
  

Delineating cellular 
heterogeneity and 

organization of breast 
cancer stem cells 

 

 

 

 

Nina Akrap 
 

 

 

Department of Pathology 
!"#$%$&$'()*(+%),'-%.%"' 

Sahlgrenska Academy at University of Gothenburg 
 

 

 

 

 



 
 

 

 

 

Gothenburg 2015 

 

 

Cover illustration: Micrograph of PKH-stained MCF7 mammospheres by 
Nina Akrap 

 

 

 

 

 

 

 

 

 

 

Delineating cellular heterogeneity and organization of breast cancer stem 
cells 
© Nina Akrap 2015 
nina.akrap@gu.se 
 
ISBN 978-91-628-9601-0 
 
Printed in Kalmar, Sweden 2015 
Lenanders Grafiska AB  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Für Baka 
  



 
 

 

 

  



Delineating cellular heterogeneity 
and organization of breast cancer 

stem cells 
 

Nina Akrap 

Department of Pathology, Institute of Biomedicine 
Sahlgrenska Academy at University of Gothenburg 

Göteborg, Sweden 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

ABSTRACT 

Breast cancer is characterized by a high degree of heterogeneity in terms of 
histological, molecular and clinical features, affecting disease progression and 
treatment response. The cancer stem cell (CSC) model suggests, that cancers are 
organized in a hierarchical fashion and driven by small subsets of CSCs, endowed 
with the capacity for self-renewal, differentiation, tumorigenicity, invasiveness 
and therapeutic resistance. The overall aim of this thesis was to characterize CSC 
phenotypes and the cellular organization in estrogen receptor ! + (ER!+) and 
ER!- subtypes of breast cancer at the individual cell level. Furthermore, we 
aimed to identify novel functional CSC markers in a subtype-independent 
manner, allowing for better identification and targeting of breast-specific CSCs. 

    At present, single-cell quantitative reverse transcription polymerase chain 
reaction represents the most commonly applied method to study transcript levels 
in individual cells. Inherent to most single-cell techniques is the difficulty to 
analyze minute amounts of starting material, which most often requires a 
preamplification step to multiply transcript copy numbers in a quantitative 
manner. In Paper I we have evaluated effects of variations of relevant parameters 
on targeted cDNA preamplification for single-cell applications, improving 
reaction sensitivity and specificity, pivotal prerequisites for accurate and 
reproducible transcript quantification. 

    In Paper II we have applied single-cell gene expression profiling in 
combination with three functional strategies for CSC enrichment and identified 
distinct CSC/progenitor clusters in ER!+ breast cancer. ER!+ tumors display a 
hierarchical organization as well as different modes of cell transitions. In contrast, 
ER!- breast cancer show less prominent clustering but share a quiescent CSC 
pool with ER!+ cancer. This study underlines the importance of taking CSC 
heterogeneity into account for successful treatment design. 

    In Paper III we have used a non-biased genome-wide screening approach to 
identify transcriptional networks specific to CSCs in ER!+ and ER!- subtypes. 
CSC-enriched models revealed a hyperactivation of the mevalonate metabolic 
pathway. When detailing the mevalonate pathway, we identified the mevalonate 
precursor enzyme 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) as a 
specific marker of CSC-enrichment in ER!+ and ER!- subtypes, highlighting 
HMGCS1 as a potential gatekeeper for dysregulated mevalonate metabolism 
important for CSC-features. Pharmacological inhibition of HMGCS1 could 
therefore be a novel treatment approach for breast cancer patients targeting CSCs. 

Keywords: Breast cancer, cancer stem cells, cellular heterogeneity  
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SAMMANFATTNING PÅ SVENSKA 

Bröstcancer är den vanligaste cancerformen hos kvinnor och utgör 30% 
(2011) av alla cancerfall hos kvinnor i Sverige. Sjukdomen kännetecknas 
av stor variation och bröstcancer kan beskrivas som ett samlingsbegrepp 
för olika typer av cancer. Olika varianter av bröstcancer har olika 
sjukdomsförlopp och det finns undergrupper med bra respektive dålig 
prognos som behandlas på olika sätt.  

En tumör består av många olika typer av celler. Flera modeller har försökt 
förklara anledningen till denna cellvariation varav en är 
cancerstamcellsmodellen. Här tror man att en liten del av cellerna i 
tumören, kallade cancerstamceller, är aggressiva, kan bilda metastaser och 
är motståndskraftiga mot behandling. Därför tror man att det är viktigt att 
hitta behandling riktad mot dessa celler. Syftet med detta arbete är att 
studera cancerstamceller i olika typer av bröstcancer och vidare titta på 
organisationen av dessa celler och andra celltyper i tumörerna. Ett annat 
mål med avhandlingen är att identifiera markörer som är specifika för 
cancerstamceller jämfört med andra cellpopulationer i olika typer av 
bröstcancer för att kunna använda dessa till att utveckla metoder för 
diagnos och behandling. 

Cancerstamceller utgör en väldigt liten del av tumörcellerna och för att 
studera dessa krävs specifika metoder där man sorterar ut och analyserar 
enskilda celler. Enskilda celler innehåller väldigt lite material och därför 
måste materialet först amplifieras för att kunna analyseras med 
tillgängliga metoder. I artikel I har vi utvecklat en metod för att amplifiera 
denna typ av material på ett sätt som ger tillförlitliga resultat.  

I artikel II har vi studerat organisationen av olika cellpopulationer i två 
typer av bröstcancer. Olika metoder användes för att anrika 
cancerstamceller som sedan jämfördes med vanliga cancerceller. Vi tittade 
på två olika typer av bröstcancer och i båda fallen identifierades en grupp 
av liknande cancerstamceller. I en av cancertyperna identifierades 
ytterligare populationer av cancerstamceller och man kunde se en tydlig 
organisation av olika celltyper. Denna studie påvisar betydelsen av att 
behandla all typer av relevanta cellpopulationer för att eliminera cancer.  

I artikel III försökte vi identifiera markörer specifika för cancerstamceller 
i olika typer av bröstcancer. Vi använde en speciell metod för att hitta 
signalvägar specifika för cancerstamcellerna. Genom att titta närmare på 
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en av signalvägarna som upptäcktes med denna metod identifierade vi en 
markör kallad HMGCS1 som är viktig för funktionen av cancerstamceller. 
Farmakologisk hämning av HMGCS1 skulle därför kunna vara ett nytt 
behandlingssätt för bröstcancerpatienter. 
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 INTRODUCTION 1

1.1 The normal breast and breast cancer 

1.1.1 The normal breast 
 

Breast development 

Mammary gland morphogenesis is initiated in the embryo at around four 
weeks. Most of the breast growth takes place at puberty under the 
influence of growth hormones and estrogen, leading to an enlargement of 
the rudimentary mammary epithelium. During pregnancy alveolar 
morphogenesis is induced by several hormones and the mammary 
epithelium undergoes rapid proliferation, resulting in increased ductal 
branching and the development of the alveolar epithelium, capable of milk 
secretion [1].  

 

Breast structure 

The mammary epithelium is characterized by a high degree of plasticity 
throughout life. The mature epithelium is organized into a series of 
branching ducts, which are lined by a bi-layered epithelium, consisting of 
luminal and myoepithelial/basal cells adjacent to a basement membrane. 
Mammary ducts are surrounded by stromal cells, such as adipocytes and 
fibroblasts and infiltrated with blood and lymph vessels. Each duct ends 
into the terminal ductal lobular unit (TDLU), which consists of ductules 
and alveolar buds. The majority of breast cancers arise in the TDLUs [1, 
2] (Fig.1A and 1B).  

 

Cellular hierarchy 

Today, it is widely accepted that the mammary epithelium is organized in 
a differentiation hierarchy. Bipotent mammary stem cells (MaSCs) form 
the apex of the hierarchy, giving rise to unipotent luminal and basal stem 
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or progenitor cells, which maintain the terminally differentiated cell types. 
However, the exact definition of MaSCs and derived progenitor 
populations still remains a matter of debate. To interrogate the hierarchical 
organization of the mammary epithelium the field has broadly relied on in 
vivo and in vitro assays to test self-renewal and differentiation capacity in 
subsets of epithelial cells. MaSC of the adult gland are notoriously 
difficult to study due to their low frequency and the lack of appropriate 
markers. Data derived from these studies have been conflicting, which is 
likely the result of different applied tumor dissociation protocols and 
assays to assess ‘stemness’ [3]. Several studies indicated that the MaSC 
(i.e. cells with highest repopulating capacity) have an 
EPCAMlow/CD49fhigh phenotype and are part of the basal cell 
compartment [4, 5], whereas other studies showed that the luminal and 
basal compartment contains MaSC and bi-potent progenitors [6]. 
Additionally, suprabasal luminal cells of the ducts were suggested to 
contain MaSC [7, 8]. Besides, there is also evidence for the existence of 
unipotent stem/progenitor cells that maintain the luminal and basal 
compartment. Luminal progenitor cells can be identified by their 
EPCAMhigh/CD49fhigh immunophenotype [9, 10]. No specific marker 
profile has yet been identified for basal progenitor cells, but they can be 
identified from serial passaging of MaSCs, indicating that these cells lie 
downstream in the hierarchy [10]. One feature of adult stem cells is their 
slow division cycle, which enables enrichment of these cells by label-
retention methods, such as synthetic DNA nucleosides or membrane dyes. 
Pece and colleagues have used the lipophilic PKH26 dye in combination 
with the mammosphere assay to enrich for MaSC based on their quiescent 
nature [8]. The authors identified cells expressing the cell surface marker 
profile CD49fhigh/DLL1high/DNERhigh to have the highest mammosphere-
initiating potential. Interestingly, the gene signature derived from 
PKH26high cells was able to predict biological and molecular features of 
breast cancers.  
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Figure 1. Schematic illustration of the normal breast. A: Representation of the 
human mammary gland. B: Cross section of a mammary duct. Adapted from [2]. 

 

1.1.2 Breast cancer 
Breast cancer is the most common type of cancer diagnosed in women 
worldwide, with an incidence of about 25% [11] corresponding to 1.7 
million women being diagnosed with breast cancer in 2012. There was a 
sharp rise (20%) in breast cancer incidence since 2008, which can be 
partly explained by changes in lifestyle common to industrialized nations 
[12]. Despite of the high incidence, breast-cancer related mortality is 
decreasing, with 5-year and 10-year survival rates of 87.8% and 78.8% in 
Sweden [13]. 

The risk of developing breast cancer has been linked to numerous factors. 
A few well-established risk factors comprise age, lifestyle and 
environmental factors, such as body mass index, alcohol consumption and 
hormone replacement therapy. Early menarche, late menopause and late 
age of first childbirth comprise additional risk factors. Most of the breast 
cancers are sporadic and non-familial. Hereditary forms of cancer only 
constitute 5-10% of all cancers. However, female carriers of germline 
mutations in high penetrance genes, such as BRCA1 and BRCA2 present a 
60-80% lifetime risk of developing breast cancer [14]. Additional high 
penetrance mutations in for example the PTEN gene (Cowden syndrome) 
or TP53 (Li-Fraumeni syndrome) are associated with a significant 
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increased risk of breast cancer. Mutations in these susceptibility alleles are 
rare in the general population and only account for a small fraction of 
susceptibility for breast cancer [14]. 

 

1.1.3 Breast cancer subtypes 
Breast cancer has long been perceived as a complex disease, reflected in 
diverse morphological, clinical and molecular characteristics. 
Traditionally breast cancer is classified according to histopathological 
features, involving tumor size, nodal status and metastasis, also referred to 
as the TNM staging system. In addition, immunohistochemical 
parameters, such as estrogen receptor (ER), progesterone receptor (PR) 
and human epidermal growth factor receptor 2 (HER2) status as well as 
proliferation-associated markers (e.g. Ki67) are routinely assessed to 
classify breast cancers and to guide appropriate treatment decisions. More 
recently, with the invention of microarray-assisted gene expression 
profiling, breast cancers have been grouped into distinct molecular 
subgroups.   

!

Histological classification  

Histological grade and histological type are two clinical parameters used 
to classify breast cancers into subgroups. Histological grade assesses the 
degree of differentiation, whereas the histological type signifies the 
growth pattern of the tumor.  The most common type of breast carcinoma 
are invasive ductal carcinoma not otherwise specified (IDC-NOC), which 
accounts for 50-80% of all carcinomas, followed by invasive lobular 
carcinomas accounting for about 5-15% of all cases. The remaining cases 
of invasive carcinomas comprise at least 17 histological types [15]. 

 

TNM staging and the Nottingham Prognostic Index 

In breast cancer a useful prognostic factor ideally separates groups of 
patients who require no further adjuvant therapy after local surgery from 
those patients with poor prognosis for whom additional therapy may 
potentially be beneficial. No single prognostic factor meeting these 
criteria has been identified [16]. To predict patient outcome and assist 
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clinical decision making several methods have been developed, such as 
the St. Gallen consensus criteria, the National Comprehensive Cancer 
Network guidelines, Adjuvant! Online and the Nottingham Prognostic 
Index (NPI). The latter is widely used in clinical practice to stratify the 
prognosis of patients. The NPI comprises three prognostic factors, the 
presence of lymph node metastasis, tumor size and histological grade, 
assembled in a prognostic index formula [17]. Numerical NPI values can 
be used to stratify patients into good, moderate and poor prognostic 
groups. However, it has been noted that the NPI does not expose the 
complete clinical heterogeneity and thus would benefit from taking 
additional parameters into account to improve personalized management 
of breast cancer patients [18]. 

 

Immunohistochemical classification 

In addition to the above-described histopathological parameters, ER, PR 
and HER2 are used as prognostic, but mainly as predictive markers, 
guiding treatment strategies. ER and PR status have been used for many 
years to assess if patients are suitable for endocrine therapy. ER is a 
transcription factor and required for estrogen-stimulated growth. About 
two thirds of all breast cancers express ER. PR expression is regulated by 
estrogens and therefore its expression is thought to indicate a functioning 
ER pathway, which may assist in predicting response to endocrine 
therapy. Immunohistochemistry (IHC) is the standard method for 
determination of hormone receptor status. Levels of ER and PR 
immunreactivity can be assessed using the Allred scoring system, 
combining scores for intensity and the proportion of cells stained. Patients 
may be suitable for endocrine therapy with only 1-10% of positively 
stained nuclei. The oncogene ERBB2 encodes for HER2, a member of the 
epidermal growth factor family of tyrosine kinases. ERBB2 is located on 
chromosome 17q21 and its gene product is involved in cell differentiation, 
adhesion and motility. The predominant mechanism of overexpression in 
breast cancer is gene amplification, occurring in about 20% of all breast 
cancers. HER2 expression is used as a predictive marker for specific 
systematic therapy with the humanized monoclonal antibody trastuzumab. 
HER2 assessment is conducted by IHC and in situ hybridization. The IHC 
score takes staining intensity and the percentage of positive cells into 
account. Patients presenting more than 10% of highly stained cells are 
qualified for targeted treatment. Borderline samples undergo further 
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assessment by in situ hybridization, applying a dual probe set that targets 
the centromere of chromosome 17 as well as the ERBB2 gene locus. 
Individuals exhibiting an ERBB2 to chromosome 17 ratio larger than two 
are suitable for HER2-specific therapy [19, 20]. 

 

Molecular classification 

Microarray-based gene expression profiling studies have allowed detailed 
insights into the significant degree of heterogeneity of breast cancer [21-
23]. These studies led to the concept that breast cancer comprises multiple 
diseases, affecting the same organ side and originating from the same 
anatomical structure (i.e. the TDLU), but display differences in risk 
factors, clinical behavior, histopathological features and response to 
therapy [24]. By using hierarchical cluster analysis the seminal studies by 
Perou et al., (2000) and Sorlie et al., (2001) have revealed the presence of 
at least four molecular groups. In addition, these studies demonstrated that 
ER+ and ER- breast cancers are distinct diseases at the molecular level 
and that the observed clusters were mainly contributed to differential 
expression of ER and ER-related genes, proliferation-associated genes and 
to a lesser extend to HER2 and genes mapping the region of the HER2 
amplicon. Today, at least six different molecular subtypes are recognized; 
luminal A and B, basal-like, HER2-enriched, normal breast-like as well as 
the more recently discovered claudin-low subgroup [25] (Fig.2A). 
Importantly, identified subtypes are associated with differences in clinical 
outcome (Fig.2B). Specific features of individual subtypes are 
summarized in Table 1. 
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Figure 2. Human breast tumors cluster into six molecular groups and exhibit 
differences in survival. A: Hierarchical clustering of 547 breast tumors into six 
intrinsic subtypes. B: Kaplan-Meyer survival analysis of the six distinct breast 
cancer subtypes. DFS, disease-free survival. Adapted from [26]. 

 
Table 1. Features of microarray-based defined molecular subtypes of 
breast cancers. Adapted from [24]. 

!
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*At the RNA level, breast cancers of this subtype show noticeable similarities with normal 
breast tissue and fibroadenomas. It has recently been suggested that this subtype represents 
an artifact due to sample contamination with stromal, inflammatory and normal breast cells 
[24]. 

 

Although the different molecular subtypes are now well recognized, there 
are still limitations in regards to the definition and number of subtypes, 
and their prognostic and predictive significance. Furthermore, the 
information received from gene expression profiling beyond ER, PR, 
HER2 and proliferation markers remains to be fully established [24].  

 

1.1.4 Breast cancer therapy 
The majority of breast cancers in the developed parts of the world are 
diagnosed at early stage of the disease, owing to population-wide 
mammogram screenings. Early stage breast cancers can be completely 
resected by surgery followed by adjuvant therapy to prevent recurrence, 
which has been the gold standard in breast cancer for a long time. More 
recently, neoadjuvant treatment has been introduced and is clinically 
indicated for patients with large tumor size and high nodal involvement or 
patients presenting an inflammatory component [27]. 

 

Therapy for hormone receptor positive breast cancers 

Hormone receptor (estrogen and progesterone) positive breast cancers 
constitute up to 65-75% of all breast cancers [28]. For growth and 
survival, hormone receptor positive breast cancers largely depend on 
hormone supply, which is essential for endocrine treatment design. 
Although, hormone receptor positive breast cancers are associated with 
the best prognosis amongst all subtypes, 20% of the patients experience 
recurrence within 10 years after surgery. The two main adjuvant 
modalities currently provided are cytotoxic chemotherapy and endocrine 
therapy, both leading to an improvement of disease-free and overall 
survival. There are two main classes of endocrine therapy agents; selective 
estrogen receptor modulators (SERMs) and aromatase inhibitors (AIs). 
SERMs bind to estrogen receptors in a competitive fashion to inhibit DNA 
synthesis by recruitment of co-repressors and inhibition of G0/G1 cell 
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cycle progression. The most commonly applied drugs of this class are 
tamoxifen, raloxifen and toremifene. AIs inhibit the enzyme aromatase, 
which converts circulating androgens into estrogens by an aromatization 
reaction, resulting in reductions of serum, tissue and tumor cell estrogen 
levels. AIs can exert their function only if the primary source of estrogen 
is eliminated, such as in postmenopausal women, after oophorectomy or 
in combination with estrogen deprivation therapy [27].  

 

Therapy for HER2 positive breast cancer 

HER2 overexpression is one of the most important carcinogenic features 
and HER2 amplified breast tumors have the second-poorest prognosis 
amongst breast cancer subtypes paralleled by lower disease-free and 
overall survival rates. About 20-25% of all breast cancer cases are 
characterized by overexpression of the HER2 protein, which is a 
prognostic and predictive marker for HER2 targeted therapy. HER2 is a 
transmembrane protein with an extracellular ligand-binding domain and 
an intracellular tyrosine kinase domain. The receptor is activated upon 
ligand binding, leading to homo- or heterodimerization with other HER 
protein family members. HER2 signaling is crucial, since it triggers the 
downstream activation of multiple pathways involved in cell proliferation 
and inhibition of apoptosis. Trastuzumab is a recombinant humanized 
monoclonal antibody and was the first FDA-approved targeted treatment 
for breast cancer, targeting the extracellular domain of HER2. Clinical 
studies have highlighted that combined treatment of trastuzumab with 
standard chemotherapy produces improved response rates compared to 
chemotherapy alone [29]. 

 

Therapy for triple negative breast cancer 

Triple negative breast cancer (TNBC) is characterized by the lack of ER, 
PR and HER2 expression and accounts for about 10-15% of all breast 
cancers, frequently occurring in younger and African women as well as in 
BRCA-mutated individuals. TNBC represent a highly heterogeneous 
group of tumors and survival of patients with metastatic or recurrent 
disease remains poor. Given the lack of effective drug targets, 
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chemotherapy is used as the standard therapy, which is however more 
beneficial than in hormone-receptor positive breast cancers [27].  

 

Personalized breast cancer treatment  

Personalized medicine aims to classify individuals into subgroups that 
differ in their response to a specific treatment. With the advance of gene-
expression profiling, several multi-gene expression tests for determination 
of risk relapse in early stage breast cancer have become clinically 
available. Molecular diagnostic tests include for example MammaPrint® 
(Agendia), Oncotype DX® (Genomic Health) and PAM50® (Prosigna), 
using RT-PCR or microarray technology. MammaPrint is a microarray-
based gene expression profiling test, analyzing 70 genes involved in cell 
cycle regulation, angiogenesis, invasion, metastasis and signal 
transduction. The test stratifies patients into low- or high-risk groups of 
distant recurrence and proved to be a robust predictor for distant 
metastatic-free survival, independent of adjuvant treatment, tumor size, 
histological grade, and age. Oncotype DX uses a 21-gene expression 
signature to generate a prognostic parameter, termed recurrence score, 
predicting the risk of distant recurrence in node-negative ER+ breast 
cancer patients treated with tamoxifen. Based on the obtained gene 
signatures, patients are classified into low, intermediate and high-risk 
groups. Similarly, the PAM50 test uses a 58-gene signature to stratify 
patients into low, intermediate and high-risk groups [30, 31]. 

 

1.2 Tumor heterogeneity 
Breast cancer comprises a diverse group of neoplasms originating in the 
epithelial cells of the mammary ducts. Heterogeneity exists between 
different tumors (inter-tumor heterogeneity) as well as at the individual 
tumor level (intra-tumor heterogeneity) [32]. 

 

1.2.1 Inter-tumor heterogeneity 
Clinical traits that differ amongst breast cancers include proliferation rate, 
invasiveness, metastatic potential and response to treatment [33]. Several 
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hypotheses have been developed to explain the underlying reasons for 
intertumoral heterogeneity, such as different cells of origin as well as 
different oncogenic events. Each breast cancer results from an 
accumulation of oncogenic hits in a genetically normal cell. During the 
early stage of tumor progression clonal expansion critically determines the 
behavior and progression of the resulting tumor. It is thought that 
characteristics of the cell of origin are epigenetically conveyed to the 
tumor cells and their progeny [33].  

DNA and exome sequencing technologies have enabled large-scale 
studies of breast cancer cohorts. Comprehensive molecular analyses 
revealed associations between tumor subtypes and sets of mutated genes 
[34, 35]. An extensive and integrated study by the Cancer Genome Atlas 
Network [35] included 852 primary breast cancer patients, which were 
analyzed by genomic DNA copy number arrays, DNA methylation, 
exome sequencing, mRNA arrays, microRNA sequencing and reverse-
phase protein arrays. The authors found breast cancers to congregate into 
four phenotypically different classes (luminal A, luminal B, basal and 
HER2 amplified) due to distinct genetic and epigenetic changes. The 
lowest mutational rates were identified in luminal A tumors, whereas 
basal and HER2 amplified tumors exhibited the highest mutational rate. 
Mutated genes were shown to differ between subgroups, luminal A tumors 
most frequently displayed mutations in PI3KCA (45%), MAP3K1 (13%), 
GATA3 (14%), HER2 amplification was detected in 80% of the HER2 
class along with a high frequency of TP53 (72%) and PIK3CA (39%) 
mutations, while basal tumors were characterized by high TP53 (80%) 
mutations. Interestingly, intrinsic tumor subtypes were not only denoted 
by different mutation frequencies, but also by different mutational types. 
For example alterations in TP53 were mainly nonsense and frame-shift 
mutations in basal tumors, but missense mutations in luminal A tumors. 
This and other studies have underlined significant differences in the 
mutational profile of breast cancer subtypes and potential subtype-specific 
oncogenic drivers.   

A second and equally important factor in the creation of breast cancer 
heterogeneity is the cell of origin of a tumor and how this cell relates to 
the mammary epithelial hierarchy and subtypes. To address this question 
two primary approaches have been widely applied; firstly transgenic or 
conditional mouse models and secondly genetic alterations of cells and 
subsequent in vivo evaluation of their tumorigenic potential in mice [36]. 
MaSCs have been theorized to play an important role in breast cancer 
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initiation due to their long life span, enabling the stepwise accumulation 
of genetic mutations over time and additionally because of their inherent 
properties of self-renewal and lineage differentiation. Another theory is 
that the target cell of the oncogenic transformation is recapitulated in the 
phenotype of the breast cancer subtype, i.e. basal-like tumors would be 
derived from transformed basal progenitor cells and luminal-like tumors 
would arise from transformed luminal progenitor cells [37]. More recently 
however, luminal progenitor cells have been put into the spotlight as 
putative breast cancer initiating cells. To explore cells of origin in human 
cancers Keller et al. [6] isolated luminal cells from breast reduction 
tissues and introduced several combinations of oncogenes using lentiviral 
transduction. The derived tumors displayed luminal-like and basal-like 
phenotypes in immunodeficent mice, comprising much of the 
heterogeneity observed in sporadic breast cancers. On the other hand 
isolated basal cells generated metaplastic tumors that did not resemble 
common forms of breast cancer. 

 

1.2.2 Intra-tumor heterogeneity  
Intratumor heterogeneity refers to the coexistence of cancer cell 
subpopulations, displaying differences in their genetic, phenotypic or 
behavioral traits within a given primary tumor as well as between a 
primary tumor and its metastasis. Two models have been suggested to 
account for intratumor heterogeneity, clonal evolution and the cancer stem 
cell theory.  Both concepts are described in more detail below. 

Cell oncogenic phenotypes are determined by two components, cell-
intrinsic and cell-extrinsic factors. Cell-intrinsic factors refer to inherent 
properties of a cell and comprise genetic as well as epigenetic aspects. In 
normal cells phenotypic identities are mostly always defined by non-
genetic mechanisms and genetic heterogeneity is usually very low. In 
cancer genetic mutations underlying tumor formation can have profound 
impact on cell phenotype and provide options for therapeutic intervention, 
such as in the case of HER2 overamplifcation. The differentiation state of 
a cell is regulated by epigenetic mechanisms. During tumor progression 
the epigenome is modified by two major sources; driver mutations 
acquired during tumorigenesis and stochastic alterations during tumor 
progression. The extent of epigenetic changes may be side-specific or 
global. Cell-intrinsic factors however, should be regarded in a context-
dependent manner. Tumor cell behavior is influenced by 
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microenvironmental cues, inhibiting or promoting tumor progression. 
Multiple factors of the tumor microenvironment contribute to cell 
diversity, including blood and lymph vessels, the extracellular matrix and 
diverse stromal cells, such as fibroblasts and immune cells as well as 
secreted growth factors [38, 39] (Fig.3).  

Phenotypic heterogeneity can be classified into two groups, deterministic 
and stochastic. Deterministic heterogeneity denotes the existence of 
multiple phenotypic states. In normal tissues deterministic heterogeneity 
corresponds to distinct stages in the tissue-specific differentiation 
hierarchy. In cancer substantial genetic and epigenetic alterations as well 
as an atypical microenvironment may cause an increase in deterministic 
heterogeneity, including phenotypic states that do normally not occur in 
normal tissues. Stochastic heterogeneity on the other hand, defines 
transient alterations in phenotypes of cells that share the same 
deterministic phenotypic state. These differences stem from the stochastic 
nature of biochemical processes and from burst-like gene expression, 
leading to considerable cell-to-cell variation. Besides, stochastic processes 
can mediate transitions between distinct deterministic phenotypic states. 
According to the cancer stem cell (CSC) concept the 
phenotypiheterogeneity in cancers reflects the differentiation hierarchies 
present in normal tissues [40]. Phenotypic heterogeneity appears to be 
dominant over the effects of oncogenic transformations as shown by gene 
expression profiles of more differentiated and stem-like subpopulations in 
breast cancer cluster more closely to their respective counterparts in 
normal tissues then they do to each other. Furthermore, phenotypic 
heterogeneity has been associated to important clinical parameters, such 
as prognosis, treatment resistance as well as metastatic potential [41-43]. 
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Figure 3. Determinants of tumor cell heterogeneity. Cell-intrinsic and cell-
extrinsic factors affect cellular diversity in solid tumors. Intrinsic factors 
comprise the biology of the cell of origin as well as genetic and epigenetic 
elements. Extrinsic factors arise from the microenvironment, encompassing the 
composition of the extracellular matrix, blood and lymph vessel supply and the 
recruitment of stromal cells supporting tumor growth. 

 

1.3 The clonal evolution theory and the 
cancer stem cell hypothesis 

1.3.1 The clonal evolution theory 
The clonal evolution theory provides a mechanism to account for intra-
tumor heterogeneity and is focused on random mutations and clonal 
selection. According to this paradigm cancer cells in a tumor acquire 
several combinations of mutations over time. Eventually due to stepwise 
natural selection for the fittest clone, most aggressive cells drive tumor 
progression. The clonal evolution model suggests that tumor initiation 
occurs in a single cell following the acquisition of multiple mutations, 
providing it with a selective growth advantage. During tumor progression, 
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genetic instability and uncontrolled proliferation permit the accumulation 
of further mutations and hence new characteristics, which may provide a 
growth advantage over other tumor cells, e.g. by withstanding apoptosis. 
In that way new cellular variant subpopulations are generated as the tumor 
progresses and other subpopulations may contract, thereby producing 
heterogeneity (Fig.4). Importantly, any cancer cell in a tumor can 
potentially become invasive and cause metastasis or develop treatment 
resistance and thus lead to recurrence [38]. Mutational analysis has shown 
the existence of multiple subclones in diverse cancers including breast 
cancer [44]. Moreover, breast cancers have been demonstrated to present 
two classes of genetic variation, monogenomic and polygenomic tumors. 
Monogenomic tumors contain a single major clonal subpopulation, 
whereas polygenomic tumors contain multiple clonal subpopulations, 
accounting for tumor heterogeneity [45].  

 

1.3.2 The cancer stem cell hypothesis 
An alternative and most likely supplementary concept aiming to account 
for the cell diversity in tumors is the CSC hypothesis, according to which 
phenotypic heterogeneity in cancers is a reflection of differentiation 
hierarchies, existing in normal tissues. The model implies a hierarchical 
organization of tumor cells such that a small subpopulation of CSCs form 
the apex of the hierarchy and give rise to more differentiated cell types 
and thereby establishing the cellular diversity of the primary tumor [40, 
46]. Initial evidence for the existence of CSC was shown in acute myeloid 
leukemia, in which a minor subset of cells could induce leukemia 
following transplantation into immunodeficient mice  [47]. In breast 
cancer tumor-initiating cells were first isolated by Al-Hajj and co-workers 
[48] based on the expression of cell surface marker 
CD44high/CD24low/Lineagenegative profile. As few as 100 cells exhibiting 
this immunophenotype were able to generate tumors in immunodeficient 
mice and could be serially passaged and recapitulate the heterogeneity of 
the primary tumor. In contrast, 10,000 cells expressing the reciprocal 
marker profile were unable to induce tumors in mice. In follow-up studies 
CSCs of breast cancers have been enriched using different combinations 
of markers [7, 8] (Fig.4).  

Despite of the potential applicability of the CSC model, unequivocal 
characterization of cancer cell phenotypes based on their differentiation 
states may be impeded by the distorted identity of differentiation states. 
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Cancer cells acquire numerous epigenetic and genetic aberrations, 
possibly leading to unique mutational phenotypes, which may not exactly 
parallel similar states in normal cells [49]. Additionally, several studies 
have demonstrated that CSCs can be generated from non-CSCs by 
induction of the epithelial-to-mesenchymal transition (EMT) [50, 51] or 
convert to a CSC state spontaneously [52, 53], leading to an extension of 
the classical CSC model to include the phenomenon of cellular plasticity 
(Fig.4). Moreover, stemness of cancer cells can be profoundly affected by 
the applied functional assay. 

 

Figure 4. Clonal evolution and the CSC model create tumor heterogeneity. The 
clonal evolution model suggests that diverse cancer cell populations evolve 
during tumor progression due to the accumulation of random mutations and 
clonal selections, thereby contributing to tumor heterogeneity. The cancer stem 
cell model proposes that tumor heterogeneity arises when cancer cells reside in 
distinct states of stemness or differentiation within an individual tumor. In the 
classical CSC model conversions between cell states occur in a unidirectional 
manner. The plastic CSC model describes an evolving concept; according to this 
paradigm cell-state conversions between CSCs and non-CSCs can occur in a 
bidirectional fashion, implying that non-CSCs can generate CSCs throughout 
tumorigenesis. CSC, cancer stem cell. Modified from [39]. 
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1.3.3 Attributes of cancer stem cells 
CSC share critical features with normal tissue stem cells, including self-
renewal by symmetric and asymmetric cell division and the capacity to 
differentiate, although in an aberrant manner. Multi-lineage differentiation 
however is not an obligatory feature of CSCs [46]. In addition, CSCs 
often use the same signaling pathways utilized by their normal 
counterparts, such as Notch, Wnt and Hedgehog [54]. The cancer stem 
cell frequency appears highly variable between different tumor types and 
even tumors of the same subtype. CSC numbers may change during the 
course of the disease and moreover CSC enumerations strongly depend on 
the applied assay to assess stemness, highlighting the need for more 
specific markers [2, 46, 55]. For the definitive identification of CSCs 
enriched cell fractions should re-establish the phenotypic heterogeneity of 
the primary tumor and exhibit self-renewing capacity on serial passaging 
in mouse model systems.  

Besides, CSCs have been implicated in mediating metastasis [56] and 
increased resistance against radiation and chemotherapy, contributing to 
relapse following therapy [57-59]. CSC characteristics can vary across 
different breast cancer subtypes, for example Harrison et al. [60] have 
demonstrated that hypoxia influences CSC numbers in contrasting 
directions in ER!+ and ER!- breast cancer, where CSC numbers 
increased in the ER!+ disease following hypoxia. CSC heterogeneity has 
also been detected within a given tumor. Max Wicha’s lab has shown that 
normal and malignant breast cancer stem cells express CD44high/CD24low 
phenotype [48] and in addition the enzyme aldehyde dehydrogenase 
(ALDH) enriches for cells with CSC characteristics. In primary breast 
xenografts, the CD44high/CD24low phenotype and ALDHhigh fractions 
identified overlapping, but non-identical cellular populations, both able to 
initiate tumors in NOD/SCID mice [7]. More recently the group has 
demonstrated that CD44high/CD24low populations exhibit a more 
mesenchymal-like phenotype, whereas ALDH populations were 
characterized by an epithelial, proliferative phenotype [61]. Moreover, 
transitions between these two CSC states were found to be mediated by 
epigenetic mechanisms induced by the tumor microenvironment as well as 
transcriptional regulation. Based on their studies the authors suggested 
that epithelial and mesenchymal-like states of CSCs might enable these 
cells to invade and form distant metastasis.  
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1.3.4 Concluding remarks 
Both, the cancer stem cell model and the clonal evolution theory are likely 
to exist in human cancers and are not mutually exclusive. The two 
concepts share certain similarities, such as the cellular origin of cancer. In 
both views cancer originates from an individual cell that has acquired 
multiple mutations and gained the potential to proliferate unlimitedly. 
Furthermore, consistent with both paradigms the cell of origin, genetic 
aberrations as well as microenvironmental factors will define the 
constitution of a tumor, its physical and clinical characteristics. 
Differences concern the mechanisms with which tumor heterogeneity is 
described. The CSC model proposes a program of aberrant differentiation, 
while the clonal evolution model suggests competition between clonal 
subpopulations to explain tumor heterogeneity. Furthermore, in the CSC 
model only a small subset of cells contribute to tumor progression, 
whereas any cell in a tumor has the potential to be involved in tumor 
progression according to clonal evolution. According to the CSC concept 
only CSCs may acquire further mutations which may lead to more 
aggressive phenotypes. Another difference concerns drug-resistance, CSC 
are thought to be inherently drug-resistant, while the clonal evolution 
models proposes a selection of drug-resistant clones [38]. These two 
models implicate differences in the design for new anti-cancer treatments. 
In the case of the CSC model, CSCs must be eradicated in order to 
achieve curative treatment, requiring knowledge about predominating 
pathways and proteins in these cell types. On the other hand, the clonal 
evolution model implies that effective treatment regimens should target 
multiple cancer cell populations.  

 

1.4 Mevalonate pathway in cancer 

1.4.1 Dysregulated metabolism in cancer 
The six core hallmarks of cancer as originally postulated by Hanahan and 
Weinberg [62] comprise sustaining proliferative signaling, evading 
growth suppressors, resisting cell death, enabling replicative immortality, 
inducing angiogenesis, and activating invasion and metastasis. Conceptual 
progress over the last decade has led to a revised version of the paper [63], 
which includes the emerging cancer hallmarks, evading immune 
surveillance as well as reprogramming of cellular metabolism. Cancer 
cells often proliferate in an uncontrolled manner with corresponding 
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alterations of their energy metabolism to ensure sufficient metabolite 
supply for cell growth and division. Normal cells under aerobic conditions 
metabolize glucose to pyruvate in the cytoplasm, which is then imported 
into mitochondria to generate adenosine 5´-triphosphate (ATP) by 
oxidative phosphorylation. Under anaerobic conditions pyruvate 
production is favored, generating ATP with a considerable lower 
efficiency [63]. 

In the 1920s Otto Warburg discovered that cancer cells, even in the 
presence of ample oxygen, prefer to generate ATP through glycolysis, a 
seeming paradox as glycolysis is less efficient in terms of ATP production 
compared to oxidative phosphorylation [64]. This phenomenon is called 
the Warburg effect, also known as aerobic glycolysis. Since then the 
Warburg effect has been appreciated in different types of cancers [65] and 
its concomitant increase of glucose uptake has been employed clinically 
for solid tumor detection by fluorodeoxyglucose positron emission 
tomography (FDG-PET). Given the low energy efficiency of the Warburg 
metabolism, the functional rationale so far remains unclear.  

One idea to explain the Warburg effect is that glycolytic metabolism of 
cancer cells presents a selective advantage in the unique tumor 
environment. Insufficient and disorganized vessel formation in the 
growing tumor leads to limited blood supply, hypoxia and stabilization of 
hypoxia-inducible transcription factors (HIFs) [65]. HIF initiates a 
pleiotropic transcriptional program that counteracts hypoxic stress, 
including a shift towards glycolytic metabolism by upregulation of 
glycolytic enzymes, glucose transporters, and inhibitors of mitochondrial 
metabolism. With the possible exception of tumors that have lost the von 
Hippel-Lindau protein, HIF expression is still linked to oxygen levels, as 
evident from its heterogeneous expression in tumors [66, 67]. Thus, the 
Warburg effect cannot only be explained by HIF stabilization. Oncogene 
activation (e.g. RAS, MYC) and tumor suppressor loss (e.g. TP53, see 
below) have been associated with the induction of metabolic changes 
independently of HIFs [68]. Rapidly dividing cells require not only ATP, 
but also nucleotides, proteins, fatty acids and membrane lipids for biomass 
production. More recently, Vander Heiden et al., [69] have proposed that 
elevated glycolysis permits the allocation of glycolytic intermediates into 
numerous biosynthetic pathways, enabling cells to synthesize 
macromolecules and organelles needed to produce a new cell. Acetyl-
Coenzyme A (acetyl-CoA) for example is made available for the synthesis 
of several lipid building blocks, including mevalonate (MVA). 



Nina Akrap 

 
 

20 

 

1.4.2 The mevalonate pathway for steroid 
biosynthesis and protein prenylation 

The mevalonate pathway was discovered in the 1950s by Goldstein and 
Brown [70] and provides isoprenoid building blocks for the biosynthesis 
of diverse classes of vital cellular products, including cholesterol and 
prenyl pyrophosphates. The latter function as substrates for 
posttranslational prenylation of proteins. Imbalances of mevalonate 
metabolism are a well-known cause for cardiovascular diseases [71]. 
More recently, dysregulation of the mevalonate pathway has been 
implicated in various aspects of tumor development and progression [72, 
73] and has been linked to CSC survival in breast cancer [74, 75]. 

Rapidly dividing tumor cells have high energetic requirements, in order to 
meet these glucose is converted into pyruvate by aerobic glycolysis as 
described above. Pyruvate enters the mitochondria, where it is further 
metabolized in the tricarboxylic acid (TCA, citrate or Krebs) cycle. 
However, mitochondrial oxidation is incomplete, leading to an increased 
export of acetyl-CoA into the cytosol, which is thereby made available for 
mevalonate metabolism [76] (Fig.5). In the mevalonate pathway thiolase 
condenses two acetyl-CoA molecules to produce acetoacetly-CoA. 3-
hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) condenses 
acetoacetyl-CoA with another acetyl-CoA to form 3-hydroxy-3-
methylglutaryl-CoA (HMG-CoA). In the first committed step of the 
mevalonate pathway 3-hydroxy-3-methylglutaryl-CoA reductase 
(HMGCR) converts HMG-CoA to mevalonic acid (mevalonate). HMGCR 
is regulated by several feedback mechanisms and the target of the 
cholesterol-lowering class of drugs, collectively referred to as statins. 
Mevalonate is then metabolized to isopentylpyrophosphate (IPP) and its 
isomer dimethylallyl pyrophosphate (DMAPP), which both represent 
precursors for diverse classes of cellular products [71].  

Products formed in the cholesterol branch of the pathway include steroids 
like estrogen, bile acids and vitamin D. In normal cells cholesterol is 
essential to maintain membrane integrity, modulating membrane fluidity 
and is involved in intracellular transport as well as in cell signaling [70]. 
In the prenylation branch of the pathway farnesyl pyrophosphate (FFP) 
and geranylgeranyl pyrophosphate (GGPP) are formed through sequential 
condensation reactions of DMAPP. Both, FFP and GGPP are used as 
adjuncts for C-terminal posttranslational modifications of various 
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proteins, which are referred to as proteinprenylation. Prenylation plays a 
role in membrane attachment and protein-protein interaction, which are 
essential requirements for biological functioning of proteins and is carried 
out by three enzymes, FTase, GGTase I and GGTase II. Prenylation 
occurs on many members of the Ras and Rho small guanosine 
triphosphatases (GTPases). The role of Ras proteins in cancer 
development and progression is well established [77]. 

Figure 5. Metabolic reprogramming and dysregulation of the mevalonate 
pathway in cancer. Metabolic reprogramming of cancer cells causes 
upregulation of aerobic glycolysis to the expense of oxidative phosphorylation. 
Pyruvate is produced during aerobic glycolysis, which is either converted to 
lactate or further metabolized in the TCA cycle. Mitochondrial oxidation is 
incomplete and generates excess acetyl-CoA, which is exported into the cytosol. 
Cytosolic acetyl-coA can be used to generate HMG-CoA in the mevalonate 
metabolism, which is enhanced by certain p53 mutant variants. The mevalonate 
pathway can be blocked at several steps; statins inhibit HMG-CoA reductase, the 
first committed step of the pathway, while nitrogen-containing bisphosphates (N-
BPs) inhibit FFP synthase. Modified from [76]. 
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1.4.3 Mevalonate metabolism is regulated by 
mutant p53 

As the “guardian of the genome” the tumor suppressor protein p53 plays 
an important role in the maintenance of genomic integrity and the 
prevention of tumor formation. p53 activation occurs through various 
extra- and intracellular stressors such as, DNA damage, nutrient 
depravation, hypoxia, oncogene deregulation, radiation or chemical agents 
[78]. Upon activation p53 is stabilized primarily through posttranslational 
modifications, which leads to its activation and accumulation in cells [79, 
80]. Wild-type p53 functions as a sequence-specific, homotetrameric 
transcription factor, binding to degenerative DNA sequences, termed p53-
responsive elements to initiate transcription of target genes. Cellular 
responses triggered by p53 are stimulus-dependent, i.e. in cells that are 
exposed to transient or mild stress p53 promotes cell cycle arrest (e.g. via 
p21, GADD45, 14-3-3r) or DNA repair response to facilitate cell survival. 
On the other hand, sustained or severe cellular stress triggers p53-
mediated apoptosis (e.g. via Puma, Bax, Fas) and senescence (e.g. via 
p21) [81], to prevent tumorigenesis. Somatic p53 mutations are 
appreciated in almost all types of cancer and can be detected in more than 
50% of tumors [79, 80]. In contrast to most tumor suppressors, which are 
inactivated following mutation, cancer-associated p53 mutations are 
frequently missense mutations. Single-base pair substitutions cause the 
translation of full-length proteins with an amino acid exchange at the 
respective position. These missense mutations cause p53 protein alteration 
and prolong the half-life of the protein. In normal, unstressed cells p53 is 
maintained at low levels through ubiquitination and proteasomal 
degradation by its negative regulators. In addition to loss of tumor-
suppressive functions, certain p53 mutants can acquire novel tumor-
promoting activities, referred to as gain-of-function mutations. More 
recent work has demonstrated that mutant p53 is also involved in many 
aspects of metabolic regulation in tumor cells [82, 83] Freed-Pastor et al. 
[74] have shown that mutant p53 transcriptionally enhances the expression 
of mevalonate pathway members by associating with sterol regulatory 
element-binding proteins and binding to sterol gene promoters, resulting 
in increased protein prenylation and maintenance of a malignant 
phenotype. 
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 AIMS 2

 

The overall aim of this thesis is to characterize CSC phenotypes and the 
cellular organization in ER!+ and ER!- subtypes of breast cancer at the 
individual cell level. Furthermore, we have aimed to identify novel 
functional CSC markers in a subtype-independent manner, allowing for 
better identification and targeting of CSCs. 

 

Specific aims 

Paper I: Quantification of small molecule numbers frequently involves a 
preamplification step to generate sufficient copies for accurate 
downstream analyses. In paper I we aimed to evaluate the effects of 
variations of relevant parameters on targeted cDNA preamplification for 
single-cell reverse transcription – quantitative polymerase chain reaction 
(RT-qPCR) applications, to improve reaction sensitivity and specificity, 
pivotal prerequisites for accurate and reproducible transcript 
quantification. 

Paper II: The large number of assays currently employed to detect CSC 
in breast cancer types indicates either a lack of universal markers or is 
reflective of the heterogenetic and dynamic nature of CSCs. In paper II 
we aimed to study the diversity of the CSC pool at the individual cell level 
in regards to ER!+ and ER!- subtypes, using several functional cancer 
stem cell enrichment techniques.  

Paper III: Reliable CSC markers common to various breast cancer 
subtypes remain to be clearly defined and represent an essential 
requirement for clinical identification, monitoring and effective 
therapeutic targeting. In paper III we aimed to identify specific molecular 
pathways common to CSCs of ER!+ and ER!- subtypes. 
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 METHODOLOGICAL ASPECTS 3

 

3.1 Single-cell qPCR 
Breast cancers are complex entities, composed of heterogeneous cell 
types, exhibiting remarkable diversity for many tumorigenesis-related and 
therapy-relevant traits, such as their tumorigenic, angiogenic, invasive and 
metastatic potential. In addition, responses to specific treatments have 
been reported to differ greatly between individual tumor cells [32]. Thus, 
there is a vital requirement for reliable tools to scrutinize cellular 
behaviors at the single-cell level. One of the major limitations of 
conventional gene-expression profiling is that measurements are 
performed on composite samples, containing diverse cells in undefined 
proportions. Single-cell gene-expression profiling permits the 
identification and characterization of different cell types and furthermore, 
enables the correlation of gene expression patterns with phenotypical 
qualities, providing a comprehensive approach to assess individual cells 
under various conditions [84]. Inherent to most single-cell techniques is 
the difficulty to analyze minute amounts of starting material, which is 
technically more demanding. To date RT-qPCR is the most commonly 
applied strategy for single-cell gene-expression profiling [85]. The 
technique includes several sequential steps, each of which must be 
carefully optimized and validated. Specific steps encompass; cell 
collection and lysis, reverse transcription of mRNA and cDNA 
preamplification followed by qPCR and multivariate data analysis (Fig.6). 
Cells can be collected using various techniques, e.g. fluorescence-
activated cell sorting or microaspiration. During the cDNA 
preamplification step transcript copy numbers are multiplied in a 
quantitative fashion, theoretically facilitating the analysis of an unlimited 
number of transcripts per single cell. Several preamplification approaches 
have been described in the literature. For single-cell applications the 
preferred method is targeted multiplex PCR, applying gene-specific 
primers. Multiplex PCR is a highly complex reaction, due to the presence 
of multiple primer pairs and the simultaneous amplification of large 
numbers of target molecules. It is critical to not introduce substantial 
variation or bias during the preamplification step in order to preserve the 
original gene expression pattern. 
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Figure 6. Workflow of single-cell qPCR. Individual cells are collected by either 
fluorescence-activated cell sorting or microaspiration and lysed directly. Single-
cell RNA is reverse transcribed, followed by targeted cDNA preamplification and 
quantitative real-time PCR. Single-cell data are typically analyzed using various 
uni- and multivariate statistical tools. 

 

3.2 Cancer stem cell enrichment methods 
Investigating the role of CSCs during tumorigenesis has become a major 
focus in stem cell biology over the last decade. Considerable efforts have 
been made to develop clinical applications of the CSC model. Given the 
specific CSC attributes of self-renewal and differentiation, each applied 
marker and assay needs to be evaluated carefully [86]. The gold standard 
to demonstrate CSC identity is serial transplantation of cellular 
populations into immunocompromised mouse models. The CSC-
containing population should give rise to the phenotypic heterogeneity 
evident in the primary tumor and demonstrate self-renewing competence 
upon serial passaging. The isolation of CSCs from epithelial or solid 
tumors is accompanied by significant technical issues, in part due to the 
difficulty of dissociating these tumors [2]. Furthermore, in the case of 
xenotransplantation incomplete immunosuppression and species-specific 
variations in cytokine or growth factor signaling represent confounding 
factors. In addition to serial passaging in mice, a number of cell surface 
markers have been proven useful for CSC enrichment, including CD133 
(also known as prominin 1), CD44, CD24, epithelial cell adhesion 
molecule (EPCAM) or CD49f (also known as !6-integrin). Other CSC 
assays involve the Hoechst33342 side population sorting, which is conferred 
by the ABC transporter ABCG2 and the ALDEFLOUR assay, based on 
the activity of the detoxifying enzyme aldehyde dehydrogenase, 
catalyzing the oxidation of retinol to retinoic acid. CSCs have frequently 
been enriched using markers specific for stem cells of the same organ. 
However, the utility of CSC markers is limited by variations in 
expression, regulation by environmental factors and moreover isolated 
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CSC fractions may contain considerable numbers of non-CSCs [87]. 
Therefore, definitive enrichment of CSCs necessitates functional assays. 
To circumvent obstacles associated with immunophenotypic CSC-
isolation, in this work we have applied three different assays to 
functionally enrich for CSCs; growth in anchorage-independent culture, 
hypoxic culture and label-retention. Each method is explained in more 
detail below. 

 

3.2.1 Growth in anchorage-independent culture 
Cell culture in non-adherent conditions was originally adapted to normal 
breast tissue derived from reduction mammoplasties [88]. Mammary stem 
and progenitor cells are equipped with the unique feature of withstanding 
anoikis in serum-free suspension culture and generate spherical colonies, 
termed mammospheres. These mammospheres were found to be enriched 
in stem and progenitor cells. Moreover, mammosphere-derived cells 
differentiated along the three mammary epithelial lineages, clonally 
produced functional structures in 3D culture systems and reconstituted 
mammary glands in mouse model systems. The mammosphere assay has 
subsequently been adapted for quantification of stem cell activity and self-
renewal capacity in cancer research and has been applied to enrich for 
CSC-like cells in ductal carcinoma in situ [89], invasive ductal carcinoma 
[90] and breast cancer cell lines [91]. As an example, Ponti et al. [90] 
have demonstrated that breast cancer cell-derived spheres displayed an 
increase in the Hoechst33324 side population fraction, CD44+/CD24- cells, 
expressed the pluripotency-associated transcription factor OCT4 and 
showed high tumorigenic potential in mice. Hence, the mammosphere 
assay provides a functional in vitro tool to discover and scrutinize 
pathways implicated stem/progenitor cell survival. 

 

3.2.2 Hypoxic culture 
Hypoxia is commonly present in solid breast cancers and linked to 
malignant progression, invasion, angiogenesis, changes in metabolism and 
increased risk of metastasis and consequently to impaired patient 
prognosis. Several factors are known to cause intratumoral hypoxia, such 
as inadequate vascularization, an increase in diffusion distances that is 
associated with tumor expansion as well as tumor or therapy-related 
anemia. Cancer cells are able to adapt to a low-oxygen environment, 
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which contributes to a more malignant cellular phenotype [92]. The 
adaption to hypoxia is controlled by many factors, e.g. transcriptional and 
post-transcriptional changes in gene expression. In this regard, 1.5% of the 
human genome has been estimated to be responsive to hypoxia [93]. HIF-
1! is the master regulator of the hypoxic response at the cellular level. 
Under hypoxia HIF 1! is stabilized and translocates to the nucleus, where 
it binds to the HIF 1" subunit and the co-activator p300 to activate the 
transcription of target genes, by binding to the hypoxic-response elements 
(HRE). HIF-responsive genes are involved in numerous cellular 
processes, including proliferation, survival, metabolism, angiogenesis, 
invasion and metastasis, pH regulation and the maintenance of stem cells. 
Moreover, cross-talks between the estrogen and hypoxic signaling 
pathways have been reported in breast cancer [94-96]. Under hypoxic 
conditions HIF-1! facilitates ER! down-regulation by proteasomal 
degradation as well as transcriptional repression of ER! expression [97, 
98]. Several lines of evidence have reported a change of gene expression 
towards a more immature phenotype or an increase of cells with CSC 
features in response to hypoxia in different cancer types [99-101]. 
Furthermore, it has recently been demonstrated that hypoxia leads to 
increased CSC numbers in ER!+ breast cancers [60]. 

 

3.2.3 Label-retention  
A less well-studied feature of CSC is cellular quiescence or dormancy, 
which is characterized by a low metabolic activity and entrance into a 
reversible G0-G1 arrest [102]. Various studies have used lipophilic 
fluorescent dyes, such as carboxyfluorescein succinimidyl ester (CFSE) or 
the PKH dye as well as BrdU-label retention to isolate slow-cycling breast 
cancer cells [8, 103, 104]. Interestingly, the work of Fillmore and 
Kuperwasser [103] has shown, that slow-cycling cells are present in the 
CD44+/CD24-/EPCAM+ population of breast cancer cells, suggesting that 
these cells represent a specific CSC subset. It has furthermore been 
demonstrated that slow-cycling cells exhibit increased xenobiotic efflux 
mediated by ABCG2 transporters and increased DNA repair mechanisms 
[105, 106]. Taken together, these findings indicate that quiescent CSC 
putatively represent a small cellular subpopulation, which could be 
associated with resistance to chemo- and radiotherapy, disease recurrence 
and the formation of distant metastasis. In the paper II we have combined 
PKH26 labeling with the mammosphere assay to functionally enrich for 
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quiescent CSC-like cells [8]. The approach is based on the principle that 
during mammosphere growth, quiescent or slow dividing cells will retain 
the PKH26 dye, whereas the bulk population of transiently proliferating 
progenitor cells loses the dye due to successive cell divisions. 
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 RESULTS AND DISCUSSION 4

4.1 Results and discussion paper I 
The purpose of the preamplification is to multiply transcript copy numbers 
in a quantitative manner. Although several preamplification strategies 
have been described [107-109], for single-cell gene expression profiling, 
the preferred method is targeted multiplex PCR, using gene-specific 
primers [85]. In paper I we aimed to evaluate several experimental 
parameters in targeted preamplification and their effects on the 
reproducibility, specificity and efficiency of RT-qPCR. Specifically, 
variations in numbers of primers present in the multiplex reaction, primer 
concentrations, annealing temperature and time, cDNA template 
concentrations as well as the effect of PCR additives were studied 
(Tab.2). To assess its overall performance, we monitored the 
preamplification reaction in real-time using the DNA-binding dye SYBR 
Green I followed by melting curve analysis, referred to as analysis of 
preamplification. By using a non-specific reporter dye this method 
allowed us to quantitatively assess overall product formation as well as the 
ratios of specific and non-specific PCR products, evaluating the shape of 
the melting curves. Furthermore, the formation of specific amplicons was 
analyzed with standard RT-qPCR (Fig.7). 

For the evaluation of targeted preamplification we optimized 96 individual 
PCR assays and purified and quantified the corresponding PCR products 
for standardization of template molecule numbers.  

!

!
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Figure 7. Experimental strategy to evaluate parameters on targeted 
preamplification.  Left: Analysis of preamplification. To evaluate the overall 
performance of targeted preamplification the reaction was monitored in real-
time using SYBR Green I detection chemistry over 35 PCR cycles followed by 
melting curve analysis. Total product formation was quantified via amplification 
curves, whereas ratios of specific versus non-specific PCR product formation 
were derived from melting curve analyses. Right: Analysis of individual assays. 
Individual assays were assessed by downstream RT-qPCR following 20 cycles of 
preamplification, applying conventional or high-throughput RT-qPCR 

 
Table 2. Summary of analyzed parameters for targeted preamplification. 
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Theoretical molecule and preamplification cycle numbers and the 
dynamic range of targeted preamplification 

The required number of preamplification cycles depends on the 
downstream qPCR platform and is primarily determined by the reaction 
volume, the initial cDNA concentration present in the sample as well as 
the dilution factor after preamplification and the preamplification 
efficiency [85]. In qPCR, the Poisson distribution can be applied to model 
the probability that a reaction chamber contains a particular number of 
target cDNA molecules. The variation across reaction chambers 
attributable to the Poisson noise leads to considerable uncertainty in the 
measured Cq values. Theoretically, an average of 5 molecules per reaction 
chamber will yield a 99.3% probability that a reaction chamber contains at 
least one molecule. To reduce the variation in Cq due to the Poisson effect 
below the variation observed for typical qPCR an average of 35 molecules 
is needed [85, 109]. Considering the dilution factor and the effect of 
Poisson noise, for 5 initial molecules, we calculate 19 cycles of 
preamplification to produce an average of 5 molecules per reaction 
chamber on the applied BioMark high-throughput qPCR, assuming a 
preamplification efficiency of 80%. In this study, our optimized assays 
displayed a preamplification efficiency of approximately 100%, which 
results in an average of 36 molecules per reaction chamber. 

To assess the dynamic range of the preamplification we conducted two 
experiments, to determine the effect of total template concentrations as 
well as the effect of only one highly concentrated template. In the first 
experiment templates of 6 assays were kept at a constant concentration of 
100 molecules each, whereas the remaining 90 templates were varied, 
ranging from 0 to 107 molecules per reaction. In the second experiment the 
initial target concentration of 95 assays was kept constant at 100 
molecules per reaction and only one target was varied between 100 to 109 
molecules (Fig.8). 
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Figure 8. Dynamic range of preamplification – Effect of varied template 
concentrations. A. Average Cq ±SD (n=3) of the six assays kept at a constant 
initial template concentration of 100 molecules each per reaction. B. Average Cq 
±SD (n=3) of six randomly selected assays from the preamplification with an 
initial template concentration of 0 to 107 molecules each. C. Average Cq ±SD 
(n=3) of six randomly selected assays from the preamplification used at a 
constant initial concentration of 100 molecules each per reaction. D. Average Cq 
±SD (n=3) of the single assay included in the preamplification with an initial 
template concentration of 102 to 109 molecules. The linear fit is to guide the eye 
only. 

 

For our specific reaction conditions, the preamplification was within 
dynamic range when the 90 templates were initially present at 
concentrations <104 molecules, while the remaining six templates were 
kept at 100 molecules per reaction (Fig.8A and B). Inhibition occurred at 
template concentrations >104 molecules. However, when only the 
concentration of one target molecule was increased, the remaining assays 
were unaffected. In summary, the preamplification dynamic range of an 
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assay was dependent on the amount of its target molecules and on the total 
number of target molecules for all the preamplification assays. 

 

Dependence on assay numbers 

To test the effect of different numbers of assays present in the 
preamplification, we conducted experiments containing 6, 12, 24, 48 and 
96 primer pairs at a constant primer concentration of 40 nM. Analysis of 
preamplification showed an increase of the total PCR product yield with 
increased assay numbers (Fig.9A). Similar results were obtained using 
shorter (0.5 min) or longer (8 min) annealing times. However, Cq values 
of template-containing samples did not decrease significantly between 3 
and 8 min annealing time, implying that 3 min of annealing is sufficient 
for effective target binding under these conditions. Interestingly, not only 
the total PCR product formation increased with increasing assay numbers, 
but also the PCR product yield of individual assays in downstream RT-
qPCR (Fig.9B and C), along with improved reproducibility. Due to the 
large total number of different primer pairs present in the highly 
multiplexed preamplification reaction, non-specific PCR products are 
formed at large quantities. One explanation for this observation may be 
that increased numbers of primer pairs during preamplification will 
increase the formation of possible primer-to-primer interactions as well as 
the formation of non-specific PCR products. However, nonspecific PCR 
products formed during preamplification will only interfere with the 
downstream singleplex PCR if the particular nonspecific PCR product is 
complementary to the applied primer pairs.  
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Figure 9.  Assay number dependence. A. Cq-values (average ±SD) for positive 
(n=3) and negative samples (n=3) using different number of assays in 
preamplification. B. High-throughput qPCR data of individual assays. Average 
Cq ±SD (n=3) is shown. Data from all preamplified genes were used. C. Average 
Cq ±SD (n=3) of 10 assays included in the preamplification with 12, 24, 48 and 
96 pooled assays. 

 

Dependence on primer concentration, annealing time and temperature 

Primer concentration, annealing time and duration of the annealing step 
are reciprocal factors in preamplification. To reduce the formation of 
nonspecific PCR product formation in the multiplex reaction primer 
concentrations are 10-20 times lower compared to regular PCR [85, 109]. 
To maintain high preamplification efficiency at low primer concentration 
the annealing time is usually extended up to several minutes. The effect of 
variable primer concentrations (10, 40, 160, 240 nM) was tested in 
relation to different annealing times (0.5, 3, 8 min). Analysis of 
preamplification revealed elevated yields of specific and non-specific 
PCR products as primer concentrations and annealing times were 
increased. We observed a shift from specific towards non-specific product 
formation when primer concentrations were increased from 40 to 160 nM. 
The performance of individual assays was dependent on the primer 
concentration and annealing time as well. We found individual assays 
performed best at a concentration of larger than 40 nM using long 
annealing times (3 min and 8 min).   

All primers applied for this study were designed to anneal to their specific 
target sequence at 60 !C. Using analysis of preamplification of an 
annealing temperature gradient ranging between 55.0 !C to 65.3 !C we 
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made two main observations: First, an increase in annealing temperature 
lead to a reduction of PCR product yields. Second, we detected a gradual 
shift from non-specific to specific product formation as the annealing 
temperature increased. For downstream qPCR highest yield, specificity 
and reproducibility was observed at annealing temperatures between 
58.5 !C and 61.3 !C, using assays optimized to anneal at 60 !C.  

 

Effect of various PCR additives and single-cell gene expression profiling 

Analysis of preamplification revealed large amounts of non-specific PCR 
products formed for most tested conditions. Therefore, we have tested the 
effects of 18 different PCR additives in 35 different reactions, which may 
improve enzymatic reactions involving nucleic acids. The formation of 
nonspecific PCR products was reduced by 10 cycles (~1000-fold) 
compared with preamplification without additives when using and 2 
mg/mL bovine serum albumin supplied with 2.5 and 5.0% glycerol, 
respectively, 5%, glycerol, 0.5 M formamide and 0.5 M L-carnitine. The 
effect of nine selected additives was further evaluated at the individual 
assay level, using downstream qPCR of 96 assays. Here, the 
preamplification performed equally regardless whether additives were 
present or not. Most likely this is because our assays are extensively 
optimized for high efficiency, specificity and sensitivity. However, PCR 
additives may prove beneficial for less optimized assays or in the context 
of next-generation sequencing where formation of non-specific products 
may impede sequencing capacity and reduce the amount of informative 
reads. 

Today, many clinical applications strive towards the use of non-invasive 
sampling strategies and small biopsies, including fine needle aspirates and 
circulating tumor cells, to detect and quantify biomarkers. Due to the low 
abundance of starting material, adequate molecule quantification requires 
highly sensitive, robust and specific technologies [110-112]. The preferred 
strategy to quantify multiple DNA or cDNA targets in biological samples 
of limited size is to first preamplify the material, which theoretically 
allows for the analysis of any target sequence by downstream qPCR or 
next generation sequencing. Optimized preamplification protocols 
typically show high sensitivity, specificity, efficiency, reproducibility and 
dynamic range. Targeted preamplification is usually conducted as a 
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multiplex PCR, restricting the amplification to the sequences of interest 
only [109, 113].  

In conclusion our data suggests, that the number of preamplification 
cycles should be sufficient to produce at least five (accurate sensitivity), 
but preferentially 35 (accurate precision) molecules per downstream 
qPCR reaction. A small number of highly abundant targets will likely not 
affect the performance of other assays. Furthermore, we found that the 
usage of large assay pools, low primer concentration and long annealing 
times is beneficial for accurate targeted preamplification. 

 

4.2 Results and discussion paper II 
Breast cancer is a distinctly heterogeneous disease with respect to 
histological, molecular and clinical features, affecting disease progression 
and treatment response [114]. The cancer stem cell model may provide 
one explanation for the observed intratumoral heterogeneity, suggesting 
that cancers are driven by a cellular subpopulation with stem cell 
properties, which give rise to hierarchically structured tumors. Currently, 
there is a lack of universal and definite CSC markers, indicating that the 
CSC phenotype may not necessarily be uniform between cancer subtypes 
or even tumors of the same subtype [55]. Categorization of CSCs is 
further complicated by their cellular plasticity [50-53] and a dynamic 
microenvironment [39]. 

In paper II we aimed to characterize putative CSC pools in ER!+ and 
ER!- models of breast cancer. To this end, we established single-cell RT-
qPCR-based gene expression profiling of well-known markers of 
differentiation, stemness, the EMT and cell cycle regulators. To 
circumvent current obstacles associated with immunophenotype-based 
CSC-enrichment methods, in this study we applied three functional in 
vitro CSC assays; growth in anchorage-independent culture, hypoxia and 
isolation of low proliferative, label-retaining cells derived from 
mammospheres (Fig.10A-C). All methods have previously been 
demonstrated to enrich for cells with increased cancer initiating potential 
in mouse model systems [60, 91, 115]. 
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Figure 10. Applied functional CSC enrichment methods. Breast cancer cell 
lines were cultured as regular monolayers and cancer stem like cells were 
enriched using three established techniques: A. Growth in anchorage-
independent culture (ER!+ and ER!- cell lines). B. Hypoxia (1% O2 for 48 h) 
(MCF7 cells). C. Non-dividing, PKH26Bright cells cultured as mammospheres 
(MCF7 cells).  

 

ER!+ cell lines display distinct subpopulations with CSC-like and 
differentiated phenotypes, while proliferative phenotypes define ER!- 
breast cancer cell lines 

To detail CSC in the first CSC enrichment approach, we made use of the 
ability of CSCs to withstand anoikis in anchorage-independent culture 
systems [88, 91]. CSC were enriched following 16-hours growth in 
anchorage-independent conditions and analyzed in parallel with matched 
monolayer cultures. To investigate cellular organization as well as the 
CSC pool in ER!+ and ER!- breast cancer models, individual ER!+ cells 
(MCF7, n=157; T47D, n=158) and ER!- cells (CAL120, n=140; 
MDA231, n=159) were subjected to single-cell gene expression profiling.  

Using principal component analysis (PCA), monolayer and anoikis-
resistant MCF7 cells displayed three distinct clusters, termed ER!+ I-III. 
ER!+ I was characterized by high expression of the pluripotency-
associated genes, lack of proliferation markers and low overall expression 
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levels, characteristic for quiescent stem cells [116, 117]. ER!+ II 
exhibited high expression of breast cancer stem cell associated genes as 
well as high expression of the proliferation markers. ER!+ III was 
denoted by high expression of differentiation-associated genes. Anoikis-
resistant cells were enriched in clusters ER!+ I and II, whereas the 
majority of monolayer cells was present in cluster ER!+ III. Similar 
clusters were observed for T47D cells; we identified two clusters ER!+ I 
and III. Interestingly, differential expressed genes between anoikis-
resistant cells and monolayer cells were essentially identical for the two 
analyzed ER!+ cell lines, suggesting similar CSC enrichment mechanisms 
within this breast cancer subtype.  

In line with previously published data, single-cell analysis has 
demonstrated that the majority of regular grown ER!+ cells displayed a 
RNA expression profile reminiscent of a more differentiated luminal 
phenotype [118, 119]. In contrast, ER!+ anoikis-resistant cells formed 
well-separated clusters with distinct CSC-like gene expression signatures, 
indicative of a hierarchical cell organization. Intriguingly, for MCF7 cells 
we have identified two clusters with distinct CSC-like gene expression 
profiles, which were enriched for anoikis resistant cells. This data points 
towards the presence of multiple CSC-like pools. Based on the observed 
gene expression profiles the two clusters could represent alternative CSC-
like or differentiation states. Alternatively, differences in the 
transcriptomic phenotype may also result from cellular subpopulations 
featuring a distinct genetic/epigenetic background. As has been suggested, 
stochastic clonal evolution and the stem cell hypothesis are not mutually 
exclusive [120]. Using single-cell transplantation assays, two recent 
publications have described genetic diversity and clonal evolution of 
leukemic CSCs [121, 122]. Yet, the definite description of various CSC 
pools and their therapeutic relevance requires further functional 
characterization. In addition, to correlate genotypes with transcriptional or 
protein phenotypes, protocols for the detection of DNA, RNA and protein 
derived from the same cell have been described [123]. 

We next scrutinized two ER!- cell lines using the same experimental 
setup as for ER!+ cells. For CAL120 cells PCA identified two clusters, 
termed ER!- I and III, in accordance with the nomenclature used for 
ER!+ cells.  ER!- I cells were characterized by low total RNA levels, 
while ER!- III were characterized by high expression of 14 genes, 
belonging to all defined gene groups. The majority of cells was present in 
cluster ER!- III, anoikis-resistant cells were slightly enriched in cluster 
ER!- I. MDA231 cells formed two clusters, termed ER!- II and III. 
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Comparison of differential gene expression between anoikis-resistant and 
monolayer cells revealed that most genes were down-regulated after 16-
hours of anchorage-independent culture. As opposed to ER!+ cells, ID1 
and CCNA2 were the only commonly down-regulated genes across the 
two cell lines, perhaps reflective of the heterogenetic nature of this breast 
cancer subgroup.  

Compared to the ER!+ cell lines, the segregation of ER!- monolayer and 
anoikis-resistant cells was less pronounced. Separation into distinct 
clusters was mainly due to differences in their proliferative capacity (data 
not shown). The reasons for that could either be that our applied gene 
panel did not ideally separate CSC-enriched fractions from regular grown 
cells or that ER!- cell lines do not feature a strict hierarchical 
organization, in line with observations for melanomas [124]. ER!- 
monolayer and anoikis-resistant cells displayed a characteristic 
basal/mesenchymal phenotype [119], which may in part mask 
differentiation [103]. Our results nevertheless suggest that ER!- breast 
CSC cluster based on proliferative capacity. To further investigate the 
applicability of current CSC markers and to identify novel pathways 
specific to CSC in both luminal (ER!+) and basal (ER!-) breast cancer 
subtypes we have applied a RNA sequencing approach of CSC-enriched 
fractions in conjunction to matched monolayer cultures (see paper III).  

 

A common quiescent CSC-like subpopulation can be identified in ER!+ 
and ER!- cell lines 

To scrutinize the relationship between different breast cancer subtypes and 
the presence of CSC markers, we conducted combined multivariate 
analyses of all cells and grouped them by similarities in their gene 
expression profiles. Multiple clustering algorithms defined three discrete 
clusters for ER!+ cell lines (ER!+ I-III), whereas ER!- cell lines 
congregated into three partly separate clusters (ER!- I-III). ER!+/ER!- I 
cluster included cells of all cell lines. Cluster ER!+ II mainly contained 
MCF7 AR cells, whereas cluster ER!+ III encompassed the majority of all 
differentiated ER!+ ML cells. Clusters ER!- II-III harbored essentially all 
MDA231 cells as well as most of the CAL120 cells. The clusters defined 
low (ER!- II) or high (ER!- III) proliferative groups. The cellular 
organization of both ER!+ and ER!- cells is schematically illustrated in 
Figure 11A.  
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Comprehensive analysis of all cells revealed a clustering characteristic of 
hierarchical organization for the analyzed ER!+ cells. Furthermore, the 
data may suggest that MCF7 and T47D cells exhibit two separate modes 
of differentiation. MCF7 cells seemed to differentiate from a quiescent 
CSC-like cell state (ER!+/ER!- I) via a progenitor-like state (ER!+ II) to 
acquire a more differentiated phenotype (ER!+ III), while T47D cells did 
not seem to pass through this progenitor-like state. ER!- cell lines on the 
other hand were mainly separated by their increasing proliferative 
capacity from a common quiescent CSC-like pool, shared with ER!+ 
cells.  

Our data indicates the presence of a quiescent CSC-like pool in both 
breast cancer subtypes, based on the expression of pluripotency-associated 
genes and low overall transcript levels, which has been described for cells 
in a dormant state [116, 117, 125]. Upon differentiation, ER!+ and ER!- 
cell lines activate partly different pathways by regulating specific genes 
which give rise to the more mature cell types that characterize these breast 
cancer subtypes.  

To validate our findings in a clinical context we analyzed single-cells 
derived from two freshly dissociated primary ductal breast cancer 
samples, one ER!+ (n=81) and one ER!- (n=90). Combined PCA of the 
two tumors cells revealed a clustering pattern based on their origin (ER!+ 
or ER!-), but with an overlap of some cells sharing a similar gene 
expression profile. This common cell pool was characterized by the 
expression of pluripotency markers, while the other cells expressed 
markers related to more differentiated cell states. The number of cells with 
a common undifferentiated gene expression profile was rather high, 
potentially including both common progenitor cells as well as CSCs. 
Figure 11B illustrates the differentiation route in primary tumor cells, 
which was in line with the cell hierarchy delineated for cell lines. Further 
analysis, e.g. by using RNA sequencing of larger cell line and patient 
cohorts at the individual cell level will most likely reveal the presence of 
additional cellular subpopulations. From a therapeutic point of view the 
identification of different CSC is highly relevant. In order to design 
curative treatment approaches all tumor-propagating populations need to 
be eradicated. 
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Figure 11. ER!+ and ER!- cells define a common quiescent CSC pool. A: 
Hypothesized cellular organization of ER!+ and ER!- cell lines. B: 
Hypothesized cellular organization of ER!+ and ER!- primary tumors. 

 

ER!+ MCF7 cells comprise distinct cellular states and are organized in a 
hierarchical manner 

Since the applied gene panel proved more suitable to detect cellular 
subpopulations in ER!+ cell lines, for succeeding experiments we 
continued with the ER!+ MCF7 cells. For a detailed investigation of 
CSC-like/progenitor pools we used two additional functional CSC 
enrichment approaches, namely 1% hypoxia (Fig.10B) and PKH26-label 
retention in anchorage-independent culture (Fig.10C) and conducted 
single-cell analysis. Combined PCA and Kohonen self organizing map 
(SOM) analyses of all enriched MCF7 CSC-fractions and matched 
monolayer cultures, allowed us to relate and organize phenotypic states. 
Using SOM individual cells established four stable clusters (MCF7 I-IV) 
based on differential transcriptomic profiles, schematically shown in 
Figure 12. Clusters MCF7 I-IV each contained cells from all applied 
enrichment methods, although in varying proportions. Cluster MCF7 I 
harbored mainly anoikis-resistant cells and displayed high expression of 
EMT-, pluripotency-, and certain breast cancer stem cell-related genes. 
Cluster MCF7 II primarily contained PKH26Bright cells and was 
characterized by high expression of CD44. Cluster MCF7 III was enriched 
for hypoxic cells and to a lesser extent for PKH26Bright cells with high 
expression of most differentiation markers as well as ABCG2 and ERBB2. 
Most monolayer cells were present in cluster MCF7 IV characterized by 
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high expression of proliferation-associated genes, PGR, ALDH1A3 and 
ID1. 

The observed gradual gene regulation between the identified clusters 
suggests a hierarchical organization of MCF7 cells. The MCF7 I group 
features the phenotype of quiescent CSCs and represents the apex of the 
hierarchy and differentiation takes place over different cellular states 
(MCF7 II and MCF7 III) to the most differentiated cells in group MCF7 
IV. First, differentiation-associated genes were activated in immature 
CSCs at the same time as EMT and breast cancer associated stem cell 
markers were downregulated. Secondly, we observed increased expression 
of proliferation markers and downregulation of genes related to stemness. 
This progression sequence is further in line with normal stem cell 
differentiation and development [126, 127]. 

Figure 12. ER!+ MCF7 cells feature distinct differentiation states organized in 
a hierarchical manner. Proposed model displaying distinct identified cell states 
and hierarchical organization of MCF7 cells. The trend of gene expression of 
epithelial/differentiation, breast cancer stem cell (BCSC), pluripotency, 
EMT/metastasis and proliferation associated genes are indicated outside the box. 

 

In conclusion, our data suggest that ER!+ and ER!- cell lines share a 
quiescent cell pool with CSC-like features. This phenotype was partly 
recapitulated in two primary tumor samples. Currently, it is not known, 
whether progenitor and CSC-like cells are similar across different 
molecular subtypes. The CSC concept comprises two separate 
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components; the first concerns the cell of origin of breast cancer and the 
second concerns the cell types responsible for tumor maintenance and 
progression [120]. Today it is widely believed that the different molecular 
subtypes arise from distinct cell types within the mammary hierarchy, but 
also particular oncogenic drivers seem to be involved in producing the 
various breast cancer phenotypes [39]. Basal (ER!-) cancers for example 
are thought to arise from a luminal progenitor cells [128]. The cellular 
origin of luminal cancers has yet to be established, however it has been 
speculated that a more differentiated luminal progenitor could give rise to 
this highly differentiated breast cancer type. In light of this it is possible 
that distinct subtypes harbor individual CSC-like/progenitor populations. 
Besides, CSCs in particular cells displaying the CD44+ phenotype have 
been linked to the formation of metastasis [56]. Clinically, ER!+ and 
ER!- breast cancers show distinct organ-specific metastasis. ER!+ 
preferentially metastasize to the bone, while ER!- breast cancers tend to 
metastasis to visceral organs or to the brain [129]. This observation further 
underlines the possibility of distinct subtype-specific CSC/progenitor 
cells. On the other hand, although different subtypes exhibit a different 
mutational spectrum and the predominance of different cell types, it is 
possible, that CSCs depend on specific pathways, which may be shared 
across the molecular subtypes or even different cancer types. For example 
hedgehog signaling and the polycomb protein Bmi-1 have been 
demonstrated to regulate self-renewal in both, malignant and non-
malignant stem cells of the breast [130]. Furthermore, a recent study has 
analyzed transcriptomic profiles of CSCs with the CD44+/CD24- and 
ALDH+ phenotypes across different subtypes and found a remarkable 
similarity in CSC-derived gene expression patterns [61]. The 
identification of common gene-expression profiles in CSCs across 
molecular subtypes indicates that CSC-targeting agents could be effective 
in different types of breast cancer in combination with subtype-specific 
treatment  [120]. One such an agent is the antibiotic salinomycin, which 
has been identified in a high-throughput screening [131] and proved 
effective in eradicating CSCs in multiple breast cancer types [132, 133].  

The multiple CSC enrichment methods used to analyze MCF7 cells 
allowed for a detailed description of cell pools present at the individual 
cell level. We have identified four different populations, seemingly 
organized in a hierarchical manner as displayed by gradual up- and down 
regulation of differentiation-, stemness-, EMT-, and proliferation 
associated genes. Whether cells transition through multiple cellular 
differentiation states in a uni- or bidirectional manner has not explicitly 
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been addressed in this study, however several lines of evidence have 
recently reported a high degree of cellular plasticity and the capability of 
cells to switch between multiple cellular phenotypes [52, 53, 61, 134, 
135]. Moreover, mathematical modeling has demonstrated that higher 
levels of dedifferentiation reduce the effect of CSC-targeted therapy and 
lead to higher rates of resistance [136], laying emphasis on the importance 
to take cellular plasticity into account when designing new treatment 
approaches. Our data permit the identification of key events in CSC 
plasticity. For example, in an attempt to target de-differentiation of 
progenitor cells into less-differentiated cells with pluripotent features, in 
ER!+ breast cancers, genes associated with differentiation/EMT/breast 
cancer stemness need to be modulated rather than 
pluripotency/proliferation, since these processes follow a sequential order. 
However, in ER!- cells, proliferation seems to be one of the key 
differentiation associated events. Targeting proliferation in both ER!+ and 
especially ER!- breast cancer may actually have an effect on 
differentiation processes potentially increasing CSC subpopulations and 
tumor aggressiveness. Our data highlight the need for proper tumor 
characterization and in depth understanding of relevant common as well 
as separate differentiation and de-differentiation processes present in 
subtypes of breast cancer. 

 

4.3 Results and discussion paper III 
In paper III we sought to identify molecular pathways specific to luminal 
and basal breast cancer subtypes, using cell line models. To this end, we 
conducted RNA sequencing of functionally enriched CSC fractions and 
matched monolayer cultures, to identify circuits commonly 
overrepresented in CSC fractions of both subtypes. 

 

The mevalonate pathway is a key feature of CSC-enrichment in luminal 
and basal breast cancer subtypes 

To identify commonly upregulated transcriptional networks in CSCs of 
luminal and basal subtypes of breast cancers, we applied a genome-wide 
RNA-sequencing approach. For this purpose CSC of luminal and basal 
breast cancer cell lines were enriched using a 16-hour anchorage-
independent culture system. CSC-derived gene expression signatures were 



Delineating cellular heterogeneity and organization of breast cancer stem cells 

 

45 
 

analyzed in conjunction with corresponding adherent populations. A total 
of 344 (MCF7), 243 (T47D) and 477 (MDA231) genes were significantly 
upregulated in CSC-enriched subpopulations (Fig.13A). Ingenuity® 
Pathway Analysis (IPA®) identified mevalonate-associated networks in 
six out of the twelve most over-represented pathways (Fig.13B). 
Therefore, we have analyzed the expression of 11 mevalonate genes using 
single-cell RT-qPCR. Across the three cell lines, we identified similar 
expression patterns for HMGCS1, MVK and DHCR24. HMGCS1 
expression showed no significant difference between cell lines and was 
specific to a tumor cell sub-fraction. Following CSC enrichment, the 
percentage of HMGCS1-expressing cells was significantly expanded as 
analyzed at the individual cell level. HMGCS1 did not exhibit any gene 
associations to other pathway genes, which may indicate mevalonate-
pathway independent transcriptional regulation. Furthermore, HMGCS1 
was significantly over-expressed in all three CSC-enriched cell lines in the 
original RNA-sequencing dataset. This observation was confirmed with 
RT-qPCR, using RNA extracted from cell lines (Fig.13C). A recent study 
recognized the mevalonate pathway overrepresented in CSCs of basal 
cancers [75]. In this study gene expression signatures were derived from 
mammosphere cultures, containing mammosphere-initiating and 
differentiated progenitor cells [137], possibly masking pathways active in 
CSCs. By using 16-hours suspension culture we have previously shown to 
enrich for cells with increased in vitro mammosphere formation capacity, 
in vivo tumor formation as well as for cells with elevated expression of the 
CSC-like EPCAM+/CD44+CD24low immunophenotype [91]. Based on our 
findings we further explored the putative role of HMGCS1 as a marker of 
functionally enriched CSCs. 
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Figure 13. The mevalonate pathway is a key feature of CSC-enrichment in 
luminal and basal breast cancer subtypes. A. RNA-sequencing was conducted on 
MCF-7, T47D and MDA231 adherent monolayers and 16-hour CSC-enriched 
cultures. Overall analysis of the RNA-sequencing data identified 344 (MCF-7), 
243 (T47D) and 477 (MDA231) genes significantly overexpressed in the CSC-
enriched cultures compared to adherent monolayer cultures. B. Ingenuity® 
Pathway Analysis was applied to the 79 genes which were significantly 
overexpressed in two or more of the CSC-enriched cell line subpopulations. 
Several mevalonate pathway-associated networks were significantly increased 
above the statistical threshold (p<0.001) in CSC-enriched subpopulations. C. 
MCF-7, T47D and MDA-231 cell lines grown as adherent monolayer or in 16-
hour CSC-enriched (CSC-en) cultures; HMGCS1 gene expression was assessed 
by qPCR. HMGCS1 transcript levels are reported as fold changes relative to 
individual monolayer controls, graphs represent average ±SEM, n=3. 

 

HMGCS1 is required for CSC survival in luminal and basal cell lines with 
mutated p53 

HMGCS1 protein expression was studied in 16-hour anchorage-
independent culture and in 5-day mammosphere cultures. Protein 
expression was increased in both model systems compared to adherent 
monolayer cultures, confirming the RNA data. To assess the effect of 
HMGCS in CSC function, gene expression was transiently silenced, using 
siRNA (Fig.14A) and survival in 16-hours and 5-days anchorage-
independent cultures was analyzed. Following HMGCS1 knockdown 
T47D and MDA-231 cells exhibited a significant decrease in survival 
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(Fig.14B) and relative mammosphere forming capacity (Fig.14C). 
Dysregulated mevalonate pathway activation has previously been linked 
to a gain-of-unction mutation of p53 [74]. The authors identified 
functional interaction with sterol regulatory element-binding proteins to 
be critical for mutant p53-mediated upregulation of mevalonate pathway 
genes.  

To block the mevalonate pathway cells were treated with standard doses 
of simvastatin, targeting 3-hydroxy-3-methylglutaryl-CoA reductase 
(HMGCR), the major rate-limiting enzyme within the mevalonate 
pathway and downstream substrate of HMGCS1 [138]. Simvastatin 
treatment induced elevated HMGCS1 protein levels, possibly through a 
restorative feedback response [139]. This feedback mechanism has been 
associated with statin-insensitivity and the lack to induce apoptosis upon 
statin exposure in leukemic cells [72]. Simvastatin effects on viability in 
16-hour CSC-enrichment and mammosphere formation were negligible. 
Given the pronounced effect of HMGCS1 gene-silencing on CSC survival 
and seemingly mevalonate-pathway-independent regulation of HMGCS1, 
pharmacological inhibition of HMGCS1 may be a superior approach to 
specifically target CSC in luminal and basal breast cancer subtypes, 
however this requires further investigation. 
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Figure 14. HMGCS1 is required for CSC survival in luminal and basal cell 
lines with mutated p53. A. HMGCS1 gene expression was silenced using 
HMGCS1 siRNA or scrambled negative control. Immunoblot and associated 
densitometry confirmed HMGCS1 knockdown relative to scrambled control. "-
actin was used as loading control. B. Cell lines were transfected with HMGCS1 
siRNA or scrambled negative control for 72 hours. Cells were grown in 16-hour 
suspension culture. Manual viability counts were conducted with Trypan Blue 
exclusion dye. Percentage viable cells of total cell number seeded are shown, 
graphs represent average counts ±SEM, n=3. C. Cell lines were transfected with 
HMGCS1 siRNA or scrambled negative control for 72 hours; cells were grown in 
5-day mammosphere cultures. Mammosphere forming capacity (MFC) was 
assessed and is represented as percentage of total cells seeded. Graphs show 
average fold-change relative to scrambled control ±SEM, n=3. 

 

HMGCS1 expression transcriptionally regulates CSC-associated genes in 
luminal and basal models of breast cancer with mutated p53  

To investigate the gene regulatory role of HMGCS1, transcript levels of 
proliferation, pluripotency, EMT and breast cancer stem cell genes were 
assessed in HMGCS1-knockdown cells and scrambled controls. Following 
HMGCS1 knockdown, T47D cells displayed a reduction of ABCG2 
expression, while MDA231 cells showed a decrease of SOX2, NANOG 
and SNAI1 expression. No significant differences were detected in MCF7 
cells, further suggesting a link between p53 mutational status and 
deregulated mevalonate metabolism. The adherent monolayer single-cell 
data was stratified by HMGCS1 expression. HMGCS1-expressing cells 
had remarkably similar frequency in each cell line, however due to the 
low number of HMGSC1-expressing cells it was difficult to detect 
significant differences.  

 

HMGCS1 expression correlates with disease aggression and associates 
with basal tumors in a breast cancer patient cohort 

HMGCS1 expression was assessed in a cohort of 149 lymph node positive 
breast cancers (Fig.15A). Correlation analysis identified significant 
positive associations with p53 mutational status, tumor grade and HIF 1-!. 
HMGCS1 exhibited significant inverse correlations with ER! and PR, 
there was an obvious increase in the frequency of ER!- tumors in the 
HMGCS1-intermediate and -high tumors (Fig.15B) as well as an increase 
in p53 mutations in ER!+ tumors (Fig.15C), however due to the small 
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number of patients included in each HMGCS1 subgroup, these results are 
only indicative. 

 

Figure 15. HMGCS1 expression correlates with disease aggression and 
associates with basal tumors in a breast cancer patient cohort. A. A tissue 
microarray of 149 tumor biopsies from patients with lymph-node positive breast 
cancers was stained for HMGCS1. Expression was assessed using the Allred 
scoring system. B. Comparative pie charts were generated for each HMGCS1 
subgroup (negative, low, intermediate and high) to demonstrate the frequency of 
ER!+ and ER!- tumor subtypes present in each. C. Percentage of p53 mutations 
in ER!+ and ER!- breast cancers for HMGCS1 subgroups.  

 

Hyperactivation of the mevalonate pathway and overexpression of 
mevalonate pathway genes has previously been linked to p53 gain-of-
function mutations [74]. Here, we establish a specific link to HMGCS1 
protein expression and mutated p53. Furthermore, HMGCS1 was 
associated with tumor grade and lack of ER! expression. About 30% of 
all breast cancers exhibit mutations in the TP53 gene, but the frequency 
differs greatly across distinct molecular subtypes [23, 35]. About 80% of 
the basal tumors display mutations in the TP53 gene, whereas only about 
15% of luminal A tumors carry a p53 mutation [23, 35]. Furthermore, 
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basal tumors are characterized by the lack of ER!, PR and HER2 
expression as well as high tumor grade [140]. Our data suggests that that 
therapeutic modulation of the mevalonate pathway may be beneficial for 
patients presenting p53 gain-of-function mutations and consequential 
mevalonate pathway hyperactivation, independent of breast cancer 
subtype. 

In conclusion, by applying genome-wide RNA sequencing of functionally 
enriched CSCs in conjunction with matched adherent cultures, we 
identified the mevalonate pathway for cholesterol biogenesis and protein 
prenylation in CSCs of luminal and basal breast cancers. In breast cancer 
the mevalonate pathway has been implicated in tumor cell transformation, 
malignancy and the specific regulation of basal-derived CSCs [72, 74, 75]. 
Dissecting the mevalonate pathway, we identified HMGCS1 as a 
functional marker for CSCs. Transient HMGCS1 gene-silencing lead to 
reduced survival of CSCs in cell line model displaying mutated p53. 
Given the pronounced effect of HMGCS1 gene silencing on CSC survival 
pharmacological inhibition of HMGCS1 may be a promising approach to 
specifically target CSC in luminal and basal breast cancer subtypes and 
likely additional breast cancer types. 
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 CONCLUSIONS  5

 

In paper I we have evaluated experimental parameters of targeted 
preamplification for samples with minute starting amount, such as single-
cell measurements. Quantification of small molecule numbers often 
requires a preamplification step to produce sufficient material for accurate 
downstream applications. Based on our findings we were able to provide 
general recommendations for conducting robust and accurate 
preamplification in conjunction with RT-qPCR or next-generation 
sequencing.  

In paper II we have evaluated the cellular organization of ER!+ and 
ER!- breast cancer cells by combining single-cell gene expression 
profiling with three functional enrichment techniques for cancer stem cell 
enrichment. ER!+ cells displayed a hierarchical organization with 
different modes of cellular transitions. ER!- cells clustered mainly based 
on their proliferative capacity. Despite of the seemingly different cellular 
organization of both subtypes, we have identified a quiescent cell pool 
with CSC-like features common to ER!+ and ER!- cells. In addition, for 
ER!+ MCF7 cells we identified several cellular populations, which 
displayed distinct CSC-like phenotypes, underlining the importance for 
detailed tumor characterization in order to target all therapeutic relevant 
cancer cells. 

In paper III we have evaluated transcriptional networks in CSC-enriched 
populations of ER!+ and ER!- breast cancer cells and thereby identified 
the mevalonate pathway commonly overrepresented in both breast cancer 
subtypes. Detailing the mevalonate pathway we identified the mevalonate 
precursor enzyme HMGCS1 as a specific marker for CSC enrichment, 
essential for CSC activities, in particular in cells with mutated p53. 
Pharmacological inhibition of HMGCS1 could therefore be a promising 
new treatment approach to target CSCs in an appropriate p53 mutational 
background. 
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