

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

Göteborg, Sweden, September 2014

A Study of Trust in Open Source Software

Communities

Master of Science Thesis in Software Engineering

ALLY TAHIR BITEBO

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

A Study of Trust in Open Source Software Communities

ALLY TAHIR BITEBO

© Ally Tahir Bitebo, September 2014.

Supervisor : Imed Hammouda

Examiner: Richard Berntsson Svensson

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden September 2014

Acknowledgements

I would like to thank you all people around me for their help, support and advices during

the whole period of doing this thesis and my studies as well. This thesis was successfully

finished due to their good cooperation with me academically, socially and financially.

First, I would like to acknowledge the financial support i got from University of Dar es

salaam, especially department of Centre for Virtual Learning (CVL) under College of

Information Technology (CoICT) for offering me this scholarship to study in Sweden.

Secondly, I would like to sincerely thank my supervisor Dr. Imed Hammouda for his

constructive feedback, encouragements and proper guidance during the time of conduct-

ing this thesis work. Also, I would like to thank my examiner Dr. Richard Berntsson

Svensson for his support and guidance too.

Thirdly, I would like to thank Mr. Peter Degen Portnoy from Blackduct software for

helping me to get easy access of downloading more data from www.ohloh.net website.

Finally, I would like to thank my family and friends for their advices, support, encour-

agement and prayers.

Ally Tahir Bitebo Gothenburg, Sweden, 2014

iii

Abstract

This study developed an algorithm which can be used to identify trust network from

evaluation network. The algorithm developed uses global trust value of the members

and their evaluation network to approximate local trust between members who are not

directly connected to each other. Moreover, the computed approximated local trust

was used to examine to what extent evaluation network can approximate trust infor-

mation within OSS community and the results show that it is possible to approximate

trust information by using evaluation network. Furthermore, this study analyses the

likeliness of evaluation between members having different trust rank status. So, clus-

tering of members was done and evaluation between groups shows that ”Richer gets

rich”phenomenon and about 72% of member evaluated other members through their

members account profiles and 28% evaluated other members through their accounts as

contributors. This means that a lot of members are likely to evaluate other member

because they have much of information about their personal details rather than their

contribution details in different projects. Finally, the study uses one of the contribution

metric known as man month to analyses the evolution of trust ranks against time based

on members contributions. Furthermore, results show that the developers contribution

will make him or her to be trusted in OSS community. Qualitative study was conducted

to analyses the data collected from OpenHub data repository. This is because OpenHub

data repository offers data of different projects, developers activities in OSS communi-

ties and trust information like kudo rank which are significant base data used to conduct

this study.

Contents

Acknowledgements iii

Abstract iv

List of Figures viii

List of Tables x

Abbreviations xi

1 Introduction 1

1.1 Background . 1

1.2 Problem statement . 2

1.3 Purpose . 3

1.4 Research questions . 4

1.5 Thesis outline . 4

2 Literature review and Related work 5

2.1 Literature Review . 5

2.1.1 Evaluation Network . 5

2.1.2 Trust in OSS . 6

2.1.2.1 Developer perspective . 6

2.1.2.2 Code reuse perspective 7

2.1.2.3 Organizational perspective 7

2.1.3 Trust . 8

2.1.3.1 Transitivity . 9

2.1.3.2 Asymmetry . 9

2.1.3.3 Personalization . 9

2.1.4 Local Trust and Global Trust Values 10

2.1.5 Trust in Web Based Social Networks 10

2.1.5.1 Trust Network and Trust Metrics 11

2.1.5.2 Challenges of computing trust in social networks 12

2.2 Related Work . 13

3 Methodology 15

3.1 Data Source . 15

3.2 Data Collection . 16

v

Contents vi

3.3 Data processing . 17

3.4 Research Goals . 17

3.4.1 RQ1: How likely a developer will become trusted in the community
based on his or her contributions within the community? 17

3.4.1.1 Data Collection . 17

3.4.1.2 Data Analysis . 21

3.4.2 RQ2: How likely that a developer will evaluate other developer of
different trust value? . 22

3.4.2.1 Data Collection . 22

3.4.2.2 Data Analysis . 22

3.4.3 RQ3: How to identify trust network from evaluation network in
the open source software community? 23

3.4.3.1 Data Collection . 23

3.4.3.2 Data Analysis . 23

3.4.3.3 Algorithm . 24

3.4.4 RQ4: To what extent can evaluation network approximate trust
information in the open source software community? 27

3.4.4.1 Data Collection . 27

3.4.4.2 Data Analysis . 27

3.5 Data refinement process . 27

4 Result Analysis 28

4.1 Results Analysis . 28

4.2 Threats to Validity . 33

4.2.1 Construct Validity . 33

4.2.2 Internal Validity . 34

4.2.3 External Validity . 34

4.2.4 Reliability . 34

5 Discussion 35

5.1 Discussion . 35

6 Conclusion and Future Work 37

6.1 Summary . 37

6.2 Conclusion . 37

6.3 Future Work . 39

A Process of sending kudo to other member 41

A.1 The following screen captures shows how a ohloh member can send a kudo
to another member . 41

A.2 The following screen captures show how a member can send a kudo to a
specific project contributor. 46

A.3 The following screen captures show how a member can take back kudo he
or she sent before . 52

B Table showing summary of developers contributions based on first com-
mit dates 53

Contents vii

Bibliography 69

List of Figures

1.1 new member . 2

2.1 Evaluation network . 6

2.2 Onion ring . 8

2.3 Trust types and properties . 9

2.4 trust metric . 12

3.1 xml file . 16

3.2 xml file . 17

3.3 sample data . 24

3.4 evaluation network . 24

3.5 adjacent matrix . 25

3.6 directed graph . 26

3.7 mean local trust . 26

4.1 contributor data . 29

4.2 different kudorank clusters . 29

4.3 project account . 30

4.4 same different project . 30

4.5 same different project percentage . 31

4.6 Adjacent matrix . 32

4.7 Estimated local trust . 32

4.8 MLT KUDO RANK . 33

A.1 user list . 42

A.2 user page . 42

A.3 kudo message page . 43

A.4 kudo confirmation page . 43

A.5 kudo summary page for a member . 44

A.6 API call xml . 45

A.7 project list results . 46

A.8 project search list results . 47

A.9 project contributors list results . 47

A.10 project contributor search list results . 48

A.11 project contributor . 48

A.12 kudo sent confirmation page . 49

A.13 contributor xml API call . 50

A.14 contributor xml API call . 51

A.15 kudo taking back confirmation page . 52

viii

List of Figures ix

A.16 kudo taking xml . 52

List of Tables

2.1 Evaluation betwen developers . 5

3.1 Evaluation betwen developers . 22

4.1 Evaluation betwen developers . 33

x

Abbreviations

OSS Open Source Software

LoC lines of Codes

KR Kudo Rank

KP Kudo Position

NKR Number of Kudo Received

TCRB Total number of Contributors

TC Total Commits

TLC Total Lines of Code

MWECB Mature Well Established Code Base

YECB Young but Established Code Base

VLDT Very Large Development Team

ASDT Average Size Development Team

SD / SDT Single Developer / Small Development Team

SNA Social Network Analysis

xi

Chapter 1

Introduction

1.1 Background

Open source software development has emerged as a popular way of developing software

in recent years. And, the outcome from these open source software communities is been

acknowledged by academy, businesses and government sectors [1–3]. Developers from

different areas around the world collaborate to develop software in virtual community

which is called open source software community. In addition, contributing to these

OSS communities is voluntary work without direction from managerial hierarchy [4].

These voluntary work nature and distribution of developers made trust to be a vital

issue within OSS community [4]. A new community member always considered as less

trusted member within the community [4]. This is because, he or she needs to show

determination and positive contribution before he or she can be trusted in the community

[4]. And, one of the factors which motivate a developer to continuously contribute

to OSS community is social reputation, which is based on positive evaluation from

other developers within a community [5]. Another factor is interpersonal trust between

developers within OSS communities which plays important role on team effectiveness on

OSS development process [3]. So low level of trust within OSS communities is associated

with decreased number of contributors in particular project [2].

To study trust with in OSS community, this study will model trust as follows. A com-

munity members having high reputation value are considered to be more trusted and

community members having low reputation value are less trusted [6] as illustrated in

1

Chapter 1. Introduction 2

Figure 1.1 below.This assumption was adapted from online information system domain

experience. For example in e-business and recommendation systems where a user is more

likely to be trusted due to the large number of positive evaluations and less trusted with

negative evaluations [6].

Figure 1.1: shows how a new community member will categorize existing member
in the community. The circles represent members and numbers within the circles are

reputation values

This study will compute approximated local trust between members within a community

by using evaluation networks. The algorithm developed manages to compute approxi-

mate local trust between members who are not directly connected within the network.

1.2 Problem statement

Trust is an important issue in OSS communities [4] [1]. This is because, it is not possible

to interact with all of the members contributing to different OSS projects. So, one of

the major challenges facing OSS communities is trust. Firstly, is how members can trust

each other [4] and this challenge is similar to other web based social networks [7] [8].

However, those researches developed algorithm like Mole Trust [7] and Tidal Trust [8]

which were used to predict trust scores of members who are not directly connected in

the network. On the other hand, no previous studies applies those algorithm to study

trust in kind of evaluation network like OSS community.So, this study will use evaluation

network to study trust within OSS community.

Another trust challenge facing OSS community is how to trust a member based on

his or her contribution [4]. However, a member can contribute in OSS community by

participating in different activities like software development, software testing, writing

Chapter 1. Introduction 3

software documentation, participating in project forum and communicating with other

members [9]. But, one of the important factor influencing trust between developers

is technical skills [10]. Moreover, some of the research measured developer technical

skills by using commits as a metric where they categorize commits based on LoC [11]

and number of work weeks a member devoted to projects as team effort [2]. But, this

study will use man month metric introduced in OpenHub data repository (http://

www.openhub.net/) to measure members technical contribution and study trust within

OSS community. Furthermore, there is research gap in evaluation networks of OSS

communities [12]. This is because most of the previous researches concentrate more

on studying collaboration networks than evaluation networks in OSS communities [12].

However, the results from this study [13] shows that; homophily factor like same country,

same location, same programming language and same community status will influence

a developer to positively evaluate another. But, still there is some gap in this context

in case of phenomena like participation in same project and evaluation of members

through their accounts. For instance, members evaluating each other through their

personal accounts or through their accounts as contributors.

1.3 Purpose

The purpose of this thesis thesis is to analyse the possibilities studying trust within OSS

communities. Firstly, the thesis investigate the possibility of studying trust in relation

to members contribution within the community. This part of thesis will contribute to

previous studies like [4] were the study discussed the possibility of inferring trust be-

tween members based on contribution. Another study is [11] where they discussed about

developer contribution in term of LoC in given commits but this study applied another

metric which is man month to categorize developers contribution and use it it to study

the relationship between members contributions and trust in OSS communities. Sec-

ondly, this thesis investigate the effect of evaluation between developers having different

community status in the OSS community. Additionally, this study thesis also aim to

analyse the evaluation distribution between members and how is affected if members are

contributing in the same projects or different projects. This part of the thesis will con-

tribute to the previous study [13] where they found that; evaluation between members in

OSS community is affected by homophilic factors like same country, same location, same

http://www.openhub.net/
http://www.openhub.net/

Chapter 1. Introduction 4

programming language and same community status. Thirdly, this thesis investigate the

possibility of using evaluation network of OSS community to extract trust network. The

main goal of this part is to use OSS community evaluation network to study trust by us-

ing methods applied in other web based social networks like in these two studies [7] and

[8]. This section includes implementation of algorithm which was used to transversing

through the network which gives us approximated local trusts between network nodes.

Moreover, the mean approximated trust of each nodes was used to analyze to what ex-

tent can OSS community evaluation network can approximate trust information within

OSS community.

1.4 Research questions

RQ1: How likely a developer will become trusted in the community based on his or her

contributions within the community?

RQ2: How likely that a developer will evaluate other developer of different trust value?

RQ3: How to identify trust network from evaluation network in the open source software

community.

RQ4: To what extent can evaluation network approximate trust information in the open

source software community?

1.5 Thesis outline

The rest of the report is organized as follows. Section 2 describes the overview of

previous related researches and Section 3 introduces methodology used to conduct this

thesis. Section 4 covers the summaries of the findings and threats to validity of this

study. Moreover, in section 5 result discussion is presented. Finally, this study thesis

conclusion and discussion of possible future research is presented in section 6.

Chapter 2

Literature review and Related

work

2.1 Literature Review

2.1.1 Evaluation Network

Evaluation network is the relationship between developers within the open source com-

munity, where developers are represented as nodes and the link between them is evalua-

tion between two developers as illustrated in Figure 2.1 and Table 2.1 below [5] [14] [6].

In ohloh data repository website a developer can send a vote of thanks or appreciation

called kudo to another developer due to his or her contribution to form a link between

those developers who are evaluating each other [5] [6].

Table 2.1: Evaluation betwen developers

Developer Evaluated by developer

D1 D6
D2 D6
D3 D6
D4 D5
D5 D3
D6 D6

In Table 2.1 above shows evaluation between developers. For example in the first row

developer D6 was evaluated by developer D1.

5

Chapter 2. Literature review and Related work 6

Figure 2.1: An illustration of evaluation network between developers.

In Figure 2.1 below shows the evaluation network between developers where nodes repre-

senting developers and link between then representing evaluation between two developers

as shown in Table 2.1 above.

2.1.2 Trust in OSS

Open source community developers are located in different countries around the world.

And, these developers uses internet as a medium of interacting with each other [5].

But online virtual environment offered by OSS community faces challenges of online

anonymity [15][16][5]. Additionally, online anonymity raises the issue of trust among

developers interacting in OSS community. Trust has been studied in different perspec-

tives in open source software domain. One of them is in developer perspective which

explains interpersonal trust between developers. Trust in open source software code

base is another perspective which deals with trust issues in software code written by

different contributors in open source community. Finally, in organizational perspectives

which show how organizations adapting open source software can build trust with OSS

communities.

2.1.2.1 Developer perspective

One of the factors which can lead to interpersonal trust within OSS community members

is lacking of managerial hierarchy such as scheduling and deadlines [3]. Additionally,

Chapter 2. Literature review and Related work 7

having contributors from different organizations with different motivations within a com-

munity [10]. For example, new members of the community are always considered as not

trusted and he or she must shows positive contributions in the community so as to build

some trust with other developers within the community [4]. On the other hand, inter-

personal trust between developers is important to build or strengthen the community [2]

[3].Team effectiveness is the ability to attract developers to join an open source software

community and continue voluntarily contributing in the project [3]. Interpersonal trust

can be affective trust or cognitive trust [2] [3]. Affective trust is related to psychological

and emotional attachment between developers within the open source community and

this shows how team members treat each other in the open source software community

[3]. And, Cognitive trust is based on rational assessment between developers within

the community and this shows how a newcomer or existing members that are willing to

continuously contribute in the project by assessing the team development ability and

project development process [3]. So trust between developers working in the open source

community plays an important role to the community health and sustainability.

2.1.2.2 Code reuse perspective

Code reuse is one phenomenon where a developer reuses his or her codes written in the

past or reuses other developers code [17]. This is one of the common software engi-

neering practice so as to save development time and cost [14]. Open source software

component have been used by different companies products as plugins or modules [16].

Trusting code developed by another developer has been one of the challenges in code

reuse software engineering practice [17][14] [16]. For example, there is a risk of integrat-

ing a full open software component developed by other developers and a developer is

likely to integrate changes from other developers if there is trust between them [16]. In

code-search development, where developers tend to assess the search results obtained

from both technical and human factor before integrating the codes to his or her work

[17].

2.1.2.3 Organizational perspective

Some of the companies reuse open source software components to gain competitive ad-

vantages by customizing or uses value added services [16]. However there is a risk of

Chapter 2. Literature review and Related work 8

integrating full codes developed by another developer as expressed in previous section.

In contrast, there are some companies that wants to release their product as open source

software, where they need to build a network of trust within a community before the

release of their software as open source [1]. Trust is important to motivate the commu-

nity to continue developing open source software, because the released software needs

sustainable community to survive [1]. In large open source community like Linux Kernel

community, they follow a model of onion like shape where a member innermost layer are

considered as trusted member or core member and are the ones who control the code

base of the software by filtering which code updates can be integrated in main software

codes. And, most outer layer are considered as less trusted or passive users [3] and [10].

Figure 2.2: Onion ring.

2.1.3 Trust

Trust has been defined as the relationship between people where one person is taking

a risk to accept other person action. Goldbeck(2013) defines trust as A person trusts

another if she is willing to take a risk based on her expectation that the trusted persons

actions will lead to a positive outcome. Stewart and Gosain (2006) defines trust as the

extent to which a person is confident in, and willing to act on the basis of, the words,

actions, and decisions of the other. Both of these definitions suits well in the open

source software community, since there are risks of accepting unknown developer to

contribute his or her code in open source project. We always hoping that, the developer

will contribute good codes without going against the specified software features. Trust

Chapter 2. Literature review and Related work 9

has three main properties which are transitivity, asymmetry and personalization [8] as

illustrated in Figure 2.3 below.

Figure 2.3: Diagram to show trust types like global and local trust and trust properties
like transivity, asymmetry and personalization .

2.1.3.1 Transitivity

Transitivity is one of the primary characteristic of trust [8]. In this case trust has

been considered as been propagated or inferred from source node to sink node through

intermediate nodes between source node and sink node. One of the common example

used is if Alice trust Bob and Bob trust John, so there is greater chances that Alice will

some how trust John [8]. This phenomenon is called Friend Of a Friend (FOAF) [8]. Of

course, it is easier to trust a friend of a friend or people whom we trust than a stranger

[18].

2.1.3.2 Asymmetry

Trust relationship between two people must not be equal in both sides [8]. For instance,

if Alice trust Bob by trust rating 0.9. It is not necessary that Bob will trust Alice with

the same value 0.9. One of the real world example is trust between parents and children.

Children can trust their parents with a high level of trust but parent will always have

low level of trust to their children [19].

2.1.3.3 Personalization

Trust statement between two people is the personal opinion between people base on

their interacts and history between them. So, its more likely Alice and Bob to have two

different trust statement to John. For example, Alice may trust John by 0.7 and Bob

at the same time trust John by 0.3 [8] [20].

Chapter 2. Literature review and Related work 10

2.1.4 Local Trust and Global Trust Values

Local trust value is the personalized score between two members in trust network [7].

This means that how member A should trust member B. On the other hand, Global

trust value is aggregate score computed over the network and is visible by all members

of the given network [7].

2.1.5 Trust in Web Based Social Networks

In this modern world, people use internet as one of the major source of information.

And, internet offers more opportunity for people to work or interact online even though

logically are living in different geographical location. Example, in a open source soft-

ware community where developers from different countries can collaborate and develop

software together without physically met or know each other [4]. Even commercial

transaction happens between strangers in online websites like Ebay [7]. Furthermore, an

increasing number of social networks where most of people use for business, friendships

and online collaboration and increase of online contents trust emerges as a vital issue

[18] [7] [21]. Another challenge is to filter those millions of web contents information

[21]. The challenge can be observed in online websites like Ebay, Epinions or Amazon

where people can write reviews of different product in the website. So, the question

rises how can a user trust information supplied by another user? [22]. And, how can

users trust each other? [18] [7] [22] [19]. Those online websites mentioned above uses

trust information and reputation systems to address this challenge of content filtering

[22]. Firstly by allowing users to rate each other based on previous transaction. Later,

the system computes the reputation score of the user so as to be used by other user to

decide whether to interact with this user or not [22]. This aggregated score for specific

user is called Global Trust where is visible by all users of the given system. Example of

system that uses Global Trust are Ebay user feedback system and Google page ranking

system [7] [22] [23]. On other hand, systems like Epinions website users can directly rate

a specific user by expressing how much he or she trust other users of the system [7] [23].

Chapter 2. Literature review and Related work 11

2.1.5.1 Trust Network and Trust Metrics

Trust network is a directed graph with nodes and weighted edges [7] [23]. Edge direction

indicates the flow of trust statement from source node to destination node and edge

weight indicates level of trust which most of the systems can range from 0 to 1. These

trust statements are users opinions to other users in the system [7]. However, in most

web based social network existing today are composed with many nodes. For example,

in most popular open source software community like Linux Kernel where number of

contributors can reach 1000. Naturally, It will be difficult to interact with most of them

even though they work in virtual online environment. In other words, developer will have

small chance to interact with other developers and express his or her trust statement

which may be used in trust network. So, most of the network will be with unknown

users which are not directly evaluate each other due to the size of the network [7]. And,

there is a need to approximate or predict trust statement between unknown nodes in

trust network. The process is known as trust propagation or trust inference from source

node to sink node through the network path [7][8].

Trust metrics are mathematical computational algorithm used to propagate trust in

trust networks. These algorithms are used to calculate trust within trust network.

There are two types of trust metrics which are global trust metric and local trust metric

. Global trust metric computes global trust values of each node in the network. One

of the example of the global trust metric is PageRank algorithm used by google to

rank web pages [8]. Additionally, there is local trust metric that propagate local trust

between source node and sink node [19]. One of the common cited local trust metric is

TidalTrust algorithm introduced by [24]. For example, in Figure 2.4 below source node

knows node A and B since they are directly connected to source node. Source node need

to pass three different path to reach sink node. First path is through node B which

is directly connected to sink node. Secondly, is to pass through node A then node C

then it will reach sink node. Finally, is through node A then node D then sink node.

To infer trust in Figure 2.1 from source node to sink node, TidalTrust algorithm use

modified breadth-rst search algorithm to search the sink node [8]. At first, source node

contact its neighbouring node A and node B about the sink node. Since node B has

directly connected to a sink node the local trust value will be reported back to source

node. Furthermore, node A is not connected directly to sink node. So, it will contact

Chapter 2. Literature review and Related work 12

neighbour node C and node D about sink node and since both of them are connected to

sink node they will report back the local trust value and the average weight of their trust

ratings [23] [19]. This process of contacting neighbour nodes and return their average

rating of the sink node will be repeated to every node until the propagated or inferred

trust of the sink is obtained [23].

Figure 2.4: Trust network to show connection from source node to sink node.

2.1.5.2 Challenges of computing trust in social networks

Modelling of trust for mathematical computational such as algorithmic trust metric is

difficult task [20]. Firstly, trust is personal opinion from one person to another and

it depends on wide range of factors such as background information between them,

reputation they holds in the community and history of their previous interactions [18]

[20]. Secondly, Goldbeck (2008) added that, trust depends on the context. For example

in open source software community a newcomer can be trusted to submit small changes

in existing code base than integrating his or her own new developed plugin or component.

And finally, trust between people varies over time because the more people interact and

know each other behaviour very well the level of trust between them can vary [20].

So, trust can be built or destroyed over time. For example a newcomer in software

community can build trust by submitting small patches, helping others and do software

testing [4].

Chapter 2. Literature review and Related work 13

2.2 Related Work

Developers in OSS project tend to put their effort voluntarily to participate in OSS de-

velopment activities. However, these developers includes different beneficial assessment

such as project usefulness, reputational benefits and psychological or emotional benefits

so as they can remain involved in OSS project [2]. Additionally, low level of trust in

these virtual communities may be associated with decrease in number of contributors

participating in OSS development [2]. This study [2] shows that Affective trust support

both team size and team effort, where they defined team size is the number of devel-

opers associated with the given project and team effort as the number of work week a

contributor devoted to the project. On the other hand the study shows that cognitive

trust support neither team size nor team effort. Another finding is the quality of com-

munication between contributors will enhance the process of task completion with the

community [2]. Furthermore, it was founded that; the most important factor influencing

trust between developers are technical skills, their reputation and informal and formal

practices within the community [10]. So, developers participation may be affected by

how they are interacting and treating each other in OSS communities.

Developer determination to continue participating and contributing to an OSS project

is really important for the survival of given project. However, there are different kinds

of developers contributions which are committing lines of codes, forum participation,

software documentation, writing project wiki and participating in communication media

like mailing list and in instant chat [9]. But, one of the important contributions which

adds OSS values are technical knowledge[10] [2] and communication quality between

contributors [2]. Additionally, there were different proposed types of metrics used to

measure contributors contributions. One of them is commits based on LoC done in

this study [11] where they propose three different types of commits named as single

commits which are 1 to 100 LoC, aggregate commits from 101 to 10000 LoC and finally

repository refactoring more than 10000 LoC. Another metric used was number of work

weeks a contributor devoted to the project and they found that it was directly support

contributors task completion in a given project [2]. Nevertheless, De Laat in his study

[4] pinpointed the problem of trusting contributors based on their contributions. This

study also found the possibilities of using existing potential contributors who are already

trusted so as to infer trust within the community. Additionally, the strong inference trust

Chapter 2. Literature review and Related work 14

or weak inference of trust will depend on roles of contributors and past history or past

performance [4].

Social reputation is one of the factors motivating a contributor to participate voluntar-

ily in OSS communities [13]. For instance, positive evaluation from other community

members. Factors that influence a developer to positively evaluate each other are like

members number of positive evaluation he or she receipt before, shared affiliations shared

between members and homophily factors like same location, programming language and

community status [13]. Additionally, comparison between collaboration network and

evaluation network was done using social network analysis (SNA) and the results shows

that; number of positive evaluation contributor received is not related to number of col-

laboration he or she has [12] [10]. Moreover, the evaluation network in more connected

than the collaboration network [12]. Finally, both evaluation network and collabora-

tion network has a small world and scale free network properties. For example small

average path length, high clustering coefficients and power-law degree distribution [12].

Furthermore, most of social netwroks have the small world network properties [8].

In todays modern web based social networks which connect different people around the

world, trust in these social networks has been emerged as one of the important issues to

consider [7] [8]. Furthermore, it is not easy to interact with all the members in such kind

of networks because of number of members within the community. So, using of trust

metric to infer trust relationship within the community between members who are not

directly connected in the network [7] [8]. Additionally, both studies [7] [8] shows that

algorithm used were able to predict trust scores in these web based social networks.

Chapter 3

Methodology

This study was conducted using qualitative data analysis method. This is because of

the nature of the research goals, existing theory and data source available. This section

describes the data source used and techniques used to perform data processing and data

analysis. The following sub sections explains in details

3.1 Data Source

The study was conducted by using data collected from OpenHub data repository (

http://www.openhub.net/) formerly known as Ohlol. This repository holds free in-

formation about open source projects and contains data of developers, code history,

main programming languages, open source projects and organizations who manages

those open source projects. OpenHub collects these data from different version control

repositories holds open source projects like git, subversion, mercurial, CVS and bazaar.

Additionally, this study choose OpenHub data repository because it contains information

about evaluation between developers so it will be easy to construct evaluation network

and it also contains some trust information like kudo rank which considered as global

trust value in this study. Furthermore, OpenHub can be accessed using their API which

is well documented at this link (https://github.com/blackducksw/ohloh_api). To

access OpenHub data through API, you need to be a member and one needs to request

for an API key [14]. Moreover, the data collected In this study was about members

15

http://www.openhub.net/
https://github.com/blackducksw/ohloh_api

Chapter 3. Methodology 16

account information, contributors data, members history about the kudo they sent and

kudo they receive and projects information.

3.2 Data Collection

Data collected using Ohloh API calls with the results was an xml file formats as shown

in Figure 3.1 below. To conduct this study the following data were collected; members

account data, kudo received data, kudo sent data, contributors data and project data.

Additionally in ohloh a member and a contributor are two different kinds of information.

A member is a person who registered as a user in ohloh website and a contributor is the

person who contributes in open source project or projects [14]. A contributor can be a

member and claims his or her contribution through his or her account.

Figure 3.1: Xml file returned after calling Ohloh API.

Chapter 3. Methodology 17

3.3 Data processing

Java application was developed to call Ohloh API and store the results to a structure

text file. Then, the text file was imported to database for easy processing as shown in

database snapshot in Figure 3.2 below.

Figure 3.2: Database snapshot of the members account table .

3.4 Research Goals

3.4.1 RQ1: How likely a developer will become trusted in the commu-

nity based on his or her contributions within the community?

3.4.1.1 Data Collection

To address this research goal, the study collects the following data about developers

contributions. The data collected was members account information, kudo history data,

contribution data and project data.

Member Account data An account data holds information about a member of ohloh

website. This dataset holds several information about the member account like

• Account id - the unique id of the registered member in ohloh website.

• Name - the name of the account holder [25].

• Created at - Date where account was created [25].

Chapter 3. Methodology 18

• Updated at - Date where account was updated [25].

• Homepage url - Is the url of the member websites or blog [25].

• Post count - This field shows number of posts made by a member in ohloh forum

[25].

• Badges owned by account holder and one of the interesting points of this study is

kudo score.as shown in figure 3.1 above.

Kudo score badge has two attributes which are kudo rank which is the number between

1 and 10 and kudo position. Kudo rank is the ranking scheme which is calculated based

on number of kudo a specific member received from others and other factors like project

stack and his or her contributions in the those projects [14]. The default kudo rank of

newly account is kudo rank 1. Kudo position shows member position in the website

based on his or her contributions.This study holds 563,427 information about registered

members in ohloh data repository.

Project data A project dataset holds information about open source projects stored in

ohloh website. The following data were collected about different open source projects;

• Project id is the id of given open source software project [25].

• Project name is the name of the open source software project stored in ohloh

website [25].

• Created at is the date were project were added to ohloh website [25].

• Updated at is the latest time the project were modified [25].

• Homepage url is the homepage of the given open source software project [25].

• Project user count is the number of users who votes in ohloh website as are the

users of this project [25].

• Average user rating is the number of rating a user votes to this project and these

ratings are floating number from 1.0 to 5.0 where 1.0 is the lowest and 5.0 is the

highest ratings [25].

• Number rating is the total number of users who have rated this project [25].

Chapter 3. Methodology 19

• Number of reviews is the total number of users who have write the review about

the project [25].

• Analysis which shows the general analysis of the given project such as number

of contributors, number of commits, project size, project age, project activities

and past twelve month summaries in term of number of commits and number of

contributors [25].

This study holds 662,439 data of open source software projects records.

Contributors data A contributor dataset holds information about peoples who con-

tributes in different open source projects. This study contributor dataset holds 844,012

data of contribution of developers in different open source software projects and their ac-

tivities are recorded in Ohloh website. The following data were collected about different

contributors;

• Contributors id is the id of the specific contributor [25].

• Account id is the account id of the contributor if he or she registers an account

in ohloh data set and claims specific contribution. This field will be null in this

study database if the contributor does not have an account in ohloh website [25].

• Account name is the account name of the contributor if he or she is a member in

ohloh website. This field will be null in this study database if the contributor does

not have an account in ohloh website [25].

• Contributor name is the name used by a contributor when committing his or her

codes to repositories [25].

• comment ration the fraction of new lines of code added by a contributors which

are comments [25].

• First commit time is the first date a contributor commits his or her work [25].

• Last commit time is the last date a contributor commit his or her work [25].

• Man month total number of calendar months which a contributor made at least

one commit [25].

• Commits are total number of commits made by specific contributor [25].

Chapter 3. Methodology 20

• project id is the id of the project where this contribution was made [25].

Kudo received history data Kudo received dataset holds information about history

kudo received by a specific member. In this case the following data were collected

about sender account id, sender account name, receiver account id, receiver account

name, project id, project name, contributor id, contributor name and date where the

the kudo was received was downloaded and stored in database. This study holds 46,926

information about kudo received by different ohlol members.

Kudo sent history data Kudo sent dataset holds information about history kudo sent

by a specific member. In this case the following data about sender account id, sender

account name, receiver account id, receiver account name, project id, project name,

contributor id, contributor name and date where the the kudo was sent was downloaded

and stored in database. This study holds 57,458 records about kudo sent by different

account holders.

The process of sending kudo can be directly to a member account or to a member who

contributes to a specific project. These two scenarios are shown in the appendix A and

was recorded differently in this study as explain in the following data field description

project id, project name, contributor id and contributor name

Kudo sent and kudo received dataset shares the same attributes definitions as explained

below.

• Sender account id is the account id of the member who sends a kudo [25].

• Sender account id is the name of a member who sends a kudo [25].

• Receiver account id is the account id of the member who receives a kudo [25].

• Receiver account name is the name of a member who receives a kudo [25].

• Project id is the id of the project where contributor receives a kudo instead of his

or her account [25]. This field will be null if the kudo sent to member account in

this study database.

• Project is the name of the project where a contributor receives a kudo instead of

his or her account [25]. This field will be null if the kudo sent to member account

in this study database.

Chapter 3. Methodology 21

• Contributor id is the contributor id of the contributor if kudo was sent to a project

contributor instead of member account [25]. This field will be null if the kudo sent

to member account in this study database.

• Contributor name is the name of the project contributor if kudo was sent to a

project contributor instead of the account [25]. This field will be null if the kudo

sent to member account in this study database.

• Created at is the date were kudo was sent or received [25].

3.4.1.2 Data Analysis

This study analyses the possibility of a developer to become trusted based on his or

her contributions in the OSS community. So, the data was grouped according to first

commit date done by different members to any of the project he or she was contributed.

The results shows that number of members falls in this group category ranges from 1

to 39. The given Table 3.1 below shows only top ten of the grouped members based on

first commit date. Then the first three dates was selected and members contributions

were analyzed as illustrated in Appendix B.

Developer contribution in OSS community is not only by committing lines of codes but

also can be in different forms like being active in project forum, software documenta-

tion, writing project wiki and be active in mailing list [9]. Additionally, usually basic

metric used to measure developers contribution in OSS is commuting the LoC [9] [11].

On the other hand this study data holds number of commits done by a specific con-

tributor without specifying quantity of LoC included in those commits. So, one of the

contribution criteria used in this study will be man month values. Man month is the

number of month were a contributor did atleast a single commit [25]. The months were

a contributor did not commit any code were not counted [25].

Chapter 3. Methodology 22

Table 3.1: Evaluation betwen developers

Number of contributors First commit date

39 2012-03-26
39 2012-07-05
36 2012-05-10
35 2011-10-03
34 2012-09-04
34 2013-01-28
33 2012-06-12
33 2013-03-11
33 2012-05-15
33 2012-05-31
33 2012-03-21

3.4.2 RQ2: How likely that a developer will evaluate other developer

of different trust value?

3.4.2.1 Data Collection

To address this research goal, the study collects kudo history data as explained in section

3.4.2 above.So, this study use kudo sent history and kudo received history data.

3.4.2.2 Data Analysis

The study examined evaluation between developers having different trust values. For

instance, evaluation between members having different kudo ranking. To achieve this,

the study categorise the members in clusters according to their kudo rank and study

the transaction of kudo history between those clusters. Firstly, clusters were divided as

follows based on members of kudo rank (9 and 10), kudo rank (7 and 8), kudo rank (5

and 6), kudo rank (3 and 4) and kudo rank (1 and 2). Moreover, this study categorizes

the process of sending or receiving kudo between members into two groups. The first

group is when a member sends or receives a kudo directly to his or her account. Secondly,

is when a member sends or receives a kudo as a contributor of specific project. In this

second scenario a member can receive kudo due to his or her contribution in different

projects. For example, member A can receives a kudo due to his or her contribution

in project X and at the same time member A can still receive a kudo due to his or

her contribution to project Y. These two scenarios are different and are well explained

Chapter 3. Methodology 23

in appendix A. Finally, the study continue to analyse the distribution of kudo history

based on the members contributions in either the same projects or different projects.

3.4.3 RQ3: How to identify trust network from evaluation network in

the open source software community?

3.4.3.1 Data Collection

To address this research goal, the study collects the kudo history data and contributors

data and project data as explained in section 3.4.2 above.

3.4.3.2 Data Analysis

Data from kudo sent history and kudo received history was used to track members history

of evaluation activities between each other and capture the scenario who evaluates who?.

Further more, an evaluation network was constructed where nodes are members id and

evaluation between them as edges. Moreover, this study evaluation network have 15,664

nodes and 46,947 edges. The next step was to construct trust network out of evaluation

network but this study faced one of the biggest challenge which is the missing of ground

trust scores between members in the Openhub data repository but they have kudo rank

as estimated global trust score in each nodes. For example, a member will just sent a

kudo which is equal weighted evaluation without specifying how much he or she trust the

member who receive that kudo. On the other hand, most of the previous studied web

based social network like Epinions.com. There are trust statements between members.

For example, member A will rate member B by 0.7 which means a trust statement can

be modeled as tAB = 0.7 meaning that member A trust member B by 0.7 trust score.

These values will depend on the study data. However, having kudo rank as global trust

for each member (node) in the this study evaluation network, this study uses kudo rank

as base trust information and calculate what the study argue to be estimated local

trust. So, this study develop an algorithm that uses kudo rank to estimate the local

trust between members.

Chapter 3. Methodology 24

3.4.3.3 Algorithm

Algorithm was developed to approximate the local trust values between members who are

not directly connected to each other. By using evaluation network data (who evaluates

who?) and kudo rank assigned to each node.The algorithm developed inherits some of

TidalTrust algorithm procedures explained in 2.1.5.1 above. To show development of

this study algorithm, sample data of evaluation between developers was introduced as

shown in Figure 3.3 below and its evaluation network of the sample data as shown in

Figure 3.4 below.

Figure 3.3: Sample data of evalution between developer with their given kudo rank.

Figure 3.4: Evaluation network of the sample data. Nodes represents members and
number inside the node is the member id. The arrows represents the kudo sent from

source node to destination node

Chapter 3. Methodology 25

Steps used to develop the algorithm are as follows. At first, Adjacent matrix from

evaluation network shown in Figure 3.5. was built to maintain the structure of our

graph and form direcred graph shown in Figure 3.6. Secondly, in the adjacent matrix

the field having 1 was replaced by a sender kudo rank then the algorithm was applied

to a graph so as to approximate local trust of unknown nodes from the source node.

Steps of computing the approximates of local trusts

i. Source node is identified.

ii. Source node identifies sink nodes which are not directly connected to source node

but can be reached through neighbours nodes.

iii. Source node neighbours reports back the approximated local trust of the sink

which is the neighbour kudo rank if are directly connected to them. If not, the

neighbours of neighbour nodes will report back the approximated value. This

process is repeated until the sink approximated local trust is determined.

iv. The source node will take average of returned approximated local trust from its

neighbours or neighbours of the neighbours.

Figure 3.5: Shows new adjacent of sample data.

Chapter 3. Methodology 26

Figure 3.6: Shows directed graph of sample data. The nodes represents the members
and number inside the nodes represents the kudo rank of the member

After the algorithm applied to our sample data, the third matrix will be generated

to display approximated local trust calculated by the algorithm as shown in Figure

3.7 below. The values in red are the apploximated local trust obtained after running

algorithm.

Figure 3.7: Shows new adjacent matrix with approximated local trust. The shaded
cells are the ones generated after running the algorithm

Chapter 3. Methodology 27

To apply the developed algorithm to this study data, firstly the data was filtered to

selecting members at least get evaluated 10 times. Data filtering was done because more

than 70% of members data received only one kudo and their mean approximated local

trust will be directly affected by the evaluator kudo rank. Another reason is size of the

network. This study faces Java Virtual Machine memory errors when tried to apply

big network data to the algorithm. So, filtering and reduce size of the network helps

to overcome those challenges. Finally, the results of adjacent matrix of both weighted

evaluation network and trust network with estimated local trust were stored in CVS

files.

3.4.4 RQ4: To what extent can evaluation network approximate trust

information in the open source software community?

3.4.4.1 Data Collection

To address this research goal, the study collects the kudo history data and contributors

data and project data as explained in section 3.4.2 above.

3.4.4.2 Data Analysis

The study uses approximated local trust to studying to what extent evaluation network

can approximate trust information in the open source software community. At first, the

study find the mean estimated local trust of each node. then comparison between kudo

rank of the node and mean of estimated local trust will be done for each node.

3.5 Data refinement process

The first version of data collected was refined to remove some of the data with missing

members information. Those data removed are kudo transactions to un registered mem-

ber which their receiver account id and receiver account name fields were represented

as null and it will be difficult to analyze their contribution or kudo ranking since they

miss members information.

Chapter 4

Result Analysis

4.1 Results Analysis

In this section the results of data analysis discussed in previous section are presented

with the aim to answer research goals mentioned in Chapter 1 above.

RQ1: How likely a developer will become trusted in the community based

on his or her contributions within the community?

To answer this question the assumption was made that at the first committing date all

the members were having kudo rank 1 and this will evolve to any kudo rank accord-

ing to the member contribution. The Figure 4.1 below was the summary of members

contribution in three different first commit dates from this study database which are

2012-03-26, 2012-07-05 and 2012-05-10. The results shows that members having kudo

rank 9 have contributed in different project by more than 24 man month from 78% to

100%. Members having kudo rank 8 have contributed more than 24 man month from

54% to 79% and kudo rank 7 from 56% to 71%. Moreover, members with kudo rank

5 have contributed to projects by less than 12 man month by 50% to 100% and those

having kudo rank 1 they contributed to projects with less than 12 man month by 100%.

So, the results shows that, trust values of given members are correlated to the amount

of members contributions in the OSS community.

28

Chapter 4. Result Analysis 29

Figure 4.1: Shows summary of members contributribution based on man month
criteria.

RQ2: How likely that a developer will evaluate other developer of different

trust value?

This study continues to analyzing the possibility of evaluation between members having

different community status (Kudo Rank). The Figure 4.2 below shows that, there are

more evaluation from community members having low kudo rank to members having

high kudo rank.

Figure 4.2: Shows clusters according to kudo rank of members and the evaluation
between those clusters.

Additionally, this study point out two means of evaluation between members as ex-

plained in details in Appendix A and the summary of the results show that there were

Chapter 4. Result Analysis 30

more evaluation through user personal accounts which is about 72.32% of total evalu-

ation recorded in this study and 26.68% was sent to members as project contributors.

Moreover, the results shows that the members having low kudo rank receives more kudo

from their contribution than in members personal profiles as presented in Figure 4.3

below.

Figure 4.3: Shows clusters kudo distribution based on receiving as account holder or
to specific project as contributor.

Additionally, in analyzing the effect of the evaluation between members, they were either

contributing in the same or different projects. The results show that, more evaluation

occurs between members who works in the same and different projects at the same time

which is about 60% of the kudo sent to members account. The next group is those

that are contributing to completely different projects which is about 32% and the ones

who contribute in the same project are 8%. On the other hand, in case of the kudo

sent to members as contributors of specific project. The results shows that kudo sent to

members contributing in the different and same project at the same time are 45% which

are closely to those who works at different projects which are 38% and finally those who

works in the same project are 17% as illustrated in Figure 4.4 and 4.5 below.

Figure 4.4: Shows kudo history distribution sent to members working in the same
projects or in different projects.

Chapter 4. Result Analysis 31

Figure 4.5: Shows kudo history distribution sent to members working in the same
projects or in different projects.

RQ3: How to identify trust network from evaluation network in the open

source software community.

This study evaluation network composes of 15,664 nodes and 46,947 edges. To get

trust network out of evaluation network, algorithm was developed to approximate local

trust between members by using evaluation between members and their kudo rank as

explained in section 3.4. This study was able to get approximated local trust values

between members by using the algorithm explained in section 3.4. A partial snapshot

of adjacent matrix of weighted evaluation network and results of approximated local

matrix are shown in the following Figure 4.6 and Figure 4.7 respectively. In the Figure

4.6 the first row and column represents the member account id and the value on the

adjacent row-column values represent kudo rank of a sender as weighted evaluation

network scenario explained in section 3.4.3.3 above. Moreover, in Figure 4.7 the first

row and column represents the member account id and the adjacent row-column values

represents the approximated kudo rank as explained in section 3.4.4.2 above. The full

adjacent matrix of the selected data which have 1340 rows and column can be found at

the following link 1 and for the approximated local trust matrix of selected data which

have 1340 rows and column at the following link 2.

1https://drive.google.com/file/d/0B7yISd0ndVt4NEJtUzJkdzZ6dnM/edit?usp=sharing
2https://drive.google.com/file/d/0B7yISd0ndVt4aGlIY1haQnNrOU0/edit?usp=sharing

https://drive.google.com/file/d/0B7yISd0ndVt4NEJtUzJkdzZ6dnM/edit?usp=sharing
https://drive.google.com/file/d/0B7yISd0ndVt4aGlIY1haQnNrOU0/edit?usp=sharing

Chapter 4. Result Analysis 32

Figure 4.6: Shows partial snapshot of the adjacent matrix of the selected study data.
The full matrix have 1340 rows and 1340 column.

Figure 4.7: Shows partial snapshot of the adjacent matrix with estimated local
trust.The full matrix have 1340 rows and 1340 column.

RQ4: To what extent can evaluation network approximate trust information

in the open source software community?

This study continue to analyses the possibility of using evaluation network to approx-

imate trust information in the open source software community. This was done by

using approximated local trust generated by the algorithm developed in previous sec-

tion. Then, the mean approximated local trust of each member (node in the network)

was calculated and the value was compared to the kudo rank of the given member as

shown in snapshot of the approximated local trust illustrated in Figure 4.8 below. The

results of this approach show that the value of approximated local trust was directly

affected by the kudo rank of members who evaluate the given member. Furthermore, the

stability of this value depends on evaluators kudo rank. For example, the number will

stay high if most of evaluators have high kudo rank and will go low if most of evaluators

have low kudo rank.

Chapter 4. Result Analysis 33

Figure 4.8: Shows partial snapshot of mean approximated local trust and kudo rank
of every member among selcted data.

The results after comparison between kudo rank and mean approximated local trust are

presented in the following Table 4.1.

Table 4.1: Evaluation betwen developers

Difference -8 -7 -4 -3 -2 -1 0 1 2
Numbers 9 1 1 2 6 58 981 272 10
Percentage 0.6 0.07 0.07 0.14 0.42 4 68.6 19 0.7

4.2 Threats to Validity

This section identifies threats that may affect validity of this study.

4.2.1 Construct Validity

Construct validity threat is the extent which the studied operational measures reflects

what the researcher intended to study according to research goals [26]. In this study

construct validity can be assumptions made during conducting this study. Firstly, is

the construction of evaluation network by considering binary evaluations weather 1 for

evaluation between members and 0 for no evaluation between developers. Secondly, is

considering kudo rank of the given member as the global trust value of the given member.

This is because kudo rank has characteristics of global trust values as explained in section

2.4 above. Finally, is the using the kudo rank of evaluator as the local trust between

evaluator and the one who is evaluated. To minimise this threat to the validity, this

study was conducted based of different previous related researches works done in other

web based social networks.

Chapter 4. Result Analysis 34

4.2.2 Internal Validity

Internal validity threat is the aspects where external factors may affect the study results

and researcher can be aware with some of these factors and others may not be aware

of them [26]. Openhub pulls data directly from version control system like Git and

SVN. So, some of developers are not fully registered with their full details in open hub

data repository. Additionally, some of the contributors registered with different names

in different projects they contributes and some contributors have not updated their

personal information. To minimize this threat to the validity, this study omitted some

of contributors data missing contributors personal information like kudo rank which is

one of the basic data of this study. However, these data omitted 100 %of them were

kudo sent to contributors of specific project. So, may affect research goal number 2.

4.2.3 External Validity

External validity threats reflects to what extent the results of this study can be gen-

eralizable [26]. Generalizability of this study results is one of the validity threats of

this study. This is because this study used single data source which is openhub data

repository. To minimize this threat to validity, this study collects large volume of data

and analysis of data was done in different alternative so as to improve the study results.

4.2.4 Reliability

Reliability is the aspect concerning with how the study data and data analysis are

dependent to the researcher. This means that, how the results will be if the same study

will be conducted by other researcher? [26]. This study results may varies depending on

time because process of evaluation between contributors is the continuous process and

may change over time. Another reason is assumption and modeling of trust made by

researcher.

Chapter 5

Discussion

5.1 Discussion

This thesis focuses on the studying of trust in OSS communities. However, there are

other researches were studied trust in different social networks. In this study, one of the

research goal was to explore; How a community member will be trusted based on his or

her contribution within OSS community? This study used man month values as a metric

to measure members contribution. This was similarly to the team effort metric used in

this study [2] which uses number of weeks a contributor devoted to the project. So one

of their findings was affective trust is directly support team effort. On other hand this

study found that the more contributors efforts to technically contribute to OSS projects,

the more he or she is becoming trusted in the community. This finding is relating to

one of the challenges OSS community faced and other web based social network, which

is how to trust other members in the community based on their contribution. This

challenge was also found in this study [4] where a member trust inference can be strong

or weak based on his or her role and contributions.

Evaluation between members in OSS communities is another point of interest in this

study. Firstly, clusters between members of different community status were formed

and evaluation between members belonging in these clusters was studied. The results

shows the richer get richer phenomenon. This is the same as one of the results observed

in this study [13] where accumulation factor is influencing a community member to

evaluate others who already have been evaluated most. Then, this thesis studied the

35

Chapter 5. Discussion 36

kudo sent to members in their personal accounts and to their accounts as contributors.

The results shows that, the more evaluations were sent to members personal accounts

than in their contributors accounts. Moreover, the evaluation is happening more between

members contributing at the same time in the same and different projects. So, this

thesis can conclude that evaluation between members is not influenced by weather they

are contributing to the same projects. On the other hand, homophily factors like same

community status, same programming language and same location influencing evaluation

between members [13].

Evaluation between developers will form an evaluation network which nodes are members

and link between them is evaluation from one member to another [12]. Additionally,

this OSS community used in this study shows a small world and scale free network

properties [12]. However, the target of this study was to extract a trust network from

evaluation network. To achieve that goal, this study develope an algorithm which uses

evaluation network and community status values which in this case was kudo rank to

approximate local trust values between members within the community. The algorithm

uses existing network connection to infer trust between members who are not directly

connected as did in these studies [7] [8]. Additionally, the study uses mean estimated

local trust to the possibility of using evaluation network to extract trust information

within the community. And the results showed that the approach was successfully able

to extract trust information.

Chapter 6

Conclusion and Future Work

6.1 Summary

Trust has been one of the important issues to be considered in OSS development commu-

nities. For example interpersonal trust is important for team development effectiveness.

This study leads to development of algorithm which uses evaluation network and kudo

rank of members to approximate local trust. Then it uses mean estimated local trust to

estimate trust information within open source community. Clustering of members group

based on kudo rank was made and evaluation between groups was studied. Finally is

the evolution of kudo rank of members with time based on their contributions.

6.2 Conclusion

Based on result analysis results the following conclusions were made by this study.

RQ1: How likely a developer will become trusted in the community based

on his or her contributions within the community?

This study groups members based on their first commit time (date) as an assumption

in that date all the members have kudo rank 1. However, the kudo rank of members

will vary against time based on members contribution. The results shows that members

having high kudo rank tends to put more effort on developing OSS and this made them

37

Chapter 6. Conclusion and Future Work 38

to become trusted in the community. On the other hand, community members with low

kudo rank put less effort on OSS development thats why they are less trusted.

RQ2: How likely that a developer will evaluate other developer of different

trust value?

Firstly, this study formulate cluster of members based on kudo rank and analyse the

evaluation between those clusters. The results show that the richer get richer phenomena

where the members with high kudo rank are evaluated more. Additionally, this study

goes deeper to analyse the kudo history sent to a members account and to members

as contributor. The results shows that the members evaluation is based more by hav-

ing more knowledge about personal information of a member he or she evaluated than

technical contributions. Then the studies continue to check effect similarity of members

contributing in the projects. And, the results shows that for the kudo sent to user ac-

counts, more evaluations will happened between members working weather in the same

project or in different projects. Moreover, in the case of kudo sent to the contributors

nearly most of the kudo was sent among members working either in the same project

and different project and completely contributing in different project. How ever, in both

cases it shows there is less number of kudo sent between members contributing to the

same project only.

RQ3: How to identify trust network from evaluation network in the open

source software community?

The algorithm developed manages to approximate local trust between members by using

evaluation network between them and their kudo rank values. So out of those approxi-

mated local trusts between members we can generate trust network between them.

RQ4: To what extent can evaluation network approximate trust information

in the open source software community? This study uses approximated local

trust between members developed by the algorithm to calculate mean local trust value

for each individual member s. Then the mean local trust value was compared with kudo

rank value of that given member. The results show that the value of mean local trust

is affected directly with the kudo rank of the members evaluating this given member.

For example if the member was evaluated more by the member having higher kudo

Chapter 6. Conclusion and Future Work 39

rank which are considered to be trusted in this study. However, the evaluated member

will have high kudo rank and be trusted as well and vice versa is true in case you are

evaluated by members having low kudo rank. Also the study result shows that about

69% of the mean approximated local trust was the same as the kudo rank of the given

member. Moreover, the following difference of weather 1 or -1 are about 23%. SO, this

study concluded that evaluation network can approximate the trust information within

a given social network.

6.3 Future Work

This study proposes the future possible researches can be done in the case of tracking

the members who decided to take their kudo back. Currently Ohloh does not track this

process in their data repository as shown in Appendix A.3. So currently require manual

tracking but is one of the possible future study. Another possible study is to analyse the

action taken within a community in case of the code submission or feature suggestion

between members of the different kudo rank. For example, how long it takes if member

A with kudo rank 10 commits changes to be integrated in the main software code base.

On other hand member B with kudo rank 1 commit changes, how long it will take for

the commit to be integrated with main software code base. Moreover, this can be done

in other forms of contributions as mentioned in chapter 3 above such as forum posting,

maintenance of the project wiki, software documentation and participating on mailing

list and instant chat application conversations.

Furthermore, is to add more reference data to the research goal number 4 and proposing

standardization of the metric used in this study man month. Some previous studies

shows a standard size of the project can be determined using LoC [27]. Additionally,

the other studies propose the standard size of commit based on the LoC committed by

a developer [11]. So I think it will be a good study to try to standardize the metric like

man month as shown in Ohloh data repository. Because this study uses less or equal

to 12 man month with the assumption that may be a contributor is the student at a

certain university uses open source software as a way learning and may be after finishing

the studies will no longer involve that of software development. On the other hand uses

greater than 24 man month as assumption that a member who will contribute for that

Chapter 6. Conclusion and Future Work 40

amount of time he or she must be well committed in contributing in OSS communities.

Another proposed future research is to examine the effect of difference between mean

approximated local trust obtained after using algorithm and kudo rank of the member

against given time. With the assumption of having positive value means the member

will be promoted to higher kudo rank and negative values means the member will remain

or is kudo rank will be lowered in the near future. This is because the algorithm results

shows that the evaluators kudo rank may affect the value of mean approximated local

trust.

Appendix A

Process of sending kudo to other

member

Ohloh members can send a kudo to another ohloh members. And, this process of sending

kudo can be done in two different ways. Firstly, is to a directly member account and

secondly to a member who contributing to a specific project.

A.1 The following screen captures shows how a ohloh mem-

ber can send a kudo to another member

.

Firstly a member login to the site. Then, a user can select people menu to browse list

of all members in the ohloh dataset as shown in the following Figure A.1 below.

Then a member can search a specific user by using search field or browser for more

account by clicking more account holder button. For this demonstration user Stefan Kng

was selected and the following page open for specific member. The page shows account

summary, badges the user acquired and different activities performed by a specific user

as shown in the Figure A.2 below.

A member can decide to give a kudo to Stefan Kng by clicking a Give Kudo beside

the member profile picture. The window as shown in Figure A.3 will appear and the

member can add a message associated to the kudo he or she sent to Stefan Kng.

41

Appendix A. Process of sending kudo to other member 42

Figure A.1: Shows members lists.

Figure A.2: Shows member’s pages.

Appendix A. Process of sending kudo to other member 43

Figure A.3: Shows a pages where a member can write a message to attach to the
kudo he or she want to send.

Then a user can click Give Kudo button to send a kudo a user or he or she can cancel

the process by clicking close or use escape key on keyboard.

When a Give kudo button pressed the process of sending kudo to a member will be

successful and the following page will be displayed to confirm the process.

Figure A.4: Shows a confirmation page to a user sent a kudo.

Appendix A. Process of sending kudo to other member 44

And, the sent kudo can be observed in members page as shown in Figure 3.5 and kudo

history of the specific user during API call as shown in Figure 3.6.

Figure A.5: Shows a member’s page with number of kudo he received.

Appendix A. Process of sending kudo to other member 45

Figure A.6: Shows a xml file returned with the list of kudo a member receives.

Appendix A. Process of sending kudo to other member 46

A.2 The following screen captures show how a member

can send a kudo to a specific project contributor.

Firstly a member must login and after successfully login a user can browse project list

as shown in Figure A.7 or search a specific project as shown in Figure A.8 below.For the

demonstration purpose this study search git project and result is shown in Figure A.8

below.

Figure A.7: Shows project lists results when a user click browse project link.

Then from the results, the git project was selected so as to observe different project

activities and contributors of that specific project as shown in Figure A.9.

A member can browse the list of contributors who they contribute in git project or can

use search field to search for a specific contributor. For the demonstration purpose this

study search a specific user with the name linus and the search results appear as shown

in Figure A.10.

By browsing to a specific contributor page as shown in Figure A.11, a member can

decide to give a kudo to Linus Torvalds by clicking the Give Kudo button and fill the

message if a member want to associate with the kudo he or she sent as shown in Figure

Appendix A. Process of sending kudo to other member 47

Figure A.8: Shows a search results when a user search for a specific project name,
this study use ”git” as a search word.

Figure A.9: Shows a list of git project contributors.

Appendix A. Process of sending kudo to other member 48

Figure A.10: Shows a search results when a user search for a specific project contrib-
utor name, this study use ”linus” as a search word.

A.3 above. More over the successfully kudo sent message will be displayed as shown in

Figure A.12.

Figure A.11: Shows a project contributor page.

And, this kudo will be recorded as a kudo to a contributor in particular project. The

record of this kudo can be observed in specific member kudo history of the given member

as shown in Figure A.13 below.

And, these records can be observed also in sender kudo history as shown in Figure A.14

below.

Appendix A. Process of sending kudo to other member 49

Figure A.12: Shows a kudo sent confirmation page.

Appendix A. Process of sending kudo to other member 50

Figure A.13: Shows a kudo sent history after API call.

Appendix A. Process of sending kudo to other member 51

Figure A.14: Shows a sender xml file retrurned after API call.

Appendix A. Process of sending kudo to other member 52

A.3 The following screen captures show how a member

can take back kudo he or she sent before

A member can decide to take the kudo he or she sent before. In this case, it means a

member decided to stop evaluating the member. For the demonstration purpose this

study take away kudo sent to Stefan Kung and the following confirmation screen appears

in Figure A.15.

Figure A.15: Shows a kudo taken back confirmation page.

And, the process can be shown in xml file after API call as shown in Figure A.16.

Figure A.16: Shows a kudo taken back xml file after API call.

Appendix B

Table showing summary of

developers contributions based on

first commit dates

53

 GROUP ONE :FIRST COMMIT DATE - 2012-03-26

Members Member _id KR KP NKR Commits Projects Man month Age size

39 15097 8 14821 1 2263 Number = 36 285 MWECB 33 VLDT 29

TCBR = 26024 YECB 0 ASDT 4

TC= 3,137,230 Unknown 3 SD / SDT 1
TLC = 66,738,948 Unknown 2

152718 9 10914 3 1461 Number = 28 89 MWECB 25 VLDT 23

TCBR = 16,828 YECB 2 ASDT 4

TC= 1,440,950 Unknown 1 SD / SDT 1
TLC = 28,803,169 Unknown 0

195069 9 4740 2 188 Number = 2 35 MWECB 2 VLDT 2

TCBR = 644 YECB 0 ASDT 0

TC= 41781 Unknown 0 SD / SDT 0
TLC = 881,704 Unknown 0

24597 9 1834 5 3171 Number = 10 139 MWECB 10 VLDT 8

TCBR = 4593 YECB 0 ASDT 1

TC= 326,831 Unknown 0 SD / SDT 1
TLC = 4,548,506 Unknown 0

27129 9 7430 4 5318 Number = 40 1926 MWECB 39 VLDT 19

TCBR = 775,630 YECB 0 ASDT 10

TC= 26,405,957 Unknown 1 SD / SDT 10
TLC = 1,154,193,707 Unknown 1

28241 9 2789 3 2287 Number = 7 179 MWECB 7 VLDT 3

TCBR = 6865 YECB 0 ASDT 1

TC= 1,145,903 Unknown 0 SD / SDT 3
TLC = 20,840,893 Unknown 0

32419 9 6212 4 11 Number = 2 3 MWECB 2 VLDT 1

TCBR = 186 YECB 0 ASDT 1

TC= 14,183 Unknown 0 SD / SDT 0
TLC = 1,175,802 Unknown 0

50300 9 9560 1 1074 Number = 7 88 MWECB 4 VLDT 4

TCBR = 536 YECB 3 ASDT 3

TC= 18995 Unknown 0 SD / SDT 0
TLC = 292,033 Unknown 0

 GROUP ONE :FIRST COMMIT DATE - 2012-03-26

Members Member _id KR KP NKR Commits Projects Man month Age size
214087 8 18507 1 7310 Number = 20 39 MWECB 16 VLDT 14

TCBR = 111,232 YECB 1 ASDT 3

TC= 4,939,597 Unknown 3 SD / SDT 0
TLC = 185,261,438 Unknown 3

151250 8 39032 0 1107 Number = 10 77 MWECB 8 VLDT 2

TCBR = 9963 YECB 2 ASDT 6

TC= 94486 Unknown 0 SD / SDT 2
TLC = 2,285,235 Unknown

522676 7 73676 0 848 Number = 2 49 MWECB 2 VLDT 2

TCBR = 236 YECB 0 ASDT 0

TC= 31117 Unknown 0 SD / SDT 0
TLC = 1,639,804 Unknown 0

581948 6 213138 0 337 Number = 6 27 MWECB 3 VLDT 6

TCBR = 1610 YECB 3 ASDT 0

TC= 19063 Unknown 0 SD / SDT 0
TLC = 262644 Unknown 0

229259 8 38890 0 154 Number = 4 37 MWECB 4 VLDT 4

TCBR = 1365 YECB 0 ASDT 0

TC= 157190 Unknown 0 SD / SDT 0
TLC = 670820 Unknown 0

557651 8 49845 0 108 Number = 1 15 MWECB 1 VLDT 1

TCBR = 293 YECB 0 ASDT 0

TC= 23785 Unknown 0
0

SD / SDT 0
TLC = 1,535,979 Unknown 0

143869 7 123499 0 2373 Number = 17 144 MWECB 7 VLDT 11

TCBR = 599 YECB 9 ASDT 3

TC= 14,963 Unknown 1 SD / SDT 2
TLC = 215,048 Unknown 1

261491 8 28321 0 1991 Number = 15 253 MWECB 5 VLDT 13

TCBR = 905 YECB 10 ASDT 2

TC= 7383 Unknown 0 SD / SDT 0
TLC = 216,532 Unknown 0

 GROUP ONE :FIRST COMMIT DATE - 2012-03-26

Members Member _id KR KP NKR Commits Projects Man month Age size
504048 7 89237 0 61 Number = 1 12 MWECB 0 VLDT 0

TCBR = 11 YECB 1 ASDT 0

TC= 533 Unknown 0 SD / SDT 1
TLC = 190,398 Unknown 0

 51745 6 198295 0 230 Number = 3 22 MWECB 0 VLDT 3

TCBR = 82 YECB 3 ASDT 0

TC= 1774 Unknown 0 SD / SDT 0
TLC = 7284 Unknown 0

10154 9 12820 0 104 Number = 5 14 MWECB 5 VLDT 5

TCBR = 1184 YECB 0 ASDT 0

TC= 141605 Unknown 0 SD / SDT 0
TLC = 461947 Unknown 0

88863 8 37861 0 1160 Number = 26 141 MWECB 25 VLDT 23

TCBR = 17184 YECB 0 ASDT 2

TC= 1,363,651 Unknown 1 SD / SDT 0
TLC = 108,686,040 Unknown 1

98861 5 319957 0 27 Number = 2 13 MWECB 1 VLDT 2

TCBR = 802 YECB 1 ASDT 0

TC= 28,619 Unknown 0 SD / SDT 0
TLC = 277,380 Unknown 0

155678 7 141151 0 22 Number = 1 4 MWECB 1 VLDT 1

TCBR = 39 YECB 0 ASDT 0

TC= 8534 Unknown 0 SD / SDT 0
TLC = 194834 Unknown 0

240600 7 138452 0 20 Number = 2 6 MWECB 2 VLDT 2

TCBR = 13905 YECB 0 ASDT 0

TC= 544,083 Unknown 0 SD / SDT 0
TLC = 18,230,647 Unknown 0

29880 8 17996 0 108 Number = 6 16 MWECB 5 VLDT 5

TCBR = 1095 YECB 1 ASDT 0

TC= 161,545 Unknown 0 SD / SDT 1
TLC = 11,383,587 Unknown 0

 GROUP ONE :FIRST COMMIT DATE - 2012-03-26

Members Member _id KR KP NKR Commits Projects Man month Age size
121485 6 208724 0 1 Number = 1 1 MWECB 1 VLDT 0

TCBR = 131 YECB 0 ASDT 1

TC= 3829 Unknown 0 SD / SDT 0
TLC = 21,628 Unknown 0

136317 8 18967 0 5087 Number = 64 263 MWECB 58 VLDT 38

TCBR = 587,404 YECB 1 ASDT 12

TC= 21,253,803 Unknown 5 SD / SDT 6

TLC = 719,288,990 Unknown 5
143475 6 185906 0 6 Number = 2 5 MWECB 2 VLDT 2

TCBR =192 YECB 0 ASDT 0

TC= 16259 Unknown 0 SD / SDT 0
TLC = 237,031 Unknown 0

152187 8 19536 0 1695 Number = 6 81 MWECB 6 VLDT 2

TCBR = 511 YECB 0 ASDT 3

TC= 26158 Unknown 0 SD / SDT 1
TLC = 548,214 Unknown 0

154218 5 378547 0 54 Number = 2 3 MWECB 2 VLDT 1

TCBR = 41 YECB 0 ASDT 0

TC= 3016 Unknown 0 SD / SDT 1
TLC = 82,501 Unknown 0

154707 5 339413 0 5 Number = 2 2 MWECB 1 VLDT 1

TCBR = 29 YECB 1 ASDT 1

TC= 976 Unknown 0 SD / SDT 0
TLC = 6468 Unknown 0

213675 7 97104 0 22 Number = 2 11 MWECB 2 VLDT 2

TCBR =2404 YECB 0 ASDT 0

TC= 147,998 Unknown 0 SD / SDT 0
TLC = 2,059,409 Unknown 0

223553 7 87125 0 87 Number = 10 33 MWECB 10 VLDT 9

TCBR = 10169 YECB 0 ASDT 1

TC= 659,131 Unknown 0 SD / SDT 0
TLC = 9,687,251 Unknown 0

 GROUP ONE :FIRST COMMIT DATE - 2012-03-26

Members Member _id KR KP NKR Commits Projects Man month Age size
320750 8 35729 0 1981 Number = 24 167 MWECB 21 VLDT 19

TCBR = 49,563 YECB 1 ASDT 2

TC= 2,734,628 Unknown 2 SD / SDT 1
TLC = 193,414,538 Unknown 2

555925 8 56365 0 50 Number = 7 18 MWECB 5 VLDT 6

TCBR = 1660 YECB 1 ASDT 0

TC= 80204 Unknown 1 SD / SDT 1
TLC = 2,060,579 Unknown 0

562870 9 8004 0 335 Number = 13 34 MWECB 13 VLDT 7

TCBR = 4733 YECB 0 ASDT 6

TC= 649,598 Unknown 0 SD / SDT 0
TLC = 3,355,756 Unknown 0

577651 8 49845 0 108 Number = 1 15 MWECB 1 VLDT 1

TCBR = 293 YECB 0 ASDT 0

TC= 23,785 Unknown 0 SD / SDT 0
TLC = 1,535,979 Unknown 0

61356 7 82643 0 321 Number = 14 38 MWECB 12 VLDT 13

TCBR = 28,141 YECB 2 ASDT 1

TC= 1,099,466 Unknown 0 SD / SDT 0
TLC = 36,107,274 Unknown 0

 6159 7 127839 0 44 Number = 11 11 MWECB 7 VLDT 7

TCBR = 10148 YECB 2 ASDT 1

TC= 190,700 Unknown 2 SD / SDT 1
TLC = 1,152,864 Unknown 2

83544 8 35535 0 46988 Number = 10 752 MWECB 8 VLDT 7

TCBR =8390 YECB 0 ASDT 1

TC= 1,314,196 Unknown 2 SD / SDT 1
TLC = 43,371,689 Unknown 1

8608 8 14486 0 3775 Number = 77 528 MWECB 61 VLDT 49

TCBR = 211,610 YECB 0 ASDT 5

TC= 10,153,132 Unknown 16 SD / SDT 7
TLC = 332,576,589 Unknown 16

 GROUP TWO : FIRST COMMIT DATE : 2012-07.05

Member Member_id KR KP NKR Commits Project Man month Age Size

39 11217 8 47687 0 487 Number = 34 70 MWECB 29 VLDT 32

TCBR = 30,167 YECB 4 ASDT 2

TC= 487 Unknown 1 SD / 0
TLC = 7,754,625 Unknown 0

112328 7 88756 0 556 Number = 3 36 MWECB 1 VLDT 2

TCBR = 188 YECB 2 ASDT 1

TC= 16293 Unknown 0 SD / SDT 0
TLC = 230,387 Unknown 0

112162 7 119769 0 177 Number = 1 16 MWECB 1 VLDT 1

TCBR = 42 YECB 0 ASDT 0

TC= 10,484 Unknown 0 SD / SDT 0
TLC = 175,639 Unknown 0

125335 8 18823 1 6680 Number = 31 293 MWECB 21 VLDT 19

TCBR = 119,158 YECB 4 ASDT 4

TC= 7,842,385 Unknown 6 SD / SDT 2
TLC = 285,460,267 Unknown 6

133527 8 34654 1 656 Number = 1 21 MWECB 0 VLDT 1

TCBR = 11 YECB 1 ASDT 0

TC= 878 Unknown 0 SD / SDT 0
TLC = 42,722 Unknown 0

135353 7 130377 0 90 Number = 19 35 MWECB 11 VLDT 10

TCBR = 207,977 YECB 0 ASDT 1

TC= 8,007,574 Unknown 8 SD / SDT 0
TLC = 299,073,432 Unknown 8

140222 9 10376 1 2153 Number = 6 80 MWECB 5 VLDT 4

TCBR = 683 YECB 1 ASDT 2

TC= 18,680 Unknown 0 SD / SDT 0
TLC = 170,047 Unknown 0

141853 8 20863 1 420 Number = 37 11 MWECB 33 VLDT 30

TCBR = 22344 YECB 4 ASDT 4

TC= 2,116,811 Unknown 0 SD / SDT 3
TLC = 169,278,961 Unknown 1

 GROUP TWO : FIRST COMMIT DATE : 2012-07.05

Member Member_id KR KP NKR Commits Project Man month Age Size

39 185938 9 3918 0 54 Number = 4 13 MWECB 4 VLDT 4

TCBR = 12,421 YECB 0 ASDT 0

TC= 1,112,950 Unknown 0 SD / 0
TLC = 17,239,755 Unknown 0

2071 9 9310 2 949 Number = 12 157 MWECB 11 VLDT 12

TCBR = 16,303 YECB 1 ASDT 0

TC= 1,126,876 Unknown 0 SD / SDT 0
TLC = 46,065,621 Unknown 0

214881 7 157398 0 96 Number = 7 26 MWECB 6 VLDT 7

TCBR = 213 YECB 1 ASDT 0

TC= 29,220 Unknown 0 SD / SDT 0
TLC = 1,849,998 Unknown 0

216289 1 914740 0 143 Number = 1 2 MWECB 0 VLDT 1

TCBR = 44 YECB 1 ASDT 0

TC= 1,700 Unknown 0 SD / SDT 0
TLC = 609,644 Unknown 0

222160 5 360999 0 2 Number = 1 2 MWECB 1 VLDT 1

TCBR = 784 YECB 0 ASDT 0

TC= 28,565 Unknown 0 SD / SDT 0
TLC = 277,138 Unknown 0

222223 7 123278 0 26 Number = 7 9 MWECB 6 VLDT 6

TCBR = 1152 YECB 1 ASDT 0

TC= 84,075 Unknown 0 SD / SDT 1
TLC =2,407,635 Unknown 0

222971 7 109418 0 208 Number = 6 40 MWECB 5 VLDT 5

TCBR = 2122 YECB 1 ASDT 1

TC= 190,353 Unknown 0 SD / SDT 0
TLC = 5,436,661 Unknown 0

226187 8 28013 2 1183 Number = 6 112 MWECB 6 VLDT 6

TCBR = 6526 YECB 0 ASDT 0

TC= 354,187 Unknown 0 SD / SDT 0
TLC = 5,753,689 Unknown 0

 GROUP TWO : FIRST COMMIT DATE : 2012-07.05

Member Member_id KR KP NKR Commits Project Man month Age Size

39 236638 8 22648 0 4347 Number = 1 22 MWECB 0 VLDT 1

TCBR = 84 YECB 1 ASDT 0

TC= 27,744 Unknown 0 SD / 0
TLC = 2,301,488 Unknown 0

2384 9 5270 2 9700 Number = 31 654 MWECB 29 VLDT 24

TCBR = 14,873 YECB 1 ASDT 5

TC= 748,193 Unknown 1 SD / SDT 2
TLC = 21,552,383 Unknown 0

27638 9 8037 4 766 Number = 41 118 MWECB 36 VLDT 33

TCBR = 24121 YECB 5 ASDT 4

TC= 1,740,134 Unknown 0 SD / SDT 4
TLC = 99,614,456 Unknown 0

290 9 925 6 6413 Number = 7 219 MWECB 6 VLDT 5

TCBR = 3138 YECB 0 ASDT 1

TC= 417,605 Unknown 1 SD / SDT 1
TLC = 23,687,645 Unknown 0

298247 8 29796 0 1053 Number = 6 66 MWECB 4 VLDT 6

TCBR = 4606 YECB 2 ASDT 0

TC= 177,965 Unknown 0 SD / SDT 0
TLC = 2,736,644 Unknown 0

300028 8 50738 2 771 Number = 17 13 MWECB 15 VLDT 16

TCBR = 2788 YECB 2 ASDT 1

TC= 30,958 Unknown 0 SD / SDT 0
TLC = 322,018 Unknown 0

305378 7 88544 0 985 Number = 3 39 MWECB 1 VLDT 2

TCBR = 57 YECB 2 ASDT 0

TC= 4638 Unknown 0 SD / SDT 1
TLC = 760,887 Unknown 0

323583 1 1019450 0 42 Number = 1 8 MWECB 1 VLDT 1

TCBR = 200 YECB 0 ASDT 0

TC= 5518 Unknown 0 SD / SDT 0
TLC = 1,082,246 Unknown 0

 GROUP TWO : FIRST COMMIT DATE : 2012-07.05

Member Member_id KR KP NKR Commits Project Man month Age Size

39 34264 8 48075 0 155 Number = 7 18 MWECB 5 VLDT 6

TCBR = 29,542 YECB 0 ASDT 1

TC= 14,134,164 Unknown 2 SD / 0
TLC = 45,632,165 Unknown 0

3506 9 1703 15 6038 Number = 14 191 MWECB 12 VLDT 12

TCBR = 15,785 YECB 0 ASDT 0

TC= 2,987,314 Unknown 2 SD / SDT 0
TLC = 86,496,475 Unknown 2

359800 9 6933 2 6496 Number = 28 240 MWECB 22 VLDT 20

TCBR = 142,367 YECB 1 ASDT 2

TC= 5,148,639 Unknown 5 SD / SDT 1
TLC = 243,544,448 Unknown 5

43413 9 9795 1 6712 Number = 13 265 MWECB 11 VLDT 12

TCBR = 14,157 YECB 2 ASDT 0

TC= 1,505,158 Unknown 0 SD / SDT 1
TLC = 170,673,108 Unknown 0

47370 9 4745 0 193 Number = 8 30 MWECB 6 VLDT 7

TCBR = 4112 YECB 2 ASDT 0

TC= 228,247 Unknown 0 SD / SDT 1
TLC = 3,614,911 Unknown 0

52541 9 10327 1 2515 Number = 12 151 MWECB 10 VLDT 10

TCBR = 27,980 YECB 1 ASDT 0

TC= 2,000,964 Unknown 1 SD / SDT 1
TLC =44,717,619 Unknown 1

59874 8 23820 1 256 Number = 26 83 MWECB 26 VLDT 20

TCBR = 206,503 YECB 0 ASDT 3

TC= 8,842,676 Unknown 0 SD / SDT 2
TLC = 355,492,080 Unknown 1

60504 9 87 3 7583 Number = 75 384 MWECB 28 VLDT 51

TCBR = 6142 YECB 38 ASDT 19

TC= 236,512 Unknown 9 SD / SDT 5
TLC = 77,029,665 Unknown 0

 GROUP TWO : FIRST COMMIT DATE : 2012-07.05

Member Member_id KR KP NKR Commits Project Man month Age Size

39 6098 9 1382 3 1416 Number = 6 123 MWECB 4 VLDT 1

TCBR = 67 YECB 2 ASDT 3

TC= 1724 Unknown 0 SD / SDT 2
TLC = 21047 Unknown 0

61575 8 28365 0 20 Number = 1 7 MWECB 0 VLDT 1

TCBR = 12 YECB 1 ASDT 0

TC= 626 Unknown 0 SD / SDT 0
TLC = 101,222 Unknown 0

6673 9 192 28 18,179 Number = 64 MWECB 54 VLDT 32

TCBR = 6,476 YECB 7 ASDT 20

TC= 465,022 Unknown 3 SD / SDT 10
TLC = 25,243,499 Unknown 2

70262 9 3291 3 2132 Number = 14 96 MWECB 8 VLDT 11

TCBR = 6512 YECB 6 ASDT 2

TC= 570,648 Unknown 0 SD / SDT 1
TLC = 28,157,517 Unknown 0

80400 8 24518 1 1041 Number = 9 101 MWECB 8 VLDT 4

TCBR = 25,970 YECB 0 ASDT 3

TC= 1,062,293 Unknown 1 SD / SDT 1
TLC = 31,638,401 Unknown 0

87087 8 15585 1 2387 Number = 33 231 MWECB 32 VLDT 30

TCBR = 20,581 YECB 0 ASDT 2

TC= 2,229,315 Unknown 1 SD / SDT 0
TLC =48,894,330 Unknown 1

9263 9 7418 4 639 Number = 14 41 MWECB 11 VLDT 11

TCBR = 26,818 YECB 1 ASDT 2

TC= 938,547 Unknown 2 SD / SDT 0
TLC = 37,233,579 Unknown 1

 GROUP THREE : FIRST COMMIT DATE : 2012-05-10

Member Member_id KR KP NKR Commits Project Man month Age Size

36 39950 9 6367 9 301 Number = 10 47 MWECB 8 VLDT 8

TCBR = 6013 YECB 2 ASDT 2

TC= 101,346 Unknown 0 SD / 0
TLC = 1,218,725 Unknown 0

8511 9 3900 7 11490 Number = 36 268 MWECB 30 VLDT 28

TCBR = 158,755 YECB 1 ASDT 1

TC= 7,870,618 Unknown 5 SD / SDT 2
TLC = 348,083,776 Unknown 5

35110 7 79240 0 386 Number =23 59 MWECB 17 VLDT 18

TCBR = 14,360 YECB 5 ASDT 3

TC= 225,820 Unknown 1 SD / SDT 1
TLC = 41,004,582 Unknown 1

100723 9 4024 3 3839 Number = 70 212 MWECB 64 VLDT 65

TCBR = 48,996 YECB 5 ASDT 2

TC= 2,597,515 Unknown 1 SD / SDT 2
TLC = 54,229,705 Unknown 1

100764 9 14,206 4 483 Number = 5 68 MWECB 5 VLDT 5

TCBR = 1811 YECB 0 ASDT 0

TC= 273,973 Unknown 0 SD / SDT 0
TLC = 21,715,869 Unknown 0

101518 8 37197 1 422 Number = 13 84 MWECB 12 VLDT 11

TCBR = 9032 YECB 1 ASDT 1

TC= 622,515 Unknown 0 SD / SDT 1
TLC = 11,103,521 Unknown 0

109973 8 19980 0 976 Number = 6 61 MWECB 6 VLDT 6

TCBR = 2132 YECB 0 ASDT 0

TC= 238,921 Unknown 0 SD / SDT 0
TLC = 6,922,292 Unknown 0

122800 8 19717 1 1362 Number = 17 99 MWECB 15 VLDT 12

TCBR = 5330 YECB 1 ASDT 4

TC= 208,965 Unknown 1 SD / SDT 1
TLC = 38,726,919 Unknown 0

 GROUP THREE : FIRST COMMIT DATE : 2012-05-10

Member Member_id KR KP NKR Commits Project Man month Age Size

36 12291 9 857 15 50799 Number = 65 1354 MWECB 44 VLDT 42

TCBR = 6053 YECB 17 ASDT 11

TC= 827,247 Unknown 4 SD / 8
TLC = 19,439,142 Unknown 4

12568 9 1762 15 4030 Number = 20 161 MWECB 19 VLDT 15

TCBR = 31,186 YECB 0 ASDT 0

TC= 6,416,496 Unknown 1 SD / SDT 4
TLC = 149,436,881 Unknown 1

15124 9 1362 14 4688 Number = 28 224 MWECB 16 VLDT 25

TCBR = 9120 YECB 12 ASDT 1

TC= 710,557 Unknown 0 SD / SDT 2
TLC = 4,454,068 Unknown 0

153366 6 173179 0 3 Number = 1 0 MWECB 1 VLDT 1

TCBR = 55 YECB 0 ASDT 0

TC= 9938 Unknown 0 SD / SDT 0
TLC = 299,812 Unknown 0

154704 5 339413 0 5 Number = 2 2 MWECB 1 VLDT 1

TCBR = 29 YECB 1 ASDT 1

TC= 976 Unknown 0 SD / SDT 0
TLC = 6468 Unknown 0

155035 9 3286 1 3582 Number = 31 103 MWECB 10 VLDT 19

TCBR = 7555 YECB 19 ASDT 6

TC= 223,455 Unknown 1 SD / SDT 4
TLC =4,984,287 Unknown 1

190776 6 181169 0 370 Number = 4 33 MWECB 3 VLDT 4

TCBR = 108 YECB 1 ASDT 0

TC= 3562 Unknown 0 SD / SDT 0
TLC = 133,692 Unknown 0

19137 9 8022 2 5687 Number = 5 309 MWECB 4 VLDT 5

TCBR = 1000 YECB 1 ASDT 0

TC= 216,295 Unknown 0 SD / SDT 0
TLC = 6,479,028 Unknown 0

 GROUP THREE : FIRST COMMIT DATE : 2012-05-10

Member Member_id KR KP NKR Commits Project Man month Age Size

36 204483 9 8022 0 1507 Number = 20 61 MWECB 19 VLDT 16

TCBR = 16651 YECB 1 ASDT 1

TC= 1,777,110 Unknown 0 SD / SDT 2´3
TLC = 32,314,674 Unknown 0

20861 8 49834 0 1020 Number = 12 57 MWECB 12 VLDT 10

TCBR = 2785 YECB 0 ASDT 2

TC= 640,524 Unknown 0 SD / SDT 0
TLC = 4,174,830 Unknown 0

215731 7 120001 0 16 Number = 1 6 MWECB 0 VLDT 0

TCBR = 5 YECB 1 ASDT 1

TC= 295 Unknown 0 SD / SDT 0
TLC = 40,447 Unknown 0

2199 9 4644 9 1096 Number = 7 100 MWECB 7 VLDT 6

TCBR = 28968 YECB 0 ASDT 1

TC= 1,246.680 Unknown 0 SD / SDT 0
TLC = Unknown 0

224068 7 81977 0 282 Number = 1 18 MWECB 1 VLDT 1

TCBR = 229 YECB 0 ASDT 0

TC= 10,844 Unknown 0 SD / SDT 0
TLC = 1,022,846 Unknown 0

230044 7 134392 9 36 Number = 4 10 MWECB 2 VLDT 2

TCBR = 2564 YECB 0 ASDT 2

TC= 77,912 Unknown 2 SD / SDT 0
TLC = 731,586 Unknown 0

232377 8 42096 0 1216 Number = 14 97 MWECB 11 VLDT 9

TCBR = 2144 YECB 3 ASDT 3

TC= 71,296 Unknown 0 SD / SDT 1
TLC = 2,097,284 Unknown 1

234924 8 28845 0 1479 Number = 2 45 MWECB 1 VLDT 0

TCBR = 29 YECB 1 ASDT 2

TC= 3279 Unknown 0 SD / SDT 0
TLC = 178,909 Unknown 0

 GROUP THREE : FIRST COMMIT DATE : 2012-05-10

Member Member_id KR KP NKR Commits Project Man month Age Size

36 239697 7 145984 0 15 Number = 1 7 MWECB 1 VLDT 1

TCBR = 305 YECB 0 ASDT 0

TC= 18,848 Unknown 0 SD / 0
TLC = 135,636 Unknown 0

250673 7 122113 0 39 Number = 6 18 MWECB 5 VLDT 6

TCBR = 2035 YECB 1 ASDT 0

TC= 47,357 Unknown 0 SD / SDT 0
TLC = 613,793 Unknown 0

307776 6 251620 0 1 Number = 1 0 MWECB 1 VLDT 1

TCBR = 331 YECB 0 ASDT 0

TC= 4526 Unknown 0 SD / SDT 0
TLC = 103,131 Unknown 0

356564 8 26299 1 301 Number = 5 18 MWECB 3 VLDT 2

TCBR = 172 YECB 2 ASDT 3

TC= 5817 Unknown 0 SD / SDT 0
TLC = 61254 Unknown 0

40423 8 19615 2 2637 Number = 8 74 MWECB 4 VLDT 7

TCBR = 2273 YECB 3 ASDT 0

TC= 48,532 Unknown 1 SD / SDT 0
TLC = 6,286,013 Unknown 1

49302 7 106019 0 1138 Number = 12 77 MWECB 6 VLDT 7

TCBR = 27,537 YECB 5 ASDT 4

TC= 1,199,175 Unknown 1 SD / SDT 1
TLC = 37,440,335 Unknown 0

569819 7 92010 0 56 Number = 19 25 MWECB 13 VLDT 11

TCBR = 2171 YECB 5 ASDT 2

TC= 79,196 Unknown 2 SD / SDT 5
TLC = 1,501,118 Unknown 1

59723 8 21649 2 128 Number = 4 8 MWECB 4 VLDT 2

TCBR = 100 YECB 0 ASDT 1

TC= 20,089 Unknown 0 SD / SDT 1
TLC = 441,402 Unknown 0

 GROUP THREE : FIRST COMMIT DATE : 2012-05-10

Member Member_id KR KP NKR Commits Project Man month Age Size

36 69072 9 5792 3 1799 Number = 38 229 MWECB 28 VLDT 25

TCBR = 17,100 YECB 10 ASDT 9

TC= 1,576,627 Unknown 0 SD / SDT 3
TLC = 160,918,610 Unknown 1

7277 9 5353 0 4094 Number = 15 113 MWECB 15 VLDT 12

TCBR = 12,533 YECB 0 ASDT 2

TC= 987,370 Unknown 0 SD / SDT 1
TLC = 19,445,011 Unknown 0

76833 6 232033 0 20 Number = 5 3 MWECB 4 VLDT 5

TCBR = 1965 YECB 1 ASDT 0

TC= 15,480 Unknown 0 SD / SDT 0
TLC = 196,650 Unknown 0

8398 9 3103 3 2511 Number = 53 441 MWECB 50 VLDT 48

TCBR = 60,453 YECB 2 ASDT 3

TC= 2,337,538 Unknown 1 SD / SDT 1
TLC = 50,997,180 Unknown 1

Bibliography

[1] Petri Sirkkala, Imed Hammouda, and Timo Aaltonen. From proprietary to open

source: Building a network of trust. 2010.

[2] Katherine J Stewart and Sanjay Gosain. The impact of ideology on effectiveness in

open source software development teams. Mis Quarterly, pages 291–314, 2006.

[3] Michael S Lane, Glen van der Vyver, Prajwal Basnet, and Srecko Howard. Inter-

pretative insights into interpersonal trust and effectiveness of virtual communities

of open source software (oss) developers. 2004.

[4] Paul B De Laat. How can contributors to open-source communities be trusted?

on the assumption, inference, and substitution of trust. Ethics and Information

Technology, 12(4):327–341, 2010.

[5] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. Social coding in

github: transparency and collaboration in an open software repository. pages 1277–

1286, 2012.

[6] Haibin Zhang, Yan Wang, and Xiuzhen Zhang. A trust vector approach to trans-

action context-aware trust evaluation in e-commerce and e-service environments.

pages 1–8, 2012.

[7] Paolo Massa and Paolo Avesani. Controversial users demand local trust metrics:

An experimental study on epinions. com community. 20(1):121, 2005.

[8] Jennifer Golbeck and James Hendler. Inferring binary trust relationships in web-

based social networks. ACM Transactions on Internet Technology (TOIT), 6(4):

497–529, 2006.

[9] Georgios Gousios, Eirini Kalliamvakou, and Diomidis Spinellis. Measuring devel-

oper contribution from software repository data. pages 129–132, 2008.

69

Bibliography 70

[10] Maria Antikainen, Timo Aaltonen, and Jaani Väisänen. The role of trust in oss

communitiescase linux kernel community. pages 223–228, 2007.

[11] Oliver Arafat and Dirk Riehle. The commit size distribution of open source software.

pages 1–8, 2009.

[12] Daning Hu and J Leon Zhao. A comparison of evaluation networks and collaboration

networks in open source software communities. AMCIS 2008 Proceedings, page 277,

2008.

[13] Daning Hu, J Leon Zhao, and Jiesi Cheng. Reputation management in an open

source developer social network: An empirical study on determinants of positive

evaluations. Decision Support Systems, 53(3):526–533, 2012.

[14] Rosalva E Gallardo-Valencia, Phitchayaphong Tantikul, and Susan Elliott Sim.

Searching for reputable source code on the web. pages 183–186, 2010.

[15] Dick Stenmark. Distrust in information systems research. Proceedings of HICSS-46,

Maui, Hawaii, January 7-10, 2013, 2013.

[16] Heikki Orsila, Jaco Geldenhuys, Anna Ruokonen, and Imed Hammouda. Trust

issues in open source software development. pages 9–12, 2009.

[17] Florian S Gysin and Adrian Kuhn. A trustability metric for code search based on

developer karma. pages 41–44, 2010.

[18] Ramanthan Guha, Ravi Kumar, Prabhakar Raghavan, and Andrew Tomkins. Prop-

agation of trust and distrust. pages 403–412, 2004.

[19] Jennifer Golbeck. Analyzing the social web. 2013.

[20] Jennifer Golbeck. Computing with social trust. 2008.

[21] Thomas DuBois, Jennifer Golbeck, and Aravind Srinivasan. Predicting trust and

distrust in social networks. pages 418–424, 2011.

[22] Audun Jøsang. Trust and reputation systems. pages 209–245, 2007.

[23] Jennifer Golbeck and Ugur Kuter. The ripple effect: change in trust and its impact

over a social network. pages 169–181, 2009.

Bibliography 71

[24] Jennifer Ann Golbeck. Computing and applying trust in web-based social networks.

2005.

[25] Ohloh api. https://github.com/blackducksw/ohloh_api/. Last Accessed: 2014-

09-01.

[26] Per Runeson and Martin Höst. Guidelines for conducting and reporting case study

research in software engineering. Empirical software engineering, 14(2):131–164,

2009.

[27] M.M.Mahbubul Syeed and Imed Hammouda. Who contributes to what? explor-

ing hidden relationships between floss projects. 427:21–30, 2014. doi: 10.1007/

978-3-642-55128-4 3. URL http://dx.doi.org/10.1007/978-3-642-55128-4_3.

https://github.com/blackducksw/ohloh_api/
http://dx.doi.org/10.1007/978-3-642-55128-4_3

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Background
	1.2 Problem statement
	1.3 Purpose
	1.4 Research questions
	1.5 Thesis outline

	2 Literature review and Related work
	2.1 Literature Review
	2.1.1 Evaluation Network
	2.1.2 Trust in OSS
	2.1.2.1 Developer perspective
	2.1.2.2 Code reuse perspective
	2.1.2.3 Organizational perspective

	2.1.3 Trust
	2.1.3.1 Transitivity
	2.1.3.2 Asymmetry
	2.1.3.3 Personalization

	2.1.4 Local Trust and Global Trust Values
	2.1.5 Trust in Web Based Social Networks
	2.1.5.1 Trust Network and Trust Metrics
	2.1.5.2 Challenges of computing trust in social networks

	2.2 Related Work

	3 Methodology
	3.1 Data Source
	3.2 Data Collection
	3.3 Data processing
	3.4 Research Goals
	3.4.1 RQ1: How likely a developer will become trusted in the community based on his or her contributions within the community?
	3.4.1.1 Data Collection
	3.4.1.2 Data Analysis

	3.4.2 RQ2: How likely that a developer will evaluate other developer of different trust value?
	3.4.2.1 Data Collection
	3.4.2.2 Data Analysis

	3.4.3 RQ3: How to identify trust network from evaluation network in the open source software community?
	3.4.3.1 Data Collection
	3.4.3.2 Data Analysis
	3.4.3.3 Algorithm

	3.4.4 RQ4: To what extent can evaluation network approximate trust information in the open source software community?
	3.4.4.1 Data Collection
	3.4.4.2 Data Analysis

	3.5 Data refinement process

	4 Result Analysis
	4.1 Results Analysis
	4.2 Threats to Validity
	4.2.1 Construct Validity
	4.2.2 Internal Validity
	4.2.3 External Validity
	4.2.4 Reliability

	5 Discussion
	5.1 Discussion

	6 Conclusion and Future Work
	6.1 Summary
	6.2 Conclusion
	6.3 Future Work

	A Process of sending kudo to other member
	A.1 The following screen captures shows how a ohloh member can send a kudo to another member
	A.2 The following screen captures show how a member can send a kudo to a specific project contributor.
	A.3 The following screen captures show how a member can take back kudo he or she sent before

	B Table showing summary of developers contributions based on first commit dates
	Bibliography

