

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

Göteborg, Sweden, June 2014

Comparison and visualization of real-time recordings

against simulated environment in development of self-

driving miniature vehicles

Bachelor of Science Thesis Software Engineering and Management

ALIAKSANDR KARASIOU

LEILA KEZA

TOMASZ RAKALSKI

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Comparison and visualization of real-time recordings against simulated environment

in development of self-driving miniature vehicles

Aliaksandr Karasiou

Leila Keza

Tomasz Rakalski

© Aliaksandr Karasiou, June 2014.

© Leila Keza, June 2014.

© Tomasz Rakalski, May 2014

Examiner: Michel Chaudron

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden June 2014

Comparison and visualization of real-time recordings

against simulated environment in development of

self-driving miniature vehicles

Aliaksandr Karasiou

Dept. of Software Engineering

Göteborgs Universitet

Göteborg, Sweden

aliaksandr12@yahoo.com

Leila Keza

Dept. of Software Engineering

Göteborgs Universitet

Göteborg, Sweden

guskezle@student.gu.se

Tomasz Rakalski

Dept. of Software Engineering

Göteborgs Universitet

Göteborg, Sweden

tomasz.rakalski@hotmail.com

Abstract—Testing of solutions for embedded systems has

repeatedly proven to be an issue. What is a perfectly working

algorithm on a testing machine may not necessarily be an optimal

fix for a miniature board. When working with miniature vehicle

project at the University of Gothenburg, we have experienced

these issues first hand. The goal of this work is to evaluate

whether we can improve implementing of embedded solutions by

enhancing the testing process. The enhancement would be

created from enabling to test an embedded solution directly on a

real world recording, without engaging the actual hardware. In

order to test our hypothesis we conducted an experiment where

we devised a number of scenarios, representing different types of

lane following, and performed a recording of lane following with

the help of a miniature vehicle. These recordings were done

within both a simulated environment and a real world physical

track as well as compared. We were able to determine the

differences between the recordings and whether it is negligible

enough, so that the simulated recording can be deemed sufficient

for testing. We have concluded that our solution cannot enhance

the testing unless improved further.

Keywords—embedded systems, testing, miniature vehicles,

Carolo Cup, simulation, OpenDaVinci

I. INTRODUCTION

The teams developing cars for Carolo Cup 2014 [CC2014],
at the University of Gothenburg, have been working on
creating the solution for miniature autonomous vehicles, which
resulted in extensive testing in the field of algorithm
implementation. This idea has received partial attention when
one of the team members involved in the Carolo Cup, recorded
the track and continued to work with image processing based
on the data received.

When developing embedded systems, one frequently
experiences problems when testing software solutions directly
on the hardware [ElS98]. Having to conduct test cases directly
on hardware increases the difficulty of testing and requires a lot
of time. Compilation and running of code on hardware for
testing purposes can be reworked into a three-step approach,
where solutions are first applied to a simulated data and then
verified whether they can be tested on a software level, with
hardware input transferred to more powerful testing machines.

Currently software solutions for embedded systems are
being tested in a two-step process. This process involves
creation of a software solution, testing in a simulated
environment and implementation directly on the hardware
[BCHLS2013]. This process requires a certain amount of
guesswork and assumption [ElS98] which could be eliminated.

There is a simulation environment, which is used for
modeling the track and its surroundings for testing. It is called
Hesperia and was used for testing purposes both during Carolo
Cup competition and the university course. Hesperia has all the
components of the real environment, such as lane markings,
intersections, side objects etc. In addition it generates the data
of sensors and camera image. However, all the data is very
accurate and does not consider the existence of hardware
factors and real environment noise. Modeled environment is
represented with solid colors and perfect-shaped lines and
objects. In addition, sensor data generated on a computer is
much more frequent, than on a board, due to the difference in
processing power.

We have experienced a testing gap while implementing
solutions from the simulated environment to the hardware.
There is a basic concept of the solution we want to research,
the needed data and resources, which will change and expand
during the research process.

The ability to test lane following algorithms effectively
without having to engage the hardware is a serious challenge.
Currently, we are unaware of an efficient solution to this issue.
A common problem is that embedded software testing requires
either prototyping or guesswork [ElS98]. We are going to
create a test that will compare the data from the Hesperia
simulator with the data gathered by recording of the track in a
physical environment. Should the results display that the
difference between the simulated environment and the physical
one is minimal, it will be possible to use the simulated data in
order to test possible algorithms, for the autonomous
movement of the miniature vehicle.

This study will help us determine whether it is possible to
shorten the testing in the development process of a miniature
vehicle, by diminishing the gap between the simulated
environment and real world data. This study is relevant because

it might shorten the amount of time required for validation of a
software solution [BCHLS2013].

II. RELATED WORK

Our investigation aims to compare the simulation and
hardware data for an autonomous, self-driving vehicle. Any
research related to hardware-in-the-loop (HIL) simulation
testing, where the camera and sensors are considered, is related
to our research.

Comparing virtual and real camera images has been
explored by Rander, Narayanan, et al. [RNK97]. They found
out three main factors that make the virtual and real camera
images differ and the impact of those aspects in the image
processing research [ACIP2010]. The virtual environment is
built by using simulated real life objects and the real
environment is uncontrollable. The real environment can be
influenced by external objects which were not simulated during
the virtualization [BC95]. The simulated environment is a
normal computer interface and the virtual camera motion is not
affected by the environment since the two are different
components and do not interact with each other [BBSP2002].
The camera images taken in the real-world environment can be
affected by different unpredictable factors when the virtual
camera images do not show any interaction with the scene,
with the exception of out of bounds rendering.

Furthermore, they brought out yet another aspect that
makes the images from the two cameras differ when only
comparing pixels [ACIP2010]. The intensity of the surface of
the real camera images varies according to the viewing angle,
which is not the case for the virtual camera image. Virtual
images can also be inconsistent compared to the real camera
images due to movement. The virtual camera operates
discontinuous movements, which can make the virtual camera
images inconsistent [GMS2009].

Various papers [PvGVVCTK2004] [RNK97] [GMS2009]
do not report any significant reasons to stop using simulation
for image processing, development and testing. Instead, their
models contribute to an improvement of the way the objects are
managed in the virtual scenes to optimize a resemblance
between the two environments. Rander, Narayanan, et al.
[RNK97] combined the virtual and real environment by
modeling the scenarios that have impact on the images in the
two environments such as shadows, viewpoints, etc. Gilad et
al. [GMS2009] proposed solution was about extracting feature
points and neighboring correspondence, in conjunction with
some algorithms proposed by Pollefeys et al.
[PvGVVCTK2004] such as image subtraction pixel-by-pixel,
geometric model and view-dependent geometry.

Gietelink et al. [GPdSV2006] conducted an experiment on
Vehicle-in-loop (VEHIL), a multi-agent simulator method for
design and validation of Advance Driver Assistant Systems
(ADAS) envelopment. The ADAS are technologies such as
sensors, camera GPS, radar, vehicle mounted laser, and they
provide security related information to the driver while the car
is driving. The ADAS has shown an important performance in
the road security. Surveys have been conducted with ADAS
performance in mind, and they have shown impressive results
regarding contribution to the reduction of the numbers of

accidents. VEHIL simulation environment uses a combination
of real and simulated cars for testing of ADAS’ performance.
The VEHIL principle is the same as a normal HIL sensor based
testing for the detection of other objects on the road. The
difference is only that VEHIL combines a real car and moving
robot instead of a single car on a simulated track. However,
the VEHIL testing has been limited on the sensors and reserved
the driver testing for the next iteration to be able to validate the
results.

Arrichiello et al. [ACIP2010] investigated the Null-Space-
based-Behavioral, which consists of controlling a robot by
prioritizing the task in such a way, that they are executed
hierarchically. They found out that the projection technique
used in NSB is not enough to assume that the tasks hierarchy is
respected. Further, they proposed a conjunction of the NSB and
velocity saturation management. For the results validation, they
conducted a number of “numerical simulations” and hardware
testing. It was concluded that their solution worked perfectly
on the simulation and hardware, while observing a
performance increase in obstacle avoidance. Umeda et al.
[UOK96] tested the use of multiple ultrasonic sensors’ wide-
angles for distance measurement to a moving obstacle. They
used Kalman filter algorithm to estimate the movement of
obstacles, from range of a single ultrasonic sensor, in relation
to others installed on the same vehicle. Arrichello et al.
[ACIP2010] proposed fusion of multiple ultrasonic sensors for
the moving obstacle distance measurements. Their solution is a
compliment to the optimization of the NSB behavior as
discussed in their study.

Umeda et al. [UOK96] tested their solution on both
hardware and simulation and observed a more precise and
rapid distance measurement to the mobile obstacles. Moreover
it also tested positively while handling changes in movement
direction.

 Benet et al. [BBSP2002] focused on using infrared sensors
for distance measurement in an autonomous system. They
studied the case of Yet Another Intelligent Robot's sensor-
based distance measurement and focused on the infrared
sensors. YAIR robot uses two ultrasonic and sixteen infrared
sensors. The infrared sensors can measure the distance between
zero and one meters, which are more precise compared to other
infrared sensors, normally used for obstacle detection in
moving vehicles. In their findings, Benet et al. [BBSP2002]
pointed out an error in the distance measurement due to the
noise and errors in the distance estimation of YAIR’s infrared
sensors. To address those inconsistencies, they developed a
model based on the infrared reflectivity coefficient of the
surface using the ultrasonic sensors. They tested their model on
hardware and simulation environments and the results showed
a similarity between the simulation and hardware test results.

Gat [G92] developed and conducted an experiment on A
Three-Layer Architecture for Navigating through Intricate
Situations (ATLANTIS). Gat's architecture is an action-model
based architecture developed to solve hardware-software
integration problems when a simulation has been used during
the development. ATLANTIS is a simulated architecture that
models the unpredictable factors observed in the real world, in
order to facilitate code integration directly from simulation to

the hardware. The results show that ATLANTIS presents a
high performance in controlling the robot, while taking into
consideration the noisy and unpredictable factors, while
running in simulation. The same software was integrated in the
hardware and a similarity has been observed.

III. PURPOSE OF THE STUDY

The aim is to determine the difference between the
simulated data provided by the Hesperia simulator and real life
environment and to implement a testing environment in the
development process of miniature smart vehicles. The testing
environment is represented by a simulator, which compares the
data, gathered both from Hesperia simulation environment and
recorded data from the track.

We want to investigate, whether it is possible to shorten
and improve the development process, by introducing an
approach that would allow developers to directly measure the
difference between the data in the simulated environment and
the actual physical environment. It is possible that the
implementation would shorten the amount of time it takes to
test the software, since it eliminates the requirement for the
proposed algorithms to run on the hardware. It could enable
usage of data captured from the real life recording and remove
the delay caused by initial installation on a miniature board.
With this solution the lane following implementation can be
sent to the board when it is certain that it can handle real life
input.

The objectives are:

 To determine whether the difference is small
enough to allow usage of the physical data in
algorithm testing on the board.

 To examine the data from the camera image
generator (Hesperia simulator) and actual video
data.

 To examine the data from the simulated sensors
(ultrasonic, infrared) and the actual data from the
track

A. Research questions

 What is the difference in accuracy between the
data provided by the simulated environment and
the real world data?

 If insignificant, how can the data be utilized with
the aim of guiding the future development with the
help of an adequate visualization?

IV. METHODOLOGY

This is a quantitative study, where an experiment [ZW97]
will be carried out, because our intention is to study the impact
of the difference between simulation and reality to the
autonomous car software and hardware integration. The data
will be collected with the help of recordings from multiple
sources on both the simulated environment and the physical
track. The difference between the gathered data will be
determined with the help of statistical standard score [B2010].
Both types of recordings will be done with the help of a
miniature vehicle, either a physical construction or a digital

creation. Both the physical and digital vehicle will have the
same physical parameters, such as size, camera position and
sensor layout. To determine the exact car movement patterns, a
set of scenarios is used to figure out how to translate the path
following into actual data. These scenarios will enable us to
create a method to validate the comparison. If, for example, the
car is following a straight path, we can translate what it sees on
the physical track and redraw that in the simulated environment
with the help of its editing tools. Once that is completed a run
of the simulated track combined with gathering of numerical
and image data will allow us to make the comparison with the
help of statistical math.

A. Track

The physical track used for recording allows for direct
measurement of total size, road width and length as well as
possible objects and obstacles. We are going to perform a
physical measurement of the track, which we will then use to
recreate it in the virtual environment. This will eliminate the
problem of having to execute scenarios on different types of
track, rendering the comparison pointless.

B. Recording parameters

We have determined the types of relevant data required for
performing of this study and decided that we are using five
main attributes in the comparison. A recording is set up in two
ways depending on the source (simulation or physical track).

1) Simulation
In the simulated environment we are gathering data with

the help of inbuilt components, which simulate the outcome of
the actual devices used on a physical car. These components
have been programmed to simulate output based on a feed
given from track data created in the OpenDaVinci editing tool,
ScUI, and are set to operate within a factor of 10 of the actual
values [BCHLS2010]. The video data is provided by the
camera image generator, which provides frames based on the
virtually generated track and how the simulator perceives it
from the point of the car. The sensor values are given from the
component IRUS, which generates sensor data based on the
simulated distance between the focal point (the simulated
miniature vehicle) and the virtual objects on the track. The
virtual miniature vehicle contains a method of measuring its
travelled path, which determines whether it is following the
path it is supposed to. Moreover the virtual car is also receiving
data from a basic driver component, which provides
information about current heading and speed of the vehicle. All
these values are gathered based on the frequency of the feed,
normally about ten times per second and can be identified for
comparison with the help of a timestamp, which provides a
way to index the data based on what time it was recorded and
compare it to the same position in the physical recordings.

2) Physical track
The data gathered on the physical track is of the same type

as that gathered from the simulation, however the sources vary.
In the simulator we can gather camera images from an
automatically generated feed, however in the physical car, the
camera operates at a set amount of frames per second, which
require adjustment to match the amount of data we gather per
second on the simulator. Moreover, we also need to perform

recording of individual components with multiple devices,
instead of using components of the OpenDaVinci framework,
like we do in the simulator. The ultrasonic and infrared sensors
are operated by their own component which provides
numerical data, which translates into positions of objects
around the miniature car. The car is also equipped with a
device, which generates the travelled path numerical data based
on the cars speed and heading. Speed is determined by how
many times the wheels have turned in the last second; the
heading is determined by an inbuilt gyro. Again the timestamps
based on scenario progression are used to determine the
location of the data and its comparison place.

3) The values
The values we are gathering from both environments are as

follows:

 Camera images in raw format, gathered with a
frequency of 10 per second

 Infrared numerical output, providing distance
between the car and objects

 Ultrasonic numerical output, providing distance
between the car and objects

 Timestamps, gathered to identify the sets of
abovementioned data types in milliseconds

Apart from these types of data, we also expect to gather
additional information, which might affect the results of this
study.

C. Independent variables

The variables we have control over in this study are:

 The tracks, both physical and virtual; considering
the virtual track can be rebuilt after the physical
one

 The cars, mainly considered recording devices for
this study

 The environmental parameters for the virtual
testing environment

 The amount of recorded data used for comparison

D. Dependent variables

The variables we do not have direct control over are the
values we will receive upon application of statistical algorithms
on the recorded data. This data is presented in section B3 and
represents all the data the cars are capable of gathering, which
is also considered relevant.

We also cannot anticipate the levels of noise, which might
be introduced while performing recordings in the physical
environment. Recording in a closed location introduces issues
with light reflections, possible imperfections on shapes
detected by sensors, accuracy problems when determining
distance between multiple objects and also power levels of
batteries, which can alter the speed of the cars.

E. Scenarios

The scenarios will represent the behavior of the miniature
vehicles on both the virtual and physical tracks. In order to
ascertain the followed path to be exactly the same in both
environments, we are going to use the measurements of
followed path combined with a predetermined case for the test
itself. For the standard lane following, we are using a set of
scenarios that determine straight path line following, left hand
turn, right hand turn and intersection handling. As for sensor
outputs, we have integrated those with the image comparison
and measure them with the help of objects placed around the
track during lane following scenarios.

F. Scenario example

Straight line following – the car follows a path set from the
point of origin to a hundred units directly forward. The car
follows the predetermined path and makes recordings at the set
frequency. For every recording there is timestamp which
provides means of comparison. The recordings keep being
taken until the car reaches end of the defined track. No path
following algorithms are required to follow the track, the car is
being driven manually.

G. Visualization

Once the data is gathered, it is possible to create a plug-in
for the OpenDaVinci library, which will allow for visualization
of the data. This visualization will help future users to directly
determine any differences and help with testing. The
visualization will be a component running the tracks in parallel
and it will allow for a clearer representation of tested lane
following algorithms.

H. Statistical testing

The statistical test will be performed with the help of a t-
test. We have found the t-test to be the best tool when dealing
with large samples of paired data such as in this study
[W2012]. The data gathered will be represented by a large
amount of sets of values. The amount of sets will be the
amount of seconds in a scenario multiplied by the number of
recordings per second. Since the scenarios will usually run for
longer than five seconds, we can determine that the sample size
can be considered large (>50). Since we are working with a
normal population, the sample is representing the population
accurately. The normality of our population can be assumed
due to the fact, that any additions to the current stock are
controlled and analysis has been performed on the entire
available recorded material. Since we will receive data from
two main sources, the sets of data will be directly linked to
each other with the help of timestamps. These linked pairs will
have a statistical score and based on accuracy of 0.05, we can
determine whether they are close enough to each other. The
0.05 value is the standard statistical alpha value used for
determination of sample size versus its accuracy. Moreover,
with the value of 0.05 we only have a 5% chance to perform a
Type 1 error. With the statistical testing, the research question
one can be rephrased into a hypothesis:

 H0 There is no significant difference between the
data sets from the physical and the simulated track

 H1 There is a significant difference between the
data sets from the physical and the simulated track

With the statistical score we will be able to determine
whether we can reject H0, and thus determine whether the
simulator can be more widely used in testing of embedded
solutions.

V. RESULTS

This sections describes what we have unearthed once we
applied our methodology to the variables presented earlier and
preformed the study. In this section we are also presenting
issues that have slowed us down and made us pivot certain
aspects of the study. For our experiment we focused on
straight-line following.

A. Data gathering (simulator)

In order to gather the data, we had to alter the Hesperia
framework, so that it not only handles the miniature vehicle,
but also records its surroundings provided by the camera and
sensors. We have made alterations to the lane detecting portion
of the framework, which allows us to capture ten images per
second from the camera feed and save them. For storage
purposes we have also developed a way to store those images
in a binary format, combined with a timestamp gathered in the
recording. Recording and storage had to be performed
separately due to the sheer amount of numbers the image
recording requires. Each image contains 640x480x3 numbers
representing the color values for each pixel in a given image.
Since the recording captures ten images per second that
number is multiplied adequately. This results in a massive
amount of numbers that have to be processed and stored in a
binary format, resulting in a major slowdown. The timestamp
mentioned earlier, provides us with an ability to synchronize
the recording of images and that of the sensors.

In order to gather the sensor data we have altered the
driving section of the framework, where we capture data from
the sensor handling and implement the storage before
executing driving commands. The saving is done directly into
binary format, since sensors require significantly less memory
power. Unlike images the sensors only require 6+1 numbers
per iteration. The six represents the amount of sensors on a
vehicle and one corresponds to the timestamp displaying when
the data was actually gathered.

The gathering process differed a lot in the simulated
environment and the real car. In the simulated environment we
had to recreate the track using the ScUI editor, an example of
which can be seen in Appendix 1. In order to recreate the track,
we have measured the start, end and center points of central
lines on the physical track available at the university. Based on
these central lines we have developed a calculator that
provided us with {X,Y} coordinates of left and right lines,

which represented borders of the lanes on the track. Due to the
limitations of the editor we were unable to exactly recreate the
track and had to deal with rendering problems. These
limitations were based on the fact that the editor cannot simply
draw straight lines, but instead have to work with rectangular
elements called point modifiers. These elements take between
two and three coordinates, as well as a value representing
width of the element and recreate a rectangular object
representing a lane segment. This lane segment can have its
edges painted to represent either a straight line, which
translates to the border of a road, or a segmented line, which
translates to the central lines in the middle of a road. The editor
does not allow for alterations in the distance between
segmented lines, which resulted in us having to draw the track
with a point modifier for each segmented line and the distance
between them. In the end the track consists of 267 objects.
Handling this many objects and the relations between them has
proven to be very difficult and has resulted in some issues with
rendering the track in the simulator. This issue was partially
solved after re-addressing the way with which the lanes were
drawn, however upon implementation of static curves, the
renderer tended to place coordinates in wrong locations.

Apart from recreating the track, we also had to take into
account the way image is displayed in the simulated
environment. The camera angling of the virtual car differs quite
a lot from the real car and we had to take that into account. The
difference between the camera images can be seen on Figures 1
and 2. We measured the angle of the camera installed on the
real car and translated it into the simulation with the result
looking like Figure 1.

Figure 1. Hesperia simulated car image

Figure 2. Real car camera image

In order to perform testing on sensors we have placed
several rectangular boxes on the physical track and recreated
them in the simulator. Sensor positioning in the simulated
environment had to be adjusted as well, in order to match the
layout of the real car.

Finally, the starting and ending position was determined
and translated into the simulator in a similar way with which
we drew objects. We placed the real car on the physical track,
triangulated its position with the help of the center lines and
recreated the starting location within the simulator.

B. Data gathering (physical track)

The way, with which we gathered data, was exactly the
same on the physical track as with the simulator. The
differences between the two were caused by the different issues
the real car has given us. Initially we had to deal with the
camera resolution being different, that is 752x480. Because of
this difference we had to crop images, excluding regions which
we deemed uninteresting for comparison, such as exterior
building walls.

Apart from the camera working differently, we have also
discovered that the sensor range is different to that of the
simulator and had to be adjusted. We wanted to see if the car
recognizes objects around it at a similar time and distance,
which required us to use the same layout and range in the
simulated environment. The only difference in sensor output
between simulator and real car was the floating point accuracy,
which required an alteration of the recording system.

C. Data analysis (image)

In order to analyze the images we first looked at what
sections of each pair were important to us. We discarded
sections which were completely empty or showed objects
which were irrelevant to the study, such as building walls.
What we deemed important on the images were the side and
center lines, so we marked them accordingly as regions of
interest. Within these regions of interest we have done pixel by
pixel color comparison on lines. An example of region of
interest division can be seen in Figure 3. This comparison
resulted in a percentage value, which shows how accurately the
lines are represented. However, the percentage value only
shows the difference between the amounts of pixels, not their

distribution. We will discuss improvements in the accuracy in
the Discussion part.

Figure 3. ROI distribution

Once we have established the regions of interest, we
represent the pixel values with the help of histograms. Each
pair of images, one real and one simulated, has a histogram
showing color distribution among pixels, which represents how
close they are to each other. The listed results of these
comparisons for each recording are shown in Appendix 2.

D. Data analysis (sensor)

In order to compare the sensors, we use the binary files
created by the recordings, read them and subtract the values
from each other. The differences in the sensor readings can be
seen whenever an iteration is not showing zero. However, due
to the fact that we are dealing with doubles and integers, there
are some floating point values, which require a closer look.
Detailed results for sensor recording can be seen in Appendix
3, which show differences between two recordings.

Figure 4. Hesperia Environment Comparator plug-in

E. Hesperia Environment Comparator (HEC)

In order to visualize our solution and actually provide
functionality we have created a plug-in for the Hesperia

framework. This plug-in allows the user to directly compare
recordings from a given scenario and review the differences.
Images are displayed side-by-side showing both the simulated
recording and physical from the same start and end locations.

The plug-in allows for review of not only images but also
sensor data with the help of a graph displaying sensor readings
as well as whether they are within the acceptable range
difference.

F. Results vs hypothesis (image)

With all the results gathered, and the critical value (c) set to
0.05 we finally managed to apply a formula which would allow
to check our hypotheses. We followed a standard formula for
determining a test statistic with the help of an alpha coefficient,
which can be seen in Figure 4.

𝑍 =
X̅ − 𝜇0

𝜎/√𝑛

Figure 5. Calculation of a test statistic

Since, according to the peak signal-to-noise ratio approach,
very similar images have ratings between 30 and 50 [YS2012].
We decided 30 to correspond as the value subtracted from the
mean. The standard deviation resulted in 0.87 with the total
sample size of 114. Once we replaced the variables with
results, we could see our test statistic as shown in Figure 5.

−57.81 =
25.29 − 30

0.87/10.68

Figure 6. Results applied to the equation

A Z score of -57.81 gives a p value < 0.0001.

Using the Structural Similarity (SSIM) algorithm, the values
are closer to 100% if the compared images are similar
[YS2012]. We decided 99.99 to correspond as the value
subtracted from the mean. A z score of -44.85 gives a p value
which is less than 0.0001.

−44.85 =
93.81 − 99.99

1.45/10.68

Figure 7. Results applied to calculate p value

G. Results vs hypothesis (sensor)

For the comparison of sensor values we are using the same
formula as shown in Figure 4 with the same accuracy factor of
0.05. In the case of the sensors, we are working with
differences between recordings with the optimal value being 0.
Acceptable difference between sensors is up to 5 mm. IR
sensors 1 and 2 did not detect any objects during the recordings
and have also been ignored. The results for sensor IR3 display
a mean of 2.89 and standard deviation of 7.19. If applied to the
formula in Figure 4, the test statistic becomes 3.5075. This
value give a p value of 0.000452 which is less than 0.05.

IR 4 with the mean of 1.46 and standard deviation of 4.74
produces the test statistic of 2.1818, which gives a p value of
0.029124 which is less than 0.05.

Ultrasonic sensor recording did contain a lot of interference
from outside sources, contrary to the simulated sensors which

Figure 8. US1 visualization

had little to do, due to lack of any sort of physical boundaries
around the track. The recording for US1 with the mean of
89.25 and standard deviation of 25.63 produced a test statistic
of 37.7659, which give a p value which is less than 0.00001.
Finally US2 with the mean of 87.25 and standard deviation of
19.92 produced a test statistic of 46.5147, which give a p value
which is less than 0.00001. Visualizations of ultrasonic sensors
can be seen on figures 8 and 9.

Figure 9. US2 visualization

Visual representations of differences in sensors IR3 and
IR4 can be seen in Figures 10 and 11. Visual representation of
histogram results in picture comparison can be seen in Figure
11.

VI. DISCUSSION

The data comparison between hardware and Hesperia
simulation are discussed. Furthermore, the results will be
compared to the other researchers’ finding on the hardware and
simulation comparison.

A. Results discussion

Our image comparison technique has been motivated by the
Peak Signal-to-Noise Ratio (PSNR), The Structural Similarity
(SSIM), Human Visual System (HVS) and Universal Image
Quality Index (UIQI) for the image quality measurement made
by Ysura and Soong [YS2012] and also other studies
[PvGVVCTK2004] [RNK97] [GMS2009] which consist of
feature point extraction and application of different algorithms
for optimization of image comparison.

Figure 10. IR3 visualization

We found enough to compare the image comparison data d
by using PSNR algorithm's that is more pixel by pixel
comparison and add SSIM since it is human based [YS2012].
For our case we will focus on PSNR and SSIM values which
are available for review in Appendix 2.

Image PSNR SSIM HVS UIQI

Hats 18.4 0.78 0.34 0.88

Ship 12.0 0.55 2.68 0.76

Window 13.1 0.57 1.04 0.83

Toys 15.1 0.86 0.35 0.93

Butterfly 20.5 0.9 0.14 0.95

House 13.67 0.59 1.9 0.83

TABLE I.

The PSNR value vary between 30 and 50 if two similar
images are compared and the higher is better [YS2012]. For the
SSIM algorithm, the values are between 0 and 1 [YS2012] if
compared two similar images the values are much closer to 1.
In their comparison, the greatest PSNR value is 20.5 that
correspond to 0.9 SSIM (Table 1). Our image comparison
results show a mean PSNR value of 25.29. If we consider the
values in Appendix 2, our PSNR value (25.29) should exceed
0.9 SSIM.

In Appendix 2, 25.29 PSNR corresponds to 93.81 % SSIM.
The standard deviation is 87 PSNR and 1.45 SSIM. The
median is 25 PSNR and 94 SSIM, which are close to the mean.
All those values show that the values are closer to each other.

The identical image subtraction should be 100%, which is
not the case for our research. However, [ACIP2010] explained
that the intensity of the camera image surface varies according
to the viewing angles. This was the case of the car we used.
The real camera was mounted on a railing, which made the
camera angle downwards at roughly 45 degrees". This caused
an irrelevant difference in the lanes. Histograms in figure 11
show the color distribution after the image subtraction. The
remaining picture region of interest histograms are computed
for pixels values = 0 to 255 where 0 is black and 255 white
(figure 11). Those results show a large number of black pixels
and a very small number of white pixels. Since the standard
deviation is not that much bigger, all histograms look mostly
alike and the results should be interpreted in the same way.

Figure 11. IR4 visualization

The ultrasonic data shows a big difference of 89.2506 and
87.2559 and a standard deviation of 25.6315 and 19.9203. It is
easy to consider that as anomalies or error in the recordings or
sensors. Gietelink et al. [GPdSV2006] conducted experiment
on VEHIL simulation combing the real and moving robots and
he has got positive results that worked both on the simulation
and hardware.

Gat’s [G92] architecture modeled the real-world

environments’ “unpredictable” factors in order to facilitate

the software-hardware integration directly from the simulation
to the hardware-in-it. That architecture worked fine on the
simulation and hardware.

Our experiment environment was not appropriate to
compare Hesperia sensors data and real car data. The ultrasonic
sensors can sense objects from 30 m and the experiment has
been operated in a classroom and the wall and other objects
placed there influenced the results.

The left infrared sensors did not give any results because of
the absence of the objects. For the right sensors, we have a
mean of 2.88972 and 1.46064. The standard deviations of
7.19093 and 4.74485. The results are explained by the absence
of the object and out of the 114 the median is 0.

B. Threats to validity

This subsection reports the four threads of validity
described by Runeson and Höst [RH2009]. Those threats are
the following: internal, external, construct and conclusion.

1) Internal validity
The internal threats of validity are defined as the

investigation of the causes and risks that can affect the
researched factor [C2009]. An internal threat of validity is
identified when the researcher does not have enough
information about the factors that can affect the researched
factor.

Figure 12. Histogram results for ROIs

In our study, the largest risk comes from instrument
change. Different miniature vehicles utilize various types of
cameras and post processing, therefore in order to utilize the
solutions proposed by this study to their full extent, one would
have to adapt to different camera imaging. In this study,
however, we have only worked with one source of physical
track imaging. Another possible threat is the amount of
recordings conducted. The higher the amount, the more likely
it becomes that the variation between images will cause
inconsistencies. Finally, while recording on the physical track,
limitations in battery power may cause the speed of the vehicle
to alter in such a way that it is invisible to the human eye, but
would cause delays between the recordings.

2) External validity
External validity means that the study can be generalized

outside the setting, where the study has been conducted
[C2009] [RH2009]. Our findings can be extended to other
companies working with software development of embedded
systems using simulation. In addition to the companies
developing software for the Advance Driver Assistant Systems
(ADAS) such as camera and sensors for automobiles, our
experiment can be also helpful for the Artificial Intelligence
(AI) developers.

The only weakness of our findings is that our experiment
was based on the simulation and hardware data comparison,
based on the miniature autonomous car that has been
developed by students for learning purposes. Our findings are

prone to be affected by various environmental causes, such as
random objects, wall distance and lightning, none of which are
present in a simulated environment.

3) Construct validity
Construct validity is about knowing whether the study has

been done in the way the researcher thought and if the results
answer the research questions explicitly [C2009].

For our research, the recording techniques have been
developed in such a way that there is next to no delay and data
gathering proceeds smoothly in both simulation and real car
recording. For image comparison we compare results from two
algorithms as well as color distribution histograms. The sensor
data analysis has been implemented and analyzed statistically
with additional graphical visualization. The plug-in provides
space for further enhancements. The only visible threat comes
from the simulated track, which has proven problematic and
could use further enhancements in order to increase accuracy
of the lines.

4) Conclusion validity
The conclusion validity is about reliability between the

results and the research itself. The conclusion has to be real so
that any other researcher can say the same thing if the research
should duplicate [C2009]. The threats to conclusion validating
arise when the research questions are not clear or if the
conclusion is not based on the findings.

In our case, we mitigated the threats to conclusion by
designing clear research questions and implemented algorithms
for data collection and data analysis. Moreover, we have also
saved every possible bit of auxiliary data produced by
recordings before applying any sort of post-processing.

For the hardware the recordings were operated in
conjunction with the simulation environment. Further research
has been done on the related work in order to understand our
topic and results.

The weekly reports submission and meeting with the
supervisor for review and questions has been important for our
results gathering and analysis.

VII. CONCLUSION

In our experiment involving a straight road, our results
show that the differences between reality and simulation are
rather small (<10%). These differences are considered
acceptable due to the fact that the imaging does contain a
multitude of artefacts, such as wall sockets, glass walls, noise
and the bumper of the real car. Because of all these artefacts,
we felt that a difference of <10% is acceptable. We hope that
due to this the testing can become more and more
straightforward and also improve future solutions for lane
following with miniature vehicle project at the University of
Gothenburg.

In this experiment we used histograms and color pattern
recognition to analyze the differences between images,
however it might be more accurate to use pattern recognition
instead. This approach would involve scanning for line
locations, their start and end points and recreating them in
order to match their position, width and color between both

recordings. This approach will allow to not only notice patterns
with pixel by pixel color distribution but to more thoroughly
analyze the layout with which the pixels are aligned.

This experiment leaves behind a way to record and conduct
experiments on different types of tracks and lanes, such as
curves and intersections, which can be used to further enhance
this type of approach and increase the validity of simulated
testing.

The plug-in we have provided for the simulated
environment will hopefully be an adequate tool for
visualization of recordings, which will allow future developers
to monitor how their solutions behave in different
environments.

It is also a baseline for further enhancements, namely
application of algorithmic solutions and visualization of lane
following algorithms directly on both types of source material.

ACKNOWLEDGMENT

Aliaksandr Karasiou – Abstract, Introduction, Purpose

Tomasz Rakalski – Methodology, Results, Conclusion

Leila Keza – Related work, Discussion

We would like to thank our supervisor Christian Berger, for
not only providing us with access, information and support
regarding the Hesperia framework, but also for the feedback
we have received throughout the duration of the thesis course.

We would also like to thank Viktor Botev and James
Omoya for the support we received when working with their
miniature vehicle.

REFERENCES

[ACIP2010] F. Arrichiello, S. Chiaverini, G. Indiveri, P. Pedone.
The Null-Space-based Behavioral Control for Mobile
Robots with Velocity Actuator Saturations. The
International Journal of Robotics Research, 29(10),
1317-1337, 2010.

[BBSP2002] G. Benet, F. Blanes, J. E. Simó, P. Pérez. Using
infrared sensors for distance measurement in mobile
robots. Robotics and autonomous systems, 40(4), 255-
266, 2002.

[BS95] H. R. Beom, K. S. Cho. A sensor-based navigation for a
mobile robot using fuzzy logic and reinforcement
learning. Systems, Man and Cybernetics, IEEE
Transactions on, 25(3), 464-477, 1995.

[BCHLS2013] C. Berger, M. Chaudron, R. Heldal, O. Landsiedel, E.
M. Schiller. Model-based, composable simulation for
the development of autonomous miniature vehicles. In
Proceedings of the Symposium on Theory of Modeling
& Simulation-DEVS Integrative M&S Symposium (p.
17). Society for Computer Simulation International,
2013.

[B2010] D. Brink. Essentials of Statistics, David Brink &
Ventus Publishing ApS, ISBN 978-87-7681-408-3,
2010.

[BKZ92] D. P. Brutzman, Y. Kanayama, M. J. Zyda. Integrated
simulation for rapid development of autonomous
underwater vehicles. Autonomous Underwater Vehicle
Technology AUV'92, Proceedings of the 1992
Symposium on (pp. 3-10). IEEE.

[CB2002] A. Cao, J. Borenstein. Experimental characterization of
polaroid ultrasonic sensors in single and phased array

configuration. AeroSense 2002 (pp. 248-255).
International Society for Optics and Photonics.

[CKW96] J. Cremer, J. Kearney, P. Willemsen. A directable
vehicle behavior model for virtual driving
environments. Proceedings of 1996 Conference on AI,
Simulation, and Planning in High Autonomy Systems,
La Jolla, CA. http://www. cs. uiowa. edu/~
cremer/papers/aisp-
final. ps.

[C2009] J. W. Creswell, Research Design: Qualitative,
Quantitative, and Mixed Methods Approaches. SAGE
Publications, 2009.

[ElS98] M. El Shobaki. Verification of embedded real-time
systems using hardware/software co-simulation.
Euromicro Conference, 1998. Proceedings. 24th (Vol.
1, pp. 46-50). IEEE.

[FEZM2006] D. Floreano, Y. Epars, J. C. Zufferey, C. Mattiussi.
Evolution of spiking neural circuits in autonomous
mobile robots. International Journal of Intelligent
Systems, 21(9), 1005-1024, 2006

[FDF2000] E. Frazzoli, M. A. Dahleh, E. Feron. Robust hybrid
control for autonomous vehicle motion planning. In
Decision and Control, 2000. Proceedings of the 39th
IEEE Conference on (Vol. 1, pp. 821-826). IEEE.

[G92] E. Gat. Integrating planning and reacting in a
heterogeneous asynchronous architecture for
controlling real-world mobile robots. In AAAi (Vol.
1992, pp. 809-815), July 1992.

[GPdSV2006] O. Gietelink, J. Ploeg, B. De Schutter, M. Verhaegen.
Development of advanced driver assistance systems
with vehicle hardware-in-the-loop simulations. Vehicle
System Dynamics, 44(7), 569-590, 2006.

[HZ2010] A. Hore, D. Ziou. Image quality metrics: PSNR vs.
SSIM. In Pattern Recognition (ICPR), 20th
International Conference on (pp. 2366-2369). IEEE,
August 2010.

[JHH95] N. Jakobi, P. Husbands, I. Harvey. Noise and the reality
gap: The use of simulation in evolutionary robotics. In
Advances in artificial life (pp. 704-720). Springer
Berlin Heidelberg, 1995.

[KK96] I. D. Kelly, D. A. Keating. Flocking by the fusion of
sonar and active infrared sensors on physical
autonomous mobile robots. In Proceedings of The
Third Int. Conf. on Mechatronics and Machine Vision
in Practice (Vol. 1, pp. 1-4), 1996.

[KPBBTBL2009] B. Kitchenham, O. Pearl Brereton, D. Budgen, M.
Turner, J. Bailey,
S. Linkman. Systematic literature reviews in software
engineering – A systmatic literature review.
Information and Software Technology 51, 7-15, 2009.

[MBH2013] M. A. A. Mamun, C. Berger, J. Hansson. MIDE-based
sensor management and verification for a self-driving
miniature vehicle. In Proceedings of the 2013 ACM
workshop on Domain-specific modeling (pp. 1-6).
ACM, October 2013.

[PvGVVCTK2004] M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest,
K. Cornelis, J. Tops, R. Koch. Visual modeling with a
hand-held camera. International Journal of Computer
Vision, 59(3), 207-232, 2004.

[RNK97] P. Rander, P. J. Narayanan, T. Kanade. Virtualized
reality: constructing time-varying virtual worlds from
real world events. Proceedings of the 8th conference on
Visualization'97. IEEE Computer Society Press, 1997

[RH2009] P. Runeson, M. Höst. Guidelines for conducting and
reporting case study research in software engineering.
Empirical Softw. Eng., vol. 14, pp. 131-164, 2009

[SSS2006] N. Snavely, S. M. Seitz, R. Szeliski. Photo tourism:
exploring photo collections in 3D. ACM transactions
on graphics (TOG), 25(3), 835-846, 2006.

[TH2003] S. N. Torres, M. M. Hayat. Kalman filtering for
adaptive nonuniformity correction in infrared focal-
plane arrays. JOSA A, 20(3), 470-480, 2003.

[UOK96] K. Umeda, J. Ota, H. Kimura. Fusion of multiple
ultrasonic sensor data and imagery data for measuring
moving obstacle's motion. In Multisensor Fusion and
Integration for Intelligent Systems. IEEE/SICE/RSJ
International Conference on (pp. 742-748). IEEE,
December 1996.

[W2012] J. L. Waller. How to perform and interpret chi-square
and t-tests, Georgia Health Sciences University,
Augusta, Georgia, Paper 155-2012

[WP2007] M. V. Woodward, J. Pieter. Challenges for embedded
software development. In Proceedings of the IEEE

International Midwest Symposium on Circuits and
Systems/IEEE International NEWCAS (pp. 630-633),
August 2007.

[YS2012] A. Yusra, D. Soong. Comparison of Image Quality
Assessment: PSNR, HVS, SSIM, UIQ. International
Journal of Scientific & Engineering Research, Volume
3, Issue 8, June 2012.

[ZW97] M. V. Zelkowitz, D. Wallace. Experimental validation
in software engineering. Information and Software
Technology, 39(11), 735-743, 1997.

[CC2014] Online information regarding Carolo Cup 2014;
https://wiki.ifr.ing.tu-bs.de/carolocup/

Appendix 1

Appendix 2

 SIMULATION AND HARDWARE IMAGES DATA RECORDING RESULTS

MSSIM value PSNR value Hardware timestamp Software Timestamp

95.61% 26.59 012759190 184007272

95.75% 26.72 012759290 184007372

95.77% 26.62 012759390 184007486

95.91% 26.84 012759490 184007585

95.91% 26.84 012759590 184007672

95.85% 26.91 012759690 184007802

95.73% 26.69 012759790 184007872

95.61% 26.51 012759890 184007972

95.37% 26.38 012759990 184008071

95.24% 26.16 012800090 184008172

95.01% 25.97 012800190 184008285

94.86% 25.87 012800290 184008371

94.54% 25.53 012800390 184008472

94.46% 25.45 012800490 184008571

94.31% 25.39 012800590 184008685

94.27% 25.32 012800690 184008787

94.20% 25.13 012800790 184008920

94.23% 25.17 012800890 184008984

94.38% 25.37 012800990 184009087

94.41% 25.50 012801090 184009186

94.50% 25.55 012801190 184009286

94.50% 25.54 012801290 184009390

94.86% 25.76 012801390 184009505

95.01% 25.95 012801490 184009585

95.21% 26.16 012801590 184009703

95.41% 26.35 012801690 184009786

95.69% 26.62 012801790 184009884

95.74% 26.75 012801890 184009989

95.75% 26.70 012801990 184010084

95.61% 26.53 012802090 184010206

95.62% 26.54 012802190 184010284

95.25% 26.13 012802290 184010391

95.09% 25.97 012802390 184010487

94.88% 25.81 012802490 184010588

94.59% 25.58 012802590 184010698

94.30% 25.37 012802690 184010792

94.20% 25.28 012802790 184010888

93.97% 25.07 012802890 184010987

93.78% 24.80 012802990 184011084

93.81% 24.89 012803090 184011188

93.81% 24.99 012803190 184011304

94.01% 25.10 012803290 184011389

94.09% 25.21 012803390 184011490

94.35% 25.43 012803490 184011605

94.43% 25.56 012803590 184011684

94.62% 25.76 012803690 184011788

94.73% 25.88 012803790 184011885

94.72% 25.89 012803890 184011992

95.14% 26.27 012803990 184012088

95.38% 26.52 012804090 184012184

95.36% 26.47 012804190 184012284

95.27% 26.43 012804290 184012399

95.28% 26.48 012804390 184012490

95.15% 26.21 012804490 184012585

94.92% 25.99 012804590 184012691

94.70% 25.71 012804690 184012789

94.56% 25.64 012804790 184012889

94.25% 25.40 012804890 184012985

94.03% 25.21 012804990 184013090

93.76% 25.21 012805090 184013189

93.61% 24.92 012805190 184013284

93.59% 24.83 012805290 184013384

93.73% 24.88 012805390 184013484

93.72% 24.98 012805490 184013590

93.78% 24.97 012805590 184013685

94.07% 25.08 012805690 184013784

94.02% 25.32 012805790 184013909

94.02% 25.31 012805890 184014006

94.32% 25.31 012805990 184014084

94.55% 25.57 012806090 184014185

94.72% 25.75 012806190 184014295

94.64% 26.04 012806290 184014385

94.60% 25.85 012806390 184014484

94.55% 25.87 012806490 184014590

94.43% 25.83 012806590 184014690

94.21% 25.68 012806690 184014784

94.06% 25.38 012806790 184014884

93.57% 25.39 012806890 184014984

93.46% 24.95 012806990 184015086

93.09% 24.91 012807090 184015184

92.77% 24.66 012807190 184015284

92.59% 24.41 012807290 184015384

92.40% 24.32 012807390 184015484

92.33% 24.23 012807490 184015584

91.94% 24.24 012807590 184015686

91.89% 24.08 012807690 184015784

91.77% 23.97 012807790 184015891

91.72% 23.96 012807890 184015984

91.68% 24.00 012807990 184016108

91.78% 23.90 012808090 184016184

91.86% 24.08 012808190 184016292

91.94% 24.13 012808290 184016385

91.94% 24.24 012808390 184016484

91.97% 24.26 012808490 184016584

91.91% 24.34 012808590 184016684

91.91% 24.28 012808690 184016784

91.71% 24.37 012808790 184016885

91.89% 24.11 012808890 184016992

91.78% 24.31 012808990 184017088

91.76% 24.35 012809090 184017184

91.75% 24.42 012809190 184017284

91.61% 24.33 012809290 184017384

91.19% 24.20 012809390 184017484

91.07% 24.11 012809490 184017584

90.92% 24.05 012809590 184017684

91.35% 23.92 012809690 184017784

91.31% 24.11 012809790 184017893

91.29% 24.19 012809890 184017993

91.74% 24.01 012809990 184018084

91.75% 24.26 012810090 184018184

91.78% 24.31 012810190 184018293

91.48% 24.46 012810290 184018384

91.29% 24.10 012810390 184018486

91.29% 24.05 012810490 184018584

PSNR MEAN: 25.29 PSNR MEDIAN: 25.00 PSNR STANDARD DEVIATION: 0.87

MSSIM MEAN: 93.81 MSSIM MEDIAN: 94 MSSIM STANDARD DEVIATION: 1.45

Appendix 3

SIMULATION AND HARDWARE SENSORS DATA RECORDING RESULTS

 IR 1 IR 2 IR 3 IR 4 US 1 US 2 Hd timestamp Rd Timestamp

 0 0 0 0 102 46.522 012759542 174405204

 0 0 0 0 100 109.522 012759642 174405304

 0 0 0 0 99 96.522 012759742 174405404

 0 0 0 0 98 63.522 012759842 174405504

 0 0 0 0 96 63.522 012759942 174405604

 0 0 0 0 63 98.522 012800042 174405704

 0 0 0 0 91 89.522 012800142 174405804

 0 0 0 0 75 74.522 012800242 174405904

 0 0 0 0 88 125 012800342 174405004

 0 0 0 0 63 125 012800442 174406104

 0 0 0 0 86 67 012800542 174406204

 0 0 0 0 84 67 012800642 174406304

 0 0 0 0 82 121 012800742 174406404

 0 0 0 0 65 123 012800842 174406504

 0 0 0 0 80 126 012800942 174406604

 0 0 0 0 67 141 012801042 174406704

 0 0 0 0 67 74 012801142 174406804

 0 0 0 0 74 144 012801242 174406904

 0 0 0 0.0001 74 135 012801342 174406004

 0 0 0 0.0219 71 135 012801442 174407104

 0 0 0 0.0219 67 73 012801542 174407204

 0 0 0 0.9781 67 75 012801642 174407304

 0 0 0 0.0219 67 75 012801742 174407404

 0 0 0 0.0219 64 77 012801842 174407504

 0 0 0 0.0219 62 82 012801942 174407604

 0 0 0 0.0219 60 82 012802042 174407704

 0 0 23 1.9781 58 77 012802142 174407804

 0 0 19 23.0127 58 83 012802242 174407904

 0 0 4.0015 0 58 86 012802342 174407004

 0 0 4.0219 0 55 86 012802442 174408104

 0 0 4.0219 0 55 81 012802542 174408204

 0 0 5.0219 0 55 83 012802642 174408304

 0 0 2.0219 0 54 93 012802742 174408404

 0 0 2.0219 0 75 53 012802842 174408504

 0 0 3.0219 0 79 93 012802942 174408604

 0 0 3.0219 0 70 61 012803042 174408704

 0 0 0.9781 0 75 57 012803142 174408804

 0 0 3.9929 0 75 127 012803242 174408904

 0 0 0 0 75 99 012803342 174408004

 0 0 0 0 75 99 012803442 174409104

 0 0 0 0 60 61 012803542 174409204

 0 0 0 0 70 64 012803642 174409304

 0 0 29 0 69 67 012803742 174409404

 0 0 0 0 69 92 012803842 174409504

 0 0 0 0 66 73 012803942 174409604

 0 0 0 0 64 69 012804042 174409704

 0 0 0 0 64 72 012804142 174409804

 0 0 0 0 62 84 012804242 174409904

 0 0 0 0 64 71 012804342 174409004

 0 0 0 0 64 103 012804442 174410104

 0 0 0 0 64 81 012804542 174410204

 0 0 0 0 64 83 012804642 174410304

 0 0 0 0 89 83 012804742 174410404

 0 0 0 0 89 87 012804842 174410504

 0 0 0 0 89 87 012804942 174410604

 0 0 0 0 89 87 012805042 174410704

 0 0 0 0 105 89 012805142 174410804

 0 0 0 0 105 93 012805242 174410904

 0 0 0 18.8272 105 96 012805342 174410004

 0 0 0 6.9829 106 95 012805442 174411104

 0 0 0 1.9829 95 76 012805542 174411204

 0 0 0 1.9829 117 76 012805642 174411304

 0 0 0 1.9829 117 104 012805742 174411404

 0 0 0 1.9829 117 104 012805842 174411504

 0 0 0 0.9829 103 104 012805942 174411604

 0 0 0 0.9829 107 86 012806042 174411704

 0 0 19 1.9829 78 68 012806142 174411804

 0 0 19 2 114 111 012806242 174411904

 0 0 4.0571 26 110 74 012806342 174411004

 0 0 0.9829 0 121 115 012806442 174412104

 0 0 0.0171 0 115 69 012806542 174412204

 0 0 0.0171 0 125 72 012806642 174412304

 0 0 0.0171 0 69 71 012806742 174412404

 0 0 0.0171 0 69 75 012806842 174412504

 0 0 0.0171 0 130 75 012806942 174412604

 0 0 9.9829 0 113 78 012807042 174412704

 0 0 18.0171 0 86 78 012807142 174412804

 0 0 18.0009 0 86 78 012807242 174412904

 0 0 0 0 93 85 012807342 174412004

 0 0 28 2.8334 129 84 012807442 174413104

 0 0 0 2.9871 129 84 012807542 174413204

 0 0 0 3.9781 88 84 012807642 174413304

 0 0 0 3.9781 132 84 012807742 174413404

 0 0 0 4.9781 124 84 012807842 174413504

 0 0 0 4.9781 124 93 012807942 174413604

 0 0 0 2.9781 124 68 012808042 174413704

 0 0 0 1.9781 124 58 012808142 174413804

 0 0 0 23.0219 121 98 012808242 174413904

 0 0 0 23.0117 121 100 012808342 174413004

 0 0 24 0 75 100 012808442 174414104

 0 0 1.0116 0 96 104 012808542 174414204

 0 0 2.0219 0 81 107 012808642 174414304

 0 0 1.0219 0 72 86 012808742 174414404

 0 0 0.0219 0 72 106 012808842 174414504

 0 0 0.0219 0 114 110 012808942 174414604

 0 0 0.0219 0 114 98 012809042 174414704

 0 0 0.0219 0 114 59 012809142 174414804

 0 0 0.0219 0 73 59 012809242 174414904

 0 0 1.0115 0 104 105 012809342 174414004

 0 0 24 0 78 70 012809442 174415104

 0 0 28 0 136 61 012809542 174415204

 0 0 28 0 74 102 012809642 174415304

 0 0 0 0 139 69 012809742 174415404

 0 0 0 0 139 83 012809842 174415505

 0 0 0 0 116 77 012809942 174415604

 0 0 0 0 125 66 012810042 174415704

 0 0 0 0 125 102 012810142 174415804

 0 0 0 0 53.522 65 012810242 174415904

 0 0 0 0 90.522 92 012810342 174415004

 0 0 0 0 19.522 92 012810442 174416104

 0 0 0 0 159 111 012810542 174416104

 0 0 0 0 95 67 012810642 174416104

 0 0 0 0 131 108 012810742 174416104

 0 0 0 0 112 108 012810842 174416104

MEAN: 0 0 2.88972 1.46064 89.2506 87.2559

MEDIAN: 0 0 0 0 86 84

STD DEV: 0 0 7.19093 4.74485 25.6315 19.9203

