
University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, March 2014

A DSL Supporting Textual and Graphical Views

Master of Science Thesis in Software Engineering

SALOME MARO

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

A DSL Supporting Textual and Graphical Views

SALOME MARO

© SALOME MARO, August 2014.

Examiner: MIROSLAW STARON
Supervisor: MATTHIAS TICHY

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden August 2014.

Abstract

Domain Specific Languages(DSLs) are languages that are designed to be used in a par-

ticular development area. These languages aim to help developers solve the problems

related to that domain and therefore contain information and jargons that are only rel-

evant to a particular domain. Domain specific languages can be expressed in textual

or graphical formats. Apart from personal preferences there are several advantages of

using graphical format and also several advantages of using textual format. Therefore

having a DSL that supports both of these notations will mean harvesting the advantages

of all of them. However most of the tools available that enable the use of domain specific

languages tend to focus on either textual or graphical editors for the DSL. The aim of

this thesis is to investigate the possibility of having both notations for the same DSL in

use. The thesis was conducted using action research method at Ericsson AB. Ericsson

is currently having a DSL that has only a graphical notation. This DSL is using UML

and UML Profiles. A prototype of the textual version of the existing DSL was created

using Xtext and used to make an analysis and come up with findings on how a DSL with

both graphical (which is in UML) and textual notations can be used. Transformations

that enable switching from one view of the model to another have also been prototyped

and used for analysis. The thesis also investigated two other solutions that are based on

EMF using Xtext for text and GMF for the graphical notation. This thesis concludes

that with all the alternatives investigated, it is possible to have a DSL that supports

both graphical and textual views. Each solution however varies in the effort needed to

implement and maintain the DSL.

Acknowledgements

I would like to extend my sincere gratitude to my industry supervisor Lars Gelin and the

entire CBB team at Ericsson Kista for the constant support and help that they offered

during the Thesis work. I would also like to thank my university supervisor Matthias

Tichy for the support and continuous input that he gave for this thesis. Lastly I would

like to thank my family for the encouragement they provided throughout the thesis.

Salome Maro, July 2014

ii

Contents

Abstract i

Acknowledgements ii

Contents iii

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Background . 1
1.2 Problem Statement . 2
1.3 Purpose . 2
1.4 Disposition of the Report . 3

2 Foundations 4
2.1 Model Driven Engineering . 4
2.2 UML . 5
2.3 EMF . 6
2.4 Xtext . 6
2.5 GMF . 8
2.6 Model Transformations . 9
2.7 The Ericsson DSL . 10

3 Method 13
3.1 Research Questions . 15
3.2 Hypotheses . 15

4 Related Work 17

5 Solution 19
5.1 Alternative 1 . 19

5.1.1 UML Profile to a Metamodel in Ecore 20
5.1.2 Generating the Textual Editor using Xtext 23
5.1.3 Switching between Graphical and Textual Views 24
5.1.4 Case 1 . 31
5.1.5 Case 2 . 41

iii

Contents iv

5.1.6 Results and Analysis . 43
5.1.7 Discussion . 48

5.2 Alternative 2 . 49
5.2.1 Prototype . 51
5.2.2 Discussion . 51

5.3 Alternative 3 . 52
5.3.1 Discussion . 54

6 Threats to Validity 55
6.1 Construct Validity . 55
6.2 Internal Validity . 55
6.3 External Validity . 56
6.4 Reliability Validity . 56

7 Conclusions and Future Work 57
7.1 Summary . 57
7.2 Conclusions . 57
7.3 Future Work . 60

A Higher Order Transformation to Generate a transformation from UML
to Hive text instance model 62

B ATL Transformation to Transform a UML Profile into an Ecore model 73

Bibliography 79

List of Figures

2.1 UML Diagrams overview[1]. 5
2.2 Xtext Editor. 8
2.3 GMF Dashboard. 9
2.4 Model to model transformation. 10
2.5 The Hive Profile composition. 11
2.6 Code generation steps (From a Hive model to .c and .h files). 12

3.1 Action research cycle [2]. 14
3.2 Cycles of Action research implemented. 16

5.1 Alternative One. 20
5.2 UML Stereotypes to Ecore classes. 22
5.3 ATL Higher Order Transformation Chain[3]. 28
5.4 Simplified Version of the ATL metamodel[4]. 29
5.5 Simplified Version of the ATL trace model [4]. 30
5.6 Sample trace model. 31
5.7 Part of the Hive Behavior Profile, its UML subset and the resulting Ecore

after transformation. 32
5.8 Model created with Xtext editor. 33
5.9 Obtaining an Ecore model for use in Xtext. 43
5.10 Errors due to missing names in the model. 46
5.11 Alternative two. 50
5.12 GMF and Xtext editors Integrated. 51
5.13 Alternative three. 53

v

List of Tables

5.1 UML to Ecore Mapping . 23
5.2 Demo model contents . 45

7.1 A summary of the three alternatives investigated 58

vi

Chapter 1

Introduction

1.1 Background

The term Domain Specific Language (DSL) refers to a language that is created for the

purpose of being used in a specific domain. They are different from General Purpose

Languages (GPL) as their creation is done in order to serve specific needs of some domain

and not general needs. A DSL captures design patterns that are common in a particular

domain making it easy for developers to create models using these design patterns. A

model in this case is a simplification or an abstraction of a system built with a specific

purpose in mind [5]. Compared to General Purpose Languages, a DSL focuses on the

jargons and patterns that are used in a specific domain therefore avoiding all the general

notations that are not needed within the domain. This makes creation of applications

much easier since the languages are tailored to fit their particular domain and designers

can write much less code (as little as 2%) than when using a GPL [6]. Applications

written using DSLs tend to be more concise, easier to maintain and reason about and

above all can quickly be written [7]. This is due to the fact that DSL offers an abstraction

that is higher compared to using GPLs. Models created with DSLs can be subjected to

code generation techniques to generate code in any chosen programming language.

Companies adopting the use of Domain Specific Languages (DSL) usually have various

reasons to do so. For Ericsson the adoption of DSLs is mainly to raise the abstraction

with which engineers create applications. This gives the engineers an opportunity to be

able to focus on the problem at hand and not worry about the implementation details.

The fact that software at Ericsson is usually deployed on various hardware platforms is

another main reason for the adoption of DSLs. It would be very hard and inefficient for

engineers to write different code for every hardware platform, but with DSLs they can

reuse the logic models and only change the deployment model for the different hardware

1

Chapter 1. Introduction 2

platforms. The logic models together with the deployment models are used to generate

code that is suitable for different hardware platforms. This proves to be more time

efficient and reduces the probability of having errors in the code. A DSL can have a

textual notation, graphical notation and sometimes even tabular notation.

1.2 Problem Statement

When the DSL is small, having only one notation can be a feasible thing to do, but when

a DSL is large, covers a wider aspect and has different types of users having one notation

may not suit the needs for these users. This is because some use cases are easier to

specify when using graphical notations while others can be conveniently specified using

textual notations [8].

Using graphical notations for creating applications has advantages like reducing the

chances of errors, providing visualization and hence ease understanding of the system

being created. However using text based modeling also has advantages like speed of

creation and editing, speed of formatting and wide availability of editors [8]. It would be

best if all these advantages can be harnessed. So a solution that will support the use of

both graphical and textual notation in an easy and effective way is of great importance.

Currently, Ericsson has only the graphical notation of the DSL and as stated previously

some designers would prefer to use text when modeling and in some cases, the use cases

can better be understood when modeled using text. So the first problem is the lack of a

textual version of the DSL. However, having a DSL with both the textual and graphical

version being used simultaneously raises several more general problems to be addressed.

One of the main problems is how to maintain the two DSLs without adding a lot of

maintenance effort to the company. This means that in case the DSLs needs to be

updated one should not have to do a lot of manual work. There is a need for a solution

that will provide some automation to make it easy to update the language.

Another problem that arises is how the end users can be able to switch between the

graphical and textual views in an easy way and without losing any information. The

idea here is that a user should be able to only press a button and switch between the

views and can edit the models in any of the views.

1.3 Purpose

The purpose of this thesis is to investigate the possibilities of having a DSL with both

graphical and textual representation. The thesis also investigates the possibility of

Chapter 1. Introduction 3

switching between textual and graphical concrete syntax without any loss of information.

The work done in this thesis contributes to the previous research that has been done on

having several notations for a DSL by providing prototypes that show how textual and

graphical notations can be used for one DSL in one development environment.

What has been done throughout the thesis is the creation of a prototype of the textual

version of the existing DSL at Ericsson using Xtext and used this prototype to make an

analysis and come up with findings on how a DSL with both graphical (which is in UML)

and textual notations can be used. Prototypes of transformations that enable switching

from one view of the model to another have also been implemented and used for analysis.

The thesis also investigates two other solutions that are based on EMF using Xtext for

textual notation and GMF for the graphical notation. This thesis draws the conclusion

that it is possible to have a DSL that supports both graphical and textual views after

investigating the three alternative solutions. Each solution however varies in the effort

needed to implement and maintain the DSL. The thesis also provides insight on how

syntax errors are handled when switching from one view to another using an inconsistent

model.

1.4 Disposition of the Report

The remainder of this thesis report is organized as follows. Chapter 2 gives a brief

introduction of the technologies that have been used during the thesis and chapter 3

describes the research method that was used to conduct the thesis. Chapter 4 provides

a summary of the related work. Chapter 5 describes the solution to the problem and

three alternatives that have been investigated during the research. For each alternative

its general concept is first described and then its application on a case/prototype is

described. This section also provides findings from each alternative in the discussion

subsections. Chapter 6 discusses the threats to validity associated with this thesis.

Lastly, the thesis ends with Chapter 7 which provides a summary of what has been done,

conclusions drawn, answers to research questions and proposals for future work.

Chapter 2

Foundations

2.1 Model Driven Engineering

Model driven engineering is a term referring to a phenomena where systems or appli-

cations are created using models. Models as mentioned earlier are a simplification or

abstraction of a system created with a specific purpose in mind [5]. With model driven

engineering, designers create an abstraction/ model of the system that is needed. These

models are independent of the actual platform that will later create the running applica-

tions. This means that, for the same model running applications can be generated in C,

Visual basic, Java or any other programming language using code generation techniques.

In order to create models, designers need a language. The languages in model driven

engineering are divided into two main types. The first type is known as General Purpose

Language (GPL) , these are languages that are fit for use in almost any domain. They are

called general purpose because they fit in a number of domains. UML is a good example

of a GPL. The second type is known as Domain Specific Language (DSL). These are

languages defined for use in a particular domain. They are usually small and concise

with information only needed for the domain addressed. SQL is an example of a Domain

Specific Language made for the database domain.

Defining a DSL requires two steps which are abstract syntax definition and concrete

syntax definition. The first step which is abstract syntax definition is where the modeling

concepts and their properties are defined. Here we create a metamodel that defines all

the allowed (valid) models of the modeling language [9]. The second step which is the

concrete syntax definition is where we define the notation of the language. The concrete

syntax defines what language elements (graphical or textual) are associated with which

metamodel element. It is where we link metamodel elements with a visual representation

4

Chapter 2. Foundations 5

[10].This notation can either be textual or graphical notation and it is also possible to

define different notations for the same language. Graphical DSLs use pictorial symbols

to represent the application being modeled while Textual DSLs use text to represent

the application being modeled. The definition of both the abstract syntax and concrete

syntax for a DSL needs tools that can facilitate this. There are several frameworks

that are designed to facilitate creation and use of DSLs. However the Eclipse Modeling

Framework (EMF) is the most prominent in the world [9]. Throughout this thesis EMF

is used as the modeling framework. EMF is described in details in chapter 2.3.

2.2 UML

UML stands for Unified Modeling Language, it is one of the most used modeling lan-

guages defined by the Object Management Group(OMG). The language uses graphics

to represent models. UML is a general purpose language meaning that it can be used in

any domain and to model any type of application. UML provides 13 types of diagrams

that can be used for modeling [11]. These diagrams are categorized into three main

categories. The first category is the Structure category that consists of Class Diagram,

Package Diagram, Object Diagram, Composite Structure Diagram, Component Diagram

and Deployment Diagram. The second category is Behavior which consists of Activity

diagrams, State Machine diagrams and Sequence diagrams. The third category is Inter-

action and it consists of Timing diagram, communication diagram, interaction overview

diagram and also the sequence diagram [11].

Figure 2.1: UML Diagrams overview[1].

Chapter 2. Foundations 6

Even though UML is a GPL, it provides a mechanism for it to be extended to include

features fitting a particular domain. This mechanism for extension is called UML Profile

and allows for customization of syntax and semantics of UML [12]. With UML Profiles

one can define extra features that are not offered by UML out of the box and use the

profile when modelling with UML. UML Profiles enable the definition of additional classes

which are known as Stereotypes, additional attributes which are known as tagged values.

A stereotype extends a metaclass which is a class that already exist in UML. When a

stereotype is applied to an instance of a metaclass, the class will have the extra attributes

and references that is added by the stereotype. In other words the resulting class will

have attributes and references of the metaclass as well as attributes and references of the

stereotype class. When using UML with profiles, the language moves from the GPL side

toward the DSL side as the profile provides information that is specific to a particular

domain [13].

2.3 EMF

EMF stands for Eclipse Modeling Framework. As the name suggests, it is a framework

that is used to facilitate creation and manipulation of models using the Eclipse Integrated

Development Environment (IDE). With EMF installed on Eclipse one is able to create

models and edit models. EMF also comes with code generation functionality for creating

tools and other applications based on models [14]. One of the core functionality of EMF is

that it enables the definition of metamodels using a metamodel called Ecore [9]. Ecore is

an EMFmetamodel [15] and other models can be created conforming to it. When a model

is created conforming to the Ecore metamodel it is saved in an Ecore format(.Ecore).

Due to the prominence of EMF in the model driven engineering world, many other tools

and plugins in model driven engineering are created based on it. Examples of these tools

are GMF[16], Xtext[17], ATL[18] and EMFText [19]. There are also several UML tools

built on EMF for instance Papyrus which is an open source tool and RSA-RTE which is

a proprietary tool from IBM.

2.4 Xtext

As mentioned previously, DSLs can be implemented with a textual or graphical concrete

syntax. There are several tools that can be used to create Textual concrete syntax but

for this thesis XText has been used. XText is a plugin that is built on Eclipse modeling

framework (EMF) and can be used to create programming languages and textual DSLs

[17]. Xtext has been selected because the current tooling used with the existing graphical

Chapter 2. Foundations 7

DSL at Ericsson is also based on EMF. Xtext also provides a lot of functionality out of

the box. Some of the functionality provided are Syntax highlighting, outline overview,

scoping, model reference validation, quick fixes and contest assist [17].

All languages need a grammar. A grammar is a set of structural rules for a language. It

determines what kind of word combinations (phrases) are valid in the language. For a

textual DSL as well, a grammar needs to be defined. In Xtext, a language grammar is

defined using rules. These rules determine how this model element will be represented

in text. It is in the grammar where keywords of a DSL are also defined. An example of

a grammar rule for a model element called Class is given below:

1 Class_Impl r e tu rn s Class :

2 { Class }

3 ’ Class ’

4 name=EString

5 ’ { ’

6 (ownedOperation+=Operation (" , " ownedOperation+=Operation) ∗) ?

7 (ownedAttribute+=Property (" , " ownedAttribute+=Property) ∗) ?

8 (ownedConnector+=Connector (" , " ownedConnector+=Connector) ∗) ?

9 (ownedPort+=Port (" , " ownedPort+=Port) ∗) ?

10 (ownedBehavior+=Behavior (" , " ownedBehavior+=Behavior) ∗) ?

11 (extens ion_HiveBaseBehaviorClass=HiveBaseBehaviorClass) ?

12 (extens ion_HiveStructureClass=HiveStructureClas s) ?

13 (extens ion_HiveInstanceRouterClass=HiveInstanceRouterClass) ?

14 (extension_Capsule=CapsuleStereotype) ?

15 ’ } ’ ;

Listing 2.1: Xtext rule for a Class

The rule name is Class_Impl, which in this case is short for Class Implementation. The

word ‘Class’ in blue color indicates a keyword. This rule means that if one wants to define

a class it has to start with a keyword ‘Class’, followed by name of the class, followed by

an opening curly brace. After the opening curly brace one can define the attributes and

references belonging to the class (represented by line 6 to 15). The ? symbol means that

the attribute or reference is optional. According to the above rule a closing curly brace

is needed to end the definition of a class.

There are two approaches that can be used to create textual DSLs when it comes to

XText. The first approach is when there is no metamodel that exists for the DSL. This

way one starts to define the grammar of the language and the concrete syntax, and then

XText will automatically generate a metamodel for the language. The second approach

is when a metamodel for the DSL already exists. In this approach, the metamodel is

given as input to XText and XText generates the grammar and concrete syntax based

on the given metamodel. The generated grammar and concrete syntax may not suit

Chapter 2. Foundations 8

what the user wants, for instance it contains curly braces and keywords for every rule

and this may be unnecessary in the grammar. However this generated grammar is not

permanent, it can be further edited to fit the needs of the users. When one has defined

the grammar, Xtext has the ability to generate the parser and an editor that can be used

for the language defined. The figure below shows an example of an editor created with

Xtext. The editor displays a class defined by the user according to the rule in figure 2.1

above.

Figure 2.2: Xtext Editor.

2.5 GMF

GMF stands for Graphical Modeling Framework. It is an EMF based framework for

creating graphical DSL editors [16]. With GMF, you can define what symbols and

shapes can be used to represent elements in your DSL. Definition of a diagram editor

using GMF relies on a metamodel for the DSL which should be defined using Ecore.

This metamodel is also known as domain model. Using this domain model, GMF can

generate the graphical definition model and tooling definition model. The graphical

definition model defines the nodes and connections in association with the domain model

(metamodel of the DSL). The nodes are the shapes for instance rectangles, rounded

rectangles, ellipse e.t.c. The connections are usually arrows that connect shapes to each

other. The tooling definition model defines the tools to be displayed in the editor’s menu.

These are the tools that will be used to add nodes and connections to the editor. GMF

also generates a mapping model which maps each graphical definition which is a node

or connection to a specific tool defined in the tooling definition model. For example if

in your domain model you have a class called Package and you want this Package class

to be represented with a rectangle shape in your editor you would need to define it as

follows. In the graphical definition model you would select a shape that is a rectangle for

Chapter 2. Foundations 9

your package, in the tool definition model you would define a tool and name it Package

and in the mapping model you would map the tool to the shape defined in the graphical

definition model. The mapping model is used to generate the diagram editor gen-model

which is then used to generate the diagram editor for the DSL. The figure below shows

the GMF dashboard. The dashboard shows the models and how they relate to each

other.

Figure 2.3: GMF Dashboard.

2.6 Model Transformations

A model conforming to one metamodel can also be transformed to a model conforming

to another metamodel. A model transformation is usually defined on a metamodel

level where the relationship between one metamodel to another (transformation rules) is

defined. This transformation is then used to transform instance models conforming to

the metamodels. A transformation needs one or more input model(s) (source models)

and can produce one or more output model(s) (target models).

Chapter 2. Foundations 10

Metamodel X

Model To Model
Transformation

Source Instance
 Model

Target Instance
 Model

Metamodel Y

conforms to conforms to

input output

Figure 2.4: Model to model transformation.

The figure above illustrates a model to model transformation where models conforming

to metamodel X are transformed to models conforming to metamodel Y. The transfor-

mation takes an instance model conforming to metamodel X as a source and produces an

instance model conforming to Y as a target. Model transformations can either be writ-

ten manually by a programmer or can be automatically generated using some Higher

Order Transformations (HOT). The generation of transformations is possible since a

transformation is also a model that conforms to some transformation metamodel [3]. For

instance a transformation written in ATL is indeed a model that conforms to the ATL

metamodel.

Currently there are several model transformation languages that exist. Examples of these

transformation languages are Atlas Transformation Language (ATL) [18], Query View

Transformation (QVT) [20] and Triple Graph Grammars (TGG) [21].

2.7 The Ericsson DSL

Currently, Ericsson uses an in-house developed DSL to create applications for its Base-

band Switches. The DSL uses graphical notations and is known as Hive to Ericsson.

This DSL is built using UML and UML profiles. Their UML profile is known as Hive

Profile and is divided into three major parts which serve three different purposes when

it comes to creating applications(see figure 2.5). The first part is the behavior part, this

models how the system being created should behave. The second part is the structural

part which models how different parts of the system are structured and the relationships

between different parts. The third part is the deployment part which models how the

system should be deployed depending on the hardware being used. The Hive profilr in

Chapter 2. Foundations 11

total is made up of 14 stereotypes from the Hive deployment profile, 17 stereotypes, 1

Enumeration and 1 class from Hive Behavior and 2 stereotypes from Hive Structure.

The Hive DSL also uses some metaclasses from the UML metamodel as they are, .i.e.

without extending them with any stereotypes.

Hive Profile

Hive Behavior Hive Structure Hive Deployment

Figure 2.5: The Hive Profile composition.

At Ericsson, developers create models of the applications using this graphical DSL and

later use model transformation tools to transform the models into C code (.c and .h

files) which can be compiled into working applications. The transformations are done

in three steps(see figure 2.6). The first step is a model to model transformation that

transforms an instance model created using the Hive DSL to Dive which is another

Ericsson in-house metamodel. From the Dive, another model to model transformation

is done that transforms the Dive model into a C instance model that conforms to the C

abstract syntax tree. From the C abstract syntax tree a model to text transformation is

performed to get .c and .h text files.

Chapter 2. Foundations 12

Model to Model Transformation

Model to Model Transformation

Model to Text Transformation

Hive Instance
 Model

Dive Instance
 Model

C AST Instance
 Model

..c and .h files

Figure 2.6: Code generation steps (From a Hive model to .c and .h files).

Chapter 3

Method

This thesis has been conducted using action research as its main research method. Ac-

tion research is the type of research method where the researcher places him/herself in

the organization where the problem is, studies the problem, implements a solution (by

performing some actions) and analyze the impact of that solution in solving the problem

[22]. From the results obtained the researcher can repeat the whole process again until

the problem is fully solved or the researcher can propose a way forward to solving the

problem.

The action research circle has five main stages. The first stage is diagnosing where the

researcher and the practitioner come together and try to identify what the problem is.

The second stage is action planning where the actions that need to be taken to solve

the problem are planned. The actions are planned based on the hypotheses and research

questions defined in the diagnosis stage. The third stage is action taking [2] or sometimes

called intervention [22] where the actions planned are actually implemented. The fourth

step is evaluation where the impacts of the implemented actions are analyzed. The fifth

and final stage is reflection [22] also called specifying learning [2] where the researcher

disseminates the knowledge to the organization and they together reflect on the impact

and way forward. The figure below shows the action research cycle.

13

Chapter 3. Method 14

Diagnosing

Action
Planning

Action
Taking

Evaluating

Specifying
Learning

Figure 3.1: Action research cycle [2].

As mentioned in the introduction, Ericsson is the organization with the problem and as

a researcher I was placed in the organization to study the problem, implement a solution

and analyze the solution to see if it solves the problem. The thesis was conducted in

four cycles of action research. The first stage of the cycles (diagnosis), started with a

literature review on the problem. The papers selected for the literature review were

selected by convenience sampling based on their relation to the subject and availability.

The summary of the related work discovered during literature review is provided in

chapter 4.

Then next was to understand what the actual problem was and to come up with research

questions as well as hypotheses. This was done first by communicating with the con-

cerned parties at Ericsson where they explained why having only a graphical version of

a DSL was a problem and what the concerns were, when it comes to maintenance of two

notations for the same DSL. Further analysis was conducted by getting the actual DSL

used by the company(Hive), using it and knowing how it works. It is from these two

initial steps where the research questions and Hypotheses were created. These research

questions and hypotheses are listed below:

Chapter 3. Method 15

3.1 Research Questions

RQ1: What is the best way to have a DSL with both textual and graphical

views without doubling the maintenance effort?

As it has been mentioned before, the company needs to add a textual version of the DSL

but the addition of this DSL should not double the effort when it comes to updating the

language and the transformation tool chain. This question aims to find out the best way

(with lowest effort) to have textual and graphical representation of a DSL existing in a

company.

RQ2: How can we switch between Textual and Graphical DSL without any

loss of information?

Since there will be both graphical and textual versions of the DSL, there needs to be a

good and easy way for programmers to switch between them. The aim here is to make

the switching between the DSLs as automatic as possible.

Q3: How can syntax errors be handled when switching between them?

Models created by both graphical and Textual DSLs can be inconsistent. Inconsistent

models are models that do not comply with the metamodel constraints. The aim of this

question is to investigate whether syntax errors have any effect when one is switching

between the two views.

3.2 Hypotheses

H1: Having a DSL with two notations leads to doubling of the effort required to maintain

the DSL.

H2: Switching from one view of the DSL to another does not cause any loss of infomation

from the model.

H3: Syntax errors cause problems when switching between graphical and textual views.

From the research questions above, three alternatives were discovered that would enable

having a DSL supporting both textual and graphical views. It was planned then to do

the implementations of these alternatives in cycles and analyze the impact of each. These

alternatives and their implementation are discussed in detail in chapter 5.

The three alternatives were investigated in four cycles of action research. The first cycle

was to implement alternative one for the behavior part of the Hive DSL, the second cycle

Chapter 3. Method 16

was to implement alternative one again but for the structural part of the DSL. The reason

for implementing the first alternative in two cycles is to be able to see if the solution

will work for both cases. So the second cycle acted like a test to see if the solution can

hold for other profiles as well. The deployment part was left out due to time constraints

of the thesis. The third cycle was to implement a small prototype for alternative two

of the solution and the fourth cycle was for alternative three of the solution. For each

alternative an evaluation was done, findings were recorded and conclusions were drawn.

1

 Alternative 1
(Hive Structure)

2

3

4

 Alternative 1
(Hive Behavior)

 Alternative 2

 Alternative 3

Figure 3.2: Cycles of Action research implemented.

Chapter 4

Related Work

From the literature review conducted, several approaches to provide a solution for a DSL

with both graphical and textual views have been discovered. In [23], Colin Atkinson and

Ralph Gerbig propose a technique that separates the actual notation of the DSL from

its abstract syntax. They suggest the use of multi-level modeling and use of visualizers

for editing models. A visualizer is a tool that determines how the models will be viewed

as text, graphics or in tabular notation. Their concept of graphical editing is based on a

technology similar to GMF while their concept of textual editing is based on projectional

editing. Projectional editing is a technology that does not rely on a parser [24]. With

projectional editing, the user edits the Abstract Syntax Tree(AST) of the model directly.

The editor only shows a projection of what is in the AST and as the user is editing

through the editor he/she is actually making changes to the AST of the model directly.

Projectional editing has its drawbacks, as the user cannot save any kind of layout format

for the text or graphics, when the model is saved only the AST of the model is saved.

Reopening the model gives a default layout. This is a disadvantage if custom formats of

the text or diagrams are of importance to the users. Projectional editing also does not

support adding of comments in certain parts of code [24]. similar technology (projectional

editing) has been used to create an Integrated Development Environment (IDE) known

as mbeddr [an Extensible MPS-based Programming Language and IDE for Embedded

Systems]. This IDE also supports the editing of a model in graphical, tabular and textual

views but does not work on eclipse yet.

Another closely related work is that discussed in [25] which shows how to create a multi-

view DSL. The idea here is to have one metamodel for the whole DSL and split it

into several sub-metamodels according to various perspectives. The sub-metamodels are

called viewpoints which can then have graphical or textual concrete syntax. Models are

17

Chapter 4. Related Work 18

created using these viewpoints (either with graphical or textual notation) and later in-

tegrated in one repository. The repository is aware of how these sub models should be

integrated to conform to the metamodel of the whole DSL. Also in this approach the

textual language for a viewpoint is not manually created but rather automatically gen-

erated using Triple Graph Grammar Rules.This approach is different from our solution

as our solution proposes a way to have textual and graphical notation for the whole DSL

and not just part of the DSL.

A different approach is proposed in [11], where textual editors are embedded in graphical

editors. This way when modeling using graphics, designers have an option to bring up a

text editor that they can use to edit a model element that they have created in graphics.

When it comes to switching between graphical and textual views, [26] proposes two

approaches to facilitate the transformation of models that are written in both graphical

and textual notation (i.e. one model containing parts written in UML and parts in

text). The first approach is called Grammarware and this simply refers to a text to text

transformation of the models. With this approach the models are exported as text and

transformation is done from text conforming to one metamodel to text conforming to

another metamodel. The second approach is called Modelware and this refers to a model

to model transformation. In this approach a model containing the graphical and textual

content is transformed to a fully graphical model. This is done by converting the text

part to its corresponding model element in the graphical metamodel.

This thesis however proposes a way to have a DSL supporting both graphical and textual

views and the possibility to switch between them but not combining text and graphics

in the same file. The thesis also investigates approaches of having both textual and

graphical views which do not double tool maintenance efforts when it comes to updating

the DSL. Moreover the thesis is conducted in a company where the existing DSL uses

UML and UML profiles, so it also proposes a solution for UML based DSLs.

Chapter 5

Solution

From the related theory and other information obtained during the situation assessment

phase, we came up with three alternatives that could be applied to get a DSL that

supports both graphical and textual views. As mentioned in previous chapters, every

DSL needs to have a metamodel. A metamodel defines the modeling concepts and

determines which models are valid for a particular DSL [9]. The three alternatives are

discussed below.

5.1 Alternative 1

The first alternative was derived from the current situation of the company. Ericsson

currently uses a graphical DSL that is based on UML and UML profiles. Xtext on the

other hand uses metamodels which are in Ecore format. So in order to obtain the textual

version of the DSL a metamodel in Ecore has to be obtained first. It has been mentioned

before, the company needs to add a textual version of the DSL but the addition of this

DSL should not double the maintenance effort when it comes to updating the language.

To avoid this, the Ecore metamodel is therefore derived from the existing UML Profile

using model to model transformation. The idea being that once the language evolves, the

changes will be applied to the UML Profile and the textual metamodel will be derived.

The figure below illustrates this alternative.

19

Chapter 5. Solution 20

conforms to conforms to

input output
Textual MetamodelGraphical Metamodel

Model To Model
Transformation

Model To Model
Transformation

(UML + Profile)

Graphical Instance
 Model

Textual Instance
 Model

Figure 5.1: Alternative One.

The implementation of this alternative is discussed as a general solution. This means that

this solution is not only valid for the Ericsson DSL but also valid for any other DSL that

uses UML and UML profiles. The specific case for Ericsson’s DSL is discussed in Case 1

and Case 2 chapters. The first step towards this alternative is to obtain a metamodel in

ecore that can be used to generate our textual editor. How this metamodel is obtained

is explained below:

5.1.1 UML Profile to a Metamodel in Ecore

The Eclipse Modeling Framework comes with a functionality that can export UML mod-

els into Ecore models. Using this functionality was the first approach to obtain a meta-

model in Ecore from the UML Profile. This functionality worked well but had a huge

drawback since it also exports the whole UML metamodel to the exported Ecore model.

When generating the grammar from this Ecore, every element from the Ecore plus the

UML metamodel is generated in the grammar. This makes the grammar very huge with

a lot of unused elements. This increases the amount of effort required to maintain a

huge textual language while in many cases people only use a small part of the UML

metamodel.

To be able to solve this problem, a subset of classes from UML that are actually needed

for the DSL needs to be obtained.

Ways to obtain the UML Subset:

To be able to obtain the UML Subset, one needs to know exactly which classes are used.

These classes include those extended by the stereotypes in the profile and also those that

are used without any stereotypes. For some DSLs this set of classes is known and for

Chapter 5. Solution 21

some DSLs it may not be so obvious which classes are used. This is especially when users

use part of UML that is not extended by any stereotype in the profile. In such cases this

list of classes needed can be obtained by running a transformation that takes an instance

model of the DSL and returns a collection all UML metaclasses used on that instance

model. This will give a correct list of classes needed if the instance model covers 100%

of the DSL. In case no such instance models exist, one can identify the needed UML

metaclasses manually and create a list of these classes either as an Ecore or as another

UML profile that will only be used to identify these metaclasses. Once these classes have

been identified a transformation can be written that copies only these classes from UML

to create a subset UML metamodel. This UML subset can also be created manually as

an Ecore model that contains all the classes of the subset and their attributes. However

if the DSL changes frequently then this subset can be hard to maintain.

With the UML subset, another transformation needs to be created which takes the UML

Profile and UML subset as input and produces a model in Ecore that can be used in Xtext

to generate grammar. This transformation can be written using any transformation

language. The mapping used to convert UML to Ecore follow the ones used in the UML

to Ecore eclipse plugin [27] and also according to the relationship between UML and

Ecore as described in [15]. These mappings are described below:

UML Profile to Ecore Package: Every profile is transformed to a corresponding

Ecore Package. Since a profile contains Stereotypes as its sub packages, when these

stereotypes are transformed they will be nested elements to the corresponding package.

UML Stereotypes to Ecore classes: UML Profiles contain Stereotypes and tagged

values. Stereotypes are the additional UML classes while tagged values are the additional

attributes and references. A stereotype extends a metaclass, which is a class that already

exists in UML. To transform a stereotype to Ecore first transform the extended UML

metaclass to an EClass in Ecore, with all the properties of the class as Attributes in Ecore

and all references as Ereferences in Ecore. Then transform the stereotype to an EClass

in Ecore and all its tagged values as EAttributes in Ecore. To maintain the relationship

between the metaclass and stereotype in the Ecore model as well add a reference in the

EClass corresponding to the metaclass to the EClass corresponding to the stereotype.

This reference represents the extension relationship in UML. The figure below illustrates

this.

Chapter 5. Solution 22

Figure 5.2: UML Stereotypes to Ecore classes.

UML Metaclasses to Ecore Classes: UML metaclasses are those classes that are

present in the UML metamodel. It has already been established that it is better to use a

subset of UML rather than the whole UML metamodel unless one is using all the classes

from the metamodel in their DSL. So in this case the UML metaclasses will be from

the UML subset and not the complete UML models. These classes are transformed to

EClasses in Ecore. If this subset of UML was supplied in form of Ecore already then

these Eclasses are just copied to EClasses in the output model as well. And in this case

the transformation will take in the UML profile conforming to the UML metamodel and

a UML subset conforming to the Ecore metamodel as input and produce an Ecore model

conforming to the Ecore metamodel as output.

UML Property to EAttributes: Each UML property whose type is a primitive data

type (String, Integer, Boolean or Real) is transformed to an EAttribute in Ecore and the

corresponding data type (EString, EInt, EBoolean or EDouble). This is done for all the

properties from the Stereotypes.

UML Property to EReference: Each UML property, whose type is another class, is

transformed to an EReference in Ecore. And the type of this EReference is set to the

corresponding class in Ecore. For instance if the property in UML is called Base and its

type is Activity, then the property will be transformed to a reference called Base and the

type will be a class named Activity in Ecore. This is done for all the properties from the

Stereotypes.

Chapter 5. Solution 23

UML Data Type to Ecore Data type: In UML a Data Type is a class that is used

to define certain kinds of data values. An example of a UML Data Type is Date. In the

transformation each UML Data Type in the profile is transformed to an EDataType in

Ecore. This applies to all Data Types except Enumeration Data Type.

Enumerations to EEnum: All enumerations in UML Profile are transformed to

EEnum in Ecore. The corresponding Enumeration literals are transformed to EEnum

literals in Ecore. It is important to note that the transformed EEnum should also be in

the same package as all the transformed Stereotypes.

The table below gives a summary of the mappings from UML Profile to an Ecore model:

UML Ecore
Profile EPackage
Stereotype EClass
Metaclass EClass
Property (with Primitive type) EAttribute
Property (with other classes as type) EReference
Data Type EDataType
Enumeration EEnum

Table 5.1: UML to Ecore Mapping

The listing in the table above does not cover all the UML model elements. It only

contains the necessary model elements which are needed when transforming a UML

profile to Ecore. Model elements which are not listed here are UML Operations, Map

References and UML Documentation [15]. The code for the transformation of a UML

Profile into an Ecore model is included in Appendix B of this report.

5.1.2 Generating the Textual Editor using Xtext

From chaper 5.1.1 above, once this Ecore model has been obtained it can be used in Xtext

to generate the Textual concrete syntax of the DSL. This is done by creating an Xtext

project from an import of the Xtext Ecore metamodel. This automatically generates a

grammar for us. In most cases this grammar is not satisfactory for users as it follows one

template for all model elements. So the user has to do some manual editing to get the

grammar to look like what is desired. It is also important to note that the auto generated

grammar generates blank rules (only titles for the rules) for EEnums so contents of these

grammar rules have to be manually added by the user. Once the grammar is complete

the textual editor can be auto generated with Xtext. Having a textual editor from Xtext

means that now it is possible to create models using text. The next step is to enable the

switch between textual and graphical views. This is elaborated below:

Chapter 5. Solution 24

5.1.3 Switching between Graphical and Textual Views

5.1.3.1 Xtext Instance Model to UML Instance Model

Once the XText editor has been created it can be used to create textual instance models.

These instance models can then be transformed to UML instance models. Note that the

Xtext instance model can be serialized to an XMI file so that it can be used in transfor-

mations. The transformation from Xtext instance model to UML instance model can be

written in any model to model transformation language, but the mappings should be as

described below. To facilitate better understanding examples of code for transformation

rules written in ATL is given.

a. Classes Matching UML Metaclasses with no Associated Stereotypes

Instances of classes that match the UML metaclasses and have no associated stereotype

in the profile used are transformed to their corresponding instances of UML Metaclasses.

Associated stereotype in this case means that the profile used contains one or more

Stereotypes extending the UML metaclass. For instance if there is an instance of a

class called Activity in Xtext instance model, and the profile used does not contain any

stereotype extending the Activity UML metaclass, this instance is transformed to an

instance of the UML metaclass called Activity. The attributes values that are present in

the Xtext instance model are also copied to the corresponding attributes in UML.

1 ru l e Ac t i v i t y t oAc t i v i t y {

2

3 from s : Xtext ! Ac t i v i ty

4

5 to t :UML! Act i v i ty (

6

7 name <− s . name ,

8 node <− s . node

9

10

11)

12

13 }

Listing 5.1: An ATL matched rule showing a transformation from Xtext Activity to
UML Activity.

The listing above shows an ATL rule illustrating this kind of transformation mapping.

In the figure an instance of an EClass of type Activity from Xtext is transformed to a

UML instance class of type Activity (see line 3 and 5). The attributes and references

of this activity instance from Xtext are also copied to the target UML activity instance.

In this case the instance of type Activity from Xtext has one attribute called name (see

Chapter 5. Solution 25

line 7) and a reference called node (see line 8).

b. Classes Matching UML Metaclasses and have Associated Stereotypes

Those classes that match the UML Metaclasses and have associated stereotypes in the

UML profile used are transformed to UML Metaclasses that they conform to. For in-

stance if a class called Operation has one or more stereotypes in the profile extending

it, then this class will be transformed to UML metaclass called Operation and all its

attributes and references copied to it. The second step is be able to apply stereotypes

to the newly created UML Class. In order to know which stereotype to apply, first one

has to check which extension reference is associated with this class. If the class has more

than one extension reference it means that there are several stereotypes that extends

this metaclass and a proper check is needed for which stereotype needs to be applied.

For example if this particular instance of operation has an extension reference of type

HiveMapToActivity, then the stereotype called HiveMapToActivity will be applied and

the corresponding tagged values copied. It is important to also note that there are cases

where more than one stereotype needs to be applied to a class.

1 ru l e OperationToOperation {

2 from

3 s : Xtext ! Operation

4 to

5 t :UML! Operation (

6

7 name <− s . name ,

8 v i s i b i l i t y <− s . v i s i b i l i t y ,

9 type <− thisModule . getDataType (s . type . t oS t r i ng ())

10

11)

12

13 do {

14

15 i f (s . extension_HiveBaseMapToBehavior . oc l IsTypeOf (MM!

HiveMapToActivity)) {

16

17 t . app lyStereotype (thisModule . HiveMapToActivityStereotype) ;

18

19

20 i f (thisModule . hasValue (s . extension_HiveBaseMapToBehavior . a c t i v i t y)

)

21 {

22 t . setValue (thisModule . HiveMapToActivityStereotype , ’ a c t i v i t y ’ ,

thisModule . g e tAc t i v i t y (s . extension_HiveBaseMapToBehavior . a c t i v i t y)) ;

23 }

24

Chapter 5. Solution 26

25 i f (thisModule . hasValue (s . extension_HiveBaseMapToBehavior . event))

26 {

27 t . setValue (thisModule . HiveMapToActivityStereotype , ’ event ’ ,

thisModule . getEvent (s . extension_HiveBaseMapToBehavior . event)) ;

28 }

29 }

Listing 5.2: An ATL matched rule to transform an Xtext Operation to UML
Operation.

The code in the listing above illustrates an example where an instance of type operation

from Xtext is transformed to a UML instance of type operation (see line 3 to 5). The

code also checks to find out which stereotype needs to be applied to the UML Operation.

In this case we check if this instance of Operation from Xtext contains an extension

known as HiveMapToActivity. If yes then the HiveMapToActivity stereotype is applied

to the resulting instance of UML Operation. When the stereotype has been applied the

tagged values need to be set as well. This is done from line 20 to line 27 where we first

check if the attributes are not null and later copy their values using the setValue function.

5.1.3.2 UML Instance Model to XText Instance Model

Instance models in graphical format created using UML can also be transformed to

models conforming to the XText metamodel. The mapping of this transformation is as

follows:

a. Classes with No Stereotypes Applied

Instances of classes that do not have any stereotype applied are transformed to instances

of matching classes in the Xtext Ecore model. For instance if in UML there is an instance

of a class called Transition, then this will also be transformed to correspond to an instance

of the Transition class in the XText instance model. Knowing that the XText instance

model was created by copying the classes from UML, then this transformation is also

just a copy from a UML class to a corresponding class in XText. The properties of the

classes are also copied to the corresponding attributes in Ecore. In case of attributes

that are compulsory in XText but not supplied in the UML instance model, then default

values can be set using the transformation.

The listing below shows an example of transformation from UML transition that has no

stereotype applied. In this case the transition has a total of 7 attributes and references

to be copied which are name, container, kind, redefinedTransition, source, target and

Chapter 5. Solution 27

trigger.

1 ru l e Trans i t ionToTrans i t ion {

2

3 from s :UML! Trans i t i on (s . ge tApp l i edSte reo types () −> isEmpty ())

4

5 to t : Xtext ! Trans i t i on (

6

7 name <− thisModule . getTransitionName (s) ,

8 conta ine r <− s . conta iner ,

9 kind <− s . kind ,

10 r ed e f i n edTran s i t i on <− s . r ede f i n edTrans i t i on ,

11 source <− s . source ,

12 t a r g e t <− s . ta rget ,

13 t r i g g e r <− s . t r i g g e r

14

15)

16 }

Listing 5.3: An ATLmatched rule to transform a UML Transition to Xtext Transition.

b. Classes with Stereotypes Applied

Instances of classes that have stereotypes applied are transformed to two instances in

Xtext. First to an instance of a class conforming to the UML metaclass that the stereo-

type extends and then to another instance that conforms to the applied Stereotype classes

that are in the Xtext Ecore. A reference is also created from the metaclass EClass to

the Stereotype EClass. For instance if a class has a stereotype called HiveMapToAc-

tivity applied and this stereotype extends a metaclass called Operation then it will be

transformed to an EClass called Operation in the Xtext instance model and an EClass

called HiveMapToActivity in the XText metamodel. A reference will be created from the

instance of Operation to the stereotype HiveMapToActivity. The tagged values are then

copied from the UML stereotyped class to the corresponding attributes in the XText

instance of the class. The listing below illustrates these mappings with ATL code. Note

that in this example extension_HiveBaseMapToBehavior is the reference from the class

Operation to the class HiveMapToActivity. ’activity’ and ’event’ are tagged values of

the HiveMapToActivity stereotype.

1 ru l e HiveMaptoActivityToOperation{

2

3 from s :UML! Operation (s . i sS t e r eo typeApp l i ed (thisModule .

HiveMapToActivityStereotype))

4

5 to t :MM1! Operation (

6

Chapter 5. Solution 28

7 name <− s . name ,

8 type <− s . datatype ,

9 extension_HiveBaseMapToBehavior <− t2

10) ,

11

12 t2 : Xtext ! HiveMapToActivity (

13

14 a c t i v i t y <− s . getValue (thisModule . HiveMapToActivityStereotype , ’

a c t i v i t y ’) ,

15 event <− s . getValue (thisModule . HiveMapToActivityStereotype , ’ event ’)

16

17)

18 }

Listing 5.4: An ATL matched rule showing a transformation from UML Operation
to Xtext Operation.

5.1.3.3 Higher Order Transformations

Model transformations can either be manually written or automatically generated using

other transformations. A transformation that produces other transformations as output

is known as a Higher Order Transformation (HOT). Higher Order Transformations are

possible since transformations are also models that conform to a certain transformation

metamodel [4]. For instance an ATL Transformation is a model that conforms to the

ATL metamodel. A HOT either takes any model as input or another transformation as

input to produce other transformation(s) as output.

Figure 5.3: ATL Higher Order Transformation Chain[3].

Chapter 5. Solution 29

The figure above illustrates the concept of HOT. From the left hand side a transformation

(ATL input transformation) is first serialized as a model conforming to the ATL meta-

model using the Textual Concrete Syntax (TCS) Injector [28] and the model is called

ATL input model. This model is given as input to a HOT which produces the ATL

Output model conforming to the ATL metamodel as its output. The TCS Extractor is

used to serialize the ATL Output model to the ATL textual syntax and the final output

which is a transformation in ATL textual syntax is called ATL output transformation.

With this concept, the transformations from UML instance model to Xtext instance

model and from Xtext instance model to UML instance model do not have to be written

manually. Instead HOTs can be used. Since we know that the metamodel for the Xtext

language is generated from the UML profile and UML subset, then all information needed

for our instance model transformations can be obtained from these two models (UML

Profile and UML subset). We therefore need to write a HOT that takes the UML Profile

and the UML subset as input and produce an instance model transformation as output.

Figure 5.4: Simplified Version of the ATL metamodel[4].

To generate bindings of the transformations attributes of the UML profile and UML

Chapter 5. Solution 30

subset can be used. This works if the bindings have a one to one relationship from UML

to Xtext and vice versa. If the bindings from UML to Xtext are not one to one mappings,

the HOT transformation needs more information in order to create these bindings. A

trace model can be used as another input to the HOT in order to facilitate this. A trace

model is a model that defines the relationship between the source model and the target

model. It describes how each model element in the source model should be realized as

a target element in the target model. The figure below shows a trace metamodel. From

the metamodels, one starts to define a trace model by creating a Link set. The link set

can contain several trace rules in it. A traced rule contains links, these links contain

source elements and target elements. The source element will be mapped to the target

element in the generated transformation.

Figure 5.5: Simplified Version of the ATL trace model [4].

Assume you have two metamodels each with one class in it. Metamodel A with a class

called ElementA with two attributes, name and type. Metamodel B with class called

ElementB with two attributes uniqueId and kind. If you want to generate a rule that

transforms Element A to Element B you need to specify the relationship between these

two metamodels in a trace model. For this case your trace model will contain a link set

with one traced rule (see figure 5.6). The traced rule will contain two links, one for each

of the attributes. In the first link we define what is the source attribute (in our case

name) and what is the target attribute (in our case uniqueId). The same is done for the

second link in which the source attribute is type and the target attribute is kind.

Chapter 5. Solution 31

Figure 5.6: Sample trace model.

5.1.4 Case 1

The solution alternatives described were applied to the Ericsson case. As it has been

mentioned the DSL at Ericsson is a graphical DSL that uses UML and UML profiles.

The DSL can also be divided into three parts namely Behavior part, Structural part and

Deployment part. The first case was to apply the described alternatives for the behavior

part of the DSL and create Hive Behavior DSL supporting both graphical and textual

views. The hive behavior profile is made up of 17 stereotypes, 1 Enumeration and 1

class.

5.1.4.1 Metamodel Transformation

The first step in applying the solution was to obtain a metamodel in Ecore so that we can

use the metamodel to generate Xtext grammar. For the generated grammar to be small

and concise a subset of the UML metamodel is needed as well (as discussed in chapter

5.1.1). For the case of Ericsson there is no formal definition of which classes are actually

used from the UML metamodel so this information had to be obtained manually. It was

obtained by looking through the instance models that already existed and identifying

the used classes and attributes. Then an Ecore containing these used classes and their

attributes was created. Those classes from UML that were used with the Hive profile but

did not make sense in the textual language were omitted. An example in this case is the

activity edge class, when defining activities using diagrams drawing edges like control

flows is a good thing but when it comes to specifying activities using text, the edges

add complexity to the language. So the activity edge class was not included in the UML

subset and instead a “depends on” reference was introduced to each activity node except

the initial node. The resulting UML subset contained 25 model elements from the UML

model which is just 9.4% of the UML metamodel. The UML metamodel contains 265

Chapter 5. Solution 32

model elements.Model elements refers to the metaclasses and Data Types contained in

the UML metamodel.

Profile UML Subset

Resulting Ecore

Figure 5.7: Part of the Hive Behavior Profile, its UML subset and the resulting Ecore
after transformation.

A model to model transformation was written that takes the Hive Profile and the Ecore

of UML subset as input and produces an Ecore model to be used in Xtext. The mappings

from the Profile and UML subset are as mentioned in chapter 5.1.1. The figure above

shows part of the Hive Behavior Profile, its UML subset and the resulting Ecore after

transformation. In the figure one can see that the stereotype HiveMapToActivity from

the profile has been transformed to a class called HiveMapToActivity in the resulting

Ecore. The tagged values (Properties) from the HiveMapToActivity stereotype which are

activity and event have been transformed to references in the HiveMapToActivity class

Chapter 5. Solution 33

in the resulting Ecore. The HiveBaseMapToBehavior stereotype has been transformed to

a class called HiveBaseMapToBehavior in the resulting Ecore. Since this stereotype ex-

tends the Transition and Operation UML metaclasses references to this class are added in

the Operation and Transition classes from the UML subset. These references are ’exten-

sion_HiveBaseMapToBehavior’ in both the Transition and Operation classes. Opposite

references for these are added in the HiveBaseMapToBehavior class. These references

are ’base_Transition’ and ’base_Operation’as seen in the figure.

After the metamodel was obtained, it was supplied to Xtext and Xtext generated the

concrete syntax for the DSL. The generated concrete syntax needed some manual editing

to make the syntax better. The editing done was mainly to remove unwanted keywords,

curly braces and commas. Also editing was made to add contents for Enumerations since

Xtext does not generate this. After editing the grammar, an Xtext editor and parser

were generated. Using this editor it was now possible to create models using text.

A sample of a model created using the editor is provided in the figure below.

Figure 5.8: Model created with Xtext editor.

5.1.4.2 Instance Model Transformations

Having the XText editor in place, one can now create instance models using text. The

second problem that arises is how one can be able to switch between a model created

in text to a model in graphical format (UML in this case). To facilitate this, first the

instance model created using XText needs to be serialized as an XMI model. This enables

the model to be used as input to an ATL transformation as the plain text format is not

recognized with ATL. An ATL transformation was also written that takes this Xtext

instance model and the Hive profile as input and produces a UML model with the Hive

Profile applied. To enable switching from a UML instance model to XText instance

model, another ATL transformation was also written. This transformation takes a UML

Chapter 5. Solution 34

model created using the graphical DSL (Hive) and the Hive profile as input and produces

a model conforming to the XText Ecore Metamodel. The resulting model is an XMI

model conforming to the Xtext metamodel and it can later be serialized to the textual

concrete syntax in XText. This serialization could also be automated so that the user

gets the resulting file in Xtext concrete syntax directly.

Looking at the instance model transformations written, it was discovered that most of

the mappings in the transformations were one to one mappings. This meant that a huge

part of the transformations could be generated using HOT instead of being manually

written. The implementation of the HOT needed to generate these transformations is

discussed in the following subsection.

5.1.4.3 Generating Transformations using HOT

As mentioned previously, ATL offers a functionality known as Higher Order Transforma-

tion (HOT), with this, one can write a transformation that produces other transforma-

tions as output. This is an advantage as instead of writing transformations manually one

can write a transformation that generates another transformation. Given that there is a

need to have two transformations for the instance models, it would be of value if these

transformations were generated instead of manually written. Trying this approach with

the Ericsson DSL led to the following discoveries. Parts of the transformations that had

one to one mappings between UML and Xtext could be easily generated. This is done

by writing a transformation that takes the Hive Profile and UML subset as an input and

generates an ATL transformation as output.

To generate a transformation from UML to Xtext the HOT written needs to produce the

following output. First we need ATL matched rules that will transform instances of UML

classes with no stereotypes applied to instances of classes conforming to the metamodel

used in Xtext. Second we need ATL matched rules that will transform instances of classes

that have stereotypes applied to instances of classes conforming to the metamodel used

in Xtext. Third within the ATL matched rules we need to have bindings that determine

how the attributes and references from the source classes are related to the attributes

and references of target classes. The generated transformation also needs to have helpers

that identify each stereotype by name from the Hive profile. The implementation of a

HOT that generates the above is described below:

• Generating an ATL Matched rule to transform instances of classes with no stereotypes

applied:

A matched rule like the one shown in listing 5.5 below is what we aim to generate.

Chapter 5. Solution 35

This is an example of a rule that will transform an instance of a UML Activity to

an instance of Xtext activity.

1 ru l e Ac t i v i t y2Ac t i v i t y {

2 from

3 s : UML! Act i v i ty

4 to

5 t : XTEXT! Act i v i ty (

6 name <− s . name ,

7 node <− s . node

8)

9 }

Listing 5.5: An ATL matched rule generated from UML Subset

The generation of a rule like in listing 5.5 is done by taking every class from the

UML subset used and from this UML subset generate one ATL matched rule. So

if one of the classes is called Activity then a rule will be generated that will take

an instance of an activity class in UML and generate an instance of an Activity

class in Xtext(see listing 5.5).

The ATL HOT rule to generate this is given in listing 5.6 below. Line 3 of the rule

means that we take the UML subset in our case called (UMLSub) and all classes

from this subset. Then from each of these classes we generate one ATL matched

rule (see line 5 of the HOT rule in listing 5.6). The generated rule will have a name

which will be of the format ’n’ 2 ’n’ where ’n’ represents the class names (see line

6 of listing 5.6). An example of the results from this line is line 1 on listing 5.5

where the name of the rule is Activity2Activity. The generated rule will also have

an inPattern and outPattern (see line 7 and 8 of listing 5.6).

The inPattern in our case will be of UML type represented by a variable named

’s’ (see line 11 to 29 of listing 5.6). The output of this is line 3 of listing 5.5. The

outPattern of the generated rule will be of Xtext metamodel type represented by a

variable named ’t’ (see line 31 to 37 of listing 5.6). The output of this is shown on

line 5 of listing 5.5 where XTEXT!Activity represents an Activity type in Xtext.

The output pattern also needs to have bindings that specify how the attributes

and references of the source class are related to the attributes and references of the

target class. These bindings are created in line 38 of listing 5.6. Since the bindings

are one to one bindings we fetch all attributes and references from the source classes

and create similar bindings for them in the target classes. An example of these

bindings created can be seen on listing 5.5 line 6 to 7. In this case the Activity

class had one attribute called ’name’ and one reference called ’nodes’, hence the

two bindings.

Chapter 5. Solution 36

1 ru l e classesFromUMLSubset {

2

3 from s :UMLSub! EClass

4

5 to t :ATL! MatchedRule (

6 name <− s . name + ’ 2 ’ + s . name ,

7 inPattern <− inpat ,

8 outPattern <− outpat

9) ,

10

11 inpat : ATL! InPattern (

12 e lements <− e lementIn

13

14) ,

15

16 elementIn :ATL! SimpleInPatternElement (

17 varName <− ’ s ’ ,

18 type <− t1

19) ,

20

21 t1 : ATL! OclModelElement (

22 name <− s . name ,

23 model <− m

24) ,

25

26 m : ATL! OclModel (

27 name <− ’UML’

28

29) ,

30

31 outpat :ATL! OutPattern (

32 e lements <− elementOut

33) ,

34

35 elementOut :ATL! SimpleOutPatternElement (

36 varName <− ’ t ’ ,

37 type <− t2 ,

38 b ind ings <− UMLSub! EClass . a l l Ins tancesFrom (’ IN1 ’)−>s e l e c t (e | e . name = s .

name)−>c o l l e c t (e | e . eS t ruc tu ra lFea tu r e s)

39) ,

40

41 t2 : ATL! OclModelElement (

42 name <− s . name ,

43 model <− m2

44) ,

45 m2 : ATL! OclModel (

46 name <− ’ Xtext ’

47)

Chapter 5. Solution 37

48 }

Listing 5.6: HOT rule t generate an ATL matched rule

• Generating an ATL Matched rule to transform instances of classes with stereotypes

applied:

The expected output rule from our Higher order transformation is a matched rule

like the one shown in listing 5.7 below.

1 ru l e HiveMapToFunctionStereotypedClass {

2 from

3 s : UML! Trans i t i on

4 (

5 s . i sS t e r eo typeApp l i ed (thisModule . HiveMapToFunctionStereotype)

6)

7 to

8 t : XTEXT! Trans i t i on (

9 kind <− s . kind ,

10 source <− s . source ,

11 t a r g e t <− s . ta rget ,

12 name <− s . name ,

13 extension_HiveBaseMapToBehavior <− t1

14) ,

15 t1 : XTEXT! HiveMapToFunction (

16 threadId <− s . getValue (thisModule . HiveMapToFunctionStereotype , ’

threadId ’) ,

17 newTask <− s . getValue (thisModule . HiveMapToFunctionStereotype , ’

newTask ’) ,

18 t a s kP r i o r i t y <− s . getValue (thisModule . HiveMapToFunctionStereotype ,

’ t a s kP r i o r i t y ’) ,

19 act ionPackageF i l e <− s . getValue (thisModule .

HiveMapToFunctionStereotype , ’ ac t ionPackageF i l e ’) ,

20 actionPackageName <− s . getValue (thisModule .

HiveMapToFunctionStereotype , ’ actionPackageName ’)

21)

22 }

Listing 5.7: An ATL matched rule generated from a stereotpe

To be able to obtain such a rule, HOT rule needs to be as follows:

From the Hive profile, each stereotype that is not abstract is transformed to one

ATL matched rule. Part of the ATL HOT rule to generate this is given in listing

5.8 below. In the listing, line 3 fetches all the stereotypes from the Hive profile and

checks if this stereotype is not abstract. If the stereotype is not abstract then an

ATL matched rule (like the one in listing 5.7) will be created with the name of the

stereotype and the word "StereotypesClass". Note that the name of the rule can be

Chapter 5. Solution 38

any name the user wants. In listing 5.6 the stereotype name is HiveMapToFunction

and therefore the name of the rule becomes HiveMapToFunctionStrereotypedClass.

The generated ATL matched rule will also have an inPattern and OutPattern (see

line 13 and 14 of listing 5.8). The inPattern contains the input element and a filter.

The filter is needed here so as to check if a stereotype is applied to an instance of

the class being transformed. Line 23 to 49 of listing 5.8 defines this filter and an

example of the output(a filter) from this line is shown on line 5 of listing 5.7. This

filter checks if the stereotype HiveMapToFunction is applied to an instance of a

Transition.

The input element is of UML model type and is represented by a variable named

’s’ (see line 51 to 63 of listing 5.8). This input pattern is seen on line 3 of listing

5.7.

The outPattern has an out element of type Xtext model and is represented by a

variable named ’t’ (see line 65 to 82 of listing 5.8). This output corresponds to the

class that the stereotype extends. An example of this output pattern can be seen

on line 8 of listing 5.7 and in this case the stereotype extends the Transition UML

metaclass that is why the output pattern is of type XTEXT!Transition.

Another out element is created in line 94 of listing 5.8, which will represent the

output from the stereotype. This out pattern is of type Xtext model and is rep-

resented by a variable named ’t1’. An example of this output pattern can be seen

on line 15 of listing 5.7.

Bindings for the first out element are added in line 87 and 91 of listing 5.8. An

example of these bindings is shown from line 9 to 13 of listing 5.7. Bindings to

the second out element created in line 93 to 96 of listing 5.8 and an example of

output from these lines is shown in line 16 to 20 of listing 5.7. These bindings

comes from the stereotype tagged values, and in this case our stereotype which is

HiveMapToFunction has 5 tagged values which are threadId, newTask, TaskPrior-

ity, actionPackageFile and ActionPackageName.

1 ru l e f romStereotypes {

2

3 from s :PROFILE! Stereotype (not s . i sAbs t r a c t)

4

5 us ing {

6

7 pat : ATL! SimpleOutPatternElement = OclUndefined ;

8 }

9

10 to t :ATL! MatchedRule (

11

Chapter 5. Solution 39

12 name <− s . name + ’ StereotypedClas s ’ ,

13 inPattern <− inpat ,

14 outPattern <− outpat

15

16) ,

17

18 inpat :ATL! InPattern (

19 f i l t e r <− f i l ,

20 e lements <− e lementIn

21) ,

22

23 f i l :ATL! OperationCallExp (

24 operationName <− ’ i sS t e r eo typeApp l i ed ’ ,

25 source <− ss1 ,

26 arguments <− s s2

27) ,

28

29 s s1 : ATL! VariableExp (

30 r e f e r r e dVa r i ab l e <− varDecl

31) ,

32

33 varDecl : ATL! Var i ab l eDec l a ra t i on (

34 id <− ’ s ’ ,

35 varName <− ’ s ’

36) ,

37

38 s s2 :ATL! Navigat ionOrAttr ibuteCal lExp (

39 name <− s . name + ’ Stereotype ’ ,

40 source <− thisModuleVar

41) ,

42

43 thisModuleVar :ATL! VariableExp (

44 r e f e r r e dVa r i ab l e <− th i sModuleDec larat ion

45) ,

46

47 th i sModuleDec larat ion : ATL! Var i ab l eDec l a ra t i on (

48 varName <− ’ thisModule ’

49) ,

50

51 elementIn :ATL! SimpleInPatternElement (

52 varName <− ’ s ’ ,

53 type <− t1

54) ,

55

56 t1 : ATL! OclModelElement (

57 name <− s . getAl lExtendedMetac lasses () . f i r s t () . name ,

58 model <− m

59) ,

Chapter 5. Solution 40

60

61 m : ATL! OclModel (

62 name <− ’UML’

63) ,

64

65 outpat :ATL! OutPattern (

66 e lements <− elementOut

67) ,

68

69 elementOut :ATL! SimpleOutPatternElement (

70 varName <− ’ t ’ ,

71 type <− t2−−,

72

73) ,

74

75 t2 : ATL! OclModelElement (

76 name <− s . getAl lExtendedMetac lasses () . f i r s t () . name ,

77 model <− m2

78) ,

79

80 m2 : ATL! OclModel (

81 name <− ’XTEXT’

82) ,

83

84

85 do{

86

87 f o r (e in s . getAl lExtendedMetac lasses () . f i r s t () . g e tA l lA t t r i bu t e s ()) {

88 elementOut . b ind ings <− thisModule . c reateBind ingsFromPropert i e s (e .

name) ; −− Binding from inh e r i t e d c l a s s e s

89

90 }

91 elementOut . b ind ings <− thisModule . c r eateExtens ionBind ings (s) ; −−
extens i on r e f e r e n c e to s t e r eo type

92 outpat . e lements <− thisModule . outPatternForNestedRule (s , t) ; −−
second output element

93 f o r (e in s . g e tA l lA t t r i bu t e s () −>s e l e c t (e | not (s .

getAl lExtendedMetac lasses ()−>c o l l e c t (a | a . name) −>inc l ud e s (e . type . name)

))) { −− Bindings f o r t1 out pattern

94 pat <− t . outPattern . e lements −> s e l e c t (e | e . varName = ’ t1 ’) . f i r s t () ;

95 pat . b ind ings <− thisModule . createNewBindingLink (e . name , e . name , s) ;

96 }

97

98

99 }

Listing 5.8: A HOT rule to generate ATL matched rules from stereotypes

Chapter 5. Solution 41

• Generating ATL Helpers

Each stereotype that is not abstract is transformed to a helper that identifies the

stereotype by name from the Hive Profile in the transformation. (an example of a

helper function generated is shown in listing 5.9 and this helper function is called

in the generated matched rule in line 5 of listing 5.8).

1 he lpe r de f : HiveMapToFunctionStereotype : PROFILE! Stereotype =

2 PROFILE! P r o f i l e . a l l Ins tancesFrom (’ IN1 ’) −>s e l e c t (p | p . name=’ H iv ePro f i l e ’

)

3 −>f i r s t () . ownedStereotype−>s e l e c t (s | s . name=’ HiveMapToFunction ’)−>f i r s t

() ;

Listing 5.9: ATL Helper generated from a Stereotype.

Some helpers can be very complex and it is therefore better to write them manually and

place them in a separate files. They can be called from the transformations and even

reused in multiple transformations.

When deciding whether to generate these instance model transformations or write them

manually, one should consider the percentage of one to one mappings in the DSL, the

more one to one mappings the more value you get from generating the transformations.

However if the DSL considered has very few one to one mappings, it is better to manually

write the transformations rather than writing a transform to generate them.

The complete ATL code for the HOT transformation that generates a transformation

from UML instance model to Hive text instance model is shown in appendix A of this

report.

5.1.5 Case 2

The second case of the research was to apply the alternative one solution to the Hive

Structure DSL. The Hive Structure DSL consists of a Hive Structure Profile that is used

to model how the different parts of a system fit together. The hive Structure profile

contains 2 stereotypes.

5.1.5.1 Metamodel Transformation

To obtain a metamodel for the textual notation first a subset of the UML classes used

with the structural part had to be obtained. This was done by manually going through

Hive instance models and identifying the classes and attributes used. With a list of these

classes and attributes an Ecore of the UML subset was created. This Ecore model of the

Chapter 5. Solution 42

UML subset contained 34 model elements which is 12.8% of the entire UML metamodel.

A transformation that takes the Hive Structure Profile and the ecore model of the UML

subset to produce an Ecore model for use in Xtext was written. The mappings used in

the transformation are as described in chapter 5.1.1.

An example of part of the Hive structure Profile, UML subset and the generated Ecore

for Xtext is shown in figure 5.12 below. In the figure a stereotype named HiveStructure-

Class is transformed to a class called HiveStructureClass in the resulting Ecore model.

The tagged value from the stereotype which is called topStructureClass is transformed

to an attribute called topStructureClass in the HiveStructureClass class in the resulting

Ecore model. The base_Class reference is transformed to a reference in the result-

ing Ecore as well. The class from the UML subset is copied to the resulting Ecore

and a reference to the HivestructureClass class is added since the HivestructureClass

stereotype extends the Class metaclass from UML metamodel. This reference is called

’extension _HiveStructureClass’. This same procedure is done for the HiveInstanceR-

outerClass stereotype by the transformation to produce the HiveInstanceRouterClass

class, base_Class reference in the HiveInstanceRouterClass class and a reference called

extension_HiveInstanceRouterClass in Class.

The main difference between the first case and the second case is that in the profile of

the second case there is a stereotype that extends more that one UML metaclass. This

was not present in the first case.

Chapter 5. Solution 43

Figure 5.9: Obtaining an Ecore model for use in Xtext.

The obtained Ecore model was used as input to Xtext to generate the grammar for the

Hive Structure part of the DSL. The generated grammar was then edited to our liking.

5.1.5.2 Instance Model Transformation

With the editor, it was now possible to create models in text. The next step was to create

transformations that facilitate the switch from textual notation to graphical notation and

vice versa. This transformations were written using ATL and the mappings adhere to

those described in chapter 5.1.1.

5.1.6 Results and Analysis

With the ability to switch from UML to text and vice versa, what followed was to analyze

if there is any information that gets lost or is added during the switch. To achieve this,

Chapter 5. Solution 44

we used demo models that are available at Ericsson which are created using the Hive

graphical DSL, then switch to Xtext and back to graphical format again. The original

UML file was compared with the one generated from Xtext using EMF compare. EMF

compare is an Eclipse plugin that is used for comparison and merging of any EMF model

[29]. Another comparison was made when switching from instance models created using

the Xtext editor to UML and again back to Xtext. Since there were no models available

in text, new ones were created for the purpose of this comparison. The text models were

obtained from the three test UML demo models by transforming and serializing them

as text. The comparison was made using the textual quickdiff functionality in Eclipse.

This is a functionality that lets a user compare text files side by side. The results are

given below. Note that the results for this alternative in case 1 and case 2 are similar

and all are discussed here.

5.1.6.1 Graphical to Text and back to Graphical instance model

Three demo models were used for this comparison. First model is called ActivatorDemo,

this demo model was initially created to demonstrate the Behavior part of the Hive

profile. The second demo model used is called CBB Feature demo model which is a

demo model that was created to illustrate the use of Hive Behavior and Structure. The

third demo model is called Actor Demo and this was created to illustrate the use of the

Hive structure profile. The model elements and the quantity present in the models are

shown in the table below. Note that «Hive Activator»Class means a UML class with

Hive Activator stereotype applied.

Chapter 5. Solution 45

Model Element ActivatorDemo CBBFeatureDemo ActorDemo

Model 3 3 3

Package 3 3 3

«Hive Activator» Class 3 3 7

«Capsule, Hive Actor» Class 7 3 3

«Hive Reactor» Class 7 7 7

«Hive StructureClass» Class 3 3 3

«Hive Instance RouterClass» Class 3 3 7

«Hive Action» Call Operation Action 3 3 7

«Hive Vector Action» Call Operation Action 7 3 7

«Hive HiveInlineActivity» Call Behavior Action 7 7 7

«Hive HWA Action» Call Operation Action 7 7 7

«RTConnector»Connector 7 3 3

«Hive Condition»Control Flow 3 3 7

«Hive Map To Function»Transition 7 3 3

«Hive Map Unkown signal To Function»Transition 7 3 3

«Hive Map To Activity»Operation 3 3 7

«Hive Go To»Send Signal Action 7 7 7

«RTPort» Port 7 3 3

Class 3 3 7

Operation 3 3 3

Property 3 3 3

Statemachine 7 3 3

State 7 3 3

Region 7 3 3

Transition 7 3 3

Pseudostate 7 3 3

Control Flow 3 3 7

ActivityFinalNode 3 3 7

Initial Node 3 3 7

Accept Event Action 3 3 7

Join Node 7 3 7

Decision Node 7 3 7

Fork Node 7 3 7

Merge Node 7 3 7

Instance Specification 3 7 7

Dependency 3 7 7

ConnectionPointRerefence 7 3 7

Trigger 7 3 3

Event 7 3 7

ConnectorEnd 7 3 3

Comment 7 3 7

CallEvent 7 3 3

ProtocolConformance 7 3 3

SendSignalAction 7 7 7

CallBehaviourAction 7 7 7

Percentage DSL Coverage 39% 83% 41%

Table 5.2: Demo model contents

Chapter 5. Solution 46

As seen from the table most of the model elements (89%) were tested with the trans-

formations using demo models. The elements that were not tested are those that are

present in the Hive DSL but have not been used in any demo models. These were tested

by creating dummy elements to verify that the transformation works. From the above

models the results obtained are discussed below:

Names in all model elements

One major problem was encountered when switching between the textual and graphical

views. This problem is the mechanism of identifying model elements that is used in Xtext

versus that used in UML. Xtext uses Qualified names to identify elements in a model

and uses these same names when making references. On the contrary in UML names of

model elements are optional and UML gives all model elements some unique IDs that

are used to identify them. So mostly when designers model using UML they do not give

names to all the model elements they create. This was the case for all the three demo

models used for testing. None of them had names in all the models elements, only some

model elements were named. Transformation from such UML models to Xtext produced

Xtext model elements that are also unnamed. This is a problem as in Xtext we cannot

have a reference to an element with no name. So the resulting model breaks.

org.eclipse.e4.core.di.InjectionException: java.lang.IllegalArgumentException: Qualified name cannot be empty
 at org.eclipse.e4.core.internal.di.MethodRequestor.execute(MethodRequestor.java:63)
 at org.eclipse.e4.core.internal.di.InjectorImpl.invokeUsingClass(InjectorImpl.java:231)
 at org.eclipse.e4.core.internal.di.InjectorImpl.invoke(InjectorImpl.java:212)
 at org.eclipse.e4.core.contexts.ContextInjectionFactory.invoke(ContextInjectionFactory.java:131)
 at org.eclipse.e4.core.commands.internal.HandlerServiceImpl.executeHandler(HandlerServiceImpl.java:171)
 at org.eclipse.e4.ui.workbench.renderers.swt.HandledContributionItem.executeItemHandledContributionItem.java:831)

Figure 5.10: Errors due to missing names in the model.

To solve this problem, we generate default names for elements that are not named in UML

but require names in Xtext. These names are generated by the use of ATL helpers in

our ATL transformations. Listing 5.8 below shows an example of a helper that generate

names for Initial nodes in activity diagrams. Generating these names means that all the

model elements produced by a transformation from UML to Xtext will have names. But

this also means that when transforming back to UML, the elements will also be named

even though they did not have names at the beginning. So the designer may notice a

difference in the model due to added names.

1 he lpe r de f : getInit ia lNodeName (node :MM! In i t i a lNode) : S t r ing =

2 i f (node . name . oc l I sUnde f ined ()) then ’ i n i t i a lNod e ’+ node . a c t i v i t y . name

3 e l s e i f (node . name . s i z e () =0) then ’ i n i t i a lNod e ’ + node . a c t i v i t y . name

4 e l s e node . name

5 end i f end i f ;

Listing 5.10: ATL Helper to generate default names for Initial Nodes in Activity
diagrams

Chapter 5. Solution 47

However, if a UML instance model has names for all its model elements, then the Xtext

instance model will take the same names as well and transforming back to UML will

result to a model identical with the original UML instance model.

Graphical layout of the model

When a user creates models in UML, they can arrange/ format the diagram in a way

that is suitable for them. For instance they can make the icons bigger, move the icons

to certain positions or arrange the icons in a particular way. When these models are

transformed to Xtext model and then back to UML model, the diagrams are lost since

the transformation only transforms the semantic model and not any other accompanying

information. In order to get the diagrams back the user has to re-generate them. This

means that all the customization made in the diagrams in the original model will be lost

and the user will have to redo them.

Inconsistent Models

An inconsistent model is model that does not adhere to the constraints of the metamodel

i.e. models that have errors. There are scenarios when a designer may want to switch

from one view to another with an inconsistent model. This scenario led to the following

discovery.

Transforming an inconsistent UML model will also lead to an Xtext model that is incon-

sistent. This inconsistent model cannot be serialized in the Xtext syntax. This is because

serializing an inconsistent model to the Xtext grammar format leads to an empty file

and errors in the console showing the inconsistencies in the model with reference to the

Xtext metamodel. This is not a bug in the transformation but the rather the way Xtext

serialization works. The designer therefore needs to make sure that when transforming

a model from UML, this model should not lead to an inconsistent model in Xtext. For

example in the Hive case the join node in Xtext metamodel has a constraint that it can

have several inputs and only one output. So if a designer tries to transform a join node

that is not connected to any input or any output then the result of this transformation

cannot be serialized in Xtext textual syntax. Instead the designer will get an error mes-

sage saying that a join node must have at least 2 inputs and at most one output. The

error must be fixed first for the serialization to work.

5.1.6.2 Text to Graphical and back to Textual Instance Model

Comments from Xtext

If an instance model in Xtext had comments in it, and this instance model was trans-

formed to a UML instance model and then back to Xtext instance model the comments

Chapter 5. Solution 48

were lost. This is because the XText parser ignored all the comments when creating an

Xtext model. So the comments are only present in the editor but not in the resulting

semantic model. If one wants the comments to be part of the model then the metamodel

needs to contain an element that will hold the comments and not use the original Xtext

comments available.

When an Xtext instance model (with no comments) was transformed to a UML instance

model and then back to an Xtext instance model. The original model was compared with

the new model using the Xtext textual diff functionality and there was no difference in

the models. The models were completely identical.

Textual layout (Pretty Printing)

When a designer styles his or her text in a certain format using the text editor and then

transforms the file to UML and then back to text again, this formatting is lost. This

is because the transformation generates a completely different file with the default style

template set in Xtext.

Inconsistent Models

When transforming an inconsistent Xtext instance model to UML, the transformation

will also produce an inconsistent UML instance model with the same errors present. How-

ever when transforming this new inconsistent UML instance model back to Xtext model,

the serialization to Xtext grammar fails and gives an error regarding the inconsistency

in the model.

5.1.7 Discussion

This alternative proves to be a good alternative for situations where the graphical DSL

has been defined using UML and UML Profiles. The fact that the textual metamodel

can be derived from the Profiles means that there is no need to redefine the metamodel.

In case the DSL evolves changes can be made in the Profiles and the textual metamodel

can be derived again. With this solution however, one has to create and maintain a

transformation that will transform the UML Profiles into an Ecore model that can be

used for Xtext. As already mentioned earlier also, UML is very huge, using the whole

metamodel to generate the Ecore will lead to a very huge textual grammar as well. Using

a subset of the UML metamodel is therefore a preferred solution. Nevertheless, there

are situations where it is not known which parts of UML are actually used and this can

make getting a complete subset trickier.

Instance model transformations that transform UML models to Xtext models and vice

versa also need to be created and maintained as well. If these transformations are

Chapter 5. Solution 49

generated from Higher Order Transformations, the Higher Order Transformations need

to be maintained as well in case the DSL evolves.

Currently a major drawback to this solution is the inability to maintain customized

graphical layouts. If a user had made some customization on the layout of the diagrams

in UML models and switched to textual format and then back to UML again, all the

diagrams will be lost in the new UML model. This means that the user needs to regen-

erate them and redo the customization or keep the default auto layout of the generated

diagrams.

5.2 Alternative 2

The second alternative assumes that a DSL does not use UML at all. This alternative

was also investigated so as to give the company the ability to explore other solutions

if they wanted to abandon the existing UML based solution. This alternative describes

the possibility of having a DSL supporting both graphical and textual views when the

metamodel for the DSL is defined using Ecore. The major difference with this alternative

compared to the first one is that with UML, graphical editors are already available in

existing off-the-shelf UML tools, but defining a DSL in Ecore means that one needs

to also create both the graphical editor and textual editor. There are several tools /

plugins built based on EMF that can be used to create graphical editors. GMF has been

selected to illustrate how this solution works because there are already some initiatives

in the eclipse community on the integration of Xtext and GMF[30].

This alternative assumes a case where one metamodel is suitable for the derivation of

both graphical and textual views. In these cases one metamodel which is in Ecore can

be used to create both textual and graphical editors. To create the textual editor, Xtext

has been used and to create the graphical editor, GMF has been used.

Chapter 5. Solution 50

conforms to

Synchronisation

conforms to

Metamodel

Graphical Instance
 Model

Textual Instance
 Model

Figure 5.11: Alternative two.

Creating the Textual Editor

Like in the first alternative, Xtext is used as the tool to create the textual concrete

syntax. In this case the metamodel which is in Ecore is supplied to Xtext and Xtext will

generate the grammar. In case the generated grammar does not satisfy the user then it

can be edited to fit the users’ requirements. Afterwards a textual editor and parser is

generated. This is automatically done with Xtext.

Creating the Graphical Editor

The same metamodel that was used to generate grammar for Xtext is now used to

generate the graphical editor. With GMF we can define which figures, symbols and

shapes we want to use for the language. Once the editor is complete then users can use

it to create models in graphical format. The next step needed is to be able to switch

between the graphical and textual views. This is described below.

Link Textual and Graphical Editor

Since the two editors use the same metamodel then there is no need for any transfor-

mations to be done to enable switching between views. What is needed instead is a way

to keep the textual and graphical files in sync so that when one is updated, the other

one can receive the changes as well. GMF usually contains two types of resources, these

are the abstract syntax model and the diagram model. The diagram model contains

information on the notation of the model i.e shapes, font size e.t.c. To make GMF work

with Xtext, we modify GMF so that it writes its abstract syntax model in text instead

of XMI as usual. To avoid any clashes in the editors each editor should use a separate

memory instance of the model[30] and the two will then be synchronized on save. To

facilitate updating of the models, GMF uses a listener that listens to the semantic parts

Chapter 5. Solution 51

of the models and then updates the diagram whenever these semantic parts of the model

change. In Xtext there is a function known as ’XtextResource.update’ which triggers

update of a model. Some glue code also needs to be written to take care of concurrency

issues when the same element has been edited using both editors before saving [30].

5.2.1 Prototype

To get a good feeling on how this alternative would work a prototype was created.

Due to time constraints of the thesis a complete solution for the Hive DSL was not

created but rather a very small prototype was created. The prototype reused the initial

textual language that was created in the first alternative. In addition a graphical editor

was created using GMF that would facilitate modeling a class containing properties,

operations and activities.

The generic GMF and Xtext glue code provided in [30] was used to sync the two editors.

The figure below shows the results of the two editors used side by side.

Figure 5.12: GMF and Xtext editors Integrated.

5.2.2 Discussion

While this alternative proved to be very flexible since it does not have any constraints

brought about when using UML it also proved to require a lot of time to implement. To

be able to get a decent graphical editor that can be used, one needs to invest a lot of

time in creating this editor. This is due to the fact that creating graphical editors using

GMF is a complex task and has a steep learning curve [31]. It may be easy to get the

Chapter 5. Solution 52

functionality of adding shapes and connections in the editor but there are a lot more

implicit requirements of an editor that one needs to consider. For instance users expect

editors to have drag and drop functionality, copy paste, select-all and many others. This

requires time and certain level of knowledge to accomplish.

The advantages of using only one metamodel for the graphical and textual editor are

first in case the DSL evolves, changes only need to be added to this one metamodel. The

graphical editor and textual editor can then be updated as well to match the evolution

of the DSL. Second there is no need to write any transformations to be able to use the

graphical and textual editors in sync. This means that there will be no effort required

to write or maintain any model transformations. However using only one metamodel

also reduces the flexibility of the DSL. This is because all information in the graphical

editor needs to be present in the textual editor as well. In many cases the graphical

representation may require information that is irrelevant in the textual representation.

A good example of this is the representation of control flows for activity diagrams, in

text it may be enough to write that one node depends on the other but in graphics there

is actually a need to create the control flows. So when deciding on whether to use one

metamodel or not one needs to think about this trade-off.

5.3 Alternative 3

This alternative proposes the introduction of a core metamodel, and from this metamodel

both metamodels for the graphical and textual notations can be derived. This means that

in the core metamodel all information needed for both the textual and graphical notation

is defined. Model to model transformations can then be used to obtain the graphical

metamodel and the textual metamodel. There was no prototype implemented for this

alternative due to time constraints, therefore the discussion made below is based on the-

oretical knowledge and knowledge gained from implementing prototypes for alternative

one and two.

Chapter 5. Solution 53

conforms to conforms to

output output
Textual MetamodelGraphical Metamodel

Core Metamodel

Model To Model
Transformation

Model To Model
Transformation

Graphical Instance
 Model

Textual Instance
 Model

Figure 5.13: Alternative three.

Core Metamodel The core metamodel is created using Ecore and within it information

needed for both the graphical and textual notation of the DSL is included. Then a model

to model transformation is written that takes this core metamodel as input and produces

two metamodels, one for the graphical notation and another one for the textual notation.

The produces metamodels are then used to create editors for the DSL.

Graphical Metamodel and Editor

The graphical metamodel is used in GMF to create the graphical editor for the DSL.

Textual Metamodel and Editor

The textual metamodel is used as input to Xtext to generate the grammar and editor

for the DSL

Switching Between Views

To be able to switch between the graphical and textual notation, model to model trans-

formations are required. One transformation to transform the textual instance model to

graphical instance model and one transformation to do the reverse. If the relationship

between the textual and graphical metamodel is mostly one to one, these transformations

can be generated.

Chapter 5. Solution 54

5.3.1 Discussion

As in alternative 2, this alternative proved to be very flexible since it does not have any

constraints brought about when using UML it also proved to require a lot of time to

implement. To be able to get a decent graphical editor that can be used, one needs to

invest a lot of time in creating this editor. It may be easy to get the functionality of

adding shapes and connections in the editor but there are a lot more implicit requirements

of an editor that one needs to consider. For instance users expect editors to have drag

and drop functionality, copy, paste, select all and many others. This requires time and

certain level of knowledge to accomplish.

Using three metamodels on the other hand provides the advantage of flexibility to the

DSL since the graphical and textual metamodels are separate. However this solution

adds the overhead of writing and maintaining transformations that will generate the

graphical and textual metamodel from the core metamodel. There is also a need to have

two instance model transformations that transform the graphical model to textual model

and vice-versa. Even though there is a possibility to generate these transformations

via Higher Order Transformations, these Higher Order Transformations still need to be

maintained as well.

Chapter 6

Threats to Validity

This section discusses the theeats that may affect the validity of this research. The

threats are grouped according to [32]

6.1 Construct Validity

This validity threat is concerned with the extent to which the studied operational mea-

sures reflect what the researcher intends to investigate. To minimise this threat the

definition of the problem, research questions and hypotheses of the study was done in

several iterations. These iterations included discussions with the software engineers who

had the problem at Ericsson, the university supervisor who has experience in model

driven engineering and the researcher. The researcher also went back to these defined

research questions and hypotheses to make sure that the intended goal of the study was

not lost on the way.

6.2 Internal Validity

Threats to internal validity occurs when there other external factors that affect the factor

being investigated. For this research conducted there were no external factors identified

that could affect the outcome of the study. However, the literature review of this research

was conducted using convinient sampling when selecting the papers. Convinient sampling

is the kind of sampling where candidates/artifacts are selected due to their availability

and accessibility. The research papers where found from search results from google

scholar website. Although the domain of multiple notations for the same DSL does not

55

Chapter 6. Threats to Validity 56

have a lot of literature there is still a slight chance that some important literature that

colud reveal some external factors to the study might have been missed.

6.3 External Validity

External validity describes if the results obtained from the study can be generalized to

other similar cases. To minimise threats to this validity, alternative one was tested on

two cases of the Ericsson’s DSL and based on the fact that the Ericsson DSL uses a

profile that is standard (It is defined in a general way that any other profile can be

defined), the results of this alternative can be generalized to other cases that use UML

and UML Profiles for their DSL. With alternative two, a simple prototype that was very

general was implemented and thus the results are transferable to other cases where the

same technologies are used. With alternative three there was no implemented case so

the generalizability of the results is not certain.

6.4 Reliability Validity

This validity aspect is concerned with to what extent the results of the reseach are

dependent on the researcher. This poses the question, would the results change if a

different researcher conducted the same research? Since the reasearch was conducted at

Ericsson, the first alternative investigated was mainly due to the existing tooling used at

the company. Also a lot of time was spent implementing this alternative and coming up

with full prototype. On the other hand, alternative two was analysed based on a simple

small prototype and alternative three was analysed based on theory. This may affect the

validity of the conclusions that tend to favour alternative one over the others.

Chapter 7

Conclusions and Future Work

This chapter gives a summary of the conclusions and findings of the entire thesis work.

It starts with an overall description of the thesis work, its aim, work done and the results

obtained from the work done.

7.1 Summary

The aim of this thesis work was to investigate the possibility of having a DSL that

supports both textual and graphical notation. The work aimed to investigate an efficient

and effective way of having both graphical and textual notation in use at a company.

The concerns addressed were how much maintenance effort is added to maintain the two

notations, is there any loss of information when switching from one view to another and

how to deal with inconsistent models when switching between the two notations.

7.2 Conclusions

To avoid doubling the maintenance effort of the two notations it is best if the DSL can

have one single point of update. This was investigated and there were three alternatives

proposed. The first was to use the existing graphical metamodel at the company and from

this, derive a metamodel for the textual language. This proved to be a good solution as

updating of the DSL needs to be done on the graphical metamodel only, and the textual

metamodel can be derived. However there is still a need to update the grammar of the

language as well, if one does not wish to use the Xtext generated grammar.

The second alternative was to investigate a solution based on EMF only and not UML.

This solution is also based on the assumption that only one metamodel is suitable for

57

Chapter 7. Conclusions and Future Work 58

both the graphical and textual notation. This way the Xtext textual editor can be

integrated with a GMF graphical editor and enable propagation of changes from textual

to graphical instance model and vice versa. This is possible as the two editors use the

same metamodel and the two editors can be linked using some glue code [30] so that

changes in a node in text for instance, can be propagated as change in a similar node in

the graphical model. For this scenario since there is only one metamodel, updates to the

DSL need to be made to only this metamodel. But the corresponding editors still need

to be updated accordingly. Also there is a need to invest a considerable amount of time

to create the graphical editor as it is not provided like in the UML case.

The third alternative was also a complete EMF solution based with the assumption that

the textual metamodel and graphical metamodel are different. In this kind of case a core

metamodel that contains both information for the graphical and textual metamodel is

created. From this metamodel a model to model transformation is used to generate the

textual and graphical metamodels. These metamodels are then used to generate a textual

and graphical editor accordingly. This approach enables updates of the entire DSL to be

done on the core metamodel since the corresponding graphical and textual metamodels

can be derived from this core metamodel. However the editors for the graphical and

textual views need to be updated as well to match the changes in the metamodels. The

table below summarizes the basic differences of these three alternatives:

Alternative 1 Alternative 2 Alternative 3
Number of Metamodels 2 1 3
Metamodel Transformation Needed 3 7 3

Instance Model transformations needed 3 7 3

Use Existing UML Graphical Editors 3 7 7

Graphical Editor needs to be created 7 3 3

Sycnchronization (glue) code needed 7 3 7

Table 7.1: A summary of the three alternatives investigated

RQ1: What is the best way to have a DSL with both textual and graphical

views without doubling the maintenance effort?

From the above discussion we can conclude that alternative one is the best way to have a

DSL that supports both graphical and textual views without doubling the maintanance

effort. This conclusion is drawn from the fact that with alternative one, the textual

metamodel is derived from the graphical metamodel, the posibility of using a UML

subset makes the resulting textual language small and transformations can be generated

using Higher Order Transformations. Also alternative one comes with a great advantage

because the graphical editor does not need to be created since it is available already in

existing UML tools.

Chapter 7. Conclusions and Future Work 59

RQ2: How can we switch between Textual and Graphical DSL without any

loss of information?

The possibility of switching between views without loss of information was another main

research area for this thesis. The conclusion drawn from the work done is that there are

two ways to be able to switch from one view to another. The first possibility is the use of

model to model transformations. These transformations map information from a source

model to a target model. Two transformations are required, one to transform a model

conforming to the graphical metamodel to a model conforming to textual metamodel

and another transformation for the vice versa. To avoid any loss of information, all

information from one model must be mapped in the other model as well. If only part

of the information is mapped then moving from one view to another and then back to

the original view will lead to loss of information. When using ATL as a transformation

language for these transformations, one can use Higher Order Transformations(HOT) to

generate these transformations instead of writing them manually.

The second possibility to switch between textual and graphical views is to integrate the

graphical and textual editors. Here both the graphical and textual editors use the same

metamodel. When one is editing a model using the graphical editor, the textual editor

listens to these changes and when the changes are saved the textual editor updates its

model with the saved changes as well. The same is done if one is editing using the textual

editor.

RQ3: How can syntax errors be handled when switching between them?

The last conclusion drawn from this thesis was on how inconsistent instance models are

affected by the proposed solutions. Using the first alternative which was using UML,

UML profiles and Xtext led to the conclusion that inconsistent models can be created and

saved using both the graphical and textual editors. However when it comes to switch-

ing from graphical instance model to textual instance model, the inconsistent model is

created in form of an XMI file but cannot be serialized in the textual syntax. Only

consistent models can be serialized to textual syntax. Switching from an inconsistent

textual model to graphical view produces an equally inconsistent graphical model i.e.

with the same errors.

Using the second alternative, for the first scenario in which the textual and graphical

editors use the same metamodel led to the following conclusion. An inconsistent model

whether in graphical or textual format cannot be saved until the errors are corrected.

This is due to the fact that saving one model either using the graphical or textual editor

propagates the changes to the other model as well. Trying to save an inconsistent model

leads to errors. Therefore only consistent models can be saved.

Chapter 7. Conclusions and Future Work 60

The conclusions discussed above where drawn from the investigation of this thesis work.

Although the investigation was conducted at Ericsson these solutions and conclusions

can also be applied to other cases where a DSL based on UML and UML Profiles is used.

Conclusions from alternative two and three are also generalizable to situations where the

DSL is an EMF based DSL.

7.3 Future Work

For future work researchers can investigate on ways to maintain the layout of graphics

and format of text when using two editors. As mentioned previously this information is

lost once a designer switches from one view to another and then back.

Furthermore, research can be done to investigate the use of incremental model transfor-

mations so as to increase the efficiency of the transformations. Currently the transfor-

mations investigated take a complete source model and transform it to a complete target

model. This can be rather time consuming if the model being transformed is large. It is

also very inefficient if the changes made to a model are small but the whole model has

to be recreated by the transformation. Incremental model transformation is the kind of

transformation where the transformation checks which model elements are changed and

updates only those elements in the target model. The target model is not recreated but

rather updated with changes from the source model. In [33] this has been investigated

using a prototype for ATL. Incremental transformation can also be a way to preserve

graphics in a model since the model is not recreated but just updated so the graphical

information is not lost.

Another aspect that can be researched is how to store models and how to keep these

models in sync when working with version control tools like Git [34]. Since some designers

can decide to model using text and others decide to model using graphics, there has to be

a decided way for storage of these models. Should they be stored as text or as graphics

or should one store both versions of the model. The research here could also shed light

on what are the challenges when storing text models and what are the challenges when

storing graphical models.

In connection to storage of models, more research needs to be done on how the models

written using the different notations can be merged. For instance if one designer is editing

the model in text and the other one is editing the same model using the graphical format,

how will they merge these changes. Will the merging be text based or model based?

Inter-model referencing is also another area that further research needs to be done. Inter-

model references here means that one model has references to one or more elements which

Chapter 7. Conclusions and Future Work 61

are in other models. For instance one graphical model can have references to other

graphical models. When it comes to switching between views this has to be considered.

Research needs to be done on whether only one model should be switched to textual

views and keep its references to the graphical models or whether the referenced models

will need to be converted to text models as well.

Appendix A

Higher Order Transformation to

Generate a transformation from

UML to Hive text instance model

1 −− @nsURI PROFILE=http ://www. e c l i p s e . org /uml2 /2 . 0 . 0 /UML

2 −− @nsURI EXTRA=http ://www. e c l i p s e . org /emf/2002/ Ecore

3 −− @path ATL=/OneToOne/Metamodels/ATL. ecore

4

5 module HOTnew;

6 c r ea t e OUT : ATL from IN : PROFILE, IN1 : EXTRA;

7

8 he lpe r de f : l e f tMode l : S t r ing = ’ 0_/http ://www. e c l i p s e . org /uml2 /2 . 0 . 0 /UML’ ;

9

10 he lpe r de f : r ightModel : S t r ing = ’ 1_/http ://www. e c l i p s e . org /emf/2002/ Ecore ’

;

11

12 he lpe r de f : rightMetamodel : ATL! OclModel = OclUndefined ;

13

14 he lpe r de f : id : I n t eg e r = 0 ;

15 he lpe r de f : thisMod : ATL! Module = OclUndefined ;

16

17 ru l e createModule {

18

19 from s :EXTRA! EPackage

20

21 to t :ATL! Module (

22

23 name <− ’ newModule ’ ,

24 inModels <− l e f t a ,

25 inModels <− l e f t b ,

26 outModels <− r ighta ,

62

Appendix A. Higher Order Transformation. 63

27 elements <− EXTRA! EClass . a l l Ins tancesFrom (’ IN1 ’) ,

28 e lements <− PROFILE! Stereotype . a l l Ins tancesFrom (’ IN ’)

29) ,

30 l e f t a : ATL! OclModel (

31 name <− ’ IN1 ’ ,

32 l o c a t i o n <− thisModule . l e f tModel ,

33 metamodel <− l e f tMetamodel

34

35) ,

36

37 le ftMetamodel :ATL! OclModel (

38 name <− ’UML’−−,

39

40

41) ,

42 l e f t b : ATL! OclModel (

43 name <− ’ IN2 ’ ,

44 l o c a t i o n <− thisModule . l e f tModel ,

45 metamodel <− le ftMetamodelb

46

47) ,

48

49 leftMetamodelb :ATL! OclModel (

50 name <− ’PROFILE ’

51

52) ,

53 r i gh t a : ATL! OclModel (

54 name <− ’ rightM ’ ,

55 l o c a t i o n <− thisModule . r ightModel ,

56 metamodel <− rightMetamodel

57) ,

58

59 rightMetamodel :ATL! OclModel (

60 name <− ’XTEXT’

61

62

63)

64 }

65

66 ru l e copyClasses {

67

68 from s :EXTRA! EClass (not s . ab s t r a c t and s . name <> ’ ControlFlow ’)

69

70 us ing {

71

72 f i l : Sequence (ATL! OclExpress ion)= OclUndefined ;

73

74 }

Appendix A. Higher Order Transformation. 64

75

76 to t :ATL! MatchedRule (

77 name <− s . name + ’ 2 ’ + s . name ,

78 inPattern <− inpat ,

79 outPattern <− outpat

80) ,

81

82 inpat : ATL! InPattern (

83 e lements <− e lementIn

84) ,

85

86 elementIn :ATL! SimpleInPatternElement (

87 varName <− ’ s ’ ,

88 type <− t1

89) ,

90

91 t1 : ATL! OclModelElement (

92 name <− s . name ,

93 model <− m

94) ,

95

96 m : ATL! OclModel (

97 name <− ’UML’

98

99) ,

100

101 outpat :ATL! OutPattern (

102 e lements <− elementOut

103) ,

104

105 elementOut :ATL! SimpleOutPatternElement (

106 varName <− ’ t ’ ,

107 type <− t2

108) ,

109

110 t2 : ATL! OclModelElement (

111 name <− s . name ,

112 model <− m2

113) ,

114 m2 : ATL! OclModel (

115 name <− ’XTEXT’

116)

117

118 do {

119 f o r (a in s . eA l lA t t r i bu t e s) {

120

121 elementOut . b ind ings <− thisModule . c reateBind ingsFromPropert i e s (a .

name) ;

Appendix A. Higher Order Transformation. 65

122

123 }

124 f o r (a in s . eA l lRe f e r ence s) {

125

126 elementOut . b ind ings <− thisModule . c reateBind ingsFromPropert i e s (a .

name) ;

127

128 }

129 }

130

131 }

132

133

134 ru l e f romStereotypes {

135

136 from s :PROFILE! Stereotype (not s . i sAbs t r a c t)

137

138 us ing {

139

140 pat : ATL! SimpleOutPatternElement = OclUndefined ;

141 }

142

143 to t :ATL! MatchedRule (

144

145 name <− s . name + ’ StereotypedClas s ’ ,

146 inPattern <− inpat ,

147 outPattern <− outpat ,

148 i sR e f i n i n g <− f a l s e

149

150) ,

151

152 inpat :ATL! InPattern (

153 f i l t e r <− f i l ,

154 e lements <− e lementIn

155) ,

156

157 f i l :ATL! OperationCallExp (

158 operationName <− ’ i sS t e r eo typeApp l i ed ’ ,

159 source <− ss1 ,

160 arguments <− s s2

161) ,

162

163 s s1 : ATL! VariableExp (

164 r e f e r r e dVa r i ab l e <− varDecl

165) ,

166

167 varDecl : ATL! Var i ab l eDec l a ra t i on (

168 id <− ’ s ’ ,

Appendix A. Higher Order Transformation. 66

169 varName <− ’ s ’

170) ,

171

172 s s2 :ATL! Navigat ionOrAttr ibuteCal lExp (

173 name <− s . name + ’ Stereotype ’ ,

174 source <− thisModuleVar

175) ,

176

177 thisModuleVar :ATL! VariableExp (

178 r e f e r r e dVa r i ab l e <− th i sModuleDec larat ion

179) ,

180

181 th i sModuleDec larat ion : ATL! Var i ab l eDec l a ra t i on (

182 varName <− ’ thisModule ’

183) ,

184

185 elementIn :ATL! SimpleInPatternElement (

186 varName <− ’ s ’ ,

187 type <− t1

188) ,

189

190 t1 : ATL! OclModelElement (

191 name <− s . getAl lExtendedMetac lasses () . f i r s t () . name ,

192 model <− m

193) ,

194

195 m : ATL! OclModel (

196 name <− ’UML’

197) ,

198

199 outpat :ATL! OutPattern (

200 e lements <− elementOut

201) ,

202

203 elementOut :ATL! SimpleOutPatternElement (

204 varName <− ’ t ’ ,

205 type <− t2−−,

206

207) ,

208

209 t2 : ATL! OclModelElement (

210 name <− s . getAl lExtendedMetac lasses () . f i r s t () . name ,

211 model <− m2

212) ,

213

214 m2 : ATL! OclModel (

215 name <− ’XTEXT’

216) ,

Appendix A. Higher Order Transformation. 67

217

218 he lperFunct ion : ATL! Helper (

219 d e f i n i t i o n <− od ,

220 "module" <− ATL! Module . a l l Ins tancesFrom (’OUT’) . f i r s t ()

221) ,

222 od : ATL! Oc lFeatureDe f in i t i on (

223 f e a tu r e <− o f

224) ,

225 o f : ATL! Att r ibute (

226 name <− s . name + ’ Stereotype ’ ,

227 type <− at ,

228 i n i tExp r e s s i on <− expr

229) ,

230 at : ATL! OclModelElement (

231 name <− ’ S te reotype ’ ,

232 model <− m3

233) ,

234

235 m3 :ATL! OclModel (

236 name <− ’PROFILE ’

237

238) ,

239

240 expr :ATL! Col l ect ionOperat ionCal lExp (

241 operationName <− ’ f i r s t ’ ,

242 source <− s1

243

244) ,

245

246 s1 :ATL! I te ratorExp (

247 name <− ’ s e l e c t ’ ,

248 source <− s2 ,

249 body <− s14 ,

250 i t e r a t o r s <− s18

251) ,

252 s2 :ATL! Navigat ionOrAttr ibuteCal lExp (

253 name <− ’ ownedStereotype ’ ,

254 source <− s3

255) ,

256 s3 :ATL! Col l ec t ionOperat ionCal lExp (

257 operationName <− ’ f i r s t ’ ,

258 source <− s4

259) ,

260 s4 :ATL! I te ratorExp (

261 name <− ’ s e l e c t ’ ,

262 source <− s5 ,

263 body <− s8 ,

264 i t e r a t o r s <− s13

Appendix A. Higher Order Transformation. 68

265) ,

266

267 s5 :ATL! OperationCallExp (

268 operationName <− ’ a l l Ins tancesFrom ’ ,

269 source <− s6 ,

270 arguments <− s7

271

272) ,

273 s6 :ATL! OclModelElement (

274 name <− ’ P r o f i l e ’ ,

275 model <− m3

276

277) ,

278

279 s7 : ATL! StringExp (

280 str ingSymbol <− ’ IN2 ’

281) ,

282 s8 :ATL! OperatorCallExp (

283 operationName <− ’= ’ ,

284 source <− s9 ,

285 arguments <− s12

286

287) ,

288 s9 : ATL! Navigat ionOrAttr ibuteCal lExp (

289 name <− ’name ’ ,

290 source <− s10

291) ,

292

293 s10 :ATL! VariableExp (

294 r e f e r r e dVa r i ab l e <− s11

295) ,

296 s11 :ATL! Var i ab l eDec l a ra t i on (

297 varName <− ’ e ’ ,

298 id <− ’ e ’

299) ,

300

301 s12 :ATL! StringExp (

302

303 str ingSymbol <− ’ H i v ePro f i l e ’

304) ,

305

306 s13 :ATL! I t e r a t o r (

307 varName <− ’ p ’ ,

308 var iableExp <− s10

309) ,

310

311 s14 :ATL! OperatorCallExp (

312 operationName <− ’= ’ ,

Appendix A. Higher Order Transformation. 69

313 source <− s15 ,

314 arguments <− s17

315

316) ,

317

318 s15 :ATL! Navigat ionOrAttr ibuteCal lExp (

319 name <− ’name ’ ,

320 source <− s16

321) ,

322

323 s16 :ATL! VariableExp (

324 r e f e r r e dVa r i ab l e <− s11

325

326) ,

327

328 s17 : ATL! StringExp (

329

330 str ingSymbol <− s . name

331) ,

332 s18 :ATL! I t e r a t o r (

333 varName <− ’ s ’ ,

334 var iableExp <− s16

335)

336

337 do{

338

339

340 f o r (e in s . getAl lExtendedMetac lasses () . f i r s t () . g e tA l lA t t r i bu t e s ()) {

341

342 elementOut . b ind ings <− thisModule . c reateBind ingsFromPropert i e s (e .

name) ; −− Binding from inh e r i t e d c l a s s e s

343

344 }

345

346 elementOut . b ind ings <− thisModule . c r eateExtens ionBind ings (s) ; −−
extens i on r e f e r e n c e to s t e r eo type

347

348 outpat . e lements <− thisModule . outPatternForNestedRule (s , t) ; −− Out

pattern f o r the Stereotype − t1

349

350 f o r (e in s . g e tA l lA t t r i bu t e s () −>s e l e c t (e | not (s .

getAl lExtendedMetac lasses ()−>c o l l e c t (a | a . name) −>inc l ud e s (e . type . name)

))) { −− Bindings f o r t1 out pattern

351 pat <− t . outPattern . e lements −> s e l e c t (e | e . varName = ’ t1 ’) . f i r s t () ;

352 pat . b ind ings <− thisModule . createNewBindingLink (e . name , e . name , s) ;

353 }

354

355

Appendix A. Higher Order Transformation. 70

356 }

357

358

359 }

360

361

362 ru l e outPatternForNestedRule (s t e r e o : PROFILE! Stereotype , a t l : ATL!

MatchedRule) {

363 to

364 element : ATL! SimpleOutPatternElement (

365 id <− ’ t1 ’ ,

366 varName <− ’ t1 ’ ,

367 type <− var iableExp

368) ,

369 var iableExp : ATL! OclModelElement (

370 name <− s t e r e o . name ,

371 model <− m

372) ,

373

374 m : ATL! OclModel (

375 name <− ’XTEXT’

376)

377

378 do {

379

380 element ;

381 }

382

383 }

384

385 ru l e createNewBindingLink (name : Str ing , prop : S t r ing , s t e r e o : PROFILE!

Stereotype) {

386 to

387 a t l : ATL! Binding (

388 value <− val ,

389 propertyName <− name

390) ,

391 va l :ATL! OperationCallExp (

392

393 operationName <− ’ getValue ’ ,

394 source <− s1 ,

395 arguments <− s2 ,

396 arguments <− s3

397) ,

398

399 s2 :ATL! Navigat ionOrAttr ibuteCal lExp (

400 name <− s t e r e o . name + ’ Stereotype ’ ,

401 source <− thisModuleVar

Appendix A. Higher Order Transformation. 71

402) ,

403 thisModuleVar :ATL! VariableExp (

404 r e f e r r e dVa r i ab l e <− th i sModuleDec larat ion

405) ,

406

407 th i sModuleDec larat ion : ATL! Var i ab l eDec l a ra t i on (

408 varName <− ’ thisModule ’

409) ,

410

411 s3 :ATL! StringExp (

412 str ingSymbol <− prop

413) ,

414 s1 :ATL! VariableExp (

415 r e f e r r e dVa r i ab l e <− varDecl

416) ,

417

418 varDecl : ATL! Var i ab l eDec l a ra t i on (

419 id <− ’ s ’ ,

420 varName <− ’ s ’

421)

422 do {

423 a t l ;

424 }

425 }

426

427

428 ru l e c reateExtens ionBind ings (s t e r e o :PROFILE! Stereotype) {

429

430 to t :ATL! Binding (

431 value <− val ,

432 propertyName <− ’ extension_ ’ + s t e r e o . name

433

434) ,

435 va l :ATL! VariableExp (

436 r e f e r r e dVa r i ab l e <− varDecl

437) ,

438 varDecl : ATL! Var i ab l eDec l a ra t i on (

439 id <− ’ t1 ’ ,

440 varName <− ’ t1 ’

441)

442

443 do {

444

445 t ;

446 }

447

448 }

449

Appendix A. Higher Order Transformation. 72

450 ru l e createBind ingsFromPropert i e s (propertyName : S t r ing) {

451

452 to t :ATL! Binding (

453 value <− val ,

454 propertyName <−propertyName

455

456) ,

457 va l :ATL! Navigat ionOrAttr ibuteCal lExp (

458 name <− propertyName ,

459 source <− s1

460) ,

461 s1 :ATL! VariableExp (

462 r e f e r r e dVa r i ab l e <− varDecl

463) ,

464 varDecl : ATL! Var i ab l eDec l a ra t i on (

465 id <− ’ s ’ ,

466 varName <− ’ s ’

467)

468 do {

469

470 t ;

471 }

472

473 }

Listing A.1: ATL HOT to generate UML TO Hive text instance model transformation

Appendix B

ATL Transformation to Transform a

UML Profile into an Ecore model

1 −− @nsURI PROFILE=http ://www. e c l i p s e . org /uml2 /2 . 0 . 0 /UML

2 −− @nsURI EXTRA=http ://www. e c l i p s e . org /emf/2002/ Ecore

3 −− @nsURI MM=http ://www. e c l i p s e . org /emf/2002/ Ecore

4

5 module UMLToEcore ;

6 c r e a t e OUT : MM from IN : PROFILE, IN1 : EXTRA;

7

8 −− Helpers Star t Here

9 he lpe r context PROFILE! Property de f : getMatchingPrimit iveMClass () : MM!

EcorePackage =

10 i f (s e l f . type . name = ’ St r ing ’) then MM! EString

11 e l s e i f (s e l f . type . name = ’ Boolean ’) then MM! EBoolean

12 e l s e i f (s e l f . type . name = ’ In t eg e r ’) then MM! EInt

13 e l s e i f (s e l f . type . name = ’ Real ’) then MM! EDouble

14 e l s e s e l f . type

15 end i f end i f e nd i f e nd i f ;

16

17

18 he lpe r de f : r e t r i e v eMe ta c l a s s (name : S t r ing) : MM! EClass =

19 MM! EClass . a l l Ins tancesFrom (’OUT’)−>s e l e c t (e | e . name = name) . f i r s t () ;

20

21

22 he lpe r context PROFILE! Property de f : isContainment : Boolean =

23 s e l f . aggregat ion . t oS t r i ng () = ’ composite ’ ;

24

25 −− Helpers End Here

26

27

28 −− Matched Rules Star t Here

29

73

Appendix B. Transformation from UML Profile to an Ecore model 74

30 ru l e P r o f i l e {

31 from s : PROFILE! P r o f i l e

32

33 to t : MM! EPackage (

34 name <− s . name ,

35 nsURI <−s . name ,

36 nsPre f i x <− s . name ,

37 e C l a s s i f i e r s <− s . packagedElement −> s e l e c t (e |

38 not e . oc l I sKindOf (PROFILE! Package)

39 and not e . oc l I sKindOf (PROFILE! D i r e c t edRe la t i on sh ip)

40 and not e . oc l I sKindOf (PROFILE! Extension)) ,

41 eSubpackages <− s . nestedPackage ,

42

43 −− Add extra c l a s s e s to the H iv ePro f i l e Package

44 e C l a s s i f i e r s <− MM! EClass . a l l Ins tancesFrom (’ IN1 ’) ,

45

46 −− Add Enumerations that come from Extra model to the H iv ePro f i l e Package

47 e C l a s s i f i e r s <− MM!EEnum. a l l Ins tancesFrom (’ IN1 ’)

48

49)

50

51 }

52

53

54 ru l e ExtraClassesToEClasses {

55

56 from s :EXTRA! EClass

57

58 to t : MM! EClass (

59 name <− s . name ,

60 eS t ruc tu ra lFea tu r e s <− s . eS t ruc tura lFeature s ,

61 eSuperTypes <− s . eSuperTypes ,

62 ab s t r a c t <− s . ab s t r a c t

63)

64

65 }

66

67 ru l e StereotypeToEClass {

68

69 from s : PROFILE! Stereotype

70

71 to t : MM! EClass (

72 name <− s . name ,

73 eSuperTypes <− s . superClass ,

74 eS t ruc tu ra lFea tu r e s <− s . ownedAttribute ,

75 " abs t r a c t " <− s . i sAbs t r a c t

76

77)

Appendix B. Transformation from UML Profile to an Ecore model 75

78

79 do{

80

81 f o r (e in s . getExtendedMetac lasses ()) {

82

83 i f (not s . superClas s . f i r s t () . oc lIsTypeOf (PROFILE! Stereotype)) {

84 thisModule . c r ea teExtens ion (s , MM! EClass . a l l Ins tancesFrom (’OUT’) −>

s e l e c t (m|m. name = e . name) . f i r s t ()) ;

85 thisModule . c r ea teSubClas s e s (e , s , t) ;

86

87 }

88 }

89 }

90 }

91

92 ru l e DataTypeToEClass {

93

94 from s : PROFILE! DataType (not s . oc l IsTypeOf (PROFILE! Enumeration))

95

96 to t : MM! EDataType (

97 name <− s . name ,

98 eS t ruc tu ra lFea tu r e s <− s . Att r ibute

99)

100 }

101

102 ru l e UMLClassToEClass{

103

104 from s : PROFILE! Class (s . oc lIsTypeOf (PROFILE! Class))

105

106 to t : MM! EClass (

107 name <− s . name ,

108 eS t ruc tu ra lFea tu r e s <− s . ownedAttribute ,

109 abs t r a c t <− s . i sAbs t r a c t

110)

111

112 }

113

114 ru l e ExtraAttr ibutesToEAttr ibutes {

115

116 from s :EXTRA! EAttr ibute

117

118 to t :MM! EAttr ibute (

119 name <− s . name ,

120 eType <− s . eType

121)

122 }

123

124 ru l e ExtraReferencesToEre fe rences {

Appendix B. Transformation from UML Profile to an Ecore model 76

125 from s :EXTRA! EReference

126

127 to t :MM! EReference (

128

129 name <− s . name ,

130 eType <− s . eType ,

131 upperBound <− s . upperBound ,

132 lowerBound <− s . lowerBound ,

133 containment <− s . containment

134)

135 }

136

137 −− For p r op e r t i e s whose type i s another Class

138 ru l e PropertyToReference {

139

140 from s : PROFILE! Property (

141 (s . type . oclIsTypeOf (PROFILE! Class)

142 or s . type . oclIsTypeOf (PROFILE! DataType))

143 and not s . a s s o c i a t i o n . oclIsTypeOf (PROFILE! Extension))

144

145 to t : MM! EReference (

146 name <− s . name ,

147 lowerBound <− s . lower ,

148 upperBound <− s . upper ,

149 containment <− s . isContainment ,

150 eType <− MM! EClass . a l l Ins tancesFrom (’OUT’)

151 −>s e l e c t (e | e . name=s . type . name) . f i r s t () ,

152 eType <− MM! EClass . a l l Ins tancesFrom (’OUT’)

153 −>s e l e c t (e | e . name=s . type . name) . f i r s t ()

154)

155

156 }

157

158 −− Prope r t i e s with p r im i t i v e types transformed to Att r ibute s

159

160 ru l e UMLAttributesToEattributes {

161 from s :PROFILE! Property (

162 s . type . oclIsTypeOf (PROFILE! PrimitiveType)

163

164 and not s . a s s o c i a t i o n . oclIsTypeOf (PROFILE! Extension))

165

166 to t : MM! EAttr ibute (

167 name <− s . name ,

168 lowerBound <− s . lower ,

169 upperBound <− s . upper ,

170 eType <− s . getMatchingPrimit iveMClass ()

171)

172 }

Appendix B. Transformation from UML Profile to an Ecore model 77

173

174 ru l e EnumerationToEEnum {

175 from s : PROFILE! Enumeration

176

177 to t : MM!EEnum(

178 name <− s . name ,

179 instanceClassName <− s . name ,

180 instanceTypeName <− s . name ,

181 e L i t e r a l s <− s . ownedLitera l

182)

183 }

184

185 ru l e EnumerationLiteralToEEnumLiteral {

186

187 from s : PROFILE! Enumerat ionLitera l

188

189 to t : MM! EEnumLiteral (

190 name <− s . name

191)

192 }

193

194 ru l e EEnum_ExtraToEEnum {

195

196 from s :EXTRA!EEnum

197

198 to t : MM!EEnum(

199 name <− s . name ,

200 e L i t e r a l s <− s . e L i t e r a l s

201)

202 }

203

204 ru l e EEnumLiteral_ExtraToEEnumLiteral {

205

206 from s : EXTRA! EEnumLiteral

207

208 to t : MM! EEnumLiteral (

209 name <− s . name ,

210 value <− s . va lue

211)

212 }

213

214 −− Matched Rules End Here

215

216 −− Cal led Rules Sta r t Here −−−
217

218 ru l e c r ea teSubClas se s (extendedMeta : PROFILE! Element , s t e r e o : PROFILE!

Stereotype , meta : MM! EClass) { −− Create the base Reference to Extended

MetaClass

Appendix B. Transformation from UML Profile to an Ecore model 78

219

220 to t : MM! EReference (

221 name <− ’ base_ ’ + extendedMeta . name ,

222 upperBound <− 1 ,

223 lowerBound <− 0 ,

224 eType <− MM! EClass . a l l Ins tancesFrom (’OUT’)

225 −>s e l e c t (e | e . name=extendedMeta . name) . f i r s t ()

226

227)

228 do {

229

230 i f (not extendedMeta . name . oc l I sUnde f ined ())

231 {

232

233 t . eOpposite <− thisModule . r e t r i e v eMe ta c l a s s (extendedMeta . name) .

234 eSt ruc tura lFeature s−>s e l e c t (e | e . name=’ extension_ ’ + s t e r e o . name)

235 . f i r s t () ;

236 }

237 meta . eS t ruc tu ra lFea tu r e s <− meta . eS t ruc tu ra lFea tu r e s . i n c l ud ing (t)

238 . asSequence ()−>f l a t t e n () ;

239 t . eOpposite . eOpposite <− t ;

240 t . eOpposite . eType <− meta ;

241 }

242 }

243

244 ru l e c r ea teExtens ion (s t e r e o : PROFILE! Stereotype , meta : MM! EClass) { −−
Create Extension Reference to s t e r eo type

245

246 to t : MM! EReference (

247 name <− ’ extension_ ’ + s t e r e o . name ,

248 upperBound <− 1 ,

249 lowerBound <− 0 ,

250 containment <− t rue

251

252)

253 do {

254 meta . eS t ruc tu ra lFea tu r e s <− meta . eS t ruc tu ra lFea tu r e s . i n c l ud ing (t)

255 . asSequence ()−>f l a t t e n () ;

256 }

257 }

258

259 −− Cal led Rules End Here −−−

Listing B.1: ATL Transformation to Transform a UML Profile into an Ecore model

Bibliography

[1] Uml diagrams overview. http://upload.wikimedia.org/wikipedia/commons/

thumb/e/ed/UML_diagrams_overview.svg/500px-UML_diagrams_overview.svg.

png, 2014. Accesed: 2014-06-25.

[2] R. Baskerville. Investigating information systems with action research. Communi-

cations of the AIS, 2(3), 1999.

[3] Introducing higher-order transformations (hots). http://modeling-languages.

com/introducing-higher-order-transformations-hots, 2010. Accessed: 2014-

06-20.

[4] Massimo Tisi, Frédéric Jouault, Piero Fraternali, Stefano Ceri, and Jean Bézivin.

On the use of higher-order model transformations. In Model Driven Architecture-

Foundations and Applications, pages 18–33. Springer, 2009.

[5] J. Bezivin and O. Gerbe. Towards a precise definition of the omg/mda framework.

pp., pages 273–280, 2001.

[6] David S Wile. Supporting the dsl spectrum. CIT. Journal of computing and infor-

mation technology, 9(4):263–287, 2001.

[7] Paul Hudak. Domain-specific languages. Handbook of Programming Languages, 3:

39–60, 1997.

[8] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven

Völkel. Textbased modeling. In 4th International Workshop on Software Language

Engineering, 2007.

[9] M. Brambilla, J. Cabot, and M. Wimmer. Model-driven software engineering in

practice. 1st ed. [San Rafael. Morgan & Claypool, Calif.], 2012.

[10] Xavier Le Pallec and Sophie Dupuy-Chessa. Support for quality metrics in meta-

modelling. In Proceedings of the Second Workshop on Graphical Modeling Language

Development, pages 23–31. ACM, 2013.

79

http://upload.wikimedia.org/wikipedia/commons/thumb/e/ed/UML_diagrams_overview.svg/500px-UML_diagrams_overview.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/e/ed/UML_diagrams_overview.svg/500px-UML_diagrams_overview.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/e/ed/UML_diagrams_overview.svg/500px-UML_diagrams_overview.svg.png
http://modeling-languages.com/introducing-higher-order-transformations-hots
http://modeling-languages.com/introducing-higher-order-transformations-hots

Bibliography 80

[11] Omg.org, (2014). omg uml. http://www.omg.org/gettingstarted/what_is_uml.

htm, 2014. Accessed:2014-05-20.

[12] Lidia Fuentes-Fernåndez and Antonio Vallecillo-Moreno. An introduction to uml

profiles. UML and Model Engineering, 2, 2004.

[13] Marjan Mernik, Jan Heering, and Anthony M Sloane. When and how to develop

domain-specific languages. ACM computing surveys (CSUR), 37(4):316–344, 2005.

[14] N. Skrypuch. Eclipse modeling-emf-home. http://www.eclipse.org/modeling/emf,

2014. Accesed: 2014-06-13.

[15] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF: eclipse

modeling framework. Pearson Education, 2008.

[16] Eclipse.org. Graphical modeling framework(gmf)-tooling. http://eclipse.org/

gmf-tooling, 2014. Accesed: 2014-06-13.

[17] S. Efftinge. Xtext - language development made easy! http://www.eclipse.org/

Xtext, 2014. Accessed: 2014-06-13.

[18] Eclipse.org. Atl. http://www.eclipse.org/atl, 2014. Accessed:2014-05-20.

[19] Emftext.org. Emftext. http://www.emftext.org/index.php/EMFText, 2014. Ac-

cessed: 2014-06-13.

[20] N. Skrypuch. Eclipse modeling-mmt-home. http://www.eclipse.org/mmt/?project=qvto,

2014. Accesed: 2014-06-13.

[21] Ekkart Kindler and Robert Wagner. Triple graph grammars: Concepts, extensions,

implementations, and application scenarios. Techn. Ber. tr-ri-07-284, University of

Paderborn, 2007.

[22] Dos Santos and Travassos P. G. and zelkowitz, m. (2011). Action research can swing

the balance in experimental software engineering, 2011.

[23] C. Atkinson and R. Gerbig. Harmonizing textual and graphical visualizations of

domain specific models. pp., pages 32–41, 2013.

[24] Markus Voelter, Daniel Ratiu, Bernd Kolb, and Bernhard Schaetz. mbeddr: In-

stantiating a language workbench in the embedded software domain. Automated

Software Engineering, 20(3):339–390, 2013.

[25] F. Andres and de Lara. J. and guerra, e. (2008). In Domain specific languages with

graphical and textual views, pages 82–97. Springer, Springer.

http://www.omg.org/gettingstarted/what_is_uml.htm
http://www.omg.org/gettingstarted/what_is_uml.htm
http://eclipse.org/gmf-tooling
http://eclipse.org/gmf-tooling
http://www.eclipse.org/Xtext
http://www.eclipse.org/Xtext
http://www.eclipse.org/atl
http://www.emftext.org/index.php/EMFText

Bibliography 81

[26] L. and Engelen. and van den brand, m. (2010). Integrating textual and graphical

modelling languages, 253(7):105–120.

[27] Gentleware.com. Uml-to-ecore plug-in. http://www.gentleware.com/fileadmin/

media/archives/userguides/poseidon_users_guide/ecoreguide.html, 2014.

Accesed: 2014-06-30.

[28] Eclipse.org. About tcs. http://www.eclipse.org/gmt/tcs/about.php, 2014. Ac-

cesed: 2014-08-11.

[29] Eclipse.org. Emf compare - compare and merge your emf models. http://www.

eclipse.org/emf/compare/overview.html, 2014. Accesed: 2014-06-30.

[30] http://www.eclipse.org. integration with emf and other emf editors.

http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.xtext.

doc%2Fcontents%2F210-emf-integration.html, 2014. Accesed: 2014-06-13.

[31] Dimitrios S Kolovos, Louis M Rose, Richard F Paige, and Fiona AC Polack. Raising

the level of abstraction in the development of gmf-based graphical model editors.

In Proceedings of the 2009 ICSE Workshop on Modeling in Software Engineering,

pages 13–19. IEEE Computer Society, 2009.

[32] Per Runeson and Martin Höst. Guidelines for conducting and reporting case study

research in software engineering. Empirical software engineering, 14(2):131–164,

2009.

[33] Massimo Tisi, Salvador Martínez, Frédéric Jouault, and Jordi Cabot. Lazy execution

of model-to-model transformations. In Model Driven Engineering Languages and

Systems, pages 32–46. Springer, 2011.

[34] git scm.com. Git. http://git-scm.com, 2014. Accesed: 2014-06-25.

http://www.gentleware.com/fileadmin/media/archives/userguides/poseidon_users_guide/ecoreguide.html
http://www.gentleware.com/fileadmin/media/archives/userguides/poseidon_users_guide/ecoreguide.html
http://www.eclipse.org/gmt/tcs/about.php
http://www.eclipse.org/emf/compare/overview.html
http://www.eclipse.org/emf/compare/overview.html
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.xtext.doc%2Fcontents%2F210-emf-integration.html
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.xtext.doc%2Fcontents%2F210-emf-integration.html
http://git-scm.com

	cover_page_final.pdf (p.1-2)
	untitled (6).pdf (p.3-89)
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Problem Statement
	1.3 Purpose
	1.4 Disposition of the Report

	2 Foundations
	2.1 Model Driven Engineering
	2.2 UML
	2.3 EMF
	2.4 Xtext
	2.5 GMF
	2.6 Model Transformations
	2.7 The Ericsson DSL

	3 Method
	3.1 Research Questions
	3.2 Hypotheses

	4 Related Work
	5 Solution
	5.1 Alternative 1
	5.1.1 UML Profile to a Metamodel in Ecore
	5.1.2 Generating the Textual Editor using Xtext
	5.1.3 Switching between Graphical and Textual Views
	5.1.4 Case 1
	5.1.5 Case 2
	5.1.6 Results and Analysis
	5.1.7 Discussion

	5.2 Alternative 2
	5.2.1 Prototype
	5.2.2 Discussion

	5.3 Alternative 3
	5.3.1 Discussion

	6 Threats to Validity
	6.1 Construct Validity
	6.2 Internal Validity
	6.3 External Validity
	6.4 Reliability Validity

	7 Conclusions and Future Work
	7.1 Summary
	7.2 Conclusions
	7.3 Future Work

	A Higher Order Transformation to Generate a transformation from UML to Hive text instance model
	B ATL Transformation to Transform a UML Profile into an Ecore model
	Bibliography

