

Analyzing the Quality of Sensor Data with Simulations combined

with Automated Theorem Proving

 BACHELOR OF SCIENCE THESIS SOFTWARE ENGINEERING AND MANAGMENT

MUHANAD NABEEL

JAMES OMOYA

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and

Engineering

Göteborg, Sweden, June 2014

The Author grants to Chalmers University of Technology and University of Gothenburg the non-exclusive right

to publish the Work electronically and in a non-commercial purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text,

pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a

company), acknowledge the third party about this agreement. If the Author has signed a copyright agreement

with a third party regarding the Work, the Author warrants hereby that he/she has obtained any necessary

permission from this third party to let Chalmers University of Technology and University of Gothenburg store

the Work electronically and make it accessible on the Internet.

Analyzing the Quality of Sensor Data with Simulations combined with

Automated Theorem Proving

Muhanad Nabeel

James Omoya

© Muhanad Nabeel, June 2014.

© James Omoya, June 2014.

Examiner: Matthias Tichy

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden June 2014

ANALYZING THE QUALITY OF SENSOR DATA WITH SIMULATIONS COMBINED

WITH AUTOMATED THEOREM PROVING

Olatunde James Omoya

Department of Computer Science and Engineering

Software Engineering, Gothenburg, Sweden

gusomoja@student.gu.se

Muhanad Nabeel

Department of Computer Science and Engineering

Software Engineering, Gothenburg, Sweden

Muhanad_88@hotmail.se

ABSTRACT
Self-Driving vehicles are still in the development process and

will soon be part of our everyday life. There are companies

working with this technology today and have already

demonstrated a prototype of those self-driving vehicles, one

of those companies is Google. Over the years ideas have

been spread around in the world and many developers

wanting to be part of the new technology. The DARPA

Grand Challenge was created to gather skilled developers

from around the world to compete with their automated cars.

In this paper we focused on the efficiency part in automated

parking by studying the sensors mounted on and around the

vehicle. The sensors will be analyzed systematically by

injecting noise data and also skipped sensor data. The vehicle

will be tested with different parking scenarios in a simulating

environment and the outcome of the tests will be verified by

using an Automated Theorem Prover called “Vampire

Theorem Prover” to draw conclusion according to the results.

To determine the ground truth, we ran 100 test with different

parking scenarios from which we got a subset of 58 scenarios

at which the car parked successfully according to the

specification while using 100% sensor quality. Selecting ten

scenarios from the ground truth, we ran the tests with

different noise levels and observe the parking accuracy. To

achieve a parking accuracy of 90%, the sensor(s) used should

have about 90% quality.

KEYWORDS:

Sensor Quality. Automated Testing, Automated Theorem

Proving, Automated Parking, Vampire theorem prover.

Simulation, Self-Driving Vehicles, Lidar sensor, Laser

scanner.

1. INTRODUCTION

Self-Driving vehicles [4] is fast becoming a reality and a

major breakthrough was experienced in the field as a result

of the series of Autonomous competition organized by The

Defense Advanced Research Projects Agency (DARPA). The

2004/2005 DARPA Grand Challenge [6, 2 ,7] saw

autonomous vehicles competed in a desert environment with

rough terrain and the 2007 Urban Challenge saw autonomous

vehicles compete in a city-like environment challenged to

obey all traffic rules. There are companies and car

manufacturers that are working with this technology and a

few of them have already demonstrated a prototype of their

self-driving vehicles. One of the companies is Google who

have demonstrated a fully Autonomous Driving with their

Google Car [5] and Volvo in their Drive Me project [17]

have also been field testing their self-driving vehicle in the

city of Gothenburg, Sweden and they aim to do a major

testing in 2017 by rolling out 100 self-driving vehicles in

Gothenburg, Sweden. For this new technology, the major

issues that will concern the society and potential adopters of

self-driving vehicles are how safe will these self-driving

vehicles be and how reliable is the technology that makes

driving decisions. Some of the most expensive and yet very

important components that make up the self-driving vehicle

are the Sensors use on the vehicle. These sensors are

mounted on and around the vehicle to gather information

about the vehicle’s environment which will then assist in

making driving decisions. The Google self-driving car and

some cars that competed in notable competitions like the

DARPA Urban Challenge [2, 5, 6, 7], paraded an array of

high-quality but expensive sensors on their autonomous

vehicles one of these sensors is the Velodyne HDL-64E

LIDAR Sensor [1, 2, 3]. The teams that came first and

second in the competition both used the Lidar sensors [1, 13,

14] and complemented it with other sensors.

Figure 1: Velodyne HDL-64E LIDAR Sensor

The Lidar sensor boasts a 360
0

horizontal field of view

(FOV) and about 27
0
vertical field of view (FOV).The sensor

is equipped with 64 lasers and outputs over 1.3 million

points/second. More information is shown in Appendix B.

Figure 2:Boss, the car that won the DARPA Urban Challenge[3] Figure 3:Google self-driving Car[5]

Using these expensive sensors will eventually make these

self-driving vehicles very expensive which might then be

out of reach of lots of people who might embrace the

technology but won’t be able to afford getting one.

By performing test automation while systematically

manipulating the quality of sensors, we show the minimum

quality that sensors used on self-driving vehicles should

have in order to successfully actualize an automated

parking.

We automatically generate different parking scenarios in the

OpenDaVINCI simulator[9] using a script written in the

Python programming language. Each generated scenarios

have randomly distributed characteristics in terms of the

number of available parking spaces and the respective

positions.

The major contribution of this paper is to propose the

minimum quality that the sensors mounted on self-driving

vehicles should have in order to successfully achieve an

automated parking. Considering the current state of research

in the field of autonomous vehicles, self-driving vehicles are

expected to be very expensive by the time they are made

available to the public in the future. Our findings can help

car manufacturers that are interested in building self-driving

Vehicles to cut down on the cost of sensors thereby making

autonomous vehicles available at reasonable prices.

Car manufacturers can choose between using very advanced

and expensive sensors or make use of sensors that are not

too expensive and which are also able to successfully

achieve automated parking.

The rest of the paper is structured as follows: We present the

related works in section 2 and then went further to explain

the methodology we employed in section 3. We present the

result of our findings in section 4 while section 5 and 6

represents our discussions and conclusions.

2. RELATED WORK / BACKGROUND
We selected four digital databases for our literature review

which are: Springer Link, Science Direct, ACM Digital

Library and IEEE Xplore Digital Library. We based our

search on our keywords from which we came up with the

search strings below which we then used on four databases

that we have selected:

2.1 Search Strings

"Darpa Urban Challenge" OR "Sensor Quality" AND

("Autonomous Vehicle*" OR "Autonomous Car*" OR

"Self-Driving Vehicle*") OR ("Vampire" AND

"Theorem prov*")

2.2 Inclusion:

I. Papers published between 2004 and 2014.

II. Papers whose title or abstract captures a

combination of the keywords that appears in our

search string.

2.3 Exclusion:

i. Non-English texts

ii. Books or “Chapters in books”

Most of the relevant chapters we found belong to the

book: “The DARPA Urban Challenge”. We did not

totally ignore chapters during the search. We applied

the filtering criteria on both Springer Link and Science

Direct because we couldn’t get access to the chapters

we found there since each chapter costs about 30

dollars. Using a snowballing approach, we then search

for the chapters that we found relevant on

“onlinelibrary.wiley.com” where we got access to the

pdf files that we needed. [2, 3, 7, 18] are all chapters

from the book: “The DARPA Urban Challenge”.

iii. Papers published before 2004

iv. Papers focusing on a topic or field different

from our area of our study

Lidar

Sensor

Lidar

Sensor

Databases

Papers found

Springer Link 374

Science Direct 41

ACM Digital Library 0

IEEE Xplore 0

Total 415

Table 1: Total of papers found in all four databases

Table 1: represents the result of the initial search across the

four databases with a combined total of 415 papers.

We applied a filter to exclude the papers that are not written

in the English language and we narrowed the total papers

from 415 to 409.

Table 2 below displays the breakdown of this filtering

Databases

Initial

Value

Non English

Remainder

Springer Link 374 4 370

Science Direct 41 2 39

ACM Digital Library 0 0

IEEE Xplore 0 0

Total 409

Table 2: Filtering out Non- English literature

We then choose to restrict our search to include only articles

ignoring others literatures like: Books, chapters in a book

e.t.c.

We applied this filtering criterion on the remaining 409

results from the previous filtering and ended up with 104

articles. The breakdown of the search results is presented in

Table 3 below.

Databases

Initial

Value

Books/

“Chapters”

Remainder

Springer Link 370 301 69

Science Direct 39 4 35

ACM Digital Library 0 0

IEEE Xplore 0 0

Total 104

Table 3: Filtering out books and chapters

We decided to limit the scope of our search to articles that

were published between the year 2004 and 2014. After

applying this criterion, we were able to narrow the search

down from 104 to 98. The breakdown of this filtering is

captured in Table 4.

Databases Initial

Value

Before 2014 Remainder

Springer Link 69 6 63

Science Direct 35 0 35

ACM Digital Library 0 0

IEEE Xplore 0 0

Total 98

Table 4: Filtering out books and chapters

Our last filtering was done to identify and ignore papers that

talks about topics that are not related to the domain of our

work. Applying this criterion helped to filter out papers that

is centered on fields like: Human Machine Interface,

Modelling and design. It also filters out articles that are

within Software Engineering but whose scope is beyond the

scope of our work. Examples of these are articles that talked

about: Unmanned Aerial Vehicles (UAVs), Image

processing path planning and so on.

In order to carry out this particular filtering, we went

through the title of all the 98 articles and on occasions

where the title did not provide enough information about the

domain or context of the paper we read briefly the Abstract

or Introduction and also read the keywords to get a clearer

view of the purpose of the article which then determined if

we should include it or not. The outcome of this filtering is

presented in Table 5 below. Using the snowball sampling

[16] method, we also identify some relevant papers by

looking into the reference section of articles that are relevant

to our work and the number of the papers we found is added

to the total in the table below.

Databases

Initial

Value

Out of Scope

Remainder

Springer Link 63 58 5

Science Direct 35 29 6

ACM Digital Library 0 0

IEEE Xplore 0 0

Total 11

Snowball Sampling 8 0 4

Total + Snowball 15

Table 5 Ignoring papers that are out of scope

We divided the remaining papers into two categories: The

first category which contains 8 papers includes articles that

are based on the DARPA Challenges (Urban and Grand

Challenge). The second category included papers that made

use of or did an evaluation of the Velodyne HDL-64E

LIDAR Sensor and other sensors outside the context of the

DARPA Challenges.

Category 1:

Thrun et al. explained the implementation of their

autonomous car named Stanley which won the DARPA

Grand Challenge in 2005. Amongst the sensors used in

Stanley are 5 laser sensors which were used to gather

information about the cars environment [18].

Urmson et al. Explained the implementation of their

autonomous car named Boss: that won the DARPA Urban

Challenge inn 2007 in addition to the very advanced and

expensive Velodyne HDL-64E LIDAR Sensor they also

used a number of other Lidar sensors and radar scanners for

the car’s perception of its environment [3].

Hoffmann et al. Also explained the implementation of their

autonomous car named “Junior” and it came 2
nd

 in the

DARPA Urban Challenge 2007. Like its counterpart,

“Boss” that won the challenge Junior also made use of the

Velodyne HDL-64E LIDAR Sensor and complemented it

with other laser scanners [2].

Rauskolb et al. explained the implementation of their

autonomous car named “Caroline” which was among the 11

finalists in the DARPA Urban Challenge 2007 and their car

also made use of several laser sensors and radars to enable

the car perceive its environment [15].

Category 2:

Glennie and Lichti [1] did an analysis and a static

calibration of the Velodyne HDL-64E LIDAR Sensor.

Their work proposes another alternative calibration method

to the standard calibration method used on the Lidar in order

to achieve improved performance. The remaining papers in

this category presented how the LIDAR sensor can be used

to create a Map of the environment it’s used in [13, 14].

If autonomous vehicle is going to be available to civilians in

the future then a lot more work needs to be done in its

development so as to make the cars available at a reasonable

price. Using these multiple sensors will eventually increase

the total cost spent on the cars and it also means that the cars

needs to be equipped with computers with enough

processing power in order to perform a good sensor fusion

[19] which is a very crucial activity when working with

multiple sensors. The autonomous cars in most of the papers

we found relied heavily on lots of sensors to make the car

aware of its environment. But our paper takes a different

turn and our main focus is to determine the minimum

quality that sensors should possess in order to be able to

successfully achieve automated parking.

3. METHODOLOGY

3.1 Research Questions

RQ 1. What is the minimum quality required in sensors

used in self-driving vehicles in order to successfully achieve

an automated parking.

3.2 Experiment Variables

For the self-driving vehicle experiment to be valid, some

variables needed to be defined which are independent

variables, controlled variables [12] and dependent variables.

 Independent Variable: Independent variable is the

sensors noise data and skipped data, and a

combination of both noise and skip.[20, 21]. We

chose three fault models because we believe they

can be a representation of the characteristics that

are found in some of the sensors that were used in

the Autonomous vehicles that competed in the

DARPA Urban Challenge [2, 3]. Two of the

sensors with their characteristics are presented in

Appendix B.

I. Noise: For this fault, we inject values to the

actual distance that is passed to the System

under Test (SUT). For instance, applying a

noise value of “4” will add “4” to the actual

distance that is passed to the System under

Test (SUT). If the actual distance between the

car and an obstacle is 10cm then 4 will be

added thereby returning a distance of 14cm.

Figure 4 represents the range of numbers for

the noise fault model. The range is between 1

and 60. Using a value of 1 leads to 100%

success rate and using a value of 60 leads to

0% success rate.

Figure 4: Fault model for noise data injection

II. Skip: For this fault, we intentionally skip some

of the distances that are passed to the System

under Test (SUT). If a skip value of 0.1 is

used, then one out of every 10 distances is

skipped while using the skip value of 0.5 will

lead to the skipping of 5 out of 10 distances.

Figure 5 represents the range of numbers for

the skipped data fault model. The range is

between 0.0 and 1.0. Using a value of 0.0 leads

to 100% percent success rate and a value of 1.0

leads to 0% success rate.

Figure 5: Fault model for Skipped data injection

III. Combination of Noise and Skip, this fault

model is a combination of both the noise and

the skip presented above. We combine noise

value from the range of 1 to 60 with skip value

from the range of 0.0 to 1.0. A combination of

noise value “4” and skip value “0.1” will

represents an overall reduction of 16% in the

sensor quality(6% noise and 10% skip) using

the formula below:

(Actual Noise Value / Highest Possible Noise Value)*100

0

20

40

60

80

100

1 60

Parking
Accuracy

%

Noise Value

Fault Injection - Noise

0

20

40

60

80

100

0 1

Parking
Accuracy

%

Skip Value

Fault Injection - Skip

http://www.mdpi.com/search?authors=Craig%20Glennie

A combination of noise value of 1 and skip

value of 0.1 leads to 100% parking accuracy

while a combination of noise value of 60 and a

skip value of 1.0 leads to a parking accuracy of

0%.

 Controlled Variable: One of the controlled

variables is the parking scenarios that the vehicle is

tested on. The parking scenarios which are subsets

of scenarios from our ground truth will be the same

for all the sensors tested in the simulator.

This way we can make sure that the tests have the

same condition.

The second controlled variable is the System under

Test (SUT). We execute the test using the same

parking algorithms for all sensor levels.

 Dependent Variable: The dependent variable is

the parking accuracy or success rate which results

from the application of different fault injections to

the sensors in the simulation environment. The

parking accuracy is recorded for each sensor noise

from which a graph will be plotted. From the

application of different fault injections to the

sensors in the simulation environment.

3.3 Experiment Design

Figure 6: Box Parking scenario in simulation environment

For our experiment, we made use of the Simulating

environment in the OpenDaVINCI Framework [9] and an

Automated Theorem Prover called Vampire. The

environment is a simple straight-road setting with a

sideways box-parking layout. As depicted in Figure 6. The

box parking scenario can have a total of 21 available

parking spaces which means all the parking spaces can be

free.

When a parking position is already taken for example:

Box_3, then a box will be in that position and the car is not

allowed to park or crash into the spot and the parking

positions that are not taken for example Box_4 and Box_13

is signified by an empty space and the car is allowed to park

in the space. The Parking scenario is encoded into an

“SCNX” file containing the information about the properties

of the scenario. The “SCNX” holds the information for a

parking layout which can then be visualized using the

“Cockpit” component in the OpenDaVINCI Platform [9].

Figure 6 represents an edited version of an “SCNX” file. A

typical “.SCNX” file include: Lane Markings and their

positions, Boxes and their positions, starting position of the

car usually at position (0,0). The scenarios are then modified

using a script written in the Python Programming language.

Modification of the scenario is done for each of the test

using the main scenario file. The main scenario file Figure 8

contains all the boxes, which mean that all the parking

spaces are not available from the beginning. In the python

script, the main scenario is read and determines how many

parking space(s) should be made available using a random

number from the range of 0 to 10. Generating a number of 0

means that no modification is made to the scenario and

generating a number of 10 means that 10 parking spaces will

be made available. After the number of parking spaces is

known, another set of random number(s) from 0 till 20 are

generated to determine the position where the available

parking spaces should be placed. The scenario in Figure 6

depicts the outcome of the modification done to the main

scenario with two available parking spaces created. For the

scenario, a random number was generated in the python

script, which in this case is the number 2. This number

represents the number of parking space to be made

available. After which two random numbers are generated in

this case they are number two and number eleven and they

represents the positions where the two parking spaces

should be placed. As seen in Figure 6, Box_4 and Box_13

are now made available as a valid parking space.

 Starting

Position of

The car

Available

parking space

Available

parking space

 Box_0

 Box_1

 Box_2

 Box_3

 Box_4 Empty

 Box_5

 Box_6

 Box_7

 Box_8

 Box_9

 Box_10

 Box_11

 Box_12

 Box_13

 Box_14

 Box_15

 Box_16

 Box_17

 Box_18

 Box_19

 Box_20

Empty

Ground Truth

Figure 7: Design of the Ground Truth

Figure 7 represents the structure of our experiment.

Verification was done using the Vampire software to find the

Ground Truth for our experiment i.e the set of scenarios

where the System under Test (SUT) performs as expected

while making use of 100% sensor quality. The System under

Test (SUT) is run on different parking scenarios and the

results of the tests are verified using the Vampire theorem

prover from which we get a subset of the scenarios where the

SUT behaved according to specification.

According to the specification:

I. If there is only one available parking space,

then the car should park in that space.

II. If there are more than one available parking

space, then the car should park in the first

available parking space. For instance, if there

are three parking space: “position 4”, “position

9” and “position 12”, the car is expected to park

in the first position which is “position 4

We ran the test with 100% sensor quality 100 times with

randomly generated scenarios to find the ground truth. For

each test, a “.TPTP”(Thousands of problems for theorem

prover) files was generated which encodes the parking

scenario and information about the vehicle behaviour using

first-order logic. An example of a “tptp” generated for one of

the scenarios is presented in Appendix A. In each “.TPTP”

file, the axioms remain unchanged, but the hypothesis and

conjecture are specific to the scenarios that are being tested.

“TPTP” is a library used for Automated Theorem Proving

and its syntax is very similar to first-order logic formulas.

After all 100 tests have been executed we verified the

“.TPTP” files using the Vampire software [8]. Out of the

total 100 tests ran, there were 58 scenarios where the car

behaved as expected using 100% sensor quality and we used

these subsets for our ground truth. When we observed the

parking scenarios that could not be verified by the Vampire

Theorem Prover based on the requirement we modelled in

the “TPTP” file, we discovered that the System under Test

(SUT) is not designed to handle those particular scenarios.

An example of such scenario is when there are two available

spaces next to each other like having Box_4 and Box_5

available in figure 6 and according to the specification the

car is supposed to park in the Box_4 but car always park in

the second available spot which in this case is Box_5.

Another example is when there is just one parking space

available being the last position: Box_20, but due to some

limitations in the SUT, the car always fail to park in the last

position and the same goes for an available parking space at

the beginning. When there is only one parking space and it is

at the very beginning, then the System under Test(SUT) fails

to park in that position. The remaining 42 scenarios that were

not verified by the Vampire theorem prover was ignored.

Finding the grounded truth before manipulating the sensor

quality allowed us to find the limitations of the System under

Test (SUT) which is very crucial to the credibility of the

tests. For example if the car does not behave according to

specification for a specific scenario while using 100% sensor

quality, then it is irrelivant and can lead to erroneous

conclusions if we execute a test with reduced sensor quality

using the same scenario. We randomly select ten scenarios

from the 58 scenarios that was verified by the Vampire

theorem prover which are then used to test the cars parking

behaviour under different sensor quality.

Figure 8 shows one of the scenarios where the car behaves

as expected. If there are more than one parking space

available, then we expect the car to park in the first available

space. As shown in Figure 8, there were two available

parking space Box_4 and Box_13 and the car parked in the

first space as expected.

Figure 8: Ground truth scenario for sensor quality

3.4 Data Collection

The data are collected when testing the sensors mounted on

the vehicle in the simulator, by executing the test written in

C++ code. The test contains one of the scenarios generated

from the Python code at a time.

Next step was to check if the vehicle has parked in the

available space by checking the last position of the vehicle

and calculate if it is inside the boundaries of the available

parking space. Once the vehicle has parked, the results are

written to a file named “Final.txt”. The file contains:

i. The scenario number.

ii. The name of the parking space that the vehicle

is expected to park in.

iii. Parking space number

iv. The total number of available parking space.

This is done for each scenario and if the vehicle does not

park in the first parking space available in the scenario, the

data will be considered invalid due to the failure of parking

in the right parking space and there for the data is from the

experiment. The data written into the file is important for the

analyses, describing how the vehicle behaved during each

scenario and taken into consideration when proceeding into

the experiment. For each scenario generated from the Python

code the test is triggered and executing that scenario. Those

tests are recorded and can be run in the simulation

environment for visualization purposes.

The experiment proceeds further with the subset of the

scenarios that have successfully been validated in the

simulator and the Vampire software. At this part we tested

those scenarios with different sensors mounted on the

vehicle. We injected different data noise values, being four

noise data, seven noise data, 27 noise data, 59 noise data and

60 noise data, into the sensors by changing the sensor

parameter in the test suite. For each of those noise values we

run the scenarios in the test suite and gathered the results.

Further we tested the sensors with skipped data percentage

with the same subset of scenarios and gathered the results.

Proceeding with the experiment we combined the injection of

data noises and skipped data for the sensors and run the tests,

the results will be introduced in the result section.

3.5 Data Analysis

For this research paper we have chosen systematic analysis

[11], it is an analysis suitable for our experiments throughout

the procedures in terms of the data collection and the

experiment design. The data we collected are from tests done

on the sensor with different noise data and skipped

percentage from the sensor data, these two tests are analyzed

separately first. This was done systematically by increasing

the noise data for the sensor and observes the behavior of the

vehicle in terms of parking in the correct parking space or

not, this is done for each scenario. Another test was to

analyze if the vehicle parks in the scenarios with different

percentage skipped values for the sensor. The analysis of

those two scenarios ended when the vehicle received data it

cannot comprehend and park with. The data is then

aggregated for each test and introduced in a form of graph to

be analyzed; viewing the data the vehicle successfully parked

in, in terms of noise or skipped data percentage. This made

our experiment systematic and led up to a final experiment.

The Final experiment to be analyzed was the combination of

the noise data and the skipped percentage until the vehicle

was not able to park anymore in the Parking scenario it was

setup in. This analysis captured the values in common for

both data and introduced them in a graph viewing which data

values combined can allow the vehicle to park. Theses

analysis are introduced and explained in the result section.

4. RESULTS
This section will introduce the results gathered from the tests

done in the simulator, with different noise data and skipped

data percentage for the sensors. Each chart is based on ten

scenarios we have chosen from the validated Subset

mentioned in the previous sections.

A. Sensor Noise

 Figure 9: Noise Data Chart

 Box_1

 Box_2

 Box_3

 Box_4 Parked

 Box_5

 Box_6

 Box_7

 Box_8

 Box_9

 Box_10

 Box_11

 Box_12

 Box_13

 Box_14

In Figure 9, the chart explains the noise data applied on ten

scenarios. For those scenarios the test was triggered ten times

to make sure the results are valid. 100% in the X-axis in this

chart means ten of the chosen scenarios have passed the same

noise data. The values on the Y-axis are the noise injected

into the sensors to test with.

B. Skipped Data

Figure 10: Skipped Data Chart

In figure 10, the chart explains the skipped sensor data from

the tests done on the ten scenarios chosen. For each scenario

we triggered the test ten times with the same skipped data

value, the reason was to make sure the vehicle parks every

time with the same value. In the X-axis of the chart the

values represent the skipped data percentage, 0.1 being 10%

skipped data from the sensors. In the Y-axis the percent

values introduces the rate of success for all scenarios.

C. Noise & Skipped data

Figure 11: The combination of injecting Noise data and

Skipped data percentage

The combination of injecting Noise data and Skipped data

percentage is viewed in figure 11. The blue bar represents the

skipped data percentage and the green bar represents the

injection of Noise data. The X-axis in the chart shows the

percentage in reduction combining Noise Data and Skipped

Data when tested on each scenario. By dividing the Noise

value to test, with the biggest Noise data reached and

multiply it by 100, to get the percentage in difference. Then

combining this percentage value to the skipped data

percentage, to get a total of 16 % reduction in the sensors for

example. The values on the Y-axis represent the percentage

rate of success for all ten scenarios.

5. DISCUSSIONS

5.1 Interpretation and Evaluate findings

For the noise fault model we tested the System under Test

(SUT) by applying the range of numbers from 4 to 60. The

tests were conducted using ten different scenarios selected

from the subset that has been verified by the Vampire

theorem prover. At the noise level of 4, the car parked

successfully in all ten scenarios. Using the following

formula:

(Number of Successfully Parked / Total attempts) * 100

Parking accuracy leads to a parking accuracy of 100%.

At the noise level of 7, the car parked successfully in 9 out of

10 scenarios, which leads to the success rate of 90%. At the

noise level of 27 the car parked in 4 out of 10 scenarios,

which leads to the success rate of 40%. At the noise level of

59 the car parked in 1 out of 10 scenarios, which leads to the

success rate of 10%. The car failed to park successfully in

any of the 10 scenarios when the noise level of 60 is applied

to the sensors.

For the skipped sensor data fault model we tested the System

under Test (SUT) by applying the range of numbers from 0.0

to 1.0. At the skipped data noise in the range of 0.1(10%

reduction) to 0.5(50% reduction) the car successfully parked

in all 10 scenarios, which leads to 100% success rate.

However, when we applied the skipped data of 0.6, which

translates to 60% reduction, the car failed to park in any of

the scenarios, which leads to 0% success rate.

As depicted in Figure 11. We testes the System under Test

using a combination of the two fault injection models (noise

data and skipped noise data). Noise values within the range 1

to 60 were combined with skip values within the range 0.0 to

1.0.

Using a noise value of 4 combined with a skipped data of 0.1

representing an overall 16% reduction in sensor quality(6%

noise and 10% skip), the car successfully parked in all 10

scenarios, which leads to one 100% parking accuracy using

the formula below:

(Number of Successfully Parked / Total attempts) * 100

Using a noise value of seven combined with a skipped data

of 0.2, the car parked in 9 out of 10 scenarios, which leads to

a parking accuracy of 90%.

Using a noise value of 27 combined with a skipped data of

0.3 the car parked in 4 out of 10 scenarios, which leads to a

parking accuracy of 40 %.

Using the noise value of 59 combined with a skipped data of

0.4, the car parked in only 1 scenario out of the 10 scenarios,

which leads to a success rate of only 10% and the car failed

to park in any of the 10 scenarios when a noise value 60% is

combined with a skipped data of 0.5.

According to our tests, to achieve a minimum parking

accuracy of 90% only a 10% reduction in the sensor quality

is allowed when the sensor used can pick up noises without

skipping any of the readings. This evaluates to only 10%

percent error rate.

If the sensor used does not return error or corrupted data but

skips some of the readings then a reduction of 50% can still

be used to achieve a minimum parking accuracy of 90% (Car

successfully parked 9 out of 10 times).

For the combination of both noise and skip value, we

discovered that up to 31% reduction (11% noise and 20%

skip) can still achieve 90% parking accuracy(Car

successfully parked 9 out of 10 times).

While we were testing the sensor quality with the noise data,

we discovered some patterns in some of the scenarios with

regards to the car’s behavior with the use of the same noise

value. With the application of noise value of 8, the car failed

to park for 5 of the scenarios and in all 5 scenarios, the

parking space at position zero was already taken so the car is

not allowed to park there. When the noise value of 28% is

applied, the car failed to park in two scenarios and what both

scenarios share is that the parking position zero is available

for parking.

5.2 Validity Threats

Threats to Construct Validity are not critical. We will use

the same parking scenario for all the tests that will be run

against different sensor qualities. For manipulating the

quality of the sensors in the simulation environment, we

employed a systematic strategy, which makes use of three

fault models. The first model is the addition of noise to the

travelled distance of the sensors and the second model is the

skipping of some data, while the third is the combination of

the first two models.

Threats to Internal Validity are not considered to be critical.

To ensure that there is a clear relationship between the

Automated Parking accuracy and the sensor quality, we ran

our tests on one computer. Executing the tests on just one

computer will help us to avoid changes that might occur in

the dependent variable as a result of poor performance incase

more than one computers were used.

Threats to External Validity are considered critical since the

parking algorithm that we used might not be fully

representative of the parking algorithms that are used in most

self-driving Vehicles. Another threat to external validity is

the parking scenarios that we used in the simulator, for the

tests, we used a box-parking scenario, which might not be

well representative of other forms of parking like: Parallel

Parking and Diagonal Parking.

Conclusion validity can pose a threat to our work but we

consider it to be handled in most of the cases. We measured

the parking accuracy in percentage, which we derive by

executing 10 tests for each noise value we applied. To

determine the percentage level of the reduction made to the

sensor quality we applied the following formula:

(Actual Noise Value / Highest Possible Noise Value) * 100.

 If the car successfully parked 9 times out of the 10 tests then

we conclude that the parking accuracy is 90% and if a car

failed to park in any of the ten scenarios then we concluded

that the parking accuracy is zero percent. For manipulating

the sensor data using the two fault models (noise and

Skipped data) we tested the sensors to know the value at

which the car parked in all ten scenarios and the value at

which the car failed to park in all ten scenarios. For the

Skipped data fault model, the range of numbers is between

0.1 and 1.0.

As specified in the above formula, determining the

percentage level of an applied noise value is derived by

dividing the “applied noise value” by the “maximum noise

value” and then multiply the results by 100. Using the

formula to the skipped data, a reduction of 0.1 to the quality

of the sensor translates to 10% reduction while a reduction of

0.5 translates to 50% reduction in the sensor quality for the

noise data. For the noise data fault model, the range of

numbers is between 1 and 60; we applied the same formula

specified above. A noise level of 7 will translate to 12%

reductions and a noise level of 27 will translate to 45%.

CONCLUSIONS
We automated the testing of the parking functionality in

self-driving vehicles by combining tests carried out in the

simulation with theorem proving using the Vampire theorem

prover. Being able to automatically generate multiple

scenarios, we were able to execute 100 tests from which we

derived our ground truth which are the scenarios where the

System under Test performed according to specification

using 100% sensor quality.

We systematically and gradually reduce the quality of the

sensor in the simulation environment by employing two fault

injection models which are noise injection and skipped data

injection so as to simulate the quality that are common to low

quality or inexpensive sensors.

In the future, we intend to run more test for each noise

level so as to have a better conclusion in terms of the parking

accuracy. To determine the percentage level of the parking

accuracy we applied the following formula:

(Number of Successfully Parked / Total attempts) * 100.

Based on the above formula, if the car successfully parked

in 6 out of 10 attempts then the success rate becomes 60%.

In our findings, a 90% sensor quality is required to

achieve a parking accuracy of 90% when using a sensor

which sometimes return noise or invalid sensor data and for a

sensor that skips sometimes skips to return sensor data, 50%

quality is still able to achieve a parking accuracy of 90%. We

however believe that inexpensive or low quality sensors can

be complimented with improved and robust algorithm to

achieve a better parking accuracy.

ACKNOWLEDGEMENT

We would like to thank Ana Magazinius for the guidelines

and course materials she provided for us. A big thank to our

supervisor Christian Berger for all his help and time

supporting us and pointing us to the right direction

throughout this thesis work. We also want to thank our

supervisor Laura Kovács for helping us to get started with

Vampire Software and Thousands of Problems for Theorem

Prover (TPTP).

REFERENCES
[1] C. Glennie, D. D. Lichti. Static Calibration and Analysis

of the Velodyne HDL-64E S2 for High Accuracy Mobile

Scanning. 2(6), pages 1610-1624, 2010.

[2] G. Hoffmann, B. Huhnke, D. Johnston, S. Klumpp, D.

Langer, A. Levandowski, J. Levinson, J.Marcil, D.

Orenstein, J. Paefgen, I. Penny, A. Petrovskaya, M. Pflueger,

G. Stanek, D.Stavens, A. Vogt, S. Articial, S. Cs, D. Hähnel,

and S. Thrun. Junior: The Stanford Entry in the Urban

Challenge. In The DARPA Urban Challenge, pages 91-123,

2009.

[3] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner,

M. N. Clark, J. Dolan, D. Duggins, T. Galatali, C. Geyer,

M. Gittleman, S. Harbaugh, M. Hebert, T. M. Howard, S.

Kolski, A. Kelly, M. Likhachev, M. McNaughton, N. Miller,

K. Peterson, B. Pilnick, R. Rajkumar, P. Rybski, B. Salesky,

Y. W. Seo, S. Singh, J. Snider, A. Stentz, W. Whittaker, Z.

Wolkowicki, J. Ziglar, H. Bae, T. Brown, D. Demitrish, B.

Litkouhi, J. Nickolaou, V. Sadekar, W. Zhang, J. Struble, M.

Taylor, M. Darms, D. Ferguson. Autonomous Driving in

Urban Environments: Boss and the

Urban Challenge. Journal of Field Robotics, 25(8), pages

425–466, 2008.

[4] B. Ulmer. VITA - An Autonomous Road Vehicle (ARV)

for Collision Avoidance in Traffic. Proceedings of the

Intelligent Vehicles `92 Symposium, pages 36-41, 1992.

[5] M. Gerla, L. Eun-Kyu, G. Pau, L. Uichin: Internet of

vehicles: From intelligent grid to autonomous cars and

vehicular clouds. In Internet of Things (WF-IoT), 2014 IEEE

World Forum on, pages 241 – 246, 2014

[6] B. Augusto, A. Ebadighajari, C. Englund, U. Hakeem, N.

V. Irukulapati, J. Nilsson, A. Raza, and R. Sadeghitabar.

Technical Aspects on Team Chalmers Solution to

Cooperative Driving. Technical report, Chalmers University

of Technology, 2011.

[7] F. W. Rauskolb, K. Berger, C. Lipski, M. Magnor, K.

Cornelsen, J. Eertz, T. Form, F. Graefe, S. Ohl, W.

Schumacher, J.-M. Wille, P. Hecker, T. Nothdurft, M.

Doering, K. Homeier, J. Morgenroth, L. Wolf, C. Basarke, C.

Berger, T. G• ulke, F. Klose, and B. Rumpe. Caroline: An

Autonomously Driving Vehicle for Urban Environments.

Journal of Field Robotics, 25(9):674-724, 2008.

[8] L. Kovács and A. Voronkov. First-Order Theorem

Proving and Vampire. In Proceedings of International

Conference on Computer Aided Verification, pages 1-35,

2013.

[9]OpenDaVINCI,webpage-

http://www.christianberger.net/OpenDaVINCI , June 2013.

[10] A. Platzer and J.-D. Quesel. KeYmaera: A Hybrid

Theorem Prover for Hybrid Systems. In Proceedings of

the Fourth International Joint Conference on Automated

Reasoning, pages 171-178, 2008.

[11] A. G. Tuckett. Applying Thematic Analysis Theory to

Practice: A researcher's experience. Contemporary Nurse,

19(2): pages 75-87, 2005.

[12] N. Juristo and AM. Moreno, Basics of Software

Engineering Experimentation, pages 45-121, 2001.

[13] S. Becker and N. Haala. Grammar Supported Facade

Reconstruction from Mobile LiDAR Mapping. International

Archive of Photogrammetry and Remote Sensing, XXXVIII

Pa(2009): pages 229–234, 2009.

[14] N. Haala, M. Peter, J. Kremer, and G. Hunter. Mobile

LiDAR mapping for 3D point cloud collection in urban

areas: a performance test. In Proceedings of the 21st In-

ternational Archives of the Photogrammetry, Remote Sensing

and Spatial Information Sciences (ISPRS08, volume 37,

pages 1119–1124, Beijing, China, 2008.

[15] F. Rauskolb, K. Berger, C. Lipksi, M. Magnor, K.

Cornelsen, J. Effertz, T. Form, F. Graefe, S. Ohl, W.

Schumacher, J-M. Wille, P. Hecker, T. Nothdurft, M.

Doering, K. Homeier, J. Morgenroth, L. Wolf, C. Basarke, C.

Berger, T. Gülke, F. Klose, and B. Rumpe, “Caroline: An

Autonomously Driving Vehicle for Urban Environments,” in

The DARPA Urban Challenge, 2009, pp. 441-508.

[16] L. A. Goodman. Snowball Sampling. The Annals of

Mathematical Statistics, 32(1):148-170, 1961.

[17] N. Fleming. Driverless cars: heading down a safer,

faster highway? 206(2754), pages 34-37, 2010.

[18] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A.

Aron, J. Diebel, P. Fong, J. Gale, M. Halpenny, G.

Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt,

P. Stang, S. Strohband, C. Dupont, L. E. Jendrossek, C.

Koelen, C. Markey, C. Rummel, J. Niekerk, E. Jensen, P.

http://www.mdpi.com/search?authors=Craig%20Glennie
http://www.mdpi.com/search?authors=Derek%20D.%20Lichti
https://dl.dropboxusercontent.com/u/2437798/Juristo%20Basics%20of%20Software%20Engineering%20Experimentation.pdf
https://dl.dropboxusercontent.com/u/2437798/Juristo%20Basics%20of%20Software%20Engineering%20Experimentation.pdf

Alessandrini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler,

A. Nefian, P. Mahoney. Stanley: The Robot that Won

the DARPA Grand Challenge. Journal of Field Robotics

23(9), pages 661–692, 2006.

[19] S. Parasuraman. Sensor Fusion for Mobile Robot

Navigation: Fuzzy Associative Memory. 41, pages 251-256,

2012.

[20] A. L. Christensen, R.O’Grady, M. Birattari, M. Dorigo.

Fault detention in autonomous robots based on fault injection

and learning.24(1), pages 49-67, 2008

[21] R.L.O. Moraes, E. Martins. Fault Injection Approach

Based on Architectural Dependencies. 3549, pages 300 –

321, 2005.

http://www.sciencedirect.com/science/article/pii/S1877705812025568

Appendix A

One of the Generated “TPTP” files that is passed as input to the Vampire Theorem Prover

The Axioms remains unchanged for all test scenarios(Line 1 to 44):

The hypotheses and conjecture are specific for each scenarios, in the example below(line 45 to 54).

In the scenario below, six parking spaces are made available which are in position: 5, 8, 11, 17, 18, 20 and

we assign the value of “0” to them respectively(line 46 to 51), while setting all other parking positions to the

value of “1” to signify that they are not available “52”. According to the specification, if there are more

than one parking available, we expect the car to park in the first available space. In this example, we expect

the car to park in “position 5” (line 54).

Appendix B

Two of the Lidar sensors that were used in most of

the cars that competed in the DARPA Urban

Challenge 2007.

 HDL-64E LIDAR

• Price: $75,000

• 64 Laser diodes

• 360 degree – Horizontal FOV

• 26.8 degree – Vertical FOV

• 1.3million points per second

SICK Laser Rangefinder

• Price: $6,000

• 1 Laser diode

• 180 degree – FOV

• 6,000 points per second

Source: http://www.hizook.com/blog/2009/01/04/velodyne-hdl-64e-laser-rangefinder-lidar-pseudo-disassembled

http://www.hizook.com/blog/2009/01/04/velodyne-hdl-64e-laser-rangefinder-lidar-pseudo-disassembled

