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Abstract 

The Dunning–Kruger effect states that the low skilled are overconfident while the high skilled 

are more accurate in assessing their skill. In apparent support of this effect, many studies have 

shown that low performers overestimate their performance while high performers are more 

accurate. This empirical pattern, however, might be a statistical artifact caused by 

measurement error. We are the first paper to consistently estimate the Dunning–Kruger effect 

using an instrumental variable approach. In the context of exam grade predictions of 

economics students, we use students’ grade point average as an instrument for their skill. Our 

results support the existence of the Dunning–Kruger effect. 
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1. Introduction 

With the rise of behavioral economics, many psychological concepts have been 

acknowledged by economists and incorporated into economic models. One of these concepts 

is overconfidence, which has been used to explain, among other things, financial bubbles 

(Scheinkman & Xiong, 2003), CEOS’ excessive mergers and acquisitions (Malmendier & 

Tate, 2005), and the excess market entry of entrepreneurs (Camerer & Lovallo, 1999). While 

most economic studies have not specified the relationship between overconfidence and skill, 

psychologists Kruger and Dunning (1999) argue that it is generally the low skilled who are 

most overconfident while the high skilled are, on average, more accurate. This relationship 

between skill and overconfidence is called the Dunning–Kruger effect (Dunning, 2011). The 

Dunning–Kruger effect implies that low average overconfidence in a population can hide 

important heterogeneity and, in particular, those who are least likely to succeed are most 

likely to overestimate their skill. 

The Dunning–Kruger effect has received much attention in the scientific literature: 

According to Google Scholar, the seminal article by Kruger and Dunning (1999) has been 

cited more than 2,300 times. Apart from the psychological literature, many researchers in 

other scientific disciplines seem to have accepted the Dunning–Kruger effect as a 

psychological fact that can be used to explain individuals’ behavior, for example, in law (Tor, 

2002), management science (Dane & Pratt, 2007), and medicine (Haun, Zeringue, Leach, & 

Foley, 2000). In apparent support of the Dunning–Kruger effect, a number of studies have 

shown that, for many different tasks, low performers usually vastly overestimate their 

performance while high performers are, on average, more accurate and often even slightly 

underestimate their performance (Kruger & Dunning, 1999; Burson, Larrick, & Klayman, 

2006; Ehrlinger, Johnson, Banner, Dunning, & Kruger, 2008; Ryvkin, Krajč, & Ortmann, 

2012). 
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Performance and overestimation, however, only measure skill and overconfidence 

with some error. If the Dunning–Kruger effect is estimated by regressing overestimation on 

performance, measurement error will most likely cause an overestimation of the Dunning–

Kruger effect because the same performance measure is used as a measure of skill as well as 

to calculate overestimation. The intuition behind the bias is as follows: When you consider the 

measurement error in performance as luck on a test, bad luck on a test will make individuals 

appear less skilled and at the same time more overconfident. Thus measurement error alone 

can lead to a negative relationship between skill and overconfidence and the Dunning–Kruger 

effect could be a statistical artifact.
1
 While some studies have tried to overcome estimation 

bias (Krueger & Mueller, 2002; Ehrlinger et al., 2008), until now no paper has consistently 

estimated the Dunning–Kruger effect. 

In this paper, we estimate the Dunning–Kruger effect in the context of students’ exam 

grade predictions. To overcome the bias caused by measurement error, we use an instrumental 

variable (IV) approach in which we use students’ grade point average (GPA) as an instrument 

for exam performance. Using this approach, we find robust evidence for the Dunning–Kruger 

effect. As predicted by our methodological discussion, IV estimates are, however, 

substantially smaller than ordinary least squares (OLS) estimates. 

The remainder of the paper is structured as follows: Section 2 discusses the model, key 

variables, and potential biases when estimating the Dunning–Kruger effect. Section 3 

describes the data. Section 4 shows the results and Section 5 concludes the paper. 

                                                      
1
 Krueger and Mueller (2002) were the first to point out that regression effects together with the better-than-

average heuristic can explain the observed pattern between performance and overestimation.  
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2. Estimating the Dunning–Kruger Effect 

2.1. Framework 

The basic setup of Dunning–Kruger effect studies is that subjects are asked to participate in a 

test and estimate their performance on this test. Expected performance is elicited either before 

or after the test and either in absolute terms or relative to their peers. In early studies, 

researchers showed the mean overestimation by different performance quartiles (Kruger & 

Dunning, 1999). A general finding was that the bottom quartile performers, on average, vastly 

overestimated their performance while the top quartile performers were, on average, more 

accurate. When using relative performance measures, the latter even slightly underestimated 

their performance (Kruger & Dunning, 1999; Ehrlinger et al., 2008; Ryvkin et al., 2012; 

Schlösser, Dunning, Johnson, & Kruger, 2013). Krueger and Dunning (1999) explain this 

pattern in terms of differences in metacognitive skills between low- and high-skilled 

participants. The intuition behind this explanation is that the skills necessary to perform well 

are often the same skills that are required to evaluate one’s own performance accurately and 

those who are unable to assess their own performance well tend to be overconfident. 

Therefore, low-skilled individuals are overconfident while high-skilled individuals are more 

accurate about their absolute skill level. However, due to the false consensus effect (Ross, 

Greene, & House, 1977), which states that people tend to overestimate the degree to which 

people are similar to them, high-skilled individuals overestimate the skill levels of others and 

are therefore slightly underconfident in their relative skill.
2
 

To understand the empirical challenges of estimating the Dunning–Kruger effect, we 

will be more explicit than previous papers on the estimation framework, the definitions of the 

                                                      
2
 See also Krajc and Ortmann (2008) and Schlösser et al. (2013) for a discussion on an alternative explanation 

for the Dunning–Kruger effect.  
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variables used, and potential estimation bias. We model overconfidence 𝑜𝑐 as a linear 

function of skill 𝑠 (omitting individual subscripts throughout to simplify notation): 

 𝑜𝑐 = 𝛼 +  𝛽𝑠𝑠 + 𝑢 (1) 

Overconfidence is the sum of a constant term, 𝛼, and a variable component that depends on 

the individual’s skill; 𝑢 is an idiosyncratic error term that captures individual differences in 

overconfidence which are unrelated to skill. Looking at estimates of 𝛼 and 𝛽𝑠 jointly provides 

a simple framework for testing the Dunning–Kruger effect. The Dunning–Kruger effect 

predicts that overconfidence declines with skill, that is, that 𝛽𝑠 is negative. It further predicts 

that self-assessment errors are asymmetric, that is, overconfidence among low-skilled 

individuals is large and positive (𝛼 + 𝛽𝑠 ∗ 𝑠 is large and positive for low values of 𝑠) while 

overconfidence among high-skilled individuals is small in absolute size (𝛼 + 𝛽𝑠 ∗ 𝑠 is small 

for high values of 𝑠). To isolate the role of measurement error, we assume throughout this 

section that 𝑢 is independent of all included variables. This means that if we could observe 

overconfidence and skill directly, an OLS regression of overconfidence on skill would lead to 

unbiased estimates of 𝛼 and 𝛽𝑠. Skill and overconfidence, however, are unobservable and 

researchers use performance on a test and overestimation of this performance as their 

respective measures. 

2.2.  Key Variables 

We define skill straightforwardly as the ability in the relevant domain. Performance, 

however, measures skill with some error, which we can think of as luck. In this context, luck 

captures all other factors that influence performance. We thus model performance 𝑝 as the 

sum of skill 𝑠 and a classical measurement error component 𝜀:  

 𝑝 = 𝑠 +  𝜀 (2) 
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Classical measurement error means that 𝜀 is a random error term, which has a mean of zero 

and is independent of all variables included in the regression and 𝑢. We define 

overconfidence as the difference between the self-assessed skill level and the actual skill 

level. Overconfidence can, however, only be measured as overestimation, that is, the 

difference between expected and actual performance. The key difference between 

overconfidence and overestimation is that overestimation is partly determined by luck. 

We assume that people state their self-assessed skill when asked about their expected 

performance 𝑝𝑒𝑥𝑝. Expected performance is therefore the sum of a person’s actual skill and 

overconfidence: 

 𝑝𝑒𝑥𝑝 = 𝑠 + 𝑜𝑐 (3) 

Besides expected skill, there might be a number of other factors that influence a person’s 

expected performance. When expected performance is elicited before the test, as in this paper, 

these other factors are arguably unrelated to skill and measurement error and will thus not 

affect the estimates. When decomposing overestimation into its respective elements, one can 

see that it is equal to overconfidence minus luck:  

  𝑜𝑒 = 𝑜𝑐 − 𝜀 (4) 

2.3.  Estimating the Relationship between Skill and Overconfidence 

One might be tempted to estimate Equation (1) by simply performing an OLS regression of 

overestimation on performance. To understand the biases associated with this approach, we 

express Equation (1) in terms of observable variables: It follows from Equations (4) and (2) 

that 𝑜𝑐 = 𝑜𝑒 + 𝜀 and 𝑠 = 𝑝 − 𝜀. When we substitute these into Equation (1) and rearrange, 

we obtain the following expression: 
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𝑜𝑒 =  𝛼 +  𝛽𝑠𝑝 + 𝑢 − 𝜀(1 + 𝛽𝑠) (5) 

Equation (5) shows that 𝑝 is correlated with the error term because 𝜀 is a component of 𝑝. 

Simply regressing overestimation on performance would therefore lead to biased estimates of 

𝛼 and 𝛽𝑠.
3
 The direction of the overall bias depends on 𝛽𝑠. We expect 𝛽𝑠 to be larger than -1 

because a 𝛽𝑠 smaller than -1 (i.e., more negative) would mean that self-assessed skill would 

decline with actual skill. This is unrealistic because it would imply that those with the lowest 

skill have the highest self-assessed skill. If 𝛽𝑠 is indeed larger than -1, OLS would lead to 

downward bias, which would mean an overestimation of the Dunning–Kruger effect. The 

potential magnitude of this bias is substantial: If there were no relationship between skill and 

overconfidence (𝛽𝑠 = 0) and performance had a test reliability of 0.5, OLS estimates would, 

on average, wrongly suggest that a one-point increase in skill would lead to a 0.5 point 

decrease in overconfidence.
4
 

Previously, there have been two attempts to account for this bias. First, Krueger and 

Mueller (2002) used the split sample method. The split sample method uses two performance 

measures: one to calculate overestimation and one as a measure of performance measure.
5
 

This breaks the mechanical relationship between overestimation and performance. To the 

extent that performance is measured with classical measurement error, the split sample 

estimator will be attenuated. Using this approach, Krueger and Mueller do not find evidence 

of the Dunning–Kruger effect. This is not surprising, because the performance used in their 

study had a great deal of measurement error, which suggests that the estimates are 

                                                      
3
 Testing the Dunning–Kruger effect by showing average overestimation by performance quartiles, as done by 

Kruger and Dunning (1999), suffers, in principle, from the same biases as estimating it with OLS regression. 
4
 To see why this is the case, remember that the bias of the least squares estimator is 

𝐶𝑜𝑣(𝑝,𝜔)

𝑉𝑎𝑟(𝑝)
, where 𝜔 =  

𝑢 − 𝜀(1 + 𝛽𝑠), which is the composite error term of Equation (5). This bias can also be expressed as −(1 +

𝛽𝑠)
𝑉𝑎𝑟(𝜀)

𝑉𝑎𝑟(𝑝)
= −(1 + 𝛽𝑠) ∗ (1 − 𝑟), where 𝑟 =  

𝑉𝑎𝑟(𝑠)

𝑉𝑎𝑟(𝑠)+𝑉𝑎𝑟(𝜀)
 is the reliability ratio. It follows that, in the absence 

of an effect of skill on overconfidence (𝛽𝑠 = 0) and with a test reliability of, say, 0.5, the least squares estimates 

would mistakenly point to a 𝛽𝑠 of -0.5. 
5
 The split sample method is the same as the reduced form of the IV approach we suggest in this paper. 



8 

 

substantially attenuated (the test–retest correlation for their difficult test was 0.17 and for the 

easy test 0.56).
6
  

Second, Ehrlinger et al. (2008) used the reliability-adjusted OLS. The reliability 

adjustment is carried out by dividing the estimated OLS coefficient by a measure of the test 

reliability. This, however, is only a valid bias correction method if the coefficient is 

attenuated. Since the OLS coefficient is likely downward biased, dividing by the test 

reliability will only increase this bias (for a more extensive discussion on the biases of other 

estimation methods, see Feld, 2014). 

We estimate the Dunning–Kruger effect using an IV approach. To obtain a consistent 

estimate of 𝛽𝑠 we need an IV that is correlated with performance and uncorrelated with 𝑢 and 

𝜀.
7
 We will therefore use a second performance measure as an IV. Note that if the instrument 

is uncorrelated with 𝜀 but correlated with 𝑢, the IV estimation corrects for any bias caused by 

measurement error and thus isolates the empirical relationship between skill and 

overconfidence, even if this relationship is not causal. 

3. Data 

Our sample consists of 209 economics students of two second-year bachelor courses, given in 

March and April 2013 at the School of Business and Economics of Maastricht University in 

the Netherlands.
8
 A total of 91 percent of the students in our sample were in the same 

bachelor of economics program and each course was a compulsory course for a different 

specialization of this program. The remaining 9 percent of students were from other bachelor 

programs and took this course as an elective. No student took both courses, but 87 percent of 

                                                      
6
 Note that these studies estimate the Dunning–Kruger effect using relative performance. Using relative 

performance complicates the analysis, since measurement error is bound at the top and bottom of relative 

performance and thus the classical measurement error assumption is unrealistic.  
7
 When the error term has zero mean, the IV method will also lead to a consistent estimate of 𝛼. 

8 See Feld, Salamanca, and Hamermesh (2015) for more information on the school’s institutional background. 
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all students in our estimation sample took the same eight compulsory courses in their first 

year of study. In total, 165 (79 percent) registered students filled out the questionnaire. The 

remaining 44 students were not present on the day the questionnaire was distributed in the 

classroom, either because they missed the particular session or because they had already 

dropped out of the course. Because Maastricht is close to the German border, the School of 

Business and Economics has a large share of German students. In our estimation sample, 50 

percent of students were German and 30 percent were Dutch; 31 percent were female. 

We elicited students’ predictions of their exam grade with a questionnaire four weeks 

before the exam.
9
 Grades were given on a scale from zero (lowest) to 10 (highest) in Course 1 

and from one to 10 in Course 2. For both courses, the minimal exam grade necessary to pass 

the course was 5.5. To ensure that students stated their honest expectations, we incentivized 

the exam grade predictions by holding a lottery draw in which students could win in each 

course one of two gift vouchers worth €20 if their prediction was within a range of 0.25 points 

around their actual exam grade (see the questionnaire in the Appendix). Furthermore, the 

students were assured that all information would be kept confidential. Information on actual 

grades was provided by the course coordinators; information on student characteristics and 

previous grades was taken from the administrative records. The final sample used for 

estimation comprises 153 students due to missing data on final grades and GPAs. 

Table 1 shows the summary statistics for the estimation sample of students’ 

predictions, actual grades, the resulting over- and underestimation, and the students’ GPAs at 

the end of the first year. On average, students significantly overestimated their exam grades 

by 0.37 (p = 0.004). 

                                                      
9
 We also elicited students’ expectations about the percentile of their exam grades and their participation grades. 

We do not use the participation grade predictions to test the Dunning–Kruger effect because we do not have a 

suitable instrument for participation grade. We do not use students’ percentile expectations because grade 

percentile is a relative performance measure and the classical measurement error assumption is therefore 

unrealistic. 
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Table 1: Predictions, grades, and overestimation  

  Mean S.D. Min 0.25 0.50 0.75 Max 

 Predicted exam grade 7.22 0.85 4.50 6.5 7.00 8.00 9.25 

 Realized exam grade 6.85 1.93 0.00 5.75 7.00 8.00 10.00 

 Exam overestimation 0.37 1.70 -3.00 -0.75 0.25 1.50 6.20 

 GPA 7.17 1.15 4.34 6.37 7.17 8.08 9.38 

Note: The data in this table are based on the estimation sample. Exam overestimation is equal to the predicted 

grade minus the realized exam grade. 

4. Results 

Figure 1 plots the average exam predictions against the actual exam grades. If all individuals 

had perfect foresight about their exam grades, the relation between the predicted and actual 

grades would be shown by the 45-degree (solid) line. The figure shows the typical pattern of 

many Dunning–Kruger effect studies: Those with lower grades vastly overestimate their exam 

grades while those with higher grades slightly underestimate them. However, as discussed in 

Section 3, the relationship between performance (actual grades) and overestimation shown in 

Figure 1 is likely to be biased because of measurement error. 

We estimate Equation (1) using an IV approach. The dependent variable is the 

student’s exam overestimation, that is, the difference between the expected and realized exam 

grades. Since realized exam performance is endogenous, we use the students’ first-year GPA, 

calculated as the weighted average of all their respective grades at the end of the first year,
10

 

as an instrument for the following reasons. First, it is correlated with the exam grade, because 

it is often similar skills that determine grades in different courses. Second, because the last 

grade of the first-year GPA was graded eight months before the exam students were asked to 

predict their exam grade, the GPA is arguably uncorrelated with the exam error 𝜀. 

 

                                                      
10

 The GPA is a weighted average (by ECTS course credit points) of all graded components available at the end 

of the academic year 2011/2012. The same data are used by Feld and Zölitz (2014). For most of the students, the 

GPA measure consisted of eight regular courses (6.5 ECTS) and two skills courses (three ECTS) that are 

compulsory in the first year of the bachelor of economics. 
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Figure 1: Actual versus predicted exam grades 

 

Note: This figure shows predicted exam grades against actual exam grades. The brackets show the 95 percent 

confidence interval of the predicted exam grades. 

 

Table 2 shows estimates of the Dunning–Kruger effect. We report OLS estimates in 

Column (1) as a benchmark. The OLS estimate shows that a one-point increase in the exam 

grade is associated with a -0.79 decrease in overestimation. This estimate, however, is likely 

overestimated because of measurement error. Column (2) shows the first stage of the IV 

estimate. As we would expect, the past GPA is highly predictive of a student’s exam grades. 

The F-statistics of the excluded instrument are large. Column (2) shows the estimated 

coefficients of the second stage. The estimated effect of skill is negative and highly 

significant. This suggests that an increase in skill of one grade point reduces overconfidence 

by 0.55 grade points, a large effect but substantially smaller (i.e., less negative) than OLS 

would have suggested. As expected, measurement error causes a substantial bias. These 

results are remarkably robust: Columns (4) and (5) show that the inclusion of additional 

controls for student and course characteristics does not change the estimates. We obtain the 

same qualitative results when we estimate the results for reach course separately and when 

using any of the grades that make up the GPA individually as an instrument. 
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Table 2: Estimates of the Dunning–Kruger effect 

 (1) (2) (3) (4) (5) 

 OLS First-Stage Second-Stage First-Stage Second-Stage 

 Overestimation Exam Grade Overestimation Exam Grade Overestimation 

      

Exam grade -0.7927***  -0.5539***  -0.5733*** 

 (0.036)  (0.080)  (0.065) 

GPA  0.9654***  0.9523***  

 

 

 (0.089)  (0.106)  

Constant 5.7991*** -0.0663 4.1632*** 0.8820 4.4418*** 

 (0.265) (0.696) (0.601) (0.767) (0.535) 

      

Controls No No No Yes Yes 

F-Test 

excluded 

instrument 

 118.9  79.1  

Observations 153 153 153 153 153 

R
2
 0.806 0.329 0.733 0.402 0.776 

Note: Standard errors, in parentheses, are clustered at the tutorial group level. Additional 

controls include dummy variables for female, German, Dutch, field of study (economics = 1), 

Course 2, and resit exam. *** p < 0.01, ** p < 0.05, * p < 0.1. 

 

These results provide evidence of the Dunning–Kruger effect: The negative coefficient 

of the (predicted) exam grade shows that overconfidence declines with skill. We can further 

use the predicted exam grades, our unbiased measure of skill, and the respective estimates of 

𝛼 and 𝛽𝑠 in Column (2) of Table 2 to demonstrate that the Dunning–Kruger effect holds in 

our sample: The predicted overconfidence of the student of the 10th percentile of the skill 

distribution (predicted exam grade = 5.0) is equal to 1.41 (4.16 - 0.55*5.0) while the predicted 

overconfidence of a student of the 90th percentile of the skill distribution (predicted exam 

grade = 8.42) is equal to -0.47 (4.16 - 0.55*8.42). In line with the Dunning–Kruger effect, the 

low-skilled students appear to be very overconfident while the high skilled are more accurate. 
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5. Conclusion 

We present consistent estimates of the Dunning–Kruger effect: Low-skilled students are 

overconfident while high-skilled students are more accurate in assessing their skill. This 

relationship, however, is weaker than OLS estimates would suggest. Our findings show that it 

is crucial to take measurement error into account when estimating the Dunning–Kruger effect. 

If this effect is, as Dunning and Kruger argue, a robust psychological phenomenon, it 

can inform a number of phenomena in which accurate self-assessment is crucial. The 

existence of the Dunning–Kruger effect means that a low average level of overconfidence can 

hide important heterogeneity. It is particularly the low skilled, who could often benefit the 

most from accurate self-assessment, who are the most overconfident. 
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Appendix 

Questionnaire  

The only difference between the questionnaires for course 1 and 2 is that the prediction for the 

participation grade was only incentivized for course 2. Therefore students could win up to two 

vouchers in course 1 and up to three vouchers in course 2. Differences between the questionnaires are 

indicated with “only for course 2”.  

Page 1 of the questionnaire starts on the next page 
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Dear student, 

I am Jan Feld, PhD student in Economics at the School of Business and Economics. My research 

concerns the relation between grade expectations and realised grades.  

I would like to ask you for your expectations of your grade in the [course name] exam and your 

participation grade. Please give your best estimates. You can enter three lotteries if your estimates 

are close to your actual results. In each lottery you can win one of [two/three] VVV vouchers worth 

€20. In total, you can win VVV vouchers of [€40/€60]. 

At the end of the survey, you will be asked to enter your student ID. The ID is required to compare 

your estimates with your actual results. If you win one of the lotteries, the ID will be used to look up 

your email so that I can inform you about your win. 

I will treat this information confidentially and ensure your anonymity. No individual information 

will be passed on to anybody (not even your tutor or course coordinator). I will also not report any 

information which can be used to identify you.  

If you have any questions, please feel free to contact me via: j.feld@maastrichtuniversity.nl 

Thank you for your cooperation! 

Jan Feld 

 

 

This is how the lotteries are going to work: 

 

Lottery 1: If your exam grade (in your first attempt) is within 0.25 points of your expected grade, 

you enter a lottery in which two winners are randomly drawn. If you do not attend the first sit, 

your second sit grade is considered for the lottery. Each winner will receive a VVV voucher worth 

€20. 

 

Lottery 2: I calculate the actual percentile of your exam grade compared to the exam grades of the 

first attempts of all students in this course. If your final exam grade is in your expected percentile 

range, you enter a lottery in which two winners are randomly drawn. Each winner will receive a 

VVV voucher worth €20. 

 

[Lottery 3: If your actual participation grade is within 0.25 points of your expected participation 

grade, you enter a lottery in which we randomly draw two winners, who will receive a VVV 

voucher worth €20.] only for course 2 

 

 

 

  

mailto:j.feld@maastrichtuniversity.nl
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Questionnaire Grade Expectations - Course [course name] 
********************************************************************************** 
 

1. Which grade do you expect to get in the exam of the course [course name]?  
 

If you do NOT intend to attend the first sit, please state your expectations for the second sit (resit).  

 

 I expect to get a __ __.__ __ in the exam. [0.00-10.00]  
 

2. Please indicate in which percentile range you expect your exam grade to be in? 
 

The percentile shows the percentage of students in this course which have a lower exam grade (in their first attempt) 
than you. High values mean high exam grades compared to the exam grades of the other students in this course.  
 

Please mark your expected percentile range with an X. 
 

 1-10%  11%- 
20% 

21%- 
30% 

31%- 
40% 

41%- 
50% 

51%- 
60% 

61%- 
70% 

71%- 
80% 

81%- 
90% 

91%- 
100% 

Your 
percentile: 

          

 Worst 
10%  

        Best  
10%  

 
3. Which participation grade do you expect to get in this course?  
 
[Please state your guess rounded to the next quarter point so that it ends with .00, .25, .50 or .75. ]  only for course 2 

 

 I expect to get a__ __ .__ __as participation grade. [0.00-10.00]  
 
 

4. Do you consider failing on purpose in the first sit of the exam in this course – either by not 
attending or by handing in an incomplete exam – in order to get a higher grade in the 
second sit? 
 
     Yes   No 
 
   

5. What is your gender? 
 

     Male  Female 
 

6. What is your student ID?  
 

 ID_______________ 
 
 
 

Please fold this page in half after filling it out. 
 

 


