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Topics on Harmonic analysis and Multilinear Algebra

Mahdi Hormozi

Abstract

The present thesis consists of six different papers. Indeed, they treat three different
research areas: function spaces, singular integrals and multilinear algebra. In paper I,
a characterization of continuity of the p-Λ-variation function is given and Helly’s selec-
tion principle for ΛBV (p) functions is established. A characterization of the inclusion of
Waterman-Shiba classes into classes of functions with given integral modulus of continuity
is given. A useful estimate on the modulus of variation of functions of class ΛBV (p) is
found. In paper II, a characterization of the inclusion of Waterman-Shiba classes into Hq

ω

is given. This corrects and extends an earlier result of a paper from 2005. In paper III,
the characterization of the inclusion of Waterman-Shiba spaces ΛBV (p) into generalized
Wiener classes of functions BV (q; δ) is given. It uses a new and shorter proof and extends
an earlier result of U. Goginava. In paper IV, we discuss the existence of an orthogonal
basis consisting of decomposable vectors for all symmetry classes of tensors associated
with Semi-dihedral groups SD8n. In paper V, we discuss o-bases of symmetry classes of
tensors associated with the irreducible Brauer characters of the Dicyclic and Semi-dihedral
groups. As in the case of Dihedral groups [46], it is possible that Vφ(G) has no o-basis

when φ is a linear Brauer character. Let ~P = (p1, . . . , pm) with 1 < p1, . . . , pm < ∞,
1/p1 + · · · + 1/pm = 1/p and ~w = (w1, . . . , wm) ∈ A~P . In paper VI, we investigate the

weighted bounds with dependence on aperture α for multilinear square functions Sα,ψ(~f).
We show that

‖Sα,ψ(~f)‖Lp(ν~w) ≤ Cn,m,ψ, ~P αmn[~w]
max( 1

2
,
p′1
p
,...,

p′m
p

)

A~P

m∏
i=1

‖fi‖Lpi (wi).

This result extends the result in the linear case which was obtained by Lerner in 2014.
Our proof is based on the local mean oscillation technique presented firstly to find the
sharp weighted bounds for Calderón–Zygmund operators. This method helps us avoiding
intrinsic square functions in the proof of our main result.

Keywords: Generalized bounded variation, Helly’s theorem, Modulus of variation, Gen-
eralized Wiener classes, Symmetry classes of tensors, Orthogonal basis, Brauer symmetry
classes of tensors, Multilinear singular integrals, weighted norm inequalities, weighted
bounds, local mean oscillation, Lerner’s formula
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1 Introduction

The present thesis consists of six different papers. Indeed, they treat three different re-
search areas: function spaces, singular integrals and multilinear algebra. In the following,
we will discuss these and give some aspects and summary of papers I-VI.

1.1 Function spaces

In paper I, II and III, we are concerned with functions of generalized bounded variation.
Jordan [51] introduced the functions of bounded variation (BV ) in 1881. Since that time,
BV has had an important place in Fourier analysis going back to the Dirichlet-Jordan
theorem [51]. After the first generalization of the space BV by Wiener [82], many peo-
ple extended the convergence results of the Dirichlet-Jordan theorem by generalizing the
concept of bounded variation to larger classes of functions. In this area one may cite the
papers of L.C. Young [85], Salem [70], Musielak and Orlicz [67], Garsia and Sawyer [37],
Waterman [79] and Z. A. Chanturiya [16].

We begin by defining concepts and giving the past results which are pertinent to paper
I.

Suppose f : [a, b]→ R , for I = [x, y] ⊂ [a, b] we write f(I) = f(y)− f(x). Let {Ii}
be a collection of nonoverlapping intervals with In = [an, bn], where by nonoverlapping we
mean that any two such intervals intersect in at most one point. A function f : [a, b]→ R
is said to be of bounded variation on [a, b] if there exists a constant M such that∑

|f(Ii)| < M,

whenever {Ii} is a collection of nonoverlapping intervals in [a, b]. Suppose f(x+) and
f(x−) are the right and left limits respectively of f at x. By regulated, we mean a function
with only simple discontinuities such that for each x we have f(x) = 1

2
(f(x+) + f(x−)).

The number of discontinuities of a regulated function is at most countable.
We will now consider some results connecting BV and Fourier series.

We first state the Dirichlet-Jordan theorem which gives a condition on f which leads
to the convergence of its Fourier series S(f).

Theorem 1.1. (Dirichlet-Jordan) If f is regulated, periodic and of bounded variation on
[0, 2π], then
(i) The Fourier series S(f, x) converges to f everywhere.
(ii) If f is continuous at every point of a closed interval P , then S(f, x) converges
uniformly on P .
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In 1972, Waterman introduced functions of Λ-bounded variation.

Definition 1.2. Let Λ = {λi} be a nondecreasing sequence of positive numbers such that∑
1
λi

= +∞ . Let f be a real function on [a, b] and {Ii} a collection of nonoverlapping
intervals in [a, b]. If for each such collection we have(

∞∑
i=1

|f(Ii)|
λi

)
< +∞,

then f is said to be of Λ-bounded variation on [a, b].

It is clear that BV ⊂ ΛBV . The class ΛBV with λk = k is referred to as HBV , the
functions of harmonic bounded variation.

Let VΛ(f) := sup
{∑ |f(Ii)|

λi

}
, where the supremum is over all collections Ii ⊆ [a, b].

It can be seen [79] that f ∈ ΛBV if and only if VΛ(f) < ∞. ΛBV equipped with the
norm ‖f‖Λ := |f(a)|+ VΛ(f) is a Banach space. The discontinuities of a ΛBV function
are simple and ΛBV functions are bounded [79].
Since BV ⊂ HBV , the theorem below includes the Dirichlet-Jordan theorem as a special
case.

Theorem 1.3. (Dirichlet-Jordan-Waterman) Let f be a 2π-periodic function of harmonic
bounded variation on the interval [−π, π], then
(i) at every point x, S(f, x)→ 1

2
(f(x+) + f(x−)); in particular, if f is continuous at x

then S(f, x) converges to f .
(ii) if f is continuous at every point of a closed interval P , then S(f, x) converges
uniformly on P .
(iii) if ΛBV \ HBV 6= ∅ then there is a continuous f in ΛBV whose Fourier series
diverges at a point.

Let p be a number greater than or equal to 1. A function f : [a, b]→ R is said to be
of bounded p-Λ-variation on a not necessarily closed subinterval P ⊂ [a, b] if

V (f) := sup

(
n∑
i=1

|f(Ii)|p

λi

) 1
p

< +∞,

where the supremum is taken over all finite families {Ii}ni=1 of nonoverlapping subin-
tervals of P . The symbol ΛBV (p) denotes the linear space of all functions of bounded
p-Λ-variation with domain [0, 1]. The Waterman-Shiba class ΛBV (p) was introduced in
1980 by M. Shiba in [74] and it clearly is a generalization of the Waterman class ΛBV .
Some of the basic properties of functions of class ΛBV (p) were discussed by R.G. Vyas
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in [76]. More results concerned with the Waterman-Shiba classes and their applications
can be found in [11], [12], [54], [71], [72], [75] and [77]. ΛBV (p) equipped with the norm
‖f‖Λ, p := |f(0)|+ V (f) is a Banach space.

Functions in a Waterman-Shiba class ΛBV (p) are integrable [76, Thm. 2], and thus it
makes sense to consider their integral modulus of continuity

ω1(δ, f) := sup
0≤h≤δ

∫ 1−h

0

|f(t+ h)− f(t)| dt,

for 0 ≤ δ ≤ 1. However, if f is defined on R instead of on [0, 1] and if f is 1-periodic, it
is convenient to modify the definition and put

ω1(δ, f) := sup
0≤h≤δ

∫ 1

0

|f(t+ h)− f(t)| dt,

since the difference between the two definitions is then nonessential in all applications of
the concept. We will use the second definition.

A function ω : [0, 1]→ R is said to be a modulus of continuity if it is nondecreasing,
continuous and ω(0) = 0. If ω is a modulus of continuity, then Hω

1 denotes the class of
functions f ∈ L1

[0, 1] for which ω1(δ, f) = O(ω(δ)) as δ → 0+. We may now state our
main results.

Theorem 1.4. If (fj) is a sequence in ΛBV (p) with ‖fj‖Λ, p ≤ M , then there exists a
subsequence (fjk) converging pointwise to a function f in ΛBV (p) with ‖f‖Λ, p ≤M .

Theorem 1.5. If f ∈ ΛBV (p), then

|f̂(n)| ≤ V (f)

2
(∑n

i=1
1
λi

) 1
p

.

The main result of paper I provides a characterization of the embedding of Waterman-
Shiba classes into classes of functions with given integral modulus of continuity.

Theorem 1.6. The inclusion ΛBV (p) ⊂ Hω
1 holds if and only if

lim inf
n→∞

ωp( 1
n
)

n∑
i=1

1

λi
> 0. (1.1)

In 2005, Goginava [38] tried to find the sufficient and necessary condition for inclusion
ΛBV ⊂ Hω

q for q ∈ [1, +∞). Unfortunately, although the result given is correct, there are
serious mistakes in the proof. However, the result of paper II provides a characterization
of the embedding ΛBV ⊂ Hω

q .
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Theorem 1.7. For p, q ∈ [1,∞), the inclusion ΛBV (p) ⊂ Hω
q holds if and only if

lim sup
n→∞

1

ω(1/n)n
1
q

max
1≤k≤n

k
1
q

(
∑k

i=1
1
λi

)
1
p

< +∞.

H. Kita and K. Yoneda introduced a new function space which is a generalization
of Wiener classes [53] ( see also [52] and [1]). The concept was further extended by T.
Akhobadze in [2] who studied many properties of the generalized Wiener classes BV (q, δ)
thoroughly (see [3], [4], [5], [6], [7]).

Definition 1.8. Let q = (q(n))∞n=1 be an increasing positive sequence and let δ =
(δ(n))∞n=1 be an increasing and unbounded positive sequence. We say that a function
f : [0, 1]→ R belongs to the class BV (q; δ) if

V (f, q; δ) := sup
n≥1

sup
{Ik}


(

s∑
k=1

|f(Ik)|q(n)

) 1
q(n)

: inf
k
|Ik| ≥

1

δ(n)

 <∞,

where {Ik}sk=1 are non-overlapping subintervals of [0, 1].

The main result of Paper III formulated below extends the main theorem of [39]
essentially and furnishes a new and much shorter proof.

Theorem 1.9. For p ∈ [1,∞) and q and δ sequences satisfying the conditions in Defini-
tion 1.8, the inclusion ΛBV (p) ⊂ BV (q; δ) holds if and only if

lim sup
n→∞

{
max

1≤k≤δ(n)

k
1

q(n)

(
∑k

i=1
1
λi

)
1
p

}
< +∞. (1.2)

1.2 Multilinear Algebra

In this subsection, we begin by defining concepts and results which are pertinent to papers
IV and V.

1.2.1 Orthogonal bases of symmetry classes of tensors

Let {e1, ..., en} be an orthonormal basis of an n-dimensional complex inner product space
V and G be a permutation group on m elements. Let χ be any irreducible character of
G. For any σ ∈ G, define the operator

Pσ :
m⊗
1

V →
m⊗
1

V

4



by
Pσ(v1 ⊗ ...⊗ vm) = (vσ−1(1) ⊗ ...⊗ vσ−1(m)). (1.3)

The symmetry classes of tensors associated with G and χ is the image of the symmetry
operator

T (G,χ) =
χ(1)

|G|
∑
σ∈G

χ(σ)Pσ, (1.4)

and it is denoted by V n
χ (G). We say that the tensor T (G,χ)(v1⊗· · ·⊗vm) is a decomposable

symmetrized tensor, and we denote it by v1 ∗ · · · ∗ vm. We call V n
χ (G) the symmetry class

of tensors associated with G and χ. Let Γmn be the set of all sequences α = (α1, ..., αm),
with 1 ≤ αi ≤ n. Define the action of G on Γmn by

σ.α = (ασ−1(1), ..., ασ−1(m)).

Now let us denote by e∗α the tensor eα1 ∗ · · · ∗ eαm . A basis which consists of decomposable
symmetrized tensors e∗α is called an orthogonal ∗-basis. If χ is not linear, it is possible
that Vχ(G) has no orthogonal ∗-basis.

Marcus and Chollet (1986) asserted that orthogonal bases consisting of decomposable
symmetrized tensors never existed if the degree of the character was greater than one [64].
Wang and Gong (1991) showed that this statement was false by exhibiting an orthogonal
basis in the case of the degree two character of the dihedral group of order eight [78].
The paper Holmes and Tam [45] generalized that result. In paper IV, we find a new
counterexample in the case of the degree two character of the semi-dihedral group. The
reader can find further information about the symmetry classes of tensors in e.g. [10],
[24],[26],[35], [44], [45] and [65].

In paper IV, we discuss the existence of an orthogonal basis consisting of decomposable
vectors for all symmetry classes of tensors associated with semi-dihedral groups

SD8n = 〈a, b | a4n = b2 = 1, bab = a2n−1〉,

where the embedding of SD8n into the symmetric group S4n is given by T (a)(t) := t+ 1
and T (b)(t) := (2n− 1)t, where m is the remainder of m divided by 4n.

Definition 1.10. Define C†even := {2, 4, ..., 2n − 2}, C†odd = {1, 3, 5, . . . , 2[n/2] − 1, 2n +
1, 2n+ 3, . . . , 2[3n/2]− 1}, C∗ := {1, 3, 5, ..., n, 2n+ 1, 2n+ 3, 2n+ 5, ..., 3n}.

We define two-dimensional representations, for each natural number h and ω = e
iπ
2n ;

ρh(a) =

(
ωh 0
0 ω(2n−1)h

)
and ρh(b) =

(
0 1
1 0

)
.

5



Denote χh = Tr(ρh). According to paper IV, the non-linear irreducible complex charac-
ters of SD8n are the characters are the characters χh where h ∈ C†even or h ∈ C†odd.

If χ is a linear character of G then the symmetry class of tensors associated with G and
χ has an orthogonal basis [36]. Therefore, the existence of orthogonal bases for symmetry
classes of tensors associated with SD8n and non-linear irreducible complex characters is
of interest. The following Theorems of paper IV answer the question.

Theorem 1.11. Let G = SD8n be a subgroup of S4n, denote χ = χh for h ∈ C†even, and
assume d = dimV ≥ 2. Then Vχ(G) has an orthogonal ∗-basis if and only ν2( h

2n
) < 0 .

In Theorem 1.11, ν2 denotes 2-adic valuation, that is ν2(2km
n

) = k for m and n odd.
Then, the condition ν2( h

2n
) < 0 means that every power of 2 that divides h also divides n.

In particular, this condition is never satisfied when n is odd, so in that case Vχ(G) never
has an orthogonal ∗-basis.

Theorem 1.12. Let G = SD8n, be a subgroup of S4n, denote χ = χh for h ∈ C†odd (even
n) or h ∈ C∗ \ {n, 3n}(odd n), and assume d = dimV ≥ 2. Then Vχ(G) does not have
orthogonal ∗-basis.

1.2.2 Orthogonal bases of Brauer symmetry classes of tensors

Let G be a subgroup of the full symmetric group Sm and p be a fixed prime number. An
element of G is p-regular if its order is not divisible by p. Denote by Ĝ the set of all
p-regular elements of G. A Brauer character is a certain function from Ĝ to C associated
with an FG-module where F is a suitably chosen field of characteristic p. The Brauer
character is an irreducible if the associated module is simple. If the order of G is not
divisible by p then Ĝ = G and each irreducible Brauer character is irreducible (ordinary)
character. Replacing G by Ĝ and χ by a Brauer character φ in (1.4), we can define Brauer
symmetry class of tensors and o-bases exactly as in §1.2.1.

The Dicyclic group T4n is defined as follows:

T4n = 〈r, s|r2n = e, rn = s2, s−1rs = r−1〉.

The group T4n can be embedded in S4n and has n+3 conjugacy classes. We refer the reader
to Paper V to see the complete list of irreducible Brauer characters of T4n—for different
cases of n—consisting of linear irreducible Brauer characters χ̂h, χ̂′h and nonlinear ones
ψ̂j, ψ̂′j.

Theorem 1.13. Let G = T4n, 0 ≤ h < ε where ε = 4 if p 6= 2 and ε = 1 if p = 2, and put
φ = χ̂h or χ̂′h . The space Vφ(G) has an o-basis if and only if at least one of the following
holds:

6



(i) dimV = 1
(ii) p = 2,
(iii) 2n is not divisible by p.

Theorem 1.14. Let G = T4n, 1 ≤ j < l
2
, 2n = lpt such that p - l and put φ = ψ̂j, ψ̂′j. If

the space Vφ(G) has an o-basis, then p is odd and ν2( j
n
) < 0.

In case of SD8n for n ≥ 2, we write 4n = lpt with prime p and integer l not divisible by
p. The reader can consult Paper V to see the complete list of irreducible Brauer characters
of SD8n—for different cases of p and n—consisting of linear irreducible Brauer characters
χ̂j, χ̂′j and nonlinear ones ψ̂h, ψ̂′h.

Theorem 1.15. Let dimV > 2, G = SD8n, 0 ≤ j ≤ ε, and put φ = χ̂j or χ̂′j . Then,
space Vφ(G) has an o-basis if and only if p = 2 or 4n is not divisible by p.

Remark 1.16. Theorem 1.15 shows that if dimV > 2, unlike the case for an irreducible
character, it is possible that Vφ(G) has no o-basis when φ is a linear Brauer character.
This holds when dimV = 2 as well by some simple calculations.

Theorem 1.17. Let dimV > 2, G = SD8n and write 4n = lpt such that p - l. Let h ∈ Π

where Π is defined in Paper V. Put φ = ψ̂h or ψ̂′h. If the space Vφ(G) has an o-basis,
then p is odd and ν2(h

n
) ≤ 0.

1.3 Singular Integrals

In this subsection, we begin by defining concepts and results which are pertinent to paper
VI.

For a general account on multiple weights and related results we refer the interested
reader to [60].

Considerm weights w1, . . . , wm and denote−→w = (w1, . . . , wm). Also let 1 < p1, . . . , pm <

∞ and p be numbers such that 1
p

= 1
p1

+ · · ·+ 1
pm

and denote
−→
P = (p1, . . . , pm). Set

ν~w :=
m∏
i=1

w
p
pi
i .

We say that ~w satisfies the A~P condition if

[~w]A~P := sup
Q

( 1

|Q|

∫
Q

ν~w

) m∏
j=1

( 1

|Q|

∫
Q

w
1−p′j
j

)p/p′j
<∞. (1.5)

This condition, introduced in [60], was shown to characterize the classes of weights for
which the multilinear maximal function M is bounded from Lp1(w1) × · · · × Lpm(wm)
into Lp(ν~w) (see [60, Thm. 3.7]). In the linear case—i.e. m is one—we call (1.5) the Ap
condition.

7



1.3.1 History of sharp weighted estimates

The problem of the optimal quantitative estimates for the Lp(w) norm of a given operator
T in terms of the Ap constant of the weight w has been very challenging and interesting
in the last decades.

First, the problem for the Hardy–Littlewood maximal operator was solved by S. Buck-
ley [13] who proved

‖M‖Lp(w) ≤ Cp [w]
1
p−1

Ap
, (1.6)

where Cp is a dimensional constant. We say that (1.6) is a sharp estimate since the
exponent 1/(p− 1) cannot be replaced by a smaller one.

However, for singular integral operators the question was much more complicated. In
2012, T. Hytönen [48] proved the so-called A2 theorem, which asserted that the sharp
dependence of the L2(w) norm of a Calderón–Zygmund operator on the A2 constant of
the weight w was linear. More precisely,

‖T‖Lp(w) ≤ CT,n,p[w]
max (1, 1

p−1)
Ap

, 1 < p <∞. (1.7)

Shortly after that, A.K. Lerner gave a much simpler proof [57] of the A2 theorem
proving that every Calderón–Zygmund operator is bounded from above by a supremum
of sparse operators. Interested readers can consult [49] for a survey on the history of the
proof.

The versatility of Lerner’s techniques is reflected in the extension of the A2 theorem
to multilinear Calderón–Zygmund operators in [23],

‖T (~f)‖Lp(ν~w) ≤ Cn,m, ~P ,T [~w]
max(1,

p′1
p
,...,

p′m
p

)

A~P

m∏
i=1

‖fi‖Lpi (wi). (1.8)

See for example [22; 61]. For further details on the theory of multilinear Calderón–
Zygmund operators, we refer to [40; 41] and the references therein.

1.3.2 Square functions

Let Sα,ψ be the square function defined by means of the cone Γα in Rn+1
+ of aperture α,

and a standard kernel ψ as follow

Sα,ψ(f)(x) =
(∫

Γα(x)

|f ? ψt(f)(y)|2dydt
tn+1

)1/2

,

where α > 1 and ψt(x) = t−nψ(x/t). In [59], Lerner by applying intrinsic square function,
introduced in [83], proved sharp weighted norm inequalities for Sα,ψ(f). Later on, Lerner
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himself improved the result— in the sense of determination of sharp dependence on α —
in [58] by using the local mean oscillation formula. More precisely,

‖Sα,ψ‖Lp(w) . αn[w]
max ( 1

2
, 1
p−1)

Ap
, 1 < p <∞. (1.9)

Motivated by these works, the main aim of Paper VI is to investigate the weighted
bounds for certain multilinear square functions. Let us recall definition of multilinear
square functions considered in this paper.

For any t ∈ (0,∞), let ψ(x, ~y) := Kt(x, y1, . . . , ym) be a locally integrable function
defined away from the diagonal x = y1 = . . . = ym in Rn×(m+1). We assume that ψ(x, ~y)

is standard kernel. For ~f = (f1, . . . , fm) ∈ S(Rn)× · · · × S(Rn) and x /∈
⋂m
j=1 supp fj we

define

ψt(~f)(x) =
1

tmn

∫
(Rn)m

ψ
(x
t
,
y1

t
, . . . ,

ym
t

) m∏
j=1

fj(yj)dyj.

For λ > 2m,α > 0, the multilinear square functions g∗λ,ψ and Sψ,α associated to ψ(x, ~y)
are defined by

g∗λ,ψ(~f)(x) =
(∫

Rn+1
+

( t

t+ |x− y|

)nλ
|ψt(~f)(y)|2dydt

tn+1

)1/2

and

Sα,ψ(~f)(x) =
(∫

Γα(x)

|ψt(~f)(y)|2dydt
tn+1

)1/2

,

where Γα(x) = {(y, t) ∈ Rn+1
+ : |x− y| < αt}.

These two mutilinear square functions were introduced and investigated in [18; 73; 84].
The study on the multilinear square functions has important applications in PDEs and
other fields. For further details on the theory of multilinear square functions and their
applications, we refer to [19; 20; 21; 25; 32; 33; 34; 43; 17; 84; 18] and the references
therein.

In paper VI, we assume that there exist some 1 ≤ p1, . . . , pm ≤ ∞ and some 0 < p <∞
with 1

p
= 1

p1
+· · ·+ 1

pm
, such that g∗λ,ψ maps continuously Lp1(Rn)×· · ·×Lpm(Rn)→ Lp(Rn).

The next theorems give the sharp weighted bounds with sharp dependence on α for
multilinear square functions Sα,ψ(~f) and g∗λ,ψ(~f).

Theorem 1.18. Let α ≥ 1, ~P = (p1, . . . , pm) with 1 < p1, . . . , pm <∞ and 1/p1 + · · · +
1/pm = 1/p. If ~w = (w1, . . . , wm) ∈ A~P , then

‖Sα,ψ(~f)‖Lp(ν~w) ≤ Cn,m,ψ, ~Pα
mn[~w]

max( 1
2
,
p′1
p
,...,

p′m
p

)

A~P

m∏
i=1

‖fi‖Lpi (wi). (1.10)

9



Theorem 1.19. Let λ > 2m, ~P = (p1, . . . , pm) with 1 < p1, . . . , pm <∞ and 1/p1 + · · ·+
1/pm = 1/p. If ~w = (w1, . . . , wm) ∈ A~P , then

‖g∗λ,ψ(~f)‖Lp(ν~w) ≤ Cn,m,ψ, ~P [~w]
max( 1

2
,
p′1
p
,...,

p′m
p

)

A~P

m∏
i=1

‖fi‖Lpi (wi). (1.11)
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[68] C. Pérez, R. H. Torres, Minimal regularity conditions for the end-point estimate of
bilinear Calderón–Zygmund operators, Proc. Amer. Math. Soc. Ser. B 1 (2014) 1–13

[69] P. B. Pierce, Fourier Series and Generalized Bounded Variation, Dissertation, Syra-
cuse University, 1994
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Acad. Sci. Paris 204(7) 1937 470–472

15



Corrections to paper I

• Throughout the proof of Lemma 2.1, δ/2 should be replaced by (δ/2)p in all in-
equalities of the form ak < δ/2 or ak ≥ δ/2.

• In the definition of S in case 1, the term ak+2/λk+2 should be ak+1/λk+2.

• On page 47, V p is not subadditive on intervals. The easiest solution is to write
‖f‖ ≤

∑∞
k=1 ‖fk‖. Making the same estimates, 2p

∑∞
i=1

1

n2p
i−1

will be replaced by

2
∑∞

i=1
1

n2
i−1

, which is still convergent.

• At the bottom of page 47, two occasions of 4 should be 2 and the outer exponent
−1
p

should be −1
2
.

• In reference [14], the article number should be 23.
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