
Measuring Agility
A Validity Study on Tools Measuring The Agility Level of Software
Development Teams

Master of Science Thesis in Software Engineering

KONSTANTINOS CHRONIS

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, June 2015

The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet. The Author warrants that he/she is the
author to the Work, and warrants that the Work does not contain text, pictures or other
material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agreement.
If the Author has signed a copyright agreement with a third party regarding the Work,
the Author warrants hereby that he/she has obtained any necessary permission from
this third party to let Chalmers University of Technology and University of Gothenburg
store the Work electronically and make it accessible on the Internet.

Measuring Agility

A Validity Study on Tools Measuring The Agility Level of Software
Development Teams

Konstantinos Chronis

c©Konstantinos Chronis, June 2015.

Supervisor: Richard Torkar

Examiner: Miroslaw Staron

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering

SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000
Department of Computer Science and Engineering Göteborg, Sweden June 2015

Abstract

Context: In the past two decades, an increasing number of software development
teams have been transitioning to agile. As a result, a need has emerged for measuring
how agile these teams are. To satisfy this need, many researchers have created their own
agile measurement tools. However, none of the tools managed to provide a substantial
solution.

Objective: Many tools have been created for measuring the agility of software devel-
opment teams, thus creating a saturation in the field. Three tools were selected in order
to validate whether they will yield similar results. These tools were the Perceptive Agile
Measurement (PAM), the Team Agility Assessment (TAA) and the Objectives Principles
Strategies (OPS).

Method: The surveys for the three tools were given to the four software development
teams of Company A. The survey questions were grouped into agile practices which
were checked for correlation in order to establish convergent validity. In addition, we
checked whether the questions identified to be the same among the tools would would
be given the same replies by the respondents. Moreover, the coverage of agile practices
was analysed by checking which tool covers more agile practices. The results were used
to see whether the three tools yield similar results.

Results: The correlations of the data gathered were very few and very low. As a
result, convergent validity could not be established. In addition, the questions which
were identified as the same among the tools did not have the same answers from the
respondents. Moreover, Objectives Principles Strategies (OPS) was the tool covering the
most agile practices. All the above provide evidence that the three tools do not yield
similar results.

Conclusion: We conclude that the area of measuring agility is still fertile and more
work needs to be done. Based on the various agile practices covered by each tool, we
believe that not all tools are applicable to every team but they should be selected on
the basis of how a team has transitioned to agile. This study has set a milestone in the
area and pinpoints the need for a better way to measure agility.

Acknowledgements

I would like to thank

phd student Lucas Gren and Dr. Richard Torkar for all their help and support
during the period I was conducting my Master’s Thesis.

Nick for allowing me to conduct this case study in Company A.

the Swedish state for allowing me to study in one of its finest institutions.

my parents for offering me the chance to study and become what I am.

more than anyone else, my girlfriend Tanja for constantly supporting me and be-
lieving in me even when I stopped believing in myself.

Konstantinos Chronis, Gothenburg, Sweden June 12, 2015

Measure what is measurable and
make measurable what is not so.

— Galileo Galilei

Contents

1 Introduction 2

2 Related Work 5
2.1 Agility of Agile Methodologies . 5

2.1.1 Balancing Discipline and Agility 5
2.1.2 Philip Taylor - Assessing Tool . 6
2.1.3 Datta - Agility Measurement Index 6
2.1.4 Comprehensive Evaluation Framework for Agile Methodologies . . 7
2.1.5 4-Dimensional Analytical Tool . 7
2.1.6 XP Evaluation Framework . 8
2.1.7 Summary . 9

2.2 Agility of Software Teams . 9
2.2.1 Team Agility Assessment . 9
2.2.2 Comparative Agility . 9
2.2.3 Escobar - Vasquez Model for Assessing Agility 9
2.2.4 Entropy Analysis . 10
2.2.5 Validation Model to Measure the Agility 11
2.2.6 Perceptive Agile Measurement . 11
2.2.7 AHP - ANFIS Framework . 12
2.2.8 42-Point Test . 13
2.2.9 Sidky Agile Measurement Index . 13
2.2.10 Thoughtworks . 13
2.2.11 Objectives Principles Strategies Framework 13
2.2.12 Summary . 15

2.3 Selecting tools . 15
2.4 Chapter Summary . 15

3 Research Methodology 16
3.1 Research Purpose . 16

3.1.1 Research Questions . 16

i

CONTENTS

3.1.2 Case Study . 16
3.2 Subject Selection . 17

3.2.1 Company Description . 17
3.2.2 Methodology A . 17
3.2.3 Products . 18
3.2.4 Teams . 18

3.3 Data Collection . 18
3.4 Data Preparation . 21
3.5 Data Analysis . 23
3.6 Chapter Summary . 29

4 Results 30
4.1 Correlation Results . 30
4.2 Direct Match Results . 34
4.3 Practices’ Coverage Results . 35
4.4 Chapter Summary . 35

5 Enhancing OPS 37
5.1 OPS Enhancement . 37

5.1.1 Questions Excluded . 37
5.1.2 Questions Added . 38

5.2 Chapter Summary . 38

6 Discussion 40
6.1 Answers to Research Questions . 40

6.1.1 RQ#1 - Will PAM, TAA and OPS yield similar results? 40
6.1.2 RQ#2 - Can the tools be combined in a way that will provide a

better approach in measuring agility? 44
6.2 Threats to Validity . 44

6.2.1 Construct Validity . 44
6.2.2 Internal Validity . 44
6.2.3 Conclusion Validity . 45
6.2.4 External Validity . 45
6.2.5 Reliability . 45

7 Conclusions and Future Work 46
7.1 Conclusions . 46
7.2 Future Work . 46

Appendices 47

A Objectives Principles Strategies - Effectiveness 48

B Perceptive Agile Measurement 54

ii

CONTENTS

C Team Agility Assessment 57

D Mapping of Questions to Practices/Strategies 60

E Direct Match Questions 70

F Data Plots 74

G Direct Matches - HeatMaps 78

H Combining OPS, PAM, TAA 87
H.1 Capability . 87
H.2 Effectiveness . 92

Bibliography 106

iii

List of Tables

2.1 4-DAT Dimensions . 8
2.2 AHP - ANFIS Framework parameters . 12

3.1 Practices embraced by methodology A . 17
3.2 Team A - Profile . 19
3.3 Team B - Profile . 19
3.4 Team C - Profile . 19
3.5 Team D - Profile . 19
3.6 Areas covered by Team Agility Assessment (TAA) 21
3.7 Agile practices covered by Perceptive Agile Measurement (PAM) 22
3.8 Agile practices covered by Objectives Principles Practices (OPP) 23
3.9 Relation of OPP/OPS and PAM practices 24
3.10 Relation of OPP/OPS and TAA practices/areas 25
3.11 Collected Data Structure . 26
3.13 Direct Match Questions Among Tools - Results 27
3.12 Monotonic Relationships . 28

4.1 Continuous Feedback Correlations . 30
4.2 Client Driven Iterations Correlations . 30
4.3 High Bandwidth Communication Correlations 31
4.4 Refactoring Correlations . 31
4.5 Continuous Integration Correlations . 31
4.6 Iterative and Incremental Development Correlations 31
4.7 Frequency of correlation between tools . 31
4.8 Surveys Descriptive Statistics . 31
4.8 Surveys Descriptive Statistics . 32
4.8 Surveys Descriptive Statistics . 33
4.9 Frequency of Same Answers . 34
4.10 P-Values of Same Questions Results . 35
4.11 Agile Practices Coverage By Tools . 36

iv

LIST OF TABLES

4.12 Summary Of Agile Practice’s Coverage . 36

5.1 Summary of Indicators and Questions Added 38
5.2 Numbers of indicators and questions in the enhanced OPS 39

E.1 Direct Match Questions (OPS Effectiveness) 70
E.1 Direct Match Questions (OPS Effectiveness) 71
E.1 Direct Match Questions (OPS Effectiveness) 72
E.2 Direct Match Questions (OPS Capability) 73

v

List of Figures

2.1 Dimensions affecting method selection . 6
2.2 Evaluation criteria hierarchy for CEFAM 7
2.3 Escobar - Vasquez model for assessing agility 10
2.4 Validation Model to Measure the Agility 12
2.5 Objectives, Principles, and Strategies identified by the OPS Framework . 14

F.1 Appropriate Distribution of Expertise . 74
F.2 Adherence to Standards . 74
F.3 Client-Driven Iterations . 75
F.4 Continuous Feedback . 75
F.5 Continuous Integration . 75
F.6 High-Bandwidth Communication . 75
F.7 Iteration Progress Tracking and Reporting 76
F.8 Iterative and Incremental Development . 76
F.9 Product Backlog . 76
F.10 Refactoring . 76
F.11 Self-Organizing Teams . 77
F.12 Smaller and Frequent Product Releases 77
F.13 Software Configuration Management . 77
F.14 Test Driven Development . 77

G.1 Appropriate Distribution of Expertise . 78
G.2 Client-Driven Iterations . 79
G.3 Continuous Integration #1 . 79
G.4 Continuous Integration #2 . 80
G.5 Continuous Integration #3 . 80
G.6 High-Bandwidth Communication . 81
G.7 Iteration Progress Tracking and Reporting #1 81
G.8 Iteration Progress Tracking and Reporting #2 82
G.9 Iteration Progress Tracking and Reporting #3 82

vi

LIST OF FIGURES

G.10 Iteration Progress Tracking and Reporting #4 83
G.11 Test Driven Development . 83
G.12 Iterative and Incremental Development . 84
G.13 Refactoring . 84
G.14 Self-Organizing Teams . 85
G.15 Smaller and Frequent Product Releases 85
G.16 Software Configuration Management . 86
G.17 Product Backlog . 86

vii

Acronyms & Abbreviations

PAM Perceptive Agile Measurement

TAA Team Agility Assessment

OPS Objectives Principles Strategies

OPP Objectives Principles Practices

1

1
Introduction

A
gile and plan-driven methodologies are the two dominant approaches in the
software development. Organizations and companies tend to leave the cum-
bersome area of Waterfall process and to embrace the Agile methodologies in
the last years [16, 54, 72]. Although it has been almost 20 years since the

latter were introduced, the companies are quite reluctant in following them [62]. Once
they do, they start enjoying the benefits of the agile approach, but are these the only
benefits they could leverage?

In order to answer to the previous question, one should first understand what “agile”
means. According to the dictionary [39], it means “to be able to move quickly and easily”,
something which is almost impossible with a plan-driven approach. The term agility was
first introduced as agile manufacturing in an industry book [41], as stated by Conboy
and Fitzgerald [15].

In 2001, 17 developers formed the Agile Alliance and created the agile manifesto [7],
defining what is considered to be agile in order to avoid confusion:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

Software development teams started adopting the most known agile methodologies,
such as eXtreme Programming [5], Feature Driven Development (FDD) [43], Crystal [13],
Scrum [55] and others. Most companies use a tailored methodology by following some
of the aforementioned processes and practices which better suit their needs. Williams
et al. [73] report that all XP practices are exercised rarely in their pure form, something
on which Reifer [50] and Aveling [4] also agree based on the results of their surveys,
which showed that it is common for organizations to partially adopt XP. Sidky et al.

2

CHAPTER 1. INTRODUCTION

[58] mention that the organizations face four issues when transitioning to agile: a) their
readiness for agility b) the practices they should adopt c) the potential difficulties in
adopting them d) the necessary organizational preparations for the adoption of agile
practices. The most important issue that tends to be neglected though, is how well are
these methodologies adopted.

According to Escobar-Sarmiento and Linares-Vasquez [19], the agile methodologies
are easier to misunderstand. If this is the case, it could lead to problems later on in the
software development process. The previous statement is also supported by Taromirad
and Ramsin [64], who argue that the agile software development methodologies are
often applied to the wrong context. In addition, Livermore [38] concludes that the
organizations modify practices before implementing them, a fact also mentioned by Patel
et al. [44]. Hossain et al. [26] argue that improper use of agile practices creates problems.
Sahota [53] states that doing agile and being agile are two different things. For the first
one, a company should follow practices, while for the latter, a company should think
in an agile way. Lappo and Andrew [36] state that the organizations which follow the
practices of a methodology may not gain much in terms of agility, while on the other
hand, Sidky [57] defines the level of agility of a company as the amount of agile practices
used. Considering this statement, a group that uses pair programming and collective
code ownership at a very low level is more agile than a group which uses only pair
programming but in a more efficient manner.

Williams et al. [74] pose the question “How agile is agile enough”? Practitioners
think that declaring being agile is equally good as being agile. According to a survey
conducted by Ambysoft [2], only 65% of the agile companies that answered met the five
agile criteria posed in the survey. In addition, 9% of agile projects failed due to the lack
of cultural transition, while 13% of companies are at odds with core agile values based on
the most recent survey by VersionOne [69]. Poonacha and Bhattacharya [45] mentioned
that the different perception of agile practices when they are adopted is very worrying,
since even people in the same team understand them differently, according to the result
of a survey [1]. It is evidently not only from literature but also from its application that
agile is a way of thinking and working, it is a whole culture [45]. If we had to use one
word we could state it is a way of being. Nietzsche [42] said “better know nothing than
half-know many things”. In the same vein, maybe it is better that a company does not
transition to agile, instead of believing that it is agile.

Since agile methodologies become more and more popular, there is a great need for
developing a tool that can measure the level of agility in the organizations that have
adopted them. Sidky et al. [58] mention the success stories of companies that have
adopted agile methods. However, these companies did not have a measurement tool
that could tell them if they are really agile.

Measuring agility implies measuring the agile culture of a team. Alistair Cockburn
[11, 12] and Jim Highsmith [24] highlight the importance of culture. However, the
culture differentiates not only from team to team, but also from person to person within
it, based on the values they follow. The only common basis for the agile values is the
agile manifesto[7], as stated by Ingalls and Frever [29]. As a result, the “agile culture

3

CHAPTER 1. INTRODUCTION

tree” has the same root, but the branches grow independent, away from one another,
making it difficult to measure agility.

For over a decade, researchers have been constantly coming up with models and
frameworks in an effort to provide a solution. Unfortunately, the multiple tools have
created a saturation in the field, resulting in being used only by the organizations that
participated in the empirical studies for their creation [30, 31]. As a result, the vicious
circle of creating tools with no actual use holds back not only the software development
companies, but the research community as well.

This Master’s Thesis dealt with three tools which claim to measure the agility of
software development teams. These tools are Perceptive Agile Measurement (PAM)
[59], Team Agility Assessment (TAA) [37], Objectives Principles Strategies (OPS) [60].
The first one has been validated with a large sample of subjects, the second one is used
by companies and the third one covers many agile practices. Since all three tools measure
agility, convergent validity should be established among them to corroborate this. The
surveys from the three tools were given to Company A employees to answer to. The
analysis of the data was performed by grouping the survey questions in accordance to to
agile practices. The correlation of these practices were the indications for establishing
the convergent validity. Moreover, questions identified as the same among the tools
should have the same answers from the respondents.

This Master’s Thesis is a validity study of three tools used for measuring the agility
of software development teams. To the best of the author’s knowledge there has not
been another similar study which would be insightful and which can serve as a basis for
future work. Furthermore, by having a better view of these tools, an effort was made to
fill in any existing gaps in order to create an enhanced tool which will be able to better
cover the needs of practitioners and researchers.

In order to clarify the structure of the thesis, Chapter 2 presents the tools that
measure the agility of agile methodologies (e.g. eXtreme Programming) and the tools
which measure the agility of software development organisations/teams. After that,
Chapter 3 presents the research questions and research methodology followed for this
Master’s Thesis. Chapter 4 presents the results of this case study and Chapter 5 presents
the enhancement of OPS in measuring agility in combination with PAM and TAA. The
results of the thesis are discussed in Chapter 6 and the conclusions and future work are
presented in Chapter 7.

4

2
Related Work

A
ccording to Yauch [76], it is very difficult to measure agility, although it has
been widely spread. Tsourveloudis and Valavanis [68] agree on this, mainly
due to the vagueness of the concept of agility. Nevertheless, various tools
have been developed during the last decade in order to measure the agility in

software development teams. Below is a short description of some of the tools that have
been used as a reference point in many papers in this field. The tools are separated into
two categories: a) those which measure how agile the agile methodologies really are, and
b) those which measure the agility of software development teams.

2.1 How agile the agile methodologies are

2.1.1 Balancing Discipline and Agility

Boehm and Turner [8] did not come up with a tool to measure agility but rather to
balance between agility and discipline. According to them, discipline is the foundation for
any successful endeavour and it creates experience, history and well-organized memories.
On the other hand, agility is described as a counterpart of discipline. Agility uses the
memory and history in order to adjust to the context in which it is applied, while it takes
advantage of the unexpected opportunities that might come up. The combination of the
two can bring success to an organization. In their research, Boehm and Turner [8] came
up with five “critical decision factors” which can determine if an agile or plan-driven
method is suitable for a software development project.

Figure 2.1 depicts these factors: a) size of a team working in a project b) criticality
of damage of unexpected defects c) culture needed to balance between chaos and order
d) dynamism of the team working in chaos or in a planned way e) personnel which refers
to the extended Cockburn [12] skill rating

5

2.1. AGILITY OF AGILE METHODOLOGIES CHAPTER 2. RELATED WORK

Personnel

Dynamism

(% Requirements change/month)

Culture

(% thriving on chaos vs order)

Size

(# of personnel)

Criticality

(Loss due to impact of defects)

50
30

10
5

1

90

70

50

30

10

3

10

30

100

300

35

30

25

20

15

Essential
Funds Disc etionary

Funds Comfort

Sing e
L fe

Many
Lives

(% Level 1B) (% Level 2&3)

0

10

20

30

40

Agile

Disciplined

Figure 2.1: Dimensions affecting
method selection

If the ratings of the five factors are close to the center, then the team is in an agile
territory, in other words, the team is considered agile, otherwise it follows a discipline
approach.

2.1.2 Philip Taylor - Assessing Tool

Taylor et al. [65] modified the tool created by Boehm and Turner [8] by adding a sixth
axis named Client Involvement which (includes) the following categories:

• On AB - Client is on-site and an agile believer. This is ideal when the clients
are fully persuaded of the agile approach and make themselves available on-site to
work with the team.

• Off AB - Client is off-site but an agile believer. Although off-site, the client fully
understands the nature of agile development and is open to frequent communica-
tion.

• On AS - Client is on-site but is an agile sceptic. They may be on-site, but they
are not convinced about the agile development approach.

• Off AS - Same as On AS except the problem is compounded by the client being
off-site.

• Off Uninvolved - Not only are the clients off-site, but they want no involvement
between providing the initial requirements and getting the right product delivered.

2.1.3 Datta - Agility Measurement Index

Datta [17] presented a metric to help in deciding which agile methodology best suits a
project. The metric identifies five dimensions: a) Duration b) Risk c) Novelty d) Effort
e) Interaction. The user assigns a value to each one of these dimensions. Then, by
employing a formula, the user can identify whether Waterfall, Unified Process or eXtreme
Programming is more appropriate.

6

2.1. AGILITY OF AGILE METHODOLOGIES CHAPTER 2. RELATED WORK

2.1.4 Comprehensive Evaluation Framework for Agile Methodologies

Taromirad and Ramsin [64] created the“Comprehensive Evaluation Framework for Agile
Methodologies” (CEFAM), in order to provide coverage to the important aspects of agile
methodology. The tool consists of a hierarchy of evaluation criteria which are divided
into five groups (see Figure 2.2): a) Process b) Modeling Language c) Agility d) Usage
e) Cross-Context. Each of these groups has a number of questions which are either
answered with a numeric value, with Yes/No or any value from a proposed set. In the
end, the answers are evaluated based on the following scale: Unacceptable ≤ 0.25; 0.25
< Low ≤ 0.5; 0.5 < Medium ≤ 0.75; 0.75 < High ≤ 1.0.

Evaluation Criteria

Process Modeling Language

Agility

Usage Cross-Context

Definition

Phases

Artifacts

Documentation

Requirements

General Features

Documents Method Tailoring

Umbrella Activities

Application Scope

Figure 2.2: Evaluation criteria hierarchy for CEFAM

2.1.5 4-Dimensional Analytical Tool

Qumer and Henderson-Sellers [46] created the 4-Dimensional Analytical Tool (4-DAT)
for analysing and comparing agile methods, which is a part of the of the Agile Adoption
and Improvement Model (AAIM) [47]. The objective of the tool is to provide a mecha-
nism for assessing the degree of agility and adaptability of any agile methodology. The
measurements are taken at a specific level in a process and they use specific practices.

Dimension 1 - Method Scope Characterization The first dimension describes the
key scope items which are considered essential for supporting the method used by a team
or an organisation. These have been derived from the literature review of the creators
based on Beck and Andres [5], Koch [34], Palmer and Felsing [43] and Highsmith [25].
Moreover, the scope items provide a method comparison at a high level.

Dimension 2 - Agility Characterization The second dimension is the only quanti-
tative dimension among the four. It evaluates the agile methods at a process level and at
a method practices level, in order to check for the existence of agility. The measurement
of the degree of agility at this level is done based on five variables. These variables are
used to check for the existence of a method’s objective at a specific level or phase. If
the variable exists for a phase, then the value 1 is assigned to it, otherwise 0. Qumer

7

2.1. AGILITY OF AGILE METHODOLOGIES CHAPTER 2. RELATED WORK

and Henderson-Sellers [46] define the degree of agility (DA) as “the fraction of the five
agility variables that are encompassed and supported”. They define as Object an object
at some level or lifecycle phase, or as a result of the practices used. m is the number
of phases or practices. Phase is any of the design, planning or requirements engineering
phase. Practice is the practices of the agile methodology.

Formula (2.1) DA is calculated in the following way:

DA(Object) = (1/m)
∑

mDA(Object, PhaseOrPractices) (2.1)

3 - Agile Values Characterization The third dimension consists of six agile values.
Four of them are derived directly from the Agile Manifesto [7], while the fifth comes
from Koch [34]. The last value is suggested by Qumer and Henderson-Sellers [46], after
having studied several agile methods. The values can be seen in Table 2.1.

Dimension 4 - Software Process Characterization The fourth dimension exam-
ines the practices that support four processes, as these are presented by Qumer and
Henderson-Sellers [46].

Table 2.1: 4-DAT Dimensions

D1 - Scope
a) Project Size b) Team Size c) Development Style d) Code Style
e) Technology Environment Responsiveness f) Physical Environ-
ment g) Business Culture h) Abstraction Mechanism

D2 - Features
a) Flexibility b) Speed c) Leanness d) Learning e) Responsiveness

D3 - Agile values
a) Individuals and interactions over processes and tools b) Working
software over comprehensive documentation c) Customer collab-
oration over contract negotiation d) Responding to change over
following a plan e) Keeping the process agile f) Keeping the pro-
cess cost effective

D4 - Process
a) Development Process b) Project Management Process c) Soft-
ware Configuration Control Process / Support Process d) Process
Management Process

2.1.6 XP Evaluation Framework

Williams et al. [73] proposed a framework named the “XP Evaluation Framework” (XP-
EF) for assessing the XP practices which have been adopted by an organization. The
framework consists of three parts:

8

2.2. AGILITY OF SOFTWARE TEAMS CHAPTER 2. RELATED WORK

• XP Context Factors (XP-CF) - Record important contextual information. The
factors can be team size, project size, staff experience

• XP Adherence Metrics (XP-AM) - Express in a precise way the practices utilized
by a team

• XP Outcome Measures (XP-OM) - A Means to assess the outcomes of a project
using full or partial XP practices

2.1.7 Summary

In this section, we presented various tools which measure the agility level of agile method-
ologies. We have identified two groups to classify them. The first one includes the tools
which measure agility based on factors (Bohem and Turner, Philip Taylor, XP Evalua-
tion Framework). The second group includes the tools which measure agility based on
questionnaires (CEFAM, 4-DAT, Datta).

2.2 Agility of Software Development Teams

2.2.1 Team Agility Assessment

Leffingwell [37] created a model for assessing a team’s agility by taking six aspects into
account: a) Product Ownership b) Release Planning and Tracking c) Iteration Planning
and Tracking d) Team e) Testing Practices f) Development Practices/Infrastructure.

Each of these aspects is followed by a number of questions rated on a seven-point
Likert scale and the results are represented in a radar chart.

2.2.2 Comparative Agility

Williams et al. [74] created the Comparative Agility (CA) assessment tool which does not
assess the agility of an organization by providing an absolute value, but it rather provides
a value in comparison to other organizations/companies [14]. The idea behind CA is that
the organizations are trying to be more agile than their competitors because they believe
that this will have more benefits for them. Until 2010, more than 1200 respondents
supported this idea by answering the tool’s online survey. The CA assessment tool
consists of the following seven dimensions: a) Teamwork b) Requirements c) Planning
d) Technical Practices e) Quality f) Culture g) Knowledge-Creating, which are made up
of three to six characteristics. Each characteristic has four statements and each one of
them represents an agile practice. The answers to every statement are measured on a
five-point Likert scale.

2.2.3 Escobar - Vasquez Model for Assessing Agility

Escobar-Sarmiento and Linares-Vasquez [19] created their own agility assessment model
which consists of four stages. For the first three they used the models and tools proposed
by other researchers they found in literature:

9

2.2. AGILITY OF SOFTWARE TEAMS CHAPTER 2. RELATED WORK

• Agile Project Management Assessment - proposed by Qumer and Henderson-Sellers
[46]

• Project Agility Assessment - proposed by Taylor et al. [65]

• Workteam Agility Assessment - proposed by Leffingwell [37]

• Agile Workspace Coverage

For collecting the data on the measurements, they used surveys based on the tools
of each stage, while in the last stage they used their own survey. The data were then
depicted in a four axis radar chart in order to provide a view of the company’s agility.
In Figure 2.3, one can see the model with a short description about which tool should
be used at each level for each stage.

Proposed Agility
Assesement Model

Stage 1
Company Agility

Assessment

Stage 2
Project Agility

Assessment

Stage 3
Workteam Agility

Assessment

Stage 1
Agile Workspace

Coverage

Assessment model to use:
Interview based on

4-DAT model,
ThoughtWorks survey and
agile workspace whishlist

Assessment model to use:
Boehm and Turner's model

with client involvement
axis added

Assessment model to use:
Survey based on

Team agility assessment
by Dean Leffingwell

Assessment model to use:
Survey created based
on references about

agile workspaces

Agile Values and
workspace coverage Agility level Assessment Agile Principles and

practices Coverage
Workspace Agility

Coverage

Stage 1
Survey

Stage 2
Survey

Stage 3
Survey

Stage 4
Survey

Data Analysis

Diagnosis Results

T
he

or
et

ic
al

 B
as

is
B

as
ic

 P
ur

po
se

D
at

a
G

at
he

ri
ng

Figure 2.3: Escobar - Vasquez model for assessing agility

2.2.4 Entropy Analysis

Shawky and Ali [56] measure the agility based on the rate of entropy change over the
time of a system’s development. If the rate is high, then the process is of high agility as

10

2.2. AGILITY OF SOFTWARE TEAMS CHAPTER 2. RELATED WORK

well. Each feature is considered to be an entity and the change logs of the entities are
analyzed. They define as Pi(t) the probability of an entity i to be associated with the
change logs at a time t. Then, by using formula (2.2), they calculate the agility measure
AM(t) for that specific time.

AM(t) = −
n∑

i=1

P ′
i (t)(log2Pi(t) + 1.44) (2.2)

2.2.5 Validation Model to Measure the Agility

Ikoma et al. [28] measure agility by creating a validation model, since according to them,
only validation can confirm the quality of a product. In this model, any candidate item
for validation enters an “identified planning state” during the planning time. Afterwards,
these items change into the “unvalidated inventory state” when the items start to be
generated. Finally, validation of the deliverable items changes the state to the “validated
product state” (see Figure 2.4). Then, based on the formula (2.3), one can get the
result. A is the agility of a project/organization, V’ is the number of software items in
the “validated product state” and U’ is the average number of software items in which
intermediate deliverables are in the “unvalidated inventory state”.

A = V ′/U ′ (2.3)

2.2.6 Perceptive Agile Measurement

So and Scholl [59] created a survey for measuring agility from a social-psychological
perspective, covering eight agile practices which they named scales. These scales are an
attempt to establish a representative set of agile practices commonly used in the field:

a) Iteration Planning b) Iterative Development c) Continuous Integration and Test-
ing d) Co-Location e) Stand-up Meetings f) Customer Access g) Customer Acceptance
Tests h) Retrospectives. The survey is on a seven-point Likert scale, except for the
Co-Location, which is on a five-point scale.

11

2.2. AGILITY OF SOFTWARE TEAMS CHAPTER 2. RELATED WORK

Figure 2.4: Validation Model to Measure the Agility

2.2.7 AHP - ANFIS Framework

Poonacha and Bhattacharya [45] created a tool for measuring agility by identifying 17
parameters grouped in four parameter groups, as can be seen in Table 2.2. While the
last group is an indicator of performance, the first three groups mitigate the risks of
supply, operation and demand uncertainties, respectively. Each parameter is given as
a question and the answers are fed in the Adaptive Network, based on Fuzzy Inference
Systems (ANFIS). Due to the complexity of the ANFIS model, an Analytical Hierarchical
Process (AHP) is mandatory to be applied at the parameter level in order to compute
the values for the parameter groups and then employ ANFIS at the parameter group
level.

Table 2.2: AHP - ANFIS Framework parameters

Group Parameters

People
a) Attrition b) Functional Flexibility c) Training and Knowlegde d) De-
centralized Decision Making e) Bench Strength

Processes
a) Pair Programming and Parallel Testing b) Iterative Development
c) Degree of modularity d) Requirement Capture Process e) Reusability
f) Continuous Improvement

Customer Involv-
ment a) Customer Involvement in Design b) Team Across Company Borders

c) Customer Training Period

Cost and Quality
a) Cost of Requirement change b) Projects dropped due to incapacity
c) Software Quality

12

2.2. AGILITY OF SOFTWARE TEAMS CHAPTER 2. RELATED WORK

2.2.8 42-Point Test

Waters [71] created a simple 42-question survey based on a similar one from Nokia [63],
in order to allow the Scrum/XP teams to easily establish to what extent they follow
various agile practices.

2.2.9 Sidky Agile Measurement Index

Sidky [57] created the Sidky Agile Measurement Index (SAMI), in order to measure the
agility as a part of the “Agile Adoption Framework”. SAMI is a scale used by an agile
coach to identify the potential of a project or organization [58], which consists of five
agile levels and five agile principles. It derives from the agile manifesto [7] and forms
a 5 × 5 matrix. Agile practices have been assigned to the majority of the cells of this
matrix. The assessment of agility takes place at each level by measuring the practices
adopted by a team. Before moving to the next level, the team needs to implement all
the practices of the current one.

Agile Levels

• Level 1 - Collaborative

• Level 2 - Evolutionary

• Level 3 - Effective

• Level 4 - Adaptive

• Level 5 - Ambient

Agile Principles

• Embrace Change to Deliver Customer Value

• Plan and Deliver Software Frequently

• Human Centric

• Technical Excellence

• Customer Collaboration

2.2.10 Thoughtworks

Thoughtworks [67] is a worldwide consulting company. They have developed an online
survey for assessing agility based on 20 multiple choice questions. The questions cover
the areas of: a) Requirements Analysis b) Business Responsiveness c) Collaboration and
Communication d) Project Management e) Governance. People can reply to the survey
questions online and they will get a report that evaluates the level at which their team
or company is. The survey gained a lot of fame due to Martin Fowler, one of the creators
of the agile manifesto working at the company.

2.2.11 Objectives Principles Strategies Framework

Soundararajan [60] created the Objectives, Principles and Stategies (OPS) Framework
in order to assess the “goodness” of an agile methodology. It is an evolution of the work
done by Arthur and Nance [3] and Sidky [57]. The focus of this tool is mainly on eXtreme
Programming, Feature Driven Development, Lean, Crystal and any tailored instances of
them.

In order to achieve this, the framework examines the methodology based on three
aspects:

13

2.2. AGILITY OF SOFTWARE TEAMS CHAPTER 2. RELATED WORK

• Adequacy - Sufficiency of the method with respect to meeting its stated objectives.

• Capability - Ability of an organisation to provide an environment supporting the
implementation of its adopted method. Such ability is reflected in the characteris-
tics of an organization’s people, process and project.

• Effectiveness - Producing the intended or expected results. The existence of nec-
essary process, artifacts and product characteristics indicate levels of effectiveness.

The OPS framework identifies: a) objectives of the agile philosophy b) principles
that support the objectives c) strategies that implement the principles d) linkages that
relate objectives to principles, and principles to strategies e) indicators for assessing the
extent to which an organisation supports the implementation and effectiveness of those
strategies.

In total, five objectives, nine principles, 17 strategies, 54 linkages and 80 indicators
are identified. For more information, one can view Figure 2.5.

Individuals and
Interactions

Human Centric
Frequent Delivery of

Working Software
Iterative Progression

Incremental Development

Technical Excellence
Short Delivery Cycles

Value-driven

Evolutionary Requirements

Simplicity
Continuous Feedback

Working Software

Refactoring

Minimal Waste
Empowering Teams of
Motivated Individuals

Test First Development

Self-Managing Teams

Constant Development
Pace

Continuous Integration

Maximal Adaptability

Constant Velocity

Accommodating
Change

Minimal Documentation

Customer
Collaboration

High-bandwidth
Communication

Continual Stakeholder
Communication and

Collaboration

Retrospection

Continuous Innovation
And Learning

Client-driven iterations

Frequent Reflection and
Improvement

Appropriate distribution of
expertise

Responding to
Change

Configuration Management

Striving For Customer
Satisfaction

Adherence to Standards

Agile Values Objectives Principles Strategies

Figure 2.5: Objectives, Principles, and Strategies identified by the OPS Framework

14

2.3. SELECTING TOOLS CHAPTER 2. RELATED WORK

2.2.12 Summary

In this section, we presented various tools which measure the agility level of agile software
development teams. We have identified three groups to classify them. The first group
concerns the tools which use questionnaires (TAA, OPS, PAM, Comparative Agility,
Thoughtworks, 42-point test). The second group includes tools which use a mix of ap-
proaches, either this is a questionnaire and a model or a network (AHP-ANFIS Frame-
work, Escobar-Vasquez). Finally, the third group includes the rest of the tools which do
not belong to any of the other two groups (Entropy Analysis, SAMI, Validation Model).

2.3 Selecting tools

In this Master’s Thesis, we check if the tools which measure the agility level of software
development teams yield similar results. We selected the tools which are based on
questionnaires, because they were considered ideal since they can be easily answered by
subjects. The tools selected for the case study and presented in the next chapter are
Perceptive Agile Measurement (PAM), Team Agility Assessment (TAA) and Objectives
Principles Strategies (OPS). All three of them originate from either industry (TAA),
academia (OPS) or both (PAM). PAM has been used in a case study in the past with a
large sample. The tool was created with participations from development teams from all
over the world. TAA is part of the Scaled Agile Framework (SAFe) [22], which is used
by a lot of companies. OPS Framework is a tool which covers more agile practices than
any other tool, to our knowledge.

2.4 Chapter Summary

In this chapter, we presented the most common tools found in literature for measuring
agility. The tools were separated into two main categories: those which measure how
agile are the agile methodologies and those which measure how agile are the software
development teams. Finally, at the end of this chapter, we presented the reasons for
selecting the tools used in this Master’s Thesis. In the following chapter, the research
questions and the research methodology which was performed in order to validate PAM,
TAA and OPS are presented.

15

3
Research Methodology

T
his chapter presents the case study conducted at Company A. Its aim is to
check whether the different tools which claim to be measuring agility will yield
similar results with each other.

3.1 Research Purpose

The creators of PAM, TAA and OPS state that their tool measures agility. (However,
the existence of not only the three of them, but also of the rest of the tools presented
in Chapter 2 implies that the respective creators consider that their own tools are more
appropriate than others in measuring agility. The purpose of this study is to check
whether these three tools will yield similar results.

3.1.1 Research Questions

1. Will PAM, TAA and OPS yield similar results?

i) Does convergent validity exist among the tools?

ii) Will the questions that are exactly the same among the tools yield the same
results?

iii) What is the coverage of agile practices among the tools?

2. Can the tools be combined in a way that will provide a better approach in mea-
suring agility?

3.1.2 Case Study

Any effort to see if the selected agility measurement tools are valid in what they do,
would require to apply them to real software developments teams. According to Runeson

16

3.2. SUBJECT SELECTION CHAPTER 3. RESEARCH METHODOLOGY

and Höst [52], a case study is “a suitable research methodology for software engineering
research since it studies contemporary phenomena in their natural context”. As a result,
a case study was selected as the most suitable means for conducting the Master’s Thesis.

3.2 Subject Selection

Since all three agility measurement tools would be applied, we wanted to find a company
that would be willing and committed to spend time for as long as it was needed. For this
reason, Company A was selected, since the author of this Master’s Thesis is one of the
company’s employees. In the following pages, we present information on the company’s
teams, products and the agile practices used.

3.2.1 Company Description

Company A is a United States company which activates in the Point Of Sales (POS)
area. With the development of some new products, the company had a 400% increase in
the size of the development and quality assurance (QA) departments, which resulted in
the need for better organizing the development and release processes. In addition, the
increasing requests for new features in the company’s systems require a more efficient
way in delivering them to the customers and also maintaining the quality of the products.

3.2.2 Methodology A

In general, Company A does not follow a specific agile methodology, but rather a tailored
mix of the most famous ones which suits the needs of each team. Methodology A,
as we can name it, embraces the practices (displayed in Table 3.1) from the various
agile methodologies, some of them to a larger and some of them to a smaller extent.
The analysis made by Koch [34] was used for identifying these methodologies. The
identification of the practices was done by observing and understanding how the teams
work. The results were verified by the agile coach of the teams.

Table 3.1: Practices embraced by methodology A

Method Practice

XP
a) Small Releases b) Simple design c) Refactoring d) Collective ownership
e) Continuous integration f) 40-hour week g) Coding standards

FDD
a) Developing by feature b) Feature teams c) Regular build schedule d) In-
spections e) Configuration management

Lean
a) Empower the team b) Build Integrity In c) Amplify learning d) Eliminate
waste

17

3.3. DATA COLLECTION CHAPTER 3. RESEARCH METHODOLOGY

3.2.3 Products

Company A has developed a few products which belong to the following four areas:
a) desktop b) mobile c) cloud d) platforms. The names given correspond to the names
of the teams that develop them.

• Product A - A series of three mobile applications which offer services to the stores
or stores’ customers.

• Product B - A cloud application which offers services to product A and product
D.

• Product C - A platform used only by the company’s employees. It supports services
which are necessary for product D.

• Product D - It is the main product of the company which is mostly used. The rest
of the products were developed in order to support it and expand its functionalities.

3.2.4 Teams

There are four development teams, each for one of the products of the company. Some
of the teams have mixed members of developers and testers. In the Tables 3.2, 3.3, 3.4,
3.5, one can see the structure of the teams.

3.3 Data Collection

In order to collect the data, an online survey was considered to be the best option, since
it could be easily answered by each subject. In addition, this would ensure no data loss.
Google DriveTM[23] was selected to be the platform for collecting the data.

For each of the tools, four surveys were created per each team respectively. The data
collection lasted about one month, while the surveys for each tool were conducted every
ten days. First PAM was sent, then TAA and at last it was OPS.

Two subjects were requested to answer to the surveys first, in order to detect if there
were any questions which could cause confusion, but also to see how much time is needed
to complete a survey. Once the issues pointed out by the two subjects were fixed, the
surveys were sent to the rest of the company’s employees.

The links for the surveys were sent to the subjects early in the morning via email,
but they were asked to reply to them after lunch. The reasoning for this is that at the
beginning of the day the employees need to perform tasks which are usually important
and time-consuming, while they must have a clear mind and attend meetings. On the
contrary, after lunch, most of the employees try to relax by enjoying their coffee and
discussing with each other. That time of the day was considered to be the best in
order to ask them to spend 15-20 minutes and reply to the survey. The employees who
belonged to more than one teams were asked a couple of days later to take the other

18

3.3. DATA COLLECTION CHAPTER 3. RESEARCH METHODOLOGY

Table 3.2: Team A - Profile

Team Size 7

Roles

Team Leader (1)

Developers (3)

Testers (3)

Area Mobile

Tools Used
Perforce

Titanium

Iteration Length 2-3 weeks

Table 3.3: Team B - Profile

Team Size 6

Roles

Team Leader (1)

Developers (5)

Testers (1)

Area Java

Tools Used
Perforce

Eclipse IDE

Iteration Length 2-3 weeks

Table 3.4: Team C - Profile

Team Size 4

Roles

Team Leader (1)

Developers (2)

Testers (1)

Area Java

Tools Used
Perforce

Eclipse IDE

Iteration Length 3-4 weeks

Table 3.5: Team D - Profile

Team Size 19

Roles

Team Leader (1)

Developers (10)

Testers (8)

Area Java

Tools Used
Perforce

Eclipse IDE

Iteration Length 2-4 weeks

survey in order to verify that their answers matched in both surveys. Every question of
the surveys was mandatory. The participants were promised to remain anonymous.

As was mentioned in Chapter 2, PAM focuses on the following agile practices:
a) Iteration Planning b) Iterative Development c) Continuous Integration And Test-
ing d) Stand-Up Meetings e) Customer Access f) Customer Acceptance Tests g) Retro-
spectives h) Collocation. From the aforementioned practices, methodology A does not
support Stand-Up Meetings and Retrospectives. As a result, they were excluded from
the surveys.

TAA focuses on the following agile practices/areas: a) Product Ownership b) Release
Planning and Tracking c) Iteration Planning and Tracking d) Team e) Testing Practices
f) Development Practices/Infrastructure. From the above practices, methodology A does
not support Product Ownership, since it implies that Company A should implement
Scrum, which it does not. Moreover, Scrum-oriented questions from the rest of the
practices/areas were removed as well.

Finally, OPS focuses on the following strategies: a) Iterative progression b) Incre-

19

3.3. DATA COLLECTION CHAPTER 3. RESEARCH METHODOLOGY

mental development c) Short delivery cycles d) Evolutionary requirements e) Continuous
feedback f) Refactoring g) Test-first development h) Self-managing teams i) Continuous
integration j) Constant velocity k) Minimal documentation l) High bandwidth com-
munication m) Retrospection n) Client-driven iterations o) Distribution of expertise
p) Configuration management q) Adherence to standards.

From the above practices, methodology A does not support Retrospection. According
to the company’s policy, the retrospective meetings are to be attended only by two or
three people, that is, by people who were involved in the relevant event. According to
the director of the Greek office, it is considered that meetings with the whole team do not
have the desired results but rather the opposite, leading to more difficult communication
and loss of time.

As it was stated earlier, in subsection 2.2.11, OPS agility measurements are based
on three aspects: Adequacy, Capability and Effectiveness. Effectiveness measurement
focuses on how well a team implements agile methodologies. Since the rest of the tools
focus on the same thing, it was decided only to use the survey from Effectiveness and
not to take into account the Adequacy and Capability aspects.

For a clearer view on the questions contained in the surveys, one can take a look at
Appendices A, B and C.

The surveys for PAM, TAA and OPS were on a Likert scale 1-7 (never having done
what is asked by the question to always doing what is asked by the question). From
PAM, only the Collocation practice had its Likert scale 1-5 (team members being in
different time zones to being in the same room), since its creators preferred it this way.
For the transformation of the results to a Likert scale 1-7 for the Collocation practice,
the formula (3.1) [27] was used.

x2 = (1.5 ∗ x1) − 0.5 (3.1)

The employees who were asked to answer to the surveys where all members of the
software development teams, which consisted of software and quality assurance (QA)
engineers. All of the participating employees have been in the company for over a year
and most of them have more than five years of work experience in an agile environment.
Employees who had been working for less than six months in the company were not asked
to participate, since it was considered that they were not fully aware of the company’s
procedures or that they were not familiar enough with them. Although code review is
practised, we avoided asking the code reviewers to take the same survey for the same
team because it would not provide more value to the results. In addition, it might result
in making them lose the interest in replying to the surveys.

Each participant replied to 176 questions in total. Initially, 34 surveys were expected
to be filled in, but in the end, 30 of them were filled in, since some employees chose not
to participate.

20

3.4. DATA PREPARATION CHAPTER 3. RESEARCH METHODOLOGY

Table 3.6: Areas covered by TAA

TAA Areas

• Product Ownership

• Release Planning and
Tracking

• Iteration Planning and
Tracking

• Team

• Testing Practices

• Development Practices
/ Infrastructure

3.4 Data Preparation

A preparation was necessary in order to conduct the data analysis. All three tools have
different amount of questions and cover different practices. For this reason, we preferred
to do a grouping of the questions based on the practices/areas to which they belong. In
the following pages, we present a mapping between the questions used from the PAM
and TAA tools with the practices from OPP and the strategies from OPS.

Team Agility Assessment - Areas

Team Agility Assessment (TAA) does not claim that it covers specific agile practices,
but rather areas important for a team. It focuses on product ownership for Scrum teams
but also on the release, iteration planning and tracking. The team factor plays a great
role, as well as the development practices and the work environment. Automated testing
is important here as well. Finally, it is worth mentioning that it is the only tool focusing
to such an extent on the release planning. In Table 3.6, one can see TAA’s areas.

Perceptive Agile Measurement - Practices

The Perceptive Agile Measurement (PAM) tool focuses on the iterations during software
development, but also on the stand-up meetings for the team members, their collocation
and the retrospectives they have. The access to customers and their acceptance criteria
have a high importance as well. Finally, the continuous integration and the automated
unit testing are considered crucial in order to be agile. In Table 3.7, one can see PAM’s
practices.

21

3.4. DATA PREPARATION CHAPTER 3. RESEARCH METHODOLOGY

Table 3.7: Agile practices covered by PAM

PAM Practices

• Iteration Planning

• Iterative Development

• Continuous Integration and
Testing

• Collocation

• Stand-up Meetings

• Customer Access

• Customer Acceptance Tests

• Retrospectives

Objectives, Principles, Strategies (OPS) - Practices

Objectives, Principles, Strategies (OPS) Framework is the successor of the Objectives,
Principles, Practices (OPP) Framework [61]. OPP identified 27 practices as implemen-
tations of the principles which later on were transformed into 17 strategies. In Table 3.8,
one can see OPP’s practices.

Practices Covered Among The Tools

As can be clearly seen in Tables 3.6, 3.7 and 3.8, the OPP, and as a consequence the
OPS, covers more agile practices than the other tools. A mapping between OPP and
PAM (see Table 3.9) and OPP and TAA (see Table 3.10) follows on the subsequent pages.

We have abstracted some of the OPP practices to OPS strategies in order to avoid
repeating the mapping of the questions. These OPP practices are: a) Frequent Face-to-
Face Communication, b) Physical Setup Reflecting Agile Philosophy, and c) Collocated
Customers and we have abstracted them to the OPS strategy High-Bandwidth Commu-
nication [60, p. 57]. In the same way, we have abstracted the OPP Automated test builds
practice to the OPS strategy Continuous Integration [60, p. 57].

The connection between the practices and the strategies is done based on the ques-
tions of each tool. The aforementioned connections are depicted with symbols. When a
practice has more than one symbol, it is because it covers more practices from the other
tool.

Mapping of questions among tools

PAM has its questions divided on the basis of agile practices, while on the other hand,
TAA has divided them based on areas considered important. As one can see from the

22

3.5. DATA ANALYSIS CHAPTER 3. RESEARCH METHODOLOGY

Table 3.8: Agile practices covered by OPP

OPP Practices

• Iterative and Incremental Development

• Continuous Feedback

• Evolutionary Requirements

• Smaller and Frequent Product Releases

• Customer/User Acceptance Testing

• Frequent Face-to-Face Communication

• Refactoring

• Automated Test Builds

• Software Configuration Management

• Test Driven Development

• Iteration Progress Tracking and Re-
porting

• Code Ownership

• Retrospectives Meetings

• Just-in-Time Refinement of Features
/Stories/Tasks

• Appropriate Distribution of Expertise

• Self-Organizing Teams

• Client-Driven Iterations

• Product Backlog

• Agile Project Estimation

• Adherence to Coding Standards

• Physical Setup Reflecting Agile Philos-
ophy

• Daily Progress Tracking Meetings

• Minimal or Just Enough Documenta-
tion

• Minimal Big Requirements Up Front
and Big Design Up Front

• Collocated Customers

• Constant Velocity

• Pair Programming

tables above, while all practices/areas from PAM and TAA are mapped onto OPP and
OPS, not all of their questions are under OPP practices or OPS strategies. This can
be explained due to the different perception/angle that the creators of the tools have
and what is considered important for an organization/team to be agile. The detailed
mapping of the tools can be viewed in Appendix D.

3.5 Data Analysis

The data gathered from the surveys were grouped on the basis of the practices covered
by the OPP, and as a consequence, the OPS, as one can see in section 3.4. From the 18
practices in total, four of them, a) Minimal or Just Enough Documentation b) Customer

23

3.5. DATA ANALYSIS CHAPTER 3. RESEARCH METHODOLOGY

Table 3.9: Relation of OPP/OPS and PAM practices

PAM OPP/OPS

Iteration Planning 5

Iterative Development 3

Continuous Integration and Testing X

Collocation N

Stand-up Meetings H

Customer Access 2

Customer Acceptance Tests C

Retrospectives .

Iteration Progress Tracking and Reporting 5

Iterative and Incremental Development 5 3

Continuous Integration X

Software Configuration Management X

Test Driven Development X C

High-Bandwidth Communication 2 N

Daily Progress Tracking Meetings H

Client-Driven Iterations 2 5

Evolutionary Requirements C

Customer/User Acceptance Testing C

Retrospectives Meetings .

Self-Organizing Teams 5

User Acceptance Testing c) Evolutionary Requirements d) Constant Velocity, are covered
only by one tool. The rest of the practices were covered by at least two.

Convergent Validity Analysis

Since all the tools claim to be measuring agility and under the condition that convergent
validity exists among them, then, by definition, they should yield similar results. The
initial thought was to analyse the data for each team separately, but team A has such
a small number of members that the results would be inadequate to work with. As a
result, it was preferred to form the data sets for each practice based on the answers from
all the teams. In Table 3.11, one can see the structure of the collected data.

24

3.5. DATA ANALYSIS CHAPTER 3. RESEARCH METHODOLOGY

Table 3.10: Relation of OPP/OPS and TAA practices/areas

TAA OPP/OPS

Product Ownership N

Release Planning and Tracking H

Iteration Planning and Tracking 5

Team .

Testing Practices X

Development Practices/Infrastructure2

Iterative and Incremental Development N

Product Backlog N

Smaller and Frequent Product Releases H

Customer/User Acceptance Testing 5 H

Constant Velocity 5

Iteration Progress Tracking and Reporting5

Self-Organising Teams . H 5 2

Appropriate Distribution of Expertise .

High-Bandwidth Communication .

Daily Progress Tracking Meetings .

Retrospectives Meetings . 5 H

Test Driven Development X

Refactoring 2

Software Configuration Management 2

Adherence to Coding Standards 2

Pair Programming 2

Continuous Integration 2 X

25

3.5. DATA ANALYSIS CHAPTER 3. RESEARCH METHODOLOGY

Table 3.11: Collected Data Structure

Practice Participants PAM TAA OPS

Practice1

Participant1 Score1 Score1 Score1
...

...
...

...

ParticipantN ScoreN ScoreN ScoreN

In similar studies [18, 31], the correlation analysis was selected as the best way to
check similar tools and this was followed here as well. Based on the analysis for PAM,
TAA and OPS, which was performed in section 3.4, it is clear that OPS covers more
agile practices/areas. As a result, we decided to use the practices covered by each tool
and see if they correlate with the same practices from the other two tools. The idea is
based on the multitrait-multimethod matrix, presented by Campbell and Fiske [9]. The
matrix is the most commonly used way for providing construct validity. Since the data
are organised by practices and are gathered by different methodologies, we focus on
examining the monotrait-heteromethod correlations only. In Appendix D, one can see
how the questions are grouped based on the OPS practices. The data sets consist of the
answers which were sorted by team, as stated previously, and have the same order in all
practices (i.e. the nth answer in every practice is given by the same person).

RStudioTM[51] was selected for the mathematical calculations, because it has a wide
support from its community.

In order to select which correlation analysis method to choose from, the data were
checked so as to establish whether they had normal distribution or not. For this, the
Shapiro-Wilk test was selected, as it appears to be the most powerful normality test,
according to a recent paper published by Razali and Wah [49]. In order for a distribution
to be considered normal, the p-value must be greater than the alpha level, so as not to
reject the null hypothesis and consider that the data are normally distributed. The
chosen alpha level was 0.05, as it is the most common one.

Out of the 42 normality checks (three for each of the 14 practices), only 17 concluded
that the data are normally distributed. The low level of normally distributed data gave
a strong indication that the “Spearman’s rank correlation coefficient”, which is more
adequate for non-parametric data, was more appropriate to use, rather than the“Pearson
product-moment correlation”.

In order to use the ‘Spearman’s rank correlation coefficient”, two prerequisites must
be satisfied:

1. The two variables should be measured at the interval or ratio scale

2. There needs to be a monotonic relationship between the two variables

The first prerequisite was covered thanks to the Likert scale. In order to check for the
monotonicity, plots were drawn between the results of each tool for all 14 practices. The
plots surprisingly showed that only eight out of 42 were monotonic, which does not allow
the use of ‘Spearman’s rank correlation coefficient” for the rest of the plots. Table 3.12

26

3.5. DATA ANALYSIS CHAPTER 3. RESEARCH METHODOLOGY

summarizes the practices and the relationships which are monotonic, and for which the
‘Spearman’s rank correlation coefficient” can be used. The monotonic relationships are
marked in green, while the non-monotonic in red.

Direct Match Questions Analysis

At the beginning, we had to find which questions are the same among the tools. In
order to achieve this, the mapping described in section 3.4 was used. Afterwards, the
questions were checked one by one to identify the ones which had the same meaning.
When we finalized the groups of questions which were the same, we requested from the
same employees who were taking the pilot surveys to verify if they believed the groups
were correctly formed. Their answer was affirmative, so we continued by checking if the
answers of the subjects were the same. In order to depict the results, we used heatmaps
generated by RStudioTM[51]. Heatmaps were considered as ideal since the similarities
or differences in the colours would make it easier for the readers to see the results.

In Table 3.13, one can see the number of direct matches among the tools. Surprisingly,
OPS-TAA have 20 questions with the same meaning, while OPS-PAM and TAA-PAM
only four and three respectively. The direct match list of questions can be viewed in
Appendix E.

Table 3.13: Direct Match Questions Among Tools - Results

Direct Match Questions Results

OPS - TAA OPS - PAM TAA - PAM

20 4 3

In order to see if the results from the matches are correct, we decided to use a
statistical method. For the mathematical calculations, the RStudioTM[51] was used
again. In order to decide which statistical method to choose, the data were checked so
as to establish whether they had normal distribution or not. For this, the Shapiro-Wilk
test was used. The chosen alpha level was 0.05.

Out of the 35 normality checks (two for each group and three for one group), only 2
concluded that the data are normally distributed. Since the samples are also independent
(they do not affect one another), there is a strong indication that the “Mann–Whitney
U test” is the appropriate one.

In order to use the ‘Mann–Whitney U test”, three prerequisites must be satisfied:

1. Independent groups

2. Non-normal distribution of the data

3. Homoscedasticity

Since the first two prerequisites were already satisfied, we checked if the samples are
indeed homogeneous.

27

3.5. DATA ANALYSIS CHAPTER 3. RESEARCH METHODOLOGY

Table 3.12: Monotonic Relationships

Adherence to Standards

• PAM-TAA
• PAM-OPS
• TAA-OPS

Appropriate Distribu-
tion of Expertise

• PAM-TAA
• PAM-OPS
• TAA-OPS

Client Driven Iterations

• PAM-TAA
• PAM-OPS
• TAA-OPS

Continuous Feedback

• PAM-TAA
• PAM-OPS
• TAA-OPS

Continuous Integration

• PAM-TAA
• PAM-OPS
• TAA-OPS

High Bandwidth Com-
munication

• PAM-TAA
• PAM-OPS
• TAA-OPS

Iteration Progress
Tracking

• PAM-TAA
• PAM-OPS
• TAA-OPS

Iterative and Incremen-
tal Development

• PAM-TAA
• PAM-OPS
• TAA-OPS

Product Backlog

• PAM-TAA
• PAM-OPS
• TAA-OPS

Refactoring

• PAM-TAA
• PAM-OPS
• TAA-OPS

Self Organizing Teams

• PAM-TAA
• PAM-OPS
• TAA-OPS

Smaller and Frequent
Releases

• PAM-TAA
• PAM-OPS
• TAA-OPS

Software Configuration
Management

• PAM-TAA
• PAM-OPS
• TAA-OPS

Test Drive Development

• PAM-TAA
• PAM-OPS
• TAA-OPS

Constant Velocity

• PAM-TAA
• PAM-OPS
• TAA-OPS

Minimal or Just Enough
Documentation

• PAM-TAA
• PAM-OPS
• TAA-OPS

Customer User Accep-
tance Testing

• PAM-TAA
• PAM-OPS
• TAA-OPS

Evolutionary Require-
ments

• PAM-TAA
• PAM-OPS
• TAA-OPS

28

3.6. CHAPTER SUMMARY CHAPTER 3. RESEARCH METHODOLOGY

For the group G3 (“Smaller And Frequent Product Releases”), we used the“Kruskal–Wallis
one-way analysis of variance”method, which is the respective statistical method for more
than two groups.

The hypothesis in both cases was:

H0: There is no difference between the groups of the same questions

H1: There is a difference between the groups of the same questions

Tools’ Agile Practices Coverage Analysis

During the last years, Laurie Williams conducted two case studies [40, 72] concerning
the agile practices which are highly praised by practitioners. We picked out the most
popular of them in order to see at what extent the tools cover practices that are essential
for software development in the industry. For identifying which practices from the case
studies apply to the three tools, we used the analysis made in Appendix D. In the relevant
analysis, all questions were separated based on the agile practice which they belonged
to.

3.6 Chapter Summary

In this chapter we presented the research questions, the research methodology followed,
as well as the data collection and analysis performed for the needs of this case study. The
answers to the surveys given by the respondents were grouped into agile practices, and
based on them, we tried to establish convergent validity. Furthermore, we analysed if
the same questions which we identified across the three tools received the same answers
by the respondents. Finally, we checked to what extent do the tools cover agile practices.
The above actions were taken in order to see if the PAM, TAA and OPS will yield similar
results.

29

4
Results

T
his chapter presents the outcomes of the case study conducted in Company A.
We present the results of the monotrait-heteromethod correlations which deal
with establishing convergent validity, along with the results of the direct match
questions whose aim is to check if the respondents gave the same answers.

As it was seen in the previous chapter, only eight out of 42 plots were monotonic. The
monotrait-heteromethod correlations are presented in the following pages. In Table 4.7,
one can see that half of the correlations are between PAM and OPS. In addition, we can
clearly see in Table 4.3 that we have a negative correlation for eight monotonic plots.
Moreover, the tables 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 allow us to see a more interesting
result than the correlations. This is the non-existence of monotonicity in the other 34
relationships, which leads us to the conclusion that there is little convergence among
the tools. This is surprising because tools claiming to measure the same thing should
converge.

4.1 Correlation Results

Table 4.1: Continuous Feedback Cor-
relations

Continuous Feedback

PAM TAA OPS

PAM 1.000 NA 0.459

TAA NA 1.000 NA

OPS 0.459 NA 1.000

Table 4.2: Client Driven Iterations
Correlations

Client Driven Iterations

PAM TAA OPS

PAM 1.000 NA 0.161

TAA NA 1.000 NA

OPS 0.161 NA 1.000

30

4.1. CORRELATION RESULTS CHAPTER 4. RESULTS

Table 4.3: High Bandwidth Commu-
nication Correlations

High Bandwidth Communication

PAM TAA OPS

PAM 1.000 0.322 -0.023

TAA 0.322 1.000 0.237

OPS -0.023 0.237 1.000

Table 4.4: Refactoring Correlations

Refactoring

PAM TAA OPS

PAM 1.000 0.097 -0.050

TAA 0.097 1.000 0.181

OPS -0.050 0.181 1.000

Table 4.5: Continuous Integration
Correlations

Continuous Integration

PAM TAA OPS

PAM 1.000 0.398 0.249

TAA 0.398 1.000 0.115

OPS 0.249 0.115 1.000

Table 4.6: Iterative and Incremental
Development Correlations

Iterative and Incremental Development

PAM TAA OPS

PAM 1.000 0.204 0.396

TAA 0.204 1.000 -0.228

OPS 0.396 -0.228 1.000

Table 4.7: Frequency of correlation between tools

Frequency

PAM-OPS 4

PAM-TAA 3

TAA-OPS 1

In Table 4.8, one can see the descriptive statistics of the data gathered.

Table 4.8: Surveys Descriptive Statistics

Practice Statistics PAM TAA OPS Practice Statistics PAM TAA OPS

Adherence
to Stan-
dards

Mean

Sd

Median

Min

Max

1.00

0.00

1

1

1

11.67

2.17

12

7

14

8.10

2.12

8

6

12

Appropriate
Distribu-
tion of
Expertise

Mean

Sd

Median

Min

Max

1.00

0.00

1.0

1

1

11.13

2.10

11.5

6

14

27.20

3.51

27.0

21

35

31

4.1. CORRELATION RESULTS CHAPTER 4. RESULTS

Table 4.8: Surveys Descriptive Statistics

Practice Statistics PAM TAA OPS Practice Statistics PAM TAA OPS

Client-
Driven
Iterations

Mean

Sd

Median

Min

Max

8.63

3.20

8.5

3

14

1.00

0.00

1.0

1

1

13.87

2.78

14.0

9

21

Continuous
Feedback

Mean

Sd

Median

Min

Max

4.87

1.25

5.0

2

7

1.00

0.00

1.0

1

1

9.20

1.88

9.5

5

14

Continuous
Integration

Mean

Sd

Median

Min

Max

21.97

4.40

21.0

11

31

24.13

3.82

24.5

16

31

48.10

4.23

48.5

40

56

High-
Bandwidth
Communi-
cation

Mean

Sd

Median

Min

Max

36.73

4.11

38

29

42

22.87

3.25

23

13

28

60.30

5.69

60

51

75

Iteration
Progress
Track-
ing and
Reporting

Mean

Sd

Median

Min

Max

21.67

6.42

22.5

8

35

71.73

15.62

72.5

40

100

31.73

1.55

32.0

27

35

Iterative
and In-
cremental
Develop-
ment

Mean

Sd

Median

Min

Max

27.10

2.71

27.0

22

34

8.43

2.11

8.5

4

13

14.47

2.13

15.0

11

18

Product
Backlog

Mean

Sd

Median

Min

Max

1.00

0.00

1.0

1

1

4.97

0.85

5.0

3

6

15.80

2.14

15.5

12

19

Refactoring

Mean

Sd

Median

Min

Max

2.03

0.85

2.0

1

4

10.80

2.27

11.0

6

14

20.67

3.66

20.5

14

28

Self-
Organizing
Teams

Mean

Sd

Median

Min

Max

3.6

1.19

3.5

2

6

62.9

6.57

63.0

48

75

36.5

5.20

37.0

26

45

Smaller
and Fre-
quent
Product
Releases

Mean

Sd

Median

Min

Max

5.6

1.19

6

2

7

5.8

0.81

6

4

7

24.8

1.24

25

22

28

32

4.1. CORRELATION RESULTS CHAPTER 4. RESULTS

Table 4.8: Surveys Descriptive Statistics

Practice Statistics PAM TAA OPS Practice Statistics PAM TAA OPS

Software
Config-
uration
Manage-
ment

Mean

Sd

Median

Min

Max

1

0

1

1

1

7

0

7

7

7

7

0

7

7

7

Test
Driven
Develop-
ment

Mean

Sd

Median

Min

Max

10.90

2.90

10.5

6

17

6.57

3.28

6.0

3

15

9.10

1.97

9.0

6

13

Minimal
or Just
Enough
Documen-
tation

Mean

Sd

Median

Min

Max

1.0

0.00

1

1

1

1.0

0.00

1

1

1

17.8

3.16

18

10

23

Customer
User Ac-
ceptance
Testing

Mean

Sd

Median

Min

Max

17.37

7.04

17.5

5

33

1.00

0.00

1.0

1

1

1.00

0.00

1.0

1

1

Evolutionary
Require-
ments

Mean

Sd

Median

Min

Max

1.00

0.00

1

1

1

1.00

0.00

1

1

1

20.13

2.21

20

17

25

Constant
Velocity

Mean

Sd

Median

Min

Max

1.00

0.00

1

1

1

5.93

1.01

6

4

7

1.00

0.00

1

1

1

In Continuous Feedback, PAM and OPS have a moderate positive correlation of ρ =
0.459. Both tools focus on getting feedback from the customer, while OPS also checks
whether the product is developed according to the customer’s needs and expectations.

In Client-Driven Iterations, PAM and OPS have a low positive correlation of ρ =
0.161. Both tools check for the possibility of the requirements having been prioritized
by the customer, while OPS additionally focuses on the customers’ requests and needs.

In Continuous Integration, PAM and OPS have a low positive correlation of ρ =
0.249. The common areas are continuous builds, multiple submits and story acceptance.
There is a small difference regarding whether the developers should sync to the latest
available code that is supported by the PAM.

In Iterative and Incremental Development, PAM and OPS have a low positive corre-
lation of ρ = 0.396. The OPS focuses on the stories estimation and prioritization, while
PAM on the deadlines that have to be meet and on the software progress.

In High Bandwidth Communication, PAM and TAA have a low positive correlation
of ρ = 0.322. Both of them check for the team collocation, while TAA also checks for
the communication with the customers. PAM and OPS surprisingly have a correlation

33

4.2. DIRECT MATCH RESULTS CHAPTER 4. RESULTS

of ρ = -0.023, which means that there is no correlation at all. They both focus on the
communication, but OPS does that to a huge extent, leading to this result. In addition,
OPS checks for effectively using the time for meetings. TAA and OPS have a positive
correlation of ρ = 0.237. It is worth mentioning that this is the only practice for which
correlation can be calculated across the tools.

In Refactoring, PAM and TAA have a correlation of ρ = 0.097, which means there is
almost no correlation at all. TAA focuses on continuous refactoring, while on the other
hand, PAM focuses on the unit testing for refactoring.

4.2 Direct Match Questions Results

The groups of direct match questions showed some unexpectedly amazing results. One
would expect that questions which are considered to be the same would yield the same
results. On the contrary, this did not happen for any of the question groups, apart from
group G13. The heatmaps (see Appendix G) which were generated by the answers made
it crystal clear that the respondents’ answers resulted in different scores.

Table 4.9: Frequency of Same Answers

Group Frequency Group Frequency Group Frequency

G1 12 G2 9 G3 7

G4 8 G5 12 G6 16

G7 13 G8 12 G9 10

G10 13 G11 19 G12 16

G13 30 G14 18 G15 13

G16 12 G17 6

Table 4.9 displays the group of questions and the frequency of the same answers
given by the respondents. As it can be seen, G13 is the only group of questions to
which all the respondents gave the exact same answer (the maximum is 30). G13 is
about the existence of software control management and Company A uses version control
management software for every single line of code written. On the other hand, G17,
which is about backlog prioritization, had the lowest score with only six respondents
giving the same answer. The maximum difference in answers was up to two likert-scale
points. For a better view of the results, one can see the heatmaps in Appendix G.

As far as the results from the “Mann–Whitney U test” and “Kruskal–Wallis one-way
analysis of variance” are concerned, the p-values are presented in Table 4.10. As it can
be seen, the p-values from the majority of the groups are more than the alpha level of
0.05. As a result, we cannot reject the H0 hypothesis (There is no difference between
the groups of the same questions). On the other hand, the p-value of group G13 cannot
be computed, since all the answers are the same, while for the groups G6 and G16 the

34

4.3. PRACTICES’ COVERAGE RESULTS CHAPTER 4. RESULTS

p-value is below the alpha level which means that the H0 hypothesis can be rejected.
Nevertheless, as it is was presented in Table 4.9, many of the respondents gave different
answers to the same question, thus, we consider the results of the “Mann–Whitney U
test” and the “Kruskal–Wallis one-way analysis of variance” as non-significant.

Table 4.10: P-Values of Same Questions Results

Group p-value Group p-value Group p-value

G1 0.5271 G2 0.2404 G3 0.3837

G4 0.6715 G5 0.503 G6 0.01523

G7 0.1654 G8 0.2984 G9 0.1865

G10 0.6893 G11 0.3246 G12 0.2246

G13 NA G14 1 G15 0.4957

G16 0.0007 G17 0.0522

4.3 Tool’s Agile Practices Coverage Results

One can see in Table 4.11 how many questions from each tool belong to each agile
practice. TAA has eight questions which do not belong to any agile practice, since those
refer to product ownership. OPS covers 18 agile practices, while TAA 15 and PAM 13.
The agile practices which were found relevant to the case studies [40, 72] were marked

with the sign .in the same table.
When it comes to the number of practices covered by the tools, OPS comes first,

second is TAA and PAM comes third. On the other hand, when it comes to the number
of questions that exist for top agile practices from the case studies [40, 72], then TAA
comes first with 52 questions, second OPS with 49 questions and PAM ranks third with
26 questions. Table 4.12 summarizes the results.

4.4 Chapter Summary

In this chapter, we presented the results of the surveys answered by Company A’s em-
ployees. As it was seen, there are very few and very low correlations among the agile
practices. Moreover, many of them did not have a monotonic relationship. This fact
indicates that convergent validity cannot be established. In addition, questions which
we identified to be the same from the three tools did not always have the same answer
from the respondents. Finally, we showed that OPS covers more agile practices, while
TAA has more questions for the agile practices it covers, compared with the rest of the
tools.

35

4.4. CHAPTER SUMMARY CHAPTER 4. RESULTS

Table 4.11: Agile Practices Coverage By Tools

Practice TAA PAM OPS

Iterative and Incremental Development 2 5 3

Product Backlog . 2 3

Smaller and Frequent Product Releases . 1 1 4

Customer/User Acceptance Testing 5

Constant Velocity . 1

Iteration Progress Tracking and Reporting . 17 5 5

Self-Organizing Teams . 11 1 7

Appropriate Distribution of Expertise 2 5

High-Bandwidth Communication 4 8 13

Daily Progress Tracking Meetings . 1 5 1

Retrospective Meetings . 5 6 4

Test Driven Development . 3 3 4

Refactoring . 2 1 4

Software Configuration Management . 1 1

Adherence to Standards . 3 2

Continuous Integration . 5 5 10

Client-Driven Iterations 2 3

Minimal or Just Enough Documentation 4

Continuous Feedback 1 2

Evolutionary Requirements . 4

None 8

Table 4.12: Summary Of Agile Practice’s Coverage

Ordered by practices Ordered by questions

OPS (18) TAA (52)

TAA (15) OPS (49)

PAM (13) PAM (26)

36

5
Enhancing OPS

This chapter makes an effort to combine PAM, TAA and OPS in a more enhanced tool,
based on OPS’s structure. As it was discussed in section 3.4, OPP, and subsequently

OPS, covers all the practices and areas of both PAM and TAA. As a result, we consider
that by combining these three tools we will end up with a tool that covers the agile
practices to a wider extent.

5.1 OPS Enhancement

The combination of the tools took place based on the analysis performed in section 3.4
and section 4.3. Since OPS covers more agile practices, we chose to keep it as it is and
enhance it with the questions from PAM and TAA, which have been transformed to
match the style of OPS.

Although this case study used only the “Effectiveness” survey from OPS, we chose
to enhance the “Capability” part as well, since some of the PAM and TAA questions fit
there more.

5.1.1 Questions Excluded

The questions excluded belong only to TAA. Most of them were referring to product
ownership and were needless, since OPS focuses on measuring teams practising agile
development methods like eXtreme Programming [5], Crystal [13], First Driven Devel-
opment [43] and not agile project management methods like Scrum [55]. The other ques-
tions excluded were about iteration defects being fixed within the iteration. Although a
software without defects is always welcome, trying to mitigate all of them throws away
some of the team’s agility, since the release could be delayed. Defects should be fixed
within the iteration period, but if they are of low importance they should not be a stop-
per for releasing, since the most important goal of agility is to deliver the product to the
customer.

37

5.2. CHAPTER SUMMARY CHAPTER 5. ENHANCING OPS

5.1.2 Questions Added

The questions which already existed in OPS remained as they were, apart from the
question “To what extent are the code bases not shared”, which was changed since we
consider that for achieving Continuous Integration, the developers should be synced
to the latest code available. The questions which were added were formulated and
positioned under the appropriate OPS indicator. When an indicator did not cover the
questions added, a new one was created. The OPS questions follow the pattern of
starting a question with the phrase “To what extent . . . ”. The same pattern was used
in the additional questions. In Table 5.1, one can see the number of indicators and
questions added.

Table 5.1: Summary of Indicators and Questions Added

Indicators Introduced Questions Introduced

Capability 3 7

Effectiveness 9 46

In total, 11 indicators and 53 questions were introduced. The questions did not exist
in OPS and they cover a variety of aspects which were considered important by the
creators of PAM and TAA. The OPS now has 46 indicators and 77 questions in total
for “Capability” and 45 indicators and 126 questions for “Effectiveness”. Although OPS
supports 17 strategies, and “Velocity” is one of them, it was not used in the surveys.
On the contrary, questions in PAM and TAA supported this strategy, thus it was added
to both “Capability” and “Effectiveness”. In Table 5.2, one can see in more detail the
numbers of indicators and questions for each strategy. In Appendix H, one can see the
enhanced version of OPS. Below is the list of symbols that describe the type of addition.

• strategy addition - J

• indicator addition - =

• question addition - 8

5.2 Chapter Summary

In this chapter, there was an effort to enhance OPS with questions from PAM and
TAA. The questions added cover OPS’s weaknesses. After the changes, OPS has 46
indicators and 77 questions in total for “Capability” and 45 indicators and 126 questions
for “Effectiveness”.

38

5.2. CHAPTER SUMMARY CHAPTER 5. ENHANCING OPS

Table 5.2: Numbers of indicators and questions in the enhanced OPS

Strategy
Capability Effectiveness

No. of In-
dicators

No. of
Questions

No. of In-
dicators

No. of
Questions

Iterative Progression 3 4 4 18

Incremental Development 3 4 2 8

Short Delivery Cycles 1 1 3 4

Evolutionary Requirements 3 4 3 5

Continuous Feedback 2 2 3 5

Distribution of Expertise 1 3 1 6

Test-first development 3 5 3 5

Refactoring 3 9 2 7

Adherence to standards 5 6 2 3

Continuous Integration 4 10 4 15

Configuration Management 2 6 1 1

Minimal Documentation 3 3 1 4

High bandwidth Communi-
cation

4 9 5 21

Self-Managing Teams 5 6 4 9

Client-driven Iterations 1 2 3 4

Retrospection 2 2 3 10

Velocity 1 1 1 1

Total 46 77 45 126

39

6
Discussion

T
his chapter analyses the reasons behind the results presented in Chapter 4 and
provides answers to the research questions (RQ) tabled in Chapter 3. Finally,
it concludes with the presentation of validity threats and how these were mit-
igated while conducting this case study.

6.1 Answers to Research Questions

6.1.1 RQ#1 - Will PAM, TAA and OPS yield similar results?

The plots in Appendix F showed an unexpected and very interesting result. Not only
do the tools lack a correlation, but they do not even have a monotonic relationship
when compared to each other for the agile practices covered (see Table 3.12), resulting
in absence of convergent validity. This could indicate two things. The first one is that
the results are random and the second one is that all three of the tools measure agility
differently.

As far as the aspect of the correlation results being random is concerned, there is a
possibility that this is true. Maybe another approach on forming the data samples could
provide different results, but the approach followed was evaluated as the most suitable
at the beginning of the study.

On the other hand, the absence of monotonicity and the negative or extremely low
correlations show that the questions used by the tools in order to cover an agile practice
do it differently as well as that PAM, TAA and OPS measure the agility of software
development teams in their own unique way. Each of the tools was constructed and
statistically validated during the development by its creators who had the agile concept
in mind, but apparently, they followed a different path in order to accomplish creating a
tool for measuring agility. This is quite clear by looking into the different ways in which
each practice is covered (see Appendix D), while many of the questions have a different
perspective on measuring a practice, although they focus on the same one.

40

6.1. ANSWERS TO RESEARCH QUESTIONS CHAPTER 6. DISCUSSION

As it was explained in section 4.2, almost all groups had different responses to the
same questions. This could be due to two reasons. The first one is that the groups of
direct match questions were not correctly formed and the second one is that the people
have the tendency to judge a question differently. With regards to the aspect of the
groups of direct match questions not being correctly formed, it seems that this has a
low probability due to the fact that the questions were verified by the employees at the
onset of the survey, as mentioned in section 3.5. On the other hand, according to Lacy
and Lewis [35], survey respondents tend to give different answers to the same questions
even weeks apart, something which is a common issue in surveys.

With regards to the question“Does convergent validity exist among the tools?”,
we showed that convergent validity could not be established due to the low (if existing)
correlations among the tools.

Concerning the question“Will the questions that are exactly the same among
the tools yield the same results?”, we saw that a considerable amount of respondents’
answers were different.

As far as the question“What is the coverage of agile practices among tools?”
is concerned, we saw that the tools did not cover the agile practices at the same level,
neither in terms of questions plethora nor concerning the number of agile practices.

PAM was validated with hundreds of subjects, while TAA has been used by many
companies and OPS has been used in case studies as well. Nevertheless, we conclude that
PAM, TAA and OPS do not yield similar results, although they should. The reasons for
this unexpected phenomenon are explained in the following paragraphs.

Few or no questions for measuring a practice

A reason for not being able to calculate the correlation of the tools is that they cover
slightly or even not at all some of the practices. An example of this is the Smaller
and Frequent Product Releases practice. OPS includes four questions, while on the other
hand, PAM and TAA have a single question each. Furthermore, Appropriate Distribution
of Expertise is not covered at all by PAM, while it is covered by the rest of the tools.
In case the single question gets a low score, this will affect how effectively the tool will
measure an agile practice. On the contrary, multiple questions can better cover the
practice by examining more factors that affect it. Apart from measuring a practice more
precisely, this also has the benefit that even if one question gets a low score, the rest of
them are candidates for getting a higher one.

The same practice is measured differently

Something very interesting that came up during the data analysis was that although
the tools cover the same practices, they do it in different ways, leading to different
results. An example of this is the practice of Refactoring (check figure F.10). PAM
checks whether there are enough unit tests and automated system tests to allow the safe
code refactoring. In case the course unit/system tests are not developed by a team, the
respondents will give low scores to the question, as the team members in Company A

41

6.1. ANSWERS TO RESEARCH QUESTIONS CHAPTER 6. DISCUSSION

did. Nevertheless, this does not mean that the team never refactors the software or that
it does it with bad results. All teams in Company A choose to refactor when it adds
value to the system, but the level of unit tests is very low and they exist only for specific
teams. On the other hand, TAA and OPS check how often the teams refactor, among
other factors.

The same practice is measured in opposite questions

The Continuous Integration practice has a unique paradox among TAA, PAM and OPS.
The first two tools include a question about the members of the team having synced to
the latest code, while OPS checks for the exact opposite. According to Soundararajan
[60], it is preferable for the teams not to share the same code in order to measure
the practice. It is quite doubtful though how correct this question can be, since the
Continuous Integration requires frequent submits from the developers and thus the rest
of the team will also have a local version of the code.

Questions phrasing

Although the tools might cover the same areas for each practice, the results could differ
because of how a question is structured. An example of this is the Test Driven Develop-
ment practice. Both TAA and PAM ask about automated code coverage, while OPS just
asks about the existence of code coverage. Furthermore, TAA focuses on 100% automa-
tion, while PAM does not. Thus, if a team has code coverage but it is not automated,
then the score of the respective question should be low. In case of TAA, if the code
coverage is not fully automated, its score should be even lower. It is evident that the
abstraction level of a question has a great impact. The more specific it is, the more a
reply to it will differ, resulting in possible low scores.

Survey answering

According to Wagner and Zeglovits [70], survey responses are affected mainly by two
factors. One of them is the comprehension of a question and the other one is the judge-
ment of a question. Although all respondents were free to ask about any question they
did not understand, there is always the possibility that, for their own reasons, they pre-
ferred not to do so, a fact that might result in misunderstanding of a question’s meaning.
Moreover, the judgement of a person is extremely subjective, which can lead to different
approaches in giving an answer. Furthermore, Fowler [21] argues that respondents can
also answer to a question in a way that they will look good to the person reading the
answers, a statement in which Feldt et al. [20] also agree.

Better understanding of agile concepts

In pre-post studies there is a possibility of the subjects becoming more aware of a prob-
lem in the second test due to the first test [10]. Although the testing threat, as it is
called, does not directly apply here, the similar surveys on consecutive weeks could have

42

6.1. ANSWERS TO RESEARCH QUESTIONS CHAPTER 6. DISCUSSION

enabled the respondents to take a deeper look into the agile concepts, resulting in better
understanding of them, and consequently, providing different answers to the surveys’
questions.

How people perceive agility

Although the concept of agility is not new, people do not seem to fully understand
it, as Conboy and Wang [16] also mention. This is actually the reason behind the
existence of so many tools in the field which are trying to measure how agile the teams
are or the methodologies used. The teams implement agile methodologies differently
and researchers create different measurement tools. There are numerous definitions
of what agility is [32, 33, 41, 48], and each of the tool creators adopt or adapt the
tools to match their needs. Their only common basis is the agile manifesto [7] and its
twelve principles [6], which are (and should be considered as) a compass for the agile
practitioners. Nevertheless, they are not enough and this resulted in the saturation of
the field. Moreover, Conboy and Fitzgerald [15] state that the agile manifesto principles
do not provide practical understanding of the concept of agility. Consequently, all the
reasons behind the current survey results are driven by the way in which tool creators
and tool users perceive agility.

The questions in the surveys were all based on how their creators perceived the agile
concept which is quite vague, as Tsourveloudis and Valavanis [68] have pointed out. As
the reader has seen in previous chapters, PAM, TAA and OPS focus on some common
areas/practices, such as Smaller and Frequent Product Releases and High-Bandwidth
Communication, while many are different. None of the Soundararajan [60], So and Scholl
[59], Leffingwell [37] claimed, of course, to have created the most complete measurement
tool, but still, this leads to the oxymoron that the tools created by specialists to measure
the agility of software development teams actually do it differently and without providing
substantial solution to the problem. On the contrary, this leads to more confusion for
the agile practitioners who are at their wits’ end.

Considering that the researchers and specialists in the agile field perceive the concept
of agility differently, it would be naive to say that the teams do not do the same. The
answers to surveys are subjective and people reply to them depending on how they
understand them. Ambler [1] had commented the following “I suspect that developers
and management have different criteria for what it means to be agile”, which shows that
people do not see eye to eye. This is also corroborated by the fact that, although a
team works at the same room and follows the same processes for weeks, it is rather
unlikely that its members will have the same understanding of what a retrospection or
a releasing planning meeting means to them, a statement which is also supported by
Murphy et al. [40]. This fact is not only mentioned by Thomas [66], but also supported
by the statement that “no two teams should be doing agile the same way”.

43

6.2. THREATS TO VALIDITY CHAPTER 6. DISCUSSION

6.1.2 RQ#2 - Can the tools be combined in a way that will provide a
better approach in measuring agility?

We have created an enhanced version of OPS with the questions which existed only in
PAM and TAA. Although the new tool has not been used and validated, we believe
that the results should only be better considering the larger agile area covered by the
additional questions. On the other hand though, more questions imply more effort and
time from the respondents to spend, which could lead to the opposites results than the
desired ones. In Appendix H, one can see the enhanced version of OPS.

6.2 Threats to Validity

6.2.1 Construct Validity

Construct validity mainly deals with obtaining the right method for the concept under
study [75]. We consider that the construct validity concerning the surveys given to
the subjects was already handled by the creators of the tools which were used in this
Master’s Thesis. Our own construct validity lies in establishing the convergent validity
in the chapters throughout this document. The small sample of subjects was the biggest
threat in establishing convergent validity, making the results very specific to Company A
itself. A future work on this topic should be performed in another company to mitigate
this threat. In order to avoid mono-method bias, some employees were asked to fill in
the surveys first so as to detect any possible issues with them. All the subjects were
promised to remain anonymous, resulting in mitigating the evaluation apprehension [75].

6.2.2 Internal Validity

Internal validity deals with the issues that may affect the casual relationship between
treatment and results [75]. The creators of PAM, TAA and OPS have already tried to
mitigate this when creating their tools. Yet, there are still some aspects of internal valid-
ity, such as selection bias maturation and testing effect. With regard to maturation, this
concerns the fatigue and boredom of the respondents. Although the surveys were small
in size and did not require more than 15-20 minutes each, still the similar and possibly
repetitive questions on the topic could cause fatigue and boredom to the subjects. This
could result in the participants giving random answers to the survey questions. The
mitigation for this threat was to separate the surveys and conduct them during three
different periods. In addition, the respondents could stop the survey at any point and
continue whenever they wanted. As far as the testing effect is concerned, this threat
could not be mitigated. The testing effect threat applies to pre-post design studies only,
but due to the same topic of the surveys, the subjects were to some extent more aware
of what questions to expect in the second and third survey. Finally, selection could not
be mitigated as well, since the case study focused on a specific company only.

44

6.2. THREATS TO VALIDITY CHAPTER 6. DISCUSSION

6.2.3 Conclusion Validity

Conclusion validity concerns the possibility of reaching a wrong conclusion [75]. Al-
though the questions of the surveys have been carefully phrased by their creators, still
there may be uncertainty about them. In order to mitigate this, for each survey a pilot
one was conducted to spot any questions which would be difficult to understand. In
addition, the participants could ask the author of this Master’s Thesis about any issue
they had concerning the survey questions. Finally, the statistical tests were run only
for the data that satisfied the prerequisites, with the aim to mitigate the possibility of
incorrect results.

6.2.4 External Validity

External validity deals with the ability to generalize the outcomes of the case study [75].
This Master’s Thesis was conducted in collaboration with one company and 30 subjects
only. Consequently, it is hard to generalize the outcomes. Nevertheless, we believe that
any researcher replicating the case study in another organization with teams which follow
the same agile practices as those used in Company A and identified in Table 3.1, should
have similar results.

6.2.5 Reliability

Reliability validity concerns the dependence of the data and the analysis on the specific
researchers [75]. To enable other researchers to conduct a similar study, the steps fol-
lowed have been described and the reasons for the decisions made have been explained.
Furthermore, all the data exist in digital format which can be provided to anyone who
wants to review them. The presentation of the findings could be probably threatened
by the author’s experience. In order to mitigate this, the findings were discussed with a
Company A employee who did not participate in the case study.

45

7
Conclusions and Future Work

7.1 Conclusions

This Master’s Thesis contributed to the area of measuring the agility of software devel-
opments teams. This contribution can be useful for the research community, but mostly
for the practitioners. We provided evidence that tools claiming to measure agility do
not yield similar results. The expertise of the tool creators is unquestionable, but never-
theless, their perception of agility and their personal experience has led them to create
a tool in the way they consider more appropriate. A measurement tool which satisfies
the needs of one team may not be suitable for other teams. This derives not only from
the team’s needs but also from the way it transitioned to agile. We should not forget
that a team can be considered agile up to a point, under the condition that it uses even
only one agile practice. There is still work to be done in order to find a universal tool
for measuring agility. Finally, we believe that it does not really matter how agile a team
is, as long as the company is viable and the customers and employees are satisfied.

7.2 Future Work

It would be very interesting to see the results of a study that would be conducted in more
companies, in order to compare them to the results of the present study. In addition,
another way of forming the data samples could indicate different results, which is worth
looking into. Moreover, future work in the field could check for establishing convergent
validity among other agility measurement tools which were presented in Chapter 2. Fi-
nally, the enhancements made in OPS (Chapter 5) should be validated to check whether
they provide a better approach to measuring agility or not.

46

Appendices

47

A
Objectives Principles Strategies -

Effectiveness

The items marked with %are the ones not included in the surveys to the teams.

• Refactoring

– Minimizing Technical Debt

∗ To what extent do the teams manage technical debt?

∗ To what extent do the teams minimize technical debt when developing
new systems?

∗ To what extent does the system and the development environment allow
Technical Debt to be minimized?

– Buy-in for Refactoring

∗ To what extent does the management support the implementation of
refactoring?

∗ To what extent do the teams implement refactoring?

• Test First Development

– Code coverage

∗ To what extent did the developers provide adequate code coverage from
the tests?

– Customer Satisfaction

∗ To what extent is the product developed so far in-sync with the customers’
needs and expectations?

48

APPENDIX A. OBJECTIVES PRINCIPLES STRATEGIES - EFFECTIVENESS

– Testing first

∗ To what extent do developers write tests first before writing code?

∗ To what extent are the test plans created before the developers start
coding?

• Distribution of expertise

– Process Outcomes for Distribution of Expertise

∗ To what extent do the team members have the requisite expertise to
complete the tasks assigned to them?

∗ To what extent is the work assigned to the team members commensurate
with their expertise?

∗ To what extent does the team effectively complete the work that they
have committed to?

∗ To what extent do the teams have members in leadership positions that
can guide the others?

∗ To what extent do the teams not rely on knowledge external to their
teams?

• Configuration Management

– Project Environment for Configuration Management

∗ To what extent do teams use appropriate tools for version control and
management?

• Adherence to standards

– Estimation

∗ To what extent are the estimates for the amount of work to be done
during each iteration accurate?

– Coding Standards

∗ To what extent do the team members agree with the set coding standards?

∗ To what extent do the team members adhere to the set coding standards?

• Continuous Integration

– Project Environment for Continuous Integration

∗ To what extent are automated test suites developed?

∗ To what extent are the code bases not shared?

– Story Completeness

∗ To what extent has each story been coded?

∗ To what extent has each story been unit tested?

49

APPENDIX A. OBJECTIVES PRINCIPLES STRATEGIES - EFFECTIVENESS

∗ To what extent has each story been refactored?

∗ To what extent has each story been checked into the code base?

∗ To what extent has each story been integrated with the existing code
base?

∗ To what extent has each story been reviewed?

∗ To what extent has each story been accepted by the customer?

– Daily/Frequent builds

∗ To what extent do automated builds run one or more times everyday?

• Self-managing teams

– Team Empowerment

∗ To what extent do the team members determine the amount of work to
be done?

∗ To what extent do the team members take ownership of work items?

∗ To what extent do the team members hold each other accountable for the
work to be completed?

∗ To what extent do the team members ensure that they complete the work
that they are accountable for?

– Autonomy

∗ To what extent do the team members determine, plan, and manage their
day-to-day activities under reduced or no supervision from the manage-
ment?

∗ To what extent do the developers form ad-hoc groups to determine and
refine requirements just-in-time?

– Management support

∗ To what extent does the management support the self-managing nature
of the teams?

• High-bandwidth communication

– Customer Satisfaction

∗ To what extent is the product developed so far in-sync with the customers’
needs and expectations?

– Scheduling

∗ To what extent is the time allocated for the release planning meetings
utilized effectively?

∗ To what extent is the time allocated for the iteration planning meetings
utilized effectively?

% To what extent is the time allocated for the retrospective meetings utilized
effectively?

50

APPENDIX A. OBJECTIVES PRINCIPLES STRATEGIES - EFFECTIVENESS

% To what extent is the time allocated for the daily progress tracking meet-
ings utilized effectively?

∗ To what extent do the scheduled meetings (except the daily progress
tracking meetings) begin and end on time?

∗ To what extent do the meetings (except the daily progress tracking meet-
ings) take place as scheduled?

– Inter- and intra-team communication

∗ To what extent does open communication prevail between the business
and the development team?

∗ To what extent does open communication prevail between the manager
and the developers and testers?

∗ To what extent does open communication prevail between the developers
and the testers?

∗ To what extent does open communication prevail among the developers?

∗ To what extent does open communication prevail between the external
customer/user and the business?

∗ To what extent does open communication prevail between the external
customer/user and the development team?

∗ To what extent does open communication prevail between members of
different teams?

• Client-driven Iterations

– Requirements Prioritization

∗ To what extent do the customers establish the priorities of the story?

– Customer Satisfaction

∗ To what extent is the product developed so far in-sync with the customers’
needs and expectations?

– Customer Requests

∗ To what extent are the changes requested by the customers accommo-
dated?

• Short delivery cycles

– Development time-frames

∗ To what extent is software released frequently? (length of a release cycle
is one year or less)

∗ To what extent is software released frequently? (length of an iteration is
four weeks or less)

– Customer Satisfaction

51

APPENDIX A. OBJECTIVES PRINCIPLES STRATEGIES - EFFECTIVENESS

∗ To what extent is the product developed so far in-sync with the customers’
needs and expectations?

– Roll-backs

∗ To what extent are the deployments not rolled back?

• Iterative Progression

– Estimation

∗ To what extent are the estimates for the amount of work to be done
during each iteration accurate?

– Iteration length

∗ To what extent are the iterations timeboxed?

∗ To what extent is the length of an iteration 4 weeks or less?

– Requirements Management for Iterations

∗ To what extent is an iteration backlog maintained?

∗ To what extent are the stories fully estimated when added to the backlog?

∗ To what extent are the stories prioritized when added to the backlog?

• Incremental Development

– Requirements Management for Releases

∗ To what extent is a product backlog maintained?

∗ To what extent are the features priorotized when they are added to the
backlog?

∗ To what extent are the features fully estimated before they are added to
the backlog?

– Timeboxing Releases

∗ To what extent are the release cycles timeboxed?

∗ To what extent are only a subset of the identified features developed
during a release cycle?

• Evolutionary Requirements

– Requirements Reprioritization

∗ To what extent are the features reprioritized as and when new features
are identified?

– Customer Requests

∗ To what extent are the changes requested by the customers accommo-
dated?

– Minimal Big Requirements Up Front and Big Design Up Front

∗ To what extent are only the high level features identified upfront?

52

APPENDIX A. OBJECTIVES PRINCIPLES STRATEGIES - EFFECTIVENESS

∗ To what extent are the architecture requirements allowed to evolve over
time?

• Minimal Documentation

– Maintaining documentation

∗ To what extent is minimal documentation supported by teams?

∗ To what extent is minimal documentation created/developed?

∗ To what extent is minimal documentation recorded/archived?

∗ To what extent is minimal documentation maintained?

53

B
Perceptive Agile Measurement

The items marked with %are the ones not included in the surveys to the teams.

• Iteration Planning

– All members of the technical team actively participated during iteration plan-
ning meetings

– All technical team members took part in defining the effort estimates for
requirements of the current iteration

– When effort estimates differed, the technical team members discussed their
underlying assumption

– All concerns from team members about reaching the iteration goals were
considered

– The effort estimates for the iteration scope items were modified only by the
technical team members

– Each developer signed up for tasks on a completely voluntary basis

– The customer picked the priority of the requirements in the iteration plan

• Iterative Development

– We implemented our code in short iterations

– The team rather reduced the scope than delayed the deadline

– When the scope could not be implemented due to constraints, the team held
active discussions on re-prioritization with the customer on what to finish
within the iteration

– We kept the iteration deadlines

– At the end of an iteration, we delivered a potentially shippable product

54

APPENDIX B. PERCEPTIVE AGILE MEASUREMENT

– The software delivered at iteration end always met quality requirements of
production code

– Working software was the primary measure for project progress

• Continuous Integration And Testing

– The team integrated continuously

– Developers had the most recent version of code available

– Code was checked in quickly to avoid code synchronization/integration hassles

– The implemented code was written to pass the test case

– New code was written with unit tests covering its main functionality

– Automated unit tests sufficiently covered all critical parts of the production
code

– For detecting bugs, test reports from automated unit tests were systematically
used to capture the bugs

– All unit tests were run and passed when a task was finished and before check-
ing in and integrating

– There were enough unit tests and automated system tests to allow developers
to safely change any code

% Stand-Up Meetings

% Stand up meetings were extremely short (max. 15 minutes)

% Stand up meetings were to the point, focusing only on what had been done
and needed to be done on that day

% All relevant technical issues or organizational impediments came up in the
stand up meetings

% Stand up meetings provided the quickest way to notify other team members
about problems

% When people reported problems in the stand up meetings, team members
offered to help instantly

• Customer Access

– The customer was reachable

– The developers could contact the customer directly or through a customer
contact person without any bureaucratical hurdles

– The developers had responses from the customer in a timely manner

– The feedback from the customer was clear and clarified his requirements or
open issues to the developers

• Customer Acceptance Tests

55

APPENDIX B. PERCEPTIVE AGILE MEASUREMENT

– How often did you apply customer acceptance tests?

– A requirement was not regarded as finished until its acceptance tests (with
the customer) had passed

– Customer acceptance tests were used as the ultimate way to verify system
functionality and customer requirements

– The customer provided a comprehensive set of test criteria for customer ac-
ceptance

– The customer focused primarily on customer acceptance tests to determine
what had been accomplished at the end of an iteration

% Retrospectives

% How often did you apply retrospectives?

% All team members actively participated in gathering lessons learned in the
retrospectives

% The retrospectives helped us become aware of what we did well in the past
iteration(s)

% The retrospectives helped us become aware of what we should improve in the
upcoming iteration(s)

% In the retrospectives (or shortly afterwards), we systematically assigned all
important points for improvement to responsible individuals

% Our team followed up intensively on the progress of each improvement point
elaborated in a retrospective

• Co-Location

– Developers were located majorly in Greece

– All members of the technical team (including QA engineers, db admins) were
located in Greece

– Requirements engineers were located with developers in Greece

– The project/release manager worked with the developers in Greece

– The customer was located with the developers in Greece

56

C
Team Agility Assessment

The items marked with %are the ones not included in the surveys to the teams.

% Product Ownership

% Backlog prioritized and ranked by business value

% Backlog estimated at gross level

% Product owner defines acceptance criteria for stories

% Product owner and stakeholders participate at iteration and release planning

% Product owner and stakeholders participate at iteration and release review

% Product owner collaboration with team is continuous

% Stories sufficiently elaborated prior to planning meetings

• Release Planning and Tracking

– Release theme established and communicated

– Release planning meeting attended and effective

– Release backlog defined

– Release backlog ranked by priority

– Release backlog estimated at plan level

– The team has small and frequent releases

– The team has a common language and metaphor to describe the release

– Release progress tracked by feature acceptance

% Team completes and product owner accepts the release by the release date

% Release review meeting attended and effective

57

APPENDIX C. TEAM AGILITY ASSESSMENT

– Team inspects and adapts (continuous improvement) the release plan

– Team meets its commitments to release

• Iteration Planning and Tracking

– Iteration theme established and communicated

– Iteration planning meeting attended and effective

– Team velocity measured and used for planning

– Iteration backlog defined

– Iteration backlog ranked by priority

– Team develops and manages iteration backlog

– Team defines, estimates, and selects their own work (stories and tasks)

– Team discusses acceptance criteria during iteration planning

– Team manages interdependencies and constraints

– Iteration progress tracked by task to do (burn-down chart) and card accep-
tance (velocity)

% Work is not added by the product owner during the iteration

% Team completes and product owner accepts the iteration

– Iterations are of a consistent fixed length

– Iterations are no more than four weeks in length

% Iteration review meeting attended and effective

– Team inspects and adapts (continuous improvement) the Iteration Plan

• Team

– The whole team is present at release planning meetings

– Team is cross-functional with integrated product owner, development, docu-
mentation and QA

– Team is colocated

– Team is 100% dedicated to the release (no time-slicing)

– Team is smaller than 15 people

– Team works in a physical environment that fosters collaboration

– Team works at a sustainable pace

– Team members complete commitments

% Daily standup on time, fully attended and effectively communicates

– Team leads communication; communication not managed

– Team self-polices and reinforces use of agile practices and rules

58

APPENDIX C. TEAM AGILITY ASSESSMENT

– Team inspects and adapts (continuous improvement) the overall process

% Team Coach/Scrum Master exists, is full-time, and is effective

– The team has an effective channel for obstacle escalation

• Testing Practices

– All testing is done within the iteration and does not lag behind

– Iteration defects are fixed within that iteration

– Unit tests written before development

– Acceptance tests written before development

– 100% automated unit test coverage

– Automated acceptance tests

• Development Practices/Infrastructure

– Source control system exists

– Continuous build with 100% successful builds

– Developers integrate code multiple times per day

– Team has administrative access to their own workstations

– Team has administrative control over their development environment

– Team is permitted to refactor anywhere in the code base

– Adequate and effective code review practices

– Coding standards exist and applied

– Stories accepted and demonstrated on integrated build

– Refactoring is continuous

– Pair programming is practiced

– Identical builds for developers’ workstations

59

D
Mapping of Questions to

Practices/Strategies

In order to distinguish the questions among the tools the following annotation has been
used.

8 Team Agility Assessment

A Perceptive Agile Management

> Objectives Principles Strategies

Iterative and Incremental Development

8 Stories sufficiently elaborated prior to planning meetings

8 Team discusses acceptance criteria during iteration planning

A We kept the iteration deadlines

A The software delivered at iteration end always met quality requirements of pro-
duction code

A The team rather reduced the scope than delayed the deadline

A At the end of an iteration, we delivered a potentially shippable product

A Working software was the primary measure for project progress

> To what extent are the estimates for the amount of work to be done during each
iteration accurate?

60

APPENDIX D. MAPPING OF QUESTIONS TO PRACTICES/STRATEGIES

> To what extent are the stories fully estimated when added to the iteration backlog?

> To what extent are the stories prioritized when added to the iteration backlog?

Product Backlog

8 Backlog prioritized and ranked by business value

8 Backlog estimated at gross level

> To what extent is a product backlog maintained?

> To what extent are the features prioritized when they are added to the product
backlog?

> To what extent are the features fully estimated before they are added to the product
backlog?

Smaller and Frequent Product Releases

8 The team has small and frequent releases

A We implemented our code in short iterations

> To what extent is software released frequently? (length of a release cycle is one
year or less)

> To what extent is software released frequently? (length of an iteration is four weeks
or less)

> To what extent is the product developed so far in-sync with the customers’ needs
and expectations?

> To what extent are the deployments not rolled back?

Customer/User Acceptance Testing

A The customer provided a comprehensive set of test criteria for customer acceptance

A How often did you apply customer acceptance tests?

A The customer focused primarily on customer acceptance tests to determine what
had been accomplished at the end of an iteration

A Customer acceptance tests were used as the ultimate way to verify system func-
tionality and customer requirements

A A requirement was not regarded as finished until its acceptance tests (with the
customer) had passed

Constant Velocity

61

APPENDIX D. MAPPING OF QUESTIONS TO PRACTICES/STRATEGIES

8 Team works at a sustainable pace

Iteration Progress Tracking and Reporting

8 Iteration backlog ranked by priority

8 Iteration planning meeting attended and effective

8 Iterations are no more than four weeks in length

8 Iterations are of a consistent fixed length

8 Iteration backlog defined

8 Iteration theme established and communicated

8 Team velocity measured and used for planning

8 Release theme established and communicated

8 Release planning meeting attended and effective

8 Release backlog defined

8 Release backlog ranked by priority

8 Release backlog estimated at plan level

8 Release progress tracked by feature acceptance

8 The whole team is present at release planning meetings

8 Iteration progress tracked by task to do (burn-down chart) and card acceptance
(velocity)

A All members of the technical team actively participated during iteration planning
meetings

A All technical team members took part in defining the effort estimates for require-
ments of the current iteration

A All concerns from team members about reaching the iteration goals were considered

A When effort estimates differed, the technical team members discussed their

A The effort estimates for the iteration scope items were modified only by the tech-
nical team members

> To what extent is an iteration backlog maintained?

> To what extent is the length of an iteration 4 weeks or less?

62

APPENDIX D. MAPPING OF QUESTIONS TO PRACTICES/STRATEGIES

> To what extent are the iterations timeboxed?

> To what extent are the release cycles timeboxed?

> To what extent are only a subset of the identified features developed during a
release cycle?

Self-Organizing Teams

8 Team defines, estimates, and selects their own work (stories and tasks)

8 Team leads communication; communication not managed

8 Team develops and manages iteration backlog

8 Team manages interdependencies and constraints

8 Team has administrative access to their own workstations

8 Team has administrative control over their development environment

8 Team is 100% dedicated to the release (no time-slicing)

8 Team meets its commitments to release

8 The team has a common language and metaphor to describe the release

8 Team self-polices and reinforces use of agile practices and rules

8 Team is smaller than 15 people

A Each developer signed up for tasks on a completely voluntary basis

> To what extent do the team members determine the amount of work to be done?

> To what extent do the team members take ownership of work items?

> To what extent do the team members hold each other accountable for the work to
be completed?

> To what extent do the team members ensure that they complete the work that
they are accountable for?

> To what extent do the team members determine, plan, and manage their day-to-
day activities under reduced or no supervision from the management?

> To what extent do the developers form ad-hoc groups to determine and refine
requirements just-in-time?

> To what extent does the management support the self-managing nature of the
teams?

63

APPENDIX D. MAPPING OF QUESTIONS TO PRACTICES/STRATEGIES

Appropriate Distribution of Expertise

8 Team members complete commitments

8 Team is cross-functional with integrated product owner, development, documen-
tation and QA

> To what extent do the team members have the requisite expertise to complete the
tasks assigned to them?

> To what extent is the work assigned to the team members commensurate with
their expertise?

> To what extent does the team effectively complete the work that they have com-
mitted to?

> To what extent do the teams have members in leadership positions that can guide
the others?

> To what extent do the teams not rely on knowledge external to their teams?

High-Bandwidth Communication

8 Release planning meeting attended and effective

8 Team works in a physical environment that fosters collaboration

8 Team is collocated

8 The team has an effective channel for obstacle escalation

A The customer was reachable

A The developers could contact the customer directly or through a customer contact
person without any bureaucratical hurdles

A Developers were located majorly in . . .

A All members of the technical team (including QA engineers, db admins) were
located in . . .

A Requirements engineers were located with developers in . . .

A The project/release manager worked with the developers in . . .

A The customer was located with the developers in . . .

A The developers had responses from the customer in a timely manner

> To what extent is the product developed so far in-sync with the customers’ needs
and expectations?

64

APPENDIX D. MAPPING OF QUESTIONS TO PRACTICES/STRATEGIES

> To what extent is the time allocated for the release planning meetings utilized
effectively?

> To what extent is the time allocated for the iteration planning meetings utilized
effectively?

> To what extent is the time allocated for the retrospective meetings utilized effec-
tively?

> To what extent do the scheduled meetings (except the daily progress tracking
meetings) begin and end on time?

> To what extent do the meetings (except the daily progress tracking meetings) take
place as scheduled?

> To what extent does open communication prevail between the business and the
development team?

> To what extent does open communication prevail between the manager and the
developers and testers?

> To what extent does open communication prevail between the developers and the
testers?

> To what extent does open communication prevail among the developers?

> To what extent does open communication prevail between the external customer/user
and the business?

> To what extent does open communication prevail between the external customer/user
and the development team?

> To what extent does open communication prevail between members of different
teams?

Daily Progress Tracking Meetings

8 Daily stand up on time, fully attended and effectively communicates

A Stand up meetings were to the point, focusing only on what had been done and
needed to be done on that day

A Stand up meetings were extremely short (max. 15 minutes)

A All relevant technical issues or organizational impediments came up in the stand
up meetings

A Stand up meetings provided the quickest way to notify other team members about
problems

65

APPENDIX D. MAPPING OF QUESTIONS TO PRACTICES/STRATEGIES

A When people reported problems in the stand up meetings, team members offered
to help instantly

> To what extent is the time allocated for the daily progress tracking meetings uti-
lized effectively?

Retrospective Meetings

8 Iteration review meeting attended and effective

8 Release review meeting attended and effective

8 Team inspects and adapts (continuous improvement) the overall process

8 Team inspects and adapts (continuous improvement) the Iteration Plan

8 Team inspects and adapts (continuous improvement) the release plan

A How often did you apply retrospectives?

A The retrospectives helped us become aware of what we did well in the past itera-
tion(s)

A The retrospectives helped us become aware of what we should improve in the
upcoming iteration(s)

A All team members actively participated in gathering lessons learned in the retro-
spectives

A In the retrospectives (or shortly afterwards), we systematically assigned all impor-
tant points for improvement to responsible individuals

A Our team followed up intensively on the progress of each improvement point elab-
orated in a retrospective

> To what extent were practices that worked well during the iteration or the release
cycle and hence should be used in the future identified?

> To what extent were practices that did not yield the expected results and hence
should be discontinued identified?

> To what extent were new practices that may better suit the team’s needs identified?

> To what extent were the retrospective goals set during the previous iteration met?

Test Driven Development

8 Unit tests written before development

8 100% automated unit test coverage

66

APPENDIX D. MAPPING OF QUESTIONS TO PRACTICES/STRATEGIES

8 Acceptance tests written before development

A New code was written with unit tests covering its main functionality

A The implemented code was written to pass the test case

A Automated unit tests sufficiently covered all critical parts of the production code

> To what extent did the developers provide adequate code coverage from the tests?

> To what extent is the product developed so far in-sync with the customers’ needs
and expectations?

> To what extent do developers write tests first before writing code?

> To what extent are the test plans created before the developers start coding?

Refactoring

8 Refactoring is continuous

8 Team is permitted to refactor anywhere in the code base

A There were enough unit tests and automated system tests to allow developers to
safely change any code

> To what extent do the teams manage technical debt?

> To what extent do the teams minimize technical debt when developing new sys-
tems?

> To what extent does the system and the development environment allow Technical
Debt to be minimized?

> To what extent does the management support the implementation of refactoring?

Software Configuration Management

8 Source control system exists

> To what extent do teams use appropriate tools for version control and manage-
ment?

Adherence to Standards

8 Coding standards exist and applied

8 Pair programming is practised

8 Adequate and effective code review practices

> To what extent do the team members agree with the set coding standards?

67

APPENDIX D. MAPPING OF QUESTIONS TO PRACTICES/STRATEGIES

> To what extent do the team members adhere to the set coding standards?

Continuous Integration

8 Automated acceptance tests

8 Developers integrate code multiple times per day

8 Stories accepted and demonstrated on integrated build

8 Continuous build with 100% successful builds

8 Identical builds for developers’ workstations

A Developers had the most recent version of code available

A Code was checked in quickly to avoid code synchronization/integration hassles

A The team integrated continuously

A All unit tests were run and passed when a task was finished and before checking
in and integrating

A For detecting bugs, test reports from automated unit tests were systematically
used to capture the bugs

> To what extent has each story been coded?

> To what extent has each story been unit tested?

> To what extent has each story been refactored?

> To what extent has each story been checked into the code base?

> To what extent has each story been integrated with the existing code base?

> To what extent has each story been reviewed?

> To what extent are automated test suites developed?

> To what extent are the code bases not shared?

> To what extent do automated builds run one or more times everyday?

> To what extent has each story been accepted by the customer?

Client-Driven Iterations

A The customer picked the priority of the requirements in the iteration plan

A When the scope could not be implemented due to constraints, the team held active
discussions on re-prioritization with the customer on what to finish within the
iteration

68

APPENDIX D. MAPPING OF QUESTIONS TO PRACTICES/STRATEGIES

> To what extent do the customers establish the priorities of the story?

> To what extent is the product developed so far in-sync with the customers’ needs
and expectations?

> To what extent are the changes requested by the customers accommodated?

Minimal or Just Enough Documentation

> To what extent is minimal documentation supported by teams?

> To what extent is minimal documentation created/developed?

> To what extent is minimal documentation recorded/archived?

> To what extent is minimal documentation maintained?

Continuous Feedback

A The feedback from the customer was clear and clarified his requirements or open
issues to the developers

> To what extent do the customers provide feedback to the business and the devel-
opment team?

> To what extent is the product developed so far in-sync with the customers’ needs
and expectations?

Evolutionary Requirements

> To what extent are the features reprioritized as and when new features are identi-
fied?

> To what extent are the changes requested by the customers accommodated?

> To what extent are only the high level features identified upfront?

> To what extent are the architecture requirements allowed to evolve over time?

69

E
Direct Match Questions

For answering the research questions of this Master’s Thesis the Effectiveness part of OPS
was filled in by the employees of Company A. Some of the direct match questions though
exist in both Capability and Effectiveness parts. As a result the questions following below
are separated based on which OPS part they belong.

Table E.1: Direct Match Questions (OPS Effectiveness)

Group OPS TAA PAM Figure

G1 To what extent are
the stories fully esti-
mated when added to
the iteration backlog?

Stories sufficiently
elaborated prior to
planning meetings

G.12

G2 To what extent are
the features priori-
tized when they are
added to the product
backlog?

Backlog prioritized
and ranked by busi-
ness value

G.17

G3 To what extent is
software released fre-
quently?

The team has small
and frequent releases

We implemented
our code in short
iterations

G.15

G4 To what extent are
the stories prioritized
when added to the it-
eration backlog?

Iteration backlog
ranked by priority

G.8

70

APPENDIX E. DIRECT MATCH QUESTIONS

Table E.1: Direct Match Questions (OPS Effectiveness)

Group OPS TAA PAM Figure

G5 To what extent is
the time allocated for
the iteration planning
meetings utilized ef-
fectively?

Iteration planning
meeting attended
and effective

G.9

G6 To what extent is the
length of an iteration
4 weeks or less?

Iterations are no
more than four weeks
in length

G.10

G7 To what extent are
the iterations time-
boxed?

Iterations are of
a consistent fixed
length

G.7

G8 To what extent do the
team members deter-
mine, plan, and man-
age their day-to-day
activities under re-
duced or no supervi-
sion from the man-
agement?

Team defines, esti-
mates, and selects
their own work (sto-
ries and tasks)

G.14

G9 To what extent does
the team effectively
complete the work
that they have com-
mitted to?

Team members com-
plete commitments

G.1

G10 To what extent is
the time allocated for
the release planning
meetings utilized ef-
fectively?

Release planning
meeting attended
and effective

G.6

G11 To what extent did
the developers pro-
vide adequate code
coverage from the
tests?

100% automated unit
test coverage

G.11

71

APPENDIX E. DIRECT MATCH QUESTIONS

Table E.1: Direct Match Questions (OPS Effectiveness)

Group OPS TAA PAM Figure

G12 To what extent do
the teams implement
refactoring?

Refactoring is contin-
uous

G.13

G13 To what extent do
teams use appropri-
ate tools for version
control and manage-
ment?

Source control system
exists

G.16

G14 To what extent are
automated test suites
developed?

Automated accep-
tance tests

G.3

G15 To what extent do
the customers estab-
lish the priorities of
the features?

The customer
picked the pri-
ority of the
requirements in
the iteration plan

G.2

G16 Identical builds for
developers’ worksta-
tions

Developers had
the most recent
version of code
available

G.4

G17 Developers integrate
code multiple times
per day

The team inte-
grated continu-
ously

G.5

72

APPENDIX E. DIRECT MATCH QUESTIONS

Table E.2: Direct Match Questions (OPS Capability)

OPS TAA PAM

Is the physical environ-
ment conducive to sup-
porting high bandwidth
communication?

Team works in a phys-
ical environment that
fosters collaboration

To what extent is the
time allocated for the
daily progress tracking
meetings utilized effec-
tively?

Daily stand up on time,
fully attended and effec-
tively communicates

Are the developers ex-
pected to write unit
tests first for their code?

Unit tests written be-
fore development

Is it expected that each
team creates and adopts
a set of coding stan-
dards?

Coding standards exist
and applied

Is it expected that the
code be kept up to date?

Developers had the
most recent version of
code available

Identical builds for de-
velopers’ workstations

Are the team mem-
bers expected to inte-
grate their code every
few hours?

Developers integrate
code multiple times per
day

The team integrated
continuously

73

F
Data Plots

Figure F.1: Appropriate Distribution of
Expertise Figure F.2: Adherence to Standards

74

APPENDIX F. DATA PLOTS

Figure F.3: Client-Driven Iterations Figure F.4: Continuous Feedback

Figure F.5: Continuous Integration Figure F.6: High-Bandwidth Communication

75

APPENDIX F. DATA PLOTS

Figure F.7: Iteration Progress Tracking
and Reporting

Figure F.8: Iterative and Incremental Devel-
opment

Figure F.9: Product Backlog Figure F.10: Refactoring

76

APPENDIX F. DATA PLOTS

Figure F.11: Self-Organizing Teams
Figure F.12: Smaller and Frequent Product
Releases

Figure F.13: Software Configuration Man-
agement Figure F.14: Test Driven Development

77

G
Direct Matches - HeatMaps

Figure G.1: Appropriate Distribution of Expertise

78

APPENDIX G. DIRECT MATCHES - HEATMAPS

Figure G.2: Client-Driven Iterations

Figure G.3: Continuous Integration #1

79

APPENDIX G. DIRECT MATCHES - HEATMAPS

Figure G.4: Continuous Integration #2

Figure G.5: Continuous Integration #3

80

APPENDIX G. DIRECT MATCHES - HEATMAPS

Figure G.6: High-Bandwidth Communication

Figure G.7: Iteration Progress Tracking and Reporting #1

81

APPENDIX G. DIRECT MATCHES - HEATMAPS

Figure G.8: Iteration Progress Tracking and Reporting #2

Figure G.9: Iteration Progress Tracking and Reporting #3

82

APPENDIX G. DIRECT MATCHES - HEATMAPS

Figure G.10: Iteration Progress Tracking and Reporting #4

Figure G.11: Test Driven Development

83

APPENDIX G. DIRECT MATCHES - HEATMAPS

Figure G.12: Iterative and Incremental Development

Figure G.13: Refactoring

84

APPENDIX G. DIRECT MATCHES - HEATMAPS

Figure G.14: Self-Organizing Teams

Figure G.15: Smaller and Frequent Product Releases

85

APPENDIX G. DIRECT MATCHES - HEATMAPS

Figure G.16: Software Configuration Management

Figure G.17: Product Backlog

86

H
Combining OPS, PAM, TAA

H.1 Capability

• Refactoring

– Support for Refactoring

∗ Is refactoring an expected activity?

∗ Is it feasible to implement code refactoring?

∗ Is it feasible to implement architecture refactoring?

– Buy-in for Refactoring

∗ Are the teams receptive to implementing refactoring?

8 Are the teams permitted to refactor anywhere in the code base?

∗ Is the management receptive to supporting refactoring efforts?

– Minimizing Technical Debt

∗ Is it expected that a well-defined process be adopted to minimize technical
debt?

∗ Is it expected that a well-defined process be adopted to manage technical
debt?

∗ Is minimizing technical debt a high priority activity?

• Test First Development

– Process Support for Test-First Development

∗ Is test-first development an expected activity?

∗ Are the customers expected to specify the acceptance criteria for the
features and stories before the developers begin coding?

8 Are the developers expected to write acceptance tests first for their code?

87

H.1. CAPABILITY APPENDIX H. COMBINING OPS, PAM, TAA

– Tool Support for Test First Development

∗ Do appropriate testing tools exist?

– Unit Testing

∗ Are the developers expected to write unit tests first for their code?

• Retrospection

– Support for Retrospection

∗ Is retrospection an expected activity?

– Tool Support for Retrospection

∗ Are tools available for recording the outcomes of the retrospective meet-
ings?

• Distribution of expertise

– Appropriate team composition

∗ Is a scheme for appropriate team composition defined?

∗ Are the requisite skillsets for particular projects identified upfront?

∗ Is it expected that the right people be chosen to accomplish the tasks?

• Configuration Management

– Tool Support for Configuration Management

∗ Do tools for version control and management exist?

– Support for Configuration Management

∗ Is it expected that the code be kept up to date?

∗ Is it expected that the tests be kept up to date?

∗ Is it expected that the builds be kept up to date?

∗ Is it expected that the release infrastructure be kept up to date?

∗ Is it expected that the documentation be kept up to date?

• Adherence to standards

– Identifying features

∗ Is it expected that well-defined techniques be used to identify the fea-
tures?

– Estimation

∗ Is it expected that a well-defined approach to estimating the amount of
work to be done during each release cycle and iteration be used?

– Requirements Prioritization

88

H.1. CAPABILITY APPENDIX H. COMBINING OPS, PAM, TAA

∗ Is it expected that a well-defined approach to prioritizing bugs/enhancements,
and tasks be used?

– Feature Decomposition

∗ Is it expected that a mechanism for decomposing the selected features to
be developed during the current release cycle into bugs/enhancements be
defined?

– Coding standards

∗ Is it expected that each team creates and adopts a set of coding stan-
dards?

∗ Is it expected that practices such as pair-programming, collective code
ownership be adopted or automated tools be used to ensure adherence to
the set standards?

• Continuous Integration

– Tool Support for Continuous Integration

∗ Do automated test suites exist?

∗ Does the requisite test environment exist?

∗ Do appropriate configuration management systems exist?

– Process Support for Continuous Integration

∗ Is continuous integration an expected activity?

∗ Are the team members expected to integrate their code every few hours?

∗ Is it expected that the builds, tests, and other release infrastructure be
kept up to date?

∗ Is it expected that automated test suites be developed?

∗ Is it expected that the build process be automated?

– Buy-in for Continuous Integration

∗ Are the teams receptive to implementing continuous integration?

– Story Completeness

∗ Is it expected that the criteria for Done/Done be specified upfront?

• Self-managing teams

– Team Empowerment

∗ Are the team members expected to be involved in determining, planning,
and managing their day-to-day activities?

– Ownership

∗ Are the team members expected to demonstrate individual or collective
code ownership?

– Performance Expectations

89

H.1. CAPABILITY APPENDIX H. COMBINING OPS, PAM, TAA

∗ Is there a set of performance expectations that are agreed upon by the
team and the management?

= Communication

8 Are the team members expected to have a common language?

= System Administration

8 Are the team members expected to have administrative access to their
own workstations?

8 Are the team members expected to have control over their development
environment?

• Continuous Feedback

– Customer Feedback

∗ Does the process define a mechanism for the customers to provide feed-
back?

– Customer Acceptance

∗ Is it expected that the acceptance testing occur before the end of a release
cycle?

• High-bandwidth communication

– On-site Customer

∗ Are the customers available onsite to answer questions and provide con-
tinuous feedback?

∗ In the absence of an onsite customer, do the customers provide feedback
via other means?

– Scheduling

∗ Is it expected that time be allocated for Release Planning?

∗ Is it expected that time be allocated for Iteration Planning?

∗ Is it expected that time be allocated for Retrospection?

∗ Is it expected that time be allocated for Daily Progress Tracking meet-
ings?

– Inter- and intra-team communication

∗ Is it expected that team members communicate and collaborate with their
colleagues?

∗ Do the teams have access to requisite tools to support inter- and intra-
team communication?

– Physical environment

∗ Is the physical environment conducive to supporting high bandwidth com-
munication?

90

H.1. CAPABILITY APPENDIX H. COMBINING OPS, PAM, TAA

• Client-driven Iterations

– Identifying and prioritizing features

∗ Are the customers expected to be involved in identifying the features?

∗ Are the customers expected to establish the priorities of the features?

• Short delivery cycles

– Development time-frames

∗ Is it expected that the product be developed over short delivery cycles?
For example, a product increment should be released every 6 - 12 months
and iterations last for four weeks or less.

• Iterative Progression

– Planning

∗ Is the team expected to plan for each iteration?

8 Is it expected that the team velocity is used for planning?

– Estimation Authority

∗ Are the developers expected to estimate the time required to complete
each story?

– Estimation

∗ Is it expected that a well-defined approach to estimating the amount of
work to be done during each release cycle and iteration be used?

• Incremental Development

– Estimation Authority

∗ Are the developers expected to estimate the time required to complete
each story?

– Requirements Management

∗ Are tools available for managing the bugs/enhancements?

– Identifying and prioritizing features

∗ Are the customers expected to be involved in identifying the features?

∗ Are the customers expected to establish the priorities of the features?

J Velocity

= Progress Estimation

8 Is it expected that the progress is track by a burn down chart and by
measuring velocity?

• Evolutionary Requirements

91

H.2. EFFECTIVENESS APPENDIX H. COMBINING OPS, PAM, TAA

– Minimal Big Requirements Up Front and Big Design Up Front

∗ Is it expected that only high level features be identified upfront?

∗ Is it expected that an evolutionary approach to architecting the system
be followed as opposed to creating the architecture upfront?

– Just-In-Time Refinement

∗ Is it expected that the requirements be determined and refined just-in-
time?

– Feature Decomposition

∗ Is it expected that a mechanism for decomposing the selected features to
be developed during the current release cycle into stories be defined?

• Minimal Documentation

– Tool Support for Minimal Documentation

∗ Do tools for maintaining documentation exist?

– Process support for Minimal Documentation

∗ Is it expected that minimal documentation be maintained?

– Buy-in for Minimal Documentation

∗ Are the teams receptive to maintaining minimal or just-enough documen-
tation?

H.2 Effectiveness

• Refactoring

– Minimizing Technical Debt

∗ To what extent do the teams manage technical debt?

∗ To what extent do the teams minimize technical debt when developing
new systems?

∗ To what extent does the system and the development environment allow
Technical Debt to be minimized?

– Buy-in for Refactoring

∗ To what extent does the management support the implementation of
refactoring?

∗ To what extent do the teams implement refactoring?

8 To what extent are the teams permitted to refactor anywhere in the code
base?

8 To what extent were there enough unit tests and automated system test
to allow developers to safely refactor?

92

H.2. EFFECTIVENESS APPENDIX H. COMBINING OPS, PAM, TAA

• Test First Development

– Code coverage

∗ To what extent did the developers provide adequate code coverage from
the tests?

– Customer Satisfaction

∗ To what extent is the product developed so far in-sync with the customers’
needs and expectations?

– Testing first

∗ To what extent do developers write tests first before writing code?

∗ To what extent are the test plans created before the developers start
coding?

8 To what extent was the implemented code written to pass the test case?

• Retrospection

– Retrospective meetings

∗ To what extent are the retrospectives applied?

– Process Outcomes for Retrospection

∗ To what extent were practices that worked well during the iteration or
the release cycle and hence should be used in the future identified?

∗ To what extent were practices that did not yield the expected results and
hence should be discontinued identified?

∗ To what extent were new practices that may better suit the team’s needs
identified?

8 To what extent were the retrospectives helpful for seeing what worked
well in the past iterations?

8 To what extent were the retrospectives helpful for seeing what should be
improved in the upcoming iterations?

– Retrospective goals

∗ To what extent were the retrospective goals set during the previous iter-
ation met?

= Team

8 To what extent did team members participate in the retrospective meet-
ings?

8 To what extent does the team inspect and adapt the overall process?

8 To what extent does the team continuously improve the iteration plan?

93

H.2. EFFECTIVENESS APPENDIX H. COMBINING OPS, PAM, TAA

8 To what extent does the team continuously improve the release plan?

• Distribution of expertise

– Process Outcomes for Distribution of Expertise

∗ To what extent do the team members have the requisite expertise to
complete the tasks assigned to them?

∗ To what extent is the work assigned to the team members commensurate
with their expertise?

∗ To what extent does the team effectively complete the work that they
have committed to?

∗ To what extent do the teams have members in leadership positions that
can guide the others?

∗ To what extent do the teams not rely on knowledge external to their
teams?

8 To what extent is the team cross-functional?

• Configuration Management

– Project Environment for Configuration Management

∗ To what extent do teams use appropriate tools for version control and
management?

• Adherence to standards

– Estimation

∗ To what extent are the estimates for the amount of work to be done
during each iteration accurate?

– Coding Standards

∗ To what extent do the team members agree with the set coding standards?

∗ To what extent do the team members adhere to the set coding standards?

• Continuous Integration

– Project Environment for Continuous Integration

∗ To what extent are automated test suites developed?

∗ To what extent are the code bases not shared?

= Process Support for Continuous Integration

8 To what extent do the team members integrate their code per day?

– Story Completeness

∗ To what extent has each story been coded?

8 To what extent has each story been unit tested successfully?

94

H.2. EFFECTIVENESS APPENDIX H. COMBINING OPS, PAM, TAA

∗ To what extent has each story been refactored?

∗ To what extent has each story been checked into the code base?

∗ To what extent has each story been integrated with the existing code
base?

∗ To what extent has each story been reviewed?

∗ To what extent has each story been accepted by the customer?

8 To what extent were the stories accepted and demonstrated on integrated
build?

– Daily/Frequent builds

∗ To what extent do automated builds run one or more times everyday?

8 To what extent are the automated builds successful?

8 To what extent test reports for automated were unit tests systematically
used to capture the bugs?

• Self-managing teams

– Team Empowerment

∗ To what extent do the team members determine the amount of work to
be done?

∗ To what extent do the team members take ownership of work items?

∗ To what extent do the team members hold each other accountable for the
work to be completed?

∗ To what extent do the team members ensure that they complete the work
that they are accountable for?

– Autonomy

∗ To what extent do the team members determine, plan, and manage their
day-to-day activities under reduced or no supervision from the manage-
ment?

∗ To what extent do the developers form ad-hoc groups to determine and
refine requirements just-in-time?

8 To what extend does the team self-police and reinforce the practices and
rules?

– Management support

∗ To what extent does the management support the self-managing nature
of the teams?

= Commitment

8 To what extent is the team dedicated to the release?

• Continuous Feedback

– Customer Feedback

95

H.2. EFFECTIVENESS APPENDIX H. COMBINING OPS, PAM, TAA

∗ To what extent do the customers provide feedback to the business and
the development team?

– Customer Satisfaction

∗ To what extent is the product developed so far in-sync with the customers’
needs and expectations?

= Customer Acceptance

8 To what extent were customer acceptance tests applied?

8 To what extent did the customer focus on acceptance tests to determine
what had been accomplished?

8 To what extent were the acceptance tests the ultimate way to verify
system functionality and customer requirements?

• High-bandwidth communication

= Customer Access

8 To what extent were the responses from the customer in a timely manner?

8 To what extent was the feedback from the customer clear and clarified
the requirements or open issues to the developers?

– Customer Satisfaction

∗ To what extent is the product developed so far in-sync with the customers’
needs and expectations?

– Scheduling

∗ To what extent is the time allocated for the release planning meetings
utilized effectively?

∗ To what extent is the time allocated for the iteration planning meetings
utilized effectively?

∗ To what extent is the time allocated for the retrospective meetings utilized
effectively?

∗ To what extent do the scheduled meetings (except the daily progress
tracking meetings) begin and end on time?

∗ To what extent do the meetings (except the daily progress tracking meet-
ings) take place as scheduled?

= Daily progress tracking meetings

∗ To what extent is the time allocated for the daily progress tracking meet-
ings utilized effectively?

8 To what extent were daily progress tracking meetings up to 15 minutes?

8 To what extent did all relevant technical issues or organizational imped-
iments came up in the daily progress tracking meetings?

96

H.2. EFFECTIVENESS APPENDIX H. COMBINING OPS, PAM, TAA

8 To what extent were the daily progress tracking meetings the quickest
way to notify the other team members about problems?

8 To what extent did team members offer to help when people reports
problems in the daily progress tracking meetings?

8 To what extent was the daily progress tracking meeting on time?

– Inter- and intra-team communication

∗ To what extent does open communication prevail between the business
and the development team?

∗ To what extent does open communication prevail between the manager
and the developers and testers?

∗ To what extent does open communication prevail between the developers
and the testers?

∗ To what extent does open communication prevail among the developers?

∗ To what extent does open communication prevail between the external
customer/user and the business?

∗ To what extent does open communication prevail between the external
customer/user and the development team?

∗ To what extent does open communication prevail between members of
different teams?

8 To what extent does the team have an effective channel for obstacle es-
calation?

• Client-driven Iterations

– Requirements Prioritization

∗ To what extent do the customers establish the priorities of the story?

8 To what extent are the features reprioritized when the scope could not
be implemented due to constraints?

– Customer Satisfaction

∗ To what extent is the product developed so far in-sync with the customers’
needs and expectations?

– Customer Requests

∗ To what extent are the changes requested by the customers accommo-
dated?

• Short delivery cycles

– Development time-frames

∗ To what extent is software released frequently? (length of a release cycle
is one year or less)

97

H.2. EFFECTIVENESS APPENDIX H. COMBINING OPS, PAM, TAA

∗ To what extent is software released frequently? (length of an iteration is
four weeks or less)

– Customer Satisfaction

∗ To what extent is the product developed so far in-sync with the customers’
needs and expectations?

– Roll-backs

∗ To what extent are the deployments not rolled back?

• Iterative Progression

– Estimation

∗ To what extent are the estimates for the amount of work to be done
during each iteration accurate?

8 To what extent were the effort estimates for the iteration scope items
modified by the team members?

8 To what extent did the team discuss when effort estimates differed?

8 To what extent did the team reduce the scope than delaying the deadline?

8 To what extent did team members take part in defining the amount of
work to be done?

8 To what extent did the concerns of the team members about reaching the
iteration goals were taken into consideration?

8 To what extent did the team discuss the acceptance criteria during the
iteration planning?

8 To what extent did the team members actively participate during itera-
tion planning meetings?

– Iteration length

∗ To what extent are the iterations timeboxed?

∗ To what extent is the length of an iteration 4 weeks or less?

– Requirements Management for Iterations

∗ To what extent is an iteration backlog maintained?

8 To what extent do the team members manage the iteration backlog?

∗ To what extent are the stories fully estimated when added to the backlog?

∗ To what extent are the stories prioritized when added to the backlog?

= Product

8 To what extent was the product shippable at the end of the iteration?

8 To what extent was the working software the primary measure for project
progress?

8 To what extent did the delivered software meet the quality requirements
of production code at the end of the iteration?

98

H.2. EFFECTIVENESS APPENDIX H. COMBINING OPS, PAM, TAA

8 To what extent is the progress tracked by feature acceptance?

• Incremental Development

– Requirements Management for Releases

∗ To what extent is a product backlog maintained?

∗ Backlog estimated at gross level

∗ To what extent are the features prioritized when they are added to the
product backlog?

∗ To what extent are the features fully estimated before they are added to
the product backlog?

8 To what extent is a release backlog maintained?

8 To what extent is release backlog estimated at plan level

8 To what extent are the features prioritized when they are added to the
release backlog?

– Timeboxing Releases

∗ To what extent are the release cycles timeboxed?

∗ To what extent are only a subset of the identified features developed
during a release cycle?

J Velocity

= Pace

8 To what extent does the team work at a sustainable pace?

• Evolutionary Requirements

– Requirements Reprioritization

∗ To what extent are the features reprioritized as and when new features
are identified?

– Customer Requests

∗ To what extent are the changes requested by the customers accommo-
dated?

8 To what extent is a requirement regarded as finished until its acceptance
tests (with the customer) has passed?

– Minimal Big Requirements Up Front and Big Design Up Front

∗ To what extent are only the high level features identified upfront?

∗ To what extent are the architecture requirements allowed to evolve over
time?

• Minimal Documentation

– Maintaining documentation

99

H.2. EFFECTIVENESS APPENDIX H. COMBINING OPS, PAM, TAA

∗ To what extent is minimal documentation supported by teams?

∗ To what extent is minimal documentation created/developed?

∗ To what extent is minimal documentation recorded/archived?

∗ To what extent is minimal documentation maintained?

100

Bibliography

[1] Ambler, S. W., 2011. Has agile peaked?
URL http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/

Website/articles/DDJ/2008/0806/080501sa01/080501sa01.html

[2] Ambysoft, 2013. How agile are you?
URL http://www.ambysoft.com/surveys/howAgileAreYou2013.html#Figure6

[3] Arthur, J., Nance, R., Dec 1990. A framework for assessing the adequacy and effec-
tiveness of software development methodologies. In: Proceedings of the Fifteenth
Annual Software Engineering Workshop. Greenbelt, MD.

[4] Aveling, B., 2004. Xp lite considered harmful? In: Eckstein, J., Baumeister, H.
(Eds.), Extreme Programming and Agile Processes in Software Engineering. Vol.
3092. Springer Berlin Heidelberg, pp. 94–103.

[5] Beck, K., Andres, C., 2004. Extreme Programming Explained: Embrace Change,
2nd Edition (The XP Series). Addison-Wesley.

[6] Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin,
R. C., Mallor, S., Shwaber, K., Sutherland, J., 2001.
URL http://agilemanifesto.org/principles.html

[7] Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin,
R. C., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D., 2001. Manifesto for
agile software development.
URL http://www.agilemanifesto.org/

[8] Boehm, B., Turner, R., June 2003. Observations on balancing discipline and agility.
In: Proceedings of the Agile Development Conference, 2003. ADC 2003. pp. 32–39.

[9] Campbell, D. T., Fiske, D. W., 1959. Convergent and discriminant validation by
the multitrait-multimethod matrix. Psychological Bulletin 56 (2), 81–105.

101

http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/DDJ/2008/0806/080501sa01/080501sa01.html
http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/DDJ/2008/0806/080501sa01/080501sa01.html
http://www.ambysoft.com/surveys/howAgileAreYou2013.html#Figure6
http://agilemanifesto.org/principles.html
http://www.agilemanifesto.org/

BIBLIOGRAPHY BIBLIOGRAPHY

[10] Campbell, D. T., Stanley, J., 1963. Experimental and Quasi-Experimental Designs
for Research. Cengage Learning.

[11] Cockburn, A., 1997.
URL http://members.aol.com/acockburn/papers/swaspoem/swpo.htm

[12] Cockburn, A., 2002. Agile software development. Agile software development series.
Addison-Wesley.

[13] Cockburn, A., 2004. Crystal Clear a Human-powered Methodology for Small Teams.
Addison-Wesley Professional.

[14] Comparative-Agility, 2008.
URL http://comparativeagility.com

[15] Conboy, K., Fitzgerald, B., 2004. Toward a conceptual framework of agile methods:
A study of agility in different disciplines. In: Proceedings of the 2004 ACM Work-
shop on Interdisciplinary Software Engineering Research. WISER ’04. pp. 37–44.

[16] Conboy, K., Wang, X., 2009. Understanding agility in software development from a
complex adaptive systems perspective.

[17] Datta, S., 2009. Metrics and techniques to guide software development. Ph.D. thesis,
Florida State University College of Arts and Sciences.

[18] Delestras, S., Roustit, M., Bedouch, P., Minoves, M., Dobremez, V., Mazet, R.,
Lehmann, A., Baudrant, M., Allenet, B., 2013. Comparison between two generic
questionnaires to assess satisfaction with medication in chronic diseases. PLoS ONE
8 (2), 56–67.

[19] Escobar-Sarmiento, V., Linares-Vasquez, M., Oct 2012. A model for measuring
agility in small and medium software development enterprises. In: Informatica
(CLEI), 2012 XXXVIII Conferencia Latinoamericana En. pp. 1–10.

[20] Feldt, R., Angelis, L., Torkar, R., Samuelsson, M., 2010. Links between the person-
alities, views and attitudes of software engineers. Information and Software Tech-
nology 52 (6), 611–624.

[21] Fowler, J. F. J., 2008. Survey Research Methods (Applied Social Research Methods).
SAGE Publications, Inc.

[22] Framework, S. A., 2011.
URL http://http://www.scaledagileframework.com/

[23] Google-Drive, 2012.
URL https://drive.google.com

[24] Highsmith, J., 2002. Agile Software Development Ecosystems. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

102

http://members.aol.com/acockburn/papers/swaspoem/swpo.htm
http://comparativeagility.com
http://http://www.scaledagileframework.com/
https://drive.google.com

BIBLIOGRAPHY BIBLIOGRAPHY

[25] Highsmith, III, J. A., 2000. Adaptive Software Development: A Collaborative Ap-
proach to Managing Complex Systems. Dorset House Publishing Co., Inc.

[26] Hossain, E., Ali Babar, M., Verner, J., 2009. Towards a framework for using agile
approaches in global software development. In: Product-Focused Software Process
Improvement. Vol. 32. Springer Berlin Heidelberg, pp. 126–140.

[27] IBM, 2010.
URL http://www-01.ibm.com/support/docview.wss?uid=swg21482329

[28] Ikoma, M., Ooshima, M., Tanida, T., Oba, M., Sakai, S., May 2009. Using a val-
idation model to measure the agility of software development in a large software
development organization. In: Software Engineering - Companion Volume, 2009.
ICSE-Companion 2009. 31st International Conference on. pp. 91–100.

[29] Ingalls, P., Frever, T., Aug 2009. Growing an agile culture from value seeds. In:
Agile Conference (AGILE) 2009. pp. 119–124.

[30] Jalali, S., 2012. Efficient software development through agile methods. Ph.D. thesis,
Blekinge Institute of Technology.

[31] Jalali, S., Wohlin, C., Angelis, L., 2014. Investigating the applicability of agility
assessment surveys: A case study. Journal of Systems and Software 98, 172–190.

[32] Kara, S., Kayis, B., 2004. Manufacturing flexibility and variability: an overview.
Journal of Manufacturing Technology Management 15 (6), 466–478.

[33] Kidd, P. T., 1994. Agile Manufacturing: Forging New Frontiers. Addison-Wesley.

[34] Koch, A., 2005. Agile Software Development: Evaluating The Methods For Your
Organization. Artech House, Incorporated.

[35] Lacy, D. P., Lewis, M., Dec 2010. Does answering survey questions change how
people think about political issues? In: APSA 2010 Annual Meeting Paper. pp.
66–103.

[36] Lappo, P., Andrew, H. C. T., 2004. Assessing agility. Vol. 3092 of Lecture Notes in
Computer Science. Springer, pp. 331–338.

[37] Leffingwell, D., 2007. Scaling Software Agility: Best Practices for Large Enterprises
(The Agile Software Development Series). Addison-Wesley Professional.

[38] Livermore, J., March 2006. What elements of xp are being adopted by industry
practitioners? In: SoutheastCon, 2006. Proceedings of the IEEE. pp. 149–152.

[39] McIntosh, C., 2013. Cambridge Advanced Learner’s Dictionary. Cambridge Univer-
sity Press.

103

http://www-01.ibm.com/support/docview.wss?uid=swg21482329

BIBLIOGRAPHY BIBLIOGRAPHY

[40] Murphy, B., Bird, C., Zimmermann, T., Williams, L., Nagappan, N., Begel, A.,
Oct 2013. Have agile techniques been the silver bullet for software development at
microsoft? In: Empirical Software Engineering and Measurement, 2013 ACM /
IEEE International Symposium on. pp. 75–84.

[41] Nagel, R. N., Dove, R., 1991. 21st Century Manufacturing Enterprise Strategy: An
Industry-Led View. Diane Pub Co.

[42] Nietzsche, F., 2012. Thus Spoke Zarathustra. Simon & Brown.

[43] Palmer, S. R., Felsing, M., 2001. A Practical Guide to Feature-Driven Development.
Pearson Education.

[44] Patel, C., Lycett, M., Macredie, R., de Cesare, S., Jan 2006. Perceptions of agility
and collaboration in software development practice. In: System Sciences, 2006.
HICSS ’06. Proceedings of the 39th Annual Hawaii International Conference on.
Vol. 1. pp. 10c–10c.

[45] Poonacha, K., Bhattacharya, S., Jan 2012. Towards a framework for assessing
agility. In: System Science (HICSS), 2012 45th Hawaii International Conference.
pp. 5329–5338.

[46] Qumer, A., Henderson-Sellers, B., 2006. Measuring agility and adoptability of agile
methods: A 4-dimensional analytical tool. Procs. IADIS International Conference
Applied Computing 2006, 503–507.

[47] Qumer, A., Henderson-Sellers, B., Nov. 2008. A framework to support the evalua-
tion, adoption and improvement of agile methods in practice. Journal of Systems
and Software 81 (11), 1899–1919.

[48] Ramesh, G., Devadasan, S., 2007. Literature review on the agile manufacturing
criteria. Journal of Manufacturing Technology Management 18 (2), 182–201.

[49] Razali, N., Wah, Y. B., Jun. 2011. Power comparisons of Shapiro-Wilk, Kolmogorov-
Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and
Analytics 2 (1).

[50] Reifer, D. J., 2002. How to get the most out of extreme programming/agile methods.
In: Proceedings of the Second XP Universe and First Agile Universe Conference on
Extreme Programming and Agile Methods - XP/Agile Universe 2002. Springer-
Verlag, pp. 185–196.

[51] RStudio, 2010.
URL http://www.rstudio.com

[52] Runeson, P., Höst, M., 2008. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering 14 (2), 131–164.

104

http://www.rstudio.com

BIBLIOGRAPHY BIBLIOGRAPHY

[53] Sahota, M., 2012. An Agile Adoption And Transformation Survival Guide. lulu.com.

[54] Salo, O., Abrahamsson, P., 2008. Agile methods in european embedded software
development organisations: a survey on the actual use and usefulness of extreme
programming and scrum. IET Software 2 (1), 58.

[55] Schwaber, K., Beedle, M., 2001. Agile Software Development with Scrum (Series in
Agile Software Development). Prentice Hall.

[56] Shawky, D., Ali, A., Nov 2010. A practical measure for the agility of software
development processes. In: Computer Technology and Development (ICCTD), 2010
2nd International Conference. pp. 230–234.

[57] Sidky, A., 2007. A structured approach to adopting agile practices: The agile adop-
tion framework. Ph.D. thesis, Virginia Polytechnic Institute and State University.

[58] Sidky, A., Arthur, J., Bohner, S., 2007. A disciplined approach to adopting ag-
ile practices: the agile adoption framework. Innovations in systems and software
engineering 3 (3), 203–216.

[59] So, C., Scholl, W., 2009. Perceptive agile measurement: New instruments for quan-
titative studies in the pursuit of the social-psychological effect of agile practices.
Vol. 31 of Lecture Notes in Business Information Processing. Springer, pp. 83–93.

[60] Soundararajan, S., 2013. Assessing agile methods, investigating adequacy, capability
and effectiveness. Ph.D. thesis, Virginia Polytechnic Institute and State University.

[61] Soundararajan, S., Arthur, J., Balci, O., Aug 2012. A methodology for assessing
agile software development methods. In: Agile Conference (AGILE), 2012. pp. 51–
54.

[62] Sureshchandra, K., Shrinivasavadhani, J., Aug 2008. Moving from waterfall to agile.
In: Agile Conference (AGILE) 2008. pp. 97–101.

[63] Sutherland, J., 2008. The scrum but test.
URL http://antoine.vernois.net/scrumbut/?page=intro&lang=en

[64] Taromirad, M., Ramsin, R., Oct 2008. Cefam: Comprehensive evaluation framework
for agile methodologies. In: Software Engineering Workshop, 2008. SEW ’08. 32nd
Annual IEEE. pp. 195–204.

[65] Taylor, P., Greer, D., Sage, P., Coleman, G., McDaid, K., Lawthers, I., Corr, R.,
2006. Applying an agility/discipline assessment for a small software organisation.
In: Product-Focused Software Process Improvement. Vol. 4034. pp. 290–304.

[66] Thomas, D., July 7, 2014. Staying sharp with dave thomas.
URL http://devchat.tv/ruby-rogues/164-rr-staying-sharp-with-dave-

thomas

105

http://antoine.vernois.net/scrumbut/?page=intro&lang=en
http://devchat.tv/ruby-rogues/164-rr-staying-sharp-with-dave-thomas
http://devchat.tv/ruby-rogues/164-rr-staying-sharp-with-dave-thomas

BIBLIOGRAPHY

[67] ThoughtWorks-Studio, 1993.
URL http://www.agileassessments.com

[68] Tsourveloudis, N., Valavanis, K., 2002. On the measurement of enterprise agility.
Journal of Intelligent and Robotic Systems 33 (3), 329–342.

[69] VersionOne, 2013. 8th annual state of agile survey.
URL http://stateofagile.versionone.com/

[70] Wagner, M., Zeglovits, E., 2014. Survey questions about party competence: Insights
from cognitive interviews. Electoral Studies 34, 280–290.

[71] Waters, K., 2008. How agile are you?
URL http://www.allaboutagile.com/how-agile-are-you-take-this-42-

point-test/

[72] Williams, L., 2012. What agile teams think of agile principles. Communications of
the ACM 55 (4), 71.

[73] Williams, L., Krebs, W., Layman, L., Antón, A., Abrahamsson, P., 2004. Toward a
framework for evaluating extreme programming. Empirical Assessment in Software
Eng.(EASE), 11–20.

[74] Williams, L., Rubin, K., Cohn, M., Aug 2010. Driving process improvement via
comparative agility assessment. In: Agile Conference (AGILE), 2010. pp. 3–10.

[75] Wohlin, C., Ohlsson, M. C., Wesslén, A., Höst, M., Runeson, P., Regnell, B., 2012.
Experimentation in Software Engineering. Springer Berlin Heidelberg.

[76] Yauch, C. A., 2011. Measuring agility as a performance outcome. Journal of Man-
ufacturing Technology Management 22 (3), 384–404.

106

http://www.agileassessments.com
http://stateofagile.versionone.com/
http://www.allaboutagile.com/how-agile-are-you-take-this-42-point-test/
http://www.allaboutagile.com/how-agile-are-you-take-this-42-point-test/

	Introduction
	Related Work
	Agility of Agile Methodologies
	Balancing Discipline and Agility
	Philip Taylor - Assessing Tool
	Datta - Agility Measurement Index
	Comprehensive Evaluation Framework for Agile Methodologies
	4-Dimensional Analytical Tool
	XP Evaluation Framework
	Summary

	Agility of Software Teams
	Team Agility Assessment
	Comparative Agility
	Escobar - Vasquez Model for Assessing Agility
	Entropy Analysis
	Validation Model to Measure the Agility
	Perceptive Agile Measurement
	AHP - ANFIS Framework
	42-Point Test
	Sidky Agile Measurement Index
	Thoughtworks
	Objectives Principles Strategies Framework
	Summary

	Selecting tools
	Chapter Summary

	Research Methodology
	Research Purpose
	Research Questions
	Case Study

	Subject Selection
	Company Description
	Methodology A
	Products
	Teams

	Data Collection
	Data Preparation
	Data Analysis
	Chapter Summary

	Results
	Correlation Results
	Direct Match Results
	Practices' Coverage Results
	Chapter Summary

	Enhancing OPS
	OPS Enhancement
	Questions Excluded
	Questions Added

	Chapter Summary

	Discussion
	Answers to Research Questions
	RQ#1 - Will PAM, TAA and OPS yield similar results?
	RQ#2 - Can the tools be combined in a way that will provide a better approach in measuring agility?

	Threats to Validity
	Construct Validity
	Internal Validity
	Conclusion Validity
	External Validity
	Reliability

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendices
	Objectives Principles Strategies - Effectiveness
	Perceptive Agile Measurement
	Team Agility Assessment
	Mapping of Questions to Practices/Strategies
	Direct Match Questions
	Data Plots
	Direct Matches - HeatMaps
	Combining OPS, PAM, TAA
	Capability
	Effectiveness

	 Bibliography

