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Abstract— Transparent objects are easy to recognize with the 

naked eye, but due to the fact that infrared radiation is travelling 

through transparent objects, they are not sensed by robots using 

infrared technology. We propose a workaround to this problem, 

which improves Simultaneous Localization and Mapping 

(SLAM) performance. By performing more detailed scans with 

the Kinect sensor, we are able to find frames around the glass 

walls, and by that detect them as if they were solid walls. The 

proposed method is evaluated using the Microsoft Kinect sensor 

mounted on a Turtlebot robot. Our approach is continuously 

improved by using the black box software testing method, and we 

have accomplished good reliability in both the software simulator 

and the real robot. Results show that our approach gives 

approximately a 25% more realistic and correct recognition of 

transparent walls compared to built-in solution in environments 

that have such walls. 

Keywords— Kinect; Laserscanner; Transparent Walls; 

Turtlebot; Black-box; Evaluation; depth sensor; ground-truth 

I. INTRODUCTION 

Localization and mapping are the key requirements in 
automated self-guiding robots to accomplish navigation. One 
of the most important techniques in this field is Simultaneous 
Localization and Mapping (SLAM) [4], where the robots or the 
autonomous vehicles, while keeping track of their current 
location, at the same time explore and map the environment 
around them using sensors data. Traditionally, SLAM is used 
with a laser scanner together with an odometer. In our 
experiment we will use a Microsoft Kinect sensor which is a 
much cheaper device [4]. 

The Kinect sensor is a motion sensing input device, 
manufactured by Microsoft for use in the Xbox 360 gaming 
console, which is shown in Figure 1. Besides being used as a 
motion sensor, many researchers and developers are using this 
device in mobile robotics [4, 6, 7, 8, 9]. Compared to the laser 
scanner, the Kinect sensor has lower accuracy, but it has other 
advantages. The Kinect sensor measurements are three-
dimensional (range and bearing in two directions), while the 
data from a laser scanner is two-dimensional (range and 
bearing). This makes the data more information dense [4]. 

 

Figure 1. Picture of Microsoft Kinect Sensor [8]. 

 

A. Problem formulation 

The Kinect sensor uses IR radiation, which travels through 

transparent objects such as glass walls. The result of this is 

that the robot during SLAM, does not recognize transparent 

walls and instead it finds the objects behind them. Mapping in 

such an environment with transparent walls produced by a 

built-in software solution is therefore inaccurate as we see in 

Figure 2. Also, because the robot does not recognize 

transparent walls it can hit them during the navigation. In this 

paper we will refer to the built-in solution as the original 

solution. 

 
Figure 2.  Image a) is bird view drawing of real corridor used for test 

purposes; most walls are made of glass. Image b) is created by original 

implementation of ROS during SLAM, as we can see software does not sense 
glass walls. 

In robotic systems with having a many components with 

rather high complexity it is often hard to dig deep in to 

components and test the functionality or accuracy of them. 

Since the Kinect sensor is a small part of the SLAM system in 

the robot and we wanted to only focus on the accuracy of the 

Kinect sensor we chose to use a component base black-box 

testing [17]. Black-box testing is a method of software testing 

that examines the functionality of an application or module 

[10], in our case that is a module that converts 3D depth data 

into 2D data. With using this technique we are able to only 

focus on the functionality of the Kinect sensor regardless of 



 

 

the implementation behind it or considering the effects that it 

can have on the other components. In this paper we have 

designed an experiment to perfectly suit such test and also 

measure the accuracy of our results.   

B. Research Goal 

Our main research goal was to evaluate the different 

approaches that can improve detecting transparent walls, 

which would give us better mapping of an environment during 

the SLAM. To be sure that we made improvements, we 

needed to evaluate both the original solution and the improved 

solution. For that task we chose Black box testing. Comparing 

results of the original and improved solution with a real 

environment gave us an answer.  We used the following 

questions as guidelines for described evaluations: 

 

RQ1: How can a black-box test for SW-components be 

designed to test the accuracy level of any approach towards 

using Kinect sensor for mapping system? 

RQ2: How accurate are the results from black-box testing for 

SW-components using full vertical scan in comparison with 

the original approach which can only scan one height? 

C. Contribution 

 We summarize our main contributions: 

 We designed an experiment in a way that black-box 

software testing would be most useful for evaluating 

the accuracy of any approach for using Kinect sensor 

in mapping system. 

 We showed that the boundaries of the transparent 

walls, based on their frames, can be detected with our 

approach using Kinect sensor. 

 We presented data and calculated percentage of 

improvement comparing to original solution. 

 Compared to the original solution, we demonstrated 

improved mapping with our approach using SLAM. 

D. Structure of article 

The thesis continues with Section 2 that gives information 

about the Kinect sensor and the original solution. Here we also 

provide information about improvements in software that we 

did to be able to evaluate our research. In Section 3, the reader 

can find information about related work. Methods for data 

collection are found in Section 4. In Section 5 we present raw 

data results of our research. Finally the Analysis and 

Discussion are presented in Section 6 and a conclusion is 

found in Section 7. 

II. BACKGROUND 

A. Turtlebot overview 

Turtlebot is an open-source robot development kit for apps 
on wheels, which is shown in Figure 3. The system runs on 
Robot Operating System (ROS) [4], which is a software 
framework for robot software development. ROS also provides 
us with a simulator that we have used as a tool for testing of 
our implementation. With ROS we could build our own map 
using SLAM and drive the robot through the indoor 

environment or navigate with a previously recorded map. 
Besides the wheel encoder, Turtlebot also uses Gyro sensors to 
calculate Odometry. According to [4], data from the wheel 
encoder and Gyro sensor is combined in the Kalman filter and 
the output is the estimated position (Odometry). In this 
research we focused on improving output from the Kinect 
sensor, and Odometry is left as it is. 

 

Figure 3. Picture of Turtlebot hardware setup [4], showing a) Creative base 

unit, b) Kinect sensor mounting, c) Laptop running ROS software and d) 

Turtlebot module plate. 

B. Kinect’s Depth sensor 

In order to implement our approaches, we had to first 
understand our input data from the Kinect sensor. The Kinect’s 
depth sensor, which was the sensor of interest for our research, 
provides a 640x480 array of depths which has the view of 58 
degrees horizontally and 48 degrees vertically. The firmware of 
the Kinect sensor performs some initial calculations on the 
input data. These values are the distance from the sensor in the 
Z vector which is the direct distance to the object rather the 
complete distance in a 3D presentation to the camera itself as 
shown in Figure 4.  . 

 

Figure 4. How the depth is calculated in Kinect sensor 

 

In order to use all the data we had to calculate the actual 

coordinates of the objects detected based on the angle in both 

axes Y and X. As you can see in Figure 5, these coordinates 

were defined as follow [7]: 



 

 

 
Figure 5. Variables of interest for calculating the position of detected object 

 

xxx constcentercolumn *)(    (1) 

 

yyy constcenterrow *)(    (2) 

 

depthx x *)tan(     (3) 

depthy y *)tan(     (4) 

depthz       (5) 

 

For analyzing the Kinect’s depth sensor we used MATLAB to 

visualize the data, and have a full understanding of what they 

represent. In order to do so, we created a logger system in the 

robot that recorded the raw data from this sensor, which can 

be later presented in MATLAB. In Figure 6 a sample of the 

visualization in MATLAB has been provided. 

 
Figure 6 Overview of Kinect sensor depth data in MATLAB 

 

This visualization resulted in understanding that the Kinect’s 

depth sensor was rotated in the simulator and the real robot, 

since the Kinect was not mounted completely straight on the 

robot. So we altered the original formulas by adding this 

rotation value (φ) as defined: 

depthy y *)tan(      (4) 

In Figure 7 original readings are compared to readings after 

the applied rotation. In this figure all measures are in 

millimeters.  

 

 
Figure 7 Upper image is showing result without rotation compensation and 

down image is showing with rotation compensation. 

III. IMPLEMENTATION 

One of our objectives in this research is that robot will be 

able to find a transparent wall by finding the frame around the 

wall. To be able to find a tiny frame, which is only 2 

centimeters high, we needed to ensure the Kinect sensor could 

distinguish precisely between the floor and the frame. Initially, 

ROS systems were made for laser scanners which output 2D 

data. Therefore the system has a module that converts 3D 

depth data into 2D data output, that is compatible with the rest 

of the system. During this conversion, only the distance of the 

nearest object at the same vertical line was reported to the 

system. This module was the subject of all our improvements. 

 

1) Original Solution 

The original solution that came with the newly installed 

ROS system uses a full horizontal scan, but vertically it only 

scans for ten lines in the middle. With this solution the robot 

cannot find objects that are much lower or higher than the 

robot. As shown in the right part (b) of Figure 2 this solution 

did not detect the frame around the wall. 

 

2) Preparation 

First, we logged the height of the floor at all horizontal and 

vertical lines (640x480) and saved this file as a 2D matrix of 

the floor height. This logging was done in the open area 

around the robot so no object would interfere with the floor 

detection. Analyzing the recorded data by printing results, we 

found that only 470 vertical lines were containing the data, the 

other ten lines always had zero value.  We also limited the 

maximum distance to five meters, because according to [8], 

the precision of Kinect sensor decreases with higher distance. 

Floor data was found only after 280 vertical lines. This was 

because the infrared (IR) radiation that scans the middle and 

upper areas of the environment, which is equal with less than 

280 lines, was reaching the five meters limit before reaching 

the floor. 

 

3) Static Solution 

In our first implementation, the floor height was picked up 

from the log-data file. We called this solution the static 

solution because floor height was recorded in the file. This 

means that this solution would not work if we changed Kinect 



 

 

sensor’s height. As stated earlier, the log-data file contained 

the height of the floor in the 2D matrix. The first dimension 

was the horizontal position and the second dimension was the 

vertical position of where the floor was found. When the 

recorded position matched with the current position of depth 

data scans from the Kinect sensor, the floor height was picked 

up from the file and saved as a value. The distance to the 

objects that were at least 2 centimeters higher than the floor 

height value were reported. If no object was found, nothing 

was reported.  

 

4) Dynamic Solution 

Our second implementation was based on mathematical 

formula. We called this solution the dynamic solution because 

it could be easily adapted to the different heights of the Kinect 

sensor. After we visualized the log-data file in the MATLAB, 

we found that our Kinect sensor was not perfectly mounted, it 

tilted few degrees. We wrote mathematical formula that 

compensated for the Kinect sensor tilt, and used triangulation 

to calculate where the floor was during the readings at 

different vertical and horizontal scans from the Kinect sensor. 

Results of this mathematical implementation are shown in 

Figure 8. Our measurement shows that the dynamic solution is 

better than the static solution with few percent more correct 

image, compared to the reference image. 

 
Figure 8. Image a) is created by SLAM with dynamic solution. Image b) is 

mapping of same corridor with original solution. 

IV. RELATED WORK 

In this section we have conducted a literature review on earlier 

publications regarding the use of Kinect sensor in mobile 

robotics. First we explain how we conducted the search on 

earlier publications, and then we review them to be able to 

explain why we cannot use their approach. 

A. Databases, strings and keywords 

We have chosen to use two databases that by searching 
gave us relevant publications in our domain. Those are: 

 ACM  digital  library 

 IEEE  Xplore 

Then we chose seven keywords of interest and those are: 

 Kinect 

 Robot 

 Transparent objects 

 Wall 

 SLAM 

 ROS 

Our search string is a combination of the chosen words. We 

had to carefully constructed search strings, otherwise we 

would find too many papers that had nothing to do with our 

study. We had to redefine our search strings a few times 

before we found documents of interest. These are the search 

strings that we have used; 

 Kinect AND robot AND transparent 

 SLAM and robot and transparent walls and Kinect 

 ROS AND Kinect 

B. Results of search: 

TABLE 1. Table showing the result of our initial search 

 ACM  digital IEEE  Xplore 

Kinect AND robot AND 

transparent 

65 3 

SLAM and robot and transparent 

walls and Kinect 

408 96 

robot  AND  localization   

OR  positioning 

103 9 

C. Inclusion and exclusion criteria 

Publications used for this study were selected if they 

fulfilled certain requirements. We have listed exclusion and 

inclusion requirements: 

Inclusion: 

 Publications that have to do with Kinect sensor and 

transparent objects 

 Publications that have to do with Kinect sensor and 

mobile robotics 

 Publication that have to do with SLAM. 

 Both Industrial and academic researches and articles. 

Exclusion: 

 Research papers that use RGB cameras to improve 

results. 

 Research papers that use non-standard devices, like 

ultra-sonic devices. 

 Old research papers from times when computer 

technology was much slower. 

 Non-software related solutions, like mathematical 

only solutions and others. 

 Books, Non-English texts, presentations. 

D. Data extraction 

Filtering more than 500 research paper that we found by 

database search, we selected 21 with relevant topic. Reading 

the abstract of those 21 research papers, we could exclude the 

ones which did not pass our inclusion and exclusion criteria. 

At the end, we had five research papers that are relevant and 

will be used as source to conduct this study. All founded 

research papers are using other approach than ours. 

E. Review 

Problem with transparent object and Kinect sensor has 

been identified before. There has been some attempt to 

recognize windows, glasses and bottles and recreate them in 

the 3D map.  

Lysenkov et al. [6] proposed a way to recreate transparent 

object by using Kinect-based detection of no or invalid data in 

combination with RGB image. They found out that many  



 

 

TABLE 2. Variables and Parameters 

Name of the Variable Type of the variable Abbreviation Type of variable Scale type Unit Range 

Scan Range independent SR Internal ratio Number > 0 , < 470 

Height of Kinect sensor independent Height Internal value Meters > 0 

Rotation of Kinect sensor independent Theta Internal value  Radians < PI/2 

 

transparent objects appear as holes in the depth map of Kinect 

sensor. Those areas they map with RGB object and by that 

they could recreate 3D image of transparent object. This 

approach has weakness in the fact that holes can be caused by 

many other effects. Because even the RGB camera has 

problem detecting glass walls this approach cannot be used to 

detect same.  

Alt et al. [9] had approach that identifies inconsistent depth 

measurements of transparent objects while moving Kinect 

sensor around environment. Those inconsistencies are caused 

by reflective effects on the surface of object. Detection is 

limited to transparent object with smooth and curved surfaces 

like bottles and glasses. Therefore this solution is not suited 

for our needs.  

Kamarudin et al. [7] have proposed a model to convert 3D 

depth data to 2D map. This research is interesting, because it 

points out problems with the floor detection, and detection of 

the transparent object, in their case it was the cabinet’s glass 

door. In their conclusion they stated that detecting transparent 

and high reflection surfaces still needs to be solved.  

Viager [8] has analyzed uses of Kinect sensor for mobile 

robots. He measured all possible data from Kinect sensor and 

made more precise and detailed specifications than the one 

available from official sources. We have used his data in pre-

study phase to see if our approach is possible. His conclusion 

is that Kinect sensor is very viable choice for mobile robot 

applications, but then he did not analyze what impacts have 

transparent objects on Kinect sensor readings. 

Hjelmare and Rangsjö [4] have carried out a huge amount of 

work analyzing Turtlebot built-in algorithms for SLAM. They 

also explain in detail how Turtlebot and all the components 

that are needed to perform SLAM work, this include 

Odometry. They had exactly the same hardware as we but 

their environment was glass-wall free. Most improvement they 

suggest to Turtlebot had to do with gyro, because they found 

inaccuracy in map creation when robot is turning. This 

problem with the Odometry is something that we also have 

experienced, but it was out of our focus in this research. 

 

V. METHOD 

To address RQ1 and RQ2 we designed an experiment 

according to guidelines provided by [3]. This experiment is 

described as following; 

A. Goals 

In order to answer RQ1, Goal 1 was defined as follow: 

Goal 1: How can we produce a black-box test that can apply to 

any approach and validate the out coming results in respect to 

the ground truth of the map? The focus of this test will be on 

the input from Kinect sensor and evaluating the output from 

the map generation program in Turtlebot.  

In order to answer RQ2, Goal 2 was defined as follow: 

Goal 2: By introducing different scenarios with different 

amounts of transparent walls, like glass walls, how do the 

approaches behave and how much of an impact does it have 

on the accuracy of detection. This will be in respect to 

detecting all the walls in order to do a complete navigation 

without hitting objects or walls. 

 

B. Experimental Units 

Since the tests are going to be applied to Turtlebot and 

mainly applied on the Kinect sensor, the Experiment Units are 

the same as Experiment Materials.   

C. Experimental Materials 

1) Turtlebot 
Our main material to apply the tests was the Turtlebot. 

With having Turtlebot as an open-hardware solution, it makes 
it an answer that can be applied to any other indoor robot. Also 
the map generation system in this robot gives us the 
opportunity to apply black-box testing and with just applying 
the approach of concern can get the generated map as an 
output. 

2) Kinect Sensor 

Kinect was the essential material for our research where all 

the approaches affect this sensor of interest. This sensor was 

mainly chosen because the cost is not high and many different 

open-source communities work on this sensor, which makes it 

a general and effective answer as depth sensor. 

D. Tasks 

In order to carry out the test one must apply the approach 

to Kinect module of the robot and after finalizing the robot 

should be put in the environment. For our research we created 

two sample environments. The first scenario included a solid 

wall and one transparent wall. In the second scenario, we used 

a bigger area and included even more glass walls and low 

height objects. At the end of the tests, we also used the 

corridor in the company that is mainly constructed with glass 

wall sections to show the results in the real environment. 

These three scenarios are included because the amounts of 

transparent walls are growing in each step and in the end we 

can see the pattern emerging from these results. 

After setting up the environment, the map generation of the 

robot will run and the output map will be saved as a test case 

for our black-box testing. 



 

 

E. Variables and Parameters 

The main variables that must be included for our 

approaches are the range of scan, height of the Kinect sensor, 

and the rotation of the Kinect sensor. These variables are 

presented in Table 2. 

F. Experiment Design 

We conducted our experiment in two phases. First the 

solutions and behaviors were tested on the simulator designed 

for the Turtlebot. In the simulator, which simulates the perfect 

environment with clear and undistorted data, we could ensure 

that functionality and efficiency of our solution was good. 

After this stage, we applied the same experiment in the real 

robot in the environment. In this stage, since the data is not 

absolute and can be affected by the environment variables 

such as lightening conditions or going through a non-flat path, 

we had to ensure the robot could adapt to these conditions. 

After this the test was applied to each approach and later on 

the results compared with each other. 

G. Procedure 

In order for the experiment to take place first we got familiar 

with the Kinect’s depth sensor. A full understanding was 

needed in order to be able to apply a full 3D scan and 

translating that into 2D scan and represent Kinect as a laser 

scanner. 

 

1) Map Generation 

After receiving each of the readings, we generated the map 

by using the map generation program of Turtlebot. These 

maps were saved as a binary map file in PGM (Portable Gray 

Map) format, which black presents the objects and gray or 

white areas are the possible positions for the robot to navigate 

to. 

 

2) Generating Ground Truth 

For evaluating the extracted maps, we needed the ground 

truth maps. For generating the Ground Truth [5] in the 

simulator, we used auto generated data provided by the 

Turtlebot simulator. In order to generate the Ground Truth in 

the real environment, we manually created the map by 

measuring the position of the object in our test scenario. 

Having generated the ground truth and the maps previously, 

an accuracy analysis was applied to each approach. In Figure 9 

we are showing the generated ground-truth for Small and Big 

scenario which we generated by measuring the walls 

manually. 

 
Figure 9. Ground-truth for small and big scenario 

H. Analysis 

The common measures for evaluating binary maps 

PASCAL’s VOC (Visual Object Classes) [13, 11, 2] and      

Fβ-measure [16, 14, 12, 18, 19]. We also used an improved 

version of the measureF   called Weighted Fβ-measure 

( measureF 
 ) [15].  

All of these tests use four concepts for their evaluation: 

 True Positive (TP): the quantity of the points that are 

true and they refer to a true value on the ground truth. 

 True Negative (TN): the quantity of the points that 

are false and they refer to a false value on the ground 

truth. 

 False Positive (FP): the quantity of the points that are 

true and they refer to a false value on the ground 

truth. 

 False Negative (FN): the quantity of the points that 

are false and they refer to a true value on the ground 

truth. 

By use of these values each test calculates the accuracy of the 

map. 

 

1) PASCAL’s VOC 

This test is one of the basic tests that just calculates the ratio 

between true-positives and the sum of true-positives, false-

negatives and false-positives.  

FPFNTP

TP
sVOCPASCAL


'   (6) 

This test is considered as a very strict test since it only focuses 

on the points that are exactly correct reading. 

 



 

 

FPFNTP

TP

RecallPrecisionβ

RecallPrecision
measureF

2











22

2

2

)1(

)1(

)1(







2) measureF   

This test uses two of most common qualities, which are 

Recall and Precision: 

FNTP

TP
Recall


     (7) 

FPTP

TP
Precision


    (8) 

And based on these values the test will was calculated as 

follows: 

   

 

 

 

(9) 

 

 

Where β is a control variable that controls the preference 

between over-detection and complete-detection, which is 

typically one and we will use one in our research as well. This 

test focuses more on the advantages of the picture rather than 

the failures, so this test is not as strict as PASCAL’s VOC test. 

 

3) measureF 
  

For this test we are using the program based on the paper 

“How to Evaluate Foreground Maps” [13], which is provided 

by the authors. This measure as stated in the paper is 

calculated as below: 

ωω2

ωω

RecallPrecisionβ

RecallPrecision
measureF




 )1( 2



(10) 

This test is performed by checking the neighbors of the 

reading, and comparing the result more in terms of the shape 

rather than exact positions. This is a better way to understand 

if the readings are referring to the ground truth. 

  

VI. RESULTS 

A. Map 

Based on the maps extracted from Turtlebot the Ground 

Truth [5] for each of scenario will be created. 

1) Small Scenario 

In Figure 10 the small scenario results are presented, the 

generated ground-truth on the top-left-corner, the original 

solution is on the top-right-corner, the static solution is on the 

bottom-left-corner and the dynamic solution is presented in 

the bottom-right-corner. 

 

 

 
Ground Truth 

 
Original solution 

 
Static Solution 

 
Dynamic Solution 

Figure 10. Ground-truth and extracted map for small scenario 

 

2) Big Scenario 

In Figure 11 the big scenario results are presented, the 

generated ground-truth is on the top-left-corner, the original 

solution is on the top-right-corner, the static solution is on the 

bottom-left-corner and the dynamic solution is presented in 

the bottom-right-corner. 

 

 
Ground Truth 

 
Original solution 

 
Static Solution 

 
Dynamic Solution 

Figure 11. Ground-truth and extracted map for big scenario 

 

3) Corridor Scenario 

In Figure 12 the corridor scenario results are presented. The 

generated ground-truth is on the top-left-corner, the original 

solution is on the top-right-corner, the static solution is on the 

bottom-left-corner and the dynamic solution is presented in 

the bottom-right-corner. 

 

 
Ground Truth 

 
Original Solution 

 
Static Solution 

 
Dynamic Solution 

Figure 12. Ground-truth and extracted map for corridor scenario 

B. Evaluation 

We have applied our three test approaches to each of the 

scenarios and the results are presented in column-charts. 

1) PASCAL’s VOC 

After applying this test to our extracted maps based on the 

ground truth in the small scenario the result we got was: 



 

 

 Original solution was 40.55%  

 Static solution was 50.71%  

 Dynamic solution was 64.25%. 

In the big scenario the result we got was: 

 Original solution was 33.80%  

 Static solution was 53.34%  

 Dynamic solution was 62.37%. 

And applying the same test in the corridor of the company we 

got these results: 

 Original solution was 12.05%  

 Static solution was 47.76%  

 Dynamic solution was 59.91%. 

The results in comparison with each other are presented in 

Figure 13. 

 
Figure 13 Accuracy test for PASCAL's VOC 

 

2) measureF   

After applying this test to our extracted maps based on the 

ground truth in the small scenario the result we got was: 

 Original solution was 57.7%  

 Static solution was 67.28%  

 Dynamic solution was 78.24%. 

In the big scenario the result we got was: 

 Original solution was 50.63%  

 Static solution was 69.57%  

 Dynamic solution was 73.07%. 

And applying the same test in the corridor of the company we 

got these results: 

 Original solution was 22.12%  

 Static solution was 57.86%  

 Dynamic solution was 71.48%. 

The results in comparison with each other are presented in 

Figure 14. 

 
Figure 14 Accuracy test for F-measure 

 

3) measureF 
  

After applying this test to our extracted maps based on the 

ground truth in the small scenario the result we got was: 

 Original solution was 67.12%  

 Static solution was 76.26%  

 Dynamic solution was 84.71%. 

In the big scenario the result we got was: 

 Original solution was 60.39%  

 Static solution was 80.65%  

 Dynamic solution was 85.03%. 

And applying the same test in the corridor of the company we 

got these results: 

 Original solution was 26.93%  

 Static solution was 73.28%  

 Dynamic solution was 81.83%. 

The results in comparison with each other are presented in 

Figure 15. 

 
Figure 15 Accuracy test for Weighted F-measure 

 

VII. DISCUSSION 

A. Evaluation of Results and Implications 

Based on the results extracted from our three tests, we can 

clearly see that the dynamic solution has a clear advantage 

over the original solution. The accuracy level compare has 

improved at least 23% and this increase up to 45% 

improvement. 



 

 

One of the important things to mention is that by introducing 

more transparent walls in each scenario, the accuracy of the 

original solutions drops, but in the dynamic solution we can 

see a consistency throughout all the scenarios. 

To compare the static solution and dynamic solution we must 

go back and compare the procedure to which they can be 

applied. In the static solution, to obtain a clear reading, we 

must first calibrate the robot in an open area so that the 

readings for the floor can be recorded. Later on if any changes 

are applied to the robot, this action must be repeated, whereas 

in the dynamic solution no calibration phase is needed. By 

changing the height value in the solution and setting in the 

actual height of the Kinect sensor, the approach can be 

applied.  

In addition to the phase in all scenarios with all the tests, the 

dynamic solution shows better results. This is due to the fact 

that the calibration can be really sensitive, and the readings for 

all points are not available at all times.  

By using black-box testing in our research, we have shown 

that these tests can be applied to any given approach for 

scanning the area and without knowing how the approach is 

working a clear accuracy level will be generated which can be 

later used for comparison between other approaches. In 

complex systems such as robot operating systems (ROS), it is 

usually very hard to understand all components and dig into 

the system to understand the behaviors. It is also difficult to 

understand how the different approaches affect the results, but 

with using black-box testing and using tests such as 

PASCAL’s VOC, F-measure and Weighted F-measure, one 

can simply extract the map in any way and by applying these 

tests, understand if the approach is good or not. 

B. Threats to Validity 

1) Threats to construct validity 

One of the main threats to our construct is applying the 

tests. PASCAL’s VOC, F-measure and Weighted F-measure 

all need to have the inputs exactly the same, meaning that the 

extracted maps must be exactly the same size and orientation. 

This is due to the fact that true-positives and similar concept 

compare the point to the corresponding point in the ground-

truth, and if this requirement is not met the results will not be 

valid. 

2) Threats to internal validity 

The main threat to our internal validity is hardware failures. If 

the Kinect sensor is in an environment where it will receive 

direct light, the results will be corrupted. Even in normal 

conditions, the sensor can still lose a lot of data [1]. 

Also the error in the Odometry can be a problem during the 

map generation process. If the Odometry fails, the resulting 

map will be rotated more or less than it should, which can 

result in an inaccurate map, which is not cause by any of the 

approaches related to using the depth sensor. The Odometry 

error was discovered when we conducted mapping of the L 

shaped corridor. As stated before, Odometry was not the aim 

of this research so we did not calculate the Odometry error. To 

avoid this error, in our experimental setting, we chose not to 

make any turns while we collected data from the Kinect 

sensor. 

3) Threats to external validity 

In our solutions in order to detect the transparent walls we 

were looking for the frame of the walls and detect them and 

then realizing the wall. If in an environment a scenario is 

introduced that the transparent wall have no frame located on 

the ground or in the view of the robot then our solutions might 

fail. This threat can be more generalize to any solution since 

the depth sensor would not be able to detect such case and 

maybe solutions like using RGB cameras might be of help. 

 

VIII. CONCLUSION  

A. Summary  

Localization and mapping are the key requirements in 

automated self-guiding robots to accomplish navigation. One 

of the most important techniques in this field is Simultaneous 

Localization and Mapping (SLAM). SLAM is processed in 

our test robot by outputs from Kinect sensor and Odometry. 

We have been focused to evaluated three different approaches 

of using Kinect sensor in mobile robotic. Aim is to find 

approach that makes mapping more reliable in indoor 

environments with transparent walls. We have used the black 

box software testing method to test functionality of our 

improved implementation. Furthermore, test results, which are 

presented as images of detected environment, was evaluated 

using three different accuracy tests; PASCAL's VOC, F-

measure and Weighted F-measure. 

B. Impact  

Original built-in solution works good in the environments 

without transparent walls, however as expected based on 

technology of Kinect sensor this solution shows leak of 

robustness in the environment with the transparent walls. 

Having that in mind we have developed two new approaches 

that we call Static and Dynamic approach. Both of those 

approaches shows improvement comparing to the original 

solution and can be used in environments that have frame 

around transparent walls. In our knowledge there is no 

environment that does not have solid frame around transparent 

walls. Our best solution Dynamic approach, which is called by 

that because it can be adapted to other robots and 

environments, is showing approximately 25% better results 

than original solution. This percentage would be even higher if 

our test scenario had only transparent walls but in that case 

original solution would totally fail and we do not find realistic 

that some indoor environment only have transparent walls. If 

we look at picture Figure 11 in part which shows corridor 

under Dynamic solution, we can see that transparent walls are 

detected totally. If we feed this picture to robot operating 

system (ROS) and make robot navigate to place behind 

transparent walls it will stop before reaching wall, same test 

done by picture made by original solution will make robot hit 

the wall.  With those simple tests we have shown that our 

Dynamic approach is considered as a very viable choice for 

use with mobile robots in indoor environments. 

 



 

 

C. Future Work 

We have shown that our approaches work with the 

Microsoft Kinect sensor in the environments with transparent 

walls, by finding the frame around the wall. However, when 

there is no frame around the transparent wall this solution will 

not give any improvements. We believe there are two 

possibilities for future work in this area; adding an ultra-sonic 

sensor on the mobile robot, or further processing methods that 

compare depth scans in relation to RGB picture and in that 

way somehow find transparent walls. Future work which 

researches a unit that handles Odometry would be also a good 

subject for black box testing, as we noticed possible 

imprecision in calculating how much the  robot turned. 
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