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ABSTRACT 
Self-Driving vehicles are still in the development process and 

will soon be part of our everyday life. There are companies 

working with this technology today and have already 

demonstrated a prototype of those self-driving vehicles, one 

of those companies is Google. Over the years ideas have 

been spread around in the world and many developers 

wanting to be part of the new technology. The DARPA 

Grand Challenge was created to gather skilled developers 

from around the world to compete with their automated cars. 

In this paper we focused on the efficiency part in automated 

parking by studying the sensors mounted on and around the 

vehicle. The sensors will be analyzed systematically by 

injecting noise data and also skipped sensor data. The vehicle 

will be tested with different parking scenarios in a simulating 

environment and the outcome of the tests will be verified by 

using an Automated Theorem Prover called “Vampire 

Theorem Prover” to draw conclusion according to the results. 

To determine the ground truth, we ran 100 test with different 

parking scenarios from which we got a subset of 58 scenarios 

at which the car parked successfully according to the 

specification while using 100% sensor quality. Selecting ten 

scenarios from the ground truth, we ran the tests with 

different noise levels and observe the parking accuracy. To 

achieve a parking accuracy of 90%, the sensor(s) used should 

have about 90% quality. 

KEYWORDS: 

Sensor Quality. Automated Testing, Automated Theorem 

Proving, Automated Parking, Vampire theorem prover. 

Simulation, Self-Driving Vehicles, Lidar sensor, Laser 

scanner. 

1. INTRODUCTION 
 

Self-Driving vehicles [4] is fast becoming a reality and a 

major breakthrough was experienced in the field as a result 

of the series of Autonomous competition organized by The 

Defense Advanced Research Projects Agency (DARPA). The 

2004/2005 DARPA Grand Challenge [6, 2 ,7] saw 

autonomous vehicles competed in a desert environment with 

rough terrain and the 2007 Urban Challenge saw autonomous 

vehicles compete in a city-like environment challenged to 

obey all traffic rules. There are companies and car 

manufacturers that are working with this technology and a 

few of them have already demonstrated a prototype of their 

self-driving vehicles. One of the companies is Google who 

have demonstrated a fully Autonomous Driving with their 

Google Car [5] and Volvo in their Drive Me project [17] 

have also been field testing their self-driving vehicle in the 

city of Gothenburg, Sweden and they aim to do a major 

testing in 2017 by rolling out 100 self-driving vehicles in 

Gothenburg, Sweden. For this new technology, the major 

issues that will concern the society and potential adopters of 

self-driving vehicles are how safe will these self-driving 

vehicles be and how reliable is the technology that makes 

driving decisions. Some of the most expensive and yet very 

important components that make up the self-driving vehicle 

are the Sensors use on the vehicle. These sensors are 

mounted on and around the vehicle to gather information 

about the vehicle’s environment which will then assist in 

making driving decisions. The Google self-driving car and 

some cars that competed in notable competitions like the 

DARPA Urban Challenge [2, 5, 6, 7], paraded an array of 

high-quality but expensive sensors on their autonomous 

vehicles one of these sensors is the Velodyne HDL-64E 

LIDAR Sensor [1, 2, 3]. The teams that came first and 

second in the competition both used the Lidar sensors [1, 13, 

14] and complemented it with other sensors.  

 

                        
Figure 1: Velodyne HDL-64E LIDAR Sensor 

The Lidar sensor boasts a 360
0 

horizontal field of view 

(FOV) and about 27
0 
vertical field of view (FOV).The sensor 

is equipped with 64 lasers and outputs over 1.3 million 

points/second. More information is shown in Appendix B.

 



 

 
 

 

 
 

                                        
Figure 2:Boss, the car that won the DARPA Urban Challenge[3]                             Figure 3:Google self-driving Car[5] 
               

 

 
 

Using these expensive sensors will eventually make these 

self-driving vehicles very expensive which might then be 

out of reach of lots of people who might embrace the 

technology but won’t be able to afford getting one. 

 

By performing test automation while systematically 

manipulating the quality of sensors, we show the minimum 

quality that sensors used on self-driving vehicles should 

have in order to successfully actualize an automated 

parking. 

 

We automatically generate different parking scenarios in the 

OpenDaVINCI simulator[9] using a script written in the 

Python programming language. Each generated scenarios 

have randomly distributed characteristics in terms of the 

number of available parking spaces and the respective 

positions. 

 

The major contribution of this paper is to propose the 

minimum quality that the sensors mounted on self-driving 

vehicles should have in order to successfully achieve an 

automated parking. Considering the current state of research 

in the field of autonomous vehicles, self-driving vehicles are 

expected to be very expensive by the time they are made 

available to the public in the future. Our findings can help 

car manufacturers that are interested in building self-driving  

Vehicles to cut down on the cost of sensors thereby making 

autonomous vehicles available at reasonable prices.  

Car manufacturers can choose between using very advanced 

and expensive sensors or make use of sensors that are not 

too expensive and which are also able to successfully 

achieve automated parking.  

 

The rest of the paper is structured as follows: We present the 

related works in section 2 and then went further to explain 

the methodology we employed in section 3. We present the 

result of our findings in section 4 while section 5 and 6 

represents our discussions and conclusions. 

 

 

 

 

 

2. RELATED WORK / BACKGROUND 
We selected four digital databases for our literature review 

which are: Springer Link, Science Direct, ACM Digital 

Library and IEEE Xplore Digital Library. We based our 

search on our keywords from which we came up with the 

search strings below which we then used on four databases 

that we have selected: 

 

2.1 Search Strings 

"Darpa Urban Challenge" OR "Sensor Quality" AND 

("Autonomous Vehicle*" OR "Autonomous Car*" OR 

"Self-Driving Vehicle*") OR ("Vampire" AND 

"Theorem prov*") 

 

2.2 Inclusion: 

I. Papers published between 2004 and 2014. 

II. Papers whose title or abstract captures a 

combination of the keywords that appears in our 

search string. 

2.3 Exclusion: 

i. Non-English texts 

ii. Books or “Chapters in books” 

 

Most of the relevant chapters we found belong to the 

book: “The DARPA Urban Challenge”. We did not 

totally ignore chapters during the search. We applied 

the filtering criteria on both Springer Link and Science 

Direct because we couldn’t get access to the chapters 

we found there since each chapter costs about 30 

dollars. Using a snowballing approach, we then search 

for the chapters that we found relevant on 

“onlinelibrary.wiley.com” where we got access to the 

pdf files that we needed. [2, 3, 7, 18] are all chapters 

from the book: “The DARPA Urban Challenge”. 

 

iii. Papers published before 2004 

iv. Papers focusing on a topic or field different 

from our area of our study 

Lidar 

Sensor 

Lidar 

Sensor 



 

 
 

Databases 

 

Papers found 

Springer Link 374 

Science Direct 41 

ACM Digital Library 0 

IEEE Xplore  0 

Total 415 

Table 1: Total of papers found in all four databases 

 

Table 1: represents the result of the initial search across the 

four databases with a combined total of 415 papers. 

 

We applied a filter to exclude the papers that are not written 

in the English language and we narrowed the total papers 

from 415 to 409. 

Table 2 below displays the breakdown of this filtering 

 

 
 

Databases 

 

Initial 

Value 

 

Non English 

 

Remainder 

Springer Link 374 4 370 

Science Direct 41 2 39 

ACM Digital Library 0  0 

IEEE Xplore  0  0 

Total   409 

Table 2: Filtering out Non- English literature 

 

We then choose to restrict our search to include only articles 

ignoring others literatures like: Books, chapters in a book 

e.t.c.  

We applied this filtering criterion on the remaining 409 

results from the previous filtering and ended up with 104 

articles. The breakdown of the search results is presented in 

Table 3 below. 

 
 

Databases 

 

Initial 

Value 

 

Books/ 

“Chapters” 

 

Remainder 

Springer Link 370 301 69 

Science Direct 39 4 35 

ACM Digital Library 0  0 

IEEE Xplore  0  0 

Total   104 

Table 3: Filtering out books and chapters 

 

We decided to limit the scope of our search to articles that 

were published between the year 2004 and 2014. After 

applying this criterion, we were able to narrow the search 

down from 104 to 98. The breakdown of this filtering is 

captured in Table 4. 

 
Databases Initial 

Value 

Before 2014 Remainder 

Springer Link 69 6 63 

Science Direct 35 0 35 

ACM Digital Library 0  0 

IEEE Xplore  0  0 

Total   98 

Table 4: Filtering out books and chapters 

 

Our last filtering was done to identify and ignore papers that 

talks about topics that are not related to the domain of our 

work. Applying this criterion helped to filter out papers that 

is centered on fields like: Human Machine Interface, 

Modelling and design. It also filters out articles that are 

within Software Engineering but whose scope is beyond the 

scope of our work. Examples of these are articles that talked 

about: Unmanned Aerial Vehicles (UAVs), Image 

processing path planning and so on.  

In order to carry out this particular filtering, we went 

through the title of all the 98 articles and on occasions 

where the title did not provide enough information about the 

domain or context of the paper we read briefly the Abstract 

or Introduction and also read the keywords to get a clearer 

view of the purpose of the article which then determined if 

we should include it or not. The outcome of this filtering is 

presented in Table 5 below. Using the snowball sampling 

[16] method, we also identify some relevant papers by 

looking into the reference section of articles that are relevant 

to our work and the number of the papers we found is added 

to the total in the table below.  

 

 
 

Databases 

 

Initial 

Value 

 

Out of Scope 

 

Remainder 

Springer Link 63 58 5 

Science Direct 35 29 6 

ACM Digital Library 0  0 

IEEE Xplore  0  0 

Total   11 

Snowball Sampling 8 0 4 

Total + Snowball   15 

Table 5 Ignoring papers that are out of scope 

 

 

We divided the remaining papers into two categories: The 

first category which contains 8 papers includes articles that 

are based on the DARPA Challenges (Urban and Grand 

Challenge). The second category included papers that made 

use of or did an evaluation of the Velodyne HDL-64E 

LIDAR Sensor and other sensors outside the context of the 

DARPA Challenges. 

  

Category 1:  

Thrun et al. explained the implementation of their 

autonomous car named Stanley which won the DARPA 

Grand Challenge in 2005. Amongst the sensors used in 

Stanley are 5 laser sensors which were used to gather 

information about the cars environment [18].  

Urmson et al. Explained the implementation of their 

autonomous car named Boss: that won the DARPA Urban 

Challenge inn 2007 in addition to the very advanced and 

expensive Velodyne HDL-64E LIDAR Sensor they also 

used a number of other Lidar sensors and radar scanners for 

the car’s perception of its environment [3]. 

Hoffmann et al. Also explained the implementation of their 

autonomous car named “Junior” and it came 2
nd

 in the 

DARPA Urban Challenge 2007. Like its counterpart, 

“Boss” that won the challenge Junior also made use of the 

Velodyne HDL-64E LIDAR Sensor and complemented it 

with other laser scanners [2].  



 

Rauskolb et al. explained the implementation of their 

autonomous car named “Caroline” which was among the 11 

finalists in the DARPA Urban Challenge 2007 and their car 

also made use of several laser sensors and radars to enable 

the car perceive its environment [15].  

 

Category 2:  

Glennie and Lichti [1] did an analysis and a static 

calibration of the Velodyne HDL-64E LIDAR Sensor. 

Their work proposes another alternative calibration method 

to the standard calibration method used on the Lidar in order 

to achieve improved performance. The remaining papers in 

this category presented how the LIDAR sensor can be used 

to create a Map of the environment it’s used in [13, 14]. 

 

If autonomous vehicle is going to be available to civilians in 

the future then a lot more work needs to be done in its 

development so as to make the cars available at a reasonable 

price. Using these multiple sensors will eventually increase 

the total cost spent on the cars and it also means that the cars 

needs to be equipped with computers with enough 

processing power in order to perform a good sensor fusion 

[19] which is a very crucial activity when working with 

multiple sensors. The autonomous cars in most of the papers 

we found relied heavily on lots of sensors to make the car 

aware of its environment. But our paper takes a different 

turn and our main focus is to determine the minimum 

quality that sensors should possess in order to be able to 

successfully achieve automated parking.   

 

3. METHODOLOGY 

3.1 Research Questions 

 

RQ 1. What is the minimum quality required in sensors 

used in self-driving vehicles in order to successfully achieve 

an automated parking. 
 

3.2 Experiment Variables   

For the self-driving vehicle experiment to be valid, some 

variables needed to be defined which are independent 

variables, controlled variables [12] and dependent variables. 

 Independent Variable: Independent variable is the 

sensors noise data and skipped data, and a 

combination of both noise and skip.[20, 21]. We 

chose three fault models because we believe they 

can be a representation of the characteristics that 

are found in some of the sensors that were used in 

the Autonomous vehicles that competed in the 

DARPA Urban Challenge [2, 3]. Two of the 

sensors with their characteristics are presented in 

Appendix B. 

 

I. Noise: For this fault, we inject values to the 

actual distance that is passed to the System 

under Test (SUT). For instance, applying a 

noise value of “4” will add “4” to the actual 

distance that is passed to the System under 

Test (SUT). If the actual distance between the 

car and an obstacle is 10cm then 4 will be 

added thereby returning a distance of 14cm. 

Figure 4 represents the range of numbers for 

the noise fault model. The range is between 1 

and 60. Using a value of 1 leads to 100% 

success rate and using a value of 60 leads to 

0% success rate. 

 

   
Figure 4: Fault model for noise data injection 

 

II. Skip: For this fault, we intentionally skip some 

of the distances that are passed to the System 

under Test (SUT). If a skip value of 0.1 is 

used, then one out of every 10 distances is 

skipped while using the skip value of 0.5 will 

lead to the skipping of 5 out of 10 distances. 

Figure 5 represents the range of numbers for 

the skipped data fault model. The range is 

between 0.0 and 1.0. Using a value of 0.0 leads 

to 100% percent success rate and a value of 1.0 

leads to 0% success rate. 

 

 

 
Figure 5: Fault model for Skipped data injection 

 

III. Combination of Noise and Skip, this fault 

model is a combination of both the noise and 

the skip presented above. We combine noise 

value from the range of 1 to 60 with skip value 

from the range of 0.0 to 1.0. A combination of 

noise value “4” and skip value “0.1” will 

represents an overall reduction of 16% in the 

sensor quality(6% noise and 10% skip) using 

the formula below: 

(Actual Noise Value / Highest Possible Noise Value)*100 

0

20

40

60

80

100

1 60

Parking 
Accuracy 

% 

Noise Value 

Fault Injection -  Noise 

0

20

40

60

80

100

0 1

Parking 
Accuracy 

% 

Skip Value 

Fault Injection -  Skip 

http://www.mdpi.com/search?authors=Craig%20Glennie


 

A combination of noise value of 1 and skip 

value of 0.1 leads to 100% parking accuracy 

while a combination of noise value of 60 and a 

skip value of 1.0 leads to a parking accuracy of 

0%. 

 

 Controlled Variable: One of the controlled 

variables is the parking scenarios that the vehicle is 

tested on. The parking scenarios which are subsets 

of scenarios from our ground truth will be the same 

for all the sensors tested in the simulator.  

This way we can make sure that the tests have the 

same condition.  

The second controlled variable is the System under 

Test (SUT). We execute the test using the same 

parking algorithms for all sensor levels. 

 

 Dependent Variable: The dependent variable is 

the parking accuracy or success rate which results 

from the application of different fault injections to 

the sensors in the simulation environment. The 

parking accuracy is recorded for each sensor noise 

from which a graph will be plotted. From the 

application of different fault injections to the 

sensors in the simulation environment.  

 

3.3 Experiment Design  

 

Figure 6: Box Parking scenario in simulation environment 

 

For our experiment, we made use of the Simulating 

environment in the OpenDaVINCI Framework [9] and an 

Automated Theorem Prover called Vampire. The 

environment is a simple straight-road setting with a 

sideways box-parking layout. As depicted in Figure 6. The 

box parking scenario can have a total of 21 available 

parking spaces which means all the parking spaces can be 

free. 

 

When a parking position is already taken for example: 

Box_3, then a box will be in that position and the car is not 

allowed to park or crash into the spot and the parking 

positions that are not taken for example Box_4 and Box_13  

is signified by an empty space and the car is allowed to park 

in the space. The Parking scenario is encoded into an 

“SCNX” file containing the information about the properties 

of the scenario. The “SCNX” holds the information for a 

parking layout which can then be visualized using the 

“Cockpit” component in the OpenDaVINCI Platform [9]. 

Figure 6 represents an edited version of an “SCNX” file. A 

typical “.SCNX” file include: Lane Markings and their 

positions, Boxes and their positions, starting position of the 

car usually at position (0,0). The scenarios are then modified 

using a script written in the Python Programming language.  

 

Modification of the scenario is done for each of the test 

using the main scenario file. The main scenario file Figure 8 

contains all the boxes, which mean that all the parking 

spaces are not available from the beginning. In the python 

script, the main scenario is read and determines how many 

parking space(s) should be made available using a random 

number from the range of 0 to 10. Generating a number of 0 

means that no modification is made to the scenario and 

generating a number of 10 means that 10 parking spaces will 

be made available. After the number of parking spaces is 

known, another set of random number(s) from 0 till 20 are 

generated to determine the position where the available 

parking spaces should be placed. The scenario in Figure 6 

depicts the outcome of the modification done to the main 

scenario with two available parking spaces created. For the 

scenario, a random number was generated in the python 

script, which in this case is the number 2. This number 

represents the number of parking space to be made 

available. After which two random numbers are generated in 

this case they are number two and number eleven and they 

represents the positions where the two parking spaces 

should be placed. As seen in Figure 6, Box_4 and Box_13 

are now made available as a valid parking space. 

 

 

 

 

 Starting 

Position of  

The car 

Available 

parking space 

Available 

parking space 

 Box_0 

 Box_1 

 Box_2 

 Box_3 

 Box_4  Empty 

 Box_5 

 Box_6 

 Box_7 

 Box_8 

 Box_9 

 Box_10 

 Box_11 

 Box_12 

 Box_13 

 Box_14 

 Box_15 

 Box_16 

 Box_17 

 Box_18 

 Box_19 

 Box_20 

Empty 



 

 

Ground Truth 

 

Figure 7: Design of the Ground Truth 

 

 

Figure 7 represents the structure of our experiment. 

Verification was done using the Vampire software to find the 

Ground Truth for our experiment i.e the set of scenarios 

where the System under Test (SUT) performs as expected 

while making use of 100% sensor quality. The System under 

Test (SUT) is run on different parking scenarios and the 

results of the tests are verified using the Vampire theorem 

prover from which we get a subset of the scenarios where the 

SUT behaved according to specification. 

According to the specification: 

I. If there is only one available parking space, 

then the car should park in that  space. 

II. If  there are more than one available parking 

space, then the car should park in the first 

available parking space. For instance, if there 

are three parking space: “position 4”, “position 

9” and “position 12”, the car is expected to park 

in the first position which is “position 4 

 

We ran the test with 100% sensor quality 100 times with 

randomly generated scenarios to find the ground truth. For 

each test, a “.TPTP”(Thousands of problems for theorem 

prover) files was generated which encodes the parking 

scenario and information about the vehicle behaviour using 

first-order logic. An example of a “tptp” generated for one of 

the scenarios is presented in Appendix A. In each “.TPTP” 

file, the axioms remain unchanged, but the hypothesis and 

conjecture are specific to the scenarios that are being tested. 

“TPTP” is a library used for Automated Theorem Proving 

and its syntax is very similar to first-order logic formulas. 

After all 100 tests have been executed we verified the 

“.TPTP” files using the Vampire software [8]. Out of the 

total 100 tests ran, there were 58 scenarios where the car  

 

behaved as expected using 100% sensor quality and we used 

these subsets for our ground truth. When we observed the 

parking scenarios that could not be verified by the Vampire 

Theorem Prover based on the requirement we modelled in 

the “TPTP” file, we discovered that the System under Test 

(SUT) is not designed to handle those particular scenarios. 

An example of such scenario is when there are two available 

spaces next to each other like having Box_4 and Box_5 

available in figure 6 and according to the specification the 

car is supposed to park in the Box_4 but car always park in 

the second available spot which in this case is Box_5.    

Another example is when there is just one parking space 

available being the last position: Box_20, but due to some 

limitations in the SUT, the car always fail to park in the last 

position and the same goes for an available parking space at 

the beginning. When there is only one parking space and it is 

at the very beginning, then the System under Test(SUT) fails 

to park in that position. The remaining 42 scenarios that were 

not verified by the Vampire theorem prover was ignored.  

 

Finding the grounded truth before manipulating the sensor 

quality allowed us to find the limitations of the System under 

Test (SUT) which is very crucial to the credibility of the 

tests. For example if the car does not behave according to 

specification for a specific scenario while using 100% sensor 

quality, then it is irrelivant and can lead to erroneous 

conclusions if we execute a test with reduced sensor quality 

using the same scenario. We randomly select ten scenarios 

from the 58 scenarios that was verified by the Vampire 

theorem prover which are then used to test the cars parking 

behaviour under different sensor quality.  



 

Figure 8 shows one of the scenarios where the car behaves 

as expected. If there are more than one parking space 

available, then we expect the car to park in the first available 

space. As shown in Figure 8, there were two available  

parking space Box_4 and Box_13 and the car parked in the 

first space as expected. 

 

 
Figure 8: Ground truth scenario for sensor quality 

 

3.4 Data Collection 

 

The data are collected when testing the sensors mounted on 

the vehicle in the simulator, by executing the test written in 

C++ code. The test contains one of the scenarios generated 

from the Python code at a time.  

 

Next step was to check if the vehicle has parked in the 

available space by checking the last position of the vehicle 

and calculate if it is inside the boundaries of the available 

parking space. Once the vehicle has parked, the results are 

written to a file named “Final.txt”. The file contains: 

 

i. The scenario number. 

ii. The name of the parking space that the vehicle 

is expected to park in. 

iii. Parking space number  

iv. The total number of available parking space. 

  

This is done for each scenario and if the vehicle does not 

park in the first parking space available in the scenario, the 

data will be considered invalid due to the failure of parking 

in the right parking space and there for the data is from the 

experiment. The data written into the file is important for the 

analyses, describing how the vehicle behaved during each 

scenario and taken into consideration when proceeding into 

the experiment. For each scenario generated from the Python 

code the test is triggered and executing that scenario. Those 

tests are recorded and can be run in the simulation 

environment for visualization purposes.  

 

The experiment proceeds further with the subset of the 

scenarios that have successfully been validated in the 

simulator and the Vampire software. At this part we tested 

those scenarios with different sensors mounted on the 

vehicle. We injected different data noise values, being four 

noise data, seven noise data, 27 noise data, 59 noise data and 

60 noise data, into the sensors by changing the sensor 

parameter in the test suite. For each of those noise values we 

run the scenarios in the test suite and gathered the results. 

Further we tested the sensors with skipped data percentage 

with the same subset of scenarios and gathered the results. 

Proceeding with the experiment we combined the injection of 

data noises and skipped data for the sensors and run the tests, 

the results will be introduced in the result section. 

 

3.5 Data Analysis 

 

For this research paper we have chosen systematic analysis 

[11], it is an analysis suitable for our experiments throughout 

the procedures in terms of the data collection and the 

experiment design. The data we collected are from tests done 

on the sensor with different noise data and skipped 

percentage from the sensor data, these two tests are analyzed 

separately first. This was done systematically by increasing 

the noise data for the sensor and observes the behavior of the 

vehicle in terms of parking in the correct parking space or 

not, this is done for each scenario. Another test was to 

analyze if the vehicle parks in the scenarios with different 

percentage skipped values for the sensor. The analysis of 

those two scenarios ended when the vehicle received data it 

cannot comprehend and park with. The data is then 

aggregated for each test and introduced in a form of graph to 

be analyzed; viewing the data the vehicle successfully parked 

in, in terms of noise or skipped data percentage. This made 

our experiment systematic and led up to a final experiment. 

The Final experiment to be analyzed was the combination of 

the noise data and the skipped percentage until the vehicle 

was not able to park anymore in the Parking scenario it was 

setup in. This analysis captured the values in common for 

both data and introduced them in a graph viewing which data 

values combined can allow the vehicle to park. Theses 

analysis are introduced and explained in the result section.  

 

4. RESULTS 
This section will introduce the results gathered from the tests 

done in the simulator, with different noise data and skipped 

data percentage for the sensors. Each chart is based on ten 

scenarios we have chosen from the validated Subset 

mentioned in the previous sections. 

 

A. Sensor Noise 

 
 Figure 9: Noise Data Chart 
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In Figure 9, the chart explains the noise data applied on ten 

scenarios. For those scenarios the test was triggered ten times 

to make sure the results are valid. 100% in the X-axis in this 

chart means ten of the chosen scenarios have passed the same 

noise data. The values on the Y-axis are the noise injected 

into the sensors to test with. 

 

 

B. Skipped Data 

 
 

Figure 10: Skipped Data Chart 

 

In figure 10, the chart explains the skipped sensor data from 

the tests done on the ten scenarios chosen. For each scenario 

we triggered the test ten times with the same skipped data 

value, the reason was to make sure the vehicle parks every 

time with the same value. In the X-axis of the chart the 

values represent the skipped data percentage, 0.1 being 10% 

skipped data from the sensors. In the Y-axis the percent 

values introduces the rate of success for all scenarios. 

 

 

C. Noise & Skipped data  

 

 
 

Figure 11: The combination of injecting Noise data and 

Skipped data percentage 

 

 

The combination of injecting Noise data and Skipped data 

percentage is viewed in figure 11. The blue bar represents the 

skipped data percentage and the green bar represents the 

injection of Noise data. The X-axis in the chart shows the 

percentage in reduction combining Noise Data and Skipped 

Data when tested on each scenario. By dividing the Noise 

value to test, with the biggest Noise data reached and 

multiply it by 100, to get the percentage in difference. Then 

combining this percentage value to the skipped data 

percentage, to get a total of 16 % reduction in the sensors for 

example. The values on the Y-axis represent the percentage 

rate of success for all ten scenarios. 

 

 

5. DISCUSSIONS 
 

5.1  Interpretation and Evaluate findings 

 

For the noise fault model we tested the System under Test 

(SUT) by applying the range of numbers from 4 to 60. The 

tests were conducted using ten different scenarios selected 

from the subset that has been verified by the Vampire 

theorem prover. At the noise level of 4, the car parked 

successfully in all ten scenarios. Using the following 

formula:  

(Number of Successfully Parked / Total attempts) * 100 

Parking accuracy leads to a parking accuracy of 100%. 

At the noise level of 7, the car parked successfully in 9 out of 

10 scenarios, which leads to the success rate of 90%. At the 

noise level of 27 the car parked in 4 out of 10 scenarios, 

which leads to the success rate of 40%. At the noise level of 

59 the car parked in 1 out of 10 scenarios, which leads to the 

success rate of 10%. The car failed to park successfully in 

any of the 10 scenarios when the noise level of 60 is applied 

to the sensors. 

 

For the skipped sensor data fault model we tested the System 

under Test (SUT) by applying the range of numbers from 0.0 

to 1.0. At the skipped data noise in the range of 0.1(10% 

reduction) to 0.5(50% reduction) the car successfully parked 

in all 10 scenarios, which leads to 100% success rate. 

However, when we applied the skipped data of 0.6, which 

translates to 60% reduction, the car failed to park in any of 

the scenarios, which leads to 0% success rate. 

 

As depicted in Figure 11. We testes the System under Test 

using a combination of the two fault injection models (noise 

data and skipped noise data). Noise values within the range 1 

to 60 were combined with skip values within the range 0.0 to 

1.0.  

Using a noise value of 4 combined with a skipped data of 0.1 

representing an overall 16% reduction in sensor quality(6% 

noise and 10% skip), the car successfully parked in all 10 

scenarios, which leads to one 100% parking accuracy using 

the formula below: 

(Number of Successfully Parked / Total attempts) * 100 

 

Using a noise value of seven combined with a skipped data 

of 0.2, the car parked in 9 out of 10 scenarios, which leads to 

a parking accuracy of 90%. 

 



 

Using a noise value of 27 combined with a skipped data of 

0.3 the car parked in 4 out of 10 scenarios, which leads to a 

parking accuracy of 40 %.  

 

Using the noise value of 59 combined with a skipped data of 

0.4, the car parked in only 1 scenario out of the 10 scenarios, 

which leads to a success rate of only 10% and the car failed 

to park in any of the 10 scenarios when a noise value 60% is 

combined with a skipped data of 0.5. 

 

According to our tests, to achieve a minimum parking 

accuracy of 90% only a 10% reduction in the sensor quality 

is allowed when the sensor used can pick up noises without 

skipping any of the readings. This evaluates to only 10% 

percent error rate.  

 

If the sensor used does not return error or corrupted data but 

skips some of the readings then a reduction of 50% can still 

be used to achieve a minimum parking accuracy of 90% (Car 

successfully parked 9 out of 10 times).  

 

For the combination of both noise and skip value, we 

discovered that up to 31% reduction (11% noise and 20% 

skip) can still achieve 90% parking accuracy(Car 

successfully parked 9 out of 10 times). 

 

While we were testing the sensor quality with the noise data, 

we discovered some patterns in some of the scenarios with 

regards to the car’s behavior with the use of the same noise 

value. With the application of noise value of 8, the car failed 

to park for 5 of the scenarios and in all 5 scenarios, the 

parking space at position zero was already taken so the car is 

not allowed to park there. When the noise value of 28% is 

applied, the car failed to park in two scenarios and what both 

scenarios share is that the parking position zero is available 

for parking. 

 

5.2 Validity Threats 

 
Threats to Construct Validity are not critical. We will use 

the same parking scenario for all the tests that will be run 

against different sensor qualities. For manipulating the 

quality of the sensors in the simulation environment, we 

employed a systematic strategy, which makes use of three 

fault models. The first model is the addition of noise to the 

travelled distance of the sensors and the second model is the 

skipping of some data, while the third is the combination of 

the first two models. 

 

Threats to Internal Validity are not considered to be critical. 

To ensure that there is a clear relationship between the 

Automated Parking accuracy and the sensor quality, we ran 

our tests on one computer. Executing the tests on just one 

computer will help us to avoid changes that might occur in 

the dependent variable as a result of poor performance incase 

more than one computers were used. 

 

Threats to External Validity are considered critical since the 

parking algorithm that we used might not be fully 

representative of the parking algorithms that are used in most 

self-driving Vehicles. Another threat to external validity is 

the parking scenarios that we used in the simulator, for the 

tests, we used a box-parking scenario, which might not be 

well representative of other forms of parking like: Parallel 

Parking and Diagonal Parking. 

 

Conclusion validity can pose a threat to our work but we 

consider it to be handled in most of the cases. We measured 

the parking accuracy in percentage, which we derive by 

executing 10 tests for each noise value we applied. To 

determine the percentage level of the reduction made to the 

sensor quality we applied the following formula:  

(Actual Noise Value / Highest Possible Noise Value) * 100. 

 If the car successfully parked 9 times out of the 10 tests then 

we conclude that the parking accuracy is 90% and if a car 

failed to park in any of the ten scenarios then we concluded 

that the parking accuracy is zero percent. For manipulating 

the sensor data using the two fault models (noise and 

Skipped data) we tested the sensors to know the value at 

which the car parked in all ten scenarios and the value at 

which the car failed to park in all ten scenarios. For the 

Skipped data fault model, the range of numbers is between 

0.1 and 1.0.  

As specified in the above formula, determining the 

percentage level of an applied noise value is derived by 

dividing the “applied noise value” by the “maximum noise 

value” and then multiply the results by 100. Using the 

formula to the skipped data, a reduction of 0.1 to the quality 

of the sensor translates to 10% reduction while a reduction of 

0.5 translates to 50% reduction in the sensor quality for the 

noise data. For the noise data fault model, the range of 

numbers is between 1 and 60; we applied the same formula 

specified above. A noise level of 7 will translate to 12% 

reductions and a noise level of 27 will translate to 45%. 

 

CONCLUSIONS 
We automated the testing of the parking functionality in 

self-driving vehicles by combining tests carried out in the 

simulation with theorem proving using the Vampire theorem 

prover. Being able to automatically generate multiple 

scenarios, we were able to execute 100 tests from which we 

derived our ground truth which are the scenarios where the 

System under Test performed according to specification 

using 100% sensor quality. 

 

We systematically and gradually reduce the quality of the 

sensor in the simulation environment by employing two fault 

injection models which are noise injection and skipped data 

injection so as to simulate the quality that are common to low 

quality or inexpensive sensors. 

 

In the future, we intend to run more test for each noise 

level so as to have a better conclusion in terms of the parking 

accuracy. To determine the percentage level of the parking 

accuracy we applied the following formula: 

(Number of Successfully Parked / Total attempts) * 100.  

Based on the above formula, if the car successfully parked 

in 6 out of 10 attempts then the success rate becomes 60%. 

 

In our findings, a 90% sensor quality is required to 

achieve a parking accuracy of 90% when using a sensor 

which sometimes return noise or invalid sensor data and for a 

sensor that skips sometimes skips to return sensor data, 50% 

quality is still able to achieve a parking accuracy of 90%. We 



 

however believe that inexpensive or low quality sensors can 

be complimented with improved and robust algorithm to 

achieve a better parking accuracy. 
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Appendix   A 

One of the Generated “TPTP” files that is passed as input to the Vampire Theorem Prover 

The Axioms remains unchanged for all test scenarios(Line 1 to 44): 

The hypotheses and conjecture are specific for each scenarios, in the example below(line 45 to 54). 

In the scenario below, six parking spaces are made available which are in position: 5, 8, 11, 17, 18, 20 and 

we assign the value of “0” to them respectively(line 46 to 51), while setting all other parking positions to the 

value of “1” to signify that they are not available “52”. According to the specification,  if there are more 

than one parking available, we expect the car to park in the first available space. In this example, we expect 

the car to park in “position 5” (line 54). 

 

 



 

Appendix B 

Two of the Lidar sensors that were used in most of 

the cars that competed in the DARPA Urban 

Challenge 2007. 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 HDL-64E LIDAR 

• Price: $75,000 

• 64 Laser diodes 

• 360 degree – Horizontal FOV 

• 26.8 degree – Vertical FOV 

• 1.3million points per second 

SICK Laser Rangefinder 

• Price: $6,000 

• 1 Laser diode 

• 180 degree – FOV 

• 6,000 points per second 

Source: http://www.hizook.com/blog/2009/01/04/velodyne-hdl-64e-laser-rangefinder-lidar-pseudo-disassembled 

http://www.hizook.com/blog/2009/01/04/velodyne-hdl-64e-laser-rangefinder-lidar-pseudo-disassembled

