

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, June 2014

How MAD are we?
Empirical evidence for Model-Driven Agile Development
Bachelor of Science Thesis
Software Engineering and Management

SEBASTIAN HANSSON
YU ZHAO

The Author grants to Chalmers University of Technology and University of Gothenburg the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let Chalmers
University of Technology and University of Gothenburg store the Work electronically and
make it accessible on the Internet.

How MAD are we?
Empirical evidence for Model-Driven Development

Sebastian Hansson
Yu Zhao

© Sebastian Hansson, June 2014.
© Yu Zhao, June 2014.

Examiner: Imed Hammouda

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden June 2014

1

How MAD are we?
Empirical evidence for Model-Driven Agile

Development

Sebastian Hansson, Yu Zhao

University of Gothenburg
Chalmers University of Technology

Department of Computer Science and Engineering
SE-412 96 Göteborg

Sweden
Hansson.seb@gmail.com. guszhaoyu@student.gu.se

	

Abstract- Agile development and Model-driven Engineering has
both changed the software development industry significantly.
Increasing development performance, productivity and software
reliability. Agile with its rapid response to change and constant
stakeholder involvement and Model-driven development making it
easier to communicate within projects and providing high-level
designs and architectures. Though they both have some
deficiencies, could a combination of them both provide a solution to
this? Could Agile inherit the advantages of Model-driven
engineering and vice versa? In this paper we will presents a
systematic literature review (SLR) collecting practices and
experiences from projects that tried to combine these two
development styles. We will answer questions like; what is the state
of the art, combining Agile and MDD? And what is lacking in
empirical literature on Model-driven Agile development?

Keywords- Agile development, Model-Driven Engineering (MDE),
Systematic literature review (SLR), Empirical evidence.

I. INTRODUCTION	

How MAD (Model-driven Agile Development) are
we?

Both Agile and Model-driven development promises
increased productivity, quality [P13, P14], complexity of
systems, and stakeholder involvement [P11, P14]. Though they
also complement each other, where Agile methodologies
strength lies in its rapid response to change [P2, P14] and its
emphasis of working software over detailed documentation.
Model-driven engineering emphasizes a higher level of
abstraction, with comprehensive communication and

documentation of complex systems, MDD claims to improve
internal communication within the projects [20] with help from
models, that usually is easier to understand than code, for
someone not directly involved in the development [20]. Why are
projects combining Agile development and Model-driven
practices seems to lie in their shortcomings. Model-driven
practices have difficulties handling changes and including
stakeholders in their projects, thus making it less likely to
deliver software that meets the customers’ expectations. Agile
have difficulties with internal and face-to-face communication,
and agile promoters seem almost frightened by detailed
documentation [23]. Agile development also promotes to always
be lightweight, making it difficult to apply agile development in
large-scale projects where detailed documentation and high-
level design is a must. Can a negotiation between these two
styles be a solution? How can you integrate and inherit the best
out of both styles avoiding their shortcomings? The most
common approach is to include agile practices to MDD
practices. To see what empirical evidence there are for MAD we
decided to do a Systematic literature review (SLR). “A
systematic literature review is a means of evaluating and
interpreting all available research relevant to a particular
research question, topic area, or phenomenon of interest.
Systematic reviews aim to present a fair evaluation of a
research topic by using a trustworthy, rigorous, and auditable
methodology“ [2].

We will deliver a comprehensive overview about the

subject, providing future software development best practices by

2
collecting information about all documented cases we can find,
and answer our research questions What is the state of the art
combining Agile and MDD? And what is lacking in empirical
literature on Model-driven Agile development? Our results tells
us that the topic MAD is still too immature for anyone to claim
any success or a state of the art over another, and that future
work should focus on reporting industrial experience reports to
close the current gap in literature.

The rest of this report is structured as follows:

In section 2 will start explaining the background of
Agile, MDD, and MAD. In the next section, we will explain our
methodology conducting this report, including identifying
relevant papers with an inclusion and exclusion criteria. In
section 4, Quality Assessment we provide an even more detailed
inclusion criteria to ensure our selected papers provide enough
quality data. In section 5 we will present our findings based on
the eight papers that passed both our inclusion/exclusion criteria
and our quality criteria. In section 6, Synthesis, we will answer
our research questions. In section 7, threats to validity will be
explained. Last, in section 8 we present our conclusion of the
entire paper.

II. BACKGROUND	

A. Agile development

Since 2001, when the Agile Manifesto [5] was introduced
to the software-engineering industry, modern software
development was changed forever. The agile manifesto [5]
values practices such as, individuals and interactions over
processes and tools; Working software over comprehensive
documents; customer collaboration over contract negotiation;
responding to change over following plans. Agile development
includes practices such as, Scrum, XP, and cross-functional
teams [5, 17, 18]. Agile development is a group of software
development methods based on an iterative development style,
using requirements, solutions, and cross-functional teams, to
push development. Agile Software Development advocates the
incremental development of software based on constant
interaction with a customer community (Stakeholders) [P10]
and implementation begins much earlier in the life cycle rather
than using detailed documentation [1]. Agile has shown to have
big advantages over traditional software development, and
focuses on rapid delivery of business value, helping teams to
constantly evolve and change the technical and functional
landscape/business environment. This helps the organizations to

minimize the overall risk connected to software development.
Agile development use of feedback loops that makes it
constantly able to adapt and change the requirements throughout
the process with a close contact with the stakeholders [5]. With
Agile practices you work with short iterations where all
iterations should include the development of features, not tasks
because the customers can better understand the purpose of
features [16]. Though Agile processes are characterized by
considerably less emphasis on analysis and design than almost
all other modern life cycle models [P7] and can have difficulties
in a large-scale project [P3].

B. Model-driven development

MDD (Model-driven Development) is another software

development methodology that uses models to drive
development.

MDD uses and manipulates so-called domain models

instead of algorithms when developing software. Models are
usually combined with code to produce software. Due to the
increasing complexity of software systems, model-driven
approaches are gaining popularity. In particular, graphical
representations like UML diagrams of special system features
allow dealing with the complexity and also enabling advanced
analysis and validation capabilities [P8]. MDD is an approach to
software development where extensive models are created
before the source-code is written [P7]. We can categorize MDD
and Model-driven Architecture (MDA) as subsections to Model-
driven Engineering (MDE). “MDD is a subset of MDE where
the focus is on synthesis transformations, generating more
concrete representations from abstractions, while MDE also
emphasizes the need for other model-driven activities like
reverse engineering, the opposite to synthesis [3]”. With MDD,
a serial approach to development is often taken, which is quite
popular with traditionalists [P7]. The difference between MDD
and MDA is that MDA takes use of standards defined by the
Object Management Group, OMG inequality for MDA is the
detachment of Platform-Independent Models, PIM, from
Platform-Specific Models, PSM, where a PIM abstracts away
from implementation-specific details that are later perceived
through transformations in the PSM. Based on the detachment
of PIM and PSM a usually repeated claim is that the PIM can
serve two objectives, both as documentation and as an
implementation of the software [13], [14], [15]. While model-
driven approaches represent a step forward to reduce

3
development time and work at a higher level of abstraction,
most of them practically ignore stakeholder’s involvement
[P11]. The methodology is not agile to allow frequent
requirement changes because they concentrate on modeling
activities. Selmi et al. also point out some limitations such as
[7]:

● Inability to model business processes.
● Inability to support various abstraction levels.
● No use of standard notation.
● Inability to model interaction aspects.
● Inability to support dynamic generation content.

C. Model-driven Agile development (MAD)

Combining Agile and MDD is a concern raising activity

in the current literature [15, 20]. Mellor et al. [15] have
discussed combining agile and MDA, the theoretical result
demonstrates that, many of the agile practices can be
integrated with MDD. Moreover, Kleppe et al. indicates that
there are no problems in combining MDA and agile when the
MDA tools are more mature [22].

According to similar work of W. El Kaim, P. Studer, and

P.A. Muller, the approach to combine Model-Driven
engineering and Agile relies on model transformations to
promote agility in modeling [21]. Stahl and Völter argue that
executable models should work as a better communication
media [20]. As R. Gomes et al. state “This integration can
strongly contribute to a common understanding of the system
and to improved communications between different
stakeholders, as well as to a proficient SE collaborative
development environment” [6]. Rumpe also argues that UML
and XP can be combined within MDA, the models will enable
static analysis, rapid prototyping, code generation, automated
tests, refactoring/transformation as well as detailed
documentation [19]. One of the main reasons why
organizations want and should combine these two popular
development methods seems to lie in their shortcomings as
agile has difficulties with larger projects with the need of a
high-level design and MDD practices don’t have the full
support of stakeholders which decreases the chances of an
desirable application. “The models extended from UML focus
on the behavior of Web application. The agile process aims to
have quick-to-market property and adaptability to
requirement changes” [5].

III. METHOD	

 We have been reviewing literature regarding combining
two development processes (Agile development and Model-

driven development) based on a systematic approach called
Systematic Literature Review (SLR). SLR is a common way
of reviewing literature in the medical field but has gaining
popularity also in the Software Engineering field.
Kitchenham, 2007 has identified a guideline on how to
perform a SLR for software engineering [2].

A. Aims and Objectives
Our aim of this study is to gather all existing empirical

evidence about the combination of agile development and
model-driven development and to make a synthesis of the data
collected [2].
Sub-goals

● Summaries existing evidence [2]
● Identifying gaps in current literature [2]
● Provide framework/background for new research

activities [2]

B. Research Questions
This systematic literature review (SLR) aims to analyze

two different development methods (Agile and MDD) to find
out if you can combine them, however current literature
argues that there is little documented empirical evidence about
MAD, our research questions aims to find this out. We will
present and explain our research questions in Table1 (see page
4).

C. Inclusion Criteria
When performing a Systematic literature review it is

critical to set inclusion criteria before you select the final
papers, and in some cases also exclusion criteria. This is done
so that the researchers will be free from prejudice and would
not select the final papers based on their own biases. Our
inclusion/exclusion criteria are presented in Table 2 (See
page 4).

D. Identification of papers
Our method to identify the most critical and relevant

papers to our research starts with a search-string. We spend
considerable amount of time to find the best possible search-
string that could cover our research area. We used three
different digital libraries, IEEE explore, ACM digital library,
and the SpringerLink library. These three libraries are
covering the vast majority of software engineering
publications. To cover all publications discussing agile
process and model-driven development, we had to specify our
search string carefully, to not miss any important papers. We
tried different combinations and at the end we ended up using
a search string that included both the words “agile” and
“model” based on title search.

4

Research Questions (RQ) Motivation

- RQ1. What is the state of the art, combining Agile and Model-Driven
Engineering?

- What is the best practice combining agile and MDD? To what extend is it
sufficient? Methods/tools/approaches

- RQ2. What is lacking in empirical literature on Model-Driven Agile
Development?

- What information does future research needs to provide to close the gap in
the current empirical literature to make it more mature?

Table 1. Research Questions

Inclusion Exclusion

- Articles that is explicitly discussing the combination of agile and Model-
driven engineering Empirically.

- Articles discussing the combination of agile development and Model-driven
development only theoretically, not providing any clear case or general
experience reports.

- Only articles published after 2001, as the Agile manifesto was then
published

- Articles not written in English

- If the articles is published in multiple forms we select the most
comprehensive one. Our selection priority is: Journal-> Chapter-
>Conference- >Workshop

- Articles not published in Journals, Books, Conferences or Workshops

Table 2. Inclusion/Exclusion criteria

Figure. 1. Identification of papers.

5
Still, there is a possibility that even a good specified

search-string does not cover everything within a specific
research area. The papers found searching the databases is
called primary studies, collecting these primary studies,
reading them and check whether they make references of
other papers covering the same topics is a must. These papers
were found in the reference lists of our primary studies is
called secondary studies. Primary studies are often poorly
reported, so it may not be possible to determine how to assess
a quality criterion [2]. Secondary studies are usually a better
source to extract data from.

We then follow a three-step inclusion/exclusion
technique also explained in Figure 1 (See page 4):

1. The first step to include relevant paper is to read

the papers title and the papers abstracts and match these to our
inclusion/exclusion criteria used.

2. The second step is to read the introduction and

conclusion sections of the included papers from the previous
step to exclude even more papers not relevant to our topic. In
this step we are specifically looking if the papers are empirical
or not as the previous step already excluded papers with our
basic inclusion/exclusion criteria.

3. The third step is an iteration of step two but in this

step we exclude papers by reading the full articles.
In the process of identifying papers, if the articles are
published in multiple forms we select the most
comprehensive; The Selection priority is Journals, Chapters,
Conferences and Workshops. The priority is based on the
different venues’ credibility. The reason why we only select
papers that were published after 2001 is because the Agile
Manifesto was introduced in 2001 [5].

E. Identified paper

Primary studied

Results in Databases:

● Springerlink, 86 results, advanced search: where the
title contains: ("agile" & "model")

● ACM Digital Library, 84 results, search: (Title:agile
and Title:model)

● IEEE Xplore, 121 results, search: (("Document
Title":agile) AND "Document Title":model”)

Total results: 291 papers

Findings after reading the title and the abstracts:
● IEEE - 24 papers
● ACM - 27 papers
● Springerlink - 27 papers

Total: 78 papers.
Duplicates: 11.
Papers presented in multiple venues: 5.
Total after removing duplicates: 67 papers.
Total after removing publications presented in multiple
venues: 62 papers.

Total after reading introduction and conclusion
sections: 16 papers.

After reading through these sixteen articles we could
exclude even two more articles, they did not mention any
empirical case of combining MDD and agile development.
We ended up with fourteen papers that mention empirically
documented cases of trying the combination out.

Secondary studies

To find secondary studies, we read through all
references in the fourteen included papers, surprisingly we
could not find any secondary studies that matched our
inclusion/exclusion criteria for our identification of papers.
Again showing us that empirical evidence about Model-driven
Agile development is lacking information in current literature.

Publications Venue

In Appendix section, we have presented three
journals, three chapters, seven conferences, and one workshop
that has in some way empirically combined Agile
development with Model-driven development. According to
the venues of publications, there are just two articles
published in journals, suggesting that the research area on
MAD is not yet mature.

IV. QUALITY	
 ASSESSMENT	

The previous section described how we included and

excluded papers by specifying an inclusion and exclusion
criteria. In this section we will dig deeper and sort out even
more papers and identify which papers that are suitable to
extract qualitative data from. It is critical to set quality criteria
so the data extracted from different papers will be consistent
and coherent with another. This makes it possible to make a
synthesis, to answer our research questions.

6

Quality criteria Criteria definition

- Qc1 - Do the paper state any goals/aims why they want to combine agile
with MDD?

- What did the project want to accomplish?

- Qc2 - Do the paper mention how they combined the two development
methods?

- What was their strategy?

- Qc3 - Does the paper specify any agile practices used? - Ie. scrum, tdd, iterations, xp, stakeholders etc.

- Qc4 - Does the paper specify any MDD practiced used? - Ie. modeling language, tools, code generation, reverse engineering etc.

- Qc5 - Does the paper specify what kind of team/project that was developing
the software?

- Ie. team-size, responsibilities, configurations, time durations etc.

- Qc6 - Does the paper specify what kind of software they developed? - What domain?

- Qc7 - Does the paper mention if the project was a success or a failure? - What was successful? what was not?

Table 4. Quality criteria

Paper Nr P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

Qc1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Qc2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Qc3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓ ✓ ✓ ✓

Qc4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Qc5 ✓ ✓ ✓ X ✓ X X X ✓ X ✓ X ✓ ✓

Qc6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Qc7 ✓ ✓ ✓ ✓ ✓ ✓ X X ✓ ✓ ✓ ✓ ✓ ✓

Table 5. Results of applying quality criteria

7
As Kitchenham, 2007 [2] states, this is done to:

• To provide still more detailed inclusion/exclusion criteria
[2].

•To investigate whether quality differences provide an
explanation for differences in study results [2].

•As a means of weighting the importance of individual studies
when results are being synthesized [2].

• To guide the interpretation of findings and determine the
strength of inferences [2].

• To guide recommendations for further research [2]

“As it is difficult to define what quality is, the CRD
Guidelines and the Cochrane Reviewers’ Handbook both
suggest that quality relates to the extent to which the study
minimizes bias and maximizes internal and external validity”
[2].

A. Applied Quality assessment

We have provided a checklist based on Kitchenham,
2007 [2] quality check, This list is critical, to know that we
can get quality data from the papers selected, that we can
extract data that can answer our research question, and to
make a valuable synthesis of the data collected. Ensuring
sufficient contextual and methodological information is
reported [11]. Hence, we want to know how MAD is done.

B. Results of applying Quality criteria

By applying our quality criteria we identified a subset of

eight papers that are suitable to extract data from and to make
a synthesis from. As Table 5 explains, you can see that paper
P4, P6, P7, P8, P10, and P12 fails to report sufficient
information about what kind of project, or team that
performed in development. They lack information about team-
size, responsibilities, and configurations or do not state any
time-duration of the project making it difficult to draw
parallels and make any synthesis, as they are not coherent
with the other papers. Paper seven and eight also fail to
deliver any information if the project was a success or failure.
This is vital information for answering our research questions.
Paper eight also does not mention any agile practices used.
These excluded papers will not be a part of our section 5,
results nor section 6, synthesis.

V. RESULTS	

In this section we present our findings based on the

eight papers that passed both our inclusion/exclusion criteria
and our quality criteria. Some data will be presented using
tables; other data presented is a collection of the most valuable
information, which can answer our research questions. In this
section the data is presented straightforward and we try to
avoid making any conclusions or synthesis. The synthesis of
this data will be reported in the next section, section 5.

A. Goals

This section describes why the teams/projects wants

to combine MDD and Agile development.

Table 6 (See page 8) is a table of the extracted data from the
eight papers which all passed our quality criteria. As Wookjin
Lee et al. mention in their University Asset Management
System development process, “We cannot apply agile
processes to web application development directly. UML is
not sufficient for modeling the navigation of Web
applications” [P5]. Arguable pure agile methodology or pure
model-drive software development is not enough any more.
Therefore, in the industry, people are starting to combine
Agile methods and MDD for different purposes. For instance,
to shorten the development cycle, respond to the different
domain changes, request more clients’ involvement, etc. In
Wookjin Lee et al.’s case [P5], Agile and systematic
methodology is needed for the Web application development.
Moreover, Yuefeng Zhang [P1], Vinay Kulkarni [P3] et al.
prefers to shorten the delivery time in their projects. Rainer
Burkhardt et al. [P2] and Y. Zhang [P14] tend to use the
combination of agile method and MDD to respond to business
and technologies changes. Meanwhile, in Y.Zhang ‘s work
[P14], he also indicates that improved customer involvement
in the development process could improve productivity and
quality, which are reasons why he combines the Agile
methods and MDD. Y.Zhang [P14], Julián Grigera [P11] et al.
also aims to improve stakeholder’ involvement during the
development process in their customer satisfaction system.
Additionally, Pohjalainen, P [P9] aims to define variability in
software architectures with this combination. Y.zhang [P14],
James T. Sawyer and David M. Branns [P13] concern is for
better productivity and quality in their telecommunication
system, meanwhile, they also want to improve verification and
validation by combining Agile methods and Model-driven
engineering.

8

- Shorten the
delivery time

- Respond to
business and
technologies
changes.

- Stakeholders’
involvement in
MDD

- Demand for web
application

- Define variability
in software
architectures

- Improve
productivity and
quality

- Improve
verification and
validation

P1, P3 P2, P14 P11, P14 P5 P9 P13, P14 P13
Table 6. Data analysis table of goals

B. Strategy

This section describes how the teams/projects combined

MDD and Agile development.

The strategy used to achieve agile model-driven

development differs from the papers selected. Though many
papers also suggest similar approaches. As example, both
Rainer Burkhardt et al. [P2] and Vinay Kulkarni et al. [P3]
suggest an evolutionary approach that is suitable for change.
Pohjalainen, P. [P9] and Julián Grigera et al. [P11] suggest to
build mockup models, as a mean of communication and for
easy requirement gathering and requirement changes [P5,
P11], also James T. Sawyer state to create “just enough”
models up front, allowed to be changed along the project
[P13]. Thus many papers promote an agile way of building
models, with specific tools to easily transform the models
[P11]. Yuefeng Zhang suggest using iterations for MDD, and
also Wookjin Lee et al. wants sprints and iterations but to still
have a high level design [P5]. Zhang, Y strategy is to have
both agility and quality build into their development process
[P14] and Vinay Kulkarni suggest a modified agile method
and presented a tailored approach to address the need of
managing evolution using model-based techniques [P3].
Julián Grigera et al. [P11], James T. Sawyer et al. [P13], and
Zhang, Y[14] is using a Test-driven development approach
combined with modeling.

The most interesting and comprehensive strategy we

found is in Y.Zhang and S.Patel work [P1]. They use a
methodology called System level agile process (SLAP). SLAP
is a Scrum-based agile methodology, constructed by
Motorola. SLAP includes extreme programming practices and
takes use of SCRUM as a baseline [P1]. SLAP intends to split
the software lifecycle in short iterations, where all iterations
include three sprints; requirements, architecture, development,
and then system integration feature testing (SIFT) [P1].

Y.Zhang and S.Patel then combine SLAP with the MDD

process of Motorola, which is based on UML (Unified
modeling language), dividing the software developments life

cycle in multiple milestone phases where each milestone
includes a single or multiple iterations. Combining Motorola’s
MDD process and SLAP, requires establishing a
correspondence between SLAP sprints and MDD
development activities. Using SLAP as a backbone process
and mapping MDD processes to the corresponding SLAP
sprints, building the software from model increments of
system functionality in an incremental and iterative approach
[P1].

Y.Zhang and S.Patel also state other interesting proposals

such as:
“The key in achieving agile MDD is to combine an agile
process in a way that can inherit the benefits of both and at
the same time avoid their shortcomings”, “From MDD
perspective the key to success is to maximize automation using
the MDD tools chain to enable mistake-free (high-quality)
development and significant productivity increase” and
“From the Agile perspective, the key is to efficiently achieve
end-to-end iterations, from system engineering all the way to
system testing. This requires streamlining different process
activities such as system engineering, development, and
testing” [P1].

Though the most interesting part of Y.Zhang and S.Patel

work are their way of presenting a table of different MDD
practices where each practices correspond or relate to an agile
practice [P1]. They state that a key to implement Model-
driven agile development lies in figuring out where and how
to apply what agile practices in MDD [P1]. We will present
the table as Figure 2 [P1].

C. Challenge

This section discusses what difficulties and challenges the

teams/projects had when combining the two different
development styles. Also describes challenges connected to
Agile and Model-driven engineering separately.

9

Figure 2. Yuefeng Zhang, Shailesh Patel, 2011.

Simon Urli et al. says that traditional MDD is too

heavy for time-boxed iterations, as incremental iterations means
change [P9]. Zhang, Y [P14] argues that model changes is hard
to handle, thus in the ever-changing world we are living, with
technological and business changes, the domain knowledge is a
big issue [P1, P2].

Yuefeng Zhang et al. state, “Agile MDD is still

relatively new in real software development. The learning curve
is sharp for any new organization to adopt due to process,
culture, methodology, and other related changes. Thus,

adopting a new agile MDD process is not likely to produce a
short-term benefit. But, for the long-term, it’s ultimately worth it
for large projects with multiple releases” [P1] also Xufeng
(Danny), Liang et al. mention that existing web modeling
techniques have a steep learning curve [P12].

To provide lightweight-agility in the development
seems to be a solution for Vinay Kulkarni, who argues that
traditional, agile development is not suited for larger
teams/projects [P3].

10

Scrum XP Iterations/incremental

development
Test-driven development Feature-driven development

P1, P3, P5, P9, P11 P1, P3, P5, P11 P1, P2, P3 P11, P13, P14 P3

Table 7. Agile Practices

Unified modeling
language

Code generation Model-driven
architecture

Feature modeling Alt. modeling /web
modeling tools

Mockup models

P1, P2, P5, P14 P1 P9 P3, P9 P5, P11, P13 P9, P11

Table 8. MDD Practices

D. Agile/MDD Practices

In this section the tools and practices used is described.

From the extracted data in our final eight papers. Yuefeng
Zhang [P1] et al. suggests a general idea for Agile MDD. “The
key in achieving agile MDD is to combine an agile process with
an MDD process in a way that can inherit the benefits out of
both and at the same time avoid their shortcomings”[P1]. It is
obvious to see from the data we found, that people have chosen
different Agile methods and different MDD practices to achieve
the combination for different goals. In general, Scrum, XP,
Unified modeling language (UML), and others modeling tools
are the most common methods used among the teams. In the
paper “Agile Model-Driven Development in Practice” [P1]
Yuefeng Zhang and Shailesh Patel have chosen Scrum, XP,
iterative development of Agile methods, Unified modeling
language and code generation for Model driven methods. In
their real-time telecommunications system, they aim to shorten
the development cycle, which is also Vinay Kulkarni et al. aim
[P3]. Coincidentally, as we can see in the Table 7, Vinay
Kulkarni et al. [P3] have chosen the same agile methods as
Yuefeng Zhang and Shailesh Patel [P1]. In order to respond
quickly changes in business and technologies, Rainer Burkhardt
et al [P2] have chosen iterations and unified modeling language
as practices for the combination. Meanwhile, Y.Zhang [14] tend
to use Test-driven development and Unified modeling language
in combination to achieve the same goal as Rainer Burkhardt et
al [P2]. Besides of responding the changes in business and
technologies, Y.Zhang [14] also uses this combination to
improve the stakeholders’ involvement during the development
process and to improve the productivity. Interestingly, Julián
Grigera et al. [P11] have chosen a different agile methods and
MDD technology to improve stakeholders’ involvement, for

instance Scrum, XP, Test-driven development, and alternative
modeling tools. Another main purpose to combine Agile and
MDD is to improve productivity and quality, which also
Y.Zhang [14], James T. Sawyer and David M. Brann does. They
decided to use a Test-driven development approach from Agile
methods to achieve Agile MDD, but the difference is that James
T. Sawyer and David M. Brann are using web modeling tools
instead of Unified modeling language of MDDs tool-chain. In
addition, James T. Sawyer and David M. Brann use the
combination to improve the verification and validation in their
projects. In Paper 5, Wookjin Lee et al. [P5] argues that Agile
and systematic methodology is needed for web application
development. For this integration Wookjin Lee et al. have
chosen Scrum, XP, Unified modeling language and other
modeling tools. In their Telecommunication account
provisioning system [9], Pohjalainen, P [P9] uses Scrum,
Model-driven architecture and mock-up models to define
variability in software architectures.

E. Team/Project & Domain

As we can see from the Table 9, there are eight systems
and applications that have been released successfully. However,
some of the development teams actually have been through a
tough time during the development process. In the real-time
telecommunication system project [P1], “Brand-new team that
formed in batches—not all team members joined at the same
time. Many team members had no MDD background or prior
agile experience. In addition, most team members needed to
pick up new domain knowledge”. The same situation also
happened in Vinay Kulkarni et al [P3]’s business application
project, their development team was restructured, and the newly
formed team had different domain knowledge and a totally

11

Paper Nr P1 P2 P3 P5

Domain Real-time telecommunication
system

Corporate legacy system. MDD toolset, MasterCraft
for a database-centric
business critical application

University Asset Management System.
(Web Application)

Team/project New team with no agile, mdd,
or domain knowledge

Web design team. Dynamic,
changing team

New formed Team Sw analyzer, domain expert.
UI, component, and db developers.
Tester.
Client.

Paper Nr P9 P11 P13 P14

Domain Telecommunication account
provisioning system.

Customer Satisfaction
System

Testing Software Telecommunication system

Team/project Web design team. 10 Sw developers
experiment

Simulation team, High
visibility, high-pressure,
short delivery project

 60 people divided into groups

Table 9. Team/Project & Domain

different agile and MDD background. Meanwhile, a similar
situation happened in Rainer Burkhardt et al. [P2] corporate
legacy system, the development teams were not static, and
teams’ size changed over time, as Rainer Burkhardt et al. [P2]
described, “The size of teams varies over time and from team to
team. The weakest team in headcount is the Web Design Team.
The strongest was the Development team with a headcount of
12, scaled down later on” [P2]. However, we can still see roles
well-constructed and static teams in some empirical practices. In
Paper 5, Wookjin Lee et al. [P5] have defined many roles during
the development process, for instance, software analyzer,
domain expert, UI developers and testers. When we look into
Y.Zhang [P14]’s telecommunication system, he described a
detailed team construction process, “More than 60 people work
on this project, divided into groups. Some external groups are in
different geographical locations. A big group is subdivided into
multiple teams, and each team consists of two to 10 developers.
Different teams are responsible for developing different
subsystems. The members in a typical team sit close to each
other and often work together. Weekly face-to-face group
meetings foster communication among teams within a group as
do weekly conference call meetings among groups”. Still, in
some projects, they just mention vague, and unclear teams’
constructions [P8, P11, P13]. All in all, the empirical evidence
about Agile Model-Driven Engineering is still too unexplored.

People in this industry lack the proper domain knowledge and
experience, people are still in the exploration stage.

F. Impact

All the papers P1, P2, P3, P9 and P13 state that they
successfully combined Agile and MDD, and many of them
deployed a system or application. “We saw big advantages in
applying agile practices to modeling and in applying intensive
modeling to our projects” [P2]. Yuefeng Zhang et al. and Rainer
Burkhardt et al. argue that the combination could be useful for
future development teams, but that the learning curve is steep,
thus it is not likely to produce short-time benefits, but for the
longtime it is absolutely beneficial [P1, P2]. Rainer Burkhardt et
al. [P2] and Zhang, Y [P14] noticed an increase in commitment,
quality and productivity from the developers, also James T.
Sawyer et al. [P13] had a better overall team performance and
Julián Grigera et al improved in both time and satisfaction
[P11]. Wookjin Lee et al. tell us that their approach would not
be effective on large projects [P5], where Zhang, Y states that
their approach could be beneficial and possible for any-size
projects [P14]. Though most papers fail to provide detailed
descriptions on what was successful and why it was successful.

12

VI. SYNTHESIS	

This section aims to provide a synthesis of the results
and data we collected from our eight final papers in the previous
section. This quality data is gathered and collected in such a way
that it can answer our research question.

Our findings tell us that the common trend among the

reviewed papers is to include a more agile way into existing
software development practices. In our case, to include agile
practices into model-driven development practices. Especially
because of the Agile developments advantages with rapid
response to change and close stakeholder involvement. This is a
common trend in the software industry, not only from MDD to
agile, but also to include agile practices in other traditional
development practices. A agile evolution of the Software
product line (SPL) [P10].

A. Answering our research questions

- RQ1. What is the state of the art, combining agile and model-
driven engineering?

Based on our findings, we can conclude that the area
around MAD is somehow immature regarding theoretical
approaches, but even more immature when it comes to empirical
evidence and industrial experiences. To answer this research
question, it is not enough to look at the theoretical part, we need
evidence to prove any best practice/state of the art, though the
evidence seems to be lacking. The strategies used among the
papers found is in many cases also contradictory to each other
providing information about different domains, goals and
strategies, making it difficult to claim any best practice or
success over someone else. Though the most common goals
seem to be the agile value of rapid response to change and
contact to external stakeholders, and models as an easy way to
communicate to internal stakeholders. Most papers wants to
include agility into their MDD processes, as this is a huge trend
in current software development and has shown great success in
big companies. What we need is teams who are willing to
experiment using MAD, trying out different combinations and
reporting their performance in detailed reports. Only when the
area is mature enough it would be possible to claim a state of the
art combining Agile and MDD. Though claiming that the area is
not yet mature does not mean it is not possible to adapt. As
Y.Zhang and S.Patel say “Agile MDD is still relatively new in
real software development, the learning curve is sharp for any
new organization to adopt due to process, culture, methodology,

and other related changes. Thus adopting a new agile MDD
process is not likely to produce a short-term benefit. But, for the
long term, it’s ultimately worth it for large projects with
multiple releases” [P1]. and other authors such as Wookjun Lee
et al. argues that pure agile methodology or pure model-driven
software engineering is not longer enough. “we can not apply
agile processes to web application development directly. UML
is not sufficient for modeling the navigation of Web
applications” [P5]

As mentioned, it is difficult to claim any state of the art

or best practices for MAD yet, but Y.Zhang and S.Patel [P1]
still gives us a clue, and the closest answer to our question. For
this reason we will explain their findings more
comprehensively. As Figure 2 in section 5.2 Strategy explains
and Y.Zhang and S.Patel mention; different MDD practices
corresponds to a given Agile practice and vice versa.

We will present a short summary of each Agile and

MDD practice and it’s relationship to each other based on
Y.Zhang and S.Patels work [P1].

Modeling as coding: Using UML as a high-level visual
programming language and use UML code generator as a UML
compiler. Then forward engineering from UML to C or C++.
Applying paired UML modeling (paired modeling).

Paired modeling: This corresponds to the paired development
agile practice. Two developers or one customer representative
work together on UML modeling for one sprint, then rotating
pairs, works to detect and resolve modeling issues instantly.

Test-driven modeling: This corresponds to the test-driven
development agile practice Test-driven development; they create
UML sequence diagrams, and then use them to drive UML
design and development of test cases. The focus of UML state
machines at the beginning of a sprint is on sending and
receiving signals in the right order.

Iterative and incremental modeling: This corresponds to the
counterpart of agile practice, Iterative and incremental
development. Authors do UML modeling over multiple sprints,
repeat the same set of development activities in each sprint,
create and evolve an executable model for each sprint with an
increment of functionality on top of the model from the previous

13
sprint, keeping models executable for both simulation and target
platform testing.

Modeling as live design documentation: Using UML as a live
design document to minimize manual document. Applying
“working software over comprehensive documentation” [5] to
UML modeling.

Automated batch mode simulation: This corresponds to the
agile practice of automated regression testing, development, and
verifying individual test cases, and add them to the list for
automated batch mode execution, then execute all test cases,
finally analyze the test results.

Continuous modeling: The corresponds to the agile practice of
continuous integration, merging UML design frequently,
performing automatic code generation for simulation many
times in a sprint, and performing automatic code generation for
target platform testing and SIFT, two or more times in a sprint.

MDD tools chain: valuing the MDD tools chain over individual
tools (IBM Tau for UML modeling, IBM tester for unit and
integration test harness etc.) using it in particular to maximize
automation.

Agile MDD management: using the agile project planning and
management tool Version One and a daily MDD plan update in
daily standup meetings, daily MDD task status updates, frequent
reviews of sprint plans, and a sprint postmortem meeting for
lessons learned.

Iterative and Incremental development: Aligning with the
agile process, MDD has been changed to enable end-to-end
iterations, that is, apply iterations to all phases, from system
requirements specification all the way down to system testing.

System Engineering: In both Motorola’s agile and MDD
processes, they create a system engineering UML model to
precisely define a system architecture and its dynamic behavior
in a layered fashion, and then syntax check the system
engineering model and create it with downstream reuse in mind,
such as by reusing the interface, signals and etc.

Coding: In the agile process: Forward engineering from UML
to C/C++, this is achieved by using and MDD tools chain that
supports UML transition-oriented state machines and can

automatically generate fully executable code from a UML
model.

Unit Testing: For streamline UML unit testing and integration
testing, MDD tools chain for unit testing has been used, on the
UML side, IBM Tau (a UML model verifier), and on the unit
test harness side, IBM tester has been used.

Integration and System Testing: For Streamline unit,
Integration and system testing, the UML unit-testing
environment is adapted to implement both integration and
system testing environments. In this case, authors test the UML
model as a whole in unit testing, same unit test cases for
integration testing has been reused.

Test-driven development: First, authors create both UML
model and test cases (for unit, integration, and system testing),
according to the sequence diagrams. Finally, authors execute the
test cases until the unit, integration, and system-testing pass.

- RQ2. What is lacking in empirical literature on Model-
Driven Agile Development?

As we were performing a Systematic literature review,
our initial search gave us around 300 results, by searching on
“agile” AND “model” based on title search. After removing
articles based on our inclusion and exclusion criteria we had
only sixteen papers left who mention any empirical evidence in
their papers, this is a rather low value for an SLR, suggesting
that the area is still immature and surprisingly, according to the
venues of publications, there are just two articles published in
journals, suggesting again that the research area on MAD is not
mature. By searching for secondary studies, it resulted in not
finding a single paper that could match our inclusion/exclusion
criteria nor our quality criteria, suggesting that more research in
the area is needed. There are authors discussing different
theoretical approaches for MAD but few papers describing
detailed information how a company or a team implemented
such a practice into their development process. Most of the eight
papers that passed our quality criteria also fail to deliver detailed
information how they performed MAD. They barely mention
their team-setup, what practices they combined and what tools
they used. Only in paper five the team is properly described.
They provide detailed information about their team-setup
describing their roles.

14
We suggest that the literature needs more experience reports and
focus on describing in detail variables like:

● Teams/project - team-size, responsibilities,
configurations, time durations.

● Practices used - Agile practices, MDD practices.
● Strategy - how they combined Agile and MDD

practices, what was successful and what was not.
● Tools to achieve MAD.

	

VII. THREATS	
 TO	
 VALIDITY	

Our research may face validity issues as our research

was limited searching only in ACM digital library, Springerlink,
IEEE explore. There are other digital libraries, which is widely
used in the software engineering field. We plan to extend our
study by adding more databases. Another threat to the validity is
our search string, as we did a title search on the words agile
AND model, it is possible that we have missed articles
discussing the combination of agile and model-driven
engineering but not mentioned it in their title. Though as
searching the references in our primary studies for secondary
studies applying our inclusion and exclude criteria and our
quality criteria we could not find any article passing the criteria.
This gives us some confidence that we could not have missed
many articles in our initial search. Our inclusion and exclusion
criteria and our quality assessment can also be a threat to
validity as we were searching for actual industrial cases where
the authors mention certain key information that we as
researchers see as empirical evidence, such as teams, project
success, MDD and Agile practices among others.

There are many other papers that discusses how and
why you should combine the two development methods but they
lack these key information, thus failing our identification of
relevant papers. The papers not passing our criteria might have
important information regarding agile MDD, but could not be
included in our data extraction and synthesis. Also our papers
included for synthesis might fail to deliver high quality. They
might pass our criteria but fail to deliver detailed information in
the passed criteria, thus making it difficult for us to be confident
if it should be included or not. Same thing goes for documents
not passing our criteria; it still might have valuable information
regarding our study, but is not included.

Our time-limit and volume of the paper is also a threat
to validity, as this project had a time-limit of around two months
with limited resources, there are possibilities that we might have
missed out important information. Because of this it was also
not possible to follow every step of Kitchenham’s guidelines on
performing an SLR. The biggest issue when it comes to validity
threat is the Agile MDD subject itself, finding only 8
documented papers where a team/project performed the
combination process, with some documents mention vague
information about it, here there is big gap in literature and huge
space for further research

VIII. CONCLUSIONS	

As Ambler indicates that “The use of Agile
methodology in model-driven development is not prevalent yet,
except tailored Agile approaches, such as Agile model driven
development” [4], the practical experiences of Model-Driven
Agile Development are still uncommon. Reza Matinnejad also
indicates “AMDD is a promising research context and a great
practical concept, but it is not mature enough and is still in its
infancy” [23].

In this paper we have presented the results of a

systematic literature review about empirical evidence on Model-
Driven Agile Development. In the eight papers which all passed
our quality criteria, the authors wanted to combine the Agile
methods and MDD in a way that it could benefit out of both
worlds and at the same time avoid their shortcomings. In the
result section, we have presented different integrations of Agile
practices and MDD for different purposes. Due to this, Reza
Matinnejad gives us a proper description of AMDD, “AMDD
can best be described, in our opinion, as an intelligent
compromise” [23]. However, due to the available reference
materials (empirical experiences) are rare, challenges were
accompanied with their development process. There are multiple
authors discussing different theoretical approaches for MAD but
just a handful papers describing detailed information how a
company or a team implemented such a practice into their
development process. Most of the eight papers that passed our
quality criteria also fails to deliver comprehensive information
how they performed MAD. They barely mention their team-
setup, what practices they combined and what tools they used,
just in a few papers this is properly described. Discovering that
the area around MAD is immature gives plenty of space for
future research, especially when it comes to detailed experience

15
reports, as agile MDD is a relatively new in the software
development industry. We aim to extend this study by including
more databases, and to provide more comprehensive empirical
evidences, digging deeper in the low level of MAD.

IX. ACKNOWLEDGEMENT	
 	

	

We thank our colleagues at the Department of
Computer Science and Engineering, especially our supervisor
Håkan Burden.

X. 	
 	
 	
 	
 	
 	
 	
 REFERENCES	

[1] Schach, S.R, “Object-Oriented Classical Software Engineering”, 7th edn.
McGraw-Hill (2007).
[2] Kitchenham, B. & Charters, S. (2007),” Guidelines for performing
systematic literature reviews in
software engineering”: Technical Report EBSE-2007-01, School of Computer
Science and Mathematics, Keele University, 2007.
[3] T. Mens and P. V. Gorp, “A Taxonomy of Model Transformation,”
Electronic Notes in Theoretical Computer Science, vol. 152, pp. 125–142,
March 2006.
[4] Ambler, S.W, “Agile Model Driven Development”: AMDD (2007),
[5] J. Highsmith and M. Fowler, “The agile manifesto,”: Software Development
Magazine, vol. 9, no. 8, pp. 29–30, 2001.
[6] R. Gomes, G. Hoyos-Rivera, R. Willrich, C. Lima, and J.-P. Courtiat, “A
loosely coupled integration environment for collaborative applications”: IEEE
Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 41, no. 5, pp. 905– 916, Sep.
2011
[7]S. Selmi, N. Kraiem, and H. Ghezala, “Toward a Comprehensive View of
Web Engineering”: ICWE 2005, LNCS 3579, pp. 19-29, 2005.
[8] P. Abrahamsson, M. A. Babar, and P. Kruchten, “Agility and architecture:
Can they coexist?” IEEE Software, 27:16–22, 2010.
[9] Y. Ghanam and F. Maurer, “An iterative model for agile product line
engineering”: The SPLC Doctoral Sympo- sium, 2008.
[10] C.W.Krueger, “Biglever software gears and the 3-tiered spl methodology”:
Companion to the 22nd ACM SIGPLAN conference on Object-oriented
programming systems and applications companion, OOPSLA ’07, pages 844–
845, New York, NY, USA, 2007.
[11] Beecham, S, Bowes, D, Gray, D, Counsell, S, “A Systematic Literature
Review on Fault Prediction Performance in Software Engineering”: Dept. of Inf.
Syst. & Comput., Brunel Univ., Uxbridge, UK, 2012.
[12] Jessica Díaz, Jennifer Pérez, Pedro P. Alarcón and Juan Garbajosa, “Agile
Product Line Engineering”: Wiley Online Library, 2011.
[13] S. J. Mellor and M. Balcer, “Executable UML: A Foundation for Model-
Driven Architectures”: Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2002.
[14] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie, “Model Driven
Architecture with Executable UMLTM”: New York, NY, USA: Cambridge
University Press, 2004.
[15] S. J. Mellor, S. Kendall, A. Uhl, and D. Weise, “MDA Distilled”: Redwood
City, CA, USA: Addison Wesley Longman Publishing Co., Inc., 2004.
[16] J. Highsmith and A. Cockburn, “Agile Software Development: The
Business of Innovation”: Computer, vol. 34, no. 9, pp. 120–122, 2001.
[17] H. Takeuchi and I. Nonaka, “The New Product Development Game,”:
Harvard Business Review, January-February 1986.
[18] K. Schwaber and M. Beedle, “Agile Software Development with Scrum”:
1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2001.
[19] B. Rumpe, “Agile Modeling with the UML,” in Radical Innovations of
Software and Systems Engineering in the Future, ser. Lecture Notes in

Computer Science, M. Wirsing, A. Knapp, and S. Balsamo, Eds. Springer Berlin
Heidelberg, vol. 2941, pp. 297–309, 2004.
[20] T. Stahl and M. Volter, ¨Model-Driven Software Development:
Technology, Engineering, Management”: John Wiley & Sons Inc., 2005.
[21] W. El Kaim, P. Studer, and P.-A. Muller, “Model Driven Architecture for
Agile Web Information System Engineering”: 2003.
[22] Kleppe, J. Warmer, and W. Bast, “MDA Explained: The Model Driven
Architecture ™”: Practice and Promise. Addison-Wesley Professional, 2005.
[23] Reza Matinnejad, “Agile Model Driven Development: An Intelligent
Compromise”: Ninth International Conference on Software Engineering
Research, Management and Applications, 2011.

Identified papers

[P1] Yuefeng Zhang, Shailesh Patel, “Agile Model-Driven Development in
Practice”: Software IEEE, 2011.
[P2] Rainer Burkhardt, Volker Gruhn, “Agile Software Engineering: A New
System for an Expanding Business Model at SCHUFA”: Object-Oriented and
Internet-Based Technologies, 2004.
[P3] Vinay Kulkarni, Souvik Barat, Uday Ramteerthkar, “Early Experience with
Agile Methodology in a Model-Driven Approach”: Model Driven Engineering
Languages and Systems, 2011.
[P4] Ramos,A.l, Ferreira, J.V, Barcelo,J, “LITHE: An Agile Methodology for
Human-Centric Model-Based Systems Engineering”: Systems, Man, and
Cybernetics Society, IEEE, 2013.
[P5] W.Lee, S.Park, K.Lee, C.Lee, B.Lee, W.Jung, T.Kim, H.Kim, C.Wu,
“Agile development of Web application by supporting process execution and
extended UML model”: Software Engineering Conference. APSEC '05. 12th
Asia-Pacific, 2005.
[P6] Cardoso, N, Rodrigues, P, Ribeiro, O, Cabral,J, Monteiro, J, Tavares, A,
“An agile software product line model-driven design environment for video
surveillance systems”: IEEE 17th Conference on Emerging Technologies &
Factory Automation (ETFA), 2012.
[P7] Yen-Chieh Huang, Chih-Ping Chu, “Legacy System User Interface
Reengineering Based on the Agile Model Driven Approach”: Recent Advances
in Computer Science and Information Engineering, 2013.
[P8] Djanatliev, A. Dulz, W. German, R. Schneider, V, “Veritas - a versatile
modeling environment for test-driven agile simulation”: Simulation Conference
(WSC), Proceedings of the 2011 Winter, IEEE, 2011.
[P9] Pohjalainen, P, Bottom-up Modeling for a Software Product Line: “An
Experience Report on Agile Modeling of Governmental Mobile Networks”:
Software Product Line Conference (SPLC), 15th International, 2011.
[P10] Simon Urli, Mireille Blay-Fornarino, Philippe Collet, Sébastien Mosser,
“Using composite feature models to support agile software product line
evolution”: Proceedings of the 6th International Workshop on Models and
Evolution, 2012.
[P11] J.Grigera, J.Matías Rivero, E.Robles Luna, F.Giacosa, G.Rossi, “From
requirements to web applications in an agile model-driven approach”: 12th
International Conference, ICWE, Berlin, Germany, July 23-27, 2012.
[P12] Xufeng (Danny), Liang Ioaki (Makis) Marmaridis, Athula Ginige,
“Facilitating Agile Model Driven Development and End-User Development for
Evolving Web-based Workflow Applications”: ICEBE '07 Proceedings of the
IEEE International Conference on e-Business Engineering, 2007.
[P13] James T. Sawyer, David M. Brann, “How to test your models more
effectively: applying agile and automated techniques to simulation testing”:
WSC '09 Winter Simulation Conference, 2009.
[P14] Zhang, Y, “Test-Driven Modeling for Model-Driven Development”:
Software, IEEE, 2004.

16

XI. APPENDIX	

Paper Nr Title Author Venue

Paper 1 Agile Model-Driven Development in Practice Yuefeng Zhang,
Shailesh Patel

Journal, Software IEEE, 2011.

Paper 2 Agile Software Engineering: A New System for an
Expanding Business Model at SCHUFA

Rainer Burkhardt,
Volker Gruhn

Chapter of the book, Object-Oriented and
Internet-Based Technologies, 2004.

Paper 3 Early Experience with Agile Methodology in a Model-
Driven Approach

Vinay Kulkarni,
Souvik Barat,
Uday Ramteerthkar

Chapter of the book, Model Driven Engineering
Languages and Systems,2011.

Paper 4 LITHE: An Agile Methodology for Human-Centric
Model-Based Systems Engineering

Ramos,A.l,
Ferreira, J.V,
Barcelo,J.

Journal, Systems, Man, and Cybernetics Society,
IEEE, 2013.

Paper 5 Agile development of Web application by supporting
process execution and extended UML model

Wookjin Lee, Sanghyun Park,
Keeyoull Lee, Chunwoo Lee,
Byungjeong Lee, Woosung Jung,
Taeksu Kim, Heechern Kim,
Chisu Wu

Software Engineering Conference, 2005. APSEC
'05. 12th Asia-Pacific

Paper 6 An agile software product line model-driven design
environment for video surveillance systems

Cardoso, N, Rodrigues, P,
Ribeiro, O, Cabral,J,
Monteiro, J, Tavares, A.

2012 IEEE 17th Conference on
Emerging Technologies & Factory Automation
(ETFA)

Paper 7 Legacy System User Interface Reengineering Based on
the Agile Model Driven Approach

Yen-Chieh Huang,
Chih-Ping Chu

Chapter of the book, Recent Advances in
Computer Science and Information Engineering,
2013.

Paper 8 Veritas - a versatile modeling environment for test-
driven agile simulation

Djanatliev, A. Dulz, W. ; German, R. Schneider,
V.

Simulation Conference (WSC), Proceedings of the
2011 Winter, IEEE

Paper 9 Bottom-up Modeling for a Software Product Line: An
Experience Report on Agile Modeling of Governmental
Mobile Networks

Pohjalainen, P. Software Product Line Conference (SPLC), 2011
15th International

Paper 10 Using composite feature models to support agile
software product line evolution

Simon Urli, Mireille Blay-Fornarino, Philippe
Collet, Sébastien Mosser

Proceedings of the 6th International Workshop on
Models and Evolution, 2012.

Paper 11 From requirements to web applications in an agile
model-driven approach

Julián Grigera, José Matías Rivero, Esteban
Robles Luna, Franco Giacosa, Gustavo Rossi

12th International Conference, ICWE 2012,
Berlin, Germany, July 23-27, 2012.

Paper 12 Facilitating Agile Model Driven Development and End-
User Development for Evolving Web-based Workflow
Applications

Xufeng (Danny), Liang Ioaki (Makis)
Marmaridis, Athula Ginige

ICEBE '07 Proceedings of the IEEE International
Conference on e-Business Engineering, 2007.

Paper 13 How to test your models more effectively: applying agile
and automated techniques to simulation testing

James T. Sawyer, David M. Brann WSC '09 Winter Simulation Conference, 2009.

Paper 14 Test-Driven Modeling for Model-Driven Development Zhang, Y. Journal, Software, 2004.

Meta-Table for Primary studies

