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Abstract
Background: Stress-induced cardiomyopathy (SIC) is an acute cardiac condition with akinesia in the left 
ventricle (LV) that can be severe. A stress-trigger, physical or emotional, is usually identified preceding onset 
of symptoms and catecholamine overstimulation is involved in the pathogenesis of SIC. The akinesia seen in 
SIC is reversible and the short term prognosis is therefore considered to be very good. However, recent data 
suggest that the long term prognosis is equivalent to patients suffering from myocardial infarction. Physical 
triggers and critical illness are the major triggers of SIC and especially patients with subarachnoid hemorrha-
ge (SAH) frequently develop SIC. Patients with SIC after SAH have an increased risk of secondary cerebral 
infarction and have a worse short-term prognosis.

Aim: The aim was to evaluate if the biomarkers of myocardial injury (hsTNT) and cardiac dysfunction (NT-
proBNP) could be used for identification of patients with SIC after SAH and if patients with increased levels 
of hsTnT and NTproBNP had an increased risk of poor long-term prognosis (Paper I, II). In an experimental 
animal model of SIC, the aim was to evaluate cardioprotective properties of different anesthetics (Paper III, 
IV).

Methods: The first study (Paper I) was retrospective. Data was collected from all patients admitted to the 
NICU, Sahlgrenska University Hospital, during almost five years. Patients with an echocardiography perfor-
med and the biomarkers hsTnT or NTproBNP were obtained were included in the analysis. The second study 
(Paper II) was prospective. All consecutive patients admitted to the NICU, Sahlgrenska University Hospital, 
during two years were enrolled in the study. hsTnT and NTproBNP were taken on admission and the three 
following days and clinical data were obtained. Follow-up was performed one year after onset of symptoms. 
In Paper III and IV, SIC was induced with an intraperitoneal bolus of isoprenaline in Sprague Dawley rats. 
Different anesthetics were applied prior to induction of SIC. Vital parameters were measured and small ani-
mal echocardiography was performed. A proteomic analysis was performed for assessment of cardioprotective 
pathways.

Results: Patients with SIC after SAH could be identified with the cardiac biomarkers hsTnT and NTproB-
NP (Paper I). Increased levels of hsTnT were independently associated with a higher risk of poor long-term 
outcome when adjusted for age, neurological status on admission and cerebral infarction. Increased levels of 
hsTnT and NTproBNP was associated with a higher risk of delayed cerebral infarction (Paper II). In the expe-
rimental studies, isoflurane had a cardioprotective dose-response effect while propofol and ketamine were not 
cardioprotective. The cardioprotective mechanism was not mediated through anesthesia per se, by reducing 
myocardial oxygen demand or by activating the mKatp-channels described in anesthetic preconditioning. In a 
proteomic analysis, we found that isoflurane attenuated virtually all the pathogenic pathways induced in SIC. 
Isoflurane seem to act by competitive inhibition the intracellular beta-receptor signalling pathway.

Conclusion: Patients with increased levels of hsTnT or NTproBNP have a higher risk of delayed cerebral 
infarction and poor long-term prognosis. These patients should be examined with echocardiography for detec-
tion of SIC and cardiac output should be monitored to optimize hemodynamics, ensuring cerebral perfusion. 
Although many aspects are to be considered, isoflurane sedation might be beneficial in patients suffering from 
SAH.

Keywords: stress-induced cardiomyopathy, tako-tsubo, subarachnoid hemorrhage, isoflurane, outcome, 
cerebral infarction, hsTnT, NTproBNP, proteomics, bioinformatics
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Populärvetenskaplig 
sammanfattning,
Summary in Swedish

Stressutlöst hjärtsvikt (Stress-induced cardiomyopathy, SIC) är en allvarlig akut hjärt-
sjukdom med symtom som påminner om akut hjärtinfarkt, patienten insjuknar med 
exempelvis bröstsmärta, andnöd och sjukdomskänsla. SIC orsakas dock inte av en för-
trängning i hjärtats kranskärl, vilket är fallet vid hjärtinfarkt, utan av psykisk eller fysisk 
stress. Ett kraftigt stresspåslag gör normalt att hjärtat pumpar bättre, men om stresspå-
slaget är tillräcklig kraftigt kan man få en paradoxal reaktion med nedsatt rörlighet i 
vissa delar av hjärtat. Detta gör att blodet inte pumpas runt tillräckligt bra i kroppen. 
Om man klarar den akuta fasen av SIC är korttidsprognosen god och hjärtat återhämtar 
sin funktion inom några dagar till veckor efter insjuknande. Nya data visar dock att 
långtidsprognosen är densamma som vid akut hjärtinfarkt. Mer än 90% av patienterna 
med SIC är kvinnor som är äldre än 50 år. Vi vet inte exakt vad som orsakar SIC och 
det finns idag ingen bra behandling för SIC.

Subarachnoidalblödning (SAH) är en allvarlig typ av hjärnblödning som beror på att en 
kärlmissbildning i hjärnan brister. SAH drabbar relativt unga personer, medelåldern vid 
insjuknande är ca 50 år. Dödligheten är hög, ca 40% av patienterna dör av sjukdomen 
och en tredjedel av de som överlever blir så skadade att de behöver hjälp att klara sitt 
dagliga liv. SAH är en ovanlig typ av stroke och står bara för 5% av totala antalet stro-
ke-patienter. Eftersom unga drabbas och dödligheten är så hög har dock SAH-patient-
gruppen lika många förlorade levnadsår som patientgruppen med vanlig stroke, orsakad 
av en propp i hjärnans blodkärl.

Fysisk stress, till exempel allvarlig sjukdom, är den vanligaste utlösande orsaken till SIC. 
Patienter med neurologiska skador och SAH utvecklar ofta SIC. Syftet med den första, 
kliniskt inriktade delen av avhandlingen var att utvärdera om man med ett blodprov 
kan mäta biomarkörer från hjärtat för att hitta patienter med SIC efter SAH. Dessutom 
studerades vad utvecklingen av SIC tidigt efter ankomst till sjukhuset betyder för den 
neurologiska långtidsprognosen efter SAH. I den andra, experimentella delen av av-
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handlingen, utvärderades den möjliga hjärtskyddande effekten av olika narkosmedel i en 
djurmodell av SIC, samt eventuella verkningsmekanismer bakom en sådan skyddande 
effekt. 

I delarbete I visade vi att det går att hitta patienter som utvecklar SIC efter SAH genom 
att ta ett enkelt blodprov direkt då patienten kommer till sjukhuset. I delarbete II visade 
vi att patienter med hjärtskada efter SAH har en sämre långtidsprognos och ökad risk 
för ytterligare hjärnskador i efterförloppet av blödningen. Vi anser att de patienter som 
utvecklar hjärtkomplikationer efter SAH kräver ett snabbt omhändertagande med extra 
övervakning och åtgärder för att ge dem bästa möjliga förutsättningar.

I delarbete III visade vi i en djurmodell av SIC att det går att förebygga SIC genom att 
söva djur med en viss narkosgas (isofluran). I delarbete IV jämfördes de hjärtskyddan-
de effekterna av isofluran i djurmodellen av SIC med propofol, vilket är det vanligaste 
sömnmedlet som används idag. I det försöker såg vi att isofluran var hjärtskyddande 
medan propofol inte hade någon hjärtskyddande effekt. Den hjärtskyddande effekten 
beror alltså inte på att djuren blir sövda, utan verkar vara en direkt effekt av isofluran. I 
en vävnadsanalys av hjärtan som användes i försöket såg vi att det aktiverades en mängd 
skadliga system i hjärtcellen, bland annat aktiverades flera inflammatoriska system. Den-
na aktivering hämmades påtagligt med isofluran men inte av propofol. Det verkar som 
om isoflurane dämpar de skadliga effekterna av de stresshormoner som orsakar SIC.

Sammanfattningsvis har avhandlingen visat att hjärtskada vid SAH medför en ökad risk 
för ytterligare hjärnskador och försämrad neurologisk långtidsprognos. Med ett enkelt 
blodprov kan vi nu dock hitta dessa patienter mycket tidigare och snabbt sätta in nöd-
vändiga behandlingsåtgärder. I en djurmodell har vi hittat en lovande behandling mot 
SIC vilken skulle kunna prövas på patienter.
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ANOVA		 Analysis of variance
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CI		  Cerebral infarction

CI		  Confidence interval

CNS		  Central nervous system

CO		  Cardiac output

CPP		  Cerebral perfusion pressure

CSF		  Cerebrospinal fluid

DCI		  Delayed cerebral ischemia

EBI		  Early brain injury

ECG		  Electrocardiogram

ECMO		  Extracorporeal membrane oxygenation

EF		  Ejection fraction

ET-1		  Endothelin 1

GOSE		  Glasgow outcome scale extended

GPRC		  G-protein coupled receptor

hsTnT		  High sensitive troponin T



   Stress-induced cardiomyopathy      XI

I/R		  Ischemia/reperfusion

i.p.		  Intraperitoneally

ICP		  Intracranial pressure

ICU		  Intensive care unit

LV		  Left ventricle

LXR/RXR	 Liver X Receptor/Retinoid X Receptor

MAC		  Minimal alveolar concentration

MAP		  Mean arterial blood pressure

MVO2		  Myocardial oxygen demand

NF-kappaB	 Nuclear factor kappa beta

NICU		  Neuro intensive care unit

NTproBNP	 N-terminal pro B-natriuretic peptide

OR		  Odds ratio

PI3K/Akt	 Phosphatidylinositol-3-Kinase/Protein Kinase B

SAH		  Subarachnoid hemorrhage

SERCA		  Sarcoplasmic/endoplasmic reticulum calcium ATPase
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Introduction

Stress-induced cardiomyopathy

Clinical features

Stress-induced cardiomyopathy (SIC) is an acute cardiac syndrome with sudden onset 
of hypokinesia of the left ventricle (LV). The typical patient presents with symptoms 
mimicking acute myocardial infarction (Table 1); chest-pain, dyspnea, ECG-changes 
and troponin release. However, in SIC, a culprit coronary stenosis/occlusion is not seen. 
In most patients, an emotional or physical stress-trigger, can be identified, preceding the 
onset of symptoms. Further examination with echocardiography reveals regional hypok-
inesia of the LV, which can be profound and severe (akinesia). In most cases, the apical 
portion of the ventricle is affected but midventricular and basal (reversed, atypical) va-
riants are seen. This hypokinesia is associated with hyperkinesia in the non-hypokinetic 
portions of the heart i.e. a hypokinetic apex is associated with hyperkinesia in the basal 
portion of the ventricle. If the patient survives the acute phase of SIC, the hypokinesia 
in SIC is generally reversible and resolve within a couple of days to weeks1-5. (Figure 1)

Epidemiology

SIC typically afflicts post-menopausal women, representing approximately 90% of SIC 
patients3,4,6. SIC is identified in 2-3% of patients undergoing acute angiography7. In 
Sweden, approximately 1000 patients are affected each year. Although the short term 
prognosis in SIC is considered to be excellent3, data suggest that the long-term progno-
sis is poor with a one-year mortality of ~10% which is equivalent to that of acute coro-
nary syndromes4,7-9. 

Terminology and definition

The LV contraction pattern in typical SIC, with hypokinesia in the apical- and hyperki-
nesia in the basal portions of the LV, has given rise to the name Tako-tsubo cardiomyo-
pathy because the appearance is similar to a Japanese octopus trap, named Tako-tsubo10. 
Other names of SIC are “apical ballooning syndrome” , “broken heart syndrome” and 
”Tako-tsubo syndrome”. LV hypokinesia in SIC does not have to be localized to the 
apical portion of the left ventricle; in the largest cohort described so far, 80% had apical 
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hypokinesia, 15% had midventricular hypokinesia and basal or focal variants were seen 
in 5% of SIC-patients9. SIC is a new diagnosis; the first case-reports describing SIC 
are only 20 years old11, the first proposal of a new diagnosis was written in 200412 and 
during the last decade, SIC is being increasingly recognized. There is still no consensus 
about the nomenclature or diagnostic criteria for SIC13. However, all proposed diagnos-
tic criteria have a common definition of acute onset of transient akinesia/hypokinesia 
of the LV not caused by ischemia13, which is the most important characteristic of SIC. 
SIC is now a generally accepted diagnosis and the knowledge about SIC is rapidly in-
creasing. In this thesis, we refer to SIC according to the Gothenburg criteria13. The term 
Tako-tsubo is used occasionally in this thesis to be congruent with previous papers and 
references.

Subarachnoid hemorrhage

Clinical features

Subarachnoid hemorrhage (SAH) is a cerebrovascular emergency, characterized by extra-
vasation of blood in the subarachnoid space. Most cases of SAH are caused by rupture 
of an aneurysm in one of the cerebral vessels. Patients present with an acute onset of 
headache, usually described as “thunderclap headache”, nausea, neck pain and photop-
hobia. Neurological symptoms vary; most patients develop impaired consciousness of 
any degree, from mild drowsiness to lethargy and coma. Most common focal neuro-
logical deficits are cranial nerve dysfunction, e.g. diplopia, but severe symptoms such 
as hemiplegia are not unusual. Neurological status upon admission is important as it 
correlates with both short- and long-term prognosis and several grading systems of se-
verity of SAH are based on the neurological status upon admission14,15. SAH is a rather 
uncommon cause of stroke and accounts for ~5% of the total number of strokes16,17. 
The worldwide incidence is approximately 10 in 100.000 persons per year with a lower 
incidence in the Western World (approx. 6/100.000). SAH is more common in women 
than in men and most important risk factors are smoking and hypertension. Although 
mortality rates have declined during the last years, overall mortality in SAH is high; 40-
50% of SAH patients die from the bleeding, in whom 10% die before receiving medical 
attention and 25% within the first 24 hours. Of survivors, about one third are disabled 
and requires some degree of assistance in daily life 18. The average age at onset of SAH 
is 50 years which is low when compared to patients with ischemic stroke. Although 
SAH-patients constitute a small proportion of the total number of stroke-patients, they 
have the same total number of loss-of life-years as patients with ischemic stroke or intra-
cranial hemorrhage 17,19.
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Normal heart Stress-induced cardiomyopahty

Akinetic apexBalloon shaped
ventricle;
”Apical ballooning”

Uniform contraction 
of ventricle

Hypercontractile
base

Table 1. Clinical characteristics of stress-induced cardiomyopathy vs ischemic heart disease

Stress induced cardiomyopathy Ischemic heart disease

Chest pain
Dyspnea
ECG-changes
Increased troponins
Angiography without culprit lesion
Hypokinesia not following coronary artery anat-

omy
Regress of hypokinesia in days to weeks

Usually a stress-trigger
Women are overrepresented

Chest pain
Dyspnea
ECG-changes
Increased troponins
Angiography with culprit lesion
Hypokinesia in area of myocardial ischemia

Possible regress of hypokinesia but permanent 
damage is common
No special trigger
Males are overrepresented

Figure 1. Morphological characteristics of typical stress-induced cardiomyopathy or Tako-tsubo 
syndrome. The apex is akinetic and the base is hypercontractile. This results in a balloon shaped 
pattern called apical ballooning.
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Neurosurgical treatment

The most feared complication following SAH is re-bleeding of the aneurysm, which 
carries a mortality of 50%. It is agreed that aneurysms are to be treated as soon as pos-
sible after detection to reduce this risk20,21. The goal of the treatments is to isolate the 
aneurysm from the cerebral circulation. This is achieved by two treatment options: 
endovascular treatment with coiling or open surgery16,17. Endovascular treatment is the 
first choice of treatment if the aneurysm is approachable with this technique, otherwise 
open surgery is preferred16,17. About two-thirds of aneurysms are treated by endovascular 
technique and one-third by open surgery. There are virtually no differences in short- 
and long term outcome between the two treatment strategies 22,23. With endovascular 
treatment, the operator guides a flexible catheter from the femoral artery to the cerebral 
circulation and further to the aneurysm. Once in correct position, a thin platinum 
wire is inserted into the aneurysm sac and the wire wraps around itself to form a coil. 
The coils block the cerebral blood flow from reaching the aneurysm and over time, a 
thrombus is formed inside the aneurysm, permanently eliminating risk of aneurysm 
rupture. With open surgery, a craniotomy is performed and the cerebral arteries, which 
lie deep in the brain, are reached by retracting brain tissue. Once at the aneurysm, a clip 
is placed at the base of the aneurysm, permanently isolating the aneurysm from cerebral 
circulation. 

Acute hydrocephalus is common after SAH. In SAH, blood is spread throughout the 
subarachnoid space and reaches the ventricular system containing cerebrospinal fluid 
(CSF). The blood can cause a mechanical obstruction of intraventricular CSF-flow in 
the aqueduct between the third and fourth ventricle or a blockade or reuptake of CSF 
by the arachnoid villi. This causes hydrocephalus with subsequent drowsiness and coma. 
Acute hydrocephalus in SAH is treated by an external ventricular drainage16,17.  

Brain damage after subarachnoid hemorrhage

Brain damage from SAH is complex and consists mainly of two components; early 
brain injury (EBI) and delayed cerebral ischemia (DCI) 24,25. When the aneurysm rup-
tures, blood enters the subarachnoid space and possibly also into cerebral parenchyma 
and ventricles. This leads to an explosive increase in intracranial pressure (ICP) 26-28. As 
a response to the sudden rise in ICP, the Cushing reflex is initiated which increases the 
blood pressure. This increase in blood pressure increases ICP even further 27. Ultimately, 
ICP reaches the level of the patient´s blood pressure within one minute from start of 
the bleeding. ICP then successively decreases during minutes to normal levels unless 
parenchymal hematoma or CSF obstruction is present 26-28. Secondary to the rise in ICP, 
cerebral perfusion pressure (CPP) drops resulting in cerebral hypoperfusion26-29. This 
leads to unconsciousness at ictus which is seen in a majority of SAH patients25. The rise 
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in ICP and decreased cerebral blood flow might be beneficial as this promotes aneurysm 
hemostasis,26 but gives rise to ischemic damage. In some patients, a prolonged period 
of decreased cerebral blood flow, i.e. intracranial circulatory arrest is seen,26,28,29 which is 
followed by a poor neurological admission status and a worse prognosis30,31. EBI could 
further be aggravated by intraparenkymal hemorrhage, cerebral edema, cerebral inflam-
mation, microcirculatory disturbances including abnormal autoregulation and injured 
blood-brain-barrier24,25. (Figure 2)

Early brain injury Delayed cerebral
ischemia

ICP

CPP

Hypoperfusion

Aneurysm rupture

Global ischemia

Microthrombi

Microvascular

Inflammation
Impaired hemodynamics

Metabolic abnormalities

Fever

Hydrocephalus

Hypoxia/hypercarbia

Complications Complications

Re-bleeding

constriction

Blood-brain barrier

Arterial vasospasm

regulation
Impaired auto-

Cortical spreading
ischemia

injury

Figure 2. Mechanisms contributing to cerebral damage after subarachnoid hemorrhage. In early 
brain injury, the major cerebral damage is due to hypoperfusion and global ischemia after the sud-
den and extensive rise in intracranial pressure (ICP) with decreased cerebral perfusion pressure 
(CPP.)  Although the pathogenesis of delayed cerebral ischemia (DCI) is multifactorial and complex, 
arterial vasospasm is considered to be one of the major component of DCI. Injury is further aggra-
vated by systemic complications such as inflammatory response and cardiac dysfunction.
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DCI is a term used in a broad sense and refers to cerebral ischemic events later than 48-
72 hours after the bleeding24,25,32. Clinical symptoms vary from minor focal neurological 
deficits to massive cerebral infarction. Traditionally, DCI has been attributed to cerebral 
vasospasm but it has been shown that other mechanisms are involved and the patho-
genesis is multifactorial24. Angiographic vasospasm represents a paradoxical narrowing 
of major cerebral vessels, which can be identified during angiography. The main trigger 
of angiographic vasospasm is the blood surrounding cerebral arteries33,34. Hemolysis of 
red blood cells initiates an inflammatory processes and endothelial injury which pro-
motes production of the vasoconstrictor endothelin-1 (ET-1) and reduces production 
of the vasodilator nitric oxide35. Although there is a correlation between angiographic 
vasospasm and DCI36, this alone cannot fully explain the pathogenesis of DCI24. Other 
interacting mechanisms are microcirculatory disturbances in the form of microthrom-
bus formation37 and microvascular constriction38 due to e.g. endothelial injury and 
release of ET-1. Cortical spreading ischemia is syndrome with spreading depolarization 
in the cortex with neuronal swelling. This is normally followed by a physiological vaso-
dilation and hyperemia but in SAH an inverse response, with arterial vasoconstriction 
and cortical hypoperfusion, is seen39. Other contributing mechanisms are inflammation, 
disruption of blood-brain barrier and systemic complications such as fever, hyponatre-
mia and cardiopulmonary complications 24. DCI is an exclusion diagnosis and the cur-
rent diagnostic criteria are focal neurological deficits or decreased mental consciousness 
without other cause32. Diagnosis can be supported by angiographic vasospasm or increa-
sed flow velocities, usually detected by transcranial Doppler (TCD). If DCI is detected, 
all possible measures must be taken to avoid development of a permanent cerebral infar-
ction. There is currently no specific or causal treatment for DCI. Induced hypertension 
and fluid boluses with evaluation of improvement in clinical status are recommended. 
The patient’s vital functions also have to be optimized40. All patients with SAH are trea-
ted with the calcium-blocker nimodipine, which is the only drug shown to be effective 
to reduce DCI and improve outcome after SAH41. (Figure 2)

Cardiac complications after subarachnoid hemorrhage

Clinical features

A majority of patients with SAH suffer from any type of cardiac dysfunction. The 
importance of these cardiac events varies from subtle, subclinical electrocardiographic 
changes to severe heart failure (Table 2). Cardiac dysfunction in SAH has been known 
for a long time; the first article presenting increased blood pressure and arrhythmias 
after SAH was published in 1903 and during the last decade, knowledge about cardiac 
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dysfunction after SAH has grown (Table 2). SIC in SAH was firstly described in 199442; 
a couple of years after the first case reports describing the Tako-tsubo syndrome. At first, 
this was considered to be a phenomenon separate from Tako-tsubo and in the first pro-
posed diagnostic criteria of Tako-tsubo, SAH was an exclusion criterion13 but is now an 
accepted trigger of SIC43. The pathogenesis of SIC after SAH is discussed below.

Epidemiology

Arrhythmias44 and ECG changes45-47 are common in SAH patients and hypertension 
is seen in almost all admitted patients 48. Cardiac injury, diagnosed as increased serum 
levels of troponin, is reported in 20% to 50% of patients with SAH46,49-52. The big diffe-
rence in incidence between the studies are most likely due to different inclusion criteria, 
timing of troponin sampling in relation to onset of symptoms, different cut-off levels 
and different laboratory techniques. Merging data from the two largest studies and a 
meta-analysis, with a total inclusion of 1295 SAH patients, demonstrates that the in-
cidence of cardiac injury in SAH is 34% 46,49,50. In prospective, consecutive studies, the 
incidence of SIC in SAH was described to be 8-28%46,53-56. The three largest consecutive 
studies, with a total inclusion of 1189 patients 46,53,56, had a total incidence of 15%. The 
female overrepresentation seen in patients with primary SIC is not as clear in SAH pa-
tients with SIC. However, data are inconclusive as gender distribution is not reported in 
many papers54,56-58. 

Table 2. Expressions of cardiac complications after SAH

Clinical finding Frequency First publication 
(year)

Increased blood pressure
Arrhythmias
Neurogenic pulmonary edema
ECG changes
Cardiac damage (autopsy)
Increased troponins
Regional hypokinesia (SIC)
Heart failure from SIC (EF<40%) 

90%
5-100%
10-30%
50%
25%
20-40%
10-25%
10-15%

1903
1903
1908
1947
1964
1994
1994
1995

SIC; Stress-Induced Cardiomyopathy, EF; Ejection Fraction
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Clinical consequences of cardiac dysfunction after SAH 

Patients with cardiac dysfunction after SAH have worse prognosis when compared to 
patients without cardiac dysfunction. A recent large multicenter study showed that 
SAH patients with SIC had an increased risk of DCI and a higher risk of poor 3-month 
outcome46, which has also been shown in previous smaller studies55,59,60. Several studies 
and a meta-analysis have reported that troponin release, as a marker of cardiac dama-
ge, is associated with poor short-term outcome 49,51. Also ECG abnormalities, such as 
ST-segment depression, have shown a correlation with poor outcome61. The causal link 
between cardiac dysfunction and poor outcome is not clear and there is no information 
on whether specific treatment of cardiac complications can improve outcome46,49,51,62. 
The long-term effects of cardiac dysfunction after SAH are sparsely studied. The few 
studies available are either retrospective or have small sample size and the results are 
contradictory60,63,64.

Pathogenesis of stress-induced cardiomyopathy

The role of stress in stress-induced cardiomyopathy

The pathogenesis of SIC is not fully understood. The first proposed hypotheses sugge-
sted microvascular dysfunction, coronary artery spasm11 or a dissolved coronary artery 
thrombus65. However, the LV hypokinesia in the ventricle during SIC usually extends 
beyond the area supplied by one single coronary artery. These hypotheses required a 
simultaneous engagement of all coronary arteries or an abnormal coronary artery ana-
tomy and are now considered to be less credible4,66. It is now generally accepted that 
sympathetic activation, with excess of circulating and locally released epinephrine and 
norepinephrine with overstimulation of beta-receptors is most likely involved in the 
pathogenesis of SIC1. This is supported by the stress-trigger identified in patients with 
SIC, higher levels of circulating norepinephrine in patients with SIC1,56,58,67 and case-re-
ports series of patients with an iatrogenic induction of SIC with beta-agonists68,69. It 
is also supported by animal-models in which SIC is induced with beta-stimulants70-72. 
SIC is also seen in a number of hyperadrenergic states, such as pheochromocytoma73, 
SAH42,53,54, brain death74 and occasionally in sepsis75, which strengthens this hypothesis. 

Beta-receptor stimulation and catecholamine cardiotoxicity

Catecolamine stimulation of beta-receptors is supposed to have a central role in SIC 
pathogenesis. Catecholamine cardiotoxicity is well-described with the first studies origi-
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nating from the 60´s76. Excessive beta-stimulation leads to cardiomyocyte apoptosis77,78, 
cardiac inflammation79,80 and cause a patchy, diffuse and myocardial damage referred to 
as contraction band necrosis81 (CBN). In CBN, the cardiomyocytes are fully contracted, 
resulting in sarcolemma rupture and cell death. CBN has a typical histopathological 
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Figure 3. Schematic figure of beta-stimulatory effects in the cardiomyocyte and the pathway to 
cardiac contraction. In cardiac contraction, the ryanodine receptor (RyR) is activated by increased 
calcium concentrations, initiated by the L-type calcium channel (LTCC). Calcium in the cytoplasm 
forms a calcium-calmodulin complex which activates myosine light chain kinase (MLCK). MLCK 
participates in phosphorylation of myosine-heads which binds to actin-filaments resulting in 
muscular contraction. Beta-stimulation increases formation of adenosintriphospate (ATP) to 
cyclic adenosinmonophosphate (cAMP). cAMP activates protein kinase A (PKA) which phospo-
rylates phospholamban (PLN). PLN normally inhibits the sarcoplasmatic/endoplasmatic calcium 
reticulum calcium ATPase (SERCA) but phosphorylation of PLN decreases this inhibition. SERCA 
pumps calcium from the cytoplasm to the sarcoplasmatic reticulum (SR) and is considered to be 
the main determinant of cardiac contraction. A faster influx of calcium to the SR shortens the 
time for the heart to relax (diastole) and the higher concentration of calcium in the SR the more 
calcium is pumped out to the cytoplasm by RyR, thus resulting in a higher force of contraction. 
The natrium-calcium exchanger (NCX) is not parcitipating in cardiac contraction but maintains 
the intracellular calcium-homeostasis. Inhibitory G-proteins (Gi) are described to be activated in 
SIC. It is suggested that this activation decreases cAMP-levels and thus reduces cardiac contrac-
tion. The PLN/SERCA ratio is shown to be affected in SIC, resulting in reduced contraction. Both 
inflammation and apoptosis, which are shown to be present in SIC-tissue, can be activated by both 
beta-stimulation and the calcium-calmodulin complex(Ca-CaM). Dashed lines; described pathogenic 
mechanism of SIC. PI3K/AKT; Phosphatidylinositol-3-Kinase and Protein Kinase B, NF-KB; Nuclear 
Factor-Kappa Beta.
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finding with hypercontracted fibrils and a band formation of hypercontracted sarcome-
res82. CBN is caused by intracellular calcium overload81; the excessive beta-stimulation 
activates intracellular signaling systems leading to excessive calcium release and influx to 
the cytoplasm. Ultimately, the intracellular calcium homeostasis cannot be maintained 
leading to hypercontracture and cell-death81,83. Patients with primary SIC show a mild 
increase in troponin levels, most likely due to catecholamine-induced cardiac dama-
ge8,9. Beta-recceptor antagonists are shown to be protective in development of cardiac 
injury. In a randomized study on patients with traumatic brain injury, treatment with 
beta-blocker lowered levels of cardiac enzymes84. SAH patients with pre-admission treat-
ment with beta-blockers are less likely to develop SIC.59,85 However, the protective role 
of beta-blockers is not seen in observational studies in patients with primary SIC5,86,87.

Beta-receptor signaling is complex and several intracellular systems are involved poten-
tially leading do cardiac damage or cardiac protection. Different beta-receptors are cou-
pled to different G-protein coupled receptors (GPCR), which can stimulate or depress 
the contractile system. Beta-stimulation can also activate other pathways such as the 
IP3K/Akt pathway88,89 which activates NF- kappaB, eventually resulting in inflamma-
tion and apoptosis80,90-92 (Figure 3).

Catecholamine surge in SAH-patients

The pathogenesis of SIC after SAH share many features with primary SIC and is sup-
posed to be overlapping or even the same43,93. SAH-patients suffer from sympathetic 
overstimulation in conjunction with the bleeding. Naredi et al showed an increased 
sympathetic activity by measuring norepinephrine spillover in SAH-patients compared 
to controls94. In animal experiments, increased levels of circulating epinephrine and 
norepinephrine are seen following induction of SAH, which are also closely correla-
ted with troponin levels95. The cause of sympathetic hyperactivity in SAH is not fully 
known. Animal experiments have shown that an explosive rise in ICP, which is seen in 
SAH26-28, and not a gradual increase, is essential for development of sympathetic hype-
ractivity96,97. The link between increased ICP and sympathetic hyperactivity is not fully 
understood. Suggestions include mechanical distortion or ischemia of the vasomotor 
center in the medulla96, ischemia of the insular cortex98 and an imbalance between ex-
citatory and inhibitory pathways in the CNS99. The sympathetic hyperactivity leads to 
locally released norepinephrine from sympathetic nerves and epinephrine from the adre-
nal medulla. This could be a physiological phenomena, e.g. the Cushing reflex, promo-
ting cerebral circulation. However, excessive stimulation, or stimulation in vulnerable 
patients may leads to cardiac damage or SIC. (Figure 4)
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In SAH-patients, there is a close correlation between myocardial damage and develop-
ment of SIC51,57,59,100. The causality of cardiac damage and development of SIC after 
SAH is uncertain, as not all patients with myocardial damage develop SIC57,100. In an 
autopsy study of patients with SIC after brain damage, there was a poor correlation 
between areas of LV hypokinesia and areas of cardiac necrosis in the left venricle74. 
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Figure 4. Mechanism of catecholamine-release and cardiac complications after subarachnoid 
hemorrhage. An intracerebral aneurysm ruptures leading to blood extravasation in the subarach-
noid space (1). This leads to an explosive rise in ICP (2) activating the vasomotor center in the 
medulla (3). This is most likely due to ischemia in the vasomotor centre. Sympathetic nerves in the 
spinal cord and sympathetic chain are activated resulting in constriction of blood vessels in skin 
and muscles (4) and sympathetic nerve stimulation of the heart (5). Norepinephrine is the major 
transmittor in sympathetic nerve activation. Signals are transmitted to the adrenal gland releasing 
catecholamines, mainly epinephrine, to the blood stream (6), constricting vessels and activating 
beta-recepors in the heart (7). The sympathetic activation of the heart results in arrhytmias, 
ECG-pathologies and possible cardiac damage and SIC.
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Suggested pathophysiological mechanisms of SIC

Although there is evidence for an involvement of stress, catecholamines and beta-recep-
tor stimulation in development of SIC, the link to the development of LV hypokinesia 
is not understood and several hypotheses have been presented. One of the most cited 
theories suggests that excessive beta-stimulation with adrenaline activates beta-2-adreno-
ceptors, which activates inhibitory G-proteins, resulting in reduced cardiac contraction 
by decreased cAMP-formation71. As studies have shown that beta-2-adrenoceptors are 
most abundant in apex of the ventricle, this theory has gained a lot of supporters as 
this easy can explain the over representation of apical hypokinesia. However, this study 
has later been contradicted by others66. A biomechanical hypothesis suggests that the 
inotropic action of catecholamine stimulation leads to a hyper-contractive left ventricle 
with near obliteration of the ventricle lumen during systole. This leads to aortic outlet 
obstruction with subsequent stretch, overload and relative ischemia in apical cardiomyo-
cytes66,101. One study have shown disturbances in the proteins regulating calcium-fluxes 
directly involved in cardiac contraction (SERCA/phospholamban)102. Cardiomyocyte 
apoptosis is activated by beta-stimulation and can cause reduced cardiomyocyte contra-
tion78. Local cardiac inflammation and intracellular lipid droplets are found in SIC-tis-
sue which might contribute to LV akinesia72,103,104. None of the theories have actually 
presented a hypothesis that can explain all the characteristics of SIC. Most likely, patho-
genesis of SIC is complex with an involvement of several mechanisms. (Figure 3)
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Aim

The aims of this thesis were: 

To evaluate whether the cardiac biomarkers, high-sensitive troponin T (hsTnT) and 
N-terminal pro B-type natriuretic peptide (NTproBNP), are useful biomarkers for early 
detection of stress-induced cardiomyopathy after subarachnoid hemorrhage (Paper I). 

To evaluate whether hsTnT and NTproBNP, are associated with poor one-year neuro-
logical outcome and cerebral infarction due to delayed cerebral ischemia after subarach-
noid hemorrhage (Paper II).

To study the differential cardioprotective effects of the inhalation anesthetic isoflurane 
and the intravenous anesthetics pentobarbital and ketamine, in an experimental model 
of stress-induced cardiomyopathy (Paper III) 

To study the differential cardioprotective effects of isoflurane and the intravenous anest-
hetic propofol, in an experimental model of stress-induced cardiomyopathy (Paper IV).

To study the cardioprotective intracellular pathways activated by isoflurane in a global 
proteomic analysis in an experimental model of stress-induced cardiomyopathy (Paper 
IV).
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Materials and Methods

Materials

Patients, Paper I

This study was approved by the Gothenburg Regional Ethics Committee for Human 
Research. Medical records of all patients admitted to the intensive care unit (ICU) or 
the neuro-intensive care unit (NICU) at the Sahlgrenska University Hospital, Gothen-
burg from January 2010 to August 2014 with the diagnosis subarachnoid hemorrhage 
were reviewed. Inclusion criteria were echocardiography performed within 72 hours 
after onset of symptoms and available blood samples for cardiac damage, high sensitive 
troponin T (hsTnT), or cardiac dysfunction, N-terminal pro natriuretic peptide (NT-
proBNP). One-hundred and twelve patients were included in whom 25 patients fulfil-
led criteria for SIC.

Patients, Paper II

This study was approved by the Gothenburg Regional Ethics Committee for Human 
Research. All patients admitted to the NICU at Sahlgrenska University Hospital, Go-
thenburg with suspected or verified subarachnoid hemorrhage were enrolled between 1 
january 2012 and 31 december 2013. Patients with SAH-diagnosis not confirmed, long 
time to admission (>72hours after onset of symptoms), benign bleeding and poor prog-
nosis upon arrival (no intervention done) was excluded. A total of 143 patients were 
included of whom 126 fulfilled one-year follow-up.

Animals, Paper III and IV

The studies were approved by the Gothenburg Regional Ethics Committee for Animal 
Experiments,. 

All animals studied were 10 weeks old, male, Sprague Dawley rats. All animal work was 
performed in accordance with the NIH guidelines for the use of experimental animals. 
Animals were housed in a temperature-controlled facility with a 12-h light/dark cycle 
and had free access to food and water. In Paper III, 90 animals were studied and in Pa-
per IV, 75 animals were studied.
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Methods

Study protocol, Paper I 

Clinical, hemodynamic, echocardiographic and laboratory data was retrieved from med-
ical journals. SIC was defined according to the Gothenburg criteria for SIC13. 

Study protocol, Paper II

In all included patients, blood samples for measurement of hsTnT and NTproBNP 
were taken on admission and the following three days. Follow-up was performed ac-
cording to the Glascow Outcome Scale Extended (GOSE) scale, primarily by telephone 
calls to the patient and secondarily by letters and telephone calls to the patient´s next 
of kin. GOSE ≤ 4 was defined as poor outcome corresponding to a dependent living in 
every-day life, vegetative state or dead. Cerebral infarction (CI) due to delayed cerebral 
ischemia (DCI) was defined according to Vergouwen et al32. Clinical, hemodynamic 
and laboratory data were recorded during the ICU-stay.

Biomarker analysis (Paper I and II)

Biomarkers were analyzed with immunoassay technique; hsTnT was analyzed with the 
Roche high-sensitive troponin T assay and NTproBNP was analyzed with the Elecsys 
assay (Roche). Analyzes were performed at the Laboratory of Clinical Chemistry at 
Sahlgrenska University Hospital during the study period.

Common features of the experimental studies (Paper III and IV)

In an experimental rat model, a bolus dose of isoprenaline was injected intraperitoneally 
at a dose of 50 mg/kg. This induces a SIC-like condition with LV apical akinesia and 
basal hyperkinesia within 90 minutes after injection70 (Figure 6). Cardiac function was 
evaluated in cine-loops acquired by an ECG-gated acquisition technique in parasternal 
long axis view. Primary outcome was the degree of LV akinesia and expressed as % aki-
nesia of total LV endocardial length (Figure 5). Other cardiac variables such as stroke 
volume and ejection fraction were extrapolated from the parasternal long axis, as this is 
the most reproducible view in small animals105. Echocardiographic evaluation blinded 
for treatment was performed after the experimental series were completed. In invasive 
experiments, animals were anesthetized and prepared with arterial cannulation of the 
right carotid artery, along with tracheotomy and mechanical ventilation. Heart rate, 
blood pressure and arterial blood gases (ABG´s) were obtained throughout the experi-
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ment. Echocardiography was performed at 90 minutes after bolus dose of isoprenaline. 
In non-invasive experiments, animals were anesthetized and the bolus dose of isopren-
aline was given. Animals were observed for 90 minutes followed by echocardiographic 
examination. Anesthesia was maintained from induction until echocardiography was 
performed in both invasive and non-invasive experiments. (Figure 5) 

Stabilization
Isoprenaline

Echo-
cardiography

20 minutes 90 minutes

Sacrifice

10-20 minutesAnesthesia

Preparation Stabilization
Isoprenaline

Continuous measurement of
 • Heart rate
 • Blood pressure
 • Body temperature

ABG(60min)
Echo-
cardiography

30-45 minutes 20 minutes 90 minutes
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10-20 minutes
Anesthesia

B. Non-invasive experiments

A. Invasive experiments

Figure 5. Schematic figure over invasive and non-invasive experiments. In brief, animals were 
prepared with an arterial cannula, trachetomised and mechanically ventilated. This was followed 
by a period of stabilization. An arterial blood gas (ABG) was obtained during this period. A bolus 
dose of isoprenaline, 50mg/kg, was injected intraperitoneally. Vital parameters were monitored and 
a second ABG was obtained after 60 minutes. Echocardiography was perfomed after 90 minutes. 
Anesthesia was maintained from induction until echocardiography was performed in both invase 
and non-invasive experiments. After echocardiography, animals were sacrified and the heart was 
collected for tissue analysis.
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Study protocol, Paper III

This study was performed in two settings. The first setting was non-invasive; animals 
were randomized to either no anesthesia (n=12) or anesthesia with ketamine (n=12), 
pentobarbital (n=12) or isoflurane (n=12). One additional group was pretreated with 
the ATP-dependent potassium channel blocker, glyburide, before isoflurane anesthesia. 
SIC was induced with isoprenaline, followed by echocardiographic examination after 90 
minutes. The second setting was invasive; all animals were anesthetized with ketamine + 
midazolam, and prepared with tracheotomy, carotid artery cannulation and mechanical 
ventilation. Animals were  randomized to inhalation with air (n=12), isoflurane 0.75% 
(equivalent to 0.5MAC) (n=12) or 1.5% (equivalent to 1MAC) (n=12)106. SIC was 
induced with isoprenaline followed by echocardiographic examination after 90 minutes. 

Figure 6. Echocardiography in a rat with SIC in diastole (A) and systole (B) and a normal/isoflura-
ne-treated rat in diastole (C) and systole (D). Subendocardium is marked with the white line. The 
dashed white line in B represents area of akinesia. Degree of akinesia in the left ventricle (LV) was 
calculated by dividing length of akinesia in the LV with total length of the LV.
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Study protocol, Paper IV

This study was performed in two different settings. The first setting was invasive; an-
imals were randomized to anesthesia with ketamine + midazolam (n=15), propofol 
(n=15) or isoflurane (n=15). In the propofol group, the animals were induced with 
propofol, intraperitoneally (i.p.), a venous cannula was inserted and a propofol infusion 
was started corresponding to 0.6 MAC equivalents (360mg/kg)107,108. In the isoflu-
rane-group, animals inhaled 0.9% isoflurane, equivalent to 0.6 MAC106, after induction 
of anesthesia in an induction-chamber. In the ketamine + midazolam group, anesthesia 
was induced by ketamine 100 mg/kg + midazolam 10mg/kg, intra-peritoneally (i.p.) 
and maintained with iterated i.p. doses of ketamine 50mg/kg + midazolam 5mg/kg, if 
necessary. Depth of anesthesia was not fine-tuned in this group. Local anesthetics were 
applied before preparation. If necessary, the anesthetic dose was increased, as needed, 
in each animal if adequate anesthesia was not achieved. This was defined as a loss of 
hindlimb withdrawal to toe-pinch stimulation, hypertension (systolic pressure > 180 
mmHg) or lack of limb movements during surgery. SIC was induced and echocardiog-
raphy was performed after 90 minutes. The second setting was non-invasive; animals 
were induced with propofol i.p. and randomized to inhalation with no isoflurane 
(n=10) or inhalation with isoflurane (n=20) 1.0%. Animals inhaling isoflurane were 
randomized to receive either standard doses of isoprenaline (50mg/kg) (n=10) or high 
dose isoprenaline (100mg/kg) (n=10), while the group inhaling air, received 50 mg/
kg isoprenaline ip. SIC was induced with isoprenaline and echocardiography was per-
formed after 90 minutes.

Proteomic analysis

For determination of possible cardioprotective intracellular pathways activated by iso-
flurane, we used a global discovery proteomic analysis. In this method, basically, pro-
teins in tissue samples are degraded to peptides and each tissue sample is marked with 
a specific label. The samples are mixed and analysed in a mass-spectrometer. The label 
can identify which peptide is that is eminating from a certain sample. By this mean, 
relative concentration of peptides in a sample is obtained. By identification of specific 
peptides, the peptide date is converted “backwards” to the corresponding protein. Thus, 
the relative concentration of all proteins found by the mass-spectrometer is identified in 
each samples. In addition to the exploration of single proteins, we identified biological 
pathways that are up- or downregulated, using a bioinformatics software (Figure 7 fig-
ure+text, Supplementary Matererial in Paper IV). 
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Figure 7. Brief description of the proteomic method. Tissue samples were taken from apex of the 
propofol-group (blue), isoflurane-group (red) and control-group (yellow) (1). The tissue samples 
were homogenised and a reference pool containing equal amounts of all samples was produced, 
representing the mean of all samples (2). Equal amounts of each sample and the reference pool 
were trypsin-digested using filter-aided sample preparation (FASP) (3). The peptides were subjec-
ted to isobaric mass tagging reagent TMT® with a unique tag for each sample and the reference. 
After labelling, samples were combined, resulting in two 10-plexed sets, both including the referen-
ce pool (4). The peptides were fractionated by strong cation exchange (SCX) chromatography and 
analysed by nano-liquid chromatography (LC) on-line, coupled to an Orbitrap Fusion Tribrid mass 
spectrometer. Peptides were analysed in a data-dependent multi-notch mode, in high-resolution 
mass spectrometer (MS) 1 mode. (5) Selection for MS2-fragmentation was performed by collisi-
on-induced dissociation (CID) with detection in the ion trap for peptide sequence information and 
ten synchronous peptide precursors selected, e.g., multi-notch, for MS3-fragmentation by high-en-
ergy collisional dissociation (HCD) with Orbitrap detection for relative quantification. MS-raw data 
for each TMT-set were merged during the database search for protein identification and relative 
quantification. Since the tags had an isobaric chemical structure, the peptide labelled with different 
tags, was indistinguishable during chromatographic separations and in MS mode. Each tag contained 
a characteristic so-called ‘reporter ion’ with a unique set of C13 or N15, which was detectable 
upon fragmentation. The ratios of these reporter ion intensities in MS3 spectra were used for 
quantitation. Only peptides unique to the specific protein were considered for quantitation. (6) 
Fold-change calculation between groups and statistical analysis were performed using Welch´s 
t-test, together with pathway analysis using Ingenuity Pathway Analysis to determine the biological 
relationships, mechanisms, functions, and pathways relevant to the identified proteins. (7)
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Statistics

Continuous variables were checked for normal distribution with inspection of histo-
gram distribution and Shapiro–Wilks test. Fisher’s exact test was used for comparing 
incidences between two groups with binary variables (All papers). Student’s T-test was 
used to compare means of continuous normally distributed and Mann–Whitney U test 
was used to compare medians of non-normally distributed variables between the two 
groups (all papers). ANOVA, followed by by Fisher´s least significance difference post-
hoc test was used to compare between-group differences for normally distributed variab-
les and Kruskal-Wallis test followed by Mann-Whitney test was used for non-normally 
distributed variables (Paper III, IV). Jonckheere-Terpstra test for trend was used to test 
a dose-response effect of isoflurane (Paper I). For determination how variables evolved 
over time, linear mixed models were used (all papers). In this context, in Paper I, va-
riables had to be logarithmed to fulfil normally distribution criteria and in Paper II, a 
generalized linear mixed model with gamma regression was used to handle this problem. 
Uni- and multivariable linear regression was used to determine most important variab-
les associated with a continuous dependent variables (Paper I, III, IV). The dependent 
variable was logarithmed if necessary to fulfil normal distribution criteria (Paper I). All 
linear models were verified with scatterplot of residuals/predictive values and normal 
distribution of residuals. Uni- and multivariable logistic regression were used to deter-
mine the most important variables associated with a binary dependent variable (Paper 
II). Hosmer-Lemeshow goodness-of-fit was used to verify the logistic regression models. 
All data included in the multivariable models were checked for multi-collinearity and 
that data was balanced. In all multivariable models, we were cautious not to include 
more variables than the data-set allowed; our guideline was to include approximately 
one predictor per 10 observations in linear regression and one predictor per 10 obser-
vations with a positive outcome in the dependent variable in logistic regression. ROC 
curves were used to determine sensitivity, specificity and cut-off levels for continuous 
variables to predict/detect a clinical condition (Paper I, II). 
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Results

Paper I

One-hundred and twelve patients were included in whom 25 patients fulfilled criteria 
for SIC. Patients with SIC had higher peak levels of hsTnT and NTproBNP (Figure 8). 
Serial measurements of hsTnT and NTproBNP were obtained in 96% and 87% of the 
patients respectively. hsTnT had peak levels on day 1 while NTproBNP had peak levels 
on day 2 after onset of symptoms. This pattern was similar in both patients with SIC 
and without SIC (Figure 9). hsTnT on day 1 and NTproBNP on day 2 and day 3 after 
onset of symptoms as well as systolic blood pressure on admission had a high sensitivity 
and specificity to detect SIC. These variables were superior to high grade SAH, ECG 
abnormalities and signs of heart failure on chest x-ray. In a multivariate model, SIC and 
high grade SAH, were independently associated with peak levels of hsTnT. SIC was the 
only variable independently associated with NTproBNP.

Peak levels of hsTnT and NTproBNP closely correlated to each other (unpublished 
data, Figure 10). In a multivariable logistic regression model of variables associated 
with SIC, we found that high grade SAH, female sex and hsTnT were independent 
predictors of SIC. NTproBNP and hsTnT were highly correlated and could not be 
included in the same analysis. Twenty-one patients presented with an echocardiographic 
hyperdynamic left ventricular contraction pattern, with an EF>70%, with or without an 
intracavitary pressure gradient were identified. 
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Figure 8. Peak levels of hsTnT (left) and NTproBNP (right) in patients with SIC and without 
SIC. SIC; Stress-induced cardiomyopathy. *** p<0.001
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on day 1 after onset of symptoms with a daily decline in both groups. NTproBNP had peak 
levels at day 2 after onset of symptoms in both groups, the difference between day 2, 3 and 4 
were not significant in any of the groups. Day 1 refers to first 24 hours after onset of sympt-
oms. SIC; Stress-induced cardiomyopathy. * p<0.05
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Paper II

A total of 41 patients had poor long-term outcome and 18 patients had cerebral infar-
ction due to delayed cerebral ischemia (DCI). Patients with poor long-term outcome 
were more likely to have a high grade SAH (WFNS grade 4-5), cerebral infarction and 
modified Fischer grade 4. They also had a higher mean age, higher heart rate and higher 
dose of given norepinephrine. Patients with cerebral infarction were more likely to have 
increased flow velocities, detected with transcranial Doppler (TCD) and a higher heart 
rate and dose of given norepinephrine. Levels of hsTnT and NTproBNP were higher 
in patients with poor long-term outcome and cerebral infarction (Figure 11). hsTnT 
peaked on admission, followed by a daily decline. NTproBNP had the lowest levels on 
admission followed by increased levels the following days (Figure 12). In a multivariable 
model, cerebral infarction of any cause, age, high grade SAH and hsTnT were all inde-
pendently associated with poor outcome (Table 3). NTproBNP was not independently 
associated with poor outcome in the multivariable model. Increased flow velocities and 
hsTnT as well as NTproBNP were independently associated with cerebral infarction 
due to DCI. We also found that hsTnT had peak levels when taken as close as within 
six hours after onset of symptoms in 88% of patients (unpublished data). ECG patholo-
gies, defined as ST-elevations or negative T-waves was associated with poor outcome but 
not taken consecutively in all patients and therefore not included in the published data 
(unpublished data). 
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Figure 11. Peak levels of hsTnT (left) and NTproBNP (right) in patients with good 
(GOSE≥5) and poor (GOSE≤4) 1-year outcome. Levels of hsTnT and NTproBNP 
were considerably higher in patients with poor outcome. ***p<0.001
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Table 3. Multivariable regression models, one-year poor outcome (GOSE≤4)

  Variable OR 95% CI p-value Sig model 
change

Model  1 Cerebral infarction 11.43 4.15 -   31.5 <0.001

WFNS grade 4-5   6.57 2.39 - 18.04 <0.001

Age   1.05 1.01 -   1.10   0.009

Model 2 Cerebral infarction 11.43 3.99 - 32.57 <0.001 <0.001

WFNS grade 4-5   3.58 1.21 - 10.67   0.022

Age   1.06 1.01 -   1.10   0.013

TnT peak, per 100ng/l   1.59 1.10 -   2.29   0.013

Model 3 Cerebral infarction   9.74 3.48 - 27.25 <0.001 0.056

WFNS 4-5   5.72 2.06 - 15.87   0.001

Age   1.05 1.01 -   1.09   0.021
NTproBNP peak, per 

1000ng/l   1.10 0.97 -   1.24   0.140

GOSE; Glasgow Outcome Scale Extended, WFNS; World Federation of Neurosurgeons grading scale 
of subarachnoid hemorrhage, OR; Odds Ratio, CI; Confidence Interval
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Figure 12. Levels of hsTnT (left) and NTproBNP (right) over time. Levels of hsTnT had its 
peak on day 1 after onset of symptoms followed by a daily decline both in patients with good 
(GOSE≥5) and poor (GOSE≤4) 1-year outcome. NTproBNP had its lowest levels on day 1 after 
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Paper III

In the first setting, animals anesthetized with pentobarbital and isoflurane had signifi-
cant lower degree of LV apical akinesia than animals with no anesthesia (control). De-
gree of akinesia was lowest in isoflurane- anesthetized animals (Figure 13). There was no 
difference between ketamine anesthesia and control. There was no difference between 
isoflurane-anesthetized animals with or without pretreatment with glyburide. In the 
second setting, animals receiving isoflurane had a lower degree of LV apical akinesia 
than animals ventilated with air only. Animals receiving isoflurane 1.0 MAC had lower 
degree of akinesia than animals receiving isoflurane 0.5MAC; this difference was not 
significant but a test for trend was positive indicating a dose-response effect of isoflurane 
(Figure 14). This was accompanied by a higher LV ejection fraction, stroke volume and 
cardiac output. Animals receiving isoflurane had also lower blood pressure (Figure 15), 
body temperature, pH, pCO2, lactate levels and base excess at 90 minutes. In a multi-
variable regression model with degree of LV akinesia as the dependent variable, adding 
determinants of cardiac oxygen demand (body temperature, pO2, pressure-rate pro-
duct) did not provide a significant better model than inclusion of treatment group only.
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Figure 13. Degree of left ventricular akinesia in animals anesthetized with ketamine, pentothal (PEN-
TO), isoflurane and without anesthetics (AWAKE). There was no difference between awake animals or 
animals anesthetized with ketamine. Degree of akinesia was lower in animals anesthetized with pen-
tothal or isoflurane and levels were lowest in the isoflurane-group. Pretreatment with glyburid did not 
affect degree of akinesia in isoflurane anesthetized animals. 



28      Stress-induced cardiomyopathy

200

150

100

50

0

ml/min
Cardiac output

* *

0

µl
Stroke volume

*
*

300

200

100

0

%
Akinesia in LV

*

*

15

10

5

25

20

0

%
Ejection fraction

* *

60

40

20

80

( ) ( )
0 

M
A

C

0.
5 

M
A

C

1.
0 

M
A

C

0 
M

A
C

0.
5 

M
A

C

1.
0 

M
A

C

0 
M

A
C

0.
5 

M
A

C

1.
0 

M
A

C

0 
M

A
C

0.
5 

M
A

C

1.
0 

M
A

C

Figure 14. Degree of akinesia, ejection fraction, stroke volume and cardiac output in animals anest-
hetized with ketamine + midazolam only (0 MAC), ketamine + midazolam and 0.5 MAC isoflurane 
(0.5 MAC) or ketamine + midazolam and isoflurane 1.0 MAC (1.0 MAC). Degree of akinesia was 
lower in 0.5 MAC and 1.0 MAC-groups with a dose response of isoflurane. This was followed by an 
higher ejection fraction, stroke volume and cardiac output.

Figure 15. Blood pressure over time in animals anesthetized with ketamine + midazolam only (0 
MAC) or ketamine + midazolam and isoflurane 0.5 MAC or 1.0 MAC. Blood pressure was higher 
in the 0 MAC group between 20 minutes to 60 minutes. Akinesia starts to develop 30 minutes 
after isoprenaline bolus, at the same time-point blood pressure starts to drop in the 0 MAC group.
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Paper IV

Animals anesthetized with isoflurane had a significantly lower degree of LV akinesia 
than animals anesthetized with ketamine + midazolam or propofol (Figure 16). At 
baseline, pH and lactate were higher and pCO2 was lower in isoflurane animals, but 
they were all within the normal range. Blood pressure was higher and heart rate lower 
in ketamine + midazolam animals but heart rate, blood pressure and body temperature 
did not differ significantly between groups over time in the experiment. At 60 minutes, 
lactate levels was the only variable differing between groups, being higher in the isoflu-
rane group compared to the ketamine-midazolam group. In a multivariable model, 
isoflurane concentration was the only variable independently associated with degree of 
LV akinesia. There was a significant negative correlation between the degree of LV aki-
nesia and the inhaled isoflurane concentration (r=0.57) but not between degree of LV 
akinesia and propofol MAC-equivalents (r=0.26) (Figure 18). In setting two, isoflura-
ne-anesthetized animals, receiving high dose isoprenaline (100mg/kg) had a significant-
ly higher degree of LV akinesia compared to isoflurane-anesthetized animals receiving 
normal dose of isoprenaline (50mg/kg). There was no difference between animals recei-
ving propofol + normal dose of isoprenaline (50mg/kg) and isoflurane + high dose of 
isoprenaline (100mg/kg) (Figure 17). In the proteomic analysis, multiple pathways were 
upregulated in propofol-anesthetised animals compared to the control group. A num-
ber of pathways involved in inflammation (e.g., acute phase signaling, IL-12 signaling, 
production of nitric oxide and reactive oxygen species), coagulation, lipid metabolism 
(LXR/RXR) and clatrine-mediated endocytosis signalling had higher activity. All these 
pathways had a lower activity in the isoflurane when compared to the propofol group. 
Comparing the isoflurane group with the control group, there was no activation of in-
flammation, the LXR/RXR pathway was upregulated as well as one pathway of coagula-
tion system and caveolar-mediated endocytosis (Table 4). 
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Figure 16. The degree of LV apical akinesia (left) and LV ejection fraction (right) 90 minutes after 
intra-peritoneal isoprenaline injection in groups receiving isoflurane, propofol or ketamine-mida-
zolam anesthesia, The degree of LV apical akinesia was lower and LV ejection fraction was higher 
in the isoflurane group compared to both the propofol and ketamine + midazolam groups, while 
there were no differences between the propofol and the ketamine + midazolam groups. * p < 0.05, 
*** p < 0.001.

Figure 17. The degree of left venticular akinesia in groups receiving either propofol 
only + isoprenaline 50 mg/kg, isoflurane 1% + isoprenaline 50 mg/kg or isoflurane 1% 
+ isoprenaline 100 mg/kg. Doubling the dose of isoprenaline in isoflurane anestheti-
zed animals resulted in higher degree of LV akinesia. * p < 0.05, *** p < 0.001.
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Table 4. Important pathways identified with higher or lower activity in respective group

Category Pathway Propofol  
vs control

Isoflurane 
vs propofol

Isoflurane 
vs control

Inflamamtion Acute Phase Response Signaling ↑↑↑ ↓↓↓ -

IL-12 Signaling and Production in 
Macrophages ↑↑↑ ↓↓↓ -

Production of NO and ROS in 
Macrophages ↑↑↑ ↓↓↓ -

Atherosclerosis Signaling ↑↑↑ ↓↓↓ -

Coagulation Coagulation System ↑↑↑ ↓↓↓ ↑
Intrinsic Prothrombin Pathway ↑ ↓ -

Extrinsic Prothrombin Pathway ↑ ↓↓ -

Endocytosis Clathrin-mediated Endocytosis ↑↑↑ ↓↓↓ -

Caveolar-mediated Endocytosis - - ↑
Lipid metabolism LXR/RXR Activation ↑↑↑ ↓↓↓ ↑↑
Other FXR/RXR Activation ↑↑↑ ↓↓↓ -

Actin Cytoskeleton Signaling ↑ - -

PPAR/RXR Activation - ↓↓ -

Lipid Antigen Presentation by CD1 - ↓ -

IL-12; Interleukin 12, LXR/RXR; Liver X receptor/Retinoid X receptor, FXR/RXR; Farsenoid X recep-
tor/Retinoid X receptor, PPAR/RXR; Peroxisome proliferator-activated receptor/Retinoid X receptor, 
CD1; cluster of differentation 1, ↑ p < 0.05; ↑↑ p < 0.01; ↑↑↑ p < 0.001, ↑ p < 0.05; ↑ p < 0.01; ↑ p < 
0.001

Figure 18. The dose-dependent effects of isoflurane (left) and propofol (right) on the extent of 
LV akinesia. The correlation was significant for isoflurane (p=0.027) but not for propofol (p=0.535).
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Discussion

Methodological considerations

Ethical issues

The studies were approved by the regional ethical board. In paper I, which was a retro-
spective study, informed consent was not obtained. However, all patients were anony-
mised. In Paper II, all patients or their next-of-kin were asked for consent at time of 
follow-up. 

The ethical issues of the conduction of animal experiments for scientific purposes, are 
complex and debatable. If conducting animal experiments, the potential scientific value 
has to be of such importance that it overcomes the potential suffering of the animals. 
Animal experiments should only be performed when relevant information cannot be 
obtained from experimental studies in humans or in vitro studies. Even though animal 
experiments might give extraordinary information in the pathogenesis of, or therapeutic 
mechanisms of a disease, most results obtained from animal studies are not applicable 
in clinical praxis and results from animal experiments and clinical trials are often dis-
concordant109. However, much of the advances in heart failure therapy are based on 
animal studies, including e.g. the use of angiotensin converting enzyme-inhibitors and 
beta-blockers110,111. We consider the experiments performed in this thesis not being 
possible to perform in humans or in vitro. When conducting animal experiments, from 
which this thesis is based, we practice the principle of 3R (replace, reduce, refine), the 
hierarchy of alternatives to animal testing. All animals were treated in according to the 
NIH guidelines for care and treatment. Experiments were on beforehand thoroughly 
designed to acquire as much data as possible. All animals were treated with greatest 
respect in handling and preparation, optimizing experimental results and avoiding un-
necessary loss of animals. 

Prospective and retrospective observational studies

The clinical studies in this thesis are observational studies by nature. A retrospective stu-
dy (Paper I) have the advantage that it is easy to perform and data can be acquired from 
a long time period. Since SIC in SAH is not frequent, we needed a long time frame for 
inclusion of patients. In Paper I, we therefore collected data from a time period corre-
sponding to almost five years. A multicenter study would have been more appropriate, 
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but is costly and are resource intense. The disadvantage with retrospective studies is that 
data are more likely to be biased; in this paper, e.g., patients examined with echocardio-
graphy had a more severe disease and were more hemodynamically unstable.

Biomarkers for cardiac function in ICU patients

The use of biomarkers for diagnostic purposes has the advantage of being easy to imple-
ment in clinical practice, in contrast to echocardiography which is time-consuming and 
operator dependent. hsTnT has a very high sensitivity and specificity for myocardial 
injury and NTproBNP has a high sensitivity and specificity for congestive heart fai-
lure119. Several studies have shown that levels of hsTnT and NTproBNP are increased 
in patients with primary SIC and SIC after SAH 9,112-114. However, both hsTnT and 
NTproBNP are increased also in other conditions in the ICU, such as sepsis, respira-
tory failure, and acute renal failure115-119. Especially in conditions like SIRS and sepsis, 
NTproBNP increases to levels comparable with, or higher than, levels seen in heart 
failure. A highly increased NTproBNP is found to be discriminatory for septic shock vs 
non-septic shock with higher levels in the septic shock group115,120. The new high-sensiti-
ve troponin assays are also problematic since they are “too sensitive” and detectable le-
vels are not uncommon in healthy individuals.  No absolute cut-off level for the diagno-
sis of myocardial infarction (MI) exist and current recommendations suggest that “the 
higher the level, the greater the likelihood of MI” 119.  Although there are false positives 
among patients with increased hsTnT and chest pain, this is not be neglected, as they 
can suffer from other acute conditions e.g., pulmonary embolism, aortal dissection119. 
However, as SAH-patients seldom suffer from these non-cardiac conditions increasing 
hsTnT and NTproBNP on admission, hsTnT and NTproBNP could possibly be used 
to identify patients with SIC after SAH.

Global proteomic analysis

A global proteomic analysis gives information of the proteome in a tissue sample. This 
data can be further analyzed by bioinformatics analysis, revealing up- or downregulated 
pathways. As the pathogenesis of SIC in unknown, finding the cardioprotective mecha-
nism(s) by isoflurane is like searching a needle in a hay-stack. A global proteomic appo-
rach is especially useful in these cases, when the pathogenesis is not fully understood, 
as it is gives a global picture of the biological activity in a sample and does not need a 
carefully pre-defined hypothesis121-123. 
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Clinical perspectives

One of the main findings in this thesis was that hsTnT and NTproBNP have an ex-
cellent negative predictive value for detection of SIC after SAH. We suggest the use of 
these biomarkers for screening of SIC after SAH, which might shorten time to diagnosis 
and treatment of SIC. As patients with SIC after SAH have a higher risk of poor outco-
me55,59,60, this could potentially improve outcome in these patients. 

The second clinical important finding was that increased hsTnT obtained close to ad-
mission to NICU, had an association with poor long-term outcome. This finding was 
significant when adjusting for cerebral infarction, neurological status on admission and 
age. The long-term outcome effects of cardiac complications after SAH, is barely studied 
and the previous results are inconclusive, most likely due to non-prospective, consecuti-
ve study designs60,63,64. These results tell us that cardiac damage, as measured by tropon-
ins, is an ominous clinical sign that should be taken in consideration in the medical care 
of the patient.

We also found that an increased heart rate and ECG pathologies were associated with 
poor outcome. These factors, together with increased troponins, are known to be asso-
ciated with an increased sympathetic tone after SAH95,124,125. Exogenously administered 
catecholamines were also higher in patients with poor outcome. Thus, patients with 
poor outcome were most likely suffering from increased cardiac sympathetic activity and 
higher plasma catecholamine levels. An increased sympathetic tone could be due to a 
more severe SAH with a prolonged period of increased intracranial pressure at the time 
of bleeding, with subsequent global brain ischemia and more cerebral damage. However, 
as troponins were associated with poor outcome even when adjusting for neurological 
status on admission, this cannot fully explain this finding. In animal experiments it has 
been shown that catecholamines are shown to increase cerebral metabolism if the blood-
brain barrier is damaged126,127, which is seen after SAH128,129. Impaired autoregulation 
is frequently seen after SAH130,131, which, in combination with compromised systemic 
hemodynamics might impair cerebral perfusion. Indeed, global and focal cerebral perfu-
sion has been found to be decreased in patients with cardiac complications after SAH132. 
An increased cerebral metabolic demand, due to catecholamine surge and damaged 
blood-brain barrier, in combination with decreased cerebral perfusion, increases the risk 
of cerebral oxygen supply/demand mismatch (Figure 19). This could increase the risk of 
cerebral infarction due to DCI, which was found in the present study. However, tropon-
ins were also independently associated with poor outcome when adjusting for cerebral 
infarction. Based on this, we suggest the possibility of a diffuse cerebral damage caused 
by oxygen supply/demand mismatch not detectable on ordinary CT-scan in patients 
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with excessive sympathetic activity. There are also animal studies indicating a direct tox-
ic effect of catecholamines on the CNS, although this subject is not widely studied133.

Currently there is no accepted treatment of SIC. Recommendations are based on tre-
atment of congestive heart failure which do not have scientific evidence and could be 
harmful134-136. Inotropes are debatable as this might “stress” the myocardium further. 
Based on the best available evidences, in patients with severe, primary SIC, an active, 
non-pharmacological support is suggested allowing the myocardium to recover itself136. 
However, in patients with secondary SIC due to critical illness, this might not be the 
best treatment as decreased cardiac output with or without hypotension contribute to 
multi-organ failure.

Sympathetic
stimulation

Increased metabolic
demand

Subarachnoid
hemorrhage

Blood-brain
barrier damage

Impaired
autoregulation Impaired systemic

hemodynamics

Decreased blood flow Supply / demand mismatch

Figure 19. Suggested mechanism of sympathetic overstimulation contributing to cerebral 
damage.  After subarachnoid hemorrhage, blood-brain barrier is often damaged which 
results in increased metabolic demand from catecholamines. Impaired autoregulation in 
combination with impaired systemic hemodynamics lead to decreased cerebral blood flow. 
An increased metabolic demand in combination with reduced blood flow increases the 
risk of cerebral damage.
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Patients with cardiac complications after SAH are to be meticulously treated to optimize 
global hemodynamics and ensure cerebral perfusion. However, this should probably be 
achieved with the minimal use of inotropes and vasopressors. There are some important 
key-points regarding diagnosis and treatment of SIC in SAH-patients: 

Analysis of Troponin T and NTproBNP. Should be performed as soon as possible after 
admission for rapid detection of cardiac complications. Increased levels of troponin 
T>50ng/l or NTproBNP >2500ng/l should be an indication for echocardiography and 
possibly cardiac output monitoring.

Monitoring cardiac output. To optimize system hemodynamics and avoid under- or 
overtreatment, cardiac output (CO) monitoring should be considered40. Some patients 
with primary SIC have a low system vascular resistence (SVR) and normal CO8, thus 
cardiac output measuring is essensial in discriminating if hypotension caused by low 
SVR or CO. The PiCCO device is most likely preferable over Swan-Ganz catheter, as it 
can measure extravascular lung water and avoiding catheterisation of the heart.

Define the lowest acceptable MAP. Define the lowest acceptable MAP/CPP, according 
to the clinical situation40. Is the patient conscious? Are there new symptoms of neurolo-
gical deterioration? Which is the lowest MAP needed to maintain diuresis?

Optimization of oxygenation and haemoglobin. To optimize oxygen delivery. Ensure 
adequate oxygenation. Traditionally, induced hemodilution was recommended in treat-
ment of vasospasm but is no longer recommended. A haemoglobin level over 80-100g/l 
is recommended40. In patients with cardiac complications the upper threshold is proba-
bly beneficial.

If ICP is high, consider neurosurgical interventions to lower ICP. To obtain an ac-
ceptable CPP with a lower MAP, if ICP is high, neurosurgical intervention should be 
considered, e.g. ventricular drainage or evacuation of intracerebral hematoma.

Is there an outflow obstruction of the left ventricle, treat cautiously with plasma volu-
me expansion (colloid) in combination with beta-blockers and phenylephrine137.

Optimize fluid balance. Euvolemia should be maintained. Hypovolemia, fluid excess 
and pulmonary edema should be avoided40. If using PiCCO, fluid balance could be 
guided by cardiac output measurements and extravascular lung-water measurement138. 
Maintaining global end-diastolic volume index slightly above normal levels is recom-
mended in one study139.
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Minimise the dose of vasodilators and sedatives. Use the lowest dose of sedatives 
cardio-depressants and vasodilators. Nimodipine is suggested to be lowered if having 
problems maintaining adequate MAP40  but is controversial scince this is the only drug 
shown efficient in preventing cerebral infarction and improving outcome41.

If an adequate MAP or CPP is not achieved; use vasopressors if system vascular re-
sistance is low and use inotropes if cardiac output is compromised. Milrinone is 
probably superior to dobutamine as it increases cardiac output to a greater extent than 
dobutamine, in SIC after SAH 140. In addition, milrinone might have a positive effect 
on cerebral vasospasm as it is efficient in the intra-arterial treatment of established 
vasospasm141. Furthermore, dobutamine is shown to induce SIC and might stress the 
myocardium further68,69.

Vena-arterial ECMO. If cardiogenic shock is refractory, veno-arterial ECMO could be 
considered until the heart regain normal function. Intra-aortic balloon pump (IABP) 
is recommended in some papers137 and is considered safe in SAH-patients142. However, 
case-reports suggest that hemodynamics might be further impaired by use of IABP136 .

Thrombosis prophylaxis. Are not to be forgotten. There is an increased risk of throm-
bosis formation in patients with hyperadrenergic states and patients with high levels of 
catecholamines with or without SIC are at higher risk of thrombosis formation143,144. In 
one study, almost 5% of patients with primary SIC had embolic events8.

New perspectives in the pathogenesis of stress-induced car-
dimyopathy after SAH

We could demonstrate that cardiac troponins are released shortly after the onset of 
symptoms followed by a subsequent decline. The vast majority (~90%) of patients had 
peak levels of hsTnT on admission also when taken as close as six hours after onset of 
symptoms. This is a much faster increase in troponin than in myocardial infarction, 
where peak-levels are seen on day two or three after onset of symptoms145. This further 
strengthens the evidence that cardiac damage is a consequence of the sympathetic sti-
mulation seen in conjunction with the bleeding. We also found that cardiac damage is 
highly associated with SIC. However, other co-factors are probably important in the 
development of SIC as not all patients with increased troponins developed SIC. Female 
sex seem to be a risk-factor; although troponin levels did not differ between genders, 
SIC was highly overrepresented in women (~90%) and in patients with a substantial 
troponin release (>89ng/l), 78% of women, while only 27% of men, developed SIC. 
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This was further supported by an unpublished multivariable analysis, in which both 
troponins and female sex were independent predictors of SIC. However, other un-iden-
tified factors seem to be important in development of SIC (Figure 20). We also found 
that some patients developed a hyperdynamic LV contraction pattern with high ejection 
fractions. A high ejection fraction in patients with SAH is described in one previous 
study53 and suggests that some patients may develop a physiological response to the 
excessive beta-stimulation, while some patients develop a paradoxical LV hypokinesia 
(Figure 20). This is, to our knowledge, the first time SIC after SAH is described in a 
Scandinavian population. This is somewhat important as there is evidence for a genetic 
predisposition with different frequencies of SIC in different populations8.

Figure 20. New perspectives in pathogenesis of stress-induced cardiomyopathy (SIC) after 
subarachnoid hemorrhage (SAH). Rupture of a cerebral aneurysm gives rise to a sudden rise 
in ICP which activates the sympathtic nervous system resulting in catecholamine stimulation of 
the heart (1-7, for details see Figure 4). ~ 20% of patients developed a left ventricular hyperdy-
namic pattern (9) suggesting that some patients develop a physiological response the the ca-
techolamine stimulation and some patients develop SIC. We found a close correlation between 
cardiac damage and developement of SIC (8). However, not all patients with substantial cardiac 
damage developed SIC and other contributing factors seem to be important. Women were 
highly overrepresented in development of SIC but not all women with troponin release deve-
loped SIC. Other co-factors, that we did not identify in these studies, seem to be important in 
development of SIC. 
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New perspectives on cardioprotection in stress-induced car-
diomyopathy

In the two experimental studies, we showed that isoflurane exerted a cardioprotective ef-
fect in the development of experimental SIC, a finding that we could reproduce in four 
different experimental settings. This should be considered as one of the main findings, 
as animal experiments, in general, have a low reproducibility146,147. In this context, our 
animal model is reproduced by two other research groups148,149 and the cardioprotective 
effect of isoflurane has demonstrated by one other group (unpublished data).

As isoflurane decreases myocardial oxygen demand (MVO2) by lowering the three 
major determinants of MVO2: LV wall tension (arterial blood pressure), heart rate and 
contractility150-152, one could argue that the cardioprotective effects of isoflurane are 
mediated by attenuation of the stress-induced increase in MVO2. In the first experimen-
tal setting, in Paper III, animals had different doses of anesthetics and vital parameters 
differed between groups. A multivariable analysis indicated that it was unlikely that 
decreased MVO2 was the mediator of the isoflurane-induced cardioprotection. In this 
experiment, ketamine was used, which increases MVO2 and enhance cardiac sympathe-
tic activity153-155. The myocardial effects of propofol, which was studied in Paper IV, are 
more similar to those of isoflurane, as it also decreases MVO2.

156,157 Both isoflurane and 
propofol also suppress cardiac sympathetic nerve activity153,158,159 and both agents are 
shown to be cardioprotective in ischemia/reperfusion160-162. In the first setting in Paper 
IV, the degree of LV akinesia was significantly lower in isoflurane-group compared to 
propofol when compared at equi-anesthetic doses. Our conclusion from these experi-
ments is that reduced cardiac oxygen demand is not the mechanism of cardioprotection 
of isoflurane in SIC. 

Isoflurane is known to be cardioprotective in ischemia and ischemia/reperfusion (I/R) 
injury. I/R have a pathophysiology that is similar to SIC, as cAMP and calcium over-
load is involved in the pathogenesis of reperfusion damage101,163. Isoflurane exerts a 
well described cardioprotective mechanism, mimicking ischemic preconditioning, also 
known as anesthetic preconditioning (APC) in I/R injury164. APC is mediated through 
mitochondrial KATP-channels and the effect is efficiently blocked by glyburide165. In-
terestingly, pretreatment with glyburide did not attenuate the cardioprotective effects 
of isoflurane in Paper III. However, isoflurane is described to have a number of other 
cardioprotective properties in I/R injury that may be active also in SIC, as these two 
conditions share several pathophysiological mechanisms. These include activation of 
inhibitory G-proteins166, preservation of calcium-regulating proteins (SERCA/phospho-
lamban)167, improvement of cardiac microcirculation168, attenuation of apoptosis indu-
ced by beta-stimulation169 and attenuation of  inflammation170-172.  
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We used a global proteomic analysis with pathway analysis to identify potential cardio-
protective pathways. We found that pathways of inflammation, cogulation, endocytosis 
and lipid metabolism were highly more active in tissue from animas anesthetised with 
propofol. The pathways of inflammation and coagulation were not active in isoflu-
rane-anesthetised animals and the only pathway still upregulated was the LXR/RXR 
pathway. The LXR/RXR pathway is shown to induce lipid droplet formation which 
reduce calcium overload and CBN in I/R and could be considered as cardioprotecti-
ve173-175. However, as almost all pathways were downregulated, with isoflurane, our con-
clusion from this analysis is that isoflurane acts as a general suppressor of the pathogenic 
cascade activated by the beta-receptor overstimulation. Interestingly, the two proteins 
S100-A8/A9 which was highly upregulated in tissue from propofol-anesthetised ani-
mals, and to a lesser degree in isoflurane-anesthetised animals, are activated in sepsis-in-
duced cardiac dysfunction176. This suggest a possible link between SIC and sepsis-indu-
ced cardiac dysfunction.

To evaluate whether the cardioprotective effects of isoflurane is caused by a competitive 
inhibition of the beta-receptor signalling pathways, we induced SIC by a higher dose 
of isoprenaline. With a double dose of isoprenaline, isoflurane was not cardioprotec-
tive, as the degree of LV impairment did not differ from a control group not receiving 
isoflurane. We have also described a dose-response cardioprotective effect of isoflurane 
in SIC in two settings (Setting two, Paper III and Setting one, Paper IV). In summa-
ry, this suggests a competitive inhibition in the beta-receptor signalling induced by 
isoflurane.  Isoflurane is shown not to affect the affinity of the beta-receptors177 and, 
therefore, do not impair the response of the beta-receptor to isoprenaline. Beta-sti-
mulatory vasodilation is attenuated by isoflurane, a mechanism that is downstream of 
cAMP-formation178. Studies have shown that isoflurane is a potent inhibitor of calci-
um influx to the cytoplasm and decreases calcium myofilament sensitivity179-184, thus 
potentially reducing risk of calcium overload, hypercontracture and CBN. This is in 
contrast to propofol, which has been shown to have no influence on calcium release in 
the beta-stimulation signalling pathway185-187, increases cytoplasmic calcium levels188 and 
increases calcium myofilament sensitivity187,189,190. Indeed, studies with isoflurane have 
verified a cardiomyocyte protection from calcium overload with a reduced amount of 
contraction band necrosis181,182. From our results and these previous studies, we suggest 
that isoflurane act its cardioprotecive mechanism by reducing calcium influx or calcium 
myofilament sensitivity (Figure 21). However, further experiments are needed to verify 
this hypothesis.
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Potential benefits of sedation with volatile anesthetics in 
ICU-patients

Isoflurane have potential benefits in patients suffering from hyperadrenergic conditions 
and appealing to use in ICU-patients. Isoflurane sedation in the ICU is safe and a 
non-costly equipment is commercially available that is easy to handle and can be mana-
ged by ICU nurses191-193. Wake up time is short and some studies have shown a shorter 
wake up time than with propofol191,194. The cardioprotective effect with isoflurane seda-
tion in the ICU has also been described clinically. In patients undergoing coronary ar-
tery bypass surgery, randomized to sedation in the ICU with propofol or volatile anest-
hetics, troponin release over time tended to be lower in volatile anesthetic-groups195-198. 
Other positive effects are also described; a retrospective study has shown improved 
long-term mortality in patients with volatile anesthetic-sedation. Furthermore, animal 
studies have shown reduced inflammatory response and improved oxygenation in pigs 
with ARDS and isoflurane used per-operatively attenuate apoptosis199-201. Sedation 
with volatile anesthetics in the NICU is controversial as volatile anesthetics are potent 
vasodilators of cerebral vessels and might increase ICP and impair cerebral autoregula-
tion138,202. Two studies have reported the effects of volatile anesthetics sedation in stoke; 
both studies reported that the method can be used but increased ICP and decreased 
MAP was found in some patients and was more pronounced with sevoflurane203,204. 
However, in patients with SAH, cerebral vasospasm, and not increased ICP, is the main 
problem. Isoflurane is alluring to use in SAH-patients, as it is a potent cerebral vasodi-
lator202, reduces cerebral metabolism205,206, have cardioprotective properties164 and is a 
potent calcium-inhibitor179-182. There is one study with a cross-over design in patients 
with SAH, which showed that cerebral blood flow was increased when sedated with 
isoflurane compared to propofol and there were no problems with increased ICP in that 
study207. Interestingly, isoflurane is also shown to attenuate vasoconstriction due to ET-
1208, which is one of the major components in cerebral vasospasm.
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Conclusions
The mains findings of this thesis were:

Myocardial injury, as measured with the release of high-sensitive troponin-T (hsTnT), is 
common after subarachnoid hemorrhage and is independently associated with an incre-
ased risk for poor long-term neurological outcome and cerebral infarction.

Biomarkers for myocardial injury (hsTnT) and dysfunction (NTproBNP) are useful for 
early detection of stress-induced cardiomyopathy after subarachnoid hemorrhage and 
can be used for screening of this condition.

Cardiac damage is seen very close to onset of symptoms in patients with subarachnoid 
haemorrhage.

Stress-induced cardiomyopathy is seen after subarachnoid hemorrhage in a Scandinavi-
an population and is more frequent in women.

In an animal model of stress-induced cardiomyopathy, isoflurane attenuates the degree 
of LV dysfunction, an effect not seen with propofol.

The cardioprotective effect of isoflurane in the development of SIC is not mediated by 
an opening of mitochondrial ATP-controlled potassium channels, as previous described 
in myocardial ischemia/reperfusion injury.

The cardioprotective mechanism of isoflurane in the development of SIC is not media-
ted by an attenuation of stress-induced increases in myocardial oxygen demand induced 
by excessive beta-stimulation.

The cardioprotective mechanism of isoflurane in development of SIC is likely mediated 
by a competitive inhibition of the beta-receptor signalling pathways, thus, suppressing 
up-regulated intracellular pathways activated by the overstimulation of beta-receptors. 
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Future perspectives

Patients developing cardiac complications after SAH have a poor prognosis. Isoflurane 
may have a cardioprotective potential in these patients and is a potent cerebral vasodi-
lator that may be useful for prevention of cerebral vasospasm. Although there are many 
aspects to consider; isoflurane sedation in patients with SAH might be beneficial and 
could be tested in future clinical trials.
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