was initially described in the PhD thesis of Hilding Elmqvist and he is seen as the
architect of the language[14].

Modelica is not a programming language but rather a modeling language, although it is
syntactically similar to traditional programming languages it has little in common with them.
Modelica models are not compiled in the traditional sense, instead they are converted into
objects that are handled by a simulation engine. A Modelica model usually consists of several
mathematical equations that represent some kind of physical system. Within Modelica an
equation is used to describe equality between two mathematical expressions. When working
with Modelica it is important to know that the order of the equations in the source file may not
be the same as their order of execution. The simulation engine may symbolically manipulate
the equations to determine their order of execution. Modelica requires that for each variable
in the model there must exist one equation, this is to guarantee that the equation system is
solvable.

The basic building block of the Modelica language is a model, which is similar to a class in
other object-oriented languages. A Modelica model consists of a set of variable declarations
followed by an equation section, an algorithm section and an arbitrary number of functions.
A simple example of how a model might look is given in listing 2.1. Modelica has support
for object oriented features such as classes, generic types and inheritance. These are key
components of the language that makes it able to construct complex systems by connecting
different submodules. The features offered by Modelica make it easy for a modeler to reuse
existing code and it promotes the idea of modular code.

6

Equation Description
= Equality equation that expresses equality between two expressions.
If Conditional equality equation
For For equations is used to define equality among a number of variables within a loop
Connect Connect equations are used to introduce connection among objects
When Construct used to define behaviour of events

Table 2.1: The available equation types in the equation section

Listing 2.1: Example of a simple Modelica model, notice how the derivative funtion is used on
the left-hand side of the second equality equation.

1 model Example

2 Real x;

3 Real y;

4 equation

5 x = 2+4;

6 der(y) = sin(x);

7 end Example;

Modelica supports four built-in types: Real, Integer, Boolean and String and has con-
structs for creating new types. A Modelica variable consists of a name and a type. Variables
have a variability attribute that defines how the value of the variable may vary. For example
a discrete variable may only change at discrete events whereas a constant variable cannot
change its value at all during execution. It is possible to set attributes on variables when they
are declared, some of the more common are start that sets the start value of the variable in
the simulation and min/max, which set a minimum/maximum value that a variable can have.
Variables are always declared at the beginning of the model except for function variables that
are declared within the function.

The behavior of a model is defined within the equation and algorithm sections, as mentioned
earlier equations are used to define equality between two physical variables. To capture this in
a traditional programming language is a hard and tedious task. In Modelica this is easy due
to the possibility to declaratively state the equations on their natural form and then let the
simulation engine handle the difficulties. In table 2.1 the available equation types are listed.
The most common is the =, which is used to express equality between two expressions.

The reason for having an algorithm section is that not everything is convenient to express
using equations. In algorithm sections traditional programming constructs such as assignments,
conditional statements, loops, break and return statements are supported. The assignment
operator is defined as := and it works as in most other programming languages. A function
consists of a number of variables together with an algorithm section that contains the function-
ality of the function. Functions can have an arbitrary number of inputs and outputs, which
are defined by variables with a causality attribute set to either input or output. Local variables
within a function is also supported and are created by omitting the casuality attribute for the
variable.

For a more detailed description of the Modelica language and what it supports, see the
official Modelica specification [15].

7

2.3.1 Optimica

Optimica is an extension of the Modelica language that enables the specification of dynamic
optimization problems based on Modelica models[16]. To represent optimization problems
Optimica introduces a new class called optimization, which allow several new constructs that
are unique for Optimica and only valid within the class. The optimization class can contain
traditional Modelica constructs such as component and variable declarations, classes, equations
and functions.

Optimica extends the Real type with two new attributes, free and initialGuess. The free
attribute determines if a variable is free during the optimization and the initialGuess attribute
provides an initial guess for a variable’s value. To represent global properties of the optimization
problem Optimica adds four class attributes. They are objective that defines the cost function,
startTime that give the start time of the optimization, finalTime that gives the end time of
the optimization and finally static, which states whether the problem is static or dynamic.

To represent constraints on variables a constraint section is introduced. Optimica supports
two types of contraints, path constraints and point constraints. Path constraints are constraints
that must be fulfilled during the whole simulation whereas points constraints only need to be
fulfilled at a particular point in time. A constraint consists of an expression with an equal, less
than or greater than clause.

2.4 JastAdd

JastAdd is a compilation tool designed to support modular development of compilers and other
tools like source code analyzers. The basic structure of a JastAdd project is a class hierarchy
that represents an abstract syntax tree. This class hierarchy is generated from a grammar
specification of a language. Abstract syntax trees are commonly used in compiler development
because they give a convenient representation of a program to work with[17].

JastAdd provides a way to extend a node in an abstract syntax tree with some behavior
using aspects. An aspect is a module that uses inter-type declarations to add methods to nodes
in the tree. This gives a logical and convenient way of adding a specific behavior to several
classes instead of adding it separately to each of them. To propagate information among nodes
in the abstract syntax tree JastAdd has two constructs, inherited and synthesized attributes.
Synthesized attributes compute information in some node and that information can then be
propagated upwards in the tree whereas inherited attributes pass information downwards in
the tree. Furthermore, JastAdd allows attributes to have references to other nodes in the
abstract syntax tree. This is a powerful feature that allows different places of the tree to be
directly connected in a graph structure instead of the traditional tree structure[18].

2.5 JModelica.org

JModelica.org is an open source platform for simulation and optimization of complex dynamic
systems using Modelica. It contains a compiler for the Modelica language, integration with
algorithms for solving large dynamic optimization problems and a Python environment for easy
integration and manipulation of models. JModelica.org is a result of research at the department
of Automatic Control at Lund University and is now maintained by Modelon in collaboration

8

with Academia[19].

2.5.1 Flat model

Within the compiler several different representations are used, the final representation that is
used for code generation is called the flat model. Compared to a regular Modelica model a flat
representation lacks any hierarchical structures. For example consider an array a with two
elements. In the flat model this array would be represented by two variables with the following
names: a[1] and a[2]. Note that a[1] is an actual variable and not an element in the array.
The flat model is represented by the FClass class in the abstract syntax tree, which contains
all variables, equations and functions of a model.

2.5.2 Compiler

The compiler in JModelica.org is built on top of the meta-compilation tool JastAdd, which
is further described in section 2.4. The compilation of a Modelica model is divided into
three different phases. In the first phase the model is parsed and an abstract syntax tree is
constructed. After the initial abstract syntax tree is constructed a flattening of the model occurs
and a flat model is obtained. The flat model is used in the second phase where the compiler
manipulates it by sorting the equations, index reduction and tearing. This manipulation is
performed to gain efficiency in the third and final phase of the compilation. In the final phase
the compiler generates simulation code from the flat model in either C or XML format. The
generated code can be used for simulation or optimization of the model with the internal
support that JModelica.org has. It may also be used for exporting models to other tools to
work with them there. The compiler supports code generation for three different formats; JMI,
FMI and FMUX. They are briefly described in the following sections.

The compiler is structured into different parts. There is a frontend part that handles parsing
of Modelica models and construction of the abstract syntax tree. Type checking is also a
part of the frontend before the abstract syntax tree is retrieved to the backend. The backend
part is divided into several different modules for code generation. They are glued together
with the frontend by the main class ModelicaCompiler, which is responsible for providing the
functionality towards the end-user.

2.5.3 FMI

The Functional Mockup Interface is a standard developed to support exchange of Modelica
models. JModelica.org supports both import and export of FMI code units, so called Functional
Mockup Units (FMU). An FMU consists of an XML file that contains the variable declarations
of a model and C files that contain simulation code. FMI provides a standardized interface for
gaining access to the information in FMU:s, which allows other tools to be able to simulate
the models[20].

The XML format that FMI uses to represent variables is also used in the FMUX format
that is described in section 3.1. Figure 2.1 describes the top-level structure of the format.
The starting element is fmiModelDescription, which has several attributes that specify
general information about the model such as modelName, modelIdentifier and author. The
fmiModelDescription has several optional children, ModelVariables is the most relevant
since this is used to represent the variables in a model. UnitDefinition defines a set of units for

9

fmiModelDescription

attributes

DefaultExperiment

TypeDefinitions

UnitDefinitions

VendorAnnotations

ModelVariables

Figure 2.1: Structure of the XML used in an FMU

Attribute Description
name The name of the variable
valueReference Value used to identify variable in a function call
description Short description of the variable (optional)
variability The variability of the variable (optional)
causality The causality of the variable (optional)
alias Alias name of the variable (optional)

Table 2.2: The attributes of the ScalarVariable element in the FMI with brief descriptions

converting display units into the units used by the equations in the model. TypeDefinitions
defines a set of type definitions that are used by the variables of the model. DefaultExperiment
contains simulation specific data about the model. VendorAnnotations can be used by different
vendors to provide specific information that is required for their tools.

ModelVariables consists of several ScalarVariable elements. The ScalarVariable el-
ement is used to represent one model variable. In table 2.2 the available attributes to the
ScalarVariable element is given. The type of the variable is represented by a child element.
A variable may be of the following types: Real, Integer, Boolean, String or Enumeration.

2.5.4 JMI

JMI is short for JModelica.org Model Interface, which is an internal format used within
JModelica.org for simulation and optimization. In a similar fashion to FMI, JMI defines a
JModelica.org Model Unit (JMU). A JMU consists of the DAE of a model and the models
optimization information. To gain access to the information stored within the JMUs a number
of methods are provided by JMI.

2.5.5 FMUX

FMUX is a symbolic format for exchange of continuous time differential algebraic equation
systems. This format is the result of a former master thesis work at Modelon. The format

10

itself is first outlined in a paper by Casella, Donida and Åkesson[21] and then the construction
of the format is completed as a master thesis by Parrotto [11]. FMUX is built as an extension
of the XML format used in the FMI standard. The FMUX format is described more in detail
in section 3.1

2.6 CasADi

CasADi is a minimalistic open source computer algebra system for numerical optimization
using automatic differentiation [22]. CasADi is implemented in C++ but has front ends in
Python and Octave. It supports several different flavors of automatic differentiation and is
integrated with state of the art solvers such as IPOPT, Sundials, and KNITRO. In the thesis
CasADi is used within the CasADiInterface for optimization of models.

CasADi has two different symbolic classes for representing expressions, SX and MX. SX
can only be used for expressions that are scalar whereas MX allows sparse matrix-valued
output and input functions[23]. The main difference between SX and MX is that MX is more
expressive while SX is faster Since MX is the one used in the optimization toolchain it is
described more in detail below.

2.6.1 Use of MX symbolic

CasADi provides a class MX, which makes it possible to build up MX expressions. The MX class
provides a wide variety of methods that can be used when working with MX expressions. For
example all common mathematical operators as well as methods for checking properties can be
reached through the MX class. In listing 2.2 a simple example of an addition between two MX
expressions is given. The MX class has constructors for scalar constants and symbolic matrixes.
A symbolic matrix is constructed by giving a string with the name in the constructor instead
of a scalar value.

Listing 2.2: Example of how an MX expression is constructed in C++

1 MX a = MX("a"); // a new variable

2 MX b = MX(5); // a new constant

3 MX c = a+b;

MX can represent function calls, but to represent functions something more elaborate is
required. To solve this the MXFunction class is used which gives a way of representing functions
with MX expressions. To construct an MXFunction, two vectors with MX expressions are
passed as parameters to the constructor. The first vector consists of the input expressions and
the second vector contains the output expressions. The MXFunction class provides methods for
working with the function. The most important methods are the init method, which initialize
the object, the evaluate method that performs a numerical evaluation of the function and the
call method that is used for symbolically calling the function.

11

3 Comparison of FMUX and MXML

In this chapter the MXML format is compared with the FMUX format. Both formats are used
to describe Modelica models but they have significant differences. MXML supports all types of
models whereas FMUX only support models that are continuous in time. This means that
discrete and conditional models are not supported by the FMUX format. In MXML all data
are represented by attributes whereas in FMUX elements are used to represent some data.
FMUX only supports a small subset of the available equation constructs. In MXML all types
of equations are supported.

The chapter starts with a description of how the FMUX format is structured and continues
with a more detailed description of the individual parts of the format. The following section
describes the MXML format in a similar fashion. After both formats have been introduced a
comparison of their properties and layouts are presented in the final section.

3.1 FMUX format

FMUX is based on the structure of the XML format used in FMI. Since the FMI format
only supports a representation of scalar variables it is extended with support for qualified
names, expressions, equations, functions and algorithms. The FMI schema only supports scalar
variables whereas FMUX must support array and record variables as well. This is handled by
introducing QualifiedName, which contains the member names and an optional number of
array subscripts. Each of the other extensions are represented by a namespace, expressions
by the exp namespace, equations by the equ namespace, functions by the fun namespace and
algorithms by the alg namespace. Optimization problems are also represented by a separate
namespace opt.

Expressions

The expression namespace is structured into six different groups of expressions, which are
outlined in table 3.1. Note that apart from these groups there are a few special cases that
are defined separately such as the array constructor and the range function. As seen from
the table two different structures are used for representing mathematical operators, one for
unary operators and one for binary operators. For built-in functions Builtin1or2Funct and
Builtin2Funct are used; it should be noted that the latter is only used for mathematical
functions whereas the other represents all other types of built-in functions. The schema
distinguishes between mathematical operators and functions; + is considered an operator and
sin is considered a function. FunctionCall represents function calls to user defined functions,
child elements are the name of the function as well as the arguments.

Functions

The function namespace is structured into a root element that defines the starting point of the
function and then the elements are defined in order. In table 3.2 the child elements are listed
together with a short description. Most of the elements are self explanatory but some of them
need further clarification. Input and output to a function is represented by two sets of variables,
InputVariable and OutputVariable. ProtectedVariable represents the variables that are

12

Expression Description
Exp Base expressions such as literals
UnaryOperation Mathematical or logical built-in unary operators
BinaryOperation Mathematical built-in binary operators
Builtin2Funct Built-in mathematical function with two arguments
Builtin1or2Funct Built-in function with one or two arguments
FunctionCall User-defined function calls

Table 3.1: Table over the available expression groups in the FMUX

Element Description
Name The name of the function
OutputVariable Variables that contain the output of function
InputVariable Variables with input to function
ProtectedVariable Variables that are internal to the function
Algorithm Algorithm section of the function
InverseFunction The inverse of the function
DerivativeFunction Derivative of the function

Table 3.2: Children element to the function root element

internal for the function. The two optional parts InverseFunction and DerivativeFunction

declare an inverse or derivative to the function.

The algorithm section of a function contains all operations that occur in the function. Since
there are many constructs that are allowed in the algorithm section it has a separate namespace
and its content is further described below.

Equations

The equation sections of a Modelica model are divided into three different types in the FMUX
schema. The first one being the BindingEquations, which represents binding equations of
parameters in the model. The second is DynamicEquations which handles regular equations
as well as equations with function calls. InitialEquation is the third type and is used to
represent the initial equations of a model.

The BindingEquation type contains two children, which represent the left-hand and right-
hand side of the equation. The left-hand side is represented by the Parameter element and
the right-hand side is represented by the BindingExp element. Both the Parameter and
BindingExp elements consists of expressions.

DynamicEquations consists of several Equation and FunctionCallEquation elements. The
Equation element is of AbstractEquation type, which is used for representing equations in
residual form. An equation in residual form has the structure lhs − rhs = 0. In FMUX
this is represented by a substitution of the left-hand side with the right-hand side of the
equation. The FunctionCallEquation type does not represent a function call in residual form.
Instead the function call is handled by having an OutputArgument and a FunctionCall, where
OutputArgument represents the outputs of the function call and FunctionCall represents the
call with a name element and an argument element.

InitialEquations defines an Equation element, which is of the type AbstractEquation.

13

Element Description
Assign Assign statement, e.g., := in Modelica
Break Break statement, only used in loops
Return Return from function
If If statement, can contain elseif and else
While While loop
For For loop
FunctionCallStatement Function calls within algorithm section
Assertion The assertion call

Table 3.3: FMUX structure of algorithm namespace

In Modelica it is allowed to have function calls in initial equations. This is not allowed in a
FMUX and therefore the InitialEquations only consists of a number of AbstractEquations.

Algorithms

The alg namespace defines the statements that are valid in an algorithm section. Table 3.3
lists the element in the algorithm section. The assign statement that represents Modelica’s
:= construct has two children, an identifier as the left-hand side and an expression as the
right-hand side. Break and return statements are represented with elements that have no
children or attributes.

To represent conditional statements, the complex type ConditionalStatement is used. It
defines a condition element and an arbitrary number of statement elements. This is sufficient
for representing while and if statements. An elseif branch of an if statement consists of a
ConditionalStatement just as the first if. The else branch consists of an arbitrary number
of statements. A for statement is represented by several statements as well as an Index

element. The Index element consists of a QualifiedName of the variable and an expression
defining the set of possible values that the variable could iterate over.

Optimica

The constructs that are specific for an optimization problem are contained within the opt

namespace. The opt namespace consists of an Optimization element that is the root for the
optimization problem. There are a number of child elements to represent the different constructs
that exist in an optimization problem. Constraints are represented by the opt:Constraints

element, which in turn has the child elements opt:ConstraintEq, opt:ConstraintGeq and
opt:ConstraintLeq. Each of these constraint types contain two expressions that define the
different sides of the constraint. To represent the start time and final time of the optimiza-
tion problem the opt:IntervalStartTime and opt:IntervalFinalTime elements are used.
The objective functions are represented by the two elements opt:ObjectiveFunction and
opt:IntegrandObjectiveFunction, which consist of one expression that defines the objective.

14

ClassContents

attributes

equation

algorithm

declaration classDefinition

extends

component

Figure 3.1: Root structure of the Modelica XML schema

3.2 Modelica XML

The MXML format that is under development aims to provide a standardized way of representing
Modelica models in XML. MXML is designed to support all major constructs of Modelica and
can therefore be used to model any Modelica model, which was not possible by the FMUX
format.

The format is structured into three XML schemas, each describing the structure of one part
of the XML. The first schema defines the general structure of the document. Figure 3.1 shows
the basic structure of how the schema represents a Modelica model. ClassContents is used
to represent the model, but it can also be used to represent other entities such as functions.
The dashed line shows that the underlying elements are optional. One attribute is required,
the kind attribute that is used to define the type of ClassContents. For a regular model
the kind would be model. The content of the model would then be defined by three optional
elements. First the variable declarations and new types are defined in the Declaration group.
This is followed by an equation section and the final part of the content is an algorithm section.
Both of these are defined in a separate schema and are explained later on in the section.

To represent declarations three different constructs are used within the Declaration

group. First the extends element that is used to represent extends clauses. Secondly the
classDefinition, which is used to represent declarations of enumerations, user-defined types
and functions used in the model. Finally the component element that represents variable
declarations in the model.

Equations and algorithms

The second schema defines the structure of equation and algorithm sections. Since the structure
is similar and several constructs are common for both sections they are defined in the same
schema. An equation can be of one of the seven different types that are listed in figure 3.2.
The equal element is used to describe equality between two expressions, corresponding to the
= operator in Modelica. Function calls that can occur in equations are represented by two
different elements, the operator and call elements. The reason for having two different elements
for representing function calls are to distinguish between purely mathematical functions and
others. For example der() is an operator since dx

dt
is not a mathematical function of at a given

time point. There are two conditional clauses, if and when. The if clause is represented as

15

Equation for

if

connect

equal

when

operator

call

Figure 3.2: Elements that can be contained in the equation

an element with several conditional branches and then branches followed by one optional else
branch. The when clause has the same structure but does not contain an else branch.

The definition of algorithms is the same as the equation definition with the some minor
differences. Algorithm sections do not support the use of the equal element, instead the
assign element is added where an expression is assigned to a variable. Three other elements
are also added while, break and return constructs that are allowed in algorithm sections but
not in equation sections. Break and return are represented by a stand-alone element. The
while element is similar to a regular if, with the difference that there is no else clause and the
name of the root element is changed to while.

Expressions

The third schema defines expressions, in table 3.4 the groups and elements of the expression
schema is shown. The Literal group represents the literals in Modelica. It consists of five
elements; real, integer, true, false and string. Except for the boolean values each one
of them has an attribute value that gives the literal value. The if clause supported in the
expression schema is exactly the same as the if clauses supported in the equation schema with
the difference that the then and else clauses are expressions instead of equations.

The call construct is used to represent built-in calls as well as user-defined function calls.
The call element has an optional attribute builtin that is used to represent a built-in call.
If it is a call to a user-defined function an optional child element function is used instead of
the builtin attribute. The argument to the functions are provided as children elements to
the call element. The final group LValue refers to variables used in expressions. For example
in a declaration of the following type: x = 4, x would belong to the LValue group whereas 4
would be a literal. The LValue group also contains a tuple element that is used to represent a
tuple of variables.

16

Element Description
Literal Group that defines a set of literal
if If expressions
call Function calls
operator Built-in operators e.g., der()
LValue Group that defines variable references

Table 3.4: Expression group/elements in ModelicaXML

MXML distinguishes between built-in functions and has a special element operator that is
used for functions that does not only depend on their input. For example consider the der(x)

function, which takes a real value x as parameter. For a regular function call the return value
would only depend on the input x but since der(x) is the time derivative of x it is in general
independent of the current value of x.

Functions

Functions are not represented by a separate schema, instead the ClassContents type is
used. ClassContents takes a kind attribute that defines which type it represents. Since the
ClassDefinition type can consist of a ClassContents element it is possible to represent
functions with a ClassDefinition. The same approach is used to represent enumerations and
records.

Optimica

MXML is mainly intended to represent Modelica, however for this thesis a small extension
with support for Optimica constructs was provided. The Optimica schema uses the already
described schemas for representing the Modelica parts. The model is then extended with a
constraint section that represents the constraints of an optimization problem. There are
three different types of constraints, equal, lessThan and greaterThan. The start time and
final time of the optimization is represented with two elements startTime and finalTime,
which consists of one expression. The objective functions are represented with two elements
consisting of one expression, objective and objectiveIntegrand.

3.3 Comparison of the formats

To compare the two different XML formats it is important to consider which factors that
are relevant. Looking at the expressiveness of the formats they are both similar. The main
difference is that FMUX is intended to only work with DAEs, which means that no discrete
variables are supported[11]. Furthermore only parameter variables may be of any other type
than Real. MXML is designed to support all constructs available in Modelica and it does not
have any self imposed limitations like FMUX.

Listing 3.1: XML in MXML format to describe the Modelica model in 2.1

1 <?xml version="1.0" encoding="UTF -8"?>

2 <class kind="model">

17

3 <component name="x">

4 <builtin name="Real"/>

5 </component >

6 <component name="y">

7 <builtin name="Real"/>

8 </component >

9
10 <equation >

11 <equal >

12 <local name="x"/>

13 <call builtin="+">

14 <integer value="2"/>

15 <integer value="4"/>

16 </call>

17 </equal >

18 <equal >

19 <operator builtin="der">

20 <local name="y"/>

21 </operator >

22 <call builtin="sin">

23 <local name="x"/>

24 </call>

25 </equal >

26 </equation >

27 </class >

The structure of the two formats are similar overall but there are some notable differences.
In MXML all information is represented by child elements and attributes. FMUX uses another
approach where some of the information is kept as element content. An example of this is an
integer value that MXML represents as <integer value="2"/>. In FMUX the representation
would look like <IntegerLiteral>2</IntegerLiteral>. One advantage with keeping the
information as an attribute is that the XML gets more concise since the element can be closed
immediately.

FMUX is structured into different namespaces, which make the description of the schemas
clear. However it also adds overhead to the format since the names of the elements are prefixed
by the namespace. In comparison, MXML has a similar schema structure but avoids using
namespaces in the XML. Since most of the constructs within the models are self explanatory
the namespace prefix only adds overhead. For example consider <equ:DynamicEquation>,
which shows how unnecessary the namespace prefix is since the element name clearly provides
the needed information. There may be cases where different constructs have similar or even
the same name that justifies the use of a namespace. The occurrence of this is not prevalent in
the FMUX format and even if it was it would still be bad design to use ambiguous names in
the schema.

The two formats have different ways of representing mathematical operators and functions.
In FMUX they are represented by their name, which means that they are a part of the defining
schema. In MXML they are handled as a special kind of function call. This means that instead
of having special groups as the FMUX has, an optional attribute builtin is added to the
regular function call. FMUX approach makes the XML simpler but if support for a new built-in
operator/function needs to be added the schema must be extended. MXML will inherently

18

support all built-in functions and operators since they are not a defined part of the schema.
In FMUX each type of equation is defined by its own element in the schema. This is in

contrast to MXML where the equation types are differentiated only by the attribute kind.
Since FMUX only allows a subset of constructs in the initial equation a separate type is needed
to enforce this limitation. In MXML there are no such limitations and therefore it is possible
to define the type of an equation with an attribute. Another substantial difference with the
representations of equations are the features supported. MXML handles all available constructs
whereas FMUX only handle the function calls and equality constructs.

Both formats have good support for extensions, since FMUX was designed as an extension
to a format this is natural. MXML was not designed with extensions as a priority since the
purpose is to represent the Modelica language. The description of how the formats represent
Optimica clearly showed that a similar approach where used for both formats. Although
FMUX had a better way to integrate the extension with the other parts of the schema.

Overall the basic structure of the formats is as mentioned similar, which is not surprising
since they both represent the same language with some minor restrictions on the FMUX side.
However on a more detailed level the differences are significant. The comparison shows that
MXML in general uses a more compressed format with fewer schema dependencies than FMUX.
Listing 3.1 shows how the Modelica model in listing 2.1 could be formulated with MXML. The
corresponding FMUX model is presented in listing 3.2. As seen from the example the FMUX
code is more complex and harder to read. Even though readability is not an important factor
since the format is mostly used by computers, it is still advantageous to have a format that is
easy to understand.

Listing 3.2: XML in FMUX format to describe the Modelica model in 2.1

1 <jmodelicaModelDescription >

2 <ModelVariables >

3 <ScalarVariable name="x" valueReference="0" variability="constant"

causality="internal" alias="noAlias">

4 <Real relativeQuantity="false" start="6.0" />

5 <QualifiedName >

6 <exp:QualifiedNamePart name="x"/>

7 </QualifiedName >

8 <isLinear >true</isLinear >

9 <VariableCategory >independentConstant </VariableCategory >

10 </ScalarVariable >

11 <ScalarVariable name="y" valueReference="2" variability="continuous

" causality="internal" alias="noAlias">

12 <Real relativeQuantity="false" />

13 <QualifiedName >

14 <exp:QualifiedNamePart name="y"/>

15 </QualifiedName >

16 <isLinear >true</isLinear >

17 <VariableCategory >state</VariableCategory >

18 </ScalarVariable >

19 </ModelVariables >

20
21 <equ:DynamicEquations >

22 <equ:Equation >

19

23 <exp:Sub >

24 <exp:Identifier >

25 <exp:QualifiedNamePart name="x"/>

26 </exp:Identifier >

27 <exp:Add >

28 <exp:IntegerLiteral >2</exp:IntegerLiteral >

29 <exp:IntegerLiteral >4</exp:IntegerLiteral >

30 </exp:Add >

31 </exp:Sub >

32 </equ:Equation >

33 <equ:Equation >

34 <exp:Sub >

35 <exp:Der >

36 <exp:Identifier >

37 <exp:QualifiedNamePart name="y"/>

38 </exp:Identifier >

39 </exp:Der >

40 <exp:Sin >

41 <exp:Identifier >

42 <exp:QualifiedNamePart name="x"/>

43 </exp:Identifier >

44 </exp:Sin >

45 </exp:Sub >

46 </equ:Equation >

47 </equ:DynamicEquations >

48 </jmodelicaModelDescription >

20

4 Implementation

This chapter describes the implementation process of the MXML export and import. The first
section provides an overview over the structure of the two subsystems and where they are
located in the transfer system. After this the key concepts behind the export is explained. This
is followed by a description of the import into the CasADiInterface and a final brief section
about how the implementation was tested.

4.1 Overview

The implementation is divided into two different modules, one that handles the export of XML
from models and another part that handles import of the XML into CasADiInterface. Both
modules are built on top of already existing software. The export module is an extension to the
JModelica.org compiler and the import module is built on top of the existing CasADiInterface

optimization framework.

JModelica.orgModelica model Flat Model

ModelicaXMLGeneratorXMLXML Parser

transferXML CasADiInterface Opt result

Figure 4.1: The flow of a transfer of a Modelica model from the compilation to the CasADiIn-
terface. The red rectangles shows the parts of the transfer that have been implemented in this
thesis.

Figure 4.1 presents a simplified flow diagram of how a Modelica model is transferred to
the CasadiInterface. The flow diagram starts by showing the model being parsed into the
JModelica.org system. As explained in section 2.5.2 several steps are performed within the
compiler to obtain the flat model. The flat model is then used in the ModelicaXMLGenerator

as basis for the XML generation. From the generated XML the import starts with parsing the
XML to get a Document Object Model (DOM) to work with. The next step is to use the DOM
object that was obtained from the parsing to transfer the model into the CasADiInterface.
With the model transferred to the CasADiInterface it can be optimized and the results from

21

the optimization obtained. The implementation provides the ModelicaXMLGenerator and
transferXML parts of the flow diagram.

4.2 Export

The export module was implemented within the JModelica.org compiler as a new backend
service. It was constructed on top of the meta compilation tool JastAdd. The XML export
takes a flat abstract syntax tree representation of a Modelica model and generates an XML
representation of it. To achieve this the export module uses several other modules that are
already in place in the compiler system. The printer framework, which is described in section
4.2.2, is used for convenient printing of an output file and also to handle the indentation
level of the XML. For integration with the test framework and main compiler class the
GenericGenerator framework is used, which is described in section 4.2.5.

4.2.1 Structure of the abstract syntax tree

Within JModelica.org the abstract syntax tree is represented with a class structure where
each class represents a node in the tree. Child nodes in the tree will in the class structure
be represented by subclasses. The root node of the abstract syntax tree is the FClass class.
Each language construct will be represented with a separate node in the tree. For example
variable nodes are represented with the FVariable class, equations with the FEquation class
and functions with the FFunctionDecl class. These three nodes, together with child nodes,
cover most of the constructs available in the Modelica language but there are also some other
nodes that are less used 4.2 shows an overview of the abstract syntax tree structure can be
seen. Note that this figure only shows the most important nodes and only a small part of their
subtree.

4.2.2 Printer framework

The printer framework is used in the code generation since it provides required functionality such
as printing to a stream and support for handling the indentation. The framework is structured
into one class that is called Printer which has methods for printing to a stream object and
for increasing the indentation. To support printing of nodes in the abstract syntax tree the
Printer class has an empty implementation of a print method that prints an ASTNode object.

BaseNode

FClass FAbstractEquation

FEquation FAlgoritm

FExp

FAbstractExp

Figure 4.2: The basic structure of the abstract syntax tree that the XML generation is based on.

22

The framework is used by creating a subclass of the Printer class with an implementation of
the print method. The code for the Printer subclass used in the XML generation is given in
4.1. As seen on the third line the constructor sets the step size of the indentation to one tab.
On the fifth line the print method is defined and calls a method prettyPrintXML that is used
for the generation. In section 4.2.3 it is explained how this is used as a part of the generation.

Listing 4.1: The Printer class used in the XML export

1 public class XMLPrettyPrint extends Printer {

2 public XMLPrettyPrint () {

3 super("\t");

4 }

5
6 public void print(ASTNode node , CodeStream str , String indent){

7 node.prettyPrintXML(this , str , indent);

8 }

9 }

4.2.3 XML generation

The basic idea with the XML generation is to split it into methods that generate XML for a
small specific subset of the Modelica language. For example it would be convenient to have
one method that generates XML for expressions, one for equations and so on for the other
language constructs. The implementation is based on aspects in JastAdd that were described
in section 2.4, by using aspects it is possible to have all code related to the XML generation
grouped together in one file. The XML generation consists of one class ModelicaXMLGenerator,
which implements the prettyPrintXML method for all nodes that should have any generation
behavior. To generate XML for a node is then a simple call to the print method with the
node passed as a parameter.

To generate XML tags a couple of helper methods are implemented that take a tag name,
indentation and attributes. An example of how one of these helper methods looks can be seen
in listing 4.2. The first line defines the format of the tag, in this case it is a tag that is opened
and closed on the same line. There are also format strings for open and close tags. The method
does two things. First it loops through all attributes and append them to a single string. Then
the format tag is used to print the string to the output stream that is provided as a parameter.

Listing 4.2: Helper method for generating a XML tag to an output stream

1 private static final String ASTNode.CLOSED_TAG = "%s<%s%s/>\n";

2
3 public void ASTNode.generateClosedTag(CodeStream str , String tag ,

4 String indent , Map <String , String > attributes) {

5 StringBuilder allAttributes = new StringBuilder ();

6 if (attributes != null) {

7 for (Map.Entry <String , String > attribute : attributes.

entrySet ()) {

8 allAttributes.append(" ").append(attribute.getKey ()).

append("=\"")

9 .append(attribute.getValue ()).append("\"");

23

10 }

11 }

12 str.format(CLOSED_TAG , indent , tag , allAttributes.toString ());

13 }

A common problem with code generation is namespacing, however this is not a problem
when we generate code for a model that lacks any hierarchy. Because the model is flat and
does not contain any hierarchical elements, every name is guaranteed to be unique. This means
that the code generation does not need any data structure for name lookup since it can always
infer the correct name from the variable.

The XML generation takes an FClass object as basis for generation. The variables, equations
and functions of a model are obtained by methods within the FClass object. To generate
constructs on the current level in the abstract syntax tree the helper methods described earlier
are used. For example consider generation of equations in the FClass object. Before all
equations a tag <equation> is required. This tag is generated by calling the helper method
generateOpenTag with the stream object, tag name and attributes. The generation of the
equations is performed by calling the print method and passing the equation object as a
parameter. The prettyPrintXML method for the FEquation object will then be called and it
will generate XML for the equations. By using this approach it is easy to delegate generation
of all entities in the abstract syntax tree to a separate logical part of the code.

In listing 4.3 generation code for equations with an expression as left-hand and right-hand
side is presented. With the underlying structure in mind the generation is straightforward and
it consists of creating the local XML tags for the node and then retrieves and delegates the
generation of the expressions. The same approach is used for all nodes in the abstract syntax
tree, however there are of course some nodes that are more complicated to add generation for
but their generation still follow the same principle.

Listing 4.3: Code generation for equations with expressions as left-hand and right-hand sides

1 public void FEquation.prettyPrintXML(Printer p, CodeStream str ,

String indent){

2 String indentOneStep = p.indent(indent);

3 generateOpenTag(str , "equal", indent);

4 p.print(getLeft (), str , indentOneStep);

5 p.print(getRight (), str , indentOneStep);

6 generateCloseTag(str , "equal", indent);

7 }

4.2.4 Export of Optimica models

In the JModelica.org compiler Optimica models are represented by the FOptClass class as
opposed to the regular FClass for Modelica models. FOptClass is an extension of FClass

with optimization information added. Since the FOptClass uses the same abstraxt syntax tree
classes for representing variables, equations and functions as FClass, most of the generation
can be reused. The new constructs that must be accounted for in the Optimica generation are
constraints, objective functions and start/end time for the optimization. The objective function
is kept as an expression in the FOptClass. Constraints are represented by the FConstraint

class, each type of constraint is a subclass to FConstraint. A constraint consists of a left-hand

24

side and right-hand side expression. The start and final time of the optimization is kept as two
expressions in the FOptClass. Since all of these constructs are supported their generation is
straightforward and follow the same pattern as the Modelica generation.

4.2.5 Integration with compiler

To use the generation it needs to be integrated with the rest of the compiler system. Before it
is possible to generate XML for a Modelica model the compiler needs to flatten the model.
Since the XML generator works with a flat model it must be obtained through the compiler
together with an output stream that the generated XML should be written to. Similar XML
generation already exists within the JModelica.org system and there is a framework in place to
handle this problem.

JModelica.org has a GenericXMLGenerator class with a method generate, which is used as
the entry point for code generation in the compiler. To integrate the generation code with the
compiler a wrapper class, ModelicaGenerator that interfaces with the ModelicaCompiler is
created. ModelicaGenerator extends GenericXMLGenerator and implements the generate

method by calling prettyPrintXML() with the provided stream object and the FClass object.
In ModelicaCompiler there are several targets defined for the different formats supported. Each
target contains a generator object, which is the one used in the generation. For example the
xml target will use the ModelicaGenerator whereas the fmi target uses the FmiXMLGenerator.
When the target is set to xml the generation will generate an MXML file from the provided
Modelica model.

4.3 Import

The import part of the implementation uses generated XML from the export and imports
this into CasADiInterface. CasADiInterface is implemented in C++ and consists of a model
description that interfaces with CasADi for solving optimization problems. The representation
of a model in CasADiInterface consists of classes for representing variables, equations and
functions as well as a model class that binds these entities together. The model class is also
responsible for interactions with the users and the numerical solvers. The import takes an
empty Model object and then fills it with the information from the XML document.

4.3.1 XML parsing

The first step of the import is to parse the XML document so its data can be accessed in
a suitable format. There exist several different techniques for parsing XML, the two most
common being Simple API for XML (SAX)[24] and DOM[25]. The main difference between
SAX and DOM is how they operate on the XML document; a DOM parser will read the
whole document into memory whereas a SAX parser operates on the elements in the document
sequentially. In practice this means that the SAX parsers are generally much faster than DOM
parsers and at the same time use less memory. However there are situations when a SAX
parser is not suitable because access to the full document is required. For example validation
of an XML document typically requires access to the complete document and therefore a DOM
parser is better for this task.

25

Model

VariableEquation VariableKind

ModelFunction

RealVariable IntegerVariableBooleanVariable

DerivativeVariable

Figure 4.3: Class structure of the CasADiInterface

The import module implemented in this thesis uses a DOM parser. The reasoning behind
this is that although the speed of parsing is an important factor it was more important to have
a parser that is lightweight and easy to use. The parser used is tinyxml2, which is a simple
and lightweight XML parser implemented in C++ [26]. Tinyxml2 only consists of two files,
which make it easy to integrate with the rest of the import and keeps dependencies low in the
project. The basic workflow with tinyxml2 is to first read the XML document, which gives a
pointer to the root node of the DOM object. Tinyxml2 provides methods for getting pointers
to the children, siblings and parents of a node. In terms of speed tinyxml2 is not among the
fastest parsers but it can handle large documents within a reasonable amount of time.

4.3.2 CasADiInterface

The optimization toolchain CasADiInterface that the import works towards was developed as
a part of another masters thesis[27]. The idea with CasADiInterface is to take a Modelica or
Optimica model and convert it into a form so that it can be optimized with CasADi. Since
CasADi uses an internal format for representing optimization problems the toolchain must use
this representation to be able to optimize the models. The basic structure of CasADiInterface
can be seen in figure 4.3. The Model class represents a complete model, with a list of variables,
a list of equations and a map with the functions present in the model. The Model class also
has methods for evaluating MX expressions and calculating the value of dependent parameters.

Variables are represented by the Variable class, each variable consists of a symbolic MX
with the name of the variable and a map storing all the attributes of the variable. The name
of the attribute is used as a key in the map and an MX variable is the value. As seen in figure

26

4.3 the Variable class has several subclasses for each different type of variable. Each subclass
extends the Variable class with specific functionality for that type of variable, for example
the RealVariable class is extended with a derivative variable that is not present in the regular
Variable class. Equations are represented by the Equation class, which consists of one MX
expression for the left-hand side and one for the right-hand side. Functions are represented by
the ModelFunction class, which stores a MXFunction object that corresponds to the function
and have a method for calling this function.

Optimization problems are represented by a subclass, OptimizationProblem, of the Model

class, which extends it with support for the optimization constructs. The OptimizationProblem
extends the Model with MX expressions for the objective function, start time and final time.
Constraints are represented with an own class in which the left-hand side and right-hand side
expressions are kept, together with the type of the constraint.

4.3.3 Construction of model

There are several different pieces that need to be fitted together to import a model into the
CasADiInterface. To convert expressions from XML to MX a function called expressionToMX

is implemented, which takes a reference to an expression in the XML and then construct the
corresponding MX expressions. The expressionToMx method handles function calls, built-in
expressions as well as operators. Variables must be converted to MX expression since that is
how they are represented in the Model class. Functions and equations are also represent with
the help of MX expression but not solely as one MX expression. For equations and variables
this conversion is straightforward but for functions that are converted to a MXFunction it is
more complicated.

To convert a function to an MXFunction object all of the input and output variables of the
function need to be converted to MX expressions. Two lists are then created, one for the input
variables and one for the output variables. For each assignment in the function the output
variable is updated with the left-hand side expression of the assignment. The two lists are then
provided as arguments to the MXFunction constructor.

4.4 Testing

Both the export and import were integrated with a small test suite to test some specific
behaviour. For the export the generation was tested by comparing hand generated XML with
the compiler output for a number of small models. This was used to discover if the generation
is working as intended in the beginning. After this it was used to see if changes to the code
did not break the current generation.

For the import a test suite was already available and it was easy to integrate with the XML
based import. This test suite runs several tests that transfer a model and then compare values
from the resulting CasADiInterface model with the correct values. Here the test was used to
determine if the implementation of a feature was correct and then to assure that changes did
not introduce any bugs.

27

5 Results

In this section the results of the implementation is described. Several tests of the functionality
and performance are presented. First the tests of the functionality are explained and the
results are given. In the final sections the performance tests are explained and the results are
provided in several tables.

5.1 Functionality tests

The functionality of the implementation is tested in two different ways. First by two test
suites, one for the export and one for the import, that test specific behavior. This is good for
testing specific subsets of the implementations but to test the implementation as a whole it
is not enough. To test that the implementation works as intended a model is transferred to
CasADiInterface through XML and then optimized.

The model that is used for testing is an example model used within JModelica.org. The
model is based on the Hicks-Ray Continuously Stirred Tank Reactors (CSTR) system. A
system with two states, concentration and temperature. The control input to the system is the
temperature of the cooling flow in the reactor. The model solves an optimal control problem
where the objective is to ignite the reactor while avoiding uncontrolled temperature increase. In
figure 5.1 the results of the optimization is presented. To verify the results they were compared
with the results of the compiler transfer and this comparison showed that the result was the
same for both transfers.

0 20 40 60 80 100 120 140 160
300
400
500
600
700
800
900

1000

C
o
n
ce

n
tr

a
ti

o
n

Optimized trajectories

0 20 40 60 80 100 120 140 160
240
260
280
300
320
340
360

T
e
m

p
e
ra

tu
re

0 20 40 60 80 100 120 140 160
time

220
240
260
280
300
320
340
360
380

C
o
o
lin

g
 t

e
m

p
e
ra

tu
re

Figure 5.1: Graph showing the results of the CSTR optimization. The green dashed line
indicates the desired end result whereas the blue line shows the optimization result.

28

Model name Export time(avg) Import time(avg) Total time(avg)
VDP 3265 ms 4354 ms 7620 ms
CSTR 4818 ms 4322 ms 9141 ms
Siemens 9578 ms 4522 ms 14100 ms

Table 5.1: Time results for transfer through MXML. The results are presented in milliseconds
and rounded to two decimals.

5.2 Performance tests

To test the performance of the format and the implementation two factors are considered, time
and size. It is relevant to test the time of transferring a model from Modelica code to the
CasADiInterface since the implementation is supposed to be used in the industry on large
projects. To get some relative data on how the system performs the transfer from the compiler
will be used as a comparison. The tests are conducted by timing the generation and import of
a model separately, the total time is then obtained by adding the two test results together.
To ensure that the test results are reliable the tests are measured several times and then the
average time is presented.

Testing of the size is not so much of relevance for the implementation but rather for the
format. XML is verbose by nature and it is therefore important that the format does not add
substantial overhead on top of this. The format is intended to be used with large scale models
that have thousands of variables, which makes it important to test that the format can handle
models of that size and still keep the XML within a workable size. Another important aspect
to test is how the format compares to similar formats such as FMUX.

The tests were conducted on three different models. The first model is the CSTR model
that was used to show the functionality. The second model was another smaller example model
used within the JModelica.org system, the purpose of this model was to optimize a Van der
Pol oscillator and the model is therefore called VDP in the test results. The model code for
both these models are available in appendix A. The final model is an industrial model that
was developed as a part of a joint master thesis work at Siemens and Modelon[28][29]. In the
test results the model is referred to as Siemens.

5.2.1 Time tests

In this section the results from the time tests are presented. Table 5.1 shows the results for
the time tests of the XML transfer and table 5.2 shows the results for the transfer through the
compiler system.

Model name Transfer time(avg)
VDP 5534 ms
CSTR 7033 ms
Siemens 11630 ms

Table 5.2: Time results from direct transfer through the JModelica.org compiler. The results
are presented in milliseconds and rounded to two decimals.

29

5.2.2 Size tests

The results of the size tests are presented in this section. The tables used contains the following
information: the name of the tested model, the file size of the generated XML code, number of
lines of the generated XML code and number of lines of the flat model file that the generation
is based on. Note that the file size of the generated XML is given in kilobytes. In table 5.3 the
results for the MXML format is presented and in table 5.4 the results for the FMUX format is
presented.

Model name XML size(kb) Lines in XML Lines in flat model
VDP 3 135 20
CSTR 11 434 53
Siemens 608 22389 2166

Table 5.3: This table presents the results of the size tests for the MXML format.

Model name XML size(kb) Lines in XML Lines in flat model
VDP 9 258 20
CSTR 26 755 53
Siemens 5896 182429 2166

Table 5.4: This table presents the results of the size tests for the FMUX format.

30

6 Discussion

This section presents an evaluation of the implementation followed by an evaluation of the
MXML format. A final conclusion is then given in which the fulfillment of the thesis goals are
summarized. The final section presents a number of possible future extensions and continuations
to the thesis.

6.1 Evaluation of implementation in JModelica.org

The implementation aimed to extend the JModelica.org compiler with XML generation for the
MXML format and to add a module for import of MXML into CasADiInterface. As shown in
the functionality tests in section 5.1 it is possible to transfer a model to the CasADiInterface

through the MXML format and get an optimal solution for the optimization problem provided
by the model. This result shows that the export as well as the import works as intended for
small scale models that where used in the tests.

Due to lack of time some features were not implemented, this relates mostly to the import
whereas the export has almost full coverage of the expected features. The main unsupported
feature in the import is records, which are necessary for some problems but they are not used
that often. Alias variables are currently not supported in the export and import since other
parts were deemed more important to finish in the later stages of the thesis. To support all
features would be an advantage but since there only are a few and not so vital parts that are
unsupported it is acceptable.

The time test shows that import from the generated XML is faster than the direct transfer
from the compiler. However if the generation time of the XML is included the transfer from
the compiler is faster. This was expected since the generation performs almost the same work
as the transfer and then the additional work of parsing the XML and constructing a DOM
object is added on top of this. One important factor to consider is that the same XML file will
probably be used several times. Therefore the XML generation time is less important than the
test results showed and in the long term it is likely that the XML import is in fact faster.

The main purpose of the implementation was to test how suitable the MXML format was to
use in a working environment. The results presented indicates that MXML is indeed a format
that is easy to work with and provides the required features. The performance test results
show that MXML can provide similar performance as other solutions and at the same time
be more versatile. The implementation process has shown that MXML is an easy format to
work with, both when it comes to generation from an abstract syntax tree and import from a
generated XML document. Code generation does not necessarily occur from an abstract syntax
tree so it is possible that code generation from other representations may be more complicated
to implement. With regards to the import the same logic applies when parsing the XML with
a non DOM parser. For example with a SAX parser problems may arise when functions need
to be parsed in correct order and in the XML they are given in an arbitrary order. However
this could not be considered a limitation to the MXML format but rather a problem for the
implementations to solve.

31

6.2 Evaluation of MXML

The comparison between MXML and FMUX indicated that MXML was the more concise and
extendable format. This assumption was further strengthened by the test results obtained in
section 5.2.2. The tests show a substantial difference in size between the two formats. This
difference applies for all the tests and for the large industrial model the difference was almost
a factor of ten. Such a large difference in the size between the formats was not expected but it
clearly demonstrates that MXML is less verbose and has a better structure to minimize the
size of the XML.

If other aspects of the formats are considered the advantages of MXML show even clearer.
It is more expressive and is designed with the ambition to represent all the features offered by
Modelica. The MXML schema is also easier to extend in some regards since several properties
are represented with attributes instead of with elements.

Even though MXML is an improvement from the former XML formats it can still be
improved. There are some part of the schema that add complexity and sometimes they may
even be redundant. To clarify or remove these parts would make the structure of the format
even easier to understand and work with. Furthermore there are some disadvantages with
using attributes to represent the data of the model. If Modelica changes its representation of
some data it is likely that MXML must be redesigned to account for that change. It would
then be better to have the data in an element since they are easier to extend than attributes
are. This is however a minor issue since the format is used within a stable environment that
rarely changes.

6.3 Conclusion

In conclusion the evaluation of the MXML format shows that it is a format suitable for transfer
of Modelica models. The implementation of support for MXML within the JModelica.org
system confirmed that the format was easy to integrate with an existing system. By comparing
the MXML format with another XML format that is used for transfer of Modelica models the
strengths of the MXML format was shown. The conducted tests confirmed the conclusions
from the comparison, namely that the MXML format was superior to the FMUX format both
in design and performance.

6.4 Future work

There exist several possible extensions and continuations of this thesis. One interesting exten-
sion would be to investigate whether MXML is expressive enough to represent full Modelica
models and not only flat models. This would include implementation of a new backend for
MXML generation of full models as well as a comparison of the flat models and the hierarchical.
It would also be interesting to compare the MXML format with other types of alternative
representations such as a binary model representation or a custom format. This could include
design and implementation of the format and then a comparison of the formats with focus on
the performance.

32

Apart from continued extension of MXML and comparisons with other formats it would
be interesting to investigate how well the format could be used within large scale industrial
projects. Since the format is developed within the MODRIO project it would be advantageous
to test the format with models related to this project. One approach to test this could be to
implement support for MXML within a few more Modelica tools and then conduct a study
where the models where optimized or simulated from the XML representation.

33

References

[1] J. Åkesson. “Optimica—An Extension of Modelica Supporting Dynamic Optimization”.
In 6th International Modelica Conference 2008. Modelica Association, Mar. 2008.

[2] J. Andersson, J. Åkesson, and M. Diehl. “Dynamic optimization with CasADi”. 51st
IEEE Conference on Decision and Control. Accepted for publication. Maui, Hawaii, USA,
Dec. 2012.

[3] J. Åkesson, M. Gäfvert, and H. Tummescheit. “JModelica—an Open Source Platform
for Optimization of Modelica Models”. Proceedings of MATHMOD 2009 - 6th Vienna
International Conference on Mathematical Modelling. Vienna, Austria: TU Wien, Feb.
2009.

[4] I. 3. ITEA 3 · Project · 11004 MODRIO. 2014. url: https://itea3.org/project/
modrio.html (visited on 06/04/2014).

[5] T. Henningson. “Modelica XML”. Modelica Design meeting, Coventry. May 2013.
[6] A. Shitahun. Template Based XML and Modelica Unparsers in OpenModelica. Master’s

Thesis. Department of Computer and Information Science, Linköping University, Sweden,
2013.

[7] A. Shitahun et al. “Tool Demonstration Abstract: OpenModelica and CasADi for
Model-Based Dynamic Optimization”. Proceedings of the 5th International Workshop on
Equation-Based Object-Oriented Modeling Languages and Tools. Apr. 2013.

[8] O. Ben-Kiki, C. Evans, and I. döt Net. YAML Ain’t Markup Language (YAMLTM)Version
1.2 (Third Edition). first Edition of a Recommendation. http://yaml.org/spec/1.2/spec.pdf.
2009.

[9] E. Maler et al. Extensible Markup Language (XML) 1.0 (Third Edition). first Edition of
a Recommendation. http://www.w3.org/TR/2004/REC-xml-20040204. W3C, Feb. 2004.

[10] P. Fritzson and A. Pop. Abstract ModelicaXML: A Modelica XML Representation with
Applications. 2003.

[11] R. Parrotto. An XML Representation of DAE Systems Obtained from Continuous-Time
Modelica Models. Master’s Thesis ISRN LUTFD2/TFRT--5865--SE. Department of
Automatic Control, Lund University, Sweden, Nov. 2010.

[12] B. Dimic, B. Milosavljevic, and D. Surla. XML schema for UNIMARC and MARC 21.
Electronic Library 28 (2010), 245–262.

[13] N. Nurseitov et al. “Comparison of JSON and XML Data Interchange Formats: A Case
Study”. ISCA 22nd International Conference on Computer Applications in Industry and
Engineering. 2009.

[14] H. Elmqvist. “A Structured Model Language for Large Continuous Systems”. PhD thesis.
Department of Automatic Control, Lund University, Sweden, May 1978.

[15] Modelica - A Unified Object-Oriented Language for Physical Systems Modeling. Version 3.2.
Modelica Association, July 2013. url: https://www.modelica.org/documents/

ModelicaSpec32Revision2.pdf.
[16] J. Åkesson et al. Modeling and Optimization with Optimica and JModelica.org—Languages

and Tools for Solving Large-Scale Dynamic Optimization Problems. Computers and
Chemical Engineering 34.11 (Nov. 2010), 1737–1749.

[17] T. Parr, ed. Language Implementation Patterns. The Pragmatic Bookshelf, 2010.
[18] G. Hedin. “An Introductory Tutorial on JastAdd Attribute Grammars”. Generative

and Transformational Techniques in Software Engineering III. Ed. by J. Fernandes et

34

https://itea3.org/project/modrio.html
https://itea3.org/project/modrio.html
https://www.modelica.org/documents/ModelicaSpec32Revision2.pdf
https://www.modelica.org/documents/ModelicaSpec32Revision2.pdf

al. Vol. 6491. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2011,
pp. 166–200. isbn: 978-3-642-18022-4. doi: 10.1007/978-3-642-18023-1_4. url:
http://dx.doi.org/10.1007/978-3-642-18023-1_4.

[19] Modelon. JModelica.org. 2014. url: http://www.jmodelica.org/ (visited on 05/15/2014).
[20] modelisar. Functional Mock-up Interface for Model Exchange and Co-Simulation. 2012.

url: https://svn.fmi-standard.org/fmi/branches/public/specifications/FMI_
for_ModelExchange_and_CoSimulation_v2.0_Beta4.pdf.

[21] F. Casella, F. Donida, and J. Åkesson. “An XML Representation of DAE Systems Ob-
tained from Modelica Models”. Proceedings of the 7th International Modelica Conference
2009. Modelica Association, Sept. 2009.

[22] J. Andersson. “A General-Purpose Software Framework for Dynamic Optimization”.
PhD thesis. Department of Electrical Engineering (ESAT/SCD) and Optimization in
Engineering Center, Kasteelpark Arenberg 10, 3001-Heverlee, Belgium: Arenberg Doctoral
School, KU Leuven, Oct. 2013.

[23] J. Andersson, J. Gillis, and M. Diehl. User Documentation for CasADi v1.8.1. 2014.
[24] D. Megginson. SAX. 2004. url: http://www.saxproject.org/ (visited on 05/02/2014).
[25] W. D. IG. W3C Document Object Model. 2009. url: http://www.w3.org/DOM/ (visited

on 05/02/2014).
[26] L. Thomason. tinyxml2. 2014. url: https://github.com/leethomason/tinyxml2

(visited on 04/26/2014).
[27] B. Lennernäs. A CasADi based toolchain for JModelica.org. Master’s Thesis. Department

of Automatic Control, Lund University, Sweden, 2013.
[28] A. Lind and E. Sällberg. Optimization of the Start-up Procedure of a Combined Cy-

cle Power Plant. Master’s Thesis ISRN LUTFD2/TFRT--5900--SE. Department of
Automatic Control, Lund University, Sweden, June 2012.

[29] E. Sällberg et al. “Start-up Optimization of a Combined Cycle Power Plant”. 9th
International Modelica Conference. Accepted for publication. Munich, Germany, Sept.
2012.

35

http://dx.doi.org/10.1007/978-3-642-18023-1_4
http://dx.doi.org/10.1007/978-3-642-18023-1_4
http://www.jmodelica.org/
https://svn.fmi-standard.org/fmi/branches/public/specifications/FMI_for_ModelExchange_and_CoSimulation_v2.0_Beta4.pdf
https://svn.fmi-standard.org/fmi/branches/public/specifications/FMI_for_ModelExchange_and_CoSimulation_v2.0_Beta4.pdf
http://www.saxproject.org/
http://www.w3.org/DOM/
https://github.com/leethomason/tinyxml2

A Full code of the test models from the result
section

Listing A.1: CSTR model code used for tests in result section

1 package CSTR

2
3 model CSTR "A CSTR"

4
5 parameter Modelica.SIunits.VolumeFlowRate F0 =100/1000/60 "Inflow";

6 parameter Modelica.SIunits.Concentration c0=1000 "Concentration of

inflow";

7 Modelica.Blocks.Interfaces.RealInput Tc "Cooling temperature";

8 parameter Modelica.SIunits.VolumeFlowRate F=100/1000/60 "Outflow";

9 parameter Modelica.SIunits.Temp_K T0 = 350;

10 parameter Modelica.SIunits.Length r = 0.219;

11 parameter Real k0 = 7.2e10 /60;

12 parameter Real EdivR = 8750;

13 parameter Real U = 915.6;

14 parameter Real rho = 1000;

15 parameter Real Cp = 0.239*1000;

16 parameter Real dH = -5e4;

17 parameter Modelica.SIunits.Volume V = 100 "Reactor Volume";

18 parameter Modelica.SIunits.Concentration c_init = 1000;

19 parameter Modelica.SIunits.Temp_K T_init = 350;

20 Real c(start=c_init ,fixed=true ,nominal=c0);

21 Real T(start=T_init ,fixed=true ,nominal=T0);

22 equation

23 der(c) = F0*(c0 -c)/V-k0*c*exp(-EdivR/T);

24 der(T) = F0*(T0 -T)/V-dH/(rho*Cp)*k0*c*exp(-EdivR/T)+2*U/(r*rho*Cp)

*(Tc-T);

25 end CSTR;

26
27 model CSTR_Init

28 extends CSTR(c(fixed=false),T(fixed=false));

29 initial equation

30 der(c) = 0;

31 der(T) = 0;

32 end CSTR_Init;

33
34 model CSTR_Init_Optimization

35
36 CSTR cstr "CSTR component";

37 Real cost(start=0,fixed=true);

38 Real u = Tc_ref;

39 parameter Real c_ref = 500;

40 parameter Real T_ref = 320;

41 parameter Real Tc_ref = 350;

36

42 parameter Real q_c = 1;

43 parameter Real q_T = 1;

44 parameter Real q_Tc = 1;

45
46 equation

47 cstr.Tc = Tc_ref;

48 der(cost) = q_c*(c_ref -cstr.c)^2 + q_T*(T_ref -cstr.T)^2 +

49 q_Tc*(Tc_ref -cstr.Tc)^2;

50 end CSTR_Init_Optimization;

51
52 optimization CSTR_Opt2(objectiveIntegrand =1e-4*(q_c*(c_ref -cstr.c)^2

+ q_T*(T_ref -cstr.T)^2 +

53 q_Tc*(Tc_ref -cstr.Tc)^2),

54 startTime =0.0,

55 finalTime =150)

56
57 input Real u(start = 350, initialGuess =350,min=230,max =370)=cstr.Tc;

58 CSTR cstr(c(initialGuess =300),T(initialGuess =300, max =350),Tc(

initialGuess =350));

59
60 parameter Real c_ref = 500;

61 parameter Real T_ref = 320;

62 parameter Real Tc_ref = 300;

63 parameter Real q_c = 1;

64 parameter Real q_T = 1;

65 parameter Real q_Tc = 1;

66 Real q = 2*u;

67 end CSTR_Opt2;

Listing A.2: VDP model code used for tests in result section

1 model VDP

2 // State start values

3 parameter Real x1_0 = 0;

4 parameter Real x2_0 = 1;

5
6 // The states

7 Real x1(start = x1_0);

8 Real x2(start = x2_0);

9
10 // The control signal

11 input Real u;

12
13 equation

14 der(x1) = (1 - x2^2) * x1 - x2 + u;

15 der(x2) = x1;

16 end VDP;

17
18 model VDP_scaled_input

19 // State start values

37

20 parameter Real x1_0 = 0;

21 parameter Real x2_0 = 1;

22
23 // The states

24 Real x1(start = x1_0);

25 Real x2(start = x2_0);

26
27 // The control signal

28 input Real u(nominal =10);

29
30 equation

31 der(x1) = (1 - x2^2) * x1 - x2 + u;

32 der(x2) = x1;

33 end VDP_scaled_input;

34
35 optimization VDP_Opt2 (objectiveIntegrand = exp(p1) * (x1^2 + x2^2

+ u^2),

36 startTime = 0,

37 finalTime = 20)

38 parameter Real p1 = 2;

39 extends VDP(x1(fixed=true),x2(fixed=true),u(max =0.75));

40 end VDP_Opt2;

38

	Abstract
	Acknowledgements
	Contents
	Introduction
	Purpose
	Goals
	Method
	Scope
	Outline

	Background
	MODRIO and related work
	Data serialization formats
	JSON
	YAML
	XML
	Motivation

	Modelica
	Optimica

	JastAdd
	JModelica.org
	Flat model
	Compiler
	FMI
	JMI
	FMUX

	CasADi
	Use of MX symbolic

	Comparison of FMUX and MXML
	FMUX format
	Modelica XML
	Comparison of the formats

	Implementation
	Overview
	Export
	Structure of the abstract syntax tree
	Printer framework
	XML generation
	Export of Optimica models
	Integration with compiler

	Import
	XML parsing
	CasADiInterface
	Construction of model

	Testing

	Results
	Functionality tests
	Performance tests
	Time tests
	Size tests

	Discussion
	Evaluation of implementation in JModelica.org
	Evaluation of MXML
	Conclusion
	Future work

	References
	Full code of the test models from the result section

