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ABSTRACT

This thesis is devoted to the study of DNA molecules in nanochannels.
In the last ten years, a large number of studies have been conducted
wherein DNA molecules were confined to channels with a width of about
100 nm. These studies are motivated both by biotechnical applications,
and by the potential for using nanochannels as a model system for
studying the physics of confined DNA. The results of this thesis increase
our understanding of the equilibrium statistics of such channel-confined
DNA.

The results can be divided into three parts. In the first, we derive
novel predictions for the extension statistics of channel-confined polymers.
Specifically, we map out a phase diagram of scaling regimes for a polymer
in a rectangular channel. Further, in an important special case known
as the extended de Gennes regime, we show that the configurational
statistics are equivalent to those of a one-dimensional model known as
the weakly self-avoiding random walk. Exact results for that model yield
rigorous predictions for the confined polymer.

In the second part we report experimental measurements of the
extension statistics of confined DNA. We find that the measurements
agree very well with theoretical predictions, except at low ionic strengths.

Finally, the third part of the thesis concerns the melting of DNA, i.e.
the partial disassociation of its two strands at elevated temperatures.
We solve a simple model of DNA melting and show that, within this
model, channel confinement makes the transition to the molten state
less abrupt, despite the fact that the order of the phase transition is
unchanged by confinement.
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PART 1
INTRODUCTION

Chapter 1. Introduction

This thesis concerns the statistical description of a very long molecule
(a polymer) that is confined to a channel which is much narrower than
the size of the molecule. The primary motivation is recent experiments
where DNA molecules are inserted into channels with a width of about
100 nm. The research in this thesis attempts to explain the observations
of these experiments, and to predict what is likely to happen in similar
experiments which have not yet been carried out.

The experiments are interesting for three main reasons. First, under-
standing the behaviour of confined DNA molecules is of great biological
interest. DNA plays a vital role in all living cells, in an environment
where the molecule is always confined by the membrane of the cell or the
nucleus. Nanochannel experiments provide a possibility to investigate
the physics of DNA molecules in well-controlled environments and simple
geometries, and can hopefully help us understand the configurations
of a DNA molecule in a cell. Such experiments have revealed that
confinement significantly alters the properties of DNA [2, 3]. Second,
there are biotechnical applications where DNA is confined in channels,
e.g. genomic mapping [4-10] and the study of DNA-protein interactions
[11-16]. To optimise these systems, it is necessary to understand the
configurations of the molecule, and to be able to predict the effect of
changing the system parameters. Third, DNA molecules in nanochannels
are an excellent model system for polymer theory, as DNA are long and
well-characterised, and standard techniques for handling, manipulating
and visualising single DNA molecules have been developed by biologists.
Similarly, the development of clean room patterning techniques allows
for the manufacturing of well-defined geometries down to the nanometre
scale [2, 5, 17]. This has enabled the testing of old polymer theory
predictions [18-23], and has raised a number of new questions regarding
single-polymer statistics [24-27].



2 INTRODUCTION

Finally, one of the most useful aspects of polymer theory is that its
results are not specific to a certain molecule. Thus the methods of this
thesis are not only applicable to DNA in nanochannels, but to a large
class of molecules. In fact, similar experiments to the ones with DNA
that motivate this thesis have been performed with other biological
polymers [16, 20, 28]. The equivalence between different models can also
be used to simplify calculations and simulations. As long as a simpler
model of a molecule satisfies a small number of conditions, then results
which are derived for the simple model are expected to hold also for
DNA. The equivalence between different polymers is discussed in detail
in Chapters 2 and 3, and used extensively in Chapter 4 and Refs. [I, II].

1.1  Outline

The rest of the thesis is structured as follows: Chapter 2 introduces the
wormlike chain model of a DNA molecule, and discusses its parameters.
In Chapter 3 I re-derive some standard results for the equilibrium
statistics of an unconfined polymer, and discuss the equivalence between
different polymer models.

Chapter 4 presents the results of Papers [I, IT], which are new predictions
for the extension statistics of a polymer confined to a channel.
Chapter 5 presents the results of Papers [III, IV], which consist of
comparisons between experimental extension measurements and the
theoretical predictions of Chapter 4.

Chapter 6 introduces the concept of DNA melting and presents the
results of Paper [V], which describes how confinement in a channel
affects the melting statistics of a simple model of DNA.

Finally, Chapter 7 summarises the thesis and discusses some possible
future directions of research.



Chapter 2. Modelling DNA

The chemical and geometric structure of a DNA molecule is highly
complex (see Fig. 2.1). The purpose of this chapter is to introduce
a simplified model of DNA that ignores the chemical details of the
molecule in order to afford a simple mathematical description. The
justification for these simplifications follows in the next chapter. This
model is fully specified by three parameters: First, the contour length L,
i.e. the distance from one end to the other, measured along the molecule.
Second, the persistence length fp, which measures the stiffness of the
molecule. Third, the effective width weg, which quantifies the repulsive
interactions between different parts of the molecule. Below we discuss
how the values of these parameters are believed to depend on the ionic
conditions of the solution surrounding the molecule.

2.1 The wormlike chain

The most common model for the physical properties of a DNA molecule
in ionic solution is the wormlike chain or Kratky-Porod model [30-32]. It
is illustrated in Fig. 2.2. This model ignores details such as the relative
positions and orientation of the individual atoms, and assumes that the
configuration of the molecule is fully specified by a smooth curve r(s).
Here, the parameter s measures the contour distance from the beginning
of the polymer. Let t(s) = d,sr(s) denote the unit tangent vector of the
curve. The curve has a fixed contour length L = fOL]t(s)| ds = fOLds.
The smoothness of the curve is enforced by a bending energy which
depends on the persistence length £p and the local curvature |9,t(s)|?
as

E Lip 2
— = — . 2.1
e A O 1)

Here, kp is Boltzmann’s constant and T the temperature of the solution.

The wormlike chain model of DNA has been tested by a number
of different experimental techniques [31, 33|, showing that it is a good
model of DNA, except when subjected to very high forces [34, 35], or
in the presence of positive polyvalent ions [36]. The contour length can
be directly computed from the lateral distance between base pairs as
L = (Number of base pairs) x0.34 nm [29]. Measurements in monovalent
solutions at physiological ion concentrations usually find a persistence
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Figure 2.1: A sketch of the chemical structure of the DNA molecule (in
the most common conformation, known as B-DNA), with complementary
bases surrounded by a double-helical sugar-phosphate backbone. The diam-
eter of the helix is 20 A, and it does a full turn once every 10.5 base pairs [29].
Picture by Richard Wheeler, retrieved from http://commons.wikimedia.
org/wiki/File:DNA__Structure%2BKey%2BLabelled.pn_ NoBB.png, and
reproduced under a Creative Commons license.


http://commons.wikimedia.org/wiki/File:DNA_Structure%2BKey%2BLabelled.pn_NoBB.png
http://commons.wikimedia.org/wiki/File:DNA_Structure%2BKey%2BLabelled.pn_NoBB.png

THE WORMLIKE CHAIN )

Figure 2.2: An illustration of a wormlike chain.

length in the range fp ~ 45-50 nm (see Table 1 of Ref. [37] for a summary
of many different experimental results). However, there is no consensus
regarding how the persistence length depends on the conditions of the
surrounding solution.

At high ionic strengths, the stiffness is mechanical in origin — bending
the molecule increases the energy because it requires the relative positions
of atoms to shift from their potential minima. At low ionic strengths,
the stiffness is increased by electrostatic repulsion between neighbouring
segments of the molecule. The DNA molecule has a negative charge of
two elementary charges per base-pair, or 2e per 3.4 A of contour length
[38]. Because of this electric charge, DNA segments which approach each
other in space are strongly repelled. However, experiments are conducted
in ionic solution. The positive ions in the solution are attracted to the
negative DNA, which screens the charge and weakens the repulsion. The
electrostatic interaction is often approximated by Debye-Hiickel theory
[32]. Within this theory, the effect of the solution is captured by a single
number, the ionic strength

1
L= > iz (2.2)
%

Here, the sum runs over all ionic species in the solution; ¢; is the
concentration of ion species ¢ and z; its valence. Debye-Hiickel theory
predicts that positive ions form a condensation cloud around the DNA,
leading to short-ranged repulsion between DNA segments [39]. The
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range of the repulsion can be estimated by the Debye length [39, 40]:
Ap = (8mAgNaL) V2. (2.3)

Here A ~ 0.7 nm is the Bjerrum length of water, and Ny is Avogadro’s
constant.

Since the range of the electrostatic repulsion increases with decreasing
ionic strength, it is clear that the persistence length must also increase.
But there are three competing theories for the functional dependence
of the persistence length upon the ionic strength. The classic theory
of Odijk, Skolnick and Fixman [41, 42] predicts that the measured

persistence length is a sum of two terms: a ‘bare’ persistence length Eg) ),

and an electrostatic persistence length E%e D given by

0D = ApAR L2 /4, (2.4)

where v is the effective line charge density of DNA, which differs from
the intrinsic line charge density of 2e per base pair, since it includes
the effect of counterions from the solution associating to the DNA and
partially neutralising the charge. According to Manning’s condensation
theory [43], for a strongly charged molecule like DNA, counterions will
condense onto the molecule until the effective line charge is reduced to
one electron charge per Bjerrum length, i.e. v = 1/Ag. Inserting this

value into Eq. (2.4) and assuming Eg)) = 50 nm yields [44]

0.0324 M
¢p = 50nm + — mm (2.5)

Ten years ago, Dobrynin and Rubinstein pointed out that the quadratic
dependence of Eg: 2 upon Ap follows from the assumption that the con-
figuration of the molecule can be approximated locally by a section of
a circle [45]. Relaxing this assumption instead yields E{f D Ap. By
fitting this scaling to experimental estimates of the persistence length,

Dobrynin [46] proposed the empirical formula

1.9M/?2

fp =46nm + ————
132

nm. (2.6)

In a later publication, Gubarev, Carrillo and Dobrynin [47] conclude
that at high ionic strengths Eq. (2.5) is correct after all. Nevertheless, we
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Figure 2.3: A comparison of different theories for the dependence of the
persistence length upon the ionic strength. Blue: OSF theory, Eq. (2.5).
Red: Dobrynin’s formula, Eq. (2.6). Green: Manning’s theory, Eq. 25 of
Ref. [51]. Dashed lines indicate the range of ionic strengths explored in
Paper [IV].

have adopted Eq. (2.6) as a baseline expression for the persistence length
when comparing extension measurements to theoretical predictions in
Paper [IV]. The reason is that this formula has been used in a number of
recent studies [26, 27, 48, 49] and appears to reproduce most experimental
measurements reasonably well [37, 44, 46, 50]. However, there is still
considerable uncertainty regarding the dependence of fp on the ionic
strength, as estimates vary considerably between different studies [37,
50].

Apart from these theories which separate the persistence length into
a sum of two terms, one mechanical and one electrostatic, there is also a
theory by Manning [51]. This theory attempts to separate the mechanical
and the electrostatic persistence lengths by analysing a hypothetical
molecule which is identical to real DNA, except that its phosphate groups
are neutral rather than negatively charged. Experimental fits yield a
mechanical persistence length as low as 7nm. Interestingly, within this
theory the effect of electrostatic repulsion on the persistence length is
not additive as in Egs. (2.5)—(2.6).

The three theories for the persistence length are compared in Fig. 2.3.
The figure shows that the three theories agree very well for ionic strengths
of about 200 mM,! but disagree at lower ionic strengths.

IThe agreement is a consequence of the large number of measurements at these
ionic strengths, which constrain the fits inherent in the three expressions for ¢p.
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2.2 Non-neighbour interactions

In the previous subsection we described the representation of the DNA
molecule and the energy required to bend the molecule locally. Yet it
remains to define the interaction between non-adjacent sections of the
molecule. As discussed above, two segments which approach must repel
each other. Since the interaction is short-ranged, it can be approximately
described as hard-core repulsion with an effective width weg which
depends on the ionic strength.

The standard calculation of the effective width was carried out by
Stigter [52]. He assumed that the effective width could be determined
by treating two non-adjacent DNA segments as thin, charged cylinders,
and matching the second virial coefficient of their interaction [53, §74]
to that of two self-avoiding cylinders [54]. The rationale behind this
matching is explained in Section 3.2.1. The result of Stigter’s calculation
is tabulated in Ref. [55], and we have used these results as the baseline for
the effective width when comparing experiments in Paper [IV]. It must
be noted, however, that there are a number of untested assumptions
entering into the calculation. First, it is assumed that each cylinder
has an intrinsic width of 1.2nm, but this number has an uncertainty of
about 20% [52]. Additionally, the assumed effective line charge of the
cylinders is based on measurements in NaCl-solution, and does not apply
in solutions with other ions [56]. In view of this fact, it is particularly
problematic that most experimental tests of Stigter’s formula have been
performed in NaCl-solution [57].

2.3 Effect of dyes

In order to make the DNA visible in a fluorescence microscope, the
molecule must be stained with a dye. This changes the mechanical
properties of the molecule. In single-molecule experiments, YOYO-1
and similar dyes are most commonly used [5, 58]. These dyes consist
of two aromatic subunits, bridged by a linker. When the dye is bound
to DNA, the two subunits intercalate between base pairs, enclosing two
base pairs between them [5].

The most obvious effect of the intercalation is that it increases the
contour length of the molecule. The elongation is commonly assumed to
increase in proportion to the number of dye molecules bound. Estimates
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for the increase in contour length per molecule range from about 0.4 nm
to 0.5 nm, with large uncertainties for the individual estimates [59, 60].

In order to bind strongly to the negatively charged DNA molecule,
the dyes are positively charged — each YOYO-1 molecule carries four
positive charges. The resulting decrease in negative charge as the dye
binds to the DNA decreases the charge of the molecule, thus potentially
reducing the repulsion between segments and decreasing the effective
width. The magnitude of this effect is not known.

Finally, the intercalating dye might change the persistence length
of the DNA, but the effect is hard to estimate. Different experiments
show contradictory results, some indicating that the persistence length
decreases sharply at high staining [61, 62], others that it is essentially
independent of staining [60].

To summarise, the effect of staining on the physical parameters of
the DNA-dye complex is not well understood. This uncertainty makes
it difficult to quantitatively interpret experiments where a high staining
ratio is used. For our baseline scenario when comparing to experiments,
we assume that the contour length is increased by 0.44nm per dye
molecule (following Ref. [26]) but that the persistence length and the
effective width remain unchanged by staining.

2.4 Tonic strength calculations

The theories discussed above for the physical parameters of DNA are
all given as functions of the ionic strength I;. Most single-molecule
DNA experiments in nanochannels are performed in TBE buffer, at
a concentration ranging from 0.02xTBE to 5xTBE [2, 5, 63]. For
these buffers, calculating the ionic strength requires one to solve for the
equilibrium concentration of ions. This calculation is explained in the
supplemental material of Paper [IV]. The calculation presented there
also takes into account the effect of S-mercaptoethanol (BME), a weak
acid that is added to the solution in order to inhibit photonicking of the
dye molecules.

2.5  Summary

To summarise, while it is believed that a DNA molecule can be described
by the self-avoiding wormlike chain model under fairly general conditions,
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Table 2.1: Numerical values for the ionic buffer strength I, the persis-
tence length ¢p, and the effective width weg for the different concentrations
of the TBE buffer employed in Papers [III, IV] (the effect of adding 3%
BME has been taken into account).

xxTBE 0.05 0.1 05 2 25 5

I[mM] 381 742 249 784 955 178.0
{p[nm] 77 68 58 53 52 5l
Wegnm] 26 18 10 62 5.7 4.6

there is considerable uncertainty regarding how the parameters fp and
weg defining the model depend on the buffer conditions, and upon the
dye staining ratio. In order to obtain definite prediction against which
to compare the experiments described in Chapter 5, we assume as a
baseline scenario that ¢p is given by Dobrynin’s empirical formula [46]
[Eq. (2.6)], and weg by Stigter’s calculation [52, 55] (see discussion
above). For the buffer conditions that have been employed in Papers [III,
IV], the resulting parameter estimates are tabulated in Table 2.1.
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Chapter 3.  Unconfined polymers

We saw in the previous chapter how a DNA molecule can be described
by the self-avoiding wormlike chain model of a polymer, with parameters
L, lp, and weg (contour length, persistence length, and effective width).

In this chapter we re-derive some standard results for the extension
statistics of such a polymer. In the next chapter, we build on these
results to derive the extension statistics of a polymer confined to a
channel.

3.1 Ideal polymers

First we consider the special case of a wormlike chain with weg = 0,
i.e. when it is impossible for non-neighbouring segments to interact.
Polymers for which this non-interacting property holds are called ideal
polymers.

3.1.1 Orientational correlations

The ideal wormlike chain is stiff at short length scales but flexible at large
lengths scales. This is quantified by the orientational or tangent-tangent
correlation function

0(31732) = <t<31) -t(82)> . (3.1)

The brackets denote an ensemble average, and t(s) is the tangent vector
at contour distance s, illustrated in Fig. 2.2. From Eq. (2.1) it follows that
for the ideal and unconfined wormlike chain the orientational correlation
function has the simple form [64]

C(s1,82) = exp (—|82_81|) . (3.2)
lp

Thus, if the contour distance |s2 — s1| is much smaller than the persis-
tence length, the tangent vectors have a strong tendency to point in the
same direction. If on the other hand the contour distance is much larger
than the persistence length, the tangent vectors are uncorrelated, and
in fact independent [64]. A polymer which is stiff at short length scales
and flexible at large length scales is called a semiflexible polymer [32].
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3.1.2 Extension

A common way to characterise the size or extension of a polymer is the
root mean square of its end-to-end vector r = r(L) — r(0)

()" = (e(n) - P (3.3)

Rewriting r = fOL dst(s), inserting it into Eq. (3.3) and using Eqgs. (3.1)—
(3.2) yields [64]

<r2> = //OL dsydsoC(s1, 59) = 203 (e_L/KP -1+ L/ép) : (3.4)

In the limit L < ¢p Eq. (3.4) simplifies to <r2>1/2 = L, the expected value

for a stiff rod. In the opposite limit L > /p, we find <r2>1/2 = /2L0p.

The fact that the rms end-to-end distance of a long polymer grows
as the square root of its contour length is a consequence of the fact that
two tangent vectors are independent if the contour separation between
them is large. Since the end-to-end vector is the sum of many such
independent contributions, its statistics are akin to those of a random
walk of independent steps. In particular, the distribution of end-to-end

vectors tends to a Gaussian distribution with mean zero and variance
UiZdeal = 2L€P [65]7

3 -3/2 3 2
Pigeal(r) = ( ) exp (— a ) , L> lp. (3.5)

47TLEP 4L€P

The analogy with a random walk can be used to simplify the description
of the polymer: For a long wormlike chain (L > ¢p), the statistics of the
end-to-end vector are identical to those of a random walk of N = L/l
independent steps of length fx = 2¢p. In the polymer context, this
model is called the freely jointed or random flight chain, and the step
length /i is called the Kuhn length [32].

3.2 Self-avoiding polymers

In the previous section, we saw that it is possible to derive closed-form
expressions for the extension statistics of the ideal wormlike chain. As a
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rule, this is not possible for self-avoiding polymers'. However, there are
a number of approximate theories for the extension statistics of a self-
avoiding polymer [66, 67]. The simplest such theory, usually called Flory
theory [68], is discussed below. We begin by deriving the implications
of this theory for the extension statistics of the self-avoiding wormlike
chain. Then we describe how the theory can be applied to other polymer
models. Finally we discuss the correctness of its predictions.

3.2.1 Flory theory for the self-avoiding polymer

One way to get a statistically accurate ensemble of self-avoiding polymers
is to start with an ensemble of ideal polymers, and then remove any
members of the ensemble in which two or more segments overlap. It
follows from this procedure that the probability distribution for the
end-to-end vector of the self-avoiding polymer can be written

P(r) < Pgeal(r)A(r), (3.6)

where Pigea is given by Eq. (3.5) and the acceptance rate A(r) is defined
as the fraction of ideal polymers with end-to-end vector r which are
free of overlaps between segments. The acceptance rate A(r) can be
estimated by a mean-field argument originally due to Flory [69] and
generalised to semiflexible polymers by Schaefer et al. [70]: Divide
the polymer into N = L/¢x Kuhn length segments and estimate the
probability p that any pair of segments overlap by assuming that the two
segments are randomly oriented and positioned within a region of volume
V =13, where r = |r| is the end-to-end distance. This probability can
be written p = v/V, where v is called the excluded volume of a segment.
Assuming that the excluded volume of a persistence length segment is
similar to that of a thin rod yields v = (7/2)¢kweg [54, T1], where we
assume that £k > weg. Since there are N(N —1)/2 ~ N?2/2 segment
pairs that must not overlap, the mean field estimate for the acceptance
rate is

A(r) = (1= p)V'/? x exp(~N?p/2), (3.7)

'For a channel-confined polymer in the so-called extended de Gennes regime, an
exception to this rule is derived in Paper [II] (see also Section 4.2).
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where we assume that p < 1. Inserting Eq. (3.5) and Eq. (3.7) into
Eq. (3.6) and taking the logarithm yields?

3r2 T L Weg

log P(r) = const. — SLh | 4

(3.8)

Recall that the Kuhn length ¢k = 2¢p is the step size of the equivalent
freely-jointed chain. The Flory estimate of the extension is given by the
end-to-end distance which maximises Eq. (3.8). We find

Ry ~ L350 2wl (3.9)

where R = |r| denotes the average end-to-end distance. Further, the
sign “~” means that we drop numerical prefactors of order unity. Note
that the mean-field theory predicts that the extension of a self-avoiding
polymer grows with contour length as R oc L*/®, compared to R o L'/2
for the ideal polymer.

Eq. (3.8) also yields a prediction for the variance of the end-to-end
distance:

op ~ L. (3.10)

Thus, except for a possible change of prefactor, mean-field theory predicts
that the end-to-end distance of the self-avoiding chain has the same
variance as the ideal chain.

Model independence

So far, the discussion has been restricted to a single polymer model,
the self-avoiding wormlike chain. Yet the results we have derived are
insensitive to the details of the model. In the mean-field expression
for P(r) [Eq. (3.8)], the three parameters L, {x (or ¢p) and weg of the
self-avoiding wormlike chain appear in only two combinations:

1. 02, = L{k, the variance of the corresponding ideal chain.

2. V = wL%weg/2, which can be interpreted as the volume V for
which the average number of overlaps is approximately one.

2Considering also the volume in phase space corresponding to an end-to-end
distance r yields Pigeai(r) o r2Pideal(r). In Eq. (3.8) we disregard the factor 72, which
does not influence the conclusions.
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The two parameters can be combined into a dimensionless number which
quantifies the importance of self-avoidance,

2= V)03 = (7/2) LM weg /032 (3.11)

Eq. (3.8) for the probability distribution of the extension can be
rewritten in terms of ojqea and z:

log P(r) ~ const. — (7/0iqeal)* — % (3.12)
(T/Uideal)
The number z has a simple interpretation as the average number of
overlaps for a polymer in the initial ideal ensemble. If z < 1 then
self-avoidance has little influence on the polymer statistics. If on the
other hand z > 1 then self-avoidance has a profound influence on the
statistics, leading to the scaling Ry o< L?/® derived above.

Since the predictions of the mean-field theory only depend on the
polymer model through the parameters oigea) and V (or z), they apply
equally well to other polymer models. The theory requires only that
it is possible to make a clear distinction between neighbour and non-
neighbour interactions. Disregarding the latter yields the corresponding
ideal polymer model. As for the wormlike chain it is always possible to
define a Kuhn length £k such that a long ideal polymer has a variance
of a?deal =N E%i The effect of the non-neighbour interactions can be
captured by a single parameter, the excluded volume v between two
Kuhn length segments. Assume that two segments separated by a vector
Ar have an interaction energy U(Ar). Then, the excluded volume is

defined as [67]?
v= /dAr [1 — exp (— U;{?ﬂr))] . (3.13)

If the interaction depends not only on the separation between segments
but also on their internal configurations and relative orientation, then
the definition of v must include an average over these factors also.

In terms of the excluded volume v and the number of segments N,
the parameters V and z are given by V = N?v and z = \/Nv/fi)’(.‘l

3 A comparison with the virial expansion for non-ideal gases [53, §74] shows that
the excluded volume is related to the second virial coefficient B by v = 2B.

“The parameter z is usually defined as z = (3/(27))*?vN'/2p3/2 [72]. For
simplicity, we drop the prefactor.
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Note that according to Eq. (3.13), v turns negative if the interaction
is predominantly attractive. In this case, the polymer collapses to
a compact globule which cannot be described by any of the theories
described in this thesis [32].

3.2.2  Accuracy of Flory theory

The mean-field theory that we have presented above makes three predic-
tions:

1. The statistics do not depend on the details of the model, but only
on the two parameters gjgeal = VIV and z = v/ Nv/ﬁ%(.

2. The average extension scales as

Ry ~ Oigeaz/® = N3/302/51/5, (3.14)

3. The standard deviation of the extension scales as

OMF & Tideal = VNIK. (3.15)
We now discuss these in turn.

1.

Only having to define two parameters in order to characterise the
statistics of any polymer is of course a huge simplification. Nevertheless,
this two-parameter model is thought to capture the essential aspects of
most polymers, in particular the extension statistics of a long polymer
[32, 66, 67]. For polymers obeying v < Z% the two-parameter model
correctly describes also the cross-over from ideal to self-avoiding scaling
[73, 74]. Since the wormlike chain with weg < ¢k obeys this condition,
the two-parameter model is excellent as a model for DNA at high ionic
strengths.

In fact, the very possibility of modelling DNA as a self-avoiding worm-
like chain follows from the accuracy of the two-parameter model — recall
from Chapter 2 that the actual interaction between non-neighbouring
segments is not hard-core repulsion but screened electrostatic repulsion.
The effective width of DNA is defined by matching the excluded volume
(or the second virial coefficient) of the physical molecule to that of a
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cylinder of length ¢k and width weg < fx, for which v = w[%(weff /2 [54,
71].

The equivalence between different models can also be exploited in
order to simplify the description of the polymer. For example, in the
calculations and simulations described in the next chapter we sometimes
model the DNA molecule as a freely jointed chain of self-avoiding beads
(see Fig. 4.3). As long as L > (x, this very simple model should yield
an equally accurate description of DNA as the wormlike chain.

2.

Given the simplicity of the mean-field calculation above, the predictions
of Egs. (3.9) and (3.14) are surprisingly accurate. More advanced
perturbation calculations [67], which agree very well with simulations
[75], yield

R~ 0iqeat 20176 av NO-58890:472,,0176 -, 1 0.5880.236,,0.176 (3.16)

~ Vldea ~ ~ e . .

Note that the scaling exponent for the contour length differs from the
mean-field prediction by only 2%. Intriguingly, the corresponding mean-
field prediction for a two-dimensional polymer is thought to be exact
[75]. Mean-field theory predicts

Rop ~ 0igeatz/* = N3/401/21/4, (3.17)

Here, a is the excluded area of a Kuhn length segment of the two-
dimensional polymer, defined in the same way as the excluded volume
in three dimensions. igeal = VN/k and z = N a/f% are also defined
analogously to the three-dimensional polymer. Eq. (3.17) is thought
to describe correctly the statistics of a two-dimensional polymer in the
limit z > 1 [67, 75].

3.

Egs. (3.10) and (3.15) are believed to underestimate the variance sig-
nificantly, both in two and three dimensions. They predict that the
standard deviation of the polymer extension is significantly smaller
than its average. Yet this contradicts a fundamental principle of scale
invariance, which says that the self-avoiding polymer in the limit z > 1
only has a single macroscopic length scale [67]. It follows that o ~ R
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[76]. The existence of a single length scale also justifies our use of
the end-to-end distance as a measure of the polymer extension — the
statistics of other observables such as the radius of gyration must obey
the same scaling as Eq. (3.16), differing only in the prefactor.

3.3 Contour length scales

We have seen that the extension statistics of the self-avoiding wormlike
chain exhibits three scaling regimes:

1. If L < ¢p then the polymer is rodlike, R o< L.

2. If L > /p and z <« 1 then the polymer exhibits random-walk
scaling, R oc L1/2.

3. If L > ¢p and z > 1 then the extension is dominated by self-
avoidance, R o< L”, where v = 0.588 ~ 3/5.

An alternative way of distinguishing between these regimes is to
consider the relation between the contour length scales of the polymer
[I]. The ideal polymer has two length scales, L and ¢k (or ¢p, which
differs from fk by a prefactor only). When self-avoidance is included a
third length scale appears: I.., the average contour length separation
between overlaps. I.. is given by the contour length such that z =1,

1/2 3

et Weft eK

Tee Woll _ 4 (g n K (3.18)
4£§’</2 “ o wly

Since weg <K lk, it is always the case that fx < [... The three contour
length scales can therefore be related in three ways,

1. L <l < lee.
2. Ik € L < .
3. g <L lee < L.

These three relationships directly correspond to the three scaling regimes
discussed at the beginning of this section.

In the next chapter, we discuss the effect of channel confinement on
the extension statistics. Under confinement, additional contour length
scales appear which can be used to characterise different scaling regimes.



PART 11
PRESENT WORK

The research of this thesis concerns the conformational statistics of a
DNA molecule confined to a channel. The research can be divided into
three parts, corresponding to Chapters 4, 5 and 6.

Chapter 4 contains new predictions for the extension statistics of a
polymer confined to a channel.

Chapter 5 consists of comparisons between experimental extension mea-
surements and the theoretical predictions of Chapter 4.

Chapter 6 describes how channel confinement affects the melting statis-
tics of a simple model of DNA.

Chapter 4. Channel confinement

This chapter describes the results of Papers [I] and [II]. Here we derive
new predictions for the extension statistics of a channel-confined, semi-
flexible polymer. Paper [I] is summarised in Section 4.1. In this paper
we show that a polymer in rectangular confinement exhibits different
behaviours, depending on how the geometry of the channel is related
to the parameters £k and weg of the polymer. Using similar mean field
arguments as in Section 3.2.1, we derive predictions for the extension
statistics in the different scaling regimes. The results are important in
light of the fact that while many experimental studies of confined DNA
are performed in rectangular channels [16, 18, 19, 24, 26, 49, 77-79],
most simulation and theoretical studies are restricted to channels with
square cross-sections, Dyw = Dy [80-85].

Paper [II] is summarised in Section 4.2. Here we focus on one of
the scaling regimes, called the extended de Gennes regime. We show
that in this regime it is possible to map the configurational statistics
to a one-dimensional random walk model. Exploiting the results of
this model we can not only prove that the mean-field scaling for the
extension statistics is exactly correct, but also derive rigorous bounds for
the prefactors. Further, the one-dimensional model exhibits a universal

19
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scaling law which applies also to microscopic observables. In other words
any results that have been derived for one set of parameters (e.g. by
simulations of either the 3D or the 1D model) can be directly translated
to any other set of parameters within the extended de Gennes regime.

4.1 Rectangular channels

We describe in the previous chapter how an unconfined self-avoiding
polymer such as DNA forms a blob with an approximate extension given
by Eq. (3.9). Now consider what happens if such a polymer is confined
to a rectangular channel where both sides of the cross-section are signifi-
cantly shorter than the average extension of the unconfined polymer. In
order to avoid overlaps between different segments, the extension of the
polymer must increase significantly beyond its unconfined value. In fact,
in order to avoid that the local segment concentration increases without
bound as L — oo, the mean extension R must increase in proportion
to the contour length in this limit [68]. It follows that a long polymer
can be divided into a number of non-interacting segments, and therefore
also the variance of the extension grows as 012% o L. The question that
we pose in Paper [I] is how the extension statistics of a long polymer
depends on the other parameters of the problem, i.e. the Kuhn length
lx, the width weg, the channel width Dyw and the channel height Dyj.

As we discussed at the end of the previous chapter, for an unconfined
polymer the functional dependence of the extension upon the param-
eters of the problem exhibits different scaling regimes which can be
distinguished by the relationships between its contour length scales. We
show in Paper [I] that the same is true for the confined polymer, and
that the problem is complicated by the appearance of two new length
scales. These are l.y, the typical contour length separation between
collisions with the vertical walls of the channel, and [, the typical
contour length separation between collisions with the floor and ceiling
of the channel. Without loss of generality we assume throughout this
chapter that Dw > Dy, from which it follows that l.y, > [q,. Further
we restrict the discussion to the case where the full contour length L
is the largest of the length scales, so that the linear scaling of R and
U%{ with L holds. In this case, there are 6 ways to order the length
scales, leading to the 6 scaling regimes listed in Table 4.1 and sketched
in Fig. 4.1. Regimes Ia, Ib and Ic have been grouped together, as our



RECTANGULAR CHANNELS 21

D
Di\g (log)

Ic
I /w A

Ib Ia
IIb

111 ITa

1
w fK Z%/w DH (log)

Figure 4.1: Phase diagram of different scaling regimes for the extension
statistics of a semi-flexible polymer confined to a channel with a rectangular
cross-section.

analysis shows that the scaling of the extension statistics are identical
in these regimes. The same is true of regimes Ila and IIb. Regime III
has been described previously elsewhere [83, 86, 87]. This regime can in
fact be subdivided into two regimes, since an additional length scale g
called the global persistence length [88] appears at strong confinement.

4.1.1 Scaling regimes

The conditions and scaling predictions of regimes la-c and Ila-b are
derived in Paper [I]. The derivations are based on the mean-field theory
described in the previous chapter. In this section we reproduce the
derivation of one regime (Ia) in some detail, and briefly discuss the other
regimes. The result of this analysis is summarised in Tables 4.1-4.2
and Fig. 4.1. Table 4.1 and Fig. 4.1 shows the conditions that must
be satisfied by Dy and Dy in order for the different regimes to apply.
Table 4.2 shows the predicted scalings for the average and variance of
the extension, along with references to the publications where these
predictions were first derived. Table 4.2 also includes predictions for
the free energy of confinement, which determines the work necessary to
insert a polymer into a channel. In cases where exact predictions are
known, they have been included in the table.
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Ryiob i

Dw

Figure 4.2: An illustration of the hierarchy of blobs analysed in regime
I. In regime Ia, the smaller blobs are spherical blobs of size Rpjop = Dy.
In regime Ib-c they are cylindrical, of height Dy and width Ry, > Dy.

Regime Ia

Regime Ia is defined by the length scale relation
I L lee < leh K lew < L. (4.1)

Since lcc < lcn, the polymer exhibits three-dimensional Flory scaling
[Eq. (3.9)] before its first collision with the channel walls. The first
collision with the ceiling or the floor must occur when a section of
contour length I, has formed a spherical Flory blob of diameter Dy.
According to Eq. (3.9), this occurs when

-

D~ (Bbicwen ) & Ly ~ [Dfy/ (Excwes)] /2. (4.2)

Consider now two neighbouring polymer segments, each of contour
length [.,. Each segment can be assumed to form a blob of approximate
diameter Dy. Any significant overlap between the two blobs would result
in a significant probability of overlaps between some of the polymer
segments constituting the two blobs. Instead they line up next to each
other. Similarly, Npions such segments form a string of Nyops blobs,
which performs a two-dimensional self-avoiding walk. This random walk
of blobs must obey two-dimensional Flory scaling until the blobs have
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formed a circular ‘superblob’ of diameter Dy (we follow the terminology
of Ref. [89]). This two-dimensional random walk is illustrated in Fig. 4.2.
The number of small spherical blobs constituting one superblob can be
estimated from Eq. (3.17) with fx = Dy since each small spherical blob
constitutes an independent segment of the walk. The assumption that
the small blobs cannot overlap means that the two-dimensional excluded
area of a blob approximately equals the area of a circle of diameter Dy,
in other words a ~ DIQ{. This results in

1

Dy % (Maps D) & Notows ~ (D /D). (4.3)
The contour length stored within a superblob equals Iy,
lcw ~ Nblobslch =~ [DévDH/(wa)]l/g (4.4)

There are L/l superblobs that line up along the channel [Fig. 4.2].
Each superblob has average diameter Dw with fluctuations of the same
order (see section 3.2.2). The average extension and its fluctuations are
therefore given by:

R~ (L/lew)Dw =~ L [txw/(DuDw)]"? (4.5)
02 ~ (L/lew)D% ~ L (eKwD%v/DH)l/ ’ (4.6)

It remains to derive the conditions for Dy and Dw under which
Eq. (4.1) defining the regime holds. The inequality l.. < [, requires
that ideal scaling within a blob of size Dy results in a large number of
intra-chain overlaps,

(Du/tx)*v /D3 ~ Dyw/t] > 1 < Dy > (% /w. (4.7)

The inequality lew > oy is satisfied when Dy > Dy. Yet it turns out
that in the limit Dw — Dy Egs. (4.5)—(4.6) reproduce known results
for square channels (see Section 4.1.3). This condition can therefore be
relaxed.

Regime Ib

Just as in Regime Ia, the analysis in Regime Ib proceeds in terms of a
hierarchy of blobs, as illustrated in Fig. 4.2. Yet the relation lg, < lec
means that two blobs of size Dy are too dilute to be non-overlapping.
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Instead ideal scaling will persist until cylindrical blobs have formed,
of height Dy and diameter Rpiob = Vleclk, where lec = lx Dy /weg [1].
From this point, the derivation is similar to that in Regime Ia, and yields
identical scaling predictions for the mean and variance of the extension.

Regime Ila

Regime Ila is also called the extended de Gennes regime, and is discussed
in detail in Paper [II], see Section 4.2. In this regime, the polymer obeys
ideal scaling until a blob forms that fills the channel cross-section,
and is further elongated along the channel direction, until it reaches an
extension Ryl & v/lccfk. From ideal scaling it follows that Iy ~ DIZ{ /UK,

N ¢x D% D3 1/3
and lew ~ D%, /lx. The length scale I is given by lec &~ HW)

w?

[I]. The polymer arranges itself into a line of L/l blobs of size Rpjop:

R~ (L/loe)Rpwob ~ L [xw/(Dy D)3 (4.8)
0% ~ (L/lee) RE o, ~ LUk. (4.9)

It is interesting to note that the scalings in regime Ila can be derived
directly from a similar mean-field argument as in Section 3.2.1. The
counterpart of Eq. (3.8) for the channel-confined polymer reads
72 L?weg

From this expression for the probability distribution of the extension
Egs. (4.8)-(4.9) follow. In Paper [III] we make use of Eq. (4.10) to
derive approximate expressions for the extension statistics of a circular
polymer (see Section 5.2).

log P(r) ~ const. —

(4.10)

Regimes Ic and IIb

The derivation in regime Ic (IIb) is very similar to the one in regime Ib
(ITa), and leads to identical scaling predictions for the extension statistics.
Note however that the prefactors are expected to differ between the
regimes.

Regime II1

Since the derivations in Regimes I and II are based on the mean-field
theory discussed in the previous chapter, they apply not only to the



RECTANGULAR CHANNELS 25

self-avoiding wormlike chain but to a large class of polymer models as
discussed in section 3.2.1. By contrast, the predictions for Regime III
are specific to the self-avoiding wormlike chain, and cannot be readily
generalised to other models.

Regime IIla

If Dip < Dw < fp then the polymer is always almost perfectly aligned
with the channel, only undulating slightly from side to side. This regime
was first described in Ref. [90] and is usually referred to as the Odijk
regime. Precise predictions for the mean and variance of the extension
in the Odijk regime have been derived by Burkhardt et al. [87]:

D2/3 D2/3
R=1L [1—041{:/3W , (4.11)
gP
2 2
0% = 5LM. (4.12)

lp

Here a = 0.09137 4+ 0.00007, 5 = 0.00478 4+ 0.00010 [87]. Note that
in these formulas Dy and Dy refer to the size of the region that is
accessible by the centre-line of the wormlike chain.

Regime IIIb

Odijk [86] has predicted the existence of a regime intermediate between
the Odijk regime and the extended de Gennes regime, for very slender
semi-flexible polymers. For square channels this regime was studied
by Muralidhar et al. [83], who gave it the name “backfolded Odijk
regime”. In this regime the size of the channel is such that backfolds
are possible but rare. Odijk defines the global persistence length g as
the orientational correlation length of the corresponding ideal polymer.
For an unconfined wormlike chain g = /p [see Eq. (3.2)], yet at strong
confinement the correlation length increases very significantly [84]. The
backfolded Odijk regime requires that {p < g < l.c < L. Assuming
that a polymer section that is free of backfolds follows the statistics of
the Odijk regime, one can predict scaling relations for the extension in
terms of the global persistence length g. However, no theory for how
g itself depends on the channel size exists for relevant channel sizes
[83]. Therefore we do not know where to draw the curve separating
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Regimes IIla and IIIb in Fig. 4.1. Simulations [83] indicate that the
regime is virtually non-existent for DNA, manifesting itself clearly only
for very slender polymers, i.e. polymers where the ratio weg/fp is very
small.

4.1.2 Accuracy of mean-field theory

As discussed in section 3.2.2, the mean field predictions for the ex-
tension statistics are believed to be exact in two dimensions but only
approximate in three dimensions. Using the improved scaling pre-
diction of Eq. (3.16) would lead to modified scaling predictions for
regime la: R ~ LDﬁ0'37D;V1/3€%40w3§’0, 0% ~ LDﬁO‘mD\QA/,?’E%‘LOwgé)’O,
F./(kpT) ~ LDg" ™ %490:30. The predictions in other regimes are not
affected by this modification.

Apart from the use of mean-field arguments, the derivations in regimes
I and IT assume that the polymer can be divided into non-overlapping
blobs. This argument is not rigorous. However, in regimes Ila-b it is
possible to show that the scaling predictions are in fact exactly correct.
In regime Ila it is further possible to derive rigorous bounds for the
prefactors of the scaling laws. This derivation is discussed in paper [II]
and section 4.2.

4.1.3 Reduction to known special cases
Square channels

For the special case Dw = Dy = D the predictions of Paper [I] reproduce
previous results for the special case of confinement in square channels.
Thus the predictions of Regime Ia reproduce the known scalings of the
de Gennes regime [82, 86], valid for D > (% /weg. Regime Ila is a
generalisation of the so called extended de Gennes regime [II, 80, 82,
85], valid when ¢k < D < €% /weg. This regime is discussed in detail in
section 4.2.

Flexible polymers

For the special case of flexible polymers, for which v ~ E% and [.. ~ g,
only one scaling regime exists. The predictions of this regime are special
cases of the predictions of regime Ia, in the case fx ~ weg. The scaling
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for the mean extension in this regime has previously been derived by
Turban [89], using similar arguments as those employed here.

4.2  Exact results in the extended de Gennes regime

Blob and mean-field theories of the kind we employ in Paper [I] have
been in use for a long time within polymer theory [68], and often yield
results which are surprisingly accurate considering the simplicity of the
arguments. However, they are not rigorous. Therefore it is difficult
to predict their accuracy in circumstances where they have not been
tested by other means, e.g. by simulations. Further, while they often
predict the scaling behaviour of the average extension to a relatively
high accuracy, they are often difficult to extend to higher orders and
different observables. Finally, the obtained expressions are only ever
valid up to an unknown prefactor, which both limits the predictive value
of a theory and makes it more difficult to test.

In Paper [II] we develop a rigorous theory which improves upon
the blob theory with regards to all the aspects listed above. Thus, the
theory furnishes rigorous, quantitative predictions for the statistics of the
extension and the end-to-end distance, and demonstrates the existence
of a universal scaling law which applies also to other observables of the
polymer confined in a channel. The theory applies in the extended de
Gennes regime (regime Ila in tables 4.1-4.2 and Fig. 4.1), which is the
relevant regime for many of the channel sizes that are used in DNA
experiments [2].

4.2.1 Mapping to 1D model

To simplify the discussion, assume that the polymer is confined to a
square channel of side length D = Dy = Dw. In this case the extended
de Gennes regime is delimited by the conditions

Ik < D < 0% Jweg. (4.13)

Further, because of the equivalence between polymer models (see Sec-
tion 3.2.2), we can restrict the discussion to the special case of a freely
jointed chain, consisting of N monomers with step length ¢k, with self-
avoiding interactions such that two monomers cannot approach closer
than a distance a. The model is illustrated in Fig. 4.3.
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We proceed to show that in the extended de Gennes regime it is
possible to map the extension statistics to a one-dimensional random
walk model. For this model, a number of results have been derived, and
we discuss the implications for the statistics of the confined polymer.

As described in section 3.2.1, one way to obtain a statistically correct
ensemble for the self-avoiding polymer is to start from an ensemble of
the corresponding ideal polymer, and then discard any configurations
involving overlaps. The z-coordinates of the ideal polymer obey the
statistics of a one-dimensional random walk with independent steps of
mean 0 and variance o8 = E%{ /3. Denote the probability distribution of
a certain set of z-coordinates for the ideal chain by Pgea1({zn}). Here z
denotes the direction parallel to the channel axis. The corresponding
distribution for the self-avoiding chain is then given by

P({zn}) < Paca({zn})A({zn}) - (4.14)

Note the similarity with Eq. (3.6) for the unconfined chain. As in that
equation, the acceptance function A({z,}) denotes the fraction of ideal
configurations that are free of overlaps.

Consider now two monomers m and n. Obviously they can only
overlap if their z-coordinates are sufficiently close, namely if |z, — 2| <
a (recall that a is the diameter of a bead). If this condition is satisfied,
what is then the overlap probability? In general this is a difficult question
to answer, as the probability depends not only on the separation |n — m|,
but also on the z-coordinates of intermediate monomers. However, if
the contour separation is much larger than the length scale [, between
collisions with the channel walls, then the probability is simply a constant
number (which we compute below). This follows from the fact that
at large separations the z- and y-coordinates of two monomers are
statistically independent [II, BJ.

The condition I, < ¢ defining the extended de Gennes regime
implies that almost all overlaps occur between monomers at such a large
separation. The acceptance function A({z,}) therefore acquires a simple
form, which allows us to map the statistics to a one-dimensional random
walk model, as follows: Imagine dividing the z-axis into bins of size e,
where a < € < Ik [see Fig. 4.3(c)]. For two monomers to collide, their
z-coordinates must lie in the same bin, i.e. |z,/€] = |zn /€|, where |z]
is the floor function. Supposing that they do, we write the probability
for the monomers to collide as 2n/e, the constant of proportionality
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Figure 4.3: An illustration of the freely-jointed-chain model and the
principle behind the mapping to a one-dimensional model.

n is discussed below. Assuming that /e < 1 the factor A({z,}) in
Eq. (4.14) can be written as

A=) = I1 a-2mfg=ep -2 00 ] a1s)

1<n<m<N 1<n<m<N
lzn/€l=2m/€]

Here 522)7% is unity if z,, and z,, fall into the same bin, and zero otherwise.

The problem of describing the conformations of the confined polymer
is thus mapped to that of a random walk on Z, consisting of N steps
with variance 0(2] /€. Each time two steps land on the same integer, the
walk incurs a ‘penalty’ of 2n/e. This problem is known as the weakly
self-avoiding random walk or the Domb-Joyce model in one dimension
[95].

It remains to compute the constant of proportionality n. For any
monomer not too close to either end of the polymer, the probability
distribution of its z- and y-coordinates is given by [B, 68]

p(x,y) = (2/D)?*sin?(wz/ D) sin®(ry/D). (4.16)

Consider now two monomers in the same bin of width e. Assuming
that the first monomer has coordinates z and y, then the probability
that the second monomer overlaps with it is v/ep(x,y), where v is the
excluded volume of each monomer. Averaging this probability over the
distribution p(x,y) yields the probability 2n/¢, or

9 v

D
_v 2 =2
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4.2.2 Implications for the confined polymer

The mapping to a one-dimensional weakly self-avoiding random walk
is significant because exact asymptotic solutions have been obtained
for this model in the limit where 1/0¢ is small, as is always the case
in the extended de Gennes regime. For the confined polymer the main
implications are listed below.

1. A scaling relation holds for the one-dimensional weakly self-avoiding
random walk [95]. For the confined polymer, this relation implies
that expressing results in terms of the scaled variables

n' =n(n/og)¥? and 2 = (z/00) (n/oy)'/? (4.18)
must give rise to universal laws.

2. The distribution of the extension R, = max; z; — min; z; of the
polymer in the channel acquires a large-deviation form in the limit
of large N [95],

P(R.) ~ exp[-NS(R./(Noo),n/00)] - (4.19)
Eq. (4.18) implies that the ‘action’ S obeys the scaling law
R, n _ (" 2/3 n\~"Y3 R,
(Foya0) = (25) 1G5s)  Nag) (4.20)

where J(b) is a scaling function.

3. The distribution P(r,) of the end-to-end distance r, = |z1 — zn/| is
also of the form (4.19,4.20) save for a different scaling function 1(b)
that replaces J(b) [96] The functions I(b) and J(b) are identical
above a critical value b** = 0.85 [97]. Since the only minimum
of the function J(b) lies above this critical value, the mean and
variance of the end-to-end distance and the extension must agree
for very long chains. Yet the small-b behaviour of I and J differ
substantially. For b < b** I(b) is linear in b, whereas J(b) is strictly
convex and rapidly increases with decreasing b [97].

4. The statistical properties of the extension and end-to-end distance
can be determined from the shape of the function J(b) [or I(b)].
The location b* of the minimum of J gives the mean R of R, and
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the curvature 1/ ¢*2 at this point yields the corresponding variance
2

R/N = b*ol/n'/3 (4.21)

or/VN = c*ay. (4.22)

Rigorous bounds for the universal parameters b* and c* were
obtained in Refs. [95, 98]: 1.104<b*<1.124, and 0.60 <¢* <0.66.

Applied to the self-avoiding wormlike chain, Eqs. (4.21)—(4.22)
yield the predictions

1/3
EKweﬁ) , (4.23)

D2
0% =0.13(1) Lty . (4.24)

R =0.9338(84)L <

4.2.3 Comparison to simulations

To verify the above predictions, we have performed Monte Carlo simula-
tions of the freely-jointed chain model. These simulations were performed
in relatively small channels, for which Eq. (4.16) only holds approxi-
mately. In order to nevertheless obtain a good estimate for n we used a
numerical solution for the equilibrium distribution p(z,y) of a monomer
in the ideal freely jointed chain®.

Lo(z,y) was computed as follows: Let G (r) be proportional to the probability
density of finding the final monomer N at r. Gx obeys the equation

Gn(r) = /dr'anl(r/)Gl(r —1'), (4.25)

where G1(r — r') = 1/(4ml%)5(|r — r'| — fx) is the probability distribution of one
bond vector. For the channel-confined polymer, the equation must be supplemented
by absorbing boundary conditions [99]: G = 0 outside of the channel. We now make
the approximation that G, factorises, i.e. that G,(r) = Gi (z)Gy (y)GyL(z) Then,
the equation for G () is simply

Gr(z) = (20x)7" / * oz Gi_\(z —6x), (4.26)

—tx

with initial condition G (x) = 1/D and boundary conditions Gy (x) = 0 unless
0 < z < D. This equation was discretised and solved by iterating the above equation
until it converged (up to a normalising factor). Call the resulting function G(z).
The distribution p(z,y) of a monomer far from either end of the chain is given by

p(@,y) o< [G(2)G(y)]* [B].
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—InP(R,)

R/(NO‘())

0.004

0.004 ' 0.001
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Figure 4.4: (a) Distribution P(R.) of the extension R, for D/lx =
4,a/lx = 0.14 (o), a/lx = 0.22 (A). (b) Same distributions plotted as
a function of the scaled variable R, /[N(no2)'/?], Eqs. (4.19) and (4.20).
Also shown is the asymptotic exact solution J(b) (solid line, see text) as
well as a Gaussian approximation (dashed line). (c¢) Scaling prediction for
the mean extension [Eq. (4.21)], shaded grey area. Its width corresponds
to the uncertainty of the coefficient b* given in the text below Eq. (4.22).
Also shown are results of Monte-Carlo simulations (symbols) for D/lk = 4,
a/lx = 0.14 (o), 0.17 (0), 0.20 (), 0.22 (A) and D/lx = 6, a/lx = 0.14
(+), 0.17 (x), 0.20 (). (d) Standard deviation of the extension distribution
from simulations (symbols), compared to Eq. (4.22), shaded grey area.
The dotted line indicates the variance of the corresponding ideal polymer.
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Figure 4.5: (a) Bias (see text) as a function of monomer number. (b)
Data in the left half of panel a, rescaled to show the universality of the
shape. Shaded grey area: prediction from Eq. (4.21). The vertical dashed
line indicates the boundary between the end and the bulk regions of the
polymer globule. (¢) The correlation function C'(n,m) (defined in the
text) averaged over m,m in the interior of the polymer (the plateau of
panel a). (d) The rescaled correlation function, showing the universal
‘correlation hole’. In both panels, blue (green) lines correspond to D = 40k
(D = 60k). In order of increasing 7, the monomer diameter is given by
a/lx = 0.14,0.17 (green); 0.14,0.17,0.20 (blue).
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The results from simulations are shown in Figs. 4.4-4.5. Fig. 4.4
shows that the distribution of the extension obeys Eqgs. (4.20)—(4.22),
whereas Fig. 4.5 shows that the universal scaling of Eq. (4.18) holds also
for local observables.

Fig. 4.4(a) plots the distribution of R, for two different sets of
parameters. Panel (b) shows that the data collapse upon scaling the
z- and y-axes according to (4.20). We computed the universal scaling
function, J(b), by numerical solution of an eigenvalue problem (Eq. (3.49)
in Ref. [100] and Eq. (0.15) in Ref. [101]). The result is plotted in
Fig. 4.4(b) as a solid line. We observe excellent agreement far into
the non-Gaussian tails of the distribution. Panels (c¢) and (d) show
that the mean and variance of the extension are in agreement with
Eqs. (4.21)-(4.22).

Fig. 4.5 (a) shows the bias (0z,). = (02, sgn(zy — 21)) (where sgn(z)
is the signum function), which quantifies the tendency of all steps of the
corresponding random walk to point in the same direction. Panel (b)
demonstrates that all data points collapse to a universal curve when
rescaled according to Eq. (4.18). Far from either end the bias must
approach the bulk prediction (4.21). Fig. 4.5(b) shows that this is indeed
the case. Near the end of the polymer the bias is smaller. This end
effect gives rise to finite-size corrections for the end-to-end distance.

Panel (c) shows the correlation function of the steps,

C(n,m) = ((62n02m)e — (02n)e(02m)e) /08 (4.27)

Panel (d) shows the rescaled version. Since o2 = o3 ZTZX m=1 C(n,m),

the fact that the steps are negatively correlated is related to the fact
that the fluctuations of r, are smaller than those of an ideal polymer.

Summary

In Paper [I] we demarcate the scaling regimes of a semiflexible polymer
confined to a rectangular channel. We find that the extension statistics
depend not only on the area of the channel cross-section, but also on its
shape. For this reason rectangular channels exhibit features which are
absent in the commonly studied special case of square channels.

In Paper [II] we show that in the experimentally relevant extended
de Gennes regime the statistics of a confined polymer can be mapped
rigorously to a one-dimensional model. From this mapping follows not
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only a rigorous proof of the mean-field scaling for the extension statistics
and its associated prefactors, but also the existence of a universal scaling
law. The scaling law implies that any results that have been derived for
one set of parameters (e.g. by simulations of either the 3D or the 1D
model) can be directly translated to any other set of parameters within
the extended de Gennes regime.
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Chapter 5. Comparison to experiment

This chapter describes the results of Refs. [III] and [IV]. These papers
consist of experimental measurements of the extension statistics of
channel-confined DNA, and comparisons to the theories described in
Chapter 4. Paper [III] is summarised in Section 5.2. In this paper, we
induce a confined circular DNA molecule to break, forming a linear
molecule of equal contour length. The linear molecule spontaneously
unfolds in the channel, allowing us both to study the dynamics of
the unfolding process and to compare the equilibrium statistics of the
polymer in the circular and linear state. Since I mainly contributed to
the latter part of the study, this is the focus of Section 5.2.

Paper [IV] is summarised in Section 5.3. Here we measure the exten-
sion statistics of linear DNA molecules under conditions which satisfy
the conditions of the extended de Gennes regime to varying degrees.
These measurements are compared to the predictions of Paper [II]. Since
a quantitative fit between experiment and theory requires that the pa-
rameters L, {x and weg are known to a high degree of accuracy, this
comparison affords a test not only of the predictions of paper [I1], but
also of the theories for the physical parameters that characterise DNA,
described in Chapter 2.

5.1 Brief summary of the experimental method

In the experiments described in this chapter, DNA molecules are inserted
into nanochannels and imaged by epifluorescence microscopy. Channels
are etched out of silicon dioxide, and DNA molecules are inserted using
pressure-driven flow.

DNA samples are immersed in TBE buffer at different concentrations.
1xTBE contains 0.089 M Tris, 0.089 M Borate and 0.0020 M EDTA.
The antioxidant -mercaptoethanol (BME) is added to reduce photon-
induced breaking of the DNA molecules, at a concentration of 3 pL of
BME to 97 upL of sample solution. In order to fluoresce, DNA molecules
are stained with the dye YOYO-1 (see Section 2.3).

The fluorescence of the stained DNA is recorded by an EMCCD
camera, see Fig. 5.1(c) for snapshots from the resulting videos. In each
image the DNA extension is given by the size of the fluorescing region.
This results in a data series of DNA extension as a function of time,
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from which we obtain the extension statistics.

Details about the experimental procedure are given in the respec-
tive papers [III, IV]. A more in-depth discussion of the experimental
techniques can be found in the review articles [2, 5].

5.2 Unfolding circular DNA

In Paper [III] circular DNA is inserted into nanochannels of width
Dyw ~ 100nm and depths of either Dy ~ 100 nm or Dy ~ 150nm. The
DNA consists of 42200 base pairs. Assuming that the intercalation ratio
is 1:10 (i.e. 1 bound dye molecule for each 10 base pairs), this corresponds
to a contour length of approximately 16.2 um (see Chapter 2).

DNA stained by a fluorescent dye such as YOYO-1 has a tendency
to undergo photonicking, meaning that the excited dye causes one of
the strands of the DNA molecule to break [102]. If two such nicks occur
sufficiently close to each other, but on opposite strands, the molecule
may break. If this happens on a linear DNA molecule, two shorter
linear molecules are formed. By contrast, a break on a circular molecule
changes the configuration into a linear molecule of the same length. The
linear DNA then spontaneously unfolds to a more extended configuration.
This allows one to study the dynamics of the unfolding process, and also
to compare the equilibrium statistics of a linear polymer to that of its
circular counterpart under essentially identical external conditions.

The unfolding process is shown in Fig. 5.1(a) by means of a ‘kymo-
graph’. It is constructed as follows: First, the part of the recording
containing the confined polymer is identified, as in panel (c). Each frame
of the video is then collapsed to a single horizontal line by averaging
the brightness values over the direction perpendicular to the channel. A
kymograph is formed by stacking the lines on top of each other, to show
how the fluorescence pattern changes over time.

Figure 5.1(a) shows two examples of the unfolding process. In these
kymographs, the bright region in the upper half of the picture corre-
sponds to unbroken circular DNA fluctuating in the channel. After a
while a breaking event occurs, either in the interior of the molecule
(left column) or close to one of the ends (right column). The resulting
linear molecule then unfolds. The unfolding can be observed as the
simultaneous shrinking of the bright region (corresponding to folded
DNA) and growing of a fainter region (unfolded DNA). After some time,
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Figure 5.1: Kymographs, i.e. time (y-axis) vs. extension (x-axis),
showing unfolding of circular DNA: (a) Raw kymographs, (b) Kymographs
aligned by the centre of mass. Left: Circular DNA unfolding from the
centre. Right: Circular DNA unfolding from the end. See text for an
explanation of how to interpret these kymographs.

(c) Snapshots of YOYO-1-stained circular DNA before (left) and after
(right) unfolding at four different buffer concentrations in channels with
dimensions of about 150 x 100 nm? for 0.1 x TBE, 0.5xTBE and 2.5x TBE
solutions, and 100 x 100nm? for 0.05x TBE. The scale-bar corresponds to
5pum in all images.
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the molecule is entirely unfolded, and we can observe the equilibrium
fluctuations of the linear DNA.

We measure the mean and standard deviation of the extension in the
circular (Reire, Ocirc) and linear (Ryy, onin) state, and test whether the
ratios Rjin/Reire and oyin/0cire are consistent with theoretical expecta-
tions. Since the channel size is intermediate between the Odijk regime
(strong confinement, large extension) and the extended de Gennes regime
(weaker confinement, smaller extension), it is difficult to make a quanti-
tative comparison to theory. However, we show that the measured ratios
are intermediate between our predictions for the Odijk regime and the
extended de Gennes regime, with observations at stronger confinement
yielding ratios closer to the prediction in the Odijk regime, and vice
versa.

5.2.1 Theoretical predictions for the ratios Ry, / Reire and ojin/Oeire
The extended de Gennes regime

In the extended de Gennes regime, the mapping to a one-dimensional
model discussed in Chapter 4 yields exact predictions for the extension
and variance of a linear polymer [Egs. (4.23)—(4.24)]. Unfortunately
corresponding expressions for circular polymers are not known. However,
we know that the scalings (though not the prefactors) can also be derived
directly from a mean-field argument (see Section 4.1.1). For the linear
polymer, the probability distribution for the extension can be estimated
by Eq. (4.10), which we rewrite as
2 L2U)eff

RZ
log P(Rjin) = — AL _p : 1
og P(Ryin) = const Tin R DwDnn (5.1)

Here, A and B are prefactors of order unity which we have inserted to
emphasise that the mean-field estimate does not determine the prefactors
of the scaling. Eq. (5.1) yields an average extension and variance of

B Blgwer \?
L
2 K

A similar mean-field estimate for the distribution of a circular polymer
is obtained by treating the circular molecule as two linear polymers of
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length L/2, which are forced to occupy the same part of the channel.
This calculation results in

R2 L2 weg
log P(Reire) = t.—24—1n__ < A4
og P(Rcirc) = cons 2% R Dw D (5.4)
Bngeff 1/3
circ — L —Fr—F .
R <8ADWDH) (5.5)
Lix
Ugirc = m (56>

Comparing Egs. (5.2),(5.3) and Egs. (5.5),(5.6) yields our prediction for
the ratios in the extended de Gennes regime,

Bin _ 9213 _ 1 59 (5.7)
circ

Ilin _ 9, (5.8)

Ocirc

The Odijk regime

In the Odijk regime the mean and variance of the extension for a linear
DNA molecule confined to a rectangular channel Dw x Dy are given by
Egs. (4.11)—(4.12):

D2/3 +D2/3
Ry, =L [1 W27/3H ’ (59>
KP
D32, + D?
o2, = BL—W T i (5.10)

where o« = 0.09137 £ 0.00007, 3 = 0.00478 £ 0.00010 [87]. As in the
extended de Gennes regime, a circular DNA in the Odijk regime can be
treated as two linear DNA molecules occupying the same part of the
channel. Calculating the statistics of the extension is complicated by the
interaction between the two strands. Yet the extension can be bounded
above and below by considering the two extreme cases of either no
interaction, or complete separation such that each strand only explores
half of the channel. For a square channel! this analysis yields that the

'In some of our experiments the channels are only approximately square (Du =
100 nm, Dw = 150 nm).
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mean and variance of the extension are bounded by

L D3 L D2/3
P P
5D? D?
L—— <o?<pBL—. 12
ey =7 =Py (5.12)

Here D is the side length of the square channel. Comparing Eqs. (5.9)
and (5.11) yields a ratio of extensions in the interval

1.92 < Rin/Reire < 2. (5.13)

As D tends to zero, the ratio tends to 2 regardless of how the strands
interact. The lower bound comes from the assumption that the Odijk
regime extends up to channel sizes of D = fp. Comparing instead
Egs. (5.10) and (5.12) shows that the ratio of standard deviations must
lie in the interval

2 S O-lin/o-circ S 2.5. (514)

5.2.2 Experimental results

Fig. 5.2 shows the experimental measurements of the equilibrium exten-
sion of each molecule, as a scatter plot of the linear extension over the
circular extension. For both the linear and circular configuration, the ex-
tension is higher on average when the buffer concentration is low?. This
is expected, as the effective width grows with decreasing ionic strength
(see Table 2.1). The experimental data consistently falls between the
predictions in the extended de Gennes regime [Eq. (5.7)] and the Odijk
regime [Eq. (5.13)], with the data points at a larger extension agreeing
better with the prediction in the Odijk regime and vice versa.

There is one problem with the interpretation of the data which is
worth mentioning. A large part of the variation within each buffer
condition is probably due to differences in the amount of dye bound
to the DNA [103]. Yet the largest effect of YOYO-1 intercalation
on the physical properties of DNA is probably that it increases the
contour length (see Chapter 2). Since this effect is not considered when
estimating the contour length it is probable that the the contour length

2At the lowest ionic strength (0.05xTBE) slightly smaller channels were used,
further increasing the extension.
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Figure 5.2: Equilibrium extension divided by contour length for circular
(x-axis) and linear (y-axis) configurations of DNA. Each data point repre-
sents a single molecule confined to 150 x 100 nm? channels in 2.5x TBE
(blue squares), 0.5xTBE (green squares), and 0.1xTBE (red squares).
Black squares correspond to 100 x 100nm? channels in 0.05x TBE. The
red and green circles emphasise the overlap between the data points at
0.5x and 0.1xTBE. The dashed line shows the expected relation in the
extended de Gennes regime [Rjin = 1.59Recire, see Eq. (5.7)]. The solid line
corresponds to the upper bound in the Odijk regime [Ry, = 2Rcirc, See
Eq. (5.13)].

is underestimated for the most extended molecules within each group.
Note that as this does not influence the ratio R,/ Reire, it does not
affect the conclusions of the paper.

Figure 5.3 shows equilibrium extension fluctuations for the circular
and linear configuration of the same DNA molecule. Although the spread
is much larger than for the extension ratio in Figure 5.2, there is a clear
trend that the fluctuations decrease with decreasing buffer concentration.
This is consistent with the theoretical prediction that fluctuations are
smaller in the Odijk regime. For each condition the average ratio is
slightly above 2, and increases as we move from the extended de Gennes
regime (ratio = 2) towards the Odijk regime (ratio > 2).

For very slender polymers, an additional regime known as the back-
folded Odijk regime appears for channel sizes intermediate between
the extended de Gennes regime and the Odijk regime [84, 86]. In this
regime the fluctuations should increase as the ratio D/¢p decreases [84].
However, Fig. 11 of Ref. [84] shows that for DNA, this regime exists only
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Figure 5.3: Standard deviations of the equilibrium extension for circu-
lar (x-axis) and linear (y-axis) configurations of DNA. Each small data
point represents a single molecule confined to 150 x 100 nm? channels in
2.5xTBE (blue), 0.5xTBE (green), and 0.1XxTBE (red). Black squares
correspond to 100 x 100 nm? channels in 0.05x TBE. The large symbols
represent the average and standard deviation of all data at a given condi-
tion. The solid lines show the relations oy, = 20¢ire and oy, = 2.50¢irc,
see Egs. (5.8),(5.14).

for a narrow range of channel sizes, and only at high ionic strengths. It
is therefore not surprising that our measurements do not indicate the
presence of the backfolded Odijk regime.

5.3 Quantitative comparisons in the extended de Gennes
regime

Paper [IV] consists of a quantitative comparison between experimental
measurements of the equilibrium statistics of channel-confined linear
DNA, and the predictions of Paper [II]. As such, it is both a test of
the predictions of Paper [II] and of the theories describing the physical
parameters of DNA (L, lk, weg). See Chapter 2 for a description of
those theories.
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Figure 5.4: a Experiment 1. A-DNA in a 150nm x 108 nm channel,
different buffer concentrations, and different luminosities corresponding to
different dye loadings. Shown are representative video frames (scale bar
applies to panels b,c as well). b Experiment 2. T4-DNA in a nanofunnel
in 0.05x and 2xTBE solution, varying funnel width Dw at constant
Dy = 120nm. ¢ Experiment 3. T4-DNA in a 302nmx 300 nm channel,
different buffer concentrations. d Kymograph of the fluorescence intensity
for A-DNA in a 150 nm x 108 nm channel in 5x TBE solution, centre-of-mass
motion subtracted.

5.3.1 Experimental method

The experimental data are obtained by measuring the extension of single
DNA molecules in nanochannels under three different experimental
setups [Fig. 5.4(a) to (c)]. The main purpose of the first experiment is
to test the effect of changing the dye load on the extension statistics.
The second experiment tests how the extension statistics depend on
the channel width Dyw. Finally the third experiment is designed to
fulfil the conditions for the extended de Gennes as well as possible,
thereby allowing a quantitative comparison between the experimental
measurements and the predictions of Eqgs. (4.23)—(4.24).

The first experiment is a re-analysis of data presented in Ref. [103].
In this experiment [Fig. 5.4(a)], A-DNA (48502 base pairs) is inserted
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into a nanochannel of height Dy = 150 nm and width Dy = 108 nm.?
DNA extensions are measured at four different buffer conditions (0.05x,
0.5x, 2x, and 5xTBE) and at different dye loads.

In experiment 2 [Fig. 5.4(b)], T4-DNA (165647 base pairs) is inserted
into a nanofunnel, with fixed height Dy = 120 nm and gradually chang-
ing width from Dw = 92nm to Dw = 815 nm over a length of 500 pm.
These experiments are at two different buffer concentrations (0.05x and
2xTBE).

In experiment 3 [Fig. 5.4(c)], T4-DNA is inserted into a channel with
Dw = 302 nm, Dy = 300 nm. The measurements are performed at four
buffer conditions (0.05x, 0.5x, 2x, and 5x TBE).

5.3.2 Results

Our results are shown in Fig. 5.5. In panels (a), (c), (e) we plot two
theoretical curves for the mean extension. The solid curves uses the
actual channel size Dy X Dyw. The dashed curves attempts to compensate
for the repulsive interaction with the negatively charged walls [2], by
using an approximate effective channel size (Dyg — weg) X (Dw — West).
It is not known how accurate this approximation is.*

The results of experiment 1 are shown in panels (a) and (b). At low
relative luminosity (small dye-to-base-pair ratio) the average extension
is well described by Eq. (4.23). For the standard deviation there are
larger differences between experiment and Eq. (4.24). By contrast, both
observables are overestimated at high ionic strengths and high dye loads.
A simple explanation would be that the persistence length decreases
slightly with increasing dye load, in agreement with Ref. [61] though not
with Ref. [60].

The results of experiment 2 are shown in panels (c), (d). We see
that how the average extension depends on Dy agrees well with the
theoretical prediction. However, the model predictions underestimate

3The experimental uncertainties are discussed in paper [IV] and its supplemental
material.

“4In fact, not even the sign of the correction to Eq. (4.23) is obvious, as one effect
of violating the condition Dy > ¢k is that density of polymer segments is no longer
given by Eq. (4.16). Instead, segments are more evenly distributed throughout the
channel [104], which leads to a smaller extension than predicted by Eq. (4.23), i.e. in
the opposite direction to the effect of the repulsive interaction between the DNA and
the channel walls.
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Figure 5.5: Experimental results for 0.05x TBE (red o), 0.5x TBE (green
0), 2xTBE (blue ¢), and 5xTBE (black A) (a), (b) Experiment 1. Mean
and standard deviation of the extension of A-DNA in a narrow nanochannel,
as a function of relative luminosity. Theory [Eq. (4.23)], solid lines. The
rigorous bounds on the prefactor in Eq. (4.24) are indicated as a shaded
region for 0.05x TBE, they are of the same order for the other cases. The
corresponding uncertainty for the extension is much smaller and not shown.
The dashed line shows theory corrected for wall repulsion (see text). (c),
(d) Experiment 2. Same, but for T4-DNA in a nanofunnel with varying
width Dw. Note that panel (c) is a log-log plot. (e), (f) Experiment 3.
Same, but for T4-DNA in a wider square nanochannel, as a function of
buffer concentration (xxTBE). Error bars correspond to 95% confidence
intervals from the statistical analysis, the experimental uncertainty is not
taken into account.
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the standard deviation for the larger ionic strength, and for the largest
channel at the lower ionic strength.

Since the condition Dy > fk is not satisfied, or only weakly satisfied,
it is not surprising that experiments 1 and 2 are not in perfect agreement
with Eqgs. (4.23)—(4.24). In Paper [IV] we discuss the expected devia-
tions and show that the experimental measurements are in qualitative
agreement with expectations.

The results of experiment 3 are shown in panels (e), (f). Simulations
indicate [83, 85] that for this channel size, the average extension should
be well described by the predictions for the extended de Gennes regime.
However, indirect simulations [A, 83] indicate that Eq. (4.24) underes-
timates the standard deviation by approximately 10% for this channel
size.

We find that for the three largest ionic strengths, measurements are
in excellent agreement with expectations. The mean extension [panel
(e)] agrees very well with the theoretical prediction of Eq. (4.23), and
Eq. (4.24) underestimates the standard deviation [panel (f)] by about
10%, just as suggested by simulations.

By contrast, the measurements at 0.05xTBE do not agree with
theoretical predictions. Both mean and standard deviation are smaller
than expected. The simplest interpretation is that Dobrynin’s formula
[Eq. (2.6)] overestimates the persistence length in this regime. Note
however that measurements at such low ionic strengths are complicated
by the fact that it is difficult to achieve uniform dye staining under these
conditions.

Fig. 5.6 also shows a comparison between experiment 3 and Eqs. (4.23)-
(4.24), this time using not only Dobrynin’s formula for ¢p, but also Man-
ning’s expression, and the prediction from OSF theory (see Section 2.1
and Fig. 2.3). Fig. 5.6 shows that no matter which expression for /p is
used, the mean extension is overestimated at low ionic strengths. The
disagreement is significantly smaller when using OSF theory instead of
Dobrynin’s formula, but on the other hand OSF theory disagrees more
with experimental measurements at higher ionic strength, where the
measurements are more reliable.
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Figure 5.6: A comparison of different theories for the persistence length
(see Section 2.1 and Fig. 2.3). Symbols: Same experimental measure-
ments as in Fig. 5.5(e)—(f). Lines: Predictions for the extension statistics
[Eqs. (4.23)—(4.24)], using different theories for £p. Solid line: Dobrynin’s
expression, Eq. (2.6). Dotted line: Manning’s theory, Eq. 25 of Ref. [51].
Dash-dotted line: OSF theory, Eq. (2.5).

5.4 Summary

In Paper [III] we compare the extension statistics of circular and linear
DNA confined to channels at the boundary between the Odijk and
extended de Gennes regime. The extension statistics of linear polymers
in these regimes are known to high accuracy [II, 87], yet little is known
about the extension statistics of circular polymers. In Paper [III] we
derive approximate expressions for how the mean and standard deviation
of the extension of a circular polymer are related to the same observables
of a linear polymer. We find that the experimental measurements are
consistent with our theoretical expressions, in that the results are inter-
mediate between the predictions in the two regimes, with measurements
under more extended conditions closer to the prediction of the Odijk
regime, and vice versa.

Paper [IV] tests the predictions of Paper [II]. We find that at high
ionic strengths, experimental measurements for the extension statistics
of confined DNA agree with the predicted values to within a few percent,
using standard theories for the physical parameters of DNA. Further,
measurements in a tapered channel (or nanofunnel) qualitatively confirm
the functional dependence of the extension statistics on the channel width.
However, we find that the agreement between theory and experiments
is not as good at low ionic strengths, which might indicate that the
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parameters of DNA deviate from theoretical predictions in this regime.
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Figure 6.1: Ilustration of the Poland-Scheraga model, showing a cartoon

of a partially molten DNA molecule as a sequence of bound and unbound
regions.

Chapter 6. DNA melting

If the temperature of a DNA molecule is increased significantly above
physiological temperatures, some of the hydrogen bonds between the two
strands will break, forming local bubbles of single-stranded DNA. This
process is referred to as (partial) DNA melting or DNA denaturation
[2]. It is illustrated schematically in Fig. 6.1.

Recently there have been a number of studies on the melting of DNA
molecules confined to nanochannels [4, 6, 105, 106]. These studies are
motivated by the possibility of distinguishing between different DNA
sequences by observing the pattern of bound and unbound base pairs.
These patterns are related to the underlying DNA sequence since A-T—
bonds are easier to break than G-C—bonds.

However, the analysis of the ‘melting curves’ obtained in these studies
is based on a statistical theory which does not consider the effect of
nanochannel confinement on the melting probability. Yet such con-
finement strongly affects the configurational statistics of the molecule.
Therefore it is important to determine what effect it has on the statistics
of the melting transition.

Paper [V] analyses the effect of nanochannel confinement on the
melting statistics of a highly idealised model of DNA. We find that for
this model, even weak channel confinement has a strong impact on the
melting statistics. To wit, the transition from the intact, double-stranded
state to the fully melted state is much more gradual when the polymer
is confined.
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Figure 6.2: Schematic illustration of the three-dimensional model of a
confined double- stranded chain that is used in the Monte-Carlo simulations,
see text. Note that the two strands are clamped at the ends.

6.1 Model of DNA

The polymer model that we used in Paper [V] is illustrated in Fig. 6.2.
The polymer consists of two strands, joined at both ends. Each strand
consists of a freely jointed chain of N spherical beads of diameter a,
connected by ideal rods of length /. For a given monomer n and its
partner n’ = n (for 1 < n =n' < N) we test whether the distance
between the two monomers is less than r. If so the two monomers are
considered bound, and a negative binding energy —F}, (in units such
that kgT = 1) is assigned to this pair.

This model disregards a number of important features of DNA,
in particular the sequence dependence of the binding energy and the
difference in stiffness between double- and single-stranded DNA. Hence
it cannot yield any quantitative predictions. Yet for the same reason
it is simple to simulate and, in the special case of ideal chains (a = 0),
amenable to analytical calculations.

6.2 The Poland-Scheraga model of melting

The basic model that we use to describe the statistics of melting was
proposed by Poland and Scheraga in 1966 [107]. Consider the double-
stranded polymer as a sequence of bound and unbound regions, as
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illustrated in Fig. 6.1. The basic assumption of the Poland-Scheraga
model is that the different regions do not interact with each other, so
that the statistical weight of a configuration is simply the product of
the statistical weights of each region.

Within the Poland-Scheraga model, how does the fraction N, /N
of bound base pairs depend on the parameters r, a, D, and E},? For
constant N, this is a difficult question to answer. Yet allowing N to
fluctuate in a grand canonical ensemble simplifies the problem immensely
[108]. In the thermodynamic limit (V) — oo, averages computed in the
two ensembles are expected to agree. The fraction of bound monomers
is therefore usually computed in the grand canonical ensemble and
evaluated in the thermodynamic limit. This trick allows one to obtain
a relatively simple expression for the fraction of bound base pairs of a
long chain.

In the grand canonical ensemble, each bound and unbound region
can grow or shrink independently of any other. Any given configuration
consists of £ unbound regions and k£ + 1 bound regions. The grand
canonical partition function for the system can be calculated by summing
over all possible values of k,

Z =2y + Z, 202 + 2620202020 + - .. (6.1)
= Z E ZuZp)h = ——2 6.2
b kZO( u b) 1— 2,2, ( )

Here Zy, and Z,, are the grand canonical partition functions of a bound
and unbound region, respectively given by

2B ) = 3 Qy(m)etEtim, (6.3
m=1
Za(p) = 3 Qu(m)e, (6.4)

1

3
Il

Qp(m) and Q,(m) denote the number of different ways to create an
bound and unbound region of m base pairs, and p is the chemical
potential (also in units such that kg7 = 1). From this expression for
the grand canonical partition function, one can compute the expectation
values (Np) and (N) by differentiating — log Z with respect to Ey, and
1, respectively. In particular, the fraction of bound base pairs is given
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(Vb) _ 95,2
(N) 8pr + Zgauzu.

(6.5)

This order parameter can be interpreted as the probability that a given
monomer is in the bound state. Since we are interested in the thermo-
dynamic limit, the average must be evaluated at the chemical potential
p* such that (N) diverges. This is the case when

2, (1) 2p(p*) = 1. (6.6)

6.3 Effect of confinement

We have seen that computing the fraction of bound base pairs requires
one to compute Qy(m) and ,(m). For the ideal case of our model
(a = 0, no self-avoidance) we do this as follows: For the bound state, we
estimate Qp, ~ c®™p™ K (m). Here c is the number of ways in which a
single Kuhn length segment can be oriented. For a spatially continuous
model such as ours, it is in principle infinite. Imagine that space is finely
discretised. Then c is finite and we can show that ¢ drops out in the
final result. Further

p=P(rp—ry| <7 | |rp1 — x| <7)

is the probability that monomer k is bound, given that monomer k — 1
is bound, and K (m) is the probability that a chain of length m does not
leave the channel. This probability can be determined from the solution
to a diffusion equation [B, 94]:

K(m) ~ exp [~n*km/(3D%)] . (6.7)

For the unbound state, we find Q, ~ ¢ K(m)?f(m). The factor
K (m) is squared since both strands of the unbound region must stay
within the channel. The function f(m) is the probability that the two
chains form a single closed loop, or alternatively the probability that the
random walk performed by the separation rjy — r}, first returns to within
a radius r of the origin after m steps. The function f(m) is sketched
in Fig. 6.3. For small values of m the probability f(m) is simply the
first-return probability for an unconfined three-dimensional random walk



EFFECT OF CONFINEMENT 57

f(m) (log)

A

| | >
1 D? /% D% /r® m (log)
Figure 6.3: A sketch of the first-return probability f(m). Dashed line:

f(m) for an unconfined DNA molecule. Solid line: f(m) for ideal DNA
confined to a square channel of size D > (k.

— a short loop does not feel the presence of the walls. Assuming that
m > 1, the first-return probability scales as f(m) oc m~3/2 in this
region [109]. In the second and third regions the problem is essentially
one-dimensional. Whenever the z-coordinates of the two monomers
agree, there is a constant probability x o< r3/(D?¢k) that the three-
dimensional random walk returns to within a radius r of the origin [II,
BJ]. The probability of first return can therefore be mapped to the solved
problem of finding the probability of absorption for a one-dimensional
random walk with a partially absorbing sink at the origin [110]. One
finds that this probability scales as f(m) oc m~1/2 for small m, and as
f(m) oc m=3/2 for large m. In summary, the function f(m) has the form
sketched in Fig. 6.3.

Since Q(m) is a pure exponential, and common exponential factors
in Q, and Q, are of no physical significance! it is only the ratio €,/
which influences the melting probability. The logarithm of this ratio
can be interpreted as the difference in entropy between the bound and

unbound state. The calculations above show that it is given by
202.m
3D?

Q
AS/kp = log o = a-tym— T + log f(m). (6.8)
b
Here a and v are undetermined constants which do not depend on
whether the DNA is confined. The parameter o depends on the unde-
termined prefactors in our expressions for Q, and €, and v = log(1/p).

'A common exponential factor in Eqs. (6.3)—(6.4) can be eliminated by adding a
constant offset to p.
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A final simplification of the calculations is afforded by observing that
the terms that are proportional to m have the same effect as shifting
the binding energy according to € = E}, — v + w2¢km/(3D?).

We have now assembled all the components necessary to compute
the fraction of bound base pairs for a long chain. Thus inserting our
expressions for {2}, and €, into Egs. (6.3)—(6.6) yields (after some sim-
plifications) a closed system of equations for (Ny) / (IV):

(Np) /(N) = [L+ e 2 (u") 7T (6.9a)

Zy(p) =e* Y €™ f(m), (6.9b)
m=1

1= 1+ Zy(u")]. (6.9¢)

Here Z| = 0,2,. If Eq. (6.9c) admits no solution for real p*, then
() / (N) = 0.

Egs. 6.9 show that the effect of confinement upon the order parameter
is determined by f(m). What does the shape of this function sketched in
Fig. 6.3 imply for the melting transition? At high values of €, Eq. (6.9¢)
yields pu* =~ —e < 0. For such large negative values of p*, the sum in
Eq. (6.9b) converges rapidly. The physical interpretation is that the
formation of large molten loops is very unlikely when FE, is large. The
order parameter is therefore determined by the behaviour of f(m) for
small values of m. Yet here f(m) is not influenced by confinement as
Fig. 6.3 shows. In this region, then, confinement influences the melting
curve only very slightly. In the opposite limit of negative values of e,
the fact that f(m) is significantly larger for the confined chain at large
m implies that Eq. (6.9c) admits solutions for a larger range of binding
energies, and thus that p}, increases at lower energies for the confined
chain, compared to the unconfined one. At intermediate binding energies,
the binding probability depends sensitively on the exact shape of f(m),
and is therefore hard to predict. But we can directly conclude that the
melting curve is sharper for the unconfined chain, and smoother for the
confined one.

6.3.1 Order of the phase transition

The melting transition of DNA is commonly discussed in terms of the
order of the phase transition, which is determined by the scaling of f(m)
in the limit m — oo [108]. Since f(m) o< m~3/2 both in the confined and
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unconfined case, one can conclude that the order of the phase transition
is unchanged by channel confinement. Yet as we show above, the melting
transition is strongly influenced by confinement. We infer that the order
of the melting transition describes only a minute range of temperatures,
whereas the overall shape of the temperature dependence of the order
parameter depends strongly on the value of the first-return probability
for smaller loops.

Note also that the conclusion that the order of the phase transition
is unchanged by channel confinement hinges on the fact that 2, is
proportional to the first return probability, rather than the ordinary
return probability of a random walk. This is because for the confined
polymer, there are far fewer ways to make a single large loop than many
smaller ones. This distinction has not been made in previous studies
of the melting of DNA. For unconfined DNA the order of the melting
transition is correctly obtained using the return probability, because the
return probability and the first return probability of a three-dimensional
random walk decay with the same power [109]. But the difference
between return probability and first return probability is crucial for
determining the order of the melting transition for confined chains.

6.3.2 Comparison to simulations

Fig. 6.4 shows how confinement influences the melting transition of
the simulated system. We plot the probability that the middle base
pair is closed, as a function of the binding energy Fj,. We find that
confinement does not influence the melting probability at large Ej,, but
also that increasing confinement leads to a smoother transition overall.
These results are in perfect agreement with the theoretical expectations
discussed above.

We also show that the melting curve of Fig. 6.4 can be well described
by a numerical solution to Egs. (6.9). For this numerical solution, we
assume that f(m) = (m 4+ A)~/2 + A\m~Y/2¢2 /D?. This function is
consistent with the shape shown in Fig. 6.3, except that it lacks the
third regime, where f(m) oc m=%/2 as m — co. This is by design, as
the simulated chains are too short to exhibit this regime. Details about
the fitting procedure are described in Paper [V]. That the numerical
solution does not exactly match the simulations is to be expected, as the
function f(m) is only approximately correct. Note also that whereas the
theoretical curve for the unconfined chain shows a kink at low binding
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Figure 6.4: The probability py(N/2) that the middle base pair is bound
as a function of the binding energy, for an ideal chain with binding energy
Ey, = 0.78 at different levels of confinement: D/l = 8 (blue), D/lx = 14
(red), unconfined (green). N =400, ¢ = 0, r = ¢x. Symbols: Results from
simulations. Solid lines: Solution to Egs. (6.9).

energies, the simulated curve is smooth. This discrepancy is caused by
the finite size of the simulated system.

6.3.3 Effect of self-avoidance

For the case of self-avoiding chains we have no theoretical predictions.
However, we have performed simulations of the model described above
with a = 0.63¢k. The results are shown in Fig. 6.5. This figure shows
that confinement has the same qualitative effect here as for the ideal
chain, in that it makes the transition smoother. Yet the effect is even
more noticeable in this case. Note that for the case of the unconfined
chain (green curve), the transition is sharper than for an ideal chain [see
Fig. 6.4]. This is in agreement with established theory for unconfined
chains [111, 112].
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Figure 6.5: The probability p,(N/2) that the middle base pair is bound
as a function of binding energy, for a self-avoiding chain with binding
energy Ey = 2.33, at different levels of confinement: D/¢x = 8 (blue),
D/lx = 14 (red), unconfined (green). N = 400, a = 0.63(k, r = lx.
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CONCLUSIONS

Chapter 7. Conclusions

When I made the decision to devote my PhD studies to attempting to
understand the statistics of DNA confined in nanochannels there were
three aspects of the topic which attracted me especially: First, the hope
that these complicated systems could be described by simple models.
Second, the possibility to supplement calculations and build intuition
by small and simple computer simulations. Third, the prospect that
eventual theoretical predictions would be experimentally testable.
Looking back, these three aspects are all evident in the research that
I have participated in during my time as a PhD student. Thus the new
results of the thesis [I, II, V] follow from modelling a DNA molecule as
a string of beads connected by infinitely thin rods, and the calculations
have been tested in part by standard Monte Carlo simulations [II, V]
and in part by experimental measurements on confined DNA [III, TV].

7.1 Summary of results

In my opinion the most important result of the thesis is the finding
of Paper [II], that in the extended de Gennes regime the statistics of
a confined polymer can be mapped rigorously to a one-dimensional
model, from which both the presence of a universal scaling law and
quantitative predictions for the mean and variance of the extension
follow. This result is important both because rigorous results are rare
for self-avoiding polymers, and because the predictions are of direct
experimental relevance.

These predictions are tested in Paper [IV], which finds that experi-
mental measurements on confined DNA agree to within a few percent,
using standard theories for the physical parameters of DNA. Intriguingly,
the agreement is not as good at low ionic strengths, which might indi-
cate that the parameters which describe DNA deviate from theoretical
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predictions in this regime.

Paper [I] fills a gap in the literature on confined semiflexible poly-
mers. While most theoretical and simulation studies of channel-confined
polymers have considered square or cylindrical channels, experiments
are often performed in rectangular channels. Using standard mean-field
theories for the extension statistics of a polymer, we characterise the
scaling regimes of a semiflexible polymer in a rectangular channel and
show how the extension statistics depend on the height and width of
the channel. These predictions are summarised in Tables 4.1-4.2 on
pages 28-29.

In Paper [III] we compare the extension statistics of circular and
linear DNA confined to channels at the boundary between the Odijk
and extended de Gennes regime. In the process we extend the theory
for linear polymers in these regimes (discussed in Chapter 4) to the case
of circular polymers. We find that the experimental measurements are
consistent with a simple interpolation between the theoretical predictions
in the two regimes.

Finally, Paper [V] concerns the effect of channel confinement upon
the melting of DNA, i.e. the local disassociation between its two strands
that can occur at elevated temperatures. This study is motivated by
recent studies of DNA melting in nanochannels, and the possibility of
using these systems to detect large-scale DNA sequence variations. We
solve this problem for a simple model of DNA and find that confinement
renders the melting transition smoother, i.e. that the transition from
the bound state to the disassociated state occurs over a larger range of
temperatures than under unconfined conditions.

7.2 Outlook

The research presented in this thesis leads to a number of new questions
which would be interesting to pursue.

The calculations of Ref. [C] indicate that for real DNA the effect of
channel confinement on the melting transition is rather subtler than
for the model system that we have solved in Paper [V]. Yet since we
did not consider the effect of self-avoidance in Ref. [C], the effect of
confinement is probably underestimated. In addition, the conclusion
rests on the value of an empirical ‘loop factor’ which is not accurately
known. Comparing empirical melting statistics to theoretical calculations
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of the kind presented in Ref. [C] might allow for improved estimates
of this parameter, as well as the other parameters characterising the
melting statistics.

Similarly, one of the major complications when attempting a quan-
titative description of confined DNA is that dependence on the buffer
conditions of the persistence length, effective width, and interaction
between the molecule and channel walls is not known to high accuracy.
Careful comparisons between measurements of the kind presented in Pa-
per [IV] and the theoretical predictions of Paper [II] should in principle
allow one to characterise these dependencies. Attempts to measure the
DNA parameters in this way could be further facilitated by simulations.
Yet one problem when attempting to compare simulations with theory
and experiments is that the effective width of common polymer models
such as the discrete wormlike chain model [48] does not equal the width
of the individual monomer [IV]. Fortunately, it should be relatively
straightforward to measure it in simulations, simply by counting the
frequency of collisions between two segments enclosed in a fixed volume.

In Paper [IIT] we compared the extension statistics of a DNA molecule
in a circular and linear state. Both in the Odijk and the extended de
Gennes regime, the statistics of a linear polymer is known to high
accuracy. By contrast, no exact theories exist for circular polymers in
these regimes. In Paper [III] we derived approximate expressions for the
statistics. However, these derivations could certainly be improved upon.
In the extended de Gennes regime, it should be possible to adapt the
calculations of the one-dimensional weakly self-avoiding random walk to
the case of a circular polymer. One complication which must then be
considered is that the one-dimensional model cannot distinguish between
knotted and unknotted states of the circular polymer. In the Odijk
regime, the major difference between linear and circular polymers is that
for linear polymers it is impossible for different segments to overlap, so
that it suffices to consider ideal polymers. While self-avoidance probably
makes it difficult to obtain exact results for the circular polymer in the
Odijk regime, it might be possible to include the effect within a mean-
field theory. In general, surprisingly little is known about the extension
statistics of circular polymers, considering how common circular DNA
molecules are in Nature.

Paper [I] makes a number of predictions for a polymer in rectangular-
channel confinement which have yet to be tested in simulations and
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experiments. Assuming that such tests confirm the theoretical predic-
tions, it is my belief that the overview of scaling regimes will be of help
in the planning and analysis of nanofluidic experiments. If, on the other
hand, some of the predictions fail such tests, it will be instructive to
understand why mean-field theory fails in these cases.

The most obvious application of the mapping to a one-dimensional
model in the extended de Gennes regime [II] is the fact that it proves
the exactness of the mean-field scaling for the asymptotic extension
statistics and supplies rigorous bounds for the prefactors. However,
the mapping to a one-dimensional model and the universal scaling law
simplifies the description also of other observables such as correlation
functions, finite-size corrections to the scaling laws, and the looping
probability of confined DNA.

Additionally, while it is straightforward to show that a similar map-
ping as in Paper [II] should exist for a polymer confined to a slit, not
much is known about the corresponding two-dimensional model. In
particular, it is not known whether the two-dimensional model exhibits a
similar universal scaling law as the one-dimensional model, nor whether
it is possible to prove the correctness of mean-field theories for the poly-
mer confined to a slit using similar techniques as in the one-dimensional
case.

Finally, the results of this thesis are solely concerned with equilibrium
statistics. Yet some aspects of the theories presented in Papers [I, 1]
might also be relevant for the study of polymer dynamics. While
very little is known about the dynamics of polymers in rectangular
confinement [49], it is to be expected that also dynamical properties
obey different laws according to which of the scaling regimes sketched
in Fig. 4.1 the polymer inhabits. Further, it is interesting to consider
whether the mapping to a one-dimensional model [II] could simplify
the description of the dynamics in the extended de Gennes regime. For
example, the relaxation time of the extension is usually assumed to arise
from a balance between a restoring force caused by the increase in free
energy as the extension deviates from its mean, and a hydrodynamic
friction term [2, 19, 113]. Within this model, the one-dimensional
mapping allows for an exact expression of the restoring force term. It is
an open question whether the techniques of Paper [II] might allow one
to also simplify the description of the friction term, which would lead to
an improved understanding of the dynamics of channel-confined DNA.
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