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Abstract

Since the origin of agile methods and open source
development, code ownership tends to be more widely
distributed over multiple contributors than before. The
question is to what extent a component is affected when
several developers contribute to it. Does several con-
tributors provide better solutions than a sole developer
or does multiple contributors generate additional de-
fects? Although some previous research results point
to the fact that more contributors do expose a project
to higher risk, surprisingly little has been done to val-
idate this hypothesis. An answer to this question is
highly relevant since it provides organizations with the
option to adjust development teams and contribution
levels accordingly, in order to assure software quality.
By empirically studying a large data set from a pro-
prietary telecommunications company, we examine the
relationship between the number of contributors and the
number of defects in closed source industrial projects.
In addition, we are the first to investigate the effect that
multiple contributors have on defect density and defect
severity. We find the correlation between contributors
and defect density to be statistically significant and we
find that the number of contributors and the number of
defects has a near perfect positive relationship.

1. Introduction

Defects cost the software industry substantial
amounts of money each year. In the US alone, the cost
is 59.5 billion USD annually [1]. There is no defini-
tive factor that causes defects, but plenty of previous
research indicated that human factors such as devel-
oper expertise play a big role [2, 3, 4, 5, 6]. Some
researchers have specifically investigated how different
compositions of developers and organizational struc-
tures can affect the quality of software [7, 8]. As orga-
nizations scale and software development teams grow,
one can assume that the human factor becomes even
more evident.

Fred Brooks [9] famously stated that “adding man-
power to a late software project makes it later” after
unsuccessfully increasing the number of developers in
hopes of finishing a project on time. Other research
states that when many developers collaborate on a
component, there is a possibility that it becomes vic-
tim of unfocused contributions [10, 11]. For instance,
a lack of communication between contributors could
likely lead to confusion of who is responsible for what,
causing the interaction of commits to be less optimal
[10]. There is also a chance that a contributor changes

something without proper feedback from other devel-
opers, which is especially common in Open Source Soft-
ware (OSS) [11]. Yet, OSS is known to be secure be-
cause of the fact that many developers interact with
the components, finding and fixing faults that might
not have been found by a sole developer [12, 13, 14].
So far, not many studies have examined the effect the
amount of contributors has on proprietary software
quality, which is the main purpose of this paper. In
order to do this, we analyze how the number of con-
tributors affect the number of defects, defect density
and defect severity on a file level. The research is con-
ducted within a division at Ericsson, a large telecom-
munications company that produces distributed, fault-
tolerant, soft-real-time, non-stop systems. We conduct
a statistical analysis on a large data set ranging over
10 years, containing thousands of source files produced
by hundreds of developers.

By thoroughly analyzing data scraped from version
control systems, we aim to answer the following ques-
tions:

RQ1: How does the amount of contributors affect
the number of defects in software development?

RQ2: What is the correlation between defect density
and the number of contributors?

RQ3: What is the correlation between defect sever-
ity and the number of contributors?

Using Pearson’s R, we find a very strong correla-
tion (0.92) between the number of contributors and the
number of defects. We believe the strength of the cor-
relation may be affected by other confounding factors,
but that the number of contributors is most likely the
primary reason. In comparison, we find that the corre-
lation between the number of contributors and defect
density is only 0.29, but increases as files grow in size.
Furthermore, we find that the ratio of defect severity
remains roughly the same when there is an increase in
contributors.

Our research contributes to the software industry
by providing insight in how the number of contributors
and defects correlate. If organizations are aware of how
additional developers affect product quality, they may
reconsider their development structure and can account
for potential threats in their decision making processes.

This paper is structured as follows: Section II ad-
dresses previous research related to our subject. Sec-
tion III contains definitions of our metrics and common
terminology used throughout the paper. Section IV in-
troduces our posed hypothesis while Section V explains
our data collection and analysis methods. Sections VI
and VII cover our results and discussion. Section IX
addresses potential threats to validity and Section X



acts as a summary and conclusion.

2. Related Work

In software engineering research, data mining and
tool-driven approaches are common when analyzing
source code and there has been several studies ad-
dressing how the quality of a component is affected
by the developers contributing to it. Most research
that has been done was primarily conducted on OSS
projects, often focusing on developer expertise, rather
than the number of contributors. Furthermore, many
of the prior studies are mostly drawn towards improv-
ing defect prediction models and not many have tried
to empirically quantify the actual effect that the num-
ber of contributors has on code quality.

Meneely and Williams [11] studied the relationship
between security vulnerabilities and the number of de-
velopers working on the Linux kernel. They found
the likeliness of a security vulnerability to increase six-
teenfold if more than nine developers contributed to a
source file. Their research methodology and used met-
rics are very similar to ours with the difference that we
use defects in order to estimate the amount of defects
in a file while they study whole source code files labeled
as either “vulnerable” or “neutral”, depending on if the
file requires patching. We investigate if similar results
can be found in proprietary software.

Nagappan et al. [15] provides some results on pro-
prietary project by extracting data from Windows 7
and Windows Vista. They noticed that binaries with
less minor contributors and more major contributors
contained fewer defects. The way they define code
ownership is by looking at the number of commits a
single developer made in relation to the total number
of commits. Even though contributions often vary in
size, it is still a reliable metric. Overall, our research
approach is similar but we differ in the sense that we
study contributors and defects on a file level. They
were unable to trace defects back to particular files
and count defects by pre-release and post-release fail-
ures of entire products. There are several other stud-
ies [7, 16, 17], also from Microsoft, that all examine
concepts affecting quality such as organizational struc-
tures and distributed development. All the metrics are
somewhat related to our research but again, none of
these specifically study contributors and defects at a
file level. Also, none of the studies from Microsoft ex-
amine defect density as we do. In addition to Windows
Vista, Bird et al. [18] also investigated the effects of
ownership in Eclipse and Firefox. They found that
high proportions of ownership and low amounts of mi-
nor contributors generated less defects across all three

projects. Interestingly, their results are similar among
each other even though the three projects are devel-
oped using different organizational models. Shin et
al. [19] also studied multiple releases of Firefox along
with the RHEL4 kernel. Specifically, they examined
the relationship of developer activity, code churn and
complexity with known security vulnerabilities within
those systems. They found statistically significant cor-
relations between the security vulnerabilities and all
the three types of metrics. This study uses a different
set of metrics than ours and like most other related re-
search, the results are derived purely using from data
from OSS projects. For all OSS studies, results are not
necessarily applicable to closed source projects because
of assumed differences in team structures and commu-
nication efforts.

A number of studies [2, 3, 4, 5, 6] examine the im-
pact developer experience and expertise has on soft-
ware quality. They all confirm that developers with an
in depth understanding of the domain, system appli-
cations and components are less likely to induce addi-
tional faults. Izquierdo-Cortazar et al. [20] also studied
developer experience and its relation to the ratio of bug
inducing. In contrast to the other studies, they found
no statistical significance stating that inexperienced de-
velopers are more likely to introduce bugs. This study
was performed at Mozilla, using mainly bug fixing com-
mits and bug seeding commits as metrics. We are not
examining data on developer expertise in this paper
but we do address it as part of the discussion as a con-
founding factor.

Lastly, Pinzger et al. [10] uses contribution net-
work models to predict future failures of systems. They
found that central components sharing many contrib-
utors are far more error prone than components with
less contributors. Similarly to defect prediction, our
research aims to help organizations understand what
could cause additional defects.

Judging by the previous studies, we definitely see
some solid research efforts with interesting results on
several fronts. However, there is an obvious lack of
quantitative studies regarding defects and contributors
in large industrial project. Evidently, most prior re-
search are done on OSS projects and a large focus is on
developer expertise, prediction models, organizational
processes and source code metrics etc. In addition,
the research that do exist does not address either de-
fect density nor defect severity. Furthermore, we are
the first to empirically quantify the effect the number
of contributors has on both defect density and defect
severity, enabling us to fill a gap in the research com-
munity.



3. Metrics & Terminology

Several metrics are used to address our research
questions and they act as the main points of interest in
our data collection. Because such a large number of ob-
servable characteristics exists in software development
projects, we use a focused top-down approach when
conducting our measurements. Our metrics have been
chosen in accordance with industry standards and the
Goal/Question/Metric Paradigm [21, 22]. Description
of common terminology, used metrics and the reasoning
behind them is presented on the following page (Table

1).
4. Hypotheses

With regards to our main research question (RQ1),
we investigate if the number of contributors affects the
number of defects per file. Specifically, we examine
if having more than one contributor to a file results
in an increase or decrease in faults. There are in-
deed arguments for both tendencies. On the one hand,
one can assume that an increase in contributors makes
it harder to coordinate and organize committed code,
which could have a negative impact on quality. Addi-
tionally, an increase in contributors might also compli-
cate communication efforts, potentially increasing the
amount of defects. Furthermore, there is also a possi-
bility that the level of expertise of an added contribu-
tor has an impact on the file. As found in other studies
[2, 3, 4, 5, 6], it is likely that a generalist will induce
additional faulty code. On the other hand, it is also a
possibility that an additional expert could potentially
lower the amount of faults in a file. Thus, we investi-
gate whether the effects balance each other out or not.
Furthermore, there is a chance that an increase in con-
tributors simply raises the amount of found bugs and
does not increase the actual amount, meaning that a
sole developer is less likely to discover many defects.

Null Hypothesis 1 There is no difference in the
number of defects based on the number of contributors.

Alternative Hypothesis 1 There is a difference in
the number of defects based on the number of contrib-
utors.

Secondly, we examine the effect that the number of
contributors have on defect density (RQ2). Despite the
fact that previous research [10, 11, 15] emphasizes that
multiple contributors induce more defects, they pro-
vide no answer as to whether or not defect density is
affected. As such, more contributors could equal more

defects, but also larger files, which would not result in
lower product quality when size is taken into consider-
ation. Therefore, defect density is a far more reliable
measure of product quality than purely looking at the
number of defects as it accounts for the size factor of
files [27, 28]. If there is no correlation between con-
tributors and defect density it would highly question
previous research results.

Null Hypothesis 2 There is no difference in defect
density based on the number of contributors.

Alternative Hypothesis 2 There is a difference in
defect density based on the number of contributors.

Finally, we examine if there is a change in the ratio
of defect severity when the number of contributors to
a file increases (RQ3). Specifically, we investigate how
the number of critical faults (Class A) increases relative
to Class B and Class C faults. If there is a larger
ratio of Class A faults, added contributors could cause
significantly reduced quality. Testing this is relevant
as one can argue that a ratio increase of Class C faults
is more forgiving and does not affect quality as much.
However, we deem it most likely that the distribution
of defect severity remain roughly the same, and even
if the ratio changes, we would likely see an increase or
decrease of all severity types.

Null Hypothesis 3 There is no difference in defect
severity ratio based on the number of contributors.

Alternative Hypothesis 3 There is a difference in
defect severity ratio based on the number of contribu-
tors.

5. Data Collection & Analysis

The data set we use in the study originates from data
mining tools built internally at Ericsson. The tools
parse revision control history, usually from the master
branch, and store the results in a SQL database. The
database contains data commit entries from “normal”
feature development and commits that are intended to
fix defects.

Because we look at defect density as part of our pa-
per, we have decided to exclude any other file type than
C from our analysis. The reason for this is that there
is no definitive way of measuring size in different pro-
gramming languages. If we were to include multiple file
types in our study it would introduce risks of ambiguity
in the data set as size measurements across program-
ming languages is out of this scope for this study. Since



Table 1: Metrics & Terminology

Keyword Definition Usage

Contributor(s) A developer that contributes to a file is labeled a con- | Used when estimating the number
tributor. We calculate the number of developers per file | of developers per file.
based on distinct entries from feature development data
and bug fixing data.

Defects Entries in the version control system tracked as bug fixes. | Used when estimating the number

Also known as Trouble Reports (TRs). Gives an estimate
count on defects per file when aggregated.

of defects per file.

Lines of Code (LOC)

Number of lines in a file. For source code this represents
the code including comments. For arbitrary files this
represents all text.

Used a size measure when calculat-
ing the defect density for a file.

Defect Severity

There are four different severity tags attached to most of
the defects: Improvements, Class A, Class B and Class
C faults. Improvements are typically changes that are
not fixing bugs and therefore we exclude that tag when
testing severity. Class A (e.g causing service unavailabil-
ity or process restarts) is the most critical type of fault
while Class B (e.g simple failures or disturbances) is of
medium severity. Class C (e.g spelling faults and incor-
rect printouts) is the least critical type of fault.

Used when filtering out data and re-
trieving valid defects.

Defect Density

The ratio of defects to size. Defects are generally counted
through the number of TRs [23]. Size is commonly ex-
pressed in Functional Points, cyclomatic complexity or
LOC, and it often serves as a measurement of product
quality [24, 23, 25, 22]. In terms of defects we only track
the ones that indicate an actual failure occurred, this
means that we only include defects of severity A, B, C.

Used for estimating if an increase in
contributors causes a higher defect
density.

Cyclomatic Complexity

The number of conditional statements in a file. This can
only be measured in source code files.

Used as an alternative measure for
size of files. We divide the number
of defects with the number of con-
ditional statements for each file.

Effective Complexity

Effective complexity is another measurement that gives
a relative complexity of a file based on the complexity of
the functions[26]. This is a better complexity measure of
a file than cyclomatic complexity as it cannot be affected
by file size as much as cyclomatic complexity is.

Indicates how complex a file is.
Used as a supplementary metric
when looking at correlation matri-
ces.

Table 2: Files.

the majority of the files at the target company are writ-
ten in C, with a smaller portion being written in C++-,
we chose C files as the source of analysis.

Our research primarily revolves around the correla-
tion between contributors and defects per file. We have
therefore spent a substantial amount of time aggregat-
ing the data set for each file. Table 2 contains data on
the files studied.

We gather defect data based on version control com-
mits that are tagged as defect fixes. Not all of the
commits are proven to belong to a confirmed defect
and some of these commits lack proper defect tags.
We have chosen to exclude all of the commits that did
not tag a specific defect severity from the analysis. It
is important to note that the majority of the defects
we found were not defects reported by customers, but

Property Amount
Total number of files 17130
.c, .cc files 2977 (16%)
.cpp files 572 (3%)

Other (eg. .h, .hpp, .xml, .txt)

Files containing known defects
Source files containing known defects
Files with A, B or C severity tags
Files containing improvement tags

13581 (30%)
5476 (30%)
1484 (8%)
4636 (25%)
3018 (16%)

defects that were found internally during development
and testing phases. Table 3 provides an overview of
the defect data.

‘We collect contributor data from two version control



Table 3: Defects.

Property Amount
Total number of known defects 10529
Class A defects 1926 (18%)
Class B defects 5357 (51%)
Class C defects 1679 (16%)
Improvements 557 (5%)
Untagged 1010 (10%)

tags, one for normal feature development and one for
defect fixes. The two sources contain roughly the same
number of contributors (See Table 4), but data from
the defect fixing branch is far more reliable. The rea-
son behind this is that the majority of the feature de-
velopment is done in alternate branches, squashed into
one commit and then delivered to the master branch.
This means that a lot of commits and their subsequent
data is lost, e.g a feature which was developed by 10
developers is delivered as a commit of one developer.
Defect fixing data on the other hand is usually fixed
directly on the master branch, or developed in very
few commits before integrated into the master branch.
This results in a higher total number of contributors
found fixing defects than what we found in feature de-
velopment. We have chosen data from the defect fixing
tags as the main source for contributor data, but we
provide an analysis and results for both data sets.

Table 4: Contributors.

Type Amount
Contributors (feature development) 461
Contributors (defect fixes) 491

In order estimate defect density for each file we need
to identify a size measurement and in this case we have
chosen LOC. LOC may not be a valid measurement
across languages as they vary in verbosity and abstrac-
tion, but in the case of comparison of files within one
language it seems perfectly valid. We divide the num-
ber of defects a file has with the LOC to get the defect
density. As a supplementary metric, we also use cyclo-
matic complexity as a second size metric to see if the
results are aligned with the LOC metric.

Our main method for proving correlation is by us-
ing simple linear regression tests. We use the Pearson
Product-moment Correlation Coefficient to determine
the linear correlation between the independent vari-
able (contributors) with the dependent variable (de-
fects). The Pearson test produces a correlation coeffi-
cient which ranges from -1 to 1, where -1 indicates per-
fect negative correlation and 1 expresses perfect pos-
itive correlation while a correlation coefficient of 0 or

values close to 0 implies a weak correlation [29]. The
Pearson test is not distributionally robust and can be
influenced by outliers [30]. We graphically visualize the
data using scatter plots in order to manually identify
the extensiveness of potential outliers.

We mainly look at only C files data from 2013-2015
because the defect tagging accuracy rose above 50%,
implying that the tagging practises improved signifi-
cantly in the company and consequently providing us
with a purer data set. A brief overview of the defect
tagging accuracy is displayed in Figure 1, showing a
reach of 50% in 2013. Even though we exclude certain
data from our analysis, our sample sizes are still large,
ensuring quality results.

Defect tagging accuracy

—
N o © o
(=) o S =}

N
=)

TR tagging accuracy (in percentages)

Years

Figure 1: Defect Tagging Accuracy

The data mining tools are primarily written in
python. In order to easily query the API they pro-
vide, we chose to conduct this study using tools from
the Python ecosystem. Notably we used R, Numpy
and Scipy to calculate the correlation matrices. The
charts in this paper were plotted using matplotlib and
d3.js.

6. Results

From our statistical tests, we created a matrix (Ta-
ble 5) containing the correlation coefficients of all our
metrics combined. The matrix displays data from the
last two years (2013-2015). However, when analyzing
all data ranging back from the earliest entry (2001) ,
we do not experience any dramatic changes in values.
From here on, we will refer to contributors from the
feature development as FD and contributors from de-
fect fixes as DF.

How does the amount of contributors affect
the number of defects in software development?

Evidently, we find a strong relationship between the

2800 2002 2004 2006 2008 2010 2012 2014 2016



Table 5: Pearson Correlation Matriz. (C files 2013-2015)

- Contr. FD | Contr. DF | Defects | Defects A | Defects B | Defects C | LOC | Complexity | Def.density(LOC) | Def.density(CX)
Contr. FD 1 0.87 0.77 0.66 0.73 0.68 0.48 0.52 0.25 0.14
Contr. DF 0.87 1 0.92 0.79 0.88 0.79 0.49 0.56 0.29 0.14
Defects 0.77 0.92 1 0.85 0.97 0.84 0.47 0.54 0.30 0.15
Defects A 0.66 0.79 0.85 1 0.74 0.60 0.38 0.45 0.28 0.12
Defects B 0.73 0.88 0.97 0.74 1 0.76 0.44 0.52 0.27 0.13
Defects C 0.68 0.79 0.84 0.60 0.76 1 0.46 0.49 0.27 0.15
LOC 0.48 0.49 0.47 0.38 0.44 0.46 1 0.82 0 0.04
Complexity 0.52 0.56 0.54 0.45 0.52 0.49 0.82 1 0.04 -0.03
Density (LOC) 0.25 0.29 0.30 0.28 0.27 0.27 0 0.04 1 0.29
Density (CX) 0.14 0.14 0.15 0.12 0.13 0.15 0.04 -0.03 0.29 1
number of contributors and the number of defects in a 10018
. . v
file. Looking at contributors from DF (See figure 2), 908 . .
we note an almost perfect positive relationship between g0/ .
the variables (0.92) and for contributors in FD (Figure 70 ° .
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amining all files versus only C files, the difference in
correlation is insignificant. Furthermore, by analyzing
this data over time, there is no major difference other
then that the median values for both defects and con-
tributors are slightly smaller when only examining data
from the last two years. The linear relationship is not
notably different and the correlation between defects
and contributors persists. Because of the large number
of files studied, it is hard to get a good understanding
of the full distribution of the files in the graph. There-
fore, it is important to note that the majority of the
files are worked on by a single developer and contains
only one defect. There is also relatively few instances
of files where there is only one contributor and more
than one defect.
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°
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Figure 2: Contributors (DF') and Defects for C files
between 2013-2015

What is the correlation between defect den-
sity and the number of contributors?

Looking at defect density we find that the Pearson

Figure 3: Contributors (FD) and Defects for C files
between 2013-2015
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Figure 4: Contributors (DF) and Defects Density
(LOC) for C files
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value is 0.29 while the scatter plot shows heavy pres-
ence of files with few contributors and varying defect
density values as seen in Figure 4. The result is statis-
tically significant and we are able to reject the null hy-
pothesis at a confidence interval of 99% with a p-value
of 4.2e-60. Analyzing the data further, we find that the
median LOC value for all C files is 245 while the mean
is 585. This indicates that there are many files with
a very low LOC count. Surprisingly files with a larger
LOC than 10 carry the coefficient 0.37 and files larger
than 100 LOC push that value to 0.46. We therefore
suspect that these small files significantly decrease the
linear correlation. When looking only at files above the
median, the correlation increases to 0.57.
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In Figure 5, we demonstrate the relationship be-
tween the defect density correlation coefficient and how
it increases when files get larger. The correlation co-
efficient (Y) is derived from files larger than the LOC
value at X, e.g the correlation coefficient for X = 500
was calculated for all files with more than 500 LOC.
Naturally, filtering the data like this increases the p-
value as the sample size becomes smaller (only 31 files
larger than 5000 LOC), but when looking only at files
with as high as over 8000 LOC, the p-value is only
0.037 and the results still statistically significant. Re-
gardless, the main purpose with this is to present how
defect density values are skewed if file sizes are small,
explaining the shape of Figure 4. As expected, the
correlation coefficient increases when examining larger
files. With Pearson’s R ranging from 0.74 for files larger
than 750 LOC to 0.82 for files larger than 1500 LOC.

What is the correlation between defect sever-
ity and the number of contributors?

When calculating Pearson’s R for the DF metric
with proper severity tags and those without, the re-
sulting coefficients are 0.84 for class C faults, 0.88 for
class B faults and 0.85 for class A faults. As shown
in Figure 6, the different classes of defect severity all
increase in a similar fashion when there is an increase
in contributor amount. Therefore, we fail to reject the
null hypothesis and state that there is no difference in
defect severity ratio based on the number of contribu-
tors. Since 51% of the known defects are of Class B, it
is logical that multiple contributors add mostly Class B
faults compared to Class A and Class C, thus keeping
the ratio of overall severity relatively unchanged.
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Figure 6: Contributors (DF) and Defect Severity

7. Discussion

Due to the statistical significance of our results, we
are able to state that an increase in contributors most
certainly does increase the number of defects. How-
ever, more contributors does not seem to increase de-
fect density as much, mostly because many files have
small sizes, showing high defect density for as little as
one defect. The difference between the correlation coef-
ficients of contributors/defects and contributors/defect
density indicates that there are confounding factors af-
fecting at least one of the correlations. Looking at fig-
ure 5, we do indeed see that the correlation between
contributors and defect density increases as file sizes
grow bigger.

In context, we can go back to Brook’s law stat-
ing that “Adding manpower to a late software project
makes it later” and relate our results to what he found.
Bearing in mind that there is no guarantee that the
number of defects directly causes a later release of a
product, it can still effectively lower the quality of it.
One can ask what the “perfect” contributor amount
would be in order to assure as few defects as possi-
ble, and judging by our results, that number seems to
be one. Does this mean that collaboration efforts in
software development should be avoided? Much more
extensive research is needed to address such a conclu-
sion. However, it is interesting that when we look at
files with two contributors, there is already a notable
increase in defects.

We can also compare our results to previous research
attempts [15, 10, 11] that has indicated that an in-
crease contributors causes a decrease in software qual-
ity. Our results clearly supports their findings but on
a much finer granularity than binaries or large com-
ponents as we evidently prove the same hypotheses on



a file level. As mentioned, Meneely & Williams [11]
found that the likeliness of a security vulnerability in-
creases sixteen fold if more than nine developers con-
tributed to a source file. Notably, we do not see such a
significant increase related to a particular contributor
amount as we find the increase to be relatively linear.
It is also important to note that our use of size metric
to estimate defect density could increase the reliability
of results compared to the other studies.

Furthermore, when comparing proprietary software
and OSS, one can speculate in that communication be-
tween developers has potential to be better in propri-
etary software, as development is often less geograph-
ically distributed. Logically, this should mean that
proprietary software benefits from an increase in con-
tributor amount more than OSS does. However, judg-
ing by both our research as well as previous studies
[15, 10, 11], it is hard to argue for any benefits coming
from an addition of contributors at all. Interestingly
enough, it seems to be even more disadvantageous in
proprietary software, based on the lack of research on
the subject compared to research on OSS, stating that
the contributor amount adds security [31, 13, 14].

One big question mark that does arise from our re-
sults is whether or not an increase in contributors in-
creases only the number of discovered faults or if the
total number of faults actually increases. Because of
a large number of contributors, an increase in found
faults is known to be a common factor in OSS. For in-
stance, Eric Raymond [12] stated that “given enough
eyeballs, all bugs are shallow” when studying the Linux
kernel. So does this mean that with more contributors,
more defects are just found? It is likely to be true to
some extent and perhaps more so in OSS projects, but
because of the high level of automatic testing done at
Ericsson, we consider it likely that the testing tools
discover the same faults regardless of the number of
contributors. However, it is also possible that the OSS
projects in question, exercise automated testing as well.

As mentioned previously in the paper, a big fac-
tor that we have not studied but still need to address
is developer expertise, which is known to impact the
amount of defects in a component [2, 3, 4]. As a conse-
quence, we have to assume that inexperienced contrib-
utors are more likely than experts to introduce bugs
to the code in our case as well. However, we can not
prove that developers with high ownership generate less
faults as there are not many significant outliers in our
data. It is obvious in files that have only a sole devel-
oper and very few faults but there is also a possibility
that a file can have 10 contributors even though one
contributor has an ownership of 90%. Since our data
set consists of no files with a high number of contrib-

utors and a low amount of defects or vice versa, we
have to assume that as long as the number of contrib-
utors increase, defects will always increase accordingly,
regardless of ownership levels.

8. Threats to Validity

It should be noted that our data analysis cannot
identify and compensate for confounding factors, such
as the file age, complexity, churn rate that may be
under-lying reasons that affect the correlation coeffi-
cient. We therefore encourage readers to be vary of the
confounding factors and not to interpret the results in
a literal sense as correlation does not imply cau-
sation. In particular, we suspect that older files are
prone to age-bias, meaning that generations of develop-
ers could have contributed to the file and thus increased
the contributor count while not currently working on
that file. To compensate for this, we have looked at
the data in two time intervals: one that accumulates
all data from 2001 , and one that accumulates data for
the period between 2013-2015. Another limitation is
that we can not make any conclusions regarding latent
defects that are not found. We have no guarantee that
all bugs in the files are found.

All of the data is gathered using an internal tool at
the company. Using this type of automated data col-
lection, we have to account for the possibility of errors
in the tool itself, the database, and the fact that our
queries might be wrong. For this reason, we manu-
ally look into all inconsistencies and abnormal values
in the data together with a domain expert at Ericsson
in order to assess any potential threats.

We conducted the study at a large company with
hundreds of employees, which means that there are
most likely variations in development behaviour, both
between teams within Ericsson but also compared to
teams in similar companies. Additionally, we have no
way of knowing how well our results are transferable to
corporations in other software domains nor how well it
translates to companies of other sizes. It primarily af-
fects our study in the way commits are tagged. This
is clearly shown in the defect fixes data where some
choose to tag their improvement commits while some
do not. This affects the defect data to some extent
and we deal with it by looking only looking at defects
of known severity. On the one hand, we do believe
our results are likely to be transferable to any soft-
ware company developing using similar team structures
and development processes. On the other hand, when
it comes to defects severity, every organization most
likely uses their own definitions of severity classes and
there is no guarantee that these results are directly



transferable. Furthermore, severity tagging also runs
a big risk of being wrongly reported. There is likely
many cases where for example a class B fault should
have been tagged as either class A or class B per defi-
nition. Regardless if our results our applicable or not,
we provide enough details of our research methodology
so that our study can be replicated at other companies.

9. Conclusion

We have examined how the number of contributors
affects software quality at a large, proprietary telecom-
munications company. By performing bi-variate anal-
ysis tests on thousands of files we found that there is
indeed a strong correlation between contributors and
defects for each file. Similarly, we found that defect
density also is correlated to the number of contribu-
tors, and that this correlation is stronger the larger
the files were. Additionally, we found that the ratio of
defect severity remains roughly the same as the amount
of contributors to a file increases.

We concur with previous research, showing that the
number of contributors has a negative impact on soft-
ware quality. We provide new insight on how contribu-
tors affect defect density and defect severity, which had
not been done before. Ultimately, we encourage other
researchers to investigate the correlation between con-
tributors, defect density and defect severity in order to
produce similar results and provide additional insight
on how these variables are correlated.
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