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Abstract

In this thesis we study a numerical procedure for the solution of the
inverse problem of reconstructing location, shape and material properties
(in particular refractive indices) of scatterers located in a known back-
ground medium. The data consist of time-resolved backscattered radar
signals from a single source position. This relatively small amount of
data and the ill-posed nature of the inversion are the main challenges of
the problem. Mathematically, the problem is formulated as a coefficient
inverse problem for a system of partial differential equations derived from
Maxwell’s equations.

The numerical procedure is divided into two stages. In the first stage,
a good initial approximation for the unknown coefficient is computed by
an approximately globally convergent algorithm. This initial approxi-
mation is refined in the second stage, where an adaptive finite element
method is employed to minimize a Tikhonov functional. An important
tool for the second stage is a posteriori error estimates – estimates in
terms of known (computed) quantities – for the difference between the
computed coefficient and the true minimizing coefficient.

This thesis includes four papers. In the first two, the a posteriori error
analysis required for the adaptive finite element method in the second
stage is extended from the previously existing indirect error estimators
to direct ones. The last two papers concern verification of the two-stage
numerical procedure on experimental data. We find that location and
material properties of scatterers are obtained already in the first stage,
while shapes are significantly improved in the second stage.

Keywords: coefficient inverse problem, inverse scattering, backscat-
tering data, approximate global convergence, finite element method, adap-
tivity, a posteriori error analysis
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Part 1

Introduction



1. The problem framework

In this thesis we study a numerical procedure for solving a so-called
coefficient inverse problem (CIP) which is an inverse scattering problem
for electromagnetic wave propagation. In this introduction, we will start
from a short description of the physical problem, gradually proceed with
the mathematical formulation, and give an overview of the numerical
procedure.

As a starting point, let us consider the idea behind radar detection.
A basic radar device involves essentially three parts: a transmitter, a re-
ceiver, and a processor. This is a very simplified description, but it will be
sufficient for our purposes. For a more detailed overview, see for instance
the introduction in [16]. The transmitter produces electromagnetic signals
at certain frequencies. These electromagnetic signals propagate through
the surrounding medium until they hit an obstacle, a scatterer. When
this occurs, some of the signals are reflected back in (approximately) the
direction from which they came. Some of these backscattered signals are
detected by the receiver when they return to the radar device.

In the processor, information about the scatterer is derived by ana-
lyzing the backscattered signals. In the simplest case, when the scatterer
is located in air, we deduce the distance between the scatterer and the
source, in the direction from which the backscattered signal was received,
from the time between the moment the outgoing signal was produced and
the moment the backscattered signal was detected. Thus we know where
the scatterer is located. By studying the backscattered signal more care-
fully additional information about the scatterer can be obtained. The
situation is much more complicated in practice. Overlap of signals from
many scatterers and noisy signals are examples of sources for increased
complexity.

The information we seek to determine in this thesis is, in addition
to the location of scatterers, also their shapes and material properties.
For the latter we seek to classify scatterers as metallic or non-metallic
(dielectric) or a mixture of metallic and non-metallic parts. In the case
of non-metallic scatterers we also determine their refractive indices.

In many of our target applications, the scatterers are potentially haz-
ardous, such as in the detection of explosives. For that reason we seek to
work with a minimal amount of data: only the time-resolved backscat-
tered part of a signal of a single frequency emitted from a single position.



The problem framework

This makes the problem of obtaining good reconstructions more challeng-
ing than in the case where more data are available (and the problem is
overdetermined).

To summarize: The problem we consider is to, given a single backscat-
tered time-resolved electromagnetic signal, determine the location, shape
and basic material properties of the scatterer. In order to understand
what the difficulties with this problem are and describe how they may be
overcome, let us pass over to a more precise mathematical formulation of
the problem. Since Maxwell’s equations are fundamental to the mathe-
matical description of electromagnetism, these equations form a natural
starting point.

1.1. Maxwell’s equations. These well-known equations relate the
magnetic flux density B, the electric displacement field D, the magne-
tizing field H, the electric field E, and the electric current density J,
considered as functions of the spatial coordinates x = (x, y, z) ∈ R3 and
time coordinate t ∈ [0, T ] for some final time T > 0, to each other. On
classical differential form, Maxwell’s equations are

∂B

∂t
+∇×E = 0 in R3 × (0, T ],(1.1)

∂D

∂t
−∇×H = −J− σE in R3 × (0, T ],(1.2)

∇ ·D = ρ in R3 × (0, T ],(1.3)

∇ ·B = 0 in R3 × (0, T ],(1.4)

where ∇ = (∂/∂x, ∂/∂y, ∂/∂z), σ is the conductivity of the medium and
ρ is the charge density. In addition we have the two constitutive relations

B = µH in R3 × (0, T ],(1.5)

D = εE in R3 × (0, T ],(1.6)

where µ is the magnetic permeability and ε is the dielectric permittivity.
They are related to the refractive index n by n =

√
µε/c0, where c0 ≈

2.9979 · 108 m/s is the speed of light in vacuum.
We also impose the initial conditions

E(·, 0) = 0,
∂E

∂t
(·, 0) = I0δ(x − x0) in R3,(1.7)

where I0 ∈ R3 is a given vector, x0 ∈ R3 is a given point, and δ is the Dirac
delta. These initial conditions describe the initialization of a signal at x0
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The problem framework

at time t = 0. We remark that the initial conditions have implications
concerning the uniqueness of the solution to the inverse problem. In
fact, existing proofs of uniqueness require non-vanishing initial vakues,
which is not the case here. Nevertheless it is reasonable to assume that
uniqueness holds. Some further comments on this can be found in the
included papers.

In the cases studied in the included papers we have made additional
assumptions concerning the nature of the medium: it is non-conductive
(σ = 0), non-magnetic (µ is a (known) constant), in absence of charges
and currents (ρ = 0 and J = 0), isotropic, and stationary (ε is scalar and
independent of t). Under these assumptions the medium is completely
characterized by the permittivity ε = ε(x).

This means that the properties (location, shape, material) of scatter-
ers are encoded in ε. In the background medium we will have one known
value for ε, while in a scatterer the value for ε will differ from that in the
background. This information gives us both the location and the shape of
the scatterer, and by studying the value of ε inside the scatterer, relative
to the value in the background, we can compute its refractive index (or
classify the material as a metal).

If ε is known, we can (at least in accurate approximation) compute
how the medium scatters electromagnetic waves. Since only the electric
field E is available for measurement, we seek a model which does not
involve B, D and H. Under the above assumptions, it is possible to
derive such a model formally from (1.1)–(1.6):

µε
∂2E

∂t2
+∇× (∇×E) = 0 in R3 × (0, T ],(1.8)

∇ · (εE) = 0 in R3 × (0, T ].(1.9)

In Papers I and II, equations (1.8) and (1.9) are combined into a
specific formulation which relies on the assumptions (positivity and reg-
ularity) on ε, which are required to treat the inverse problem. This for-
mulation is:

µε
∂2E

∂t2
−∆E−∇

(∇ε · E
ε

)
= 0 in R3 × (0, T ],(1.10)

where ∆ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplacian.

4



The problem framework

In Papers III and IV we use the stabilized scheme, see for instance
[14, 15],

µε
∂2E

∂t2
+∇× (∇×E)− ξ∇(∇ · (εE)) = 0 in R3 × (0, T ],(1.11)

where ξ ≥ 1 is a parameter reflecting how strongly we wish to enforce
(1.9). Regardless of which one of equations (1.10) and (1.11) is used, if we
know ε we can compute the corresponding electric field E = Eε. But the
problem we study is the inverse one, that is, to determine the function
ε(x) given measurements of the electric field Eε.

1.2. The inverse problem. Suppose that we have backscattered
data G for the electric field generated by a single source, measured on
some surface Γ ⊂ R3. Later, we will assume that Γ is (a part of) the
boundary of some domain in R3. To determine the nature of the scatterer
(or scatterers) which generated the data we seek to determine the function
ε such that

Eε = G on Γ.(1.12)

Note that, although we can compute Eε for any given (admissible) ε,
Eε does not depend on ε in a simple and explicit manner. Hence (1.12)
is very difficult to solve directly in its current form. In order to find a
solution algorithm, we must first rewrite (1.12) on a more appropriate
form by observing that

Eε = G on Γ ⇐⇒ ‖Eε −G‖Γ = 0,

where ‖·‖Γ is an appropriate norm over Γ. Moreover, as ‖Eε −G‖Γ > 0
whenever Eε −G 6= 0 on Γ, we may seek ε by minimizing the functional

F (ε) := ‖Eε −G‖Γ .
This, however, does still not give a suitable method. There are two

significant difficulties involved in the minimization of F . Firstly, due to
the ill-posed nature of the problem, we cannot guarantee the existence of
a minimizer to F for any given G (which may – and in practice will –
contain noise). Secondly, even if a minimizer exists we may not be able to
find it by standard minimization methods because the functional F may
have local minima, possibly far away from the global minimizer for which
F (ε) = 0. Thus we need a sufficiently good starting approximation for
the minimizer.
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The first difficulty can be handled by the method of Tikhonov, de-
veloped for ill-posed problems (see for example [9, 17]). By this method,
we assume that there exists ideal noiseless data G∗ corresponding to the
exact permittivity ε∗. We also assume that the data G has a known noise
level δ such that ‖G∗ −G‖Γ ≤ δ. Then F is replaced by the Tikhonov
functional Fα defined by

Fα(ε) :=
1

2
‖Eε −G‖2Γ +

α

2
‖ε− ε0‖2ε ,(1.13)

where α > 0 is a (small) regularization parameter which should be selected
appropriately with regard to the noise level δ (in particular α = α(δ) →
0+ when δ → 0+), ‖·‖ε is another suitable norm, and ε0 is an initial
approximation to ε∗. Under some assumptions on α and ε0 one can
guarantee that a minimizer of Fα exists, and that this minimizer tends
to the exact permittivity ε∗ as the noise level δ tends to zero.

The second difficulty – that of finding a sufficiently good initial ap-
proximation to avoid local but non-global minima – remains, and more
explicitly so since such an approximation is required by the definition of
Fα. As we will see in the next section, it is possible to construct such an
initial approximation.

Once a good initial approximation is obtained we can minimize Fα

and thus determine the nature of the scatterers to an accuracy determined
by the level of noise inG. We will return to the minimization in Section 3.

2. The first stage: A globally convergent method

As we saw in the previous section, before we can proceed with the
minimization approach to the inverse problem, we must determine a good
initial approximation for the exact coefficient ε∗. In this section we give
an overview of a globally convergent method, originally described in [4],
for finding such an approximation. This is the first stage of the two-satge
procedure referred to in the title of this thesis.

Here we study only one component of the electric field, the component
parallel to the vector I0 of (1.7), which we denote by u. We describe it by
the scalar wave equation, rather than a system derived from Maxwell’s
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equations:

µε
∂2u

∂t2
−∆u = 0 in R3 × (0, T ],(2.1)

u(·, 0) = 0,
∂u

∂t
(·, 0) = |I0| δ(x− x0) in R3.(2.2)

where we assume that the coefficients ε and µ are the same as in (1.10)
or (1.11), and the initial conditions (2.2) come from the corresponding
components of (1.7).

Our goal is to transform (2.1) so that ε can be isolated to one side of
the equation. The most straight-forward approach, to write

ε(x) =
1

T

∫ T

0

∆u(x, t)

µ∂2u
∂t2

(x, t)
dt,

is appropriate either in the case when we have complete data, that is,
when u(x, t) is known from measurements for every x and t, or when the
initial conditions are non-vanishing (see [6]). Since neither of these cases
are applicable here, we instead start by Laplace transformation:

ũ(x, s) :=

∫ ∞

0
u(x, t)e−st dt,(2.3)

where the variable s ≥ s > 0 is referred to as the pseudo-frequency.
For x 6= x0, this transformation together with (2.1) results in the

equation

µεs2ũ−∆ũ = 0.(2.4)

It can be shown (see Section 2.7 of [5]) that ũ is positive, and bounded
as |x| → ∞, hence the following function is well-defined:

v(x, s) :=
ln ũ(x, s)

s2
.(2.5)

Using the function v we can write ũ = exp(s2v), and obtain

∆ũ =
(
∆v + s2(∇v)2

)
s2ũ,

which with (2.4) gives us the following expression for ε:

ε =
1

µ

(
∆v + s2(∇v)2

)
.(2.6)

In other words, if we know the function v(x, s) (for any s ≥ s) we can
compute ε = ε(x) explicitly from (2.6). Though the function v is a priori
unknown, the asymptotic behaviour of v and its derivatives with respect

7
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to s, for large s, can be predicted (Lemma 2.2 and following remark
concerning smoothness in [11]):

v(x, s) =
f(x)

s
+O(s−2), s→ ∞,(2.7)

where f is as regular as ũ with respect to the spatial variable.
Via truncation, this gives us a method for iteratively computing v,

hence ε, from a first approximation of the tail function

V (x) := v(x, s),(2.8)

where s > s is a sufficiently large pseudo-frequency.

2.1. The iterative procedure. We start by differentiating (2.6)
with respect to s, since ε does not depend on s it vanishes, leaving

0 = ∆q + 2s(∇v)2 + 2s2∇v · ∇q,

where q := ∂v/∂s.
To proceed we make a uniform partition of the interval [s, s) into N

subintervals [sn, sn−1), n = 1, . . . , N + 1, of length d = (s − s)/N . Note
that we index pseudo-frequencies in decreasing order, since we aim at a
stepping scheme from higher to lower pseudo-frequencies. On each such
subinterval we approximate q by a constant function with respect to s,
that is:

q(x, s) ≈ qn(x), s ∈ [sn, sn−1).

Further, we expand v for s ∈ [sn, sn−1) as

v(x, s) = V (x)−
∫ s

s
q(x, s′) ds′

≈ V (x)− (sn−1 − s)qn(x)− d

n−1∑

j=0

qj(x),

and so we obtain

(2.9)
∆qn + 2s(2sn−1 − 3s)∇Wn · ∇qn

= 2s(s− sn−1)(2s − sn−1)(∇qn)2 − 2s(∇Wn)
2,

where Wn := V − d
∑n−1

j=0 qj and we have defined q0 = 0.

8



The first stage: A globally convergent method

Finally, in order to reduce the non-linearity of (2.9), we multiply it
by a Carleman weight function cn,Λ(s) := exp(Λ(sn−1 − s)) where Λ ≫ 1
and integrate over [sn, sn−1) to obtain

∆qn +An∇Wn · ∇qn = Bn(∇qn)2 −Cn(∇Wn)
2(2.10)

with coefficients An, Cn = O(1) and Bn = O(Λ−1) which can be cal-
culated explicitly. Thus the term Bn(∇qn)2 can be neglected for large
Λ.

The algorithm is, briefly, the following (see also the flowchart, Figure 1
of Paper IV):

(1) Compute an initial approximation for the tail function V using
the asymptotics (2.7).

(2) Compute the corresponding function qn via (2.10) using the data
G (after transformation) for boundary conditions to truncate the
problem domain.

(3) Compute the function v(x, sn) = dqn(x) + d
∑n−1

j=0 qj(x).

(4) Compute ε from v using (2.6).
(5) Compute u from ε using (2.1).
(6) Compute new tail function V from u using transformations (2.3)

and (2.5).
(7) Check stopping criteria. If the algorithm has converged for the

current n, then step to the next pseudo-frequency interval. Oth-
erwise, repeat from (2) with the new tail function. If the algo-
rithm has converged with respect to the coefficient, then return
the last computed coefficient, denoted εglob.

2.2. Approximate global convergence. The algorithm outlined
above gives a coefficient εglob. In Section 1 we claimed that it would be
a good initial approximation for the Tikhonov functional Fα defined in
(1.13). Here we will confirm this by stating the important properties of
εglob.

We begin by explaining the approximately globally convergent prop-
erty of the algorithm that produced εglob. The term should be understood
in the sense that, without additional restrictive assumptions, it can be
shown that the coefficient εglob is close to the exact solution ε∗, but we
cannot guarantee that εglob tends to ε∗ as the computations become in-
creasingly refined. To be more precise, we give the following simplified
version of the global convergence theorem (originally Theorem 6.1 of [4],
improved in [5]):

9



The first stage: A globally convergent method

Theorem 2.1. Assume that the coefficient ε is bounded from below
and above by known, positive constants, is sufficiently smooth, and is
constant outside a bounded domain Ω. Then if the pseudo-frequencies
s > s > 1 and Carleman weight parameter Λ are taken sufficiently large,
and the step-size in pseudo-frequency d is sufficiently small, there exist
a constant C > 0 and a number η ∈ (0, 1), depending on Ω, s, d, the
regularity of the tail function for the exact coefficient ε∗, the noise level
in the data, and the bounds on ε, such that

‖εglob − ε∗‖β ≤ C

(
1√
Λ

+ η

)
,(2.11)

where ‖·‖β is the Hölder norm

‖f‖β := max
x,y

|f(x)− f(y)|
|x− y|β

,

for some β ∈ (0, 1) depending on the regularity of ε∗.

The approximate nature of the convergence is reflected in the fact
that the quantity on the right hand side of (2.11) can be made small, but
not arbitrarily small as the numerical precision increases (unless the noise
level in the data drops to zero). However, the next result, which follows
directly from Theorem 3.1 of [7] in view of Theorem 2.1, shows that it
can be made small enough.

Theorem 2.2. If the conditions of Theorem 2.1 hold and the regu-
larization parameter α is selected appropriately with respect to the noise
level δ, then the Tikhonov functional Fα defined in (1.13), with ε0 = εglob,
is strongly convex in a neighbourhood of εglob, containing the minimizer
of Fα.

It follows in particular that it is possible to minimize Fα using conven-
tional gradient-based methods such as (quasi-) Newton or the conjugate
gradient method.

We can conclude that εglob is indeed an initial approximation of the
type required, as discussed in Section 1. Numerical experiments show
that it is in fact more than that. From the results presented in Papers III
and IV, as well as in references therein, we see that two out of the three
of the scatterers’ properties are accurately reconstructed already by εglob.
Recall that we seek to determine scatterer’s location, shape, and refractive
index (or alternatively classify it as metal). Out of these three properties,

10
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the location and refractive index can be determined from εglob. The
shape is not well reconstructed from εglob, which tends to produce disc-
shaped approximations, too flat in the direction away from the source
of the backscattered signal. Hence it is justified to proceed with the
minimization of Fα. The next section gives an overview of how to do this
via an adaptive finite element method.

3. The second stage: Adaptivity

In this section we give an overview of adaptive finite elements applied
to the minimization problem for the Tikhonov functional Fα defined in
equation (1.13). This is the second stage of the two-stage numerical
procedure. Our aim is not to give a complete exposition, but instead to
underline the principles and ideas behind the method. For the details
concerning our particular application, see the included papers. For the
theory of finite elements and adaptivity in general, we refer to [8, 10, 12].

It should be noted that it is possible to include adaptivity already
in the globally convergent method, when solving equation (2.10) for qn.
This method is described in [1]. Our main reasons to use adaptivity
as a second stage, rather than as a part of the procedure outlined in
the previous section, are the following: Firstly, we wish to take the full
system – (1.7) and (1.10) or (1.11) – into account, which is not the case in
the globally convergent method. Secondly, the theory for the two-stage
approach is more developed. In particular, it is possible to show the
relaxation property of mesh refinements for this approach (Theorem 4.2
of [7]). This property states that the coefficient obtained by minimizing
the Tikhonov functional on a refined mesh is strictly closer to the exact
minimizer than the coefficient obtained on a coarser mesh is. It follows
that the coefficient obtained after the adaptive stage is closer to the exact
coefficient ε∗ than εglob is.

Since we now have access to a good initial approximation εglob as
described above, we can minimize Fα using conventional gradient-base
techniques. Such techniques naturally require that the gradient F ′

α(ε)
of Fα with respect to ε can be calculated (or accurately approximated).
This is far from trivial since Fα(ε) depends on Eε which in turn depends
implicitly on ε via the solution of a partial differential equation.

Via the introduction of a Lagrangian multiplier λ in a Lagrangian
functional L(ε, E, λ), derived from Fα and the direct equation ((1.10) or
(1.11)) for E, where the arguments ε, E, and λ are varied independently

11
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of each other, it is possible to find the following expression for F ′
α(ε)

acting on ε̄:

(3.1)
F ′
α(ε; ε̄) = (α(ε − ε0), ε̄)ε − µ(ε̄∂Eε

∂t ,
∂λε

∂t )

+ (∇
(
ε̄
ε

)
· Eε, ∇ · λε).

where (·, ·)ε and (·, ·) are appropriate inner products, the former corre-
sponding to the norm ‖·‖ε. This expression is valid for the case when
(1.10) is used for the direct problem. The corresponding expression for
the case when (1.11) is used is

(3.2)
F ′
α(ε; ε̄) = (α(ε − ε0), ε̄)ε − µ(ε̄∂Eε

∂t ,
∂λε

∂t )

+ ξ(∇ · (ε̄Eε), ∇ · λε),

In (3.1) and (3.2), Eε denotes the solution to the direct problem with
the given coefficient ε, and λε denotes the solution to an adjoint problem
where the difference Eε −G enters as boundary data.

If Eε and λε could be computed exactly, then the inverse problem
would essentially be solved at this point, but this is not feasible in general.
Instead approximations Eh and λh as well as an approximate coefficient
εh must be used.

We obtain such approximations via a finite element method. That is,
we divide space and time into (small) subdomains and prescribe that the
approximations Eh, λh and εh should be described by simple functions
(polynomials of fixed maximum degree) on each subdomain. In theory,
as the subdomains are made arbitrarily small, the approximations will
be arbitrarily close to the true solutions. Numerically, this cannot be
achieved as we cannot perform infinitely accurate computations. The
question is instead how to obtain solutions with a desired finite precision
at a minimum computational cost (in principle using as few subdomains
as possible).

This leads us to adaptive methods, where the computational mesh is
successively refined locally in regions where the contribution to the total
error is large. In principle, the method follows these steps:

(1) Make an initial (coarse) computational mesh.
(2) Compute approximations Eh, λh and εh by iterative minimiza-

tion on the current mesh.
(3) On the basis of the computed approximations, estimate the error

εh − ε, where ε is the exact minimizer, in every subdomain of

12
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the mesh. If the sum of local errors is smaller than a preset tol-
erance, εh is an acceptable approximation and the computations
are done. Otherwise

(4) refine the mesh by subdividing those subdomains where the error
is large. Then repeat from step (2).

Proceeding in this manner we eventually obtain a sufficiently accurate
approximation εh of the exact minimizer ε of the Tikhonov functional Fα

in (1.13). The exact minimizer will be as close to the exact solution ε∗ as
can be expected, given the noise in the data and accuracy of the numerical
approximations, provided that the regularization parameter α is selected
correctly. Thus we obtain the last property, the shape, of the scatterer
from εh, with as good accuracy as can reasonably be expected.

A critical step in the adaptive algorithm is the estimation of the ap-
proximation error in terms of the computed quantities. Such estimates
are known as a posteriori error estimates. In Papers III and IV we have
used an estimate for L(ε, Eε, λε) − L(εh, Eh, λh) from [3]. Such esti-
mates for the Lagrangian represent only an indirect indicator of the main
error of interest, εh − ε. In Paper II we give a direct estimate for that
error.

3.1. The nature of the estimates. We conclude this section by
giving a short review of the a posteriori error estimates and the techniques
used to derive them. For the details, see Papers I and II.

Our main tools are linearization (neglecting terms of higher order
with respect to the errors, which will be small compared to terms of
lower order), optimality of the solutions (which in the terminology of
finite elements can be viewed as Galerkin orthogonalities), and the strong
convexity of the Tikhonov functional.

Mathematically, the optimality (or Galerkin orthogonality) can be
expressed as follows: Let u := (ε, Eε, λε) denote the minimizer of the
Lagrangian, that is, ε minimizes the Tikhonov functional, and let uh :=
(εh, Eh, λh) denote the finite element approximation of u. Then

L′(u; v) = 0 ∀v ∈ V,(3.3)

where V is an appropriate function space, and

L′(uh; vh) = 0 ∀vh ∈ Vh,(3.4)

13



The second stage: Adaptivity

where Vh is the subspace of V in which the finite element approximations
are sought. Specifically, (3.3) implies that

F ′
α(ε; ε̄) = 0(3.5)

for any ε̄ from the space containing the admissible coefficients.
The strong convexity of the Tikhonov functional implies the following

inequality, which is critical to the estimate for ε− εh,

‖ε1 − ε2‖2 ≤ C
(
F ′
α(ε1; ε1 − ε2)− F ′

α(ε2; ε1 − ε2)
)

(3.6)

for any ε1 and ε2 in a neigbourhood of εglob, and some constant C. Here
and throughout the rest of the section ‖·‖ should be interpreted as “some
appropriate norm”, which may vary depending on the quantity being
normed by ‖·‖.

The error estimate for the Lagrangian is derived as follows, starting
by linearization:

L(u)− L(uh) ≈ L′(uh; u− uh) = L′(uh; u)− L′(uh; uh).

Since uh ∈ Vh we may drop the last term, in view of (3.4). This will leave
us with only the first term, containing the unknown quantity u. Thus this
does not give an a posteriori estimate. However, we can instead replace
L′(uh; uh) by L

′(uh; Πhu) where Πhu is an interpolant of u in Vh. This
gives

L(u)− L(uh) ≈ L′(uh; u)− L′(uh; Πhu)

= L′(uh; u−Πhu)

≤ (
∣∣L′(uh)

∣∣ , |u−Πhu|)
where (·, ·) is an inner product. Here |L′(uh)| contains no unknown quan-
tities, and |u−Πhu| can be estimated by standard interpolation methods
as

|u−Πhu| ≤ C

∣∣∣∣h
2D2

xu+ τ2
∂2u

∂t2

∣∣∣∣ ≈ C

∣∣∣∣h[Dxuh] + τ

[
∂uh

∂t

]∣∣∣∣ .

Here C is some constant, h is the size of the elements (subregions) in
the spatial discretization, τ is the length of the subintervals in the time
discretization, Dx and D2

x denotes derivatives with respect to x of first
and second order, respectively, and [·] denotes “jumps” in the functions
across the edges of the elements in space or nodes in time. This leaves us
with no unknown terms, hence an a posteriori estimate. Moreover, since

14
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the inner product can be computed in terms of its local contribution on
each subregion as

‖·‖ =
∑

{K}

‖(·)|K‖K ,

where {K} is the collection of subregions and ‖·‖K is the norm on K, we
can localize the error estimate as required for the adaptive algorithm.

For the estimate for the coefficient, we start by using convexity (3.6)
and optimality (3.5) to get

‖ε− εh‖2 ≤ C
∣∣F ′

α(εh; ε− εh)
∣∣

= C

∣∣∣∣
∂L

∂ε
(ũ; ε− εh)

∣∣∣∣

≤ C

∥∥∥∥
∂L

∂ε
(ũ)

∥∥∥∥ ‖ε− εh‖ ,

thus obtaining an estimate for ‖ε− εh‖ in terms of
∥∥∂L

∂ε (ũ)
∥∥, where we

use the notation ũ := (εh, Eεh , λεh). Although ũ contains unknown exact
solutions Eεh and λεh corresponding to the approximate coefficient εh,
we can split

∥∥∥∥
∂L

∂ε
(ũ)

∥∥∥∥ ≤
∥∥∥∥
∂L

∂ε
(ũ)− ∂L

∂ε
(uh)

∥∥∥∥+

∥∥∥∥
∂L

∂ε
(uh)

∥∥∥∥

and estimate the first term via linearization and Galerkin orthogonality,
to obtain an a posteriori estimate for ‖ε− εh‖. An estimate for Fα(ε) −
Fα(εh) follows via linearization.

4. Summary of included papers

Papers I and II are of a theoretical nature and are concerned with a
posteriori error estimation in the adaptive stage for the case when (1.10)
is used to describe the electric field. The arguments used could easily
be adapted also to the case where (1.11) is employed. In Paper I we
focus on the differentiation of the Lagrangian and sketch the proof of the
a posteriori error estimate for the Lagrangian when the model problem
uses (1.10). In Paper II we obtain a posteriori error estimates, as briefly
outlined in the previous section, for three quantities: the Lagrangian
(L(ε, Eε, λε)−L(εh, Eh, λh), here with a detailed proof), the Tikhonov
functional (Fα(ε)−Fα(εh)), and the coefficient (ε−εh). We show that each
of the three estimates depend strongly on a certain residual, essentially

15



Future work

a discrete analogue to F ′
α at εh. This justifies the use of such an error

estimate in Papers III and IV.
Papers III and IV are co-authored with Larisa Beilina, Nguyen Trung

Thành, and Michael V. Klibanov. Both papers present results of the
adaptive stage of Section 3, applied to experimental data which were
gathered at a scattering facility at the University of North Carolina at
Charlotte, USA. For results of the approximately globally convergent al-
gorithm, see references within those papers.

In Paper III the experimental data were collected for scatterers placed
in air. Dielectric, metallic, and heterogeneous (partly metallic and partly
dielectric) scatterers were studied. Homogeneous scatterers were all cor-
rectly classified, while for heterogeneous scatterers only the metallic parts
were detected. The reconstructions of shapes after adaptivity were im-
proved compared to those given by the approximately globally convergent
algorithm.

In Paper IV the scatterers were buried in dry sand. This makes the
reconstruction procedure more challenging since the backscattered signals
from the scatterers must be distinguished from the signals from the sand.
For reference, the signal from dry sand without the presence of additional
scatterers was used. Both dielectric and metallic scatterers were studied.
In contrast to the case in Paper III, where all scatterers had a value of
the dielectric permittivity strictly larger than the background (air), in
Paper IV some scatterers had a higher value of ε than the surrounding
sand (strong targets), while other scatterers had a value of ε lower than
the sand (weak targets). In the latter case, accurate reconstructions were
only obtained if the burial depth (that is, the distance from the buried
scatterer to the surface of the sand) was not larger than ∼5 cm. This is
not a severe restriction for applications, see Section 7 of Paper IV.

One notable result of Paper IV was that for one scatterer, superreso-
lution was achieved. The scatterer consisted of two metallic prisms sepa-
rated by 1 cm of sand. Since the wavelength of the signal was 4.5 cm, the
diffraction limit was approximately 2.25 cm. Nevertheless, the metallic
prisms were resolved as two separate objects.

5. Future work

As pointed out above, the arguments used in Paper II concerning the
model (1.10) can easily be adapted to model (1.11) with analogous results.
There is reason to believe that (1.10) and the discretization of Paper II
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may produce better reconstructions than those of Papers III and IV, since
they are more conforming to the regularity assumptions required by the
theory. Numerical investigation of this issue and analysis of the possible
gain in accuracy of reconstructions versus additional computational cost
remains to be done.

In the studies of Papers III and IV, the regularization parameter α of
the Tikhonov functional was selected by hand to obtain good reconstruc-
tions. Many numerical rules for automatic optimization of regularization
parameters exist, but have not been tested for the problem we study.
Since it is computationally expensive to find (an approximation of) the
minimizer for Fα, requiring the solution of two partial differential equa-
tions for each evaluation of the gradient, iterative methods for selecting α
as a part of the minimization procedure, see [2, 9], would be of particular
interest.

The superresolution achieved for one pair of scatterers in the study of
Paper IV has not yet been fully explained – though we make some remarks
concerning possible causes for superresolution in the introduction to that
paper.

In addition, several minor improvements are possible. For example,
it would be necessary to include a (known) conductivity σ = σ(x) 6≡ 0 in
order to treat the case of wet (hence conductive) sand, as opposed to the
case of dry sand in Paper IV. A method for determination of an unknown
conductivity in a manner similar to the method for permittivity described
in Section 2, is suggested in [13].
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A posteriori error estimate in the Lagrangian
setting for an inverse problem based on a new

formulation of Maxwell’s system

John Bondestam Malmberg1

Abstract. In this paper we consider an inverse problem of deter-
mination of a dielectric permittivity function from a backscattered
electromagnetic wave. The inverse problem is formulated as an opti-
mal control problem for a certain partial differential equation derived
from Maxwell’s system. We study a solution method based on finite
element approximation and provide an a posteriori error estimate for
the use in an adaptive algorithm.

1. Introduction

In recent publications [7, 10, 11] it was demonstrated how to recon-
struct the dielectric permittivity function ε(x), x ∈ Ω ⊂ R3, for a hetero-
geneous medium, using experimental measurements of a single backscat-
tered electromagnetic wave. In [5, 7, 10, 11], the authors refer to the
technique as an approximately globally convergent method, since it does
not rely on any strong restrictions on the a priori information available
on ε. This approach yields an approximate reconstruction which we will
denote by ε0.

Here, we consider a second processing step where ε0 is used as an ini-
tial approximation for a classical Tikhonov regularization procedure. The
underlying partial differential equation relating the permittivity ε to the
electric field E as well as the permittivity function itself is approximated
using adaptive finite elements.

To formulate a mathematical framework we introduce some nota-
tion. We assume that Ω is a bounded domain with piecewise smooth
boundary Γ. Let T > 0 be a fixed, sufficiently large time and denote
Ω×(0, T ) =: QT and Γ×(0, T ) =: ST . For a set X ⊂ Rn we introduce the
following inner product and norms: 〈·, ·〉X = 〈·, ·〉L2(X), ‖·‖X = ‖·‖L2(X),

and ‖·‖X,m = ‖·‖Hm(X). In this setting, the problem we consider is the

1Department of Mathematical Sciences, Chalmers University of Technol-
ogy and University of Gothenburg, SE-412 96 Gothenburg, Sweden. E-mail:
john.bondestam.malmberg@chalmers.se
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Derivation of the forward problem

minimization of the Tikhonov functional

(1.1) Φ(ε) := Φ(ε, E(ε)) :=
1

2

∥∥∥(E(ε) − F )z
1/2
δ

∥∥∥
2

ST

+
α

2
‖ε− ε0‖2Ω ,

where α > 0 is a regularization parameter and F ∈ L2(ST ) is the ob-
served data obtained from measurements and, in the case of incomplete
measurements, simulations. To ensure data compatibility for the adjoint
problem to be presented in Section 3, we introduce in (1.1) the smooth
function zδ = zδ(t), that drops from a constant level of 1 to 0 inside the
small interval (T − δ, T − δ/2).

We assume that ε belongs to the set U ε ⊂ V ε := H3(Ω) of admissible
parameters, with
(1.2)
U ε := {v ∈ C(R3) : v|Ω∈ H3(Ω), 1 ≤ v(x) ≤M ∀x ∈ Ω, v ≡ 1 in R3 \ Ω}

for some upper bound M > 1. By the Sobolev embedding, this gives
in particular ε ∈ C1(Ω̄) which will be required for technical reasons (see
Section 3).

In (1.1), E(ε) denotes the solution of the following system of equa-
tions, the first of which will be derived from Maxwell’s equations in Sec-
tion 2,

(1.3)

ε∂2tE −∆E −∇
(
1

ε
∇ε ·E

)
= 0 in QT ,

∂νE = P on ST ,

E(·, 0) = ∂tE(·, 0) = 0 in Ω.

Here, ∂ν denotes the directional derivative along the outward normal ν,
and the boundary data P ∈ L2(ST ) describes an incident plane wave.
Since ε is known in R3 \ Ω, P can be obtained from data F of (1.1) by
computation in a sufficiently small neighborhood of Γ.

2. Derivation of the forward problem

Here we derive the forward problem for the electric field starting from
the classical Maxwell’s system (see for instance [9]).
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Derivation of the forward problem

Let QT be defined as above. Then we have Maxwell’s equations over
QT stating

∂tB +∇× E = 0 in QT ,(2.1)

∂tD −∇×H = 0 in QT ,(2.2)

∇ ·B = ∇ ·D = 0 in QT ,(2.3)

where B, D, H, and E : QT → R3 are magnetic flux density, electric
displacement, magnetic field, and electric field, respectively.

In addition to (2.1), (2.2), and (2.3), B, D, H and E also satisfy

(2.4) B = µH and D = εE,

where µ is the magnetic permeability and ε is the dielectric permittivity.
We assume that µ is constant, scaled to unity, and that ε ∈ U ε, with U ε

defined in (1.2).
We focus our study on the electric field E alone. To derive the equa-

tion for E, we eliminate B, D, and H from the above equations by using
(2.4) in conjunction with the curl of (2.1) and the time derivative of (2.2),
obtaining

(2.5) ε∂2t E +∇× (∇× E) = 0, in QT .

Having separated the dependence of the magnetic field, which we will
not consider further, and the electric field, we are left with two conditions:
equation (2.5), and the divergence free condition ∇ · (εE) = 0 from (2.3).
For calculations we should take them both into account.

For this approach, various techniques are developed by several au-
thors. One example is the edge element method of Nédélec (see for in-
stance Chapter 8 of [12]) where the divergence free condition is incor-
porated into the numerical solution scheme. Another technique consists
of inserting a penalty term −∇(∇ · (εE)) on the left hand side of (2.5)
(see [14, 15]). Here, we propose to include the divergence free condition
directly in (2.5), without introducing additional terms.

To this end, we expand the second term in the left hand side of (2.5)
as

∇× (∇× E) = −∆E +∇(∇ ·E),

and then we use the following expansion of the divergence of the electric
field:

∇ ·E = ∇ ·
(
εE

ε

)
=

1

ε
∇ · (εE) − 1

ε
∇ε ·E = −1

ε
∇ε · E,
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The Lagrangian formulation

where the divergence free condition gives us the last equality. Combining
these calculations with (2.5) and completing with boundary and initial
conditions we obtain the system (1.3).

3. The Lagrangian formulation

With the forward problem as derived in the previous section, we here
turn back to the inverse one. That is, we consider the minimization of
the Tikhonov functional Φ defined in (1.1).

For this problem, following earlier works [1, 2, 4, 5], we introduce the
Lagrangian corresponding to Φ where (1.3) is acting as a constraint,

(3.1) L(ε, E, λ) := Φ(ε, E) +
〈
ε∂2tE −∆E −∇

(
1
ε∇ε · E

)
, λ

〉
QT

.

When working with Maxwell’s system, solutions are usually sought in
spaces such as H(curl,Ω) of square integrable fields with square integrable
curl [14]. For our approach, using piecewise linear finite elements, we
make instead the following assumptions (see [3]):

E ∈ V E := {v ∈ [H1(QT )]
3 : v(·, 0) ≡ 0},

λ ∈ V λ := {v ∈ [H1(QT )]
3 : v(·, T ) ≡ 0}.

In addition, we write

u = (ε, E, λ) ∈ V := V ε × V E × V λ,

U := U ε × V E × V λ ⊂ V,

where U ε was defined in (1.2) and V ε = H3(Ω) as above. This allows us
to rewrite (3.1) on weak form as

(3.2)
L(u) = Φ(ε, E)− 〈ε∂tE, ∂tλ〉QT

+ 〈∇E, ∇λ〉QT

+
〈
1
ε∇ε · E, ∇ · λ

〉
QT

− 〈P , λ〉ST
,

for every u = (ε, E, λ) ∈ V .
We can now find the minimizer of Φ over U ε by finding a stationary

point to the Lagrangian. That is, by solving the following more explicit
problem:

(3.3) Find u = (ε, E, λ) ∈ U such that L′(u; ū) = 0 for every ū ∈ V.

Here

L′(u; ū) = L′
ε(u; ε̄) + L′

E(u; Ē) + L′
λ(u; λ̄)
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The Lagrangian formulation

is the Fréchet derivative of L at the point u acting on ū, for which we
will provide exact formulas in Proposition 1. But first we should make a
remark concerning how to solve problem (3.3).

According to the theory of ill-posed problems, [16], the initial approx-
imation ε0 should belong to some sufficiently small neighborhood of the
solution ε. The approximately globally convergent method of [5, 7, 10, 11]
ensures this when the electric field E is described by the wave equation,
and it was shown in [3] that the wave equation approximates Maxwell’s
system well for the type of problem we consider. Thus, we can assume
that ε0 obtained from the approximately globally convergent method is
sufficiently close to the ideal solution for exact data. If the regularization
parameter α is chosen appropriately, Lemma 2.1 and Theorem 3.1 of [6]
then implies that ε0 is close to ε and that the Tikhonov functional Φ is
strongly convex in a neighborhood of ε0. Hence it is reasonable to solve
(3.3) with a gradient-based method, starting from ε0.

With this remark made, we proceed with the formulas for the Fréchet
derivative of the Lagrangian.

Proposition 1. Let L(u) = L(ε, E, λ) be the Lagrangian defined in
(3.2). Then its partial Fréchet derivatives at the point u ∈ U , acting on
ε̄ ∈ V ε, Ē ∈ V E and λ̄ ∈ V λ, respectively, are given by

L′
ε(u; ε̄) = α 〈ε− ε0, ε̄〉Ω − 〈∂tE · ∂tλ, ε̄〉QT

+
〈
(∇ · λ)E, ∇

(
ε̄
ε

)〉
QT

,

L′
E(u; Ē) =

〈
(E − F )zδ, Ē

〉
ST

−
〈
ε∂tλ, ∂tĒ

〉
QT

+
〈
∇λ, ∇Ē

〉
QT

+
〈
1
ε (∇ · λ)∇ε, Ē

〉
QT

,

L′
λ(u; λ̄) = −

〈
ε∂tE, ∂tλ̄

〉
QT

+
〈
∇E, ∇λ̄

〉
QT

+
〈
1
ε∇ε · E, ∇ · λ̄

〉
QT

−
〈
P , λ̄

〉
ST
.

Proof. We should show that for every u ∈ U , and for η = ε, E, and
λ, L′

η(u; ·) defines a bounded linear functional such that for θ ∈ V η

(3.4) lim
θ→0

dη(θ)

‖θ‖V η

:= lim
θ→0

∣∣L(u+ θ)− L(u)− L′
η(u; θ)

∣∣
‖θ‖V η

= 0,

with ‖·‖V η = ‖·‖Ω, 3 if η = ε and ‖·‖V η = ‖·‖QT , 1 if η = E or λ.
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The Lagrangian formulation

It is trivial to see that the linearity holds for each η. Turning then to
the boundedness, starting with η = ε, we easily obtain the estimate

(3.5)

∣∣L′
ε(u; ε̄)

∣∣ ≤ α ‖ε− ε0‖Ω ‖ε̄‖Ω + ‖∂tE‖QT
‖∂tλ‖QT

‖ε̄‖C(Ω̄)

+ ‖∇ · λ‖QT
‖E‖QT

∥∥∇
(
ε̄
ε

)∥∥
C(Ω̄)

.

From the Sobolev inequality we get

(3.6) ‖v‖Cn(Ω̄) ≤ C ‖v‖Ω, 2+n , v ∈ H2+n(Ω), n ∈ N.

Here and throughout this proof, C denotes various positive constants
which do not depend on either ε̄, Ē, λ̄ or θ.

Now (3.5) and (3.6) together with the boundedness of ε ∈ U ε yields
∣∣L′

ε(u; ε̄)
∣∣ ≤ C

(
‖ε− ε0‖Ω + ‖∂tE‖QT

‖∂tλ‖QT

+ (1 + ‖∇ε‖C(Ω̄)) ‖∇ · λ‖QT
‖E‖QT

)
‖ε̄‖Ω, 3 ,

where all the norms inside the parentheses are finite. Thus L′
ε(u; ·) is

bounded as required.
Similarly, for η = E, we have the estimate
∣∣L′

E(u; Ē)
∣∣ ≤ ‖E − F‖ST

‖zδ‖C([0, T ])

∥∥Ē
∥∥
ST

+ ‖ε‖C(Ω̄) ‖∂tλ‖QT

∥∥∂tĒ
∥∥
QT

+ ‖∇λ‖QT

∥∥∇Ē
∥∥
QT

+
∥∥1
ε

∥∥
C(Ω̄)

‖∇ε‖C(Ω̄) ‖∇ · λ‖QT
·
∥∥Ē

∥∥
QT

.

We can now use the trace inequality

(3.7) ‖v‖ST
≤ C ‖v‖QT , 1 , v ∈ H1(QT ),

and the boundedness of ε and zδ to obtain
∣∣L′

E(u; Ē)
∣∣ ≤ C

(
‖E‖QT , 1 + ‖F‖ST

+M ‖∂tλ‖QT

+ ‖∇λ‖QT
+ ‖∇ε‖C(Ω̄) ‖∇ · λ‖QT

) ∥∥Ē
∥∥
QT , 1

.

Again, all norms inside the parentheses are finite and so L′
E(u; ·) is

bounded.
For η = λ we use (3.7) and obtain boundedness from the estimate
∣∣L′

λ(u; λ̄)
∣∣ ≤ ‖ε‖C(Ω̄) ‖∂tE‖QT

∥∥∂tλ̄
∥∥
QT

+ ‖∇E‖QT

∥∥∇λ̄
∥∥
QT

+
∥∥1
ε

∥∥
C(Ω̄)

‖∇ε‖C(Ω̄) ‖E‖QT

∥∥∇ · λ̄
∥∥
QT

+ ‖P‖ST

∥∥λ̄
∥∥
ST

≤
(
M ‖∂tE‖QT

+ ‖∇E‖QT

+ ‖∇ε‖C(Ω̄) ‖E‖QT
+ ‖P‖ST

) ∥∥λ̄
∥∥
QT , 1

.
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It remains to show that (3.4) holds for η = ε, E, and λ. For η = ε we
get the estimate

dε(θ) =

∣∣∣∣
α

2
‖θ‖2Ω +

〈
θ

ε+θ∇
(
θ
ε

)
, (∇ · λ)E

〉
QT

∣∣∣∣

≤ α

2
‖θ‖2Ω +

∥∥∥ 1
ε+θ

∥∥∥
C(Ω̄)

‖θ‖C(Ω̄)

∥∥∇
(
θ
ε

)∥∥
C(Ω̄)

‖∇ · λ‖QT
‖E‖QT

≤
(
α

2
+
∥∥∥ 1
ε+θ

∥∥∥
C(Ω̄)

‖∇ · λ‖QT
‖E‖QT

(1 + ‖∇ε‖C(Ω̄))

)
‖θ‖2Ω, 3 ,

where in the last line we have used (3.6). Since
∥∥∥ 1
ε+θ

∥∥∥
C(Ω̄)

→
∥∥1
ε

∥∥
C(Ω̄)

= 1

as θ → 0 in H3(Ω), this is sufficient to prove that (3.4) holds for η = ε.
Next we consider (3.4) in the case η = E, where using (3.7) we obtain

dE(θ)

‖θ‖QT , 1

=
‖zδ‖C([0, T ]) ‖θ‖2ST

2 ‖θ‖QT , 1

≤ C ‖θ‖QT , 1 → 0

as θ → 0. Finally, for η = λ we have dλ(θ) = 0 for every θ ∈ V λ, and
thus the proof is complete. �

For the solution u = (ε, E, λ) of (3.3), we have in particular L′
λ(u, λ̄)

= 0 for each λ̄ ∈ V λ and L′
E(u; Ē) = 0 for each Ē ∈ V E . It follows from

Proposition 1 that this implies that E satisfies a weak formulation of the
problem (1.3) and that λ satisfies a weak formulation of the corresponding
adjoint problem:

ε∂2t λ−∆λ+
∇ · λ
ε

∇ε = 0 in QT ,

∂νλ = −(E − F )zδ on ST ,

λ(·, T ) = ∂tλ(·, T ) = 0 in Ω.

We conclude this section by stating a finite element formulation cor-
responding to the problem (3.3). For this purpose, similarly with [8],
we introduce a triangulation Kh = {K} of Ω̄ and a partition Iτ =

{(tn−1, tn]}Nτ

n=1, 0 = t0 < t1 < . . . < tNτ = T , of [0, T ]. With Kh we
associate a mesh function h such that h(x) = diam(K) for x ∈ K ∈ Kh

and with Iτ we associate the mesh function τ such that τ(t) = tn − tn−1
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for t ∈ (tn−1, tn]. On these partitions we define the following finite di-
mensional spaces and subsets thereof:

V ε
h := {v ∈ H1(Ω) : v|K ∈ P 1(K)∀K ∈ Kh},
U ε
h := {v ∈ V ε

h : 1 ≤ v(x) ≤M ∀x ∈ Ω̄, v(x) = 1 ∀x ∈ ∂Ω},
V E
h := {v ∈ V E : v|K×In ∈ [P 1(K)]3 × P 1(In)] ∀K ∈ Kh ∀In ∈ Iτ},
V λ
h := {v ∈ V λ : v|K×In ∈ [P 1(K)]3 × P 1(In) ∀K ∈ Kh ∀In ∈ Iτ},
Vh := V ε

h × V E
h × V λ

h ,

Uh := U ε
h × V E

h × V λ
h .

Here P 1(X) is the space of polynomials of degree no greater than 1 over
X.

The finite dimensional formulation is now:
(3.8)
Find uh = (εh, Eh, λh) ∈ Uh such that L′(uh; ū) = 0 for every ū ∈ Vh.

We note that in this finite dimensional problem, we seek εh ∈ U ε
h ⊂

V ε
h , a space of piecewise linear functions, while we originally assume that
ε ∈ U ⊂ H3(Ω) is in particular continuous and once continuously differ-
entiable. Hence V ε

h is not a subspace of V ε. In spite of this discrepancy
in regularity between the two formulations we will keep the formulation
(3.8), as numerical experiments have shown good results in analogous
situations, see [2, 4, 5].

4. A posteriori error estimate

In order to use adaptive techniques to efficiently refine the partition
Kh (and if necessary for the Courant-Friedrichs-Lewy condition, also Iτ )
we need to estimate the local contributions to the global error resulting
from the finite dimensional approximation described at the end of the
previous section. To this end, we here derive an a posteriori error estimate
for the difference between u and uh in the Lagrangian setting.

We start by introducing some additional notation. For η = ε, E, and
λ, with v ∈ V η (or V ), let Ihv ∈ V η

h (or Vh) denote the nodal interpolant
of v. We then define the interpolation residual rh by

rhv := v − Ihv.

Given meshes Kh and Iτ , we let {v}x denote the jump of v across the
edges of the elements of Kh and {v}t denote the jump of v in time at
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the endpoints of the intervals of Iτ . Moreover, we introduce [v]x as the
piecewise constant function on Kh taking the average of {v}x over the
edges ∂K as value on K ∈ Kh, as well as [v]t defined analogously to [v]x .
Finally, for K ∈ Kh we denote by KT the set K × (0, T ) and by kT the
set (∂K \ Γ)× (0, T ).

Using this notation we can give an error representation formula and
a corresponding estimate as follows:

Proposition 2. Let u ∈ U be the solution to (3.3) and uh ∈ Uh be the
solution to (3.8) on meshes Kh and Iτ . Then the error eL := L(u)−L(uh)
in the Lagrangian setting can be expressed as

(4.1)
eL = L′(uh; rhu) + o(‖u− uh‖V )

= L′
ε(uh; rhε) + L′

E(uh; rhE) + L′
λ(uh; rhλ) + o(‖u− uh‖V ),

where ‖·‖V denotes the norm on V = V ε × V E × V λ and

(4.2)

L′
ε(uh; rhε) = α 〈εh − ε0, rhε〉Ω − 〈∂tEh · ∂tλh, rhε〉QT

−
〈
1
ε (∇ ·Eh)(∇ · λh), rhε

〉
QT

+
1

2

∑

K∈Kh

〈
1
εh
{(∇ · λh)ν}x ·Eh, rhε

〉
kT
,

(4.3)
L′
E(uh; rhE) =

− 〈λh − (Eh − F )zδ , rhE〉ST
−

Nτ−1∑

n=1

〈εh{∂tλh}t , rhE〉Ω
∣∣
t=tn

+
1

2

∑

K∈Kh

〈{∂νλh}x , rhE〉kT +
〈

1
εh
(∇ · λh)∇εh, rhE

〉
QT

,

(4.4)

L′
λ(uh; rhλ) =

−
Nτ−1∑

n=1

〈εh{∂tEh}t , rhλ〉Ω
∣∣
t=tn

+
1

2

∑

K∈Kh

〈{∂νEh}x , rhλ〉kT

−
〈

1
εh
∇εh · ∇Eh − 1

ε2
h

(∇εh ·Eh)∇εh, rhλ
〉

QT

+
1

2

∑

K∈Kh

〈
1
εh
{(Eh · ∇εh)ν}x , rhλ

〉
kT

+ 〈Eh − P , rhλ〉ST
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Moreover, we can approximately estimate2 the above terms as
∣∣L′

ε(uh; rhε)
∣∣ . 〈|Rε|, h |[∂νεh]x |〉Ω ,(4.5)

∣∣L′
E(uh; rhE)

∣∣ . 〈|Rλ, 1|, h |[∂νEh]x |+ τ |[∂tEh]t |〉QT

+ 〈|Rλ,2|, h |[∂νEh]x |+ τ |[∂tEh]t |〉ST
,

(4.6)

∣∣L′
λ(uh; rhλ)

∣∣ . 〈|RE, 1|, h |[∂νλh]x |+ τ |[∂tλh]t |〉QT

+ 〈|RE, 2|, h |[∂νλh]x |+ τ |[∂tλh]t |〉ST
,

(4.7)

where

Rε = α(εh − ε0)−
∫ T

0
∂tEh · ∂tλh dt−

1

εh

∫ T

0
(∇ ·Eh)(∇ · λh) dt

+
1

εh

∫ T

0

[(∇ · λh)(ν ·Eh)]x
h

dt,

Rλ, 1 = −εh
[∂tλh]t
τ

+
1

2

[∂νλh]x
h

+
∇ · λh
εh

∇εh,

Rλ, 2 = ∂νλh + (Eh − F )zδ,

RE, 1 = −εh
[∂tEh]t
τ

+
1

2

[∂νEh]x
h

+
∇εh ·Eh

ε2h
∇εh −

∇εh · ∇Eh

εh

+
1

2εh

[(∇εh ·Eh)ν]x
h

,

RE, 2 = ∂νEh − P.

For the sake of brevity, the amount of detail in the following proof has
been kept to a minimum. Full details will be provided in a forthcoming
paper.

Proof. From the definition and linearity of the Fréchet derivative
we get

eL = L(u)− L(uh)

= L(uh) + L′(uh; u− uh) + o(‖u− uh‖V )− L(uh)

= L′(uh; rhu) + L′(uh; Ihu− uh) + o(‖u− uh‖V ),

2Throughout the remaining part of the text we will use ‘.’ to indicate approximate
estimation in the following sense: a . b if and only if there exists a constant C > 0
and some b∗ ≈ b such that a ≤ Cb∗.
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where in the last line we have used the split u − uh = rhu+ (Ihu − uh).
The term L′(uh; Ihu−uh) vanishes in view of (3.8) because Ihu−uh ∈ Vh,
which gives the first equality in (4.1). The second equality in (4.1) follows
immediately.

To obtain (4.2), (4.3) and (4.4) we use the Proposition 1 to express
the Fréchet derivatives of L, integrating by parts in time or space to lift
derivatives from the interpolation residual when applicable. Thus, for
L′
ε(uh; rhu) we perform the following calculation:

〈
(∇ · λh)Eh, ∇( rhε

εh
)
〉

QT

=
∑

K∈Kh

〈
(∇ · λh)Eh, ∇( rhε

εh
)
〉

KT

=
∑

K∈Kh

(
−
〈
∇ ·

(
(∇ · λh)Eh

)
, rhε

εh

〉

KT

+
〈
ν ·

(
(∇ · λh)Eh

)
, rhε

εh

〉

∂K×(0, T )

)

= −
∑

K∈Kh

〈
1
εh

(
∇(∇ · λh)

)
Eh, rhε

〉

KT

−
∑

K∈Kh

〈
1
εh
(∇ · λh)(∇ ·Eh), rhε

〉

KT

+
∑

K∈Kh

〈
1
εh
(∇ · λh)(ν · Eh), rhε

〉

kT

+
〈

1
εh
(∇ · λh)(ν ·Eh), rhε

〉

ST

= −
〈

1
εh
(∇ ·Eh)(∇ · λh), rhε

〉

QT

+
1

2

∑

K∈Kh

〈
1
εh
{(∇ · λh)(ν ·Eh)}x

, rhε
〉

kT

,

where we have used the facts that second derivatives of λh are identically
zero inside the elements K ∈ Kh, and that ε ≡ 1 on Γ so that rhε ≡ 0
on Γ. The factor 1

2 appears as every jump is counted exactly twice in the
sum over all elements K ∈ Kh. This yields (4.2).

For (4.3), we have

−〈εh∂tλh, ∂trhE〉QT
=

Nτ∑

n=1

∫ tn

tn−1

〈
εh∂

2
t λh, rhE

〉
Ω
dt

−
Nτ−1∑

n=1

〈εh{∂tλh}t , rhE〉Ω|t=tn ,

where the first sum vanishes since second derivatives of the piecewise
linear function λh are identically zero inside elements of Iτ .

Now calculations of the above two types yield the remaining part of
(4.3) as well as (4.4).

To derive the approximate estimates (4.5), (4.6) and (4.7), we use
two main principles. First we approximate integrals over boundaries by
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integrals over elements (see for instance [8]) using the formulas
∫

∂K
f(x) ds ≈ 1

hK

∫

K
f(x) dx, and f(tn) ≈

1

tn − tn−1

∫ tn

tn−1

f(t) dt,

thus after some elementary manipulations obtaining

L′
ε(uh; rhε) ≈ 〈Rε, rhε〉Ω ,

L′
E(uh; rhE) ≈ 〈Rλ, 1, rhE〉QT

+ 〈Rλ, 2, rhE〉ST
,

L′
λ(uh; rhλ) ≈ 〈RE,1, rhλ〉QT

+ 〈RE, 2, rhλ〉ST
.

Then we apply the following interpolation error estimates (see [13]):

|rhε| ≤ cih
2
∣∣D2ε

∣∣ ≈ cih |[∂νεh]x | =⇒ |rhε| . h |[∂νεh]x | ,
for some interpolation constant ci and with D2 denoting derivatives of
second order, and analogous estimates

|rhη| . h |[∂νηh]x |+ τ |[∂tηh]| , η = E, λ.

This yields (4.5), (4.6) and (4.7). �

5. Conclusions

In Proposition 2 we have provided an a posteriori error estimate for a
finite element approximation procedure for the inverse problem described
in Section 1. The estimate contains three terms estimating |L′

ε(uh; rhε)|,
|L′

E(uh; rhE)|, and |L′
λ(uh; rhλ)|, as well as some higher order (and, we

postulate, usually small) term o(‖u− uh‖V ).
The terms |L′

E(uh; rhE)| and |L′
λ(uh; rhλ)| correspond essentially to

the accuracy of the finite element approximations Eh and λh the true
weak solutions to the forward and adjoint problems, respectively, with
ε = εh. Thus, if these approximations can be expected to be relatively
accurate, we can focus on the term |L′

ε(uh; rhε)|. This, by Proposition
2, corresponds to taking the residual Rε as the indicator of the local
contribution to the global error. Hence, refining meshes where the value
of Rε is close to its maximum will provide an efficient way of obtaining
desired accuracy.

The error estimate we have given here is in the Lagrangian setting,
and the Lagrangian was initially introduced as a tool for minimizing the
Tikhonov functional Φ. Thus it is also of interest to estimate the error
in the Tikhonov functional setting, that is, given ε and εh as above, to
estimate |Φ(ε)− Φ(εh)|.
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Finally, we note that the errors in the Tikhonov functional setting
as well as in the Lagrangian both are of secondary importance in com-
parison to the error in the dielectric permittivity function itself, ε − εh.
Thus, ultimately, we should provide an estimate for that error. Such an
estimate, as well as an estimate for the error in the Tikhonov functional
setting, as discussed above, will be the subject of forthcoming papers.
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A posteriori error estimation in a finite element
method for reconstruction of dielectric

permittivity

John Bondestam Malmberg1

Abstract. We present a posteriori error estimates for finite element
approximations in a minimization approach to a coefficient inverse
problem. The problem is that of reconstructing the dielectric per-
mittivity ε = ε(x), x ∈ Ω ⊂ R3, from boundary measurements of
the electric field. The electric field is related to the permittivity
via Maxwell’s equations. The reconstruction procedure is based on
minimization of a Tikhonov functional where the permittivity, the
electric field and a Lagrangian multiplier function are approximated
by peicewise polynomials. Our main result is an estimate for the dif-
ference between the computed coefficient εh and the true minimizer
ε, in terms of the computed functions.

1. Introduction

In this note we study an adaptive finite element method for the re-
construction of a dielectric permittivity function ε = ε(x), x ∈ Ω, where
Ω ⊂ R3 is a bounded domain with (piecewise) smooth boundary Γ. This is
a coefficient inverse problem (CIP) for Maxwell’s equations, where the di-
electric permittivity function ε, acting as the coefficient in the equations,
characterizes an inhomogeneous, isotropic, non-magnetic, non-conductive
medium in Ω. Possible applications include detection of explosives in air-
port security and detection of land mines.

The method studied is based on minimization of a Tikhonov func-
tional, where the functions involved are approximated by piecewise poly-
nomials. It is intended as a second stage in a two-stage numerical pro-
cedure for the reconstruction of a dielectric permittivity. On the first
stage, described in [5, 6], a good initial approximation ε0 of the dielectric
permittivity function is obtained by a globally convergent method. This
initial approximation is then refined on the second stage.

The version of the second stage considered here was introduced in
[19]. Another version was studied theoretically and numerically in [3, 4,

1Department of Mathematical Sciences, Chalmers University of Technol-
ogy and University of Gothenburg, SE-412 96 Gothenburg, Sweden. E-mail:
john.bondestam.malmberg@chalmers.se
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7–9]. There were two main reasons for introducing the new version of
the second stage in [19]. The first reason was to handle a discrepancy
between theory and implementation which was present in the previous
version. This discrepancy was primarily due to the fact that the dielectric
permittivity was approximated by a piecewise constant function, while the
theory required higher regularity. In spite of that discrepancy, reasonable
reconstructions were obtained, but it remained to be seen whether the
new version of [19] could produce even more accurate reconstructions.

The second reason to introduce the version of [19] was to incorporate
the divergence free condition for the electric displacement directly into the
differential equation, without having to introduce an additional stabilizing
penalty term as was done in [3, 4, 7–9].

In [3], an a posteriori error estimate for a Lagrangian functional was
derived. A similar estimate was given in [19], but there the amount of
detail provided in the proof was, for the sake of brevity, kept to a mini-
mum. Here we give the fully detailed proof of that estimate. Moreover,
we extend the error analysis also to include a posteriori error estimation
for the Tikhonov functional, as well as for the permittivity function itself.
The arguments which we use here could easily be adapted to obtain such
estimates also for the original version of the second stage considered in
[3, 4, 7–9].

The remaining part of this note is structured as follows: In the next
section we present the mathematical formulations of the direct and inverse
problems and present the basic results prior to discretization of the prob-
lems. In Section 3 we state the finite element formulations and perform
the error analysis. Some concluding remarks are given in Section 4.

2. The direct and inverse problems

Before proceeding with the mathematical statement of the problem,
we introduce some notation. For the bounded domain Ω ⊂ R3 with
boundary Γ, we write ΩT := Ω × (0, T ) and ΓT := Γ × (0, T ), where
T > 0 is a (sufficiently large) fixed time. If X ⊂ Rn, n ∈ N, is a domain,
we define the norm ‖·‖X,m := ‖·‖Hm(X) and corresponding inner product

〈·, ·〉X,m := 〈·, ·〉Hm(X), where H
m(X) is the L2-based Sobolev space of

order m over X, with respect to the usual Lebesgue measure. To simplify
notation, we will drop the index m whenever it is zero.
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Let V ε := H3(Ω). We define the set of admissible dielectric permit-
tivity functions

(2.1) U ε := {v ∈ V ε : 1 ≤ v(x) ≤ εmax ∀x ∈ Ω, v|Γ ≡ 1, ∇v|Γ ≡ 0}
for some known but not necessarily small upper bound εmax. The set
U ε is defined to describe a heterogeneous medium in Ω, immersed in a
constant background with permittivity 1 in R3 \Ω.

Under the assumption that ε ∈ U ε we consider Maxwell’s equations
for an isotropic, non-magnetic, non-conductive medium in Ω:

∂(µH)

∂t
+∇×E = 0 in ΩT ,(2.2)

∂(εE)

∂t
−∇×H = 0 in ΩT ,(2.3)

∇ · (µH) = ∇ · (εE) = 0 in ΩT ,(2.4)

where H = H(x, t) and E = E(x, t), (x, t) ∈ ΩT , denote the magnetic
and electric fields, respectively, and µ > 0 is the constant magnetic per-
meability. By scaling, we may assume that µ = 1.

To obtain an equation involving only ε and E, we combine the curl of
(2.2) and derivative of (2.3) with respect to t to obtain the second order
equation

ε
∂2E

∂t2
+∇× (∇×E) = 0 in ΩT .

To incorporate (2.4) we proceed as in [19] to expand ∇ × (∇ × E) =
−∆E+∇(∇ ·E) and use

∇ ·E = ∇ ·
(
εE

ε

)
=

∇ · (εE)

ε
− ∇ε · E

ε
,

where the term ∇ · (εE)/ε vanishes in view of (2.4).
Thus, after completing with boundary and initial conditions, we ob-

tain the system

(2.5)

ε
∂2E

∂t2
−∆E−∇

(∇ε · E
ε

)
= 0 in ΩT ,

∂E

∂ν
= P on ΓT ,

E(·, 0) = ∂E

∂t
(·, 0) = 0 in Ω,
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where ∂
∂ν = ν · ∇, ν denotes the outward unit normal on Γ, and P ∈

[L2(ΓT )]
3 is given Neumann data (see Section 4 of [8] for details). For

well-posedness of problems of this class, we refer to [16].
The mathematical statement of the coefficient inverse problem is:

Problem 1. Given time-resolved boundary observations

G ∈ [L2(ΓT )]
3

of the electric field, determine ε ∈ U ε such that E = G on ΓT .

The observations G represents either experimental or (partially) sim-
ulated data, see [8].

Uniqueness of the solution of coefficient inverse problems of this type
is typically obtained via the method of Carleman estimates [11]. Ex-
amples where this method is applied to inverse problems for Maxwell’s
equations can be found in, for example, [14], [10] for simultaneous recon-
struction of two coefficients, and [17, 18] for bi-isotropic and anisotropic
media. However, this technique requires non-vanishing initial conditions
for the underlying partial differential equation, which is not the case here.
Thus, currently, uniqueness of the solution for the problem we study is
not known. For the purpose of this work, we will assume that uniqueness
holds. This assumption is justified by the numerical results presented in
[8, 9].

We introduce the space V dir := {v ∈ [H1(ΩT )]
3 : v(·, 0) = 0} for

solutions to the direct problem, and V adj := {v ∈ [H1(ΩT )]
3 : v(·, T ) =

0} for adjoint solutions. Both spaces are equipped with the usual norm
and inner product on [H1(ΩT )]

3. Then, by multiplying the first equation
in (2.5) by a test function φ ∈ V adj and integration over ΩT , we obtain,
after integration by parts,
(2.6)

0 = −
〈
ε∂E∂t ,

∂φ
∂t

〉

ΩT

+
〈
ε∂E∂t (·, T ), φ(·, T )

〉
Ω
−

〈
ε∂E∂t (·, 0), φ(·, 0)

〉
Ω

+ 〈∇E, ∇φ〉ΩT
−

〈
∂E
∂ν , φ

〉
ΓT

+
〈
∇ε·E
ε , ∇ · φ

〉
ΩT

−
〈
∇ε·E
ε , ν · φ

〉
ΓT

= −
〈
ε∂E∂t ,

∂φ
∂t

〉
ΩT

+ 〈∇E, ∇φ〉ΩT
+

〈
∇ε·E
ε , ∇ · φ

〉
ΩT

− 〈P, φ〉ΓT

=: D(ε, E, φ),

where the second equality holds because φ(·, T ) = 0, ∂E
∂t (·, 0) = 0, ∂E

∂ν =
P on ΓT , and ∇ε = 0 on ΓT . This leads to the following weak description
of the electric field:
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t

TT − δ

zδ(t)

1

T − δ

2

Figure 1. Schematic illustration of the cut-off function
zδ appearing in the Tikhonov functional (2.7).

Problem 2. Given ε ∈ U ε, determine E ∈ V dir such that

D(ε, E, φ) = 0

for every φ ∈ V adj.

Let Eε ∈ V dir denote the solution to Problem 2 for a given ε ∈ U ε.
We can then define the Tikhonov functional F : U ε → R+,

(2.7) F (ε) = F (ε, Eε) :=
1

2
‖(Eε −G)zδ‖2ΓT

+
α

2
‖ε− ε0‖2Ω ,

where α > 0 is a regularization parameter and zδ = zδ(t) ∈ C∞([0, T ]) is
a cut-off function for the data, dropping from a constant level of 1 to a
constant level of 0 within the small interval (T−δ, T−δ/2), 0 < δ ≪ T , as
schematically shown in Figure 1. The function zδ is introduced to ensure
data compatibility in the adjoint problem arising in the minimization of
(2.7).

How to choose the regularization parameter α with respect to the
level of noise in the data is a widely studied topic. Several methods
exist, examples are the (generalized) discrepancy principle [20] and iter-
ative methods [1]. For the results presented here, we regard α as a fixed
parameter.

As remarked before, the initial approximation ε0 is obtained using
the globally convergent method, as described in, for instance [6]. This
means in particular that if ε0 is sufficiently close to an ideal solution ε∗,
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corresponding to noiseless data G∗, and if the regularization parameter
α is chosen appropriately with respect to the level of noise in the data G,
then by Theorem 3.1 of [7], the Tikhonov functional F is strongly convex
in a neighborhood N ⊂ V ε of ε0. If so, then in particular there exists a
constant c > 0 such that for every ε1, ε2 ∈ N ∩ U ε,

(2.8) c ‖ε1 − ε2‖2V ε ≤ F ′(ε1; ε1 − ε2)− F ′(ε2; ε1 − ε2),

where F ′(ε; ε̄) denotes the Fréchet derivative of F at ε, acting on ε̄.
Throughout the remaining part of this text we will assume that the

hypothesis of Theorem 3.1 of [7], and hence strong convexity, holds. Then
we may seek a minimizer ε ∈ U ε of F by applying any gradient based
method (such as steepest descent, quasi-Newton, or conjugate gradient),
starting from ε0.

Such an approach requires that we compute the Fréchet derivative of
F , which is complicated since it involves the implicit dependence of Eε

upon ε. To simplify the analysis, in the spirit of optimal control (see for
example [2, 15] for the general theory and some specific examples), we
introduce the Lagrangian

L(u) := F (ε, E) + D(ε, E, λ),

where u = (ε, E, λ) ∈ U := U ε × V dir × V adj ⊂ V := V ε × V dir × V adj,
F (ε, E) was defined in (2.7), and D(ε, E, λ) was defined in (2.6).

We can now minimize F over U ε by minimizing L over U . With the
strong convexity as above, this would imply that we solve

Problem 3. Find u ∈ U such that L′(u; v) = 0 for every v ∈ V .

Again we use the notation L′(u; v) for the Fréchet derivative of L at
u, acting on v. It can be shown (see Proposition 1 of [19]) that

L′(u; v) =
∂L

∂ε
(u; ε̄) +

∂L

∂E
(u; Ē) +

∂L

∂λ
(u; λ̄),
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where u = (ε, E, λ) ∈ U , v = (ε̄, Ē, λ̄) ∈ V , and
(2.9)

∂L

∂ε
(u; ε̄) := α 〈ε− ε0, ε̄〉Ω −

〈
∂E
∂t · ∂λ

∂t , ε̄
〉
ΩT

+
〈
(∇ · λ)E, ∇

(
ε̄
ε

)〉
ΩT

,

∂L

∂E
(u; Ē) :=

〈
(E−G)z2δ , Ē

〉
ΓT

−
〈
ε∂λ∂t ,

∂Ē
∂t

〉
ΩT

+
〈
∇λ, ∇Ē

〉
ΩT

+
〈
∇·λ
ε ∇ε, Ē

〉
ΩT

=: A (ε, λ, Ē),

∂L

∂λ
(u; λ̄) = D(ε, E, λ̄).

In particular, we note that the solution u = (ε, E, λ) to Problem 3
must satisfy D(ε, E, λ̄) = 0 for every λ̄ ∈ V adj and A (ε, λ, Ē) = 0 for
every Ē ∈ V dir. The former means that E solves Problem 2 and the latter
that λ solves the following adjoint problem:

Problem 4. Given ε ∈ U ε, determine λ ∈ V adj such that

A (ε, λ, φ) = 0

for every φ ∈ V dir.

The functional A in Problem 4 was defined in (2.9). The problem
can be seen as a weak analogue of the following system, adjoint to (2.5):

ε
∂2λ

∂t2
−∆λ− ∇ · λ

ε
∇ε = 0 in ΩT ,

∂λ

∂ν
= −(E−G)z2δ on ΓT ,

λ(·, T ) = ∂λ

∂t
(·, T ) = 0 in Ω.

These observations will be used in the error analysis to be described
below. But first we shall make some remarks concerning the relation
between the Fréchet derivative of Tikhonov functional and that of the
Lagrangian.

Let uε = (ε, Eε, λε) be the element of U obtained by taking Eε as
the solution to Problem 2 and λε as the solution to Problem 4 for the
given ε ∈ U ε. Then, under assumption of sufficient stability of the weak
solutions Eε and λε with respect to ε, the observation that

F (ε) = F (ε, Eε) = F (ε, Eε) + D(ε, Eε, λε) = L(uε),
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(as D(ε, Eε, λε) = 0) leads to

(2.10) F ′(ε; ·) = ∂L

∂ε
(uε; ·).

Estimate (2.8) and identity (2.10) will play an important role in the error
analysis for the Tikhonov functional and for the coefficient.

3. Finite element formulations and error analysis

In this section we will give finite element formulations for discretizing
Problems 2, 3 and 4. After that we will turn to the error analysis. We
begin by defining finite-dimensional analogues of the spaces V ε, V dir,
V adj, and V , as well as subsets corresponding to U ε and U .

Let Th := {K} be a triangulation of Ω and let Iτ be a uniform par-
tition of (0, T ) into subintervals (tk, tk+1], tk = kτ , k = 0, . . . , Nτ , of
length τ = T/Nτ . With Th we associate a mesh-function h = h(x) such
that h(x) = diam(K) for x ∈ K ∈ Th. On these meshes we define2

V ε
h := {v ∈ V ε : v|K ∈ P q(K) ∀K ∈ Th},
U ε
h := V ε

h ∩ U ε,

V dir
h := {v ∈ V dir : v|K×I ∈ [P 1(K)]3 × P 1(I) ∀K ∈ Th ∀I ∈ Iτ},

V adj
h := {v ∈ V adj : v|K×I ∈ [P 1(K)]3 × P 1(I) ∀K ∈ Th ∀I ∈ Iτ},
Vh := V ε

h × V dir
h × V adj

h ,

Uh := U ε
h × V dir

h × V adj
h ,

where Pn(X) denotes the space of polynomials of degree at most n ∈ N

over X, and the degree q used in the finite-dimensional analogue V ε
h of

V ε is at least 1.
Using these spaces we can state finite element versions of Problems 2

and 4 as Problem 5 and Problem 6, respectively, as follows:

Problem 5. Given ε ∈ U ε, determine Eh ∈ V dir
h such that

D(ε, Eh, φh) = 0

for every φh ∈ V adj
h .

2Observe that the dependence on the step size τ in time is not explicitly included
in the notation for the finite-dimensional spaces. This is justified by the fact that τ

should be selected with regard to h in accordance with the Courant-Friedrichs-Lewy
condition.
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Problem 6. Given ε ∈ U ε, determine λh ∈ V adj
h such that

A (ε, λh, φh) = 0

for every φ ∈ V dir
h .

The finite-dimensional analogue for Problem 3 is:

Problem 7. Find uh = (εh, Eh, λh) ∈ Uh such that L′(uh, v) = 0
for every v ∈ Vh.

The same remark that was made in conjunction with Problem 3 is also
valid here: it holds that Eh solves Problem 5 and λh solves Problem 6
for ε = εh.

We will now focus on estimations of the difference between the solu-
tion to Problem 3 and Problem 7. We begin by introducing some addi-
tional notation. For v = (ε, E, λ) ∈ V we denote (with some slight abuse
of notation) its interpolant in Vh by

Πhv = (Πhε, ΠhE, Πhλ),

and the interpolation error by

rhv = v −Πhv = (rhε, rhE, rhλ).

We will also need to consider jumps of discontinuous functions over Th
and Iτ . Let K1, K2 ∈ Th such that ∂K1 ∩ ∂K2 = e 6= ∅. For x ∈ e we
define

{v}s (x) := lim
y→x,y∈K1

v(y) + lim
y→x,y∈K2

v(y),

so that in particular if v = wν , where w is piecewise constant on Th and
ν is the outward unit normal, then {v}s = {wν}s = (wν)|K1

+(wν)|K2
is

the normal jump across e. We extend {·}s to every edge in Th by defining
{v}s (x) = 0 for x ∈ K ∩Γ, K ∈ Th. The corresponding maximal jump is
defined by

[v]s (x) := max
y∈∂K

|{v}s (y)| , x ∈ K ∈ Th.

For jumps in time, we define

{v}t (tk) :=
{

lim
s→0+

(
v(tk + s)− v(tk − s)

)
, k = 1, . . . , Nτ − 1,

0 k = 0, Nτ ,

and

[v]t (t) := max{|{v}t (tk)| , |{v}t (tk+1)|} t ∈ (tk, tk+1).
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In the theorems and proofs to be presented, we will frequently use the
symbols ≈ and . to denote approximate equality and inequality, respec-
tively, where higher order terms (with respect to mesh-size or errors) are
neglected.

We are now ready to present the first a posteriori error estimate, an
estimate for the Lagrangian. The theorem was first presented in [19], but
with only a very brief proof. We will here give the full details of the proof.
Let us start by recalling the theorem:

Theorem 3.1. (A posteriori error estimate for the Lagrangian.) Let
u = (ε, E, λ) ∈ U be the solution to Problem 3 and uh = (εh, Eh, λh) ∈
Uh be the solution to Problem 7. Then there exists a constant C, which
does not depend on u, uh, h, or τ , such that

|L(u)− L(uh)| . C
(〈

|Rε|, h
∣∣∣
[
∂εh
∂ν

]
s

∣∣∣
〉

Ω

+
〈
Rλ,Ω, τ

∣∣∣
[
∂Eh

∂t

]
t

∣∣∣+ h
∣∣∣
[
∂Eh

∂ν

]
s

∣∣∣
〉

ΩT

+
〈
Rλ,Γ, τ

∣∣∣
[
∂Eh

∂t

]
t

∣∣∣+ h
∣∣∣
[
∂Eh

∂ν

]
s

∣∣∣
〉

ΓT

+
〈
RE,Ω, τ

∣∣∣
[
∂λh

∂t

]
t

∣∣∣+ h
∣∣∣
[
∂λh

∂ν

]
s

∣∣∣
〉

ΩT

+
〈
RE,Γ, τ

∣∣∣
[
∂λh

∂t

]
t

∣∣∣+ h
∣∣∣
[
∂λh

∂ν

]
s

∣∣∣
〉

ΓT

)
,

where

Rε = α(εh − ε0)−
∫ T

0

∂Eh

∂t
(·, t) · ∂λh

∂t
(·, t) dt

−
∫ T

0

∇ ·Eh(·, t)∇ · λh(·, t)
εh

dt+

∫ T

0

[(ν ·Eh)(∇ · λh)]s
hεh

dt,

Rλ,Ω = −εh

[
∂λh

∂t

]

t

τ
+

[
∂λ
∂ν

]
s

2h
+

∇ · λh

εh
∇εh,

Rλ,Γ =
∂λh

∂ν
+ (Eh −G)z2δ ,
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RE,Ω = −εh

[
∂Eh

∂t

]
t

τ
+

[
∂Eh

∂ν

]
s

2h
+

∇εh · Eh

ε2h
∇εh −

JT

∇εh
Eh + JT

Eh
∇εh

εh

+
[(∇εh · Eh)ν]s

2hεh
,

RE,Γ =
∂Eh

∂ν
−P.

Here J∇εh and JEh
denotes the Jacobi matrices of ∇εh and Eh, respec-

tively, and (·)T denotes matrix transpose.

Note that if εh is piecewise linear, J∇εh |K ≡ 0 for every K ∈ Th, hence
the corresponding term in RE,Ω vanishes in that case.

In the following proof, and thereafter, C is used to denote various
constants of moderate size which do not depend on u, uh, h, or τ .

Proof. Using the definition of the Fréchet derivative we get

L(u)− L(uh) = L′(uh; u− uh) + o(‖u− uh‖V )
The split u−uh = (u−Πhu)+ (Πhu−uh) = rhu+(Πhu−uh) now gives

L(u)− L(uh) = L′(uh; rhu+ (Πhu− uh)) + o(‖u− uh‖V )
= L′(uh; rhu) + L′(uh; Πhu− uh) + o(‖u− uh‖V ).

The second term vanishes since Πhu− uh ∈ Vh and uh solves Problem 7,
and we neglect the remainder term o(‖u− uh‖V ) since it is of higher order
with respect to the error. We are then left with

L(u)−L(uh) ≈ L′(uh; rhu) =
∂L

∂ε
(uh; rhε)+

∂L

∂E
(uh; rhE)+

∂L

∂λ
(uh; rhλ),

and individual estimation of these three terms will give the stated result.
Starting with the first term, we observe that

∂L

∂ε
(uh; rhε) = α 〈εh − ε0, rhε〉Ω −

〈
∂Eh

∂t · ∂λh

∂t , rhε
〉
ΩT

+
〈
(∇ · λh)Eh, ∇

(
rhε
εh

)〉
ΩT

.

We aim at lifting all derivatives from the interpolation errors, thus
we split the inner product over ΩT in the last term above into the sum
of inner products over KT := K × (0, T ), K ∈ Th:〈

(∇ · λh)Eh, ∇
(
rhε
εh

)〉
ΩT

=
∑

K∈Th

〈
(∇ · λh)Eh, ∇

(
rhε
εh

)〉
KT

.
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We now integrate by parts, using the notation ∂KT := ∂K × (0, T ),
∂K ′

T := (∂K \ Γ)× (0, T ), ∂K ′′
T := (∂K ∩ Γ)× (0, T ), K ∈ Th:

∑

K∈Th

〈
(∇ · λh)Eh, ∇

(
rhε
εh

)〉
KT

=
∑

K∈Th

(
−
〈
∇ ·

(
(∇ · λh)Eh

)
, rhε

εh

〉
KT

+
〈
(∇ · λh)(ν ·Eh),

rhε
εh

〉
∂KT

)

=
∑

K∈Th

(
−
〈
∇(∇·λh)·Eh

εh
, rhε

〉

KT

−
〈
(∇·λh)(∇·Eh)

εh
, rhε

〉

KT

+
〈
(∇·λh)(ν·Eh)

εh
, rhε

〉
∂K ′

T

+
〈
(∇·λh)(ν·Eh)

εh
, rhε

〉
∂K ′′

T

)

= −
∑

K∈Th

〈
∇(∇·λh)·Eh

εh
, rhε

〉
KT

−
〈
(∇·λh)(∇·Eh)

εh
, rhε

〉
ΩT

+
∑

K∈Th

〈
(∇·λh)(ν·Eh)

εh
, rhε

〉
∂K ′

T

+
〈
(∇·λh)(ν·Eh)

εh
, rhε

〉
ΓT

.

We observe that ∇(∇ · λh) ≡ 0 on every KT , K ∈ Th, since λh is
piecewise linear, and that ε ≡ 1 on Γ so that rhε|Γ ≡ 0. With this in
mind, the above calculations yields

〈
(∇ · λh)Eh, ∇

(
rhε
εh

)〉
ΩT

= −
〈
(∇·λh)(∇·Eh)

εh
, rhε

〉
ΩT

+
∑

K∈Th

〈
(∇·λh)(ν·Eh)

εh
, rhε

〉
∂K ′

T

.

In order to obtain a residual defined in the whole of Ω, as opposed
to one containing terms defined only on edges of elements K ∈ Th, we
should manipulate the last term in the above expression further. Observe
that

∑

K∈Th

〈
1
εh
(∇ · λh)(ν · Eh), rhε

〉
∂K ′

T

=

1

2

∑

K∈Th

〈
1
εh

{(∇ · λh)(ν ·Eh)}s, rhε
〉

∂K ′

T

,

where the factor 1
2 appears since every internal edge is counted exactly

twice in the sum over all elements K ∈ Th.
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Using the approximation
∫

∂K
f dS ≈

∫

K

f̃

hK
dx

where f̃ denotes the maximum of f over ∂K (see for instance [12]), we
finally get

∑

K∈Th

〈
1
εh

{(∇ · λh)(ν ·Eh)}s, rhε
〉
∂K ′

T

≈
∑

K∈Th

〈
1

hKεh
[(∇ · λh)(ν ·Eh)]s, rhε

〉
KT

=
〈

1
hεh

[(∇ · λh)(ν · Eh)]s, rhε
〉
ΩT

,

which gives

∂L

∂ε
(uh; rhε) = α 〈εh − ε0, rhε〉Ω +

〈
∂Eh

∂t · ∂λh

∂t , rhε
〉
ΩT

−
〈
(∇·λh)(∇·Eh)

εh
, rhε

〉

ΩT

+
〈

1
hεh

[(∇ · λh)(ν · Eh)]s, rhε
〉
ΩT

= 〈Rε, rhε〉Ω .
We can now estimate rhε in terms of εh, using standard interpolation

techniques (see for instance [13]), as

|rhε| ≤ Ch2
∣∣D2ε

∣∣ ≈ Ch2

∣∣∣∣∣∣

[
∂εh
∂ν

]

s

h

∣∣∣∣∣∣
= Ch

∣∣∣
[
∂εh
∂ν

]
s

∣∣∣ ,

where D2 denotes derivatives of second order with respect to x. Thus
∣∣∣∣
∂L

∂ε
(uh; rhε)

∣∣∣∣ . C
〈
|Rε|, h

∣∣∣
[
∂εh
∂ν

]

s

∣∣∣
〉

Ω
.

We continue with

∂L

∂E
(uh; rhE) =

〈
(Eh −G)z2δ , rhE

〉
ΓT

−
〈
εh

∂λh

∂t ,
∂rhE
∂t

〉
ΩT

+ 〈∇λh, ∇rhE〉ΩT
+

〈
∇·λh

εh
∇εh, rhE

〉
ΩT

.
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Again, we seek to lift derivatives from the interpolation errors, and so we
use integration by parts to get

〈
εh

∂λh

∂t
, ∂rhE

∂t

〉
ΩT

=

Nτ∑

k=1

∫ tk

tk−1

〈
εh

∂λh

∂t
, ∂rhE

∂t

〉
Ω
dt

= −
Nτ∑

k=1

∫ tk

tk−1

〈
εh

∂2
λh

∂t2
, rhE

〉

Ω
dt

+

Nτ∑

k=1

( 〈
εh

∂λh

∂t
, rhE

〉
Ω
|t=tk −

〈
εh

∂λh

∂t
, rhE

〉
Ω
|t=tk−1

)

=

Nτ−1∑

k=1

〈
εh

{
∂λh

∂t

}
t
, rhE

〉
Ω
|t=tk +

〈
εh

∂λh

∂t
, rhE

〉
Ω
|t=T

−
〈
εh

∂λh

∂t
, rhE

〉
Ω
|t=0,

where we have used the fact that ∂2λh

∂t2
≡ 0 on each subinterval (tk−1, tk),

for the piecewise linear function λh.
Since rhE(·, 0) = ∂λh

∂t (·, T ) = 0, this leaves us with

〈
εh

∂λh

∂t ,
∂rhE
∂t

〉
ΩT

=
Nτ−1∑

k=1

〈
εh

{
∂λh

∂t

}
t
, rhE

〉

Ω
|t=tk .

We now approximate the boundary terms by terms defined on the whole
interval, using

f(tk) ≈
1

τ

∫ tk

tk−1

f(t) dt,

that is

Nτ−1∑

k=1

〈
εh

{
∂λh

∂t

}
t
, rhE

〉

Ω
|t=tk ≈

Nτ−1∑

k=1

1

τ

∫ tk

tk−1

〈
εh

[
∂λh

∂t

]
t
, rhE

〉

Ω
dt

=
〈
εh
τ

[
∂λh

∂t

]
t
, rhE

〉

ΩT

.

Moving on to

〈∇λh, ∇rhE〉ΩT
=

∑

K∈Th

〈∇λh, ∇rhE〉KT
,
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we integrate by parts and use the fact that ∆λh ≡ 0 in every K ∈ Th to
obtain

〈∇λh, ∇rhE〉ΩT
=

∑

K∈Th

(
−〈∆λh, rhE〉KT

+
〈
∂λh

∂ν , rhE
〉
∂KT

)

=
∑

K∈Th

(〈
∂λh

∂ν , rhE
〉

∂K ′

T

+
〈
∂λh

∂ν , rhE
〉

∂K ′′

T

)

=
1

2

∑

K∈Th

〈{
∂λh

∂ν

}
s
, rhE

〉

∂K ′

T

+
〈
∂λh

∂ν , rhE
〉
ΓT

.

We again approximate inner products over ∂K ′
T by inner products

over KT , so that

〈∇λh, ∇rhE〉ΩT
≈

〈
1
2h

[
∂λh

∂ν

]

s
, rhE

〉

ΩT

+
〈
∂λh

∂ν , rhE
〉

ΓT

.

Together with previous calculations, this gives

∂L

∂E
(uh; rhE) ≈

〈
(Eh −G)z2δ , rhE

〉
ΓT

−
〈
εh
τ

[
∂λh

∂t

]

t
, rhE

〉

ΩT

+
〈

1
2h

[
∂λh

∂ν

]
s
, rhE

〉

ΩT

+
〈
∂λh

∂ν , rhE
〉
ΓT

+
〈
∇·λh

εh
∇εh, rhE

〉
ΩT

= 〈Rλ,Ω, rhE〉ΩT
+ 〈Rλ,Γ, rhE〉ΓT

.

We once more use interpolation estimates

|rhE| ≤ C

(
h2

∣∣D2E
∣∣+ τ2

∣∣∣∣
∂2E

∂t2

∣∣∣∣
)

≈ C
(
h
∣∣∣
[
∂Eh

∂ν

]
t

∣∣∣+ τ
∣∣∣
[
∂Eh

∂t

]
s

∣∣∣
)
.

to get
∣∣∣∣
∂L

∂E
(uh; rhE)

∣∣∣∣ . C

(〈
|Rλ,Ω|, h

∣∣∣
[
∂Eh

∂ν

]
t

∣∣∣+ τ
∣∣∣
[
∂Eh

∂t

]
s

∣∣∣
〉

ΩT

+
〈
|Rλ,Γ|, h

∣∣∣
[
∂Eh

∂ν

]
t

∣∣∣+ τ
∣∣∣
[
∂Eh

∂t

]
s

∣∣∣
〉

ΓT

)
.

It remains to estimate
∂L

∂λ
(uh; rhλ) = −

〈
εh

∂Eh

∂t ,
∂rhλ
∂t

〉
ΩT

+ 〈∇Eh, ∇rhλ〉ΩT

+
〈
∇εh·Eh

εh
, ∇ · rhλ

〉
ΩT

− 〈P, rhλ〉ΓT
.
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Just as before, we obtain
〈
εh

∂Eh

∂t ,
∂rhλ
∂t

〉
ΩT

≈
〈
εh
τ

[
∂Eh

∂t

]
t
, rhλ

〉

ΩT

and

〈∇Eh, ∇rhλ〉ΩT
≈

〈
1
2h

[
∂Eh

∂ν

]
s
, rhλ

〉

ΩT

+
〈
∂Eh

∂ν , rhλ
〉
ΓT

.

Consider the term
〈
∇εh·Eh

εh
, ∇ · rhλ

〉
ΩT

=
∑

K∈Th

〈
∇εh·Eh

εh
, ∇ · rhλ

〉
KT

.

Integration by parts yields
〈
∇εh·Eh

εh
, ∇ · rhλ

〉
ΩT

=
∑

K∈Th

(
−
〈
∇

(
∇εh·Eh

εh

)
, rhλ

〉
KT

+
〈
∇εh·Eh

εh
ν, rhλ

〉
∂KT

)

=
∑

K∈Th

〈
∇εh·Eh

ε2
h

∇εh −
JT

∇εh
Eh+JT

Eh
∇εh

εh
, rhλ

〉

KT

+
∑

K∈Th

(〈
∇εh·Eh

εh
ν, rhλ

〉
∂K ′

T

+
〈
∇εh·Eh

εh
ν, rhλ

〉
∂K ′′

T

)

=

〈
∇εh·Eh

ε2
h

∇εh − JT

∇εh
Eh+JT

Eh
∇εh

εh
, rhλ

〉

ΩT

+
∑

K∈Th

〈
1
εh

{(∇εh · Eh)ν}s, rhλ
〉
∂K ′

T

+
〈
∇εh·Eh

εh
ν, rhλ

〉
ΓT

,

where for the second equality we have used the identity ∇(∇εh · Eh) =
JT

∇εh
Eh + JT

Eh
∇εh.

Noting that ∇εh|Γ ≡ 0 as εh ∈ U ε
h, and using the usual approximation

for {·}s inside elements K ∈ Th we get

〈
∇εh·Eh

εh
, ∇ · rhλ

〉
ΩT

≈
〈

∇εh·Eh

ε2
h

∇εh −
JT

∇εh
Eh+JT

Eh
∇εh

εh
, rhλ

〉

+
〈

1
2hεh

[(∇εh · Eh)ν]s, rhλ
〉
ΩT

.
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Combining the results for ∂L
∂λ(uh; rhλ) and estimating rhλ in terms

of λh just as rhE was estimated in terms of Eh gives

∣∣∣∣
∂L

∂λ
(uh; rhλ)

∣∣∣∣ . C

(〈
|RE,Ω|, h

∣∣∣
[
∂λh

∂ν

]
s

∣∣∣+ τ
∣∣∣
[
∂λh

∂t

]
t

∣∣∣
〉

ΩT

+
〈
|RE,Γ|, h

∣∣∣
[
∂λh

∂ν

]
s

∣∣∣+ τ
∣∣∣
[
∂λh

∂t

]
t

∣∣∣
〉

ΓT

)
,

which completes the proof. �

One should note that the terms in the error estimate of Theorem 3.1
which are derived from ∂L

∂λ(uh; rhλ) and
∂L
∂E(uh; rhE) estimate how accu-

rately the solutions of Problem 2 and Problem 4 are approximated by the
solutions of Problem 5 and Problem 6, respectively, for the approximate

coefficient εh. The remaining term,
〈
Rε, h

∣∣∣
[
∂εh
∂ν

]
s

∣∣∣
〉

Ω
can be interpreted

as the error induced by approximating ε by εh. Thus, if we are mainly
interested in that error, or if we can postulate that the finite element
approximations Eh and λh are computed with relatively high accuracy,
then |Rε| may be used as an error indicator by itself. The significance
of Rε will be further illustrated by the error estimates for the coefficient
and for the Tikhonov functional.

We now proceed with an error estimate for the coefficient itself. An
error estimate for the Tikhonov functional will follow as a corollary.

Theorem 3.2. (A posteriori error estimate for the coefficient.) Sup-
pose that the initial approximation ε0 and the regularization parame-
ter α are such that the strong convexity estimate (2.8) holds. Let u =
(ε, E, λ) ∈ U be the solution to Problem 3, and let uh = (εh, Eh, λh) ∈
Uh be the solution to Problem 7, computed on meshes Th and Iτ . Denote
by Ẽ and λ̃ the solutions to Problem 2 and Problem 4, respectively, with
permittivity εh, and set ũ = (εh, Ẽ, λ̃) ∈ U . Then there exists a constant
C, which does not depend on u, uh, h, or τ , such that

‖ε− εh‖V ε . C(cεη + ‖Rε‖Ω),
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where cε := max{1, ‖∇εh‖L∞(Ω)} and η = η(uh) is defined by

η :=
〈

1
τ

∣∣∣
[
∂λh

∂t

]
t

∣∣∣+ |∇ · λh|, h
∣∣∣
[
∂Eh

∂ν

]
s

∣∣∣+ τ
∣∣∣
[
∂Eh

∂t

]
t

∣∣∣
〉

ΩT

+
〈

1
τ

∣∣∣
[
∂Eh

∂t

]

t

∣∣∣, h
∣∣∣
[
∂λh

∂ν

]

s

∣∣∣+ τ
∣∣∣
[
∂λh

∂t

]

t

∣∣∣
〉

ΩT

+
〈
|Eh|,

∣∣∣
[
∂λh

∂ν

]
s

∣∣∣+ τ
∣∣∣
[
∂∇·λh

∂t

]
t

∣∣∣
〉

ΩT

.

Proof. Using strong convexity (2.8), we obtain

‖ε− εh‖2V ε ≤ c
(
F ′(ε; ε− εh)− F ′(εh; ε− εh)

)
.

Since ε minimizes F (ε) we have F ′(ε; ε− εh) = 0 and thus

(3.1) ‖ε− εh‖2V ε ≤ c
∣∣F ′(εh; ε− εh)

∣∣ = c

∣∣∣∣
∂L

∂ε
(ũ; ε− εh)

∣∣∣∣ ,

where the last equality follows from (2.10).
We expand

(3.2)∣∣∣∣
∂L

∂ε
(ũ; ε− εh)

∣∣∣∣ =
∣∣∣∣
∂L

∂ε
(ũ; ε− εh)−

∂L

∂ε
(uh; ε− εh) +

∂L

∂ε
(uh; ε− εh)

∣∣∣∣

≤
∣∣∣∣
∂L

∂ε
(ũ; ε− εh)−

∂L

∂ε
(uh; ε− εh)

∣∣∣∣+
∣∣∣∣
∂L

∂ε
(uh; ε− εh)

∣∣∣∣
=: |Θ1|+ |Θ2| ,

and estimate the two terms |Θ1| and |Θ2| separately.
For Θ1 we use the linearization

Θ1 =
∂2L

∂E∂ε
(uh; Ẽ−Eh; ε− εh) + o(‖Ẽ−Eh‖ΩT , 1)

+
∂2L

∂λ∂ε
(uh; λ̃− λh; ε− εh) + o(‖λ̃− λh‖ΩT , 1),

where ∂2L
∂E∂ε and

∂2L
∂λ∂ε denote mixed second partial Fréchet derivatives of L.

Again, the remainder terms are neglected as they are of higher order with
respect to the error. Thus, after exchanging the order of differentiation,
we are left with

(3.3) Θ1 ≈ D1|ε−εh

(
∂L

∂E
(uh; Ẽ−Eh) +

∂L

∂λ
(uh; λ̃− λh)

)
,

where D1|ε−εh denotes differentiation with respect to the first component
in uh and action on ε− εh.
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We split Ẽ − Eh = (Ẽ − ΠhẼ) + (ΠhẼ − Eh) = rhẼ + (ΠhẼ − Eh)
and use the fact that λh solves Problem 4 with coefficient εh, so that
∂L
∂E (uh; ΠhẼ−Eh) = 0 as ΠhẼ−Eh ∈ V dir

h . This gives

∂L

∂E
(uh; Ẽ−Eh) =

∂L

∂E
(uh; rhẼ) +

∂L

∂E
(uh; ΠhẼ−Eh) =

∂L

∂E
(uh; rhẼ).

(3.4)

Similarly, we have

∂L

∂λ
(uh; λ̃− λh) =

∂L

∂λ
(uh; rhλ̃) +

∂L

∂λ
(uh; Πhλ̃− λh) =

∂L

∂λ
(uh; rhλ̃).

(3.5)

as Eh solves Problem 2 with coefficient εh.
Combining (3.3), (3.4), and (3.5) gives

Θ1 ≈ D1|ε−εh

(
∂L

∂E
(uh; rhẼ) +

∂L

∂λ
(uh; rhλ̃)

)

= −
〈
(ε− εh)

∂rhẼ
∂t , ∂λh

∂t

〉
ΩT

+
〈
∇

(
ε−εh
εh

)
rhẼ, ∇ · λh

〉
ΩT

−
〈
(ε− εh)

∂Eh

∂t ,
∂rhλ̃
∂t

〉
ΩT

+
〈
∇

(
ε−εh
εh

)
Eh, ∇ · rhλ̃

〉
ΩT

.

In the same manner as in the proof of Theorem 3.1, we integrate by
parts in time and approximate jumps to get

−
〈
(ε− εh)

∂rhẼ
∂t , ∂λh

∂t

〉
ΩT

=

Nτ∑

k=1

∫ tk

tk−1

〈
(ε− εh)rhẼ,

{
∂λh

∂t

}
t

〉

Ω
dt

≈
〈
(ε− εh)rhẼ,

1
τ

[
∂λh

∂t

]

t

〉

ΩT

and

−
〈
(ε− εh)

∂Eh

∂t ,
∂rhλ̃
∂t

〉
ΩT

=
Nτ∑

k=1

∫ tk

tk−1

〈
(ε− εh)

{
∂Eh

∂t

}
t
, rhλ̃

〉

Ω
dt

≈
〈
(ε− εh)

1
τ

[
∂Eh

∂t

]
t
, rhλ̃

〉

ΩT

.
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Thus

Θ1 .
〈
|ε− εh| 1

τ

∣∣∣
[
∂λh

∂t

]
t

∣∣∣,
∣∣∣rhẼ

∣∣∣
〉

ΩT

+
〈∣∣∣∇

(
ε−εh
εh

)∣∣∣ |∇ · λh|,
∣∣∣rhẼ

∣∣∣
〉
ΩT

+
〈
|ε− εh| 1τ

∣∣∣
[
∂Eh

∂t

]
t

∣∣∣,
∣∣∣rhλ̃

∣∣∣
〉

ΩT

+
〈∣∣∣∇

(
ε−εh
εh

)∣∣∣ |Eh|,
∣∣∣∇ · rhλ̃

∣∣∣
〉
ΩT

≤ ‖ε− εh‖L∞(Ω)

(〈
1
τ

∣∣∣
[
∂λh

∂t

]
t

∣∣∣,
∣∣∣rhẼ

∣∣∣
〉

ΩT

+
〈

1
τ

∣∣∣
[
∂Eh

∂t

]
t

∣∣∣,
∣∣∣rhλ̃

∣∣∣
〉

ΩT

)

+
∥∥∥∇

(
ε−εh
εh

)∥∥∥
L∞(Ω)

(〈
|∇ · λh|,

∣∣∣rhẼ
∣∣∣
〉
ΩT

+
〈
|Eh|,

∣∣∣∇ · rhλ̃
∣∣∣
〉
ΩT

)
.

Note that

∥∥∥∇
(
ε−εh
εh

)∥∥∥
L∞(Ω)

=
∥∥∥∇(ε−εh)

εh
− (ε−εh)∇εh

ε2
h

∥∥∥
L∞(Ω)

≤
∥∥∥ 1
εh

∥∥∥
L∞(Ω)

‖∇(ε− εh)‖L∞(Ω)

+
∥∥∥ 1
ε2
h

∥∥∥
L∞(Ω)

‖∇εh‖L∞(Ω) ‖ε− εh‖L∞(Ω)

and observe following facts:

‖ε− εh‖L∞(Ω) + ‖∇(ε− εh)‖L∞(Ω) ≤ C ‖ε− εh‖V ε ,
∥∥∥ 1
εp
h

∥∥∥
L∞(Ω)

≤ 1, p ≥ 0,

the first following from the Sobolev inequality and the second from noting
that 1 ≤ εh(x) ≤ εmax, x ∈ Ω, by (2.1).

Using these observations, and interpolation estimates

∣∣∣rhẼ
∣∣∣ ≤ C

(
h
∣∣∣
[
∂Eh

∂ν

]
s

∣∣∣+ τ
∣∣∣
[
∂Eh

∂t

]
t

∣∣∣
)
,

∣∣∣rhλ̃
∣∣∣ ≤ C

(
h
∣∣∣
[
∂λh

∂ν

]
s

∣∣∣+ τ
∣∣∣
[
∂λh

∂t

]
t

∣∣∣
)
,

∣∣∣∇ · rhλ̃
∣∣∣ ≤ C

(∣∣∣
[
∂λh

∂ν

]
s

∣∣∣+ τ
∣∣∣
[
∂∇·λh

∂t

]
t

∣∣∣
)
,
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we get
(3.6)

Θ1 . C

(〈
1
τ

∣∣∣
[
∂λh

∂t

]
t

∣∣∣, h
∣∣∣
[
∂Eh

∂ν

]
s

∣∣∣+ τ
∣∣∣
[
∂Eh

∂t

]
t

∣∣∣
〉

ΩT

+ ‖∇εh‖L∞(Ω)

〈
|∇ · λh|, h

∣∣∣
[
∂Eh

∂ν

]
s

∣∣∣+ τ
∣∣∣
[
∂Eh

∂t

]
t

∣∣∣
〉

ΩT

+
〈

1
τ

∣∣∣
[
∂Eh

∂t

]
t

∣∣∣, h
∣∣∣
[
∂λh

∂ν

]
s

∣∣∣+ τ
∣∣∣
[
∂λh

∂t

]
t

∣∣∣
〉

ΩT

+ ‖∇εh‖L∞(Ω)

〈
|Eh|,

∣∣∣
[
∂λh

∂ν

]
s

∣∣∣+ τ
∣∣∣
[
∂∇·λh

∂t

]
t

∣∣∣
〉

ΩT

)
‖ε− εh‖V ε

≤ Ccεη ‖ε− εh‖V ε ,

where cε and η were defined in the statement of the theorem.
Turning to Θ2 of (3.2), we use the techniques of the proof of Theo-

rem 3.1 to estimate
(3.7)
|Θ2| . C 〈|Rε|, |ε− εh|〉Ω ≤ C ‖Rε‖Ω ‖ε− εh‖Ω ≤ C ‖Rε‖Ω ‖ε− εh‖V ε .

Combining estimates (3.6) and (3.7) with (3.1) and (3.2), we conclude
that

‖ε− εh‖2V ε . C (cεη ‖ε− εh‖V ε + ‖Rε‖Ω ‖ε− εh‖V ε) ,

and the result follows. �

Again, just as for the error estimate for the Lagrangian, we see that
if the numerical errors for solving the direct and adjoint problems are
relatively small, that is, when ũ ≈ uh with relatively high accuracy, then
‖Rε‖Ω dominates the error estimate.

Corollary 1. (A posteriori error estimate for the Tikhonov func-
tional.) Under the hypothesis of Theorem 3.2, we have

|F (ε)− F (εh)| . C
(
c2εη

2 + ‖Rε‖2Ω
)
,

with cε and η as defined in Theorem 3.2.

Proof. Using the definition of the Fréchet derivative and (2.10) we
get

F (ε)− F (εh) = F ′(εh; ε− εh) + o(‖ε− εh‖V ε)

=
∂L

∂ε
(ũ; ε− εh) + o(‖ε− εh‖V ε).
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Neglecting the remainder term as it is of higher order with respect to the
error, and estimating ∂L

∂ε (ũ; ε − εh) as in the proof of Theorem 3.2, we
obtain

|F (ε)− F (εh)| . C(cεη + ‖Rε‖V ε) ‖ε− εh‖V ε .

Applying Theorem 3.2 to estimate ‖ε− εh‖V ε , we arrive at

|F (ε)− F (εh)| . C(cεη + ‖Rε‖V ε)
2 ≤ C

(
c2εη

2 + ‖Rε‖2V ε

)
.

�

4. Conclusion

We have presented three a posteriori error estimates for an adaptive
finite element method for the coefficient inverse problem, Problem 1: for
the Lagrangian, for the Tikhonov functional and for the coefficient. The
latter two are presented here for the first time. Each estimator consists
essentially of three parts, an estimate for the error resulting from finite
element approximation of the solution to the direct problem, a similar
estimate for the finite element approximation of the adjoint problem and
an estimate corresponding to the approximation of the coefficient. The
latter part is characterized by the residual Rε in all estimates.

Explicit solution schemes and numerical testing, including the proper
choice of regularization parameter α, will be the subject of forthcoming
papers.
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Reconstruction of shapes and refractive indices
from backscattering experimental data using the

adaptivity

Larisa Beilina1, Nguyen Trung Thành2,
Michael V. Klibanov3, John Bondestam Malmberg4

Abstract. We consider the inverse problem of the reconstruction
of the spatially distributed dielectric constant εr (x) , x ∈ R3, which
is an unknown coefficient in the Maxwell’s equations, from time-
dependent backscattering experimental radar data associated with
a single source of electric pulses. The refractive index is n (x) =
√

εr (x). The coefficient εr (x) is reconstructed using a two-stage re-
construction procedure. In the first stage an approximately globally
convergent method proposed is applied to get a good first approxi-
mation of the exact solution. In the second stage a locally convergent
adaptive finite element method is applied, taking the solution of the
first stage as the starting point of the minimization of the Tikhonov
functional. This functional is minimized on a sequence of locally re-
fined meshes. It is shown here that all three components of interest of
targets can be simultaneously accurately imaged: refractive indices,
shapes and locations.

Keywords: Coefficient inverse problem, finite element method, glob-
ally convergent method, experimental backscattered data.

AMS classification codes: 65N15, 65N30, 35J25.

1. Introduction

In this paper we investigate the problem of imaging objects placed
in air from time-dependent backscattering radar measurements, using a
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Introduction

two-stage reconstruction method. In the first stage, initial images are
calculated using the globally convergent method for Coefficient Inverse
Problems (CIPs), which was originated in [4] with a number of follow
up publications; results were summarized in the book [6]. In the second
stage, those images are refined using an adaptive finite element method
(adaptivity) of [10]. Results of the first stage for the data sets considered
in this paper were presented in [8, 28]. Here, we present the results of
the second stage. Only the maximum value of the dielectric constant
and the location of a target were accurately reconstructed in [8, 28] using
the globally convergent method. The accuracy of the reconstruction of
the shape of the target was limited. Using the two-stage reconstruction
procedure, it is shown here that we can simultaneously and accurately
reconstruct all three components of interest of objects: refractive indices,
shapes, and locations.

We reconstruct these three components simultaneously as parts of
an unknown coefficient, which is the spatially varying dielectric constant
εr (x) , x ∈ R3, in the Maxwell’s equations. Below x = (x, y, z) ∈ R3,
where x is the horizontal axis, y is the vertical axis and z is the axis which
points from the target towards the measurement plane, see Figure 1. Even
though only one component E2 of the electric field E = (E1, E2, E3) was
measured by our experimental device, we numerically solve here a CIP for
the three-dimensional (3-d) Maxwell’s equations. The boundary data for
two other components E1, E3 are obtained via computational simulations.

Experimental data were collected by a microwave device which was re-
cently assembled at the University of North Carolina at Charlotte, USA.
Our desired application is imaging of explosives. In this paper we con-
sider only targets located in air. The work on real data for the case when
targets are buried under the ground is reported in [29]. Note that explo-
sives may be located in air [18], e.g., improvised explosive devices (IEDs).
We image both homogeneous and heterogeneous targets. Heterogeneous
targets model IEDs.

To collect those data, a single location of the source of electric pulses
was used. Hence, we used the minimal amount of the information. The
use of more sources was both hard to arrange experimentally and undesir-
able for our target application. The backscattering time dependent signal
was measured at a number of detectors covering a part of a plane, i.e.,
over a narrow range of backscattering angles, see Figure 1. That plane
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(a)

Plane of measurement

 Target

Backscattered wave

Transmitter

z

y

x

(b)

Figure 1. (a): Experimental setup; (b) Our data collec-
tion scheme.

was placed behind the source. Experimental data of this paper were col-
lected for targets located in air on the distance of 80 centimeters from
the measurement plane, which is 20 wavelengths, i.e., in a far field zone.
The distance between neighboring detectors was 2 centimeters.

We refer to, e.g., [20, 21] for treatments of experimental data in the
frequency domain by other numerical methods for CIPs for Maxwell’s
equations. In particular, blind real data were considered in [21]. As to the
adaptivity technique for inverse problems, we refer to, e.g., [11, 22]. There
are many works dedicated to inverse problems of shape reconstruction;
we refer to some most recent ones, e.g., [23, 24, 30, 31]. We also refer to
[15] for a survey about inverse problems of shape reconstruction.

An outline of this paper is as follows. In section 2 we describe the
two-stage reconstruction procedure. In section 3 we state the forward
and inverse problems. In section 4 we present Tikhonov functional and
optimality conditions. In section 5 we describe the finite element method
used in our computation. In section 6 we present the mesh refinement
recommendation and the adaptive algorithm. Some details of numeri-
cal implementation are described in section 7. In section 8 we present
reconstruction results. Finally, a summary is given in section 9.

2. Two-stage reconstruction procedure

In [8, 28] we have considered the problem of the reconstruction of the
spatially distributed dielectric constant εr(x),x ∈ R3 from experimental
data, which were the same as in the current paper. In [8, 28] this function
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Two-stage reconstruction procedure

was the unknown coefficient in a wave-like PDE

(2.1) εr(x)
∂2E2

∂t2
= ∆E2.

To reconstruct εr(x), we have used the approximately globally conver-
gent algorithm of [6]. The notion of the approximate global convergence
(“global convergence” in short) was introduced in [6, 7]. Indeed, conven-
tional least squares cost functionals for CIPs are non convex and typically
have many local minima. Hence, given a CIP, the first question to address
in its numerical treatment is: How to obtain a good approximation for the
exact solution without any a priori knowledge of a small neighborhood
of this solution? We call a numerical method addressing this question
globally convergent.

It is well known that it is tremendously difficult to address this ques-
tion. For this reason, a certain reasonable approximation was made
in [6, 7]. This approximation is used only on the first iteration of that
method. Because of this approximation, we call the technique of [6, 7]
approximately globally convergent. Due to that approximation, a room
is left for a refinement of results.

An important point here is that there exists a rigorous guarantee
within the framework of that approximate model that the solution re-
sulting from the globally convergent method is located in a small neigh-
borhood of the exact solution. This is achieved without any a priori
knowledge of a small neighborhood of the exact solution. Thus, a locally
convergent numerical method can be used for a refinement of the solution
obtained by the globally convergent technique of [6, 7].

The latter is the main goal of the current paper. We synthesize here
the adaptive finite element method of [10] with the globally convergent
numerical method of [6] in order to improve the reconstruction of shapes of
objects imaged in [8, 28]. The idea of this synthesis was first introduced
in [5]. The synthesis represents the following two-stage reconstruction
procedure:

Stage 1. In this stage the approximately globally convergent method
of [6] is applied and a good first approximation for the exact solution is
obtained.

Stage 2. This stage refines the solution obtained in the first stage.
The locally convergent adaptivity technique of [10] is applied. The solu-
tion obtained in [8, 28] in the first stage is taken as the starting point in
the minimization procedure of the Tikhonov functional.
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Statement of Forward and Inverse Problems

An important advantage of using the two-stage reconstruction proce-
dure follows from Theorem 1.9.1.2 of [6]. This theorem states that the
minimizer of the Tikhonov functional (i.e., the regularized solution) is
closer to the exact solution than the first guess, provided, however, that
the first guess is sufficiently close to the exact solution. Therefore, that
first guess should be delivered by the globally convergent method of the
first stage. The adaptive finite element method of [10], which we use in
the second stage, minimizes the Tikhonov functional on a sequence of lo-
cally refined meshes, which is the main attractive point of the adaptivity.
It enables one to maintain a reasonable compromise between not using
an exceedingly large number of finite elements and a good accuracy of
the resulting solution. It follows from Theorem 4.9.3 of [6] and Theorem
5.2 of [3] that if the first guess is sufficiently close to the exact solution,
then the accuracy of its reconstruction monotonically improves with local
mesh refinements. On the other hand, it was shown in section 5.8.4 of
the book [6] that a locally convergent numerical method taken alone does
not work for transmitted time dependent experimental data generated by
a single source. The same conclusion was drawn for a different type of
experimental data in [25].

3. Statement of Forward and Inverse Problems

We model the electromagnetic wave propagation in an isotropic, non-
magnetic space R3 with the dielectric constant coefficient εr(x). The
electric field E = (E1, E2, E3) satisfies the following Cauchy problem:

εr(x)
∂2E

∂t2
+∇× (∇× E) = (0, δ(z − z0)f(t), 0), in R3 × (0, T ),

E(x, 0) = 0, Et(x, 0) = 0 in R3.

(3.1)

where f (t) 6≡ 0 is the time-dependent waveform of the component E2 of
the incident plane wave, which is originated at the plane {z = z0} and
propagates along the z-axis. In our experiment the component E2 corre-
sponds to the electromagnetic pulse which is sent into the medium. Thus,
in (3.1) as well as in our computer simulations of section 7 the incident
field has only one non-zero component E2 (x, t). This component propa-
gates along the z-axis until it reaches the target, where it is scattered.

Let Ω ⊂ R3 be a convex bounded domain. We impose the following
conditions on the coefficient εr (x):

(3.2) εr(x) ∈ Cα
(
R3

)
, εr(x) ∈ [1, d], εr(x) = 1 for x ∈ R3�Ω,
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Statement of Forward and Inverse Problems

where d = const. > 1. We a priori assume the knowledge of the constant
d. This means the knowledge of the set of admissible coefficients in (3.2).
However, we do not impose small-value assumptions on the unknown
coefficient εr(x), i.e., we do not assume that d is small. Here Cα, α ∈
(0, 1) , is the Hölder space. Let Γ ⊂ ∂Ω be the part of the boundary ∂Ω
on which the backscattered data are measured.

Coefficient Inverse Problem (CIP): Suppose that the coefficient
εr (x) satisfies conditions (3.2) and that Ω∩{z = z0} = ∅. Determine the
function εr (x) for x ∈ Ω, assuming that the following function g(x, t) is
known for a single incident plane wave

(3.3) g (x, t) = E (x, t) ,∀ (x, t) ∈ Γ× (0,∞) .

This is a 3-d CIP with the data generated by a single measurement
event. It is well known that currently uniqueness theorems for such CIPs
can be proved only by the method of Carleman estimates, which was
originated in [13] with many follow up publications, see, e.g. the recent
survey in [17]. This method works only for the case when in the forward
problem either at least one of initial conditions or the right hand side at
{t = 0} does not vanish in the entire domain of interest Ω. However, the
latter is obviously not true in our case. On the other hand, because of
our target application mentioned above, it makes sense to solve this CIP
numerically using experimental data. Therefore, we simply assume below
that uniqueness of our CIP holds.

3.1. Domain decomposition finite element/finite difference
method. It is impossible to solve the problem (3.1) in the whole space
R3. Hence, we solve it in a bounded domain G which contains our domain
of interest Ω. For the convenience of our local mesh refinement procedure,
we use the domain decomposition finite element/finite difference method
of [9]. For this purpose, we decompose G as G = ΩFEM ∪ ΩFDM with
ΩFEM = Ω. Here we use a finite element mesh in ΩFEM , and in ΩFDM

we use a finite difference mesh. These two domains have a thin layer
of structured overlapping nodes where we use an exchange procedure
between computational solutions obtained by finite element and finite
difference methods, see details in [9]. By (3.2)

εr(x) ≥ 1, for x ∈ ΩFEM ,

εr(x) = 1, for x ∈ ΩFDM .
(3.4)
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Statement of Forward and Inverse Problems

In our computation we use the following model problem in the compu-
tational domain G for the electric field E with the stabilizing divergence
condition [1] with s ≥ 1 and with boundary conditions specified in this
section below:

εr
∂2E

∂t2
+∇× (∇× E)− s∇(∇ · (εrE)) = 0, in G× (0, T ),(3.5)

E(x, 0) = 0, Et(x, 0) = 0 in G.(3.6)

For simplicity, we choose the domains Ω and G by
(3.7)
Ω = ΩFEM = {x = (x, y, z) : −a < x < a,−b < y < b,−c < z < c1} ,

(3.8) G = {x = (x, y, z) : −X < x < X,−Y < y < Y,−Z < z < z0} ,
with positive numbers a, b, c, X > a, Y > b, −Z < −c < c1 < z0 and
ΩFDM = G�ΩFEM . Denote by

(3.9)
∂1G := G ∩ {z = z0} , ∂2G := G ∩ {z = −Z} ,
∂3G := ∂G� (∂1G ∪ ∂2G) .

The backscattering side of Ω is Γ = ∂Ω∩ {z = c1} . Next, define ∂iGT :=
∂iG× (0, T ) , i = 1, 2, 3. Let t1 ∈ (0, T ) be a number, and we assume that
the function f (t) ∈ C [0, t1] and f(t) = 0, for t > t1. We impose the
following boundary conditions

(3.10) E (x, t) = (0, f(t), 0) on ∂1G× (0, t1] ,

(3.11) ∂nE(x, t) = −∂tE(x, t) on ∂1G× (t1, T ) ,

(3.12) ∂nE(x, t) = −∂tE(x, t) on ∂2GT ,

(3.13) ∂nE(x, t) = 0 on ∂3GT ,

where ∂n is the normal derivative. Conditions (3.11), (3.12) are first
order absorbing boundary conditions [14] at the planes ∂1G and ∂2G of
the rectangular prism G, and (3.13) is the zero Neumann condition at
the lateral part ∂3G of the boundary ∂G. Condition (3.10) means that
the incident plane wave is emitted only up to the time t = t1 and then
propagates inside of the domain G.

It was demonstrated numerically in [9] that the solution of the prob-
lem (3.5)–(3.13) approximates well the solution of the original Maxwell’s
equations for s = 1. The energy estimate of Theorem 4.1 of [9] guarantees
the stability of the forward problem (3.5)–(3.13) for s ≥ 1.
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Tikhonov functional and optimality conditions

Using the transformation ∇ × (∇ × E) = ∇(∇ · E) − ∇ · (∇E), the
model problem (3.5), (3.6), (3.10) – (3.13) can be rewritten as

εr
∂2E

∂t2
+∇(∇ · E)

−∇ · (∇E)− s∇(∇ · (εrE)) = 0, in G× (0, T ),(3.14)

E(x, 0) = 0, Et(x, 0) = 0 in G,(3.15)

E (x, t) = (0, f (t) , 0) on ∂1G× (0, t1] ,(3.16)

∂nE(x, t) = −∂tE(x, t) on ∂1G× (t1, T ) ,(3.17)

∂nE(x, t) = −∂tE(x, t) on ∂2GT ,(3.18)

∂nE(x, t) = 0 on ∂3GT .(3.19)

We refer to [9] for details of the numerical solution of the forward problem
(3.14)-(3.19).

4. Tikhonov functional and optimality conditions

Let Γ1 be the extension of the backscattering side Γ up to the bound-
ary ∂3G of the domain G, i.e.,

(4.1) Γ1 = {x = (x, y, z) : −X < x < X,−Y < y < Y, z = c1} .
Let Gb be the part of the rectangular prism G which lies between the two
planes Γ1 and {z = −Z}:
(4.2) Gb = {x = (x, y, z) : −X < x < X,−Y < y < Y,−Z < z < c1} .
Denote by QT = Gb×(0, T ) , ST = ∂Gb×(0, T ) . Even though we have the
data g (x, t) in (3.3) only on Γ, we show in subsection 7.3.3 below how we
complement these data on the rest of the boundary ∂Gb of the domain Gb,
i.e., on ∂Gb�Γ. This way we approximately obtain the function g̃ (x, t):

(4.3) g̃ (x, t) = E (x, t) ,∀ (x, t) ∈ ST .
We reformulate our inverse problem as an optimization problem. Thus,
we find εr by minimizing the Tikhonov functional:

(4.4) F (E, εr) :=
1

2

∫

ST

(E − g̃)2zδ(t)dxdt +
1

2
γ

∫

G
(εr − εrglob)

2 dx,

where γ > 0 is the regularization parameter, and εr,glob (x) is the com-
puted coefficient via the globally convergent method.
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Tikhonov functional and optimality conditions

Let Eglob (x, t) be the solution of the forward problem (3.14)–(3.19)
with εr (x) := εr,glob (x) . Denote by p (x, t) = ∂nEglob (x, t) |ST

. In ad-
dition to the Dirichlet condition (4.3), we set the Neumann boundary
condition as

(4.5) ∂nE (x, t) = p (x, t) ,∀ (x, t) ∈ ST .

To formulate the Fréchet derivative of the Tikhonov functional (4.4)
(see formula (4.16) below), we make use of the adjoint method. This
method is based on the state and adjoint problems. The state problem
in the domain Gb is given by

εr
∂2E

∂t2
+∇(∇ · E)−∇ · (∇E)− s∇(∇ · (εrE)) = 0, in QT ,(4.6)

E(x, 0) = 0, Et(x, 0) = 0 in Gb,(4.7)

∂nE (x, t) = p (x, t) on ST .(4.8)

The adjoint problem is:

εr
∂2λ

∂t2
+∇(∇ · λ)−∇ · (∇λ)− sεr∇(∇ · λ) = 0, in QT ,(4.9)

λ(x, T ) = 0, λt(x, T ) = 0 in Gb,(4.10)

∂nλ(x, t) = zδ (t) (g̃ − E) (x, t) on ST .(4.11)

Here, zδ(t) is used to ensure the compatibility conditions at QT ∩{t = T}
for the adjoint problem and δ > 0 is a small number. The function zδ(t)
is chosen such that

zδ ∈ C∞ [0, T ] , zδ (t) =





1 fort ∈ [0, T − δ] ,

0 for t ∈
(
T − δ

2 , T
]
,

0 < zδ < 1 for t ∈
(
T − δ, T − δ

2

)
,

Weak solutions E,λ ∈ H1 (QT ) to problems (4.6)–(4.8) and (4.9)–
(4.11) are defined similarly with the case of only one hyperbolic equation
in Chapter 4 of the book [19], also see formula (34) in [9]. The weak
solution to the state problem (4.6)-(4.8) is the solution to the following
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Tikhonov functional and optimality conditions

equation:
∫

QT

(−εr
∂E

∂t

∂v

∂t
) dxdt−

∫

QT

(∇ ·E)(∇ · v) dxdt

+

∫

QT

(∇E)(∇v) dxdt+ s

∫

QT

(∇ · (εrE))(∇ · v) dxdt

−
∫

∂ST

vp dσdt = 0, ∀v ∈ H1 (QT ) , v (x, T ) = 0,

(4.12)

The weak solution to the adjoint problem (4.9)-(4.11) is the solution to
the following equation:

−
∫

ST

(g̃ −E) w zδ dσdt−
∫

QT

εr
∂λ

∂t

∂w

∂t
dxdt

−
∫

QT

(∇ · λ)(∇ · w) dxdt+
∫

QT

(∇λ)(∇w) dxdt

+ s

∫

QT

(∇ · λ)(∇ · (εrw)) dxdt, ∀w ∈ H1 (QT ) , w (x, 0) = 0.

(4.13)

Introduce the following spaces of real valued vector functions

H1
E(QT ) =

{
f ∈ [H1(QT )]

3 : f(x, 0) = 0
}
,

H1
λ(QT ) =

{
f ∈ [H1(QT )]

3 : f(x, T ) = 0
}
,

U1 = H1
E (GT )×H1

λ (GT )×B (G) ,

where B (G) is the space of functions bounded on G with the norm
‖f‖B(G) = supG |f | . To minimize the functional (4.4) we introduce the

Lagrangian

L(E,λ, εr) = F (E, εr)−
∫

QT

εr
∂λ

∂t

∂E

∂t
dxdt

−
∫

QT

(∇ ·E)(∇ · λ) dxdt+
∫

QT

(∇E)(∇λ) dxdt

+ s

∫

QT

(∇ · (εrE))(∇ · λ) dxdt−
∫

∂ST

λp dσdt,

(4.14)

where E and λ are weak solutions of problems (4.6)-(4.8) and (4.9)-(4.11),
respectively.

Clearly, (4.12) implies that the sum of integral terms in (4.14) equals
zero. Hence, L (E,λ, εr) = F (E, εr) . In (4.14) (E,λ, εr) = w ∈ U1 and
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Finite element discretization

functions E and λ depend on the coefficient εr. To get the Fréchet de-
rivative L′ of the Lagrangian (4.14) rigorously, one should assume that
variations of functions u and λ depend on variations of the coefficient
εr, similarly with section 4.8 of [6], and we will do that in our future
publications. In this work, to derive the Fréchet derivative of the La-
grangian (4.14) we assume for brevity that in (4.14) the vector function
(E,λ, εr) can be varied independently of each other. Thus, we search a
point w ∈ U1 such that

(4.15) L′(w) (w) = 0, ∀w ∈ U1.

To find the Fréchet derivative L′(w), we consider L (w + w)−L (w) , ∀w ∈
U1 and single out the linear, with respect to w, part of the obtained
expression. Thus, using (4.12), (4.13) and (4.4), we obtain

(4.16)

L′(w) (x) = γ (εr − εr,glob) (x)−
∫ T

0

∂λ

∂t

∂E

∂t
(x, t) dt

+ s

∫ T

0
(∇ ·E)(∇ · λ)(x, t) dt,x ∈ Gb.

5. Finite element discretization

Consider a partition Kh = {K} of Gb which consists of tetrahedra
with a mesh function h defined as h|K = hK — the local diameter of
the element K. Let Jτ = {J} be a partition of the time interval (0, T )
into subintervals J = (tk−1, tk] of uniform length τ = tk − tk−1. We also
assume the minimal angle condition on the Kh [12].

To formulate the finite element method for solving the state problem
(4.6)–(4.8) and the adjoint problem (4.9)–(4.11), and to compute the
gradient of the Lagrangian via (4.16), we define the finite element spaces
Vh ⊂ L2 (Gb), W

E
h ⊂ H1

E (QT ) and W λ
h ⊂ H1

λ (QT ). First, we introduce

the finite element trial spaceWE
h for every component of the electric field

E defined by

WE
h := {w ∈ H1

E : w|K×J ∈ P1(K)× P1(J),∀K ∈ Kh,∀J ∈ Jτ},
where P1(K) and P1(J) denote the set of linear functions on K and J ,
respectively. We also introduce the finite element test space W λ

h defined
by

W λ
h := {w ∈ H1

λ : w|K×J ∈ P1(K)× P1(J),∀K ∈ Kh,∀J ∈ Jτ}.
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Hence, the finite element spaces WE
h and W λ

h consist of continuous piece-
wise linear functions in space and time. To approximate the function
εr(x), we use the space of piecewise constant functions Vh ⊂ L2 (Ω),

(5.1) Vh := {u ∈ L2(Ω) : u|K ∈ P0(K),∀K ∈ Kh},
where P0(K) is the set of piecewise constant functions on K. In our
computations we truncate computed functions εr (x) to unity outside of
the domain ΩFEM = Ω using (3.4) as

(5.2) εr (x) =

{
εr (x) ,x ∈ ΩFEM ,

1,x ∈ ΩFDM .

Next, we set Uh = WE
h × W λ

h × Vh. Obviously dimUh < ∞ and
Uh ⊂ U1 as a set. Because of this, we consider Uh as a discrete analogue of
the space U1.We introduce the same norm in Uh as the one in U0, ‖·‖Uh

:=

‖·‖U0 , with

U0 = L2 (GT )× L2 (GT )× L2 (Ω) .

The finite element method for solving equation (4.15) now reads: Find
uh ∈ Uh, such that

(5.3) L′(uh)(ū) = 0, ∀ū ∈ Uh.

6. Mesh refinement recommendation and the adaptive
algorithm

From Theorem 5.1 and Remark 5.1 of [10] it follows that the finite
element mesh should be locally refined in such subdomain of Ω where the
maximum norm of the Frëchet derivative of the objective functional is
large. For each mesh we first linearly interpolate the coefficient εr,glob(x)
on it, and use the interpolated coefficient as an initial guess for on the
current mesh. Our algorithm consists of two loops: the outer loop deals
with the locally adaptive mesh refinement. In the inner loop, i.e., on each
mesh, we iteratively update the approximations εmh of the function εh by
solving (4.15) using an optimization procedure, where m is the iteration
index in the optimization procedure. Denote
(6.1)

L′,m
h (x) = −

∫

0

T ∂λmh
∂t

∂Em
h

∂t
dt+ s

∫ T

0
∇ ·Em

h ∇ · λmh dt+ γ(ε̄h
m − ε̄r,glob).
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Adaptive algorithm

• Step 0. Choose an initial mesh Kh in Ω and an initial time
partition J0 of the time interval (0, T ) . Start from the initial
guess ε0h = εr,glob, we compute the approximations εmh via the
following steps:

• Step 1. Compute the solutions Eh (x, t, ε
m
h ) and λh (x, t, ε

m
h ) of

the state problem (3.14)–(3.17) and the adjoint problem (4.9)–
(4.11) on Kh and Jk, and compute the Frëchet derivative L′,m

h
via (6.1).

• Step 2. Update the coefficient on Kh and Jk using the conjugate
gradient method:

εm+1
h := εmh + αdm(x),

where α > 0 is a step-size in the conjugate gradient method,
given by a line search procedure, see, e.g., [26], and

dm(x) = −L′,m
h (x) + βmdm−1(x),

with

βm =
||L′,m

h ||2
||L′,m−1

h ||2
,

where d0(x) = −L′,0
h (x).

• Step 3. Stop updating the coefficient and set εh := εm+1
h , M :=

m + 1, if either ||L′,m
h ||L2(Ω) ≤ θ or norms ||εmh ||L2(Ω) are stabi-

lized. Here θ is a tolerance number. Otherwise, set m := m+ 1
and go to step 1.

• Step 4. Compute L′,M
h via (6.1). Refine the mesh at all grid

points x where

(6.2) |L′,M
h (x) | ≥ β1 max

Ω
|L′,M

h (x) |.

Here the tolerance number β1 ∈ (0, 1) is chosen by the user.
• Step 5. Construct a new mesh Kh in Ω and a new time partition
Jk of the time interval (0, T ). On Jk the new time step τ should
be chosen in such a way that the CFL condition is satisfied.
Interpolate the initial approximation εr,glob from the previous
mesh to the new mesh. Next, return to step 1 at m = 1 and
perform all above steps on the new mesh.
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• Step 6. Let
∥∥∥L′,M

h,prev

∥∥∥
L2(Ω)

and
∥∥∥L′,M

h,current

∥∥∥
L2(Ω)

be norms de-

fined in step 4 on the previous and current mesh, respectively.

Stop mesh refinements if
∥∥∥L′,M

h,current

∥∥∥
L2(Ω)

≥
∥∥∥L′,M

h,prev

∥∥∥
L2(Ω)

.

7. Some details of numerical implementation

In this section we present results of reconstruction of dielectric con-
stants/refractive indices and shapes of some targets using the adaptivity
algorithm of section 6. One of the discrepancies between our mathe-
matical model (3.14)- (3.19) and the measured experimental data is that
formally equation (3.14) is invalid for the case when metallic targets are
present (we refer to [8] for the description of other discrepancies). How-
ever, it was shown computationally in [18] that one can treat metallic
targets as dielectrics with large dielectric constants.

We call these effective (or “appearing”) dielectric constants and values
for them are in the interval

(7.1) εr (metallic target) ∈ (10, 30) .

Modeling metallic targets as integral parts of the unknown coefficient
εr (x) is convenient for our practical computations in order to image IEDs.
Since IEDs usually consist of mixtures of some dielectrics with a number
of metallic parts, these targets are heterogeneous ones, and we consider
three heterogeneous cases in section 8. However, modeling metallic parts
separately from dielectric ones is impractical for our application because
of those mixtures.

Using (7.1), we define in all our tests the upper value of the function
εr (x) as d = 25, see (3.2). Thus, we set lower and upper bounds for the
reconstructed function εr(x) in Ω as

(7.2) Mεr = {εr(x) : εr (x) ∈ [1, 25]}.
In our computation we ensure lower and upper bounds via truncating
those values of εr (x) which are outside of the interval (7.2).

Our choice of all parameters in the above adaptive algorithm is op-
timal for our problem. The regularization parameter γ is chosen such
that it gives the smallest reconstruction error given by the relative dis-
crete L2(Ω) error eε = ||ε − εh||/||εh||. Here, ε is the function εr for
the calibrating object either for metallic or dielectric targets, and εh is
the computed function εr. We note, that we had one calibrating object
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for metallic targets and one calibrating object for dielectric targets, see
section 8.

Next, we choose the tolerance number β1 in (6.2) in a computationally
efficient way. If we would choose β1 ≈ 1, then we would refine the mesh
in too narrow regions. On the other hand, if we would choose β1 ≈ 0,
then we would refine the mesh in almost the entire domain Ω, which is
inefficient. Hence, the tolerance number β1 should be chosen numerically.
The important point here is that in our computations we choose β1 in
accordance to the obtained reconstruction of the first stage. In other
words, to obtain best shape reconstruction results, this parameter is to
be chosen such that the refinement will be performed in a regions which
are close to the reconstruction obtained on the first stage. In all our tests
below the regularization parameter γ = 0.01 and the tolerance number
θ = 10−9 in step 3 of our algorithm. These parameters were chosen
computationally. The reason for this choice was the best reconstructions
for both calibrating objects which we got with γ = 0.01, θ = 10−9.

7.1. Dirichlet and Neumann boundary conditions. In our ex-
periments only one component E2 (x, t) of the electric field E (x, t) =
(E1, E2, E3) (x, t) is both sent into the medium and measured. Thus, only
the second component of the function g in the Dirichlet boundary condi-
tion (3.3) on Γ is available. We approximate the other two components
of g on Γ by the numerical solution of the forward problem (3.14)–(3.19),
with the coefficient given by εr = εr,glob(x) — the solution of the glob-
ally convergent method. The Dirichlet data on the rest of the boundary
∂Gb, i.e., on ∂Gb \ Γ, as well as the Neumann condition p (x, t) in (4.5)
at the entire boundary ∂Gb are taken from the numerical solution of that
forward problem.

7.2. Computational domains. To generate the boundary data
(4.3), (4.5) for all three components of the electric field E, as specified in
the previous section, we solve the forward problem in the computational
domain G, which we choose as

G = {x =(x, y, z) ∈ (−0.56, 0.56) × (−0.56, 0.56) × (−0.16, 0.1)} .
The boundary of the domain G is ∂G = ∂1G ∪ ∂2G ∪ ∂3G. Here, ∂1G
and ∂2G are front and back sides of the domain G at {z = 0.1} and
{z = −0.16}, respectively, and ∂3G is the union of left, right, top and
bottom sides of this domain.
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We use a stabilized domain decomposition method of [9] implemented
in the software package WavES [32]. The FEM domain ΩFEM is chosen
as
(7.3)
ΩFEM = Ω = {x =(x, y, z) ∈ (−0.5, 0.5) × (−0.5, 0.5) × (−0.1, 0.04)} .

After the data propagation procedure, see discussions in section 7.3, the
data g (x, t) in (3.3) are given at the front side Γ of the domain Ω which
is defined as

(7.4) Γ = {x ∈ ∂Ω : z = 0.04}.

The waveform function f(t) in our simulated incident plane wave is
chosen as

f(t) = sinωt, 0 ≤ t ≤ t1 :=
2π

ω
.

Here, we initialize the plane wave at {z = 0.1} . We use ω = 30, T = 1.2
and s = 1. We solve the problem (3.14)–(3.19) using the explicit scheme
of [9] with the time step size τ = 0.003, which satisfies the CFL condition.
Note that this time step is dimensionless, which corresponds to the time
step of 10 ps in our real experiment. Here we use the dimensionless time
step in order to normalize the coefficient εr to be unity outside of Ω. The
dimensionless time T = 1.2 corresponds to 4 ns in our real time. We
do not use the whole 10 ns recorded data since after data preprocessing,
they are shifted earlier in time and they do not contain any target’s signal
after 4 ns.

7.3. Data Preprocessing. In the previous section, we implicitly
assumed that our model is comparable to the experimental data. More-
over, the data is available at the plane Γ of Ω, which is quite close to the
targets. Unfortunately, this is not the case in practice. In fact, there is
a huge misfit bewteen our experimental data and the simulated ones, see
[28]. Therefore, data preprocessing is required in order to prepares the
experimental data to become an input for our inversion algorithm. In our
experience, data preprocessing of experimental data is always a heuris-
tic procedure. That procedure for the globally convergent method was
described in detail in [28]. Since the globally convergent method works
with the PDE which is obtained by the Laplace transform of the original
wave-like equation (2.1), and we work here directly in time domain, we
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need less number of data preprocessing steps than in [28]. We only de-
scribe the following preprocessing steps which are different from those of
[28].
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Figure 2. Result of data propagation for target number
1 (Table 1). Horizontal axis is the indices of the detector’s
locations and vertical axis is number of samples in time. a)
data at the measurement plane, b) data at the propagated
plane. One can see that the propagated data are focused
at the target, whereas original data are smeared out.

7.3.1. Data propagation. In [28], we used a time-reversal data propa-
gation method in order to migrate our data from the measurement plane,
which is in the far field zone, to the plane Γ, which is at about 4 cm far
from the targets. In this paper, we use another data propagation method
based on the Fourier transform. This technique is basically the same as
the Stolt migration in Geophysics, see [27, 33]. However, in the standard
Stolt migration the wave at the initial time is calculated in the whole
spatial domain of interest, whereas we calculate the wave only at a plane
parallel to the measurement plane but in the whole time interval. The
technique is described in detail in [29].

A result of the data propagation is illustrated in Figure 2. The figure
shows a horizontal scan of target number 1, see Table 1. The horizontal
axis is the indices of the detector’s locations and the vertical axis is the
number of samples in time. Time increases from the top to the bottom.
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Figure 2(a) shows the original data while Figure 2(b) shows the data after
the propagation. As can be seen from these figures, the target’s signas in
the original data is smeared out. On the other hand, it is focused after
the data propagation.

7.3.2. Data calibration. Since the amplitude of experimental data are
very different from that of computational simulations, we must multiply
the experimental data by a calibration factor θ so that they have similar
amplitude as the simulated data. This factor is not easy to obtain in
practice and we should somehow find an appropriate one. The calibration
of the measured data was done in the Laplace transform domain in [28].
However, here we work with the time domain data only. Therefore, we
use a new data calibation procedure we described below.

Let the function gexper (x, t) ,x ∈ Γ, t ∈ (0, T ) be our propagated
experimental data. This function is given only on grid points (xi, tj) .We
compute the maximal value of this function,

(7.5) gmax = max
(xi,tj)

gexper (xi, tj) .

Usually the number gmax is quite large. Next, let E2,sim (x, t) be the
function which is computed via solving the problem (3.14)-(3.19). We
compute the maximal value of this function on Γ,

E2,max = max
Γ×[0,T ]

E2,sim (x, t) .

Define r = E2,max/gmax. Next, we assign

gincl (xi, tj) := r · gexper (xi, tj)

and use the function gincl (xi, tj) as the second component of the vector
function g (x, t) in (3.3). Two other steps of data preprocessing are due
to (4.3) and (4.5) in section 4. The final step of data preprocessing, the
so-called “immersing procedure” is done as follows.

7.3.3. Data immersing. In this section we describe a heuristic im-
mersing procedure of the time-dependent propagated experimental data
gincl (x, t) = E2 (x, t) |x∈Γ . This procedure does two things:

• immerses the data gincl (x, t) into computationally simulated
ones;

• extends the data gincl (x, t) from Γ to Γ1.

By (7.4) the rectangle Γ is smaller than the rectangle

Γ1 = {x : (x, y) ∈ (−0.56, 0.56) × (−0.56, 0.56) , z = 0.04} .
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It is clear from the adjoint problem (4.9)-(4.11) that we need to get a
proper data for the function E2 (x, t) for (x, t) ∈ Γ1 × (0, T ) while having
the data E2 (x, t) = gincl (x, t) only for x ∈ Γ. We now describe how do
we extend the data from Γ to Γ1. Let E2 (x, t) be the E2-component of
the solution E (x, t) of the forward problem (3.14–3.19) with εr := εr,glob.
Then we define our immersed function Eimmers

2 (x, t) for (x, t) ∈ Γ1 ×
(0, T ) as
(7.6)

Eimmers
2 (x, t) =





gincl (x, t) , if x ∈ Γ and gincl (x, t) ≥ βmaxΓ gincl (x, t) ,
E2 (x, t) , if x ∈ Γ and gincl (x, t) < βmaxΓ gincl (x, t) ,
E2 (x, t) , if x ∈ Γ1�Γ.

We choose the parameter β ∈ (0, 1) in (7.6) in numerical experiments
of section 8. It follows from (7.6) that Eimmers

2 (x, t) = E2 (x, t) for
x ∈ Γ1�Γ.

Figures 3, 4 show that, depending on the parameter β in (7.6), the
data immersing procedure not only allows to extend the data from Γ to
Γ1�Γ but also make the experimental data usable in our inverse algo-
rithm. Indeed, we note that the experimental data is measured at a very
high frequency, say, ω ≈ 170, whereas our simulations are done at ω = 30
in order to reduce the computational cost. Therefore, the experimental
data are not compatible with the simulations. Our immersing procedure
helps to avoid solving the problem at a very high frequency. After this
immersing procedure we solve the inverse problem using the algorithm of
section 6.

7.4. Postprocessing of results. Results of the globally convergent
algorithm of the first stage procedure have demonstrated that this algo-
rithm provides accurate locations of targets as well as accurate values of
refractive indices n =

√
εr of dielectric targets and large values of appear-

ing dielectric constants εr for metallic targets [8, 28]. However, it does not
reconstruct shapes of targets well, especially the size in the z-direction.
The latter is the reason why we apply the second stage to refine results
of the first.

Let εr (x) be the function obtained in the adaptive algorithm of sec-
tion 6. We form the image of the dielectric targets based on the function
εr,diel (x) ,

(7.7) εr,diel (x) =

{
εr (x) if εr (x) ≥ 0.85maxΩ εr (x) ,
1 otherwise.
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As to the metallic targets (i.e., the ones with large computed maximal
values of εr (x)), we use the function εr,metal (x) ,

(7.8) εr,metal (x) =

{
εr (x) if εr (x) ≥ 0.3maxΩ εr (x) ,
1 otherwise.

8. Reconstruction results
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Figure 3. Backscattered immersed data of the second
component E2 of electric field for object number 7 (wooden
doll, empty inside) of Table 1 for different values of the
parameter β in (7.6). Recall that the final time is T = 1.2.

In our numerical studies we apply adaptive algorithm of section 6 to
refine shape for nine (9) targets listed in Table 1. Three of them (tar-
gets number 1, 2, 5) were dielectrics, three were metallic objects (targets
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Target number Specification of the target
1 a piece of oak, rectangular prism
2 a piece of pine
3 a metallic sphere
4 a metallic cylinder
5 a piece of oak
6 a metallic rectangular prism
7 a wooden doll, air inside, heterogeneous target
8 a wooden doll, metal inside, heterogeneous target
9 a wooden doll, sand inside, heterogeneous target

Table 1. Names of targets.

Target number 1 2 5 7 9 Average
error

Measured n, 2.11, 1.84, 2.14, 1.89, 2.1,
error 19% 18% 28% 30% 26% 24%
n in glob.conv, 1.92, 1.8, 1.83, 1.86, 1.92,
error 9% 2% 15% 2% 9% 8%
n, coarse mesh, 1.94, 1.82, 1.84, 1.88, 1.93,
error 8% 1% 14% 0.5% 8% 6%
n, 1 time ref. mesh, 1.94, 1.82, 1.85, 1.89, 1.93,
error 8% 1% 14 % 0% 8% 6%
n, 2 times ref. mesh, 1.84, 1.9, 1.96,
error 0% 0.5% 7% 2%
n, 3 times ref. mesh, 1.89,
error 0 % 0%

Table 2. Computed n(target) and directly measured re-
fractive indices of dielectric targets together with both mea-
surement and computational errors as well as the average
error. Note that the average computational errors are at
least 4 times less than the average error of direct measure-
ments. In all tests we have used the following values of
above parameters: the regularization parameter γ = 0.01
in (4.4), θ = 10−9 in Step 3 of the adaptive algorithm,
β1 = 0.7 in (6.2) and s = 1 in (3.14).
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number 4, 5, 6) and three (targets number 7, 8, 9) were dolls with differ-
ent objects placed inside them. Heterogeneous targets present models for
explosive devices in which explosive materials are masked by dielectrics.
Target number 7 was a wooden doll which was empty inside, target num-
ber 8 was a piece of a metal inserted inside that doll, and in target number
9 dry sand was partly inserted inside the doll.

The targets number 1 and 4 were used as calibration targets for metals
and dielectrics respectively. The use of calibration targets has resulted
in the optimal choices of all our parameters. In particular, the cut-off
number in (7.7) was chosen 0.85 and the number β = 0.5 in (7.6) for
all dielectric targets of Table 1. In the case of metallic targets, we have
chosen the cut-off number 0.3 in (7.8). As to the parameter β in (7.6) for
metallic targets, it was chosen β = 0.5 : the same as for dielectric targets.

Figures 3, 4 show backscattered immersed data of the second com-
ponent E2 of the electric field for object 7 at different times and with
different immersing factor β in (7.6).

In the case of dielectric targets we have a posteriori directly measured
their refractive indices n =

√
εr. Let ε

comp
r (x) be the computed coefficient.

We consider maximal values of functions εcomp
r (x) . This means that in our

Tables 2, 3 we list values of dielectric constants εr (target) and refractive
indices n (target) as

εr (target) = max
Ω

εcomp
r (x) , n (target) =

√
εr (target).

Tables 2, 3 are quite informative ones since they show the accuracy
of our reconstruction of either refractive indices (Table 2) or effective di-
electric constants (Table 3). Table 2 lists refractive indices of dielectric
targets, both computed n (target) and directly measured ones n. Com-
puted numbers n (target) are displayed for different locally refined meshes.
This table also shows the measurement error in direct measurements of n.
Table 3 lists calculated effective dielectric constants εr (target) of metallic
targets, again for different locally refined meshes. In Table 3 for all metal-
lic targets we have ε (target) > 10, which means that (7.1) is satisfied.

One can derive several important observations from Table 2. First,
for all targets and on all adaptively refined meshes the computational er-
ror is significantly less than the error of direct measurements. Thus, the
average computational error is significantly less than the average measure-
ment error on all adaptively refined meshes. Second, computed refractive
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Figure 4. Backscattered immersed data of the second
component E2 of electric field for object 7 (wooden doll,
empty inside) of Table 1 for different values of the param-
eter β in (7.6). Recall that the final time is T = 1.2.

indices are within reasonable error estimates in all cases. The accuracy
on all adaptively refined meshes is about the same.

We observe from Table 3 that for target number 8 we have obtained
effective dielectric constant ε (target) ∈ [13.6, 14] on all adaptively refined
meshes, which is less than for other metallic objects. We can explain this
by the fact that target number 8 is a mixture of metal and dielectric. An
important observation, which can be deduced from Table 3, is that our
two-stage algorithm can still compute large inclusion/background con-
trasts exceeding 10:1, just as the algorithm of the first stage.

Figures 6–16 display 3-d images of some targets listed in Table 1 as
well as corresponding adaptively locally refined meshes. To have a better
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visualization, we have zoomed some figures to 0.4× 0.4 square from 1× 1
square in the x, y directions. So, in these Figures we display only the
image in the domain Ωzoom,

(8.1) Ωzoom = {x =(x, y, z) ∈ (−0.2, 0.2) × (−0.2, 0.2) × (−0.1, 0.04)} ,
Figures 6– 16 also show estimates of sizes of the targets in the z-direction.
Locations of all targets as well as their sizes in x, y, z directions are well
estimated.

a) target 1 b) target 3 c) target 4

d) target 7 e) target 8 f) target 9

Figure 5. Reconstructions of some targets of Table 1 ob-
tained in [8, 28] on the first stage of our two-stage numer-
ical procedure.

9. Summary

We have used time dependent backscattering experimental data gen-
erated by a single source of electric pulses to simultaneously reconstruct
all three parameters of interest of explosive-like targets: their refractive
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indices, shapes and locations. To do this, we have used the two-stage
reconstruction procedure, which was first proposed in [5]. On the first
stage the globally convergent method of [4, 6] was used. This method has
provided accurate estimates of refractive indices and locations of targets
[8, 28]. On the second stage, which is the focus of this paper, images
were refined using the adaptivity technique of [10]. The second stage
has provided accurate estimates of the third component: the shape, in
addition to the first two ones. Interestingly, even heterogeneous targets,
which model heterogeneous IEDs, were quite accurately imaged.

In all cases one can observe a significant improvement of the image
quality after the application of the adaptivity on the second stage. An-
other observation here is that we can accurately image shapes of not only
targets with ”straight” boundaries, like a rectangular prism (target num-
ber 1) or a cylinder (target number 4) but targets with curved boundaries
as well (targets number 3 and 7). Even shadow parts of targets number
1, 3, 4, 8 are imaged rather well. This is regardless on the fact that we use
the minimal possible information content and on a narrow view angle:
single location of the source and time resolved backscattering data.
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Target number 3 4 6 8
εr(target) of glob.conv. 14.4 15.0 25 13.6
εr(target) coarse mesh 14.4 17.0 25 13.6
εr(target) 1 time ref.mesh 14.5 17.0 25 13.6
εr(target) 2 times ref.mesh 14.6 17.0 25 13.7
εr(target) 3 times ref.mesh 14.6 17.0 14.0
εr(target) 4 times ref.mesh 17.0

Table 3. Computed appearing dielectric constants
εr(target) of metallic targets with numbers 3,4,6 as well
as of target number 8 which is a metal covered by a
dielectric. The mesh refinement process for target number
6 has stopped on three (3) mesh refinements.

(a) (b) (c) (d)

Figure 6. (a) xy-projection, (b) xz-projection, and (c)
yz-projection of the once refined (optimal) mesh; d) Com-
puted image of target number 1 of Table 1 on that mesh.
Thin lines indicate correct shapes. To have a better vi-
sualization we have zoomed the domain Ω in (7.3) in the
domain Ωzoom in (8.1). This target number 1 was used for
the calibration purpose for the case of dielectric targets.
A significant improvement of the image of d), compared
with the image of Figure 5-a), obtained on the first stage
is evident.
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(a) (b) (c) (d)

Figure 7. (a) xy-projection, (b) xz-projection, and (c)
yz-projection of the three times refined (optimal) mesh;
d) Computed image of target number 3 of Table 1 on that
mesh. Thin lines indicate correct shape. To have better
a visualization we have zoomed the domain Ω in (7.3) in
the domain Ωzoom in (8.1). Comparison with Figure 5-b)
shows a significant improvement compared with the first
stage.
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(a) Perspective view (b) Front view (c) Side view

(d) Zoom, perspective (e) Zoom, front (f) Zoom, side

(g) Perspective view (h) Front view (i) Side view

(j) Zoom, perspective (k) Zoom, front (l) Zoom, side

Figure 8. Three views and zooms of the reconstruction
of target number 1 (figures a)-f)) on the once refined mesh.
Three views and zooms of the reconstruction of target
number 3 (figures g)-l)) of Table 1 on three times refined
mesh. Recall that target number 3 is a metallic sphere.

92



Summary

(a) xy-projection (b) xz-projection (c) yz-projection

(d) xy-projection (e) xz-projection (f) yz-projection

(g) xy-projection (h) xz-projection (i) yz-projection

Figure 9. Adaptively refined meshes for the target num-
ber 3 of Table 1. (a) - (c) once refined, (d) - (f) twice
refined, (g) - (i) three times refined mesh.
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a) coarse mesh b) zoom g) three times refined h) zoom

c) once refined d) zoom i) four times refined j) zoom

e) twice refined f) zoom

Figure 10. Computed images of target number 4 of Table 1

on four times adaptively refined meshes. Compare with Figure

5-c).
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(a) (b) (c) (d)

Figure 11. (a) xy-projection, (b) xz-projection, and (c)
yz-projection of the three times refined (optimal) mesh; d)
Computed image of target number 7 (doll, air inside) of
Table 1 on that mesh. Thin lines indicate correct shape.

(a) (b) (c) (d)

Figure 12. (a) xy-projection, (b) xz-projection, and (c)
yz-projection of the three times refined (optimal) mesh
and the reconstruction (d) of target number 8 on the op-
timal mesh.
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(a) Perspective view (b) Front view (c) Side view

(d) Zoom, perspective (e) Zoom, front (f) Zoom, side

(g) Perspective view (h) Front view (i) Side view

(j) Zoom, perspective (k) Zoom, front (l) Zoom, side

Figure 13. Three views and zooms of targets number 7 (figures

a)-f), doll, air inside) and number 8 (figures g)-l), doll, metal inside)

of Table 1 on three times refined mesh. Thin lines indicate correct

shape. We observe that on d) and e) even the head of the doll

is indicated, which was the most difficult part. As to images g)-

l), it follows from (7.8) that they display mostly the metallic part.

Comparison of d), j) with Figures 5-d), e) again shows a significant

improvement of the image due to the adaptivity.
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(a) xy-projection (b) xz-projection (c) yz-projection

(d) xy-projection (e) xz-projection (f) yz-projection

(g) xy-projection (h) xz-projection (i) yz-projection

Figure 14. Adaptively refined meshes for target number
7 (doll, air inside) of Table 1 used in our computations.
(a) - (c) once refined, (d) - (f) twice refined, (g) - (i) three
times refined.
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(a) (b) (c) (d)

Figure 15. (a) xy-projection, (b) xz-projection, and (c)
yz-projection of the twice refined (optimal) mesh and the
reconstruction (d) of target number 9 on the three times
refined mesh.
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Globally convergent and adaptive finite element
methods in imaging of buried objects from

experimental backscattering radar
measurements
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Michael V. Klibanov3, John Bondestam Malmberg4

Abstract. We consider a two-stage numerical procedure for imag-
ing of objects buried in dry sand using time-dependent backscattering
experimental radar measurements. These measurements are gener-
ated by a single point source of electric pulses and are collected using
a microwave scattering facility which was built at the University of
North Carolina at Charlotte. Our imaging problem is formulated as
the inverse problem of the reconstruction of the spatially distributed
dielectric constant εr (x) , x ∈ R3, which is an unknown coefficient
in Maxwell’s equations.

On the first stage the globally convergent method of [1] is applied
to get a good first approximation for the exact solution. Results of
this stage were presented in [2]. On the second stage the locally con-
vergent adaptive finite element method of [3] is applied to refine the
solution obtained on the first stage. The two-stage numerical proce-
dure results in accurate imaging of all three components of interest
of targets: shapes, locations and refractive indices. In this paper we
briefly describe methods and present new reconstruction results for
both stages.
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1. Introduction

In this paper we consider the problem of reconstruction of refrac-
tive indices, shapes and locations of buried objects in the dry sand from
backscattering time-dependent experimental data using the two-stage nu-
merical procedure presented in [1, 4–6]. Our problem is a coefficient
inverse problem (CIP) for Maxwell’s equations in three dimensions. Ex-
perimental data were collected using a microwave scattering facility which
was built at the University of North Carolina at Charlotte, USA. Our ex-
perimental data were collected using a single location of the source. The
backscattered signal was measured on a part of a plane. Our potential
applications are in imaging of explosives, such as land mines and impro-
vised explosive devices. This work is a continuation of our recent works
on this topic, where we have treated a much simpler case of experimental
data for targets placed in air [5, 7, 8].

The two-stage numerical procedure means that we combine two differ-
ent methods to solve our CIP. On the first stage the globally convergent
numerical method of [1] is applied in order to obtain a good first approx-
imation for the exact solution without any a priori knowledge of a small
neighborhood of this solution, see section 2.9 of [1] as well as [9] for global
convergence theorems. We presented results of reconstruction of the first
stage in our publications [7, 8] for objects placed in air. In our recent
study [2] we presented reconstructions of twenty five (25) objects. This
study has demonstrated that the method of [1] works well in estimating
the dielectric constants (equivalently, refractive indices) and locations of
buried objects.

It was proved in [10] that a minimizer of the Tikhonov functional is
indeed closer to the exact solution than the first guess for this solution.
Thus, it makes sense to apply the Tikhonov functional in order to refine
the solution which we have obtained on the first stage of our two-stage
numerical procedure. To do this, the locally convergent adaptive finite
element method of [3] (adaptivity) is applied on the second stage. The
adaptivity uses the solution of the first stage as the starting point in
the minimization of a Tikhonov functional in order to obtain better ap-
proximations of refractive indices and shapes of objects on the adaptively
refined meshes. It was shown in [5] that the adaptivity helps to accurately
image simultaneously all three components of interest for targets placed
in the air: refractive indices, shapes and locations.
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Compared to the case of imaging of targets placed in air (see [5, 7, 8]),
there are three main difficulties in imaging of buried targets: (i) the
signals of targets are much weaker than those when the targets are in
air, (ii) these signals may overlap with the reflection from the ground’s
surface, which makes them difficult to distinguish, and (iii) the reflection
from the grounds surface may dominate the target’s signals after the
Laplace transform since the kernel of this transform decays exponentially
with respect to time. We have handled this difficulty in [2] via a new
data preprocessing procedure. This procedure results in preprocessed
data, which are used as the input for our globally convergent algorithm,
i.e. the input for the first stage of our method.

It is notable that we have experimentally observed a rare superresolu-
tion phenomenon and have numerically reconstructed the corresponding
image, see Figures 4-d) and 9. The resolution limit which follows from
the Born approximation, i.e. the diffraction limit, is λ/2, where λ is the
wavelength of the signal. In our experimental device λ = 4.5 centimeters
(cm). We have resolved two targets at the distance of 1 cm = λ/4.5
between their surfaces. At the same time, the backscattering signal was
measured at the distance of about 80 cm ≈ 18 wavelengths off the tar-
gets, i.e. in the far field zone. It was shown in, for instance [11], that the
superresolution can occur because of nonlinear scattering, and our algo-
rithm is nonlinear, including the step of extraction of the target’s signal
in our data preprocessing procedure [2]. Experimentally the superresolu-
tion phenomenon was demonstrated in [12]. We also refer to the recent
work [13] where the superresolution is discussed.

An outline of this paper is as follows. In section 2 we briefly describe
the globally convergent method. In section 3 we present the forward,
inverse, and adjoint problems as well as the Tikhonov functional for the
second stage. In section 4 we describe the finite element method used
in computations and in section 5 we investigate general framework for a
posteriori error estimation for CIPs. In section 6 we describe the mesh
refinement recommendation and the adaptive algorithm. In section 7 we
present results of our computations.

2. The first stage

In this section we state the forward and inverse problems which we
consider on the first stage. We also briefly outline the globally convergent
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method of [1] and present the algorithm used in computations of the first
stage.

2.1. Forward and inverse problems. Let Ω ⊂ R3 be a convex
bounded domain with the boundary ∂Ω ∈ C3. Denote the spatial coor-
dinates by x = (x, y, z) ∈ R3. Let Ck+α be Hölder spaces, where k ≥ 0
is an integer and α ∈ (0, 1) . We consider the propagation of the electro-
magnetic wave in R3 generated by an incident plane wave. On the first
stage we model the wave propagation by the following Cauchy problem
for the scalar wave equation

εr(x)
∂2u

∂t2
(x, t)−∆u(x, t) = δ(z − z0)f(t), (x, t) ∈ R3 × (0, ∞),(2.1)

u(x, 0) = 0,
∂u

∂t
(x, 0) = 0, x ∈ R3.(2.2)

Here f (t) 6≡ 0 is the time-dependent waveform of the incident plane wave
generated at the plane {z = z0} and propagating along the z-axis, and u
is the total wave.

Let the function E (x, t) = (E1, E2, E3) (x, t) be the electric field.
In our experiments the single non-zero component of the incident electric
field is E2 and we measure the backscattering function E2, which is the
voltage. Our mathematical model of the first stage uses only the single
equation (2.1) with u = E2 instead of the full Maxwell’s system. Such
approximation is reasonable, since it was shown numerically in [14] that
the component E2 of the electric field E dominates wo other components
in the case which we consider. Also, see [1] where a similar scalar wave
equation was used to work with transmitted experimental data.

The function εr(x) in (2.1) represents the spatially distributed relative
dielectric constant, i.e. the dielectric constant. It is known that ε(x) =
εr(x)ε0, where ε(x) is the absolute dielectric permittivity of the material
and ε0 is the dielectric permittivity of vacuum. Both ε(x) and ε0 are
measured in Farad/meter. Thus, εr(x) is dimensionless. We assume that
εr is unknown inside the domain Ω ⊂ R3 and is known outside of it,
(2.3)
εr ∈ Cα

(
R3

)
, εr(x) ∈ [1, b] for x ∈ R3, εr(x) = 1 for x ∈ R3 \Ω,

where b > 1 is a constant. We assume that the set of admissible coeffi-
cients in (2.3) is known. In our experiments the plane wave is initialized
outside of the domain Ω, i.e. Ω ∩ {z = z0} = ∅.
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Coefficient Inverse Problem 1 (CIP1). Determine the function
εr (x) for x ∈ Ω, assuming that the following function g is known for a
single incident plane wave generated at the plane {z = z0} outside of Ω:

u (x, t) = g (x, t) ∀ (x, t) ∈ Γ× (0, ∞) ,

where Γ ⊂ ∂Ω is a part of the boundary ∂Ω. In our experiments, this set
corresponds to the backscattering boundary of Ω.

Remark 2.1. Although the data function g is given only on the part
Γ of ∂Ω, we can extend it numerically to a function g̃ defined on all of
∂Ω, see Section 4 of [5]. Hence we may assume that g(x, t) is known for
every (x, t) ∈ ∂Ω× (0, T ).

Global uniqueness theorems for multidimensional CIPs with a single
measurement are currently known only under the assumption that at least
one of initial conditions does not equal zero in the entire domain Ω [1, 15].
However, this is not our case and the method of Carleman estimates is
inapplicable to our CIP. Thus, we simply assume that uniqueness of our
CIP holds.

2.2. The globally convergent method. Here we briefly present
globally convergent method of [1].

First, consider the Laplace transformation

(2.4) ũ(x, s) =

∞∫

0

u(x, t)e−st dt,

where s is a positive parameter which we call pseudo frequency. We
assume that s ≥ s = const. > 0 and denote by f̃(s) the Laplace transform
of f(t). Here s = const. > 0 is a certain parameter, which guarantees that

integral (2.4) converges for s ≥ s. We assume that f̃(s) 6= 0 for all s ≥ s.

Define w(x, s) := ũ(x, s)/f̃(s). The function w satisfies the equation

(2.5) ∆w(x, s)− s2εr(x)w(x, s) = −δ(z − z0), x ∈ R3, s ≥ s.

It was shown in [2] that w(x, s) > 0 and lim|x|→∞ [w (x, s)− w0(x, s)] =
0, where

w0 (x, s) :=
e−s|z−z0|

2s
is such a solution of equation (2.5) for the case εr (x) ≡ 1, which de-
cays to zero as |z| → ∞. Next, introduce the function v by v(x, s) :=
ln

(
w(x, s)

)
/s2 and substitute w = exp(vs2) into (2.5). Noting that

109



The first stage

Ω ∩ {z = z0} = ∅, we obtain the following equation for the explicit
computation of the coefficient εr:

(2.6) ∆v(x, s) + s2|∇v(x, s)|2 = εr(x), x ∈ Ω, s ≥ s.

Next, we eliminate the unknown coefficient εr(x) from (2.6) by taking the
derivative with respect to s both sides of (2.6). Let q = ∂sv. Then

v(x, s) = −
∞∫

s

q(x, τ) dτ = −
s̄∫

s

q(x, τ) dτ + V (x),

where s̄ > s. We call the function V (x) = v(x, s̄) the “tail function”.
Hence,

(2.7) V (x) =
lnw(x, s̄)

s̄2
.

From (2.6) we obtain the following equation for two unknown functions
q and V

(2.8)

∆q(x, s)− 2s2∇q(x, s) ·
s̄∫

s

∇q(x, τ) dτ

+ 2s2∇V (x) · ∇q(x, s) + 2s

∣∣∣∣∣∣

s̄∫

s

∇q(x, τ) dτ

∣∣∣∣∣∣

2

− 4s∇V (x) ·
s̄∫

s

∇q(x, τ) dτ + 2s |∇V (x)|2 = 0,

for x ∈ Ω and s ∈ (s, s̄).
To find the tail function V we use an iterative procedure presented in

the next section, see [7, 8] for details of this procedure. The function q
satisfies the following boundary condition

(2.9) q(x, s) = ψ(x, s), x ∈ ∂Ω,

where

ψ(x, s) =
∂

∂s

[
lnϕ(x, s)

s2

]
, ϕ(x, s) =

1

f̃(s)

∞∫

0

g(x, t)e−st dt.
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2.3. Iterative procedure and description of the globally con-
vergent algorithm. In our iterative procedure we divide the pseudo
frequency interval [s, s̄] into N sub-intervals s̄ = s0 > s1 > · · · > sN = s
with the step size h such that sn − sn+1 = h. We approximate the func-
tion q by a piecewise constant function with respect s, q(x, s) ≈ qn(x),
s ∈ (sn, sn−1], n = 1, . . . , N , and set q0 ≡ 0. Next, we multiply equation
(2.8) by the Carleman Weight Function exp [Λ (s− sn−1)], s ∈ (sn, sn−1),
where Λ ≫ 1 is a large parameter chosen in the computations, and in-
tegrate with respect to s over every pseudo frequency interval [sn, sn−1].
Finally, we get a system of elliptic equations for the functions qn for
x ∈ Ω:

(2.10)
∆qn(x) +A1, n∇qn(x) · (∇Vn(x)−∇qn−1(x))

= A2,n|∇qn(x)|2 +A3, n|∇Vn(x)−∇qn−1(x)|2,

where Ai, n, i = 1, 2, 3, are some coefficients defined in [1] and can be

computed analytically and qn−1 = h
∑n−1

j=0 qj. The tail function V = Vn
is approximated iteratively, see the algorithm below. The discretized
version of the boundary condition (2.9) is given by
(2.11)

qn(x) = ψn(x) :=
1

h

sn−1∫

sn

ψ(x, s) ds ≈ 1

2
[ψ(x, sn)+ψ(x, sn−1)], x ∈ ∂Ω.

We also note that the first term on the right hand side of (2.10) is negligi-
ble compared to the other terms since |A2, n| ∼ Λ−1 for sufficiently large
Λ, while |Ai, n| ∼ 1, i = 1, 3. Thus, we set A2, n|∇qn|2 = 0. The sys-
tem of elliptic equations (2.10) with boundary conditions (2.11) is solved
sequentially starting from n = 1. To solve it, we use following algorithm:

Globally convergent algorithm.

• Compute the first tail function V0 (see section 2.9 of [1] and [9]
for details). Set q0 ≡ 0.

• For n = 1, 2, . . . , N
(1) Set qn,0 = qn−1, Vn, 1 = Vn−1

(2) For i = 1, 2, . . . , mn

– Find qn, i by solving (2.10)–(2.11) with Vn := Vn, i.
– Compute vn, i = −hqn, i − qn−1 + Vn, i.
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– Compute εr, n, i via (2.6). Then solve the forward
problem (2.1)–(2.2) with the new computed coeffi-
cient εr := εr, n, i, compute w := wn, i and update
the tail Vn, i+1 by (2.7).

(3) Set qn = qn,mn , εr, n = εr, n,mn , Vn = Vn,mn+1 and go to the
next frequency interval [sn+1, sn] if n < N. If n = N , then
stop.

Stopping criteria of this algorithm with respect to i and n are derived
computationally and is presented in [7, 8] and its global convergence was
proved in [1, 9]. We denote the solution obtained at this stage by εr, glob.

3. Statement of Forward and Inverse Problems on the second
stage

On the second stage we model the electromagnetic wave propagation
in an isotropic and non-magnetic space in R3 with the dimensionless co-
efficient εr, which describes the spatially distributed dielectric constant
of the medium. It is known that in the non-magnetic space the relative
permeability µr = 1 since µ(x) = µ0, where µ(x) is the magnetic perme-
ability of the material and µ0 is the permeability of vacuum. Both µ(x)
and µ0 are measured in Henries/meter. Hence, µr is dimensionless.

We consider the following Cauchy problem as the model problem for
the electric field E(x, t) = (E1, E2, E3)(x, t)
(3.1)

εr(x)
∂2E

∂t2
(x, t)

+∇×
(
∇× E(x, t)

)
= (0, δ(z − z0)f(t), 0), (x, t) ∈ R3 × (0, T ),

∇ ·
(
εr(x)E(x, t)

)
= 0, (x, t) ∈ R3 × (0, T ),

E(x, 0) = 0,
∂E

∂t
(x, 0) = 0, x ∈ R3.

We assume that the coefficient εr of equation (3.1) is the same as in
(2.3). Let again Γ ⊂ ∂Ω be a part of the boundary ∂Ω.

Coefficient Inverse Problem 2 (CIP2). Suppose that the coeffi-
cient εr satisfies (3.1). Determine the function εr (x), x ∈ Ω, assuming
that the following vector function g̃ (x, t) = (g1, g2, g3) (x, t) is known for
a single incident plane wave:

(3.2) E (x, t) = g̃ (x, t) , ∀ (x, t) ∈ Γ× (0, T ) .

112



Statement of Forward and Inverse Problems on the second stage

Set qn, 0 = qn−1, Vn, 1 = Vn−1.

with respect to tail function

Stopping criterion

satisfied?

Increase i → i + 1.

with respect to pseudo frequency

Stopping criterion

satisfied?

n = N?
Return εr, glob = εr, n.

εr, n = εr, n, mn
, Vn = Vn, mn+1.

Set mn = i, qn = qn, mn
,YesNo

Yes No

Yes No

Compute vn, i = −hqn, i − qn−1 + Vn, i,

Increase n → n + 1

and set i = 1.

Compute initial tail function V0 (see [1]).

Initialize: n = 1 for steps in s,

i = 1 for iterations with respect

to tail function. Set q0 = 0 in (2.10).

with Vn = Vn, i.

Compute qn, i by solving (2.9), (2.10)

with εr = εr, n, i, then wn, i

via Laplace transform of un, i.

then εr, n, i via (2.6) with v = vn, i.

Compute un, i by solving (2.1), (2.2)

Compute new tail function Vn, i+1

via (2.7) with w = wn, i.

Figure 1. Flowchart for the globally convergent method.
For the stopping criteria, see [7, 8].
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In (3.2) the vector function g̃ models time dependent measurements
of the electric field at the part Γ of the boundary ∂Ω of the domain Ω
in which the coefficient εr (x) is unknown. The uniqueness of CIP2 is
currently known only if one would consider in (3.1) a Gaussian function

δ̃ (z − z0) centered around z0, which approximates the function δ (z − z0).
We again assume that uniqueness holds for our CIP.

The function E2 in (3.1) models the voltage of one component of the
electric field E (x, t) = (E1, E2, E3) (x, t). And we indeed measure this
component. In our computer simulations of section 7.5 the incident field
has only one non-zero component E2. This component propagates along
the z-axis until it reaches the target, where it is scattered. When solving
the forward problem in our computations of section 7.5, we first generate
the data (3.2) by solving the problem (3.1) for the case when the function
εr is taken as the one reconstructed by the globally convergent method.
Next, the computed component E2 on the surface Γ is replaced with the
measured data. The other two components, E1 and E3, are left the same
as the ones obtained by the solution of the problem (3.1), see details in
[5].

3.1. Domain decomposition finite element/finite difference
method. To solve the problem (3.1) numerically we choose a bounded
domain G such that Ω ⊂ G. In our computations of the second stage we
use the domain decomposition finite element/finite difference method of
[14]. To do that we decompose G as G = ΩFEM ∪ΩFDM with ΩFEM = Ω.
In our computations, a finite element method is used in ΩFEM and a finite
difference method is used in ΩFDM, see details in [14].

Using (2.3) we have that

εr(x) ≥ 1, for x ∈ ΩFEM,

εr(x) = 1, for x ∈ ΩFDM.

As in [14] in our computations we used the following stabilized model
problem with the parameter ξ ≥ 1:
(3.3)

εr(x)
∂2E

∂t2
(x, t) +∇×

(
∇× E(x, t)

)

− ξ∇
(
∇ ·

(
εr(x)E(x, t)

))
= 0, (x, t) ∈ G× (0, T ),
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(3.4) E(x, 0) = 0,
∂E

∂t
(x, 0) = 0, x ∈ G.

To determine boundary conditions for (3.3), (3.4), we choose the do-
mains Ω and G such that

Ω = ΩFEM =
{
x = (x, y, z) : −a < x < a, −b < y < b, −c < z < c′

}
,

G = {x = (x, y, z) : −A < x < A, −B < y < B, −C < z < z0} ,

where 0 < a < A, 0 < b < B, −C < −c < c′ < z0, and ΩFDM = G\ΩFEM.
Denote by

∂1G := G ∩ {z = z0} , ∂2G := G ∩ {z = −C} ,
∂3G := ∂G \ (∂1G ∪ ∂2G) .

The backscattering side of Ω is Γ = ∂Ω ∩ {z = c′}. Next, define ∂iGT :=
∂iG × (0, T ), i = 1, 2, 3. Let t′ ∈ (0, T ) be a number, and we assume
that the function f (t) ∈ C [0, t′] and f(t) = 0 for t > t′.

Then boundary conditions for (3.3)–(3.4) are:

E (x, t) = (0, f(t), 0), (x, t) ∈ ∂1G×
(
0, t′

]
,(3.5)

∂E

∂n
(x, t) = −∂E

∂t
(x, t), (x, t) ∈ ∂1G×

(
t′, T

)
,(3.6)

∂E

∂n
(x, t) = −∂E

∂t
(x, t), (x, t) ∈ ∂2GT ,(3.7)

∂E

∂n
(x, t) = 0, (x, t) ∈ ∂3GT ,(3.8)

where ∂/∂n is the normal derivative. Conditions (3.6) and (3.7) are first
order absorbing boundary conditions [16]. At the lateral boundaries we
impose a homogeneous Neumann condition (3.8). In [14] it was shown
that the solution to the original Maxwell’s equations is well approximated
by the solution to (3.3)–(3.8) in the case where ξ = 1 and the discontinu-
ities in εr are not too large.
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The model problem (3.3)–(3.8) can be also rewritten as

εr(x)
∂2E

∂t2
(x, t)

+∇
(
∇ ·E(x, t)

)
−∇ ·

(
∇E(x, t)

)
(3.9)

− ξ∇
(
∇ ·

(
εr(x)E(x, t)

))
= 0, (x, t) ∈ G× (0, T ),

E(x, 0) = 0,
∂E

∂t
(x, 0) = 0, x ∈ G,(3.10)

E (x, t) = (0, f (t) , 0), (x, t) ∈ ∂1G× (0, t′] ,(3.11)

∂E

∂n
(x, t) = −∂E

∂t
(x, t), (x, t) ∈ ∂1G× (t′, T ) ,(3.12)

∂E

∂n
(x, t) = −∂E

∂t
(x, t), (x, t) ∈ ∂2GT ,(3.13)

∂E

∂n
(x, t) = 0, (x, t) ∈ ∂3GT .(3.14)

Here we have used the well-known identity ∇ × (∇× E) = ∇(∇ · E) −
∇ · (∇E). We refer to [14] for details of the numerical solution of the
forward problem (3.9)–(3.14).

3.2. Tikhonov functional. We define Γ′ as the extension of the
backscattering side Γ up to the boundary ∂3G of the domain G that is,

Γ′ =
{
x = (x, y, z) : −X < x < X, −Y < y < Y, z = c′

}
.

Let G′ be the part of the rectangular prism G which lies between the two
planes Γ′ and {z = −C}:

G′ =
{
x = (x, y, z) : −X < x < X, −Y < y < Y, −C < z < c′

}
.

Denote by QT = G′ × (0, T ), and ST = ∂G′ × (0, T ).
In our CIP we have the data g in (3.2) only on Γ. These data are com-

plemented on the rest of the boundary ∂G′ of the domain G′ by simulated
data using the immersing procedure of [5]. Thus, we can approximately
get the vector function g̃:

(3.15) g̃ (x, t) = E (x, t) , (x, t) ∈ ST .
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We solve our inverse problem as an optimization problem. To do so,
we minimize the Tikhonov functional:

(3.16)

F (E, εr) :=
1

2

∫

ST

(
E(x, t)− g̃(x, t)

)2
zδ(t) dσ dt

+
1

2
γ

∫

G

(
εr(x)− εr, glob(x)

)2
dx,

where γ > 0 is the regularization parameter and εr, glob is the computed
coefficient which we have obtained on the first stage via the globally
convergent method. Here, the function zδ(t) is used to ensure the com-
patibility conditions at QT ∩ {t = T} for the adjoint problem (also, see
section 4.3 of [1]),

zδ ∈ C2 [0, T ] , zδ(t) =





1, t ∈ (0, T − δ) ,

∈ (0, 1) , t ∈ (T − δ, T − δ/2) ,

0, t ∈ (T − δ/2, T ) .

Let Eglob be the solution of the forward problem (3.9)–(3.14) with
εr := εr, glob. Denote by p = ∂nEglob|ST

. In addition to the Dirichlet
condition (3.15), we set the Neumann boundary condition as

∂E

∂n
(x, t) = p (x, t) , (x, t) ∈ ST .

Introduce the following spaces of real valued vector functions

H1
E(QT ) =

{
f ∈ [H1(QT )]

3 : f(x, 0) = 0
}
,

H1
λ(QT ) =

{
f ∈ [H1(QT )]

3 : f(x, T ) = 0
}
,

U1 = H1
E (GT )×H1

λ (GT )×B (G) ,

where B (G) is the space of functions bounded on G with the norm
‖f‖B(G) = supG |f | .

To minimize the functional (3.16) we introduce the Lagrangian
(3.17)
L(E, λ, εr)

= F (E, εr)−
∫

QT

εr(x)
∂λ

∂t
(x, t) · ∂E

∂t
(x, t) dxdt

−
∫

QT

∇ ·E(x, t)∇ · λ(x, t) dxdt+

∫

QT

∇E(x, t)∇λ(x, t) dxdt

+ ξ

∫

QT

∇ ·
(
εr(x)E(x, t)

)
∇ · λ(x, t) dxdt−

∫

ST

λ(x, t) · p(x, t) dσ dt,
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where E and λ are weak solutions of problems (3.19)–(3.21) and (3.22)–
(3.24), respectively, see details in [5].

We observe that in (3.17) (E, λ, εr) = w ∈ U1 and functions E and λ
depend on the εr. To get the Fréchet derivative L

′ of the Lagrangian (3.17)
rigorously, one should assume that variations of functions E and λ depend
on variations of the coefficient εr. This can be done similarly with section
4.8 of [1]. However for brevity here, to derive the Fréchet derivative of the
Lagrangian (3.17), we assume that in (3.17) the elements of the vector
function (E, λ, εr) can be varied independently of each other.

We search for a point w ∈ U1 such that

(3.18) L′(w) (w) = 0, ∀w ∈ U1.

To find the Fréchet derivative L′(w), we consider L (w + w)− L (w), for
every w ∈ U1 and single out the linear part, with respect to w, of the
obtained expression. Then the state problem in the domain G′ is given
by

εr(x)
∂2E

∂t2
(x, t) +∇

(
∇ ·E(x, t)

)

−∇ ·
(
∇E(x, t)

)
− ξ∇

(
∇ ·

(
εr(x)E(x, t)

))
= 0, (x, t) ∈ QT ,(3.19)

E(x, 0) = 0,
∂E

∂t
(x, 0) = 0, x ∈ G′,(3.20)

∂E

∂n
(x, t) = p (x, t) , (x, t) ∈ ST .(3.21)

The adjoint problem is:

εr(x)
∂2λ

∂t2
(x, t) +∇

(
∇ · λ(x, t)

)

−∇ ·
(
∇λ(x, t)

)
− ξεr(x)∇

(
∇ · λ(x, t)

)
= 0, (x, t) ∈ QT ,(3.22)

λ(x, T ) = 0,
∂λ

∂t
(x, T ) = 0, x ∈ G′,(3.23)

∂λ

∂t
(x, t) = zδ (t)

(
g̃(x, t)− E(x, t)

)
(x, t) , (x, t) ∈ ST .(3.24)

4. Finite element discretization

For the finite element discretization of ΩT = Ω × (0, T ) we used the
stabilized finite element method of [14]. To do that we define a partition
Kh = {K} of G′ which consists of tetrahedra. Here h is a mesh function
defined as h|K = hK – the local diameter of the element K. Let Jτ = {J}
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be a partition of the time interval (0, T ) into subintervals J = (tk−1, tk]
of uniform length τ = tk − tk−1. We also assume the minimal angle
condition on the Kh [17].

To solve the state problem (3.19)–(3.21) and the adjoint problem
(3.22)–(3.24 ) we define the finite element spaces, WE

h ⊂ H1
E (QT ) and

W λ
h ⊂ H1

λ (QT ). First, we introduce the finite element trial space WE
h for

every component of the electric field E defined by

WE
h := {w ∈ H1

E(QT ) : w|K×J ∈ P1(K)× P1(J), ∀K ∈ Kh, ∀J ∈ Jτ},
where P1(K) and P1(J) denote the set of linear functions on K and J ,
respectively. We also introduce the finite element test space W λ

h defined
by

W λ
h := {w ∈ H1

λ(QT ) : w|K×J ∈ P1(K)× P1(J), ∀K ∈ Kh, ∀J ∈ Jτ}.
Hence, the finite element spaces WE

h and W λ
h consist of continuous piece-

wise linear functions in space and time. To approximate the function εr,
we use the space of piecewise constant functions Vh ⊂ L2 (Ω),

Vh := {u ∈ L2(Ω) : u|K ∈ P0(K), ∀K ∈ Kh},
where P0(K) is the set of constant functions on K.

Next, we set Uh = WE
h ×W λ

h × Vh. The finite element method for
solving equation (3.18) now reads: Find uh ∈ Uh, such that

L′(uh)(ū) = 0, ∀ū ∈ Uh.

5. General framework for a posteriori error estimates for our
CIPs

Let (Eh, λh, εh) ∈ Uh be finite element approximations of functions
(E, λ, εr) ∈ U1, see details in [3, 14]. In our recent works [1, 18–20] we
derived a posteriori error estimates for three kinds of errors:

• The error |L(u)− L(uh)| of the Lagrangian with u = (E, λ, εr),
and uh = (Eh, λh, εh) [18, 19].

• The error |F (εr)− F (εh)| of the Tikhonov functional [1].
• The error |εr−εh| of the regularized solution εr of this functional.
This error for hyperbolic CIPs was presented in [1, 6].

To derive errors in the Lagrangian or in the Tikhonov functional we
first note that

L(u)− L(uh) = L′(uh)(u− uh) +R(u, uh),

F (εr)− F (εh) = F ′(εh)(εr − εh) +R(εr, εh),
(5.1)
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General framework for a posteriori error estimates for our CIPs

where R(u, uh),and R(εr, εh) are the second order remainders terms. We
assume that εh is located in the small neighborhood of εr. This assump-
tion is reasonable, since we have a good initial guess both in the Tikhonov
functional and in the Lagrangian. This guess is obtained by the globally
convergent method of [1, 9, 21]. Thus, the terms R(u, uh), R(εr, εh) are
small and we can neglect them in (5.1).

We now use the Galerkin orthogonality principle

L′(uh)(ū) = 0 ∀ū ∈ Uh,

F ′(εh)(b) = 0 ∀b ∈ Vh,

together with the splitting

u− uh = (u− uIh) + (uIh − uh),

εr − εh = (εr − εIh) + (εIh − εh),

where uIh ∈ Uh is the interpolant of u, and εIh ∈ Vh is the interpolant of
εr, and get the following representation of errors in the Lagrangian and
in the Tikhonov functional, respectively:

L(u)− L(uh) ≈ L′(uh)(u− uIh),

F (εr)− F (εh) ≈ F ′(εh)(εr − εIh).
(5.2)

In the a posteriori error estimates (5.2) we have two types of “factors”:

• L′(uh) and F
′(εh) represent residuals, and

• u− uIh and εr − εIh represent weights.

While the residuals in (5.2) can be computed by knowing the finite
element approximations (Eh, λh, εh), weights must be further estimated.

Let f ∈ H1(Ω) be approximated by its piecewise linear interpolant f Ih
and finite element approximation fh over a mesh Kh of Ω as outlined in
Section 4. Standard interpolation estimates (following from, for instance,
[22]) then gives

(5.3)
∥∥f − f Ih

∥∥
L2(Ω)

≤ CI ‖h ∇f‖L2(Ω) .

where CI = CI (Ω, h) is positive constant depending only on the domain
Ω and the mesh function h = h(x), the latter defined as in Section 4. In
addition, we can estimate right hand side in (5.3), see [22], via

(5.4) |∇f | ≤ |[fh]|
hK

,
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where [fh] denotes the normal jump of the function fh over the edges of
the element K.

Similarly with (5.3), (5.4) we estimate u− uIh in terms of derivatives
of the function u and the mesh parameters h and τ as

(5.5) |u− uIh| ≤ CI

(
h2

∣∣∣∣
[uh]s
h

∣∣∣∣+ τ2
∣∣∣∣
[uh]t
τ

∣∣∣∣
)
,

where [uh]s is the maximum modulus of a jump in the normal derivative
of uh across a side of the element K, [uh]t is the maximum modulus of
the jump of the time derivative of uh across a boundary node of the time
interval J , see details in [3, 18, 19, 23].

We also estimate εr− εIh in terms of derivatives of the function εr and
the mesh parameter h as

(5.6) |εr − εIh| ≤ CIh

∣∣∣∣
[εh]

h

∣∣∣∣ .

Here, [εh] is the jump of the function εh over the element K. Substituting
estimates (5.5) and (5.6) in the right hand side of (5.2) we can compute
a posteriori errors in the Lagrangian or in the Tikhonov functional in
explicit way as

|L(u) − L(uh)| ≈ CI||L′(uh)|| · (h||[uh]s||+ τ ||[uh]t||),
|F (εr)− F (εh)| ≈ CI||F ′(εh)|| · ||[εh]||.

Finally, to derive an estimate for the error εr − εh in the regularized
solution εr, we use the fact that the Tikhonov functional is strictly con-
vex in a small neighborhood of the solution [1]. In addition, we use the
interpolation property (5.3). We now formulate a theorem of [1] for the
case of a posteriori error estimate in the reconstructed function εr for the
problem (2.1)–(2.2).

Theorem [1] Let εh ∈ Vh be a finite element approximation of the solution

εr ∈ H1(Ω) obtained after the minimization of the functional (3.16) on the finite

element mesh Kh with the mesh function h. Then there exists a constant D

such that ‖F ′ (ε1)− F ′ (ε2)‖ ≤ D ‖ε1 − ε2‖ for every ε1, ε2 satisfying (2.3). In

addition, the following a posteriori error estimate for the regularized solution εr
holds

||εh − εr||L2(Ω) ≤
D

α
CI ||hεh||L2(Ω).

Remark 5.1. The natural question linked with the adaptivity is: Can
one rigorously guarantee that the mesh obtained after the minimization of
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the Tikhonov functional on sequentially refined meshes of finite elements
results in an improvement of the accuracy? The first affirmative answer
to this question was presented in [4], also, see the book [1] and the survey
[6].

6. Mesh refinement recommendation and the adaptive
algorithm

In our adaptive algorithm for the mesh refinement we have used ideas
of [19], Theorem 5.1 and the criterion of Remark 5.1 of [3]. From this
criterion follows that the finite element mesh should be locally refined in
such subdomain of Ω where the maximum norm of the Fréchet derivative
of the objective functional is large.

Define
(6.1)

L′,m
h (x) = −

∫

0

T ∂λmh
∂t

(x, t) · ∂E
m
h

∂t
(x, t) dt

+ ξ

∫ T

0
∇ ·Em

h (x, t)∇ · λmh (x, t) dt+ γ(εh
m(x)− εr, glob(x)),

where m is the iteration index in the optimization procedure, and
(Em

h , λ
m
h , ε

m
h ) are finite element approximations of the functions (E, λ, εr),

see details in [3, 14].

Adaptive algorithm

• Step 0. Choose an initial mesh Kh in Ω and an initial time
partition J0 of the time interval (0, T ) . Start from the initial
guess ε0h = εr, glob. Compute the approximations εmh as:

• Step 1. Compute the approximate solutions Em
h and λmh of

the state problem (3.19)–(3.21) and the adjoint problem (3.22)–
(3.24) on Kh and Jk, using coefficient εmh , and compute the

Fréchet derivative L′, m
h via (6.1).

• Step 2. Update the coefficient on Kh using the conjugate gradi-
ent method:

εm+1
h (x) := εmh (x) + αdm(x),

where α > 0 is a step-size in the conjugate gradient method, and

dm(x) = −L′,m
h (x) + βmdm−1(x),
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with

βm =
||L′, m

h ||2L2(Ω)

||L′, m−1
h ||2L2(Ω)

,

and d0(x) = −L′, 0
h (x).

• Step 3. Stop updating the coefficient and set εh := εm+1
h , M :=

m + 1, if either ||L′, m
h ||L2(Ω) ≤ θ or norms ||εmh ||L2(Ω) are stabi-

lized. Here θ is a tolerance number. Otherwise, set m := m+ 1
and go to step 1.

• Step 4. Compute L′,M
h via (6.1). Refine the mesh at all grid

points x where

|L′,M
h (x) | ≥ β1 max

x∈Ω
|L′,M

h (x) |.

Here the tolerance number β1 ∈ (0, 1) is chosen by the user.
• Step 5. Construct a new mesh Kh in Ω and a new partition Jk
of the time interval (0, T ). On Jk the new time step τ should
be chosen in such a way that the CFL condition is satisfied.
Interpolate the initial approximation εr, glob from the previous
mesh to the new mesh. Next, return to step 1 at m = 1 and
perform all above steps on the new mesh. Stop mesh refinements
if norms defined in step 3 either increase or stabilize, compared
with the previous mesh.

In step 2 of this algorithm the parameter α can be computed by a
line search procedure, see, e.g. [24].

7. Numerical studies

In this section we present results of reconstructions of buried objects
placed inside a sand box, using our two-stage numerical procedure. To
do this, we use the globally convergent algorithm of section 2 on the first
stage and the adaptive algorithm of section 6 on the second. To collect
experimental data, we have used the same configuration as for the targets
placed in the air, see [7, 8] for details. The only difference is that in this
work we consider the objects placed inside a box filled with the dry sand.
We refer to [2] for details of the data acquisition process. The relative
dielectric constant of dry sand is εr (sand) = 4. We used this information
to model the case of buried objects. In our experiment we have used
different types of targets, including both metallic and nonmetallic ones.
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Initialize meshes Kh0
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Set k = 0 for mesh refinements, and
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′, Mk

hk
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x∈Ω |L
′, Mk

hk
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hk
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, Jk with εr = εm

hk
.

Compute L
′, m

hk
via (6.1).

Figure 2. Flowchart for the adaptive algorithm.

We refer to the Table 1 of [2] for the full description of all data sets.
In this paper we present reconstruction of eight (8) objects listed in the
Table 1 below.

Our experimental setup includes a horn antenna (transmitter) which
was fixed at a given position, and a detector. The scanned area was
1× 1 (m) with space step 0.02 (m). Electrical pulses were emitted by the
transmitter and received at each position of the detector. Pulses were gen-
erated by a Picosecond Pulse Generator 10070A and the backscattered
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signals were measured by Tektronix DSA70000 series real-time oscillo-
scope. The emitted pulses were of the duration 300 picoseconds. The
wavelength of the pulses was approximately 0.04 m. The timestep be-
tween two sets of recorded backscattered data was τ = 10 ps. Duration
of the time signal was 10 ns.

In our computational studies we had the following goals:

• to reconstruct refractive indices of dielectric targets and appear-
ing dielectric constants of metals, and

• to image the location of targets, and their sizes and shapes.

To work with metallic objects, it is convenient to treat them as di-
electrics with large dielectric constants, see [25] for details. We call these
appearing dielectric constants and choose values for them such that

(7.1) εr (metallic target) ≥ 10.

To compare our computational results with directly measured refrac-
tive indices n =

√
εr of dielectric targets and appearing dielectric con-

stants of metallic targets (see (7.1)), we consider the maximal values of
the computed functions εr obtained in both algorithms, and define

(7.2) εcomp
r = max

x∈Ω
εr (x) , ncomp =

√
εcomp
r .

Remark 7.1. As the objects we reconstruct are buried in dry sand with
relative dielectric constant 4, our computational results should be scaled
by that factor in order to obtain correct apparent dielectric constants and
refractive indices. In Tables 2, 3, we present such scaled results.

7.1. Data preprocessing. We point out that there is a huge mis-
fit between our experimental data and computationally simulated data.
There are several causes of this misfit listed in Section 4.2 of [8]. Be-
cause of this misfit, the central procedure required before applying of our
two-stage numerical procedure is data preprocessing. This procedure is
heuristic and cannot be rigorously justified. In this work we have used
the same data preprocessing procedure consisting of several steps as was
used in [8]. The three main steps of our data preprocessing procedure
are:

(1) Data propagation.
(2) Extraction of the target’s signal from the total signal, which is

a mixture of the signal from the target and the signal from the
sand. This extraction is applied to propagated data.
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(3) Data calibration: to scale the measured data to the same scaling
as in our simulations. In the case of the globally convergent
method, a calibrating object was used. In the case of the above
described adaptive finite element method a different calibration
was used, see for details [5].

We have propagated the data to a plane, which we call the propagated
plane and is located closer to the targets. This means that we approx-
imate the scattered wave on the propagated plane using the measured
scattered wave on the measurement plane. The distance between the
measurement plane and the target was found using first time of arrival
of the backscattered signal. A data calibration procedure was used to
scale the measured data by a certain factor obtained in our computa-
tional simulations. We call this factor the calibration factor. The choice
of this factor is based on the data of a known target which we call the
calibrating object. The procedure of the extraction of the signal of the
target from the total signal is more complicated and we refer to [2] for its
many details.

7.2. Computational domains. We set spatial dimensions in our
experiment in meters. Our experimental data were collected at the mea-
surement plane which was about 0.8 m from targets. The data were
collected at the detectors with a scanning step size in space 0.02 m in x
and y directions. We choose the dimensionless spatial and time variables
x′ = x/1 (m), t′ = 0.3t where t is the time in nanoseconds (ns). The fac-
tor 0.3 is the speed of light in m/ns in free space. This factor was used to
normalize the dielectric constant to be unity in the background medium.
The time interval was chosen t′ ∈ [0, 1.2] since the amplitude of the signal
for t′ > 1.2 was negligibly small [2]. Below we keep the same notations
x, t for dimensionless variables for brevity. As to the specific choice of
sizes of domains below, we have slightly varied them and saw that these
variations did not affect significantly our results. We also kept in mind
that we cannot use exceedingly large domains due to the computational
cost.

In our computations we propagated the experimentally measured data
from measurement plane Pm = {z = 0.8} to the plane Pp = {z = 0.04}.
This means that the distance between front sides of our targets and the
backscattered boundary was approximately 0.04 m. We choose this dis-
tance in all our computations since we have obtained good reconstruction
results for all targets using this distance, see details in [2]. Thus, we work
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below in both algorithms only with propagated experimental data given
at the plane Pp = {z = 0.04}.

We choose our computational domain G as
(7.3)
G = {x =(x, y, z) ∈ (−0.56, 0.56) × (−0.56, 0.56) × (−0.16, 0.1)} .

The boundary of the domain G is ∂G = ∂1G ∪ ∂2G ∪ ∂3G. Here, ∂1G
and ∂2G are front and back sides of the domain G at {z = 0.1} and
{z = −0.16}, respectively, and ∂3G is the union of left, right, top and
bottom sides of this domain.

For the solution of the state problem (3.19)–(3.21) and the adjoint
problem (3.22)–(3.24) we have used domain decomposition finite ele-
ment/finite difference method of [14]. To do that the the domain G is split
into two subdomains ΩFEM = Ω and ΩFDM so that G = ΩFEM ∪ ΩFDM

and inner domain is defined as
(7.4)
ΩFEM = Ω = {x =(x, y, z) ∈ (−0.5, 0.5) × (−0.5, 0.5) × (−0.1, 0.04)} .
The experimental data g for both algorithms are given at the front side
Γ of the domain Ω which is defined as

Γ = {x = (x, y, z) ∈ ∂Ω : z = 0.04}.
In some tests of the first stage we used the shrunken computational

domain G defined as

G = {x =(x, y, z) ∈ (−0.24, 0.24) × (−0.24, 0.24) × (−0.16, 0.1)} ,
as well as the shrunken computational domain ΩFEM defined as
(7.5)
ΩFEM = Ω = {x =(x, y, z) ∈ (−0.2, 0.2) × (−0.2, 0.2) × (−0.1, 0.04)} .

7.3. Description of experimental data sets. Table 1 describes
the details of used data sets together with the burial depths of the tar-
gets. After obtaining computational results the refractive indices of all
dielectric targets were measured, and these measured refractive indices
were compared to those predicted by the computations.

We note that the burial depths of the objects of Table 1 varied between
2 cm to 10 cm. Typically burial depths of antipersonnel land mines do
not exceed 10 cm. The measured data of the sand box (without buried
objects) was used for the calibration of all data for the objects of Table
1.
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7.4. Numerical examples of the first stage. In Tables 2 and 3
we summarize reconstruction results for all objects of Table 1. Table
2 shows shows the reconstructed refractive indices for the non-metallic
targets. For these targets, the refractive index n =

√
εr(target). Here,

εr(target) was chosen as εr(target) = maxx∈Ω εr(x). Table 3 shows the
burial depths and the effective dielectric constants of the metallic targets.
From Tables 2 and 3 we can see that the burial depth was accurately
estimated in most cases, with the errors not exceeding 1 cm.

The estimates of the refractive indices of non-metallic targets with
refractive indices larger than that of the sand (water and wet wood) are
quite accurate with the average error of about 4%.

For water, we were unable to directly measure its refractive index at
the used frequency of the signal, which was about 7.5 GHz. Since this
is a high frequency, then we cannot rely on the standard value of the
refractive index of water

n (water) =
√
εr (water) =

√
80 ≈ 8.94,

which is given in many tables of dielectric constants for low frequencies.
Therefore, we have made a separate experiment described in [2], where we
have obtained a reference value n (water) = 4.88. This value has coincided
with the value of an experimental paper cited in [26], see details in [2]. We
observe from Table 2 that our computed value of n for water is close to the
reference value. Targets with refractive indices smaller than that of the
sand model plastic land mines and improvised explosive devices (IEDs).
We have observed that in this case we can image these targets only if
their burial depths do not exceed 5 cm, see for example, reconstruction
of Object #3 in Table 2 and in Figure 4-c).

In our experiments we observed that the signals of the metallic targets
were stronger compared to the signal from sand. By (7.1) appearing
dielectric constant of metals should be larger than 10, also, see [25]. We
see from Table 3 that our results for metallic objects satisfy this criterion.

We observe in Table 1 that in our experiment for Object #4 we were
supposed to reconstruct two metallic blocks with 1 cm separation between
them. On the other hand, the wavelength of our device is λ = 4.5 cm.
Thus, λ/4.5 is the distance between these two targets. Table 3 and Figure
4-d) show that we have accurately imaged both targets. Thus, we have
achieved the superresolution beyond the diffraction limit. This phenome-
non is rare and should be studied further because of its importance when
combined with quantitative imaging.
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7.5. Numerical examples of the second stage. We can conclude
from the results of the first stage that this stage provides accurate loca-
tions of the targets as well as accurate values of the refractive indices
n =

√
εr of the dielectric targets and large values of appearing dielectric

constants εr for the metallic targets. However, the globally convergent
algorithm does not reconstruct shapes of targets well, see Figure 4. To
refine shapes, we have used the second stage, on which we have minimized
the Tikhonov functional on locally adaptively refined meshes.

7.5.1. Computations of the forward problem. The data g in our ex-
periments of the second stage are given only for the second component
E2 of the electric field E in (3.2) and are measured on the front side Γ of
the domain Ω,

Γ = {x = (x, y, z) ∈ ∂Ω : z = 0.04}.

To generate backscattering data for other two components E1 and E3

we solve the forward problem (3.9)–(3.14) in the computational domain
G defined as in the first stage in (7.3) with the known value of εr obtained
at the first stage of our two-stage numerical procedure. We use the stabi-
lized domain decomposition method of [14] implemented in the software
package WavES [27]. We split G into two subdomains ΩFEM = Ω and
ΩFDM so that G = ΩFEM ∪ ΩFDM and the inner domain is defined as in
(7.4).

Once the forward problem (3.9)–(3.14) is solved to generate backscat-
tering data for the two components E1 and E3 at the boundary Γ′, then
after the data immersing procedure described in Section 7.3.3 of [5] the
inverse problem is solved via the algorithm of section 6. The immersing
procedure of [5] immerses the time-dependent propagated experimental
data g (x, t) = E2 (x, t)|x∈Γ into the computationally simulated data and
then extends the data g from Γ to Γ′.

We choose the waveform f in (3.9)–(3.14) as

f(t) = sin(ωt), 0 ≤ t ≤ t′ :=
2π

ω
,

where we use ω = 30 and T = 1.2. We solve the problem (3.9)–(3.14)
using the explicit scheme of [14] with the time step size τ = 0.003, which
satisfies the CFL condition.

7.5.2. Reconstructions. Suppose that in the adaptive algorithm of
section 6 we have obtained the function εr. We obtain then the image of
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the dielectric targets based on the function εr,diel, which we define as

εr,diel (x) =

{
εr (x) if εr (x) ≥ 0.5maxx∈Ω εr (x) ,
1 otherwise.

For metallic targets use a similar function εr,metal,

εr,metal (x) =

{
εr (x) if εr (x) ≥ 0.5maxx∈Ω εr (x) ,
1 otherwise.

Table 2 displays computed and directly measured refractive indices
of dielectric objects as well as their correct and calculated burial depths.
These computations were made on the first stage. One can see that
refractive indices are reconstructed pretty accurately. Burial depths of
Objects #2 and #3 are reconstructed accurately. However, the error in
the calculated burial depth of object #6 is 4.3 cm.

Table 3 displays computed appearing dielectric constants of metallic
objects as well as their true and calculated burial depths. Again, these
computations were done on the first stage. One can see that in all cases
burial depths were calculated with a good accuracy. As to the computed
values of appearing dielectric constants, they all exceed 10, which is in
a good agreement with (7.1). An interesting observation which can be
derived from Table 3 is that even though burial depths of targets Objects
#7 and #8 were significantly different (3 cm in #7 and 10 cm in #8),
our reconstructed values of their appearing dielectric constants were the
same.

As to the second stage, computed refractive indices of dielectric tar-
gets and appearing dielectric constants of metallic targets, were very close
to ones of the first stage.

Recall that in order to apply immersing procedure of the experimen-
tal data g into simulated data E2, we solve the problem (3.9)–(3.14)
numerically with the known values of the function εr = εr, glob obtained
at the first stage of our two-stage numerical procedure. Figure 3 shows
backscattering immersed data of the second component of electric field
E2 for Object #4 (two metallic blocks) of Table 1 at different times

Figures 5–11 display 3D reconstructions of Objects #1–#6 of Table
1. Figures 12, 13 present adaptively refined meshes and 3D images of
Objects #7, #8 of Table 1, respectively. To obtain a better visualization,
we have zoomed some figures from the domain ΩFEM defined in (7.4)
to the domain defined in (7.5). We can conclude that the location of
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Summary

Object # Description of target Material

1 A metallic ball, 3 cm burial depth Metal

2 A bottle filled with clear water, 3.6 cm burial depth Water

3 A ceramic mug, 5 cm burial depth Ceramic

4 Two metallic blocks at 1 cm separation, Metal/Metal
4 cm burial depth

5 Metallic prism, 2 cm burial depth Metal

6 Wet wooden block, 9.8 cm burial depth Water

7 Two metallic prisms at 6 cm separation, Metal/Metal
3 cm burial depth

8 Two metallic prisms at 6 cm separation, Metal/Metal
10 cm burial depth

Table 1. Description of the data sets. Note that although

targets for Object #7 and Object #8 are the same, their burial

depths are different.

Object Material Computed Exact Computed Measured
# depth (cm) depth (cm) n n

2 Water 3.6 4.0 4.7 4.88

3 Ceramic 4.0 5.0 1.0 1.39

6 Wet wood 5.5 9.8 4.2 4.016

Table 2. Results of the first stage: the refractive indices n =√
εr and the burial depths of non-metallic targets.

all targets as well as their sizes in the x-, y-, and z-directions are well
estimated on the second stage of our two-stage numerical procedure.

8. Summary

This is the fifth (5th) paper (after [2, 5, 7, 8]) in the recent series of
publications of this group about the performance of the two-stage numer-
ical procedure of [1] on experimental backscattering time-dependent data
generated by a single location of the source of electromagnetic waves.
While in [5, 7, 8] we have considered the case of targets placed in air, in
[2] and here we consider the more challenging case of targets buried in
the ground. This case is more challenging because the signal scattered
by the ground is heavily mixed with the signal scattered by the target.
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Object Material Computed Exact Computed εr
# depth (cm) depth (cm)

1 Metal 2.9 3.0 31.0

4 Metal 3.8 4.0 99.8
Metal 4.0 4.0 56.5

5 Metal 1 2 50.0

7 Metal 3.0 3.0 23.4
Metal 3.6 3.0 30.5

8 Metal 7.3 10.0 23.4
Metal 8.2 10.0 30.5

Table 3. Results of the first stage: the estimated effective

dielectric constants and the burial depths of metallic targets.

Object #4 consists of two metallic targets with 1 cm distance

between their surfaces (case of the superresolution). Objects #7,

#8 also consist of two metallic targets, see Table 1.

It was shown in [2] that the globally convergent numerical method of
[1] accurately images refractive indices and locations of buried targets.
In this paper we complement that globally convergent method by the
locally convergent adaptivity technique. The adaptivity takes the image
of the globally convergent method as the starting point for subsequent
iterations. The theory of the adaptivity was fully developed in [1, 3, 4,
6, 10, 18–20, 23, 28, 29] In particular, the important analytical guarantee
of the fact that adaptivity indeed refines images was first established in
[4] and then also published in [1] and [6]. As a result of the application
of the adaptivity, our images are significantly refined: the shapes of the
targets are accurately imaged. A particularly interesting case is the case
of the superresolution (Figure 4-d and Figures 9). We have accurately
imaged both targets in this case. We also refer to the recent paper [30] for
a numerical study of the method of [1] for a CIP for a hyperbolic PDE,
which is different from (2.1).

In conclusion, we believe that the two-stage numerical procedure of
[1] is now completely verified on experimental data.
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Figure 3. Backscattering immersed data of the second
component E2 of the electric field for Object #4 (two
metallic blocks at 1 cm separation) of Table 1. On the
left we show backscattering immersed data which are im-
mersed into measured data without presence of sand, on
the right - with presence of sand. Recall that the final
time is T = 1.2.

computations were performed on resources at Chalmers Centre for Com-
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[5] L. Beilina, N. T. Thành, M. V. Klibanov, J. B. Malmberg, Recon-
struction of shapes and refractive indices from backscattering experi-
mental data using the adaptivity, Inverse Problems 30 (2014) 105007.

[6] L. Beilina, M. Klibanov, Relaxation property for the adaptivity for
ill-posed problems, Applicable Analysis 93 (2013) 223–253.

135



References

(a) Front (b) Side (c) Perspective

(d) Front, zoomed (e) Side, zoomed (f) Perspective, zoomed

Figure 6. Three views and zooms of the reconstruction
of the Object #1 of Table 1 on the three times refined
mesh. The initial guess in this test is taken from Test 2 of
[2], see Figure 5.1-b),d) of [2]. Recall that Object #1 is a
metallic ball.
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