UNIVERSITY OF GOTHENBURG

Evaluating Data Marshalling Approaches for
Embedded Real-Time Systems on the Example of
Autonomous Scaled Cars

Bachelor of Science Thesis in the Programme Software Engineering &
Management

VICTOR BOROSEAN
SAULIUS EIDUKAS
ANDY DANG

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering
Goteborg, Sweden, June 2015

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Evaluating Data Marshalling Approaches for Embedded Real-Time Systems on the
Example of Autonomous Scaled Cars

VICTOR BOROSEAN
SAULIUS EIDUKAS
ANDY DANG

© VICTOR BOROSEAN, June 2015.
© SAULIUS EIDUKAS, June 2015.
© ANDY DANG, June 2015.

Examiner: JAN SCHRODER

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Goteborg, Sweden June 2015

Contents

1 Introduction
2 Related Work
3 Methodology
4 Environment

5 Implementation

5.1 Message Structure L o o
5.1.1 Netstrings oo

51.2 LCM

5.1.3 Protobuf.

5.1.4 ROS
5.2 Data Flow .

5.2.1 Netstringso

5.2.2 LCM,
6 Data Collection
7 Data Analysis

8 Findings

Protobuf, and ROS

8.1 Descriptive Expressiveness L.

8.2 Performance

8.3 Serialized Message Size L.

Discussion and Conclusion

9.1 Validity Threats

10 Future Work

11 Summary

12 Acknowledgments

16

16

17
17
19
23

25
25

26

26

27

Abstract

This paper conducted a comparison between four different data mar-
shaling approaches (Netstrings, LCM, Protobuf, and ROS) that were im-
plemented in the OpenDaVINCI environment and evaluated from different
perspectives. In this study we compared the data marshaling approaches
on the low-level, focusing on the overhead in terms of control data and en-
coding/decoding for data structures that are common to OpenDaVINCI.
Further, the data marshaling approaches were compared in terms of de-
scriptive expressiveness with the current interface description language
ODVD.

1 Introduction

One of the most important factors in designing complex systems is to divide it
into different components in order to improve maintainability, fault isolation,
and code reuse [5] [9]. For this reason, it is important to assure a reliable and
fast exchange of information between the system components.

OpenDaVINCI [8] is a run-time environment that is built upon multiple
components which require a continuous and robust connectivity between them.
By default, it uses the Netstrings data marshaling approach. Marshaling is
the process of converting data to a suitable format for sending data between
different software components. Various marshaling approaches provides diverse
features and performance rates.

The purpose of this study is to compare different data marshaling approaches
in terms of controlling data and encoding/decoding for OpenDaVINCI ordi-
nary data structures. Three different approaches were chosen as analogies to
the current implementation (Netstrings) [6]: Lightweight Communications and
Marshaling (LCM) [4], Google Protocol Buffer (Protobuf) [3], Robot Operating
System (ROS) [10]. These three marshaling approaches were chosen based on
their capabilities and use in similar to OpenDaVINCI environments. For in-
stance, LCM was used in the 2007 DARPA Urban Challenge[2], ROS itself is
an operating system for robots, and Protocol Buffers is data interchange format
for resource-constrained, distributed and embedded real-time systems [11].

LCM is described as a new message passing system for inter-process commu-
nication that is specifically targeted for the development of real-time systems
[4]. It places great emphasis on simplicity and usability from the perspective
of a system designer [4]. LCM stands for Lightweight Communications and
Marshaling, because of its functionality and simplicity in both usage and imple-
mentation [4]. It is very similar to XDR, but it is designed with an emphasis
on type safety [4].

ROS is an open-source meta-operating system for robots, which provides
services such as hardware abstraction, low-level control of the device, message
passing between processes, package managements, and commonly-used func-
tionality. ROS also provides libraries and tools for different robotics systems.
Tt is widely used in different real-time systems similar to OpenDaVINCI. [10].

Protobuf is created and widely used by Google. It supports different variety
of platforms and programming languages. Protobuf’s main advantages, com-
pared to XML are that it is simpler, smaller, faster, and less ambiguous. In
order to see how it affects overall performance, we choose to evaluate it and
compare it with other three approaches.

This study contributes by providing OpenDaVINCI three more solutions
towards a better message marshaling capability. This comparison plays a key
role in improving a system’s robustness and effectiveness. It also provides an
outline regarding performances towards serialization capabilities of each of the
data marshaling approach that can be taken in consideration in similar practices.

The aim of this research is to find out which approach is most preferable
for users in terms of control data and encoding/decoding for typical data struc-
tures on real-time systems. Furthermore, this research compares the descriptive
expressiveness property of each approach with the ODVD language. ODVD is
a descriptive language that defines the data types that can be expressed within
OpenDaVINCI environment. Descriptive expressiveness is the property that de-
scribes what types of data can be expressed through the marshaling approach.

We have included two research question in our study:

RQ1: How efficient are the marshaling approaches (Netstrings, LCM, Pro-
tobuf, and ROS) for encoding/decoding messages to the use of the algorithms
within simulation environment?

With the first research question, we were interested to assess efficiency. Ef-
ficiency is a criteria that includes the performance, in terms of time it takes
to serialize/deserialize messages, and the size of the message after serialization
process. These two aspects are important criteria for the data marshaling ap-
proach.

RQ2: How expressive are the interface description languages of the different
marshaling approaches (LCM, Protobuf, and ROS) compared to the existing
ODVD interface description language?

With the second research question, we were interested to find out about data
types that marshaling approaches can express within their descriptive language.
Furthermore, we are interested to compare their descriptive languages with the
ODVD.

In this paper we discuss related works that have common ground with our
intentions and have studied different properties of data marshaling approaches.
Further, we describe the research methodology that involves techniques towards
investigating problems and finding the solution. We describe the environment
where we have later proceed with implementing the approaches. Later, this
study describes the implementation and evaluation phases of the data marshal-
ing approaches on the low-level in one single environment. We compare per-
formances and properties of implemented data marshaling approaches (LCM,
Protobuf, and ROS) with the current implementation (Netstrings) and have a
discussion of the findings. We include a conclusion and list the threats that can
influence the validity of our findings. Lastly, we include suggestions for a future
work, and a summary of the study.

2 Related Work

Researches regarding communication between components gets, by each year,
more studied in different applications and devices. Many studies describe dif-
ferent data marshaling approaches in order to bring up the differences between
them, as well as their different possibilities for utilization [11][13]. After ana-
lyzing the ” LCM: Lightweight Communications and Marshalling”[2] study we
found a comparison in terms of performance between LCM, ROS, and IPC. In
that study, authors examined the latency, bandwidth, and message loss of the
three approaches under different conditions. In the same study, they described
and compared the computational marshaling performance between LCM, ROS,
and IPC. Three different message types were used to perform the comparison:

e a 640x480 grayscale camera image;
e a single scan of a planar laser range scanner;

e a list of 50 waypoints.

Results showed that the LCM implementation in C language is the fastest
when it was marshaling the 640x480 grayscale camera image, and ROS proved
to be the fastest when marshaling the scan of a planar laser range scanner|2].
The comparison was focused on the transfer rate of messages and how reliable
it is. Furthermore, the comparison was made by using different approaches
implemented in different programming languages (Java, C, and C++). In the
same study it was stated that the evaluation was performed for the specific
scenarios. Therefore, performance may vary with the packet size and message
structure[2]. In our case, we evaluated three different type messages which were
sent during parking scenario, with a focus on time it takes to serialize and
deserialize data. Thus, packet size and message structure differs from the study
mentioned above.

The study ” Using Protocol Buffers for Resource-Constrained Distributed
Embedded Systems”[11] presented Protobuf-Embedded-C compiler. The main
focus of this paper was to deploy Protobuf generated code on the embedded
controllers with limited amount of memory. In case presented by the paper it
was 40KB of static memory. It is partly related to our research, because we were
interested in the message size after serializing data, which is part of efficiency
criteria. Protobuf-Embedded-C compiler does not support some data types e.g.
double, int32, bytes, uint32, uint64, fixed32, fixed64, at the current version 1.0.
However, the aim of our study is to evaluate performance of Protobuf using
these data types.

The study provided in this research is focused on comparing the Netstrings
implementation with the further implemented LCM, Protobuf, and ROS seri-
alization approaches. Since the main purpose of the study is to evaluate data
marshaling approaches with data types that are specific for the OpenDaVINCI
environment, it has a different implementation and message structure. All the

details regarding the implementation are described in the Implementation sec-
tion. Furthermore, these approaches were evaluated from the descriptive ex-
pressiveness perspective, which is described in the respective section.

3 Methodology

In order to conduct our study, we have chosen to use, as the research methodol-
ogy, the design science. Design science describes the designing and investigation
of the artifacts in context [12]. It includes the necessary steps for identifying
the problem in the current design of the environment and suggests a technique
for implementing the best possible solution. The object of study in a design
research is an artifact in a context, and the main activities in this research
methodology is to analyze this artifact from the design perspective and inves-
tigating it with the same context [12]. In our case, we were implementing and
evaluating by comparing four different data marshaling approaches, which serve
as artifacts. The design science methodology is conducted inside a single envi-
ronment, which serves as the context. We found evidence in one study|[2] that
only LCM and ROS were implemented and compared to each other in the same
environment. However, we did not find any evidence regarding a comparison
between all four aforementioned approaches in the same real-time environment.

In this research methodology the designing cycle is described as a cycle which
is divided in three major steps:

e Problem investigation
e Treatment design
e Treatment validation

The problem investigation is described to be looking upon the phenomena that
needs to be improved. It is also looking for the reason of this improvement ac-
tion. Treatment design step is responsible for bringing in the possible solutions
(artifacts) that would treat the problem. The treatment validation is investi-
gating each artifact in order to choose the one that would treat the problem.
These three steps are a part of a greater cycle which, with the help of these
three steps, integrates the solution in the real environment. This entire cycle is
called engineering cycle and it consists of five major steps:

e Problem investigation
e Treatment design

Treatment validation

Treatment implementation

e Implementation evaluation

The treatment implementation phase is treating the problem with the chosen
artifact and the implementation evaluation phase is asking the same question
as in problem investigation, but it already investigates the newly implemented
artifact [12]. If the problem was not solved in the implementation evaluation
phase, it starts all over again.

The design science methodology implies that the engineering cycle will con-
tinue looping until the initial problem, deducted from the problem investigation
phase, will be solved. In our case, we have followed all the steps of the en-
gineering cycle but we have not iterated the cycle more than one time. The
reason behind it was the fact that we were limited in time and we could not
perform more iterations of this cycle in order to find the perfect solution, which
is the best substitution for Netstrings, in terms of efficiency and descriptive
expressiveness.

We followed each phase according to the research methodology described
above. In the problem investigation phase we have looked into the problem of
improving the efficiency of the communication inside our environment. As it
was stated in the Introduction section, our aim was to improve the efficiency
of the data marshaling approach of OpenDaVINCI. The reasons behind it was
to improve the communication between the running components of the system.
The treatment design implies exploring different solutions towards solving the
problem, therefore we started looking into substituting it with other data mar-
shaling approaches, that would improve communication across components of
OpenDaVINCI and to make it also more open to other environments. In the
treatment validation step we have picked specifically LCM, Protobuf, and ROS
marshaling approaches for their broad use, performance skill, and compatibility
with other system such as ROS itself. Also, as it was stated in the ”introduc-
tion”, LCM and ROS are used in the systems alike OpenDaVINCI. Descriptive
expressiveness perspective was also taken into consideration in this step. Treat-
ment implementation step, consists of two parts, which are:

e Implementing each of the approach.
e Testing the implemented approaches.

Finally the last step, implementation evaluation consisted of a discussion
based on findings, and concluding the results. It analyzed the properties of the
implemented marshaling approaches (LCM, Protobuf, and ROS) and compare
those with the properties of Netstrings, and generates a conclusion whether the
implemented solutions perform better or worse compared to the original imple-
mentation(Netstrings) according to the criteria described in the data analysis
section.

The design science research methodology is very close to the case study, but
in a case study, we would have as a task to investigate in depth the current
implementation or the reason it was decided to substitute one marshaling ap-
proach over another one [1]. In our case that is not suitable since we had the
task also to investigate the possible solutions, implement those, test and ana-
lyze the results. An experiment would imply that we would have to apply some

treatments for the factors and afterwards investigate the behavior that is caused
after it [1]. The downside of using an experiment, in our case, is the the fact
that it requires more time than we had available. A survey would be suitable
for a collection of quantitative data from multiple practitioners in order to find
out what do they think upon a change that was made regarding substituting a
data marshaling approach [1]. However, we were interested in qualitative data
with a focus on performance rather than opinion of other users regarding each
approach.

Figure 1: Parking sequence used for data recording

4 Environment

”OpenDa VINCI is a lean, portable, collaborative, and extensible C++-middleware
that enables the development and agent-based, unattended testing of distributed
cyber-physical system infrastructures. Its technical concepts were elaborated dur-
ing the academic development of two autonomously driving vehicles: ”Caroline”
from Technische Universitdt Braunschweig, Germany and the experimental ve-
hicle from "CHESS” (Center for Hybrid and Embedded Software Systems) at
the University of California, Berkeley” [8].

The environment we used for the assessment is called Open Source Devel-
opment Architecture for Virtualization of Networked Cyber-Physical System In-
frastructures (OpenDaVINCI). OpenDaVINCI is a software development and a
run-time environment [8] for vehicles. It simulates real world environment for

the autonomous vehicles, by simulating real world scenarios of vehicle movement
on the lane of the road and in parking areas. In our case, we picked a scenario
where car was parked parallel to the road between two objects. In Figure 1 it
is displayed the starting and the ending point of the parking sequence together
with the path that the car is traveling from starting point till the end of the
sequence. The scenario was performed ten times during data collection.

In Table 1 it is described hardware and software specifications of the system
where data collection was performed.

Table 1: System information
Operating System | Ubuntu 15.04 64bit
CPU | Intel(R) Core(TM) i5-4300U CPU @ 1.90GHz
RAM | 8GB DDR3L SDRAM 1600 MHz

Kernel version | 3.19.0-18-generic

5 Implementation

In order to assess LCM, Protobuf, and ROS in the same conditions, we had
to implement them in OpenDaVINCI environment and compare their perfor-
mances along with the already implemented one (Netstrings). In this section
we described the flow of the data passing through OpenDaVINCI along with:
the description of the additionally implemented serializers, how they process the
data, and how serializers were implemented.

In order to be able to compare each approach, the data flow had to be
kept as close as possible to the Netstrings serialization sequence. Therefore, we
have performed an analysis of the OpenDaVINCI environment and identified
the main classes used in the data marshaling process. These classes will be
discussed in the Data Flow subsection.

5.1 Message Structure

LCM, Protobuf, and ROS have unique way to structure their serialized pay-
load. During implementation phase our goal was to implement each approach
while keeping their original structure of serialized message. Thus, allowing each
respective approach to communicate with third-party software using their ap-
proach to serialize message. In the sections bellow, we outlined and explained
the structure of message serialized by Netstrings, LCM, Protobuf, and ROS.

5.1.1 Netstrings

The structure of Nestrings message is illustrated in Table 2.

The Magic Nr. is a number used to confirm that the data received has been
serialized using Netstrings serializer, and that it is possible to decode data using
Netstrings message structure.

Table 2: Structure of Netstrings message
Magic Nr. ‘ Length ‘ Payload ‘ Comma
16 bit integer ‘ 32 bit integer ‘ ‘ 8 bit value

The Length provides information regarding the length of the serialized mes-
sage. It is used during the deserialization process for identifying the end of the
payload, which is followed by a comma.

The Payload is the serialized data. The data fields of a serializable class
will be serialized and written in the same order in which the write functions
were being called. Every variable that gets serialized also gets an ID provided
to it. The ID is used later to identify the location of the variable in the process
of reading the entire message. It is written to a buffer which holds the entire
serialized message. When the data is serialized using Netstrings, it first encodes
the provided ID in network byte order (Big-endian). Network byte order implies
that the bytes of the encoded data are reversed while being encoded. It is the
most common convention used in data networking, therefore it is safer to send
the data in network byte order to avoid performance issues. The size of the data
is converted to network byte order and written to the buffer as a 32 bit size
value. Further the data, which is usually a variable, is also encoded in network
byte order and written into the buffer. The payload will have a structure as
illustrated in Table 3.

The Comma indicates the end of the message and it is used to check for the
message data corruptness. When the full message is read, but no Comma was
found at the end of the stream, it would mean that the data got corrupted, and
some data may have been lost.

Table 3: Payload structure of Netstrings messages implemented in Open-

DaVINCI
ID ‘ Size ‘ Variable ‘ ID ‘ Size ‘ Variable ‘ ID ‘
32 bit | 32 bit 32 bit | 32 bit 32bit
integer | integer integer | integer integer

ID is being used in order to pair values with their representative ID, and
making it easier to find during the deserialization process. Size provides infor-
mation for deserializer regarding the number of the bytes it took to write the
value of variable.

5.1.2 LCM

The structure of messages from the LCM are illustrated in Table 4.

LCM serialization/deserialization uses network byte order(Big-endian), and
uses UDP for the communication. The Magic Nr. has the same purpose as in
Netstrings; it is used for checking if the received message has been serialized
into an LCM structure. This Magic Nr. is the same number as the number that

Table 4: Structure of LCM messages
Magic Nr. ‘ Sequence Nr. ‘ Channel Name ‘ Null Terminator ‘ Hash ‘ Payload

32 bit 32 bit String 8 bit 64 bit
integer integer integer integer

is used in the third-party LCM system. This is done in order for other systems
to be able to identify which serializer has been used to serialize the message.

The sequence number is a number that, in the LCM system, is increased for
each message sent to know if a message has been dropped.

The channel name is the channel in the UDP stream where messages related
to the channel name are being sent e.g. data related to the vehicle control, would
be sent to channel ” VehicleControl”.

A null terminator is placed after the channel name in order to know when the
channel name ends, because maximum size of the channel can be 256 characters.

Hash is a number that is generated based on the names of the member
variables and the types of these variables. It is used in order to ensure that
both sides of system agreed on same data types in the message.

The payload is the serialized data. The data fields of a serializable class will
be serialized and written in the same order that functions are being called. The
payload is encoded in network byte order and written to a buffer. Unlike the
implementation of Netstrings, there is no ID marking of the locations of the
variables in the message and this means the data must be read in the same
order as it was written.

5.1.3 Protobuf

Table 5: Structure of Protobuf message
Magic Nr. | Payload
16 bit
integer

Full message structure of Protobuf is displayed in Table 5. Protobuf provides
specifications for the structure of the payload as displayed in Table 6, and the
structure of the message is up to the user to decide, therefore it can be adapted
based on systems requirements and specifications. In our case, message header
included just Magic Nr. Protobuf encodes data using little-endian byte order.

Table 6: Payload structure of Protobuf message

Size of payload ‘ Key ‘ Value ‘ Key ‘ Value ‘ ‘
32 bit 32 bit 32 bit
integer integer integer

10

Protobuf does not have any indicator for the end of the payload, thus in order
to make sure it reads all bytes, it keeps size of the payload in front. Therefore,
when a message is being deserialized, Protobuf knows how many bytes it has to
read in total.

Protobuf uses WIRE TYPE and PROTO TYPE data types to classify vari-
ables into categories. WIRE TYPE contains: varint, bit 64, length delimited,
bit 32, and other. Serialization type depends on variables WIRE TYPE and
PROTO TYPE. PROTO TYPE contains information about variables types.
Key is formed from those types (WIRE TYPE and PROTO TYPE). Key stores
information about variable size and type, and field ID which is defined in the
message’s structure. Each Key is paired with a value which stored in least
amount of bytes it requires to store it.

5.1.4 ROS

ROS provides two different message structures based on the type of the message
and how the message is being transferred (UDP and TCP). ROS UDP specifica-
tions met our system specification best, therefore the focus was just set on the
message structure, which is sent on UDP stream. ROS’s UDP and TCP differs
in the header only, with the payload being the same for both. The following
structure can be seen in the Table 7 bellow.

Table 7: Structure of ROS UDP message
Connection ID ‘ Opcode ‘ Message 1D ‘ Block Nr. ‘ Payload ‘
32 bit 8 bit 8 bit 16 bit
integer integer integer integer

ROS messages are serialized in the little-endian format, which means that
least significant byte is written in the smallest address. Connection ID rep-
resents the connection name to which messages are sent. This ID has to be
agreed when the connection is established. The opcode defines the message
types. While ROS system supports different message types, in our case we were
sending one type of messages.

Message ID is an 8-bit value which is used to identify if there is a message
loss. It is done by reading each message ID and checking if values are in correct
order.

ROS divides one big message into few smaller messages and sent as fragment.
Block Nr. is used to store the number of messages after they were fragmented.
OpenDaVINCI uses non-fragmented messages.

Table 8: Payload structure of ROS message
Size of payload ‘ Value ‘ Value ‘ ‘
32 bit
integer

11

Payload structure is displayed in Table 8 and is very simple, it first writes
size of the payload, and the values are written after.

5.2 Data Flow

Before starting the implementation of the serialization part of each approach,
we studied the data flow for the Netstrings serialization in order to find out how
it was implemented and how we should implement the other three approaches.
Since Netstrings is the default serialization/deserialization approach, we have
implemented the other three approaches to have the same procedure when se-
rializing and deserializing.

Figure 2: Serialization Sequence Diagram for Netstrings

Driver UDPMC* ‘Container NehicleData SerializationFactory| ‘QMetstringss*

‘Gontainer c{Gontainerviehicledata vd): '
: : im_senializedData << SerializableData;

SerializatioFactory::getSerializer(out);
—_——

return *Serializer;

H H PR e
' return '
D EnEEE R P GDRnEEEEERERE !

¥
\UDPMC:getContainer.sendic);

-]
'stringstreamvalue << Container: H
H SerializationFactory::getSerializer{out);

| return * Serializer; |
e PR TR T L L :
: Serializer:write(value); :

return in;

: return !

‘UDPMulticastContainerConference
*QueryableMetstringsSerializer

5.2.1 Netstrings

The Figure 2 is the sequence diagram that illustrates the data flow and the way
it is being serialized and sent to the UDP multi-cast container conference, which
further sends the message to the UDP stream.

The Figure 3 is a sequence diagram that illustrates the data flow from when
it has been received from the UDP stream and the way it is being deserialized
and read.

12

Figure 3: Deserialization Sequence Diagram for Netstrings

‘UDPMGC* Driver ‘Container VehicleData SerializationFactory Deserializer

SerializationFactory::getDeserializer|stringstreamData);

return “deserializer;

slringslreamDalé == container; ! !
» SerializationFactory::getDeserializer{out):

return * deserializer:
' Deserializer-readivalue); 1

container::container.VehicleData.getData<VehicleData> ();
—_——

a

m_serilizedData == containerData;

SerializationFactory:getDeserializer(in);
_—-

return *deserializer;

Deserialzer:readivalue);

return in;

sreturn comamerDaIa:i‘i

“UDPMulticastContainerConference

In the Figure 2 the flow starts when all the data fields of a message is set
by a class and a container is created which will contain the message. We drew
the diagrams on the example of the driver class. This class is used to control
a vehicle automatically and it sets the data fields for the Vehicle Data class,
which has fields for different information about the vehicle e.g. speed, steering
wheel angle, and acceleration.

As the container object gets created with a data type which is a value de-
scribing what data this container will contain, and an instance of vehicle data.
All values inside of the instance gets serialized by calling predefined serializer
functions in the Vehicle data class. In order to serialize the data, Vehicle Data
asks a Serialization Factory for a serializer that will be used in order to serialize
data. A Serialization Factory is a class where the serializers and deserializers
are created, and it is created every time a serializer or deserializer is needed.

Once the container is created with serialized data, the data is sent to the
UDP multi-cast container conference. Additional information is added, includ-
ing data type of container, serialized data to send and a time stamp, marking
the time when the container was sent. The container with all this additional
information is serialized again, and a header is added to the front of message,

13

and sent to UDP stream.

In Figure 3 the flow of the deserialization part starts in the UDP multi-
cast container conference. Whenever data is received from the UDP stream,
the container is deserialized and stored. Once a class, in this case the Driver
class, wants to access the data, the stored container is acquired by providing
the data type value for Vehicle Data when creating a container. The data in
the container is deserialized, read, and returned to the Driver class.

Figure 4: Serialization Sequence Diagram for LCM, Protobuf, and ROS

:Driver :UDPMC* ‘Container VehicleData SerializationFactory| Serializer

EComainer c[Conlainervfehicledala wd):

m_serializedData << serializableData;
]

SerializationFactory::getSerializer(in):
———————*

| return
R REEEEEEEEEE Frmmmmmmmmemeeieeend]

Serial\'zamnFamoriigetSerializier(in]‘.

—]
\getcontainer.send(c);
! return * Serializer;

T Masi et . s
: : Serializer::wriie(container]: :
: | m_out << cotainer; :
Ser\alizationFacmrvly'.:getﬁeriahzer(om]:
| return ‘Slenalizer: |
e rese s e e
H : Sarializer:write(valua); ..i
: return 'E
: T eton : :
4 __

‘UDPMulticastContainerConference

5.2.2 LCM, Protobuf, and ROS

In the case of LCM, Protobuf, and ROS, serializers and deserializers have the
same data flow, which is almost the same in the Netstrings serialization. Figure
4 illustrates the new flow on the example of LCM serializer and Figure 5 displays
example of LCM deserializer.

The difference is the addition of a write(container) and a read(container)
function to the serializers and deserializers respectively, which are called from
the UDP multi-cast container conference. These functions writes/reads the
header to the container before sending it to the UDP stream. They are required
because OpenDaVINCI is designed to operate in such way. There are at least
two serializers that are being created during the serialization process and every
time a serializer is created, a header is added to the message. If the messages

14

Figure 5: Deserialization Sequence Diagram for LCM,

‘UDPMGC*

Protobuf, and ROS

e

‘return containerData; (<" 7T T T H

Driver ‘Container VehicleData SerializationFactory Deserializer
| SerializationFactory::getDeserializer|stringstreamData); H |
; : : : > H
| | return “deserializer; : H |
H H H deserializer:read(container); H H
H H H m_buffer == container; H
H H H SerializationFactory::getDeserializer{out); . H
H H H . » H
H H H return * deserializer; . H
H H Deserializer:read(value); | H
container::container.VehicleData.getData<VehicleData> ();
' — = ' ' '
m'_ serilizedData > comamerDalla:
: SerializationFactory:getDeserializer(in);
! return *deserializer;
Deserialzer:readivalue);

“UDPMulticastContainerConference

are to be sent to systems outside OpenDaVINCI, they can’t contain more than
one header. That is why a separate function for adding the header is required
instead of having the serializer to add it.

15

6 Data Collection

After the implementation phase, we collected the data by recording message
serialization/deserialization time values and size values of the same message. We
chose Vehicle Control, Vehicle Data, and Sensor Board Data containers to collect
our data. Each container had different structure. Vehicle Control contains three
double type and three boolean type variables. Vehicle Data contains two Point3
type and seven double type variables. Sensor Board Data contains one string.

Values of each container performance were used to assess each serialization
approach. The assessment included the following aspects:

e size of the serialized message;

e serialization/deserialization speed of the messages;

In order to collect all the required data for the following assessment, we went
through each one of these aspects in part.

The size of the serialized message was collected after serialization by calcu-
lating the size of the header separately and then adding the size of the payload,
which is the actual container that was serialized.

The serialization/deserialization speed of the messages was collected by adding
time stamps before and after the message was serialized /deserialized.

The size of the serialized message and the time it took to serialize it has
been collected from two classes.

In the UDPMulticastContainerConference we have extracted the size of the
serialized container while running the system with having each of the approaches
implemented each at a time. Also, in the same file we have set time stamps
before and after the serialization of the container. We used the time stamps for
measuring the time it took for serializing the container. Deserialization time of
the header was measured in the same file.

The payload size was measured in the Container.cpp. In the same file we
measured the time of payload serialization using time stamps. The deserializa-
tion time of the payload was measured in the Container.h. The deserializing
function m_serializedData is called from the header file by default.

We ran each approach with the same exact data in order to evaluate them
objectively. We have collected all the data while running a parallel parking algo-
rithm in the simulation environment provided by OpenDaVINCI. The parking
sequence was performed ten times for each collection. We were collecting over
25 000 values each time the sequence was initiated. The collected data was
stored in output files for the further analysis.

7 Data Analysis

Before conducting an analysis the raw data was averaged out in order to be able
to measure the collected results and to illustrate the performance differences
between the approaches with bar charts.

16

The analysis itself was divided into two phases. The first phase included a
comparison between the approaches in terms of performance. The performance
comparison took part across all four data marshaling approaches and consisted
of the following parts:

e time wise comparison to serialize the message;
e time wise comparison to deserialize the message;
e size comparison of the serialized message;

We compared message size of all implemented approaches. This included a
separate comparison of the serialized payload size and the serialized container
size. The further step included the comparison of the time it took for the
message to be serialized using a given approach. This aspect also included the
timings of the serialized payload separately. Lastly, the performance comparison
included the difference of time required by each approach to deserialize the entire
message and the payload separately.

The second phase included an analysis of the results in compliance with
the descriptive expressiveness. The outcome of this phase was to generate the
final conclusion regarding the effectiveness of each approach and to identify the
advantages and disadvantages of the newly implemented approaches over the
Netstrings.

8 Findings

8.1 Descriptive Expressiveness

Marshaling approaches compared in this study were evaluated in terms perfor-
mance and descriptive expressiveness. Descriptive expressiveness is responsible
for indicating the level of the types of data a language supports and is able to
express. In this section we describe the similarities, differences, and specifics of
each of the three approaches compared with the ODVD language.

ODVD is the language that describes all the different types of data used to
communicate within the OpenDaVINCI environment. Besides primitive data
types, ODVD and the descriptive languages of the approaches that were imple-
mented, use utilities that generate functions for marshaling and unmarshaling
custom data types. In ODVD, these custom data types are: messages, lists,
maps, fixed arrays and enumerations. Messages are compound data types that
consist of other data types. They are used for the exchange of the information in
the data streams. All the included approaches support communication through
message exchange.

In ROS, for instance, a message is a sequence of different values that are
arranged in an order, which is defined by a type descriptor (Topic and Service).
We will mainly refer to topic descriptor in this paper since it is uni-directional,
thus it requires only the definition of a message type. The service descriptor is
used for a request/response method[13].

17

Table 9: Compound data types

Compound data types | ODVD | LCM Proto ROS
Message X b b X
List X X
Map X X X
Fixed Array X X X
Enumerations X b X

The topic message descriptor in ROS is written in a file with the .msg exten-
sion and its name is the name of the type described inside the file. It supports
the nested data structure as well: in each line both primitive types and another
message type descriptor. It can also support another compound types such as
arrays [13]. In LCM the principle is the same, assuming that is has structs that
contain other different types. It can also contain different structs. Thus, we can
also consider that it supports nested data [4]. In Protobuf, there is the same
principle as well. It has the .proto files that contain structs which can contain
not only scalar types but also composite types such as enumerations or other
structs. In Protobuf it is possible to define more messages types in one single
.proto file.

Table 10: Primitive data types supported by ODVD
Boolean ‘ Char ‘ Int32 ‘ Uint32 | Double ‘ Float ‘ String

Regarding other compound and custom data types, among the approaches
discussed in this study, list types are supported only by ROS currently. Map
types are supported by Protobuf and ROS. Fized array type is supported only
by LCM and ROS. Arrays are not supported by Protobuf directly[3].

For the unsupported types, LCM provides users with simple declarations
of constants that serves to substitute other data fields. Enumerations, magic
numbers or bit fields, for instance, can be expressed through constants [4].

An overview of the support of the complex data types are listed in the Table
9.

Table 11: Primitive data types

Primitive data types | ODVD | LCM Proto ROS
bool b X X uint8
char X int8 byte X
int32 X X X X
uint32 X X X
float b X X X
double b X X X
string X X X X

18

In terms of primitive data types, the ODVD supports the primitive data
types listed in Table 10.

All of the approaches support all of these types listed above, except for the
char that is not supported directly by neither LCM nor Protobuf. Instead, LCM
uses int8 to express a char type. For any data that is expressed as byte sequence
Protobuf uses bytes to encode it. For enumerations Protobuf uses integers en-
coding method. All values has to be in a rage of 32 bit integer otherwise it is
not efficient and not recommended [3]. LCM also does not support unsigned
integers in order to avoid problems when it is being used with programming
languages that do not support unsigned integers, like JAVA.

The boolean type is expressed through an uint8 type in ROS.

The overview of the compatibility of the primitive types of Protobuf, LCM
and ROS with the descriptive language ODVD is displayed in the Table 11.

8.2 Performance

In this section we wrote the performance results in terms of serializing/deserializing
times and also in terms of size of the messages being serialized. In the Figure 6
is displayed the serialization time of the entire container. The structure of the
container is illustrated in the Table 12.

Table 12: Structure of the container
Data type ‘ Data ‘ Sent time ‘ Received time

Uint32 ‘ String ‘ Time stamp ‘ Time stamp

The container is being used for wrapping the data that is going to be sent,
this data is called serializable data in OpenDaVINCI environment. The struc-
ture of the container is never changed since the serializable data is contained as
a string in this container. Therefore, in the Figure 6 and Figure 7 we can ob-
serve that each serializer has performed roughly the same when it came to time
to serialize and deserialize these containers. The difference is more noticeable
when different approaches are serializing/deserializing the same container.

19

Figure 6: Serialization time for the entire container (in microseconds)

30 n

20 .

Time

10 N

Vehicle Data Vehicle Control Sensor Board Data
! 1 Netstrings lBLCM | © Protobuf f BROS

Figure 7: Deserialization time for the entire container (in microseconds)

40 n

Time

20 .

Vehicle Data Vehicle Control Sensor Board Data
I i Netstrings lILCM " ' Protobuf IROS

From the Figure 6 we observe how different the approaches are handling this
container while serializing it.

LCM was the slowest one because it calculates the hash while serializing
the container. Netstrings serializes the container the fastest because it is not
strict regarding the payload structure. Therefore it was adjusted to the Open-
DaVINCI design. Protobuf and ROS perform very close to each other. ROS was
slightly slower since its header is by six bytes bigger than the two-byte header
of Protobuf.

The Figure 7 displays the time in which data marshaling approaches read
the containers. In this case, Protobuf has performed the fastest since the con-
tainer was smaller, because Protobuf is writing only the bytes that contains
information, the rest of the bytes are dropped. An important factor is also the
fact that it has the smallest header (2 bytes). LCM was performing closely to
Netstrings, but slightly slower since it also spends time to deserialize the hash.
ROS proved to be the slowest.

In the Table 13 we showed the same difference as it is in the Figure 6, and

20

7 but now we measured the time differences in percentages of serialization and
deserialization procedure. Thus, we can state that when it comes to serializa-
tion, Netstrings outperformed all other approaches, where in the deserialization
process, Protobuf takes the lead.

Table 13: Container serialization/deserialization time comparison to Netstrings

Serialization Netstrings | LCM Protobuf ROS
Vehicle Data 100% +47.5% +27.9% +36.2%
Vehicle Control 100% +46.7% +28.6% = +35%

Sensor Board Data 100% +55.6% +37.2% +42.8%

Deserialization
Vehicle Data 100% +2.5% -8.4% +14.7%
Vehicle Control 100% +6.2% -18% +21.4%

Sensor Board Data 100% +15.3% -8% +24.8%

In order to send the container with data, we needed to have this data se-
rialized first. The Figure 10 displays how each approach performed when it
came serializing three different container types, which are: vehicle data, vehicle
control, and sensor board data.

First, we will display the content of the data that is being serialized in the
Figures 8, 9. Sensor board data contains only a single string.

Figure 8: Vehicle Data (VD) structure
point3 ‘ double ‘ double ‘ double ‘ point3 ‘ double ‘ double ‘ double ‘ double

Point3 data type is specific for OpenCV [7]. It contains three double data
types inside.

Figure 9: Vehicle Control (VC) structure
double | double | double ‘ boolean ‘ boolean ‘ boolean

Protobuf proved to have the best performance in serializing vehicle data and
vehicle control, and third in serializing sensor board data. This is due to the
fact that Protobuf reduces message size while writing as little byte amount as
needed to express the value. Since sensor board data is a long string, it could not
reduce the amount of bytes needed to write. Since Netstrings writes all bytes of
each variable while serializing it, came into second place for vehicle data, vehicle
control and first when it came to the sensor board data. LCM performed slower
than Netstrings because it was affected by hash generation. ROS proved to be
the slowest in this case.

Figure 11 displays the time it takes to read different serializable data with
different approaches. When it came to reading Vehicle Data, LCM performed

21

Figure 10: Serialization time for the serializable data (in microseconds)

Time

20 .

Vehicle Data Vehicle Control Sensor Board Data
! 1 Netstrings lBLCM | © Protobuf f BROS

Figure 11: Deserialization time for the serializable data (in microseconds)
60 =

40 n

Time

20 .

Vehicle Data Vehicle Control Sensor Board Data
! 1 Netstrings lBLCM | © Protobuf f BROS

the fastest. This is because the hash value is ignored by the deserializer, since
it is not used inside OpenDaVINCI, making LCM faster compared to the other
three when reading many different variables. Protobuf is being the slowest, even
though the size is the same as for LCM and ROS. This means Protobuf is slow
at reading strings, but in the Vehicle Control, it is faster, even though the sizes
are the same. ROS has a pretty straight forward way of reading strings and it
performs average in terms of reading time. Netstrings is a little bit slower than
LCM, because it assign the IDs in the structure. This fact slows Netstrings
down when it comes to reading smaller strings.

In Table 14 we have showed an overall difference between Netstrings and
other implemented approaches when it comes to time required for serializing
and deserializing the serializable data, such as vehicle data, vehicle control and
sensor board data.

22

Table 14: Serializable data serialization/deserialization time compared to Net-

strings
Serialization Netstrings | LCM Proto ROS
Vehicle Data 100% +3.5% -9.4% +11.2%
Vehicle Control 100% +33.5% -2.5% +27.9%

Sensor Board Data 100% +9.8% +10.6% +20.9%

Deserialization

Vehicle Data 100% -4.1% +38% +13.2%
Vehicle Control 100% -45.8% -57.6% -46.3%
Sensor Board Data 100% -4.7% -1% +10.4%

8.3 Serialized Message Size

In Figures 12, 13, and 14 we have illustrated the size of the entire message being
serialized containing the serialized data, payload of the message, and the header.
We measure the serialized message in three cases:

e containing wvehicle data as the serializable data;
e containing wvehicle control as the serializable data;

e containing sensor board data as the serializable data.

Figure 12: Size of the Vehicle Data message (bytes)
T

T T T
300 | .
S
200 :
[I— [
100 L §

Netstrings LCM Protobuf ROS
Serializable Data M Payload " Header

One thing to notice is that in all cases we addressed to vehicle data, vehicle
control, and sensor board data as the serializable data, but in this case it is
already serialized and included in the payload as a string of bytes. In these
figures we illustrated how the newly implemented approaches (LCM, Protobuf,
and ROS) serialized the messages in terms of size, compared to Netstrings.
Netstrings as a result proved to have largest serialized messages. This happens
due to the Netstring’s method of serializing the message. This structure is

23

illustrated in the Table 3. Otherwise Protobuf is clearly the winner in this
competition, regardless of the serialized data. It is due to the fact that Protobuf
writes smaller numbers in less bytes. LCM and ROS are performing very closely
to each other, since they write all bytes based on variables data size.

Figure 13: Size of the Vehicle Control message (bytes)

200 - .

150 |- .
N
7 100 |- .

il H m B
Netstrings LCM Protobuf
I Serializable Data M Payload " Header
Figure 14: Size of the Sensor Board Data message (bytes)
T T T T

150 |- .
N
o 100

Netstrings LCM Protobuf
I Serializable Data M Payload " Header

In the Table 15 it is shown the size differences of the serialized messages
LCM, Protobuf, and ROS compared with the serialized message of Netstrings.

Table 15: Serialized message size compared to Netstrings

Serialization | Netstrings | LCM Protobuf ROS
Vehicle Data 100% -50.9% -56.8% -53%
Vehicle Control 100% -58.6% -70.7% -64.9%

Sensor Board Data 100% -40.6% -60 % -49.4%

24

9 Discussion and Conclusion

After mentioning the differences regarding the performances and descriptive ex-
pressiveness, we used this section to outline the findings regarding performance
and to make a parallel of those to the descriptive expressiveness propriety.

Performance wise, we have seen the fact that Netstrings, the initial serial-
ization approach used in OpenDaVINCI, overall outperformed every other im-
plemented approach. It is due to the fact that it is flexible in terms of payload
structure and therefore it was shaped to fit the design of the environment. One
problem of Netstrings is the fact the serialized messages become much bigger
compared to the rest of the approaches. In this field Protobuf’s ability to gen-
erate serialized message in less bytes helped to generate the smallest serialized
messages. LCM and ROS performed very close to each other in terms of perfor-
mance, both for serialization time and message size wise. LCM is recommended
when it is important to make sure, that both sides of communications agreed
of message structure. Protobuf excels in environment where size of message is
limited and size has to be as small as possible. Moreover, Protobuf showed good
performance when messages had numeric values. ROS should be picked when
main system requirement is compatibility with its ecosystem, as it displayed
average performance compared to LCM and Protobuf.

Regarding descriptive expressiveness, each of the newly implemented ap-
proach is different compared to the ODVD descriptive language. Not so much
when it comes to the primitive data types, with some small exceptions. The
difference was noticed when it came to the compound data types. LCM proved
to be the least descriptive approach compared to ODVD. ROS, on the other
hand, has proved to be the most expressive. It supports all the compound data
types that ODVD provides. The Protobuf supports more than LCM, but less
than ROS, making it possible to be placed in the middle.

Overall we did not find any ideal substitution for Netstrings. Everything
depends on the intention of the practitioners. Protobuf’s strongest side is the
small size of the message. This feature is very useful when it comes to connection
with a limited bandwidth. LCM is designed for a secure connection between
components. And finally, ROS has an enormous ecosystem, and elaborating a
connection with it opens a larger window for future development.

During our research, main limitation we faced were time frame. Because
of the time restriction for this research, we had time just to evaluate all four
approaches within simulation environment. By expanding time frame it would
be possible to get more accurate data by measuring performance on real-time
system, in our case autonomous self-driving car.

9.1 Validity Threats

A validity threat is the threat that can affect the validity of our collected data.
In our research we have identified few of such threats that could influence our
findings.

One of the threats, we assume, is the fact that we have kept the same

25

structure of the payload for all the approaches. The results could have changed
in the case when we would personalize the payload to the marshaling approach.
For example, in the case of LCM, the Data Type of the Container could have
been removed from the payload since we had it already as the Channel Name
in the header. In the case of ROS, the Data Type of the Container could have
been moved from the payload and written in the header as the Connection ID.
That would decrease both the size and the serialization/deserialization time of
the payload for ROS and LCM approaches.

The second threat to our validity is the fact that we were not able to verify
100% the structure of the serialized messages with third party systems ROS
and Protobuf. The reason of that is because Protobuf provides just tools and
structure to generate payload, leaving communication for the user. Having
time constraints, we did not have enough time to create communication system
outside OpenDaVINCI. Same reason is for not having ROS implementation
tested with the third-party system. However, we confirmed the structure of
simple message based on raw data found in literature [11] [13].

10 Future Work

Our research showed that in most cases when it came to serializing speed Net-
strings outperformed LCM, Protobuf, and ROS. Nevertheless, there are still
many different marshaling approaches that can be tested and compared with.
However, optimizing each approach for OpenDaVINCI, should show improve-
ments in the performance. The next steps are to design and implement a robust
way to switch between different marshaling approaches. That would provide
more flexibility and freedom for the users of OpenDaVINCI. Furthermore, this
research was focused on evaluating performance of each given approach, so in
order to find the reasons of performance, another research with a focus on find-
ing out why each approach performs this way. This information would allow to
improve and find best ways to marshal messages.

11 Summary

In this research paper we have discussed about different marshaling approaches
that were implemented and evaluated in the OpenDaVINCI environment. In the
beginning of the study we have introduced the definition of data marshaling and
its importance for the real-time systems. We have talked about the marshaling
approaches that were chosen to be implemented in the environment along with
reason behind this choice. We have then listed two research questions which are
describing the goals of our research. We described the research methodology
which guided our study and described the environment we have been tested the
newly implemented marshaling approaches. In this paper we have also discussed
the method of collecting the necessary data that was required for the further
intended analysis. The implementation procedure was described that included

26

some insights regarding the serialization design of OpenDaVINCI environment.
Later we have included the finding in terms of how all approaches performed
and illustrated the results in charts and tables. That included both the time of
serializing/deserializing and the size of the serialized messages the approaches
produce. Also we have showed the differences between them regarding the
descriptive expressiveness. There we analyzed both the primitive and compound
data types that are supported in the newly implemented serializing approaches
and compare these with the descriptive language ODVD. We performed the
discussion where we talked about the fields in which LCM, Protobuf, and ROS
would be more useful. Lastly we a suggested for the future contributors to keep
improving OpenDaVINCI environment by trying other approaches and improve
the flexibility of its design.

12 Acknowledgments

The authors of this paper would like to thank Dr. rer. nat. Christian Berger
for collaboration and interest in our research. Furthermore, we would like to
thank Hugo Sica de Andrade and Federico Giaimo for reading, reviewing, and
providing feedback for this study.

References

[1] John W Creswell. Research design: Qualitative, quantitative, and mized
methods approaches. Sage publications, 2013.

[2] Albert S Huang, Edwin Olson, and David C Moore. “LCM: Lightweight
communications and marshalling”. In: Intelligent robots and systems (IROS),
2010 IEEE/RSJ international conference on. IEEE. 2010, pp. 4057-4062.

[3] Language Guide (proto2). URL: https : / / developers . google . com/
protocol-buffers/docs/proto (visited on 03/15/2015).

[4] LCM: LCM Type Specification Language. URL: http://lcm-proj.github.
io/type_specification.html (visited on 04/17/2015).

[6] Bertrand Meyer. Object-oriented software construction. Vol. 2. Prentice
hall New York, 1988.

[6] Netstrings. URL: http://cr.yp.to/proto/netstrings.txt (visited on
04/27/2015).

[7] OpenCV — OpenCV. URL: http://opencv.org/ (visited on 04/24/2015).

[8] OpenDaVINCI - Open Source Development Architecture for Virtualization

of Networked Cyber-Physical System Infrastructures. URL: http://www.
cse.chalmers.se/~bergerc/opendavinci/ (visited on 04/27/2015).

[9] David Lorge Parnas. “On the criteria to be used in decomposing systems
into modules”. In: Communications of the ACM 15.12 (1972), pp. 1053~
1058.

27

ROS.org — Powering the world’s robots. URL: http://www.ros . org/
(visited on 04/27/2015).

Wolfgang Schwitzer and Vlad Popa. Using Protocol Buffers for Resource-
Constrained Distributed Embedded Systems. Tech. rep. TUM-11120. 2011.

Roel J Wieringa. Design science methodology for information systems and
software engineering. Springer, 2014.

Andrea Zoppi. “A lightweight open source communication framework for
native integration of resource constrained robotics devices with ROS”. In:
(2013).

28

	Cover page GU software bachelor.pdf
	bachelor-thesis.pdf

