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Abstract

Reasoning is an essential element of intelligence. Automated reasoning in for-
mal and symbolic systems is a major topic in computer science and artificial
intelligence (AI). Programs for computer-assisted and automated theorem prov-
ing are being constructed and used by mathematicians and logicians. Recently,
there has been a surge in research in inductive reasoning systems. Inductive
programming is an example of applying induction to symbolic systems. Most of
the reasoning systems in AI are narrow and specialized to particular tasks and
domains. Research work in artificial general intelligence (AGI) aims at produc-
ing models of AI that are fully or partially independent of task types. AGI sys-
tems are ideally able to learn new knowledge and rules that were not intended
during their construction.

Automatic reasoning systems are traditionally developed by using heuris-
tics to limit the computational resources. This thesis aims to produce models
of reasoning that use bounded cognitive resources. Since reasoning is a cogni-
tive function, and human cognitive resources (such as working memory) are
severely restricted, one possible method of reducing the computational com-
plexity of reasoning systems is to introduce cognitive resources in the system
and put limits on them similar to human cognitive limits. Another important
aim of this thesis is to unite the deductive and inductive reasoning in symbolic
systems, by using Occam’s razor as a guiding principle for induction. The the-
sis uses an exploratory approach to search for a unified model of reasoning in
arbitrary domains.

This thesis is a collection of published scientific papers, each contribut-
ing iteratively to the construction of a larger and domain-independent model of
reasoning in symbolic domains. The first two papers present proof formalisms
for first-order logic and description logic that produce comprehensible proofs.
The second part comprises of five papers, each extending a model of inductive
reasoning that can learn axioms of any arbitrary symbolic domain from random
examples. Some of the models in the thesis were able to outstrip human per-
formance in arithmetic, logic and number series problems. This is an interdis-
ciplinary thesis that contributes to a number of scientific areas, mainly formal
logic and AGI. Further research in this area can potentially lead to a univer-
sal reasoner that is able to learn and reason in more complex symbolic systems
such as higher order logics and computer programming.
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1
Introduction

This chapter introduces the notions of intelligence, artificial intelligence, arti-
ficial general intelligence and logical reasoning, and outlines the aims and re-
search questions addressed by this thesis. This is an informal introduction to
these concepts, further description is provided in the next chapter. The last sec-
tion lists the scientific papers included in this thesis with their publication de-
tails, and specifies my individual contribution in each of them.

1.1 Intelligence
Intelligence is a complex concept and has a large meaning potential [8] (range
of meanings in varying contexts). The word “intelligence” literally means the
ability to understand. It is derived from the Latin verb intelligere which means
to comprehend or perceive [9]. Dictionary definitions of intelligence are not
very precise and objective. It is usually defined with synonymous words such
as understanding, mind, mental ability, or with its sub-concepts like learning,
reasoning, planning, etc.

Is intelligence a unique ability of human beings or shared by other bio-
logical species too? Is it a biologically evolved capability, or an abstract mech-
anism shared by non-biological systems too? These intriguing questions have
been studied in many scientific areas of investigation and are still puzzling us.

“These ideas [theories of physics] cannot explain everything. They can
explain the light of stars but not the lights that shine from planet earth.
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To understand these lights you must know about life, about minds.”
Stephen Hawking

No theory of physics can explain the night-time lights seen from planet Earth.
It requires some theory about minds, relatively advanced minds that are able
to innovate and transform their environments. That very advanced nature of
minds is often understood in terms of intelligence.

The scientific study of intelligence falls into a number of disciplines. The
most important of them is cognitive science that investigates the mind as a whole
as well as its constituent structures and processes. Cognitive science is a multi-
disciplinary area and involves several sub-disciplines to understand and explain
human cognition. Interestingly, there is little mention of the term intelligence
within cognitive science, probably because cognitive scientists see it in a differ-
ent perspective (i.e., cognition). Another major discipline is psychology, which
studies human intelligence within a number of subdisciplines. The most visible
is psychometrics, which seeks to understand the structure of intelligence and its
parts, if any. Psychometric theories of intelligence are based on objective data
from tests of mental abilities, commonly called IQ tests. Cognitive psychology
and cognitive neuroscience are also concerned with intelligence and study the
abstract and biological bases of intelligence respectively.

1.2 Artificial Intelligence
Intelligence is usually considered a uniquely human capability, yet there are nu-
merous biological organisms that exhibit some forms or grades of intelligence
[10, 11]. With the advent of computing science, humans started wondering if
the “machines can think” too? This is the question considered by Turing in
his influential essay “Computing machinery and intelligence” [12]. With pro-
grammable machines, algorithms were designed that could perform some of the
mental tasks that require higher mental abilities such as reasoning and learning.
The study and design of such algorithms and methods form the basis of artifi-
cial intelligence (AI), a field aiming to produce intelligent machines. Research
in AI includes problem solving, knowledge, reasoning, learning, planning, com-
munication (including natural language processing), perception and other traits
of intelligence [13].

Most of the approaches to AI are narrow and only focus on solving a par-
ticular problem or a set of similar problems. For example, a computer that can
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beat world champions in Chess, cannot even compete with novices in Check-
ers. The ultimate goal of AI is to produce general intelligence in machines. This
type of AI has been called strong AI, and more recently has re-emerged under
a new title Artificial General Intelligence (AGI). AGI aims to build computer
programs that can simulate general intelligence and be able to solve unforeseen
problems, and perform at or beyond human level. [14]

One of the goals of AI was to create artifical systems that surpass or at
least compete with human abilities. Most of the early research focused on math-
ematical models of intelligence, disregarding the human aspect. Cognitive sci-
ence on the other hand led to the construction of systems for modeling human
cognition and reasoning, but not necessarily intelligence. This area, called cog-
nitive modeling, constructs artificial systems that can simulate mental functions
and processes, often based on experimental data.

“Cognitive modelers attempting to explain human intelligence share a
puzzle with artificial intelligence researchers aiming to create comput-
ers that exhibit human-level intelligence: how can a system composed
of relatively unintelligent parts (such as neurons or transistors) behave
intelligently?” [15]

Cognitive models are often, though not always, constructed in cognitive archi-
tectures. Cognitive architectures aim to emulate what Newell called the Uni-
fied Theories of Cognition [16]. Often starting as theories of cognition, they are
transformed into a formal as well as computational model of cognition, wherein
cognitive models can be developed and tested. Numerous cognitive architec-
tures exist, deriving from a wide range of theories of cognition. Examples of
these architectures include ACT-R [17], Soar [18], NARS [19], CHREST [20],
MicroPsi [21], and several more.

Cognitive modeling is one of the important methods employed in the
models of AGI. A number of cognitive architectures have been proposed for
AGI, such as Soar, NARS and MicroPsi. Intelligence, as understood in AI and
AGI, is anthropomorphic in nature (higher constructs exist such as universal
intelligence). To construct artificial systems that can display intelligent behavior,
it is often the most convenient way to build a cognitive model of a person and
use that to achieve the relevant behavior. However, for the purposes of AGI,
such cognitive models need not be psychologically realistic, in contrast to cog-
nitive science where such models are expected to precisely mimick mental pro-
cesses.

3



Occam’s razor, also called the principle of parsimony or simplicity, is a
fundamental concept in the theory of science. It is used to select a hypothesis
from a set of competing theories that all can account for a given observation.
Mathematical formalizations of Occam’s razor such as Solomonoff ’s inductive
inference and Kolmogorov’s complexity theory have been used as a basis for
defining algorithmic universal intelligence (section 2.3).

1.3 Aims and scope
The ability of logical reasoning is a distinct capability of intelligent beings and
an essential element of intelligence. Logical reasoning has been a major area of
research in artificial intelligence.

Reasoning comes in a variety of flavors, sometimes called modes or forms.
The most common categorization divides reasoning into deduction and induc-
tion. Pierce added abduction as the third form of reasoning [22]. Other modes
of reasoning include analogical reasoning, fallacious reasoning, cause and effect
reasoning, etc. [23]

An interesting question is, how people apply reasoning in symbolic math-
ematical areas such as arithmetic and logic. Humans did not evolve for nu-
merical and symbolic processing. The natural environments in which humans
evolved their higher form of intelligence was relatively similar to ancient en-
vironments. The use of written language, and later mathematical notations, is
quite a recent innovation in the human history. It is not a biological evolution,
rather is a result of evolution of culture and ideas. This often hinders people
from learning and using mathematics effectively and efficiently. Studying how
people can reason in abstract domains of symbols can lead to further under-
standing of underlying mental constructs, and can potentially be helpful to de-
sign cognitively enhanced mathematics education.

The first part of this thesis deals with this question in two types of sym-
bolic logic: first-order logic and description logic. The second part concerns
artificial systems and presents models of inductive reasoning that can poten-
tially be considered models of AGI. The goal is to produce a unified model of
reasoning in symbolic domains, which incorporates the basic reasoning modes
of induction, deduction and abduction. The papers included in this thesis show
the iterative process towards achieving that goal.

This thesis is interdisciplinary and incorporates theories, methods and
results from multiple scientific areas including cognitive science, artificial in-
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telligence, psychology, psychometrics, cognitive modeling, mathematical logic
and others. The work presented in this thesis is a potential approach towards
achieving AGI in symbolic areas, though it is certainly bound to be limited and
is only one of the many approaches for realizing AGI. It is restricted to logical
rule-based approach to modeling intelligence, with no probabilistic methods in-
volved.

The rest of this thesis is organized as follows. The next section lists the
publications included in this thesis, and shows my personal contributions to
these papers as a coauthor. Chapter 2 reviews the concepts, theories and meth-
ods relevant to the contributions. A brief summary of the contributions is pro-
vided in chapters 3 and 4, discussed in an iterative fashion. It is followed by
some discussion and concluding remarks in chapter 5. Appendix A describes
the computer programs that are products of this research work and have been
used to compute the results in the papers. Part II (printed edition only) com-
prises the published scientific papers that contribute to this dissertation.

1.4 Publications
This dissertation is a collection of scientific papers [1, 2, 3, 4, 5, 6, 7] together
with a cover article (this preamble). All these papers were published in peer-
reviewed journals and conferences. The papers are written and published by
multiple coauthors. This research is a cross-disciplinary work and requires ex-
pertise from multiple scientific areas, which led us to publish together instead
of independently. The coauthors are specialists in their respective areas, and we
have worked together closely to construct the models presented in the papers.

Very often, the work of constructing models and evaluating them was it-
erative: an initial sketch was created and then implemented as a computer pro-
gram. Afterwards, it was modified iteratively together with the computer pro-
gram, until it was sufficiently correct to be published. Most often, the modi-
fications in the mathematical model led to changes in the software, and quite
often the computational properties discovered from the program led to modi-
fications in the model. Designing, coding and updating the automatic theorem
provers and other software was primarily my responsibility with support from
Claes Strannegård, whereas the design changes were the results of long sessions
of discussions and collective brainstorming. It will be very difficult, if not im-
possible, to separate the individual contributions of the authors in the construc-
tion of the mathematical models that constitute the core of the research output
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of the papers.
Nonetheless, it is important to lay down my personal contribution in the

published papers for the assessment of this thesis. Below, I list the papers of
this thesis and briefly explain my individual contributions to each of them. Pub-
lication and copyright details are also provided. The papers are not numbered
in chronological order, rather sorted logically in order to facilitate the writing
of this thesis.

Paper I

C. Strannegård, F. Engström, A. R. Nizamani, and L. Rips, Reasoning About
Truth in First-Order Logic, Journal of Logic, Language and Information 22 (1)
(2013), pages 115–137.

Publication: This paper was published in ‘Journal of Logic, Language and In-
formation’, volume 22 issue 1, 2013, published by Springer Netherlands, under
pages 115–137. The paper is published with open access under the terms of the
Creative Commons Attribution License, which means it can be reproduced by
anyone in any medium (provided the original work is properly cited). It is re-
produced in this thesis in its published form.

Contribution: Claes Strannegård was the main author of this paper. I was
a supporting author and also collaborated in writing. Fredrik Engström was
a supporting author in logic and Lance Rips provided support in psychologi-
cal design of the experiment. The experiment was conducted before the start of
my studies and is reported in my master’s thesis [24]. However, this publication
was the result of an extensive revision of the proof system based on a new anal-
ysis of the experimental data. I worked on the statistical analysis of the data,
collaborated in the redesign of the proof system, and wrote a computer program
as an automated theorem prover to generate shortest proofs of the test items.

Paper II

F. Engström, A. R. Nizamani, C. Strannegård, Generating Comprehensible Ex-
planations in Description Logic, in: M. Bienvenu, M. Ortiz, R. Rosati, M. Simkus
(Eds.), Informal Proceedings of the 27th International Workshop on Descrip-
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tion Logics, Vol. 1193 of CEUR Workshop Proceedings, Sun SITE Central Eu-
rope, 2014, pages 530–542.

Publication: I presented this paper in a poster session at the 27th Interna-
tional Workshop on Description Logics, 17–20 July 2014, in Vienna. This work-
shop was part of the Vienna Summer of Logic, 9–24 July 2014, a large event
hosting twelve conferences and several workshops. The paper was peer-reviewed
and was published in ‘Informal Proceedings of the 27th International Workshop
on Description Logics 2014’, edited by M. Bienvenu, M. Ortiz, R. Rosati, and
M. Simkus, pages 530–542. These proceedings are volume 1193 of the CEUR
Workshop Proceedings, an open-access publication service of Sun SITE Central
Europe, operated under the umbrella of RWTH Aachen University. The paper
is freely available on the web and is reproduced in this thesis in its published
form.

Contribution: Fredrik Engström was the main author in this paper. I collabo-
rated in the development of the model (rules and axioms), and I wrote the soft-
ware implementation of the automatic explanation generator. The program was
run on high-performance computing center at Chalmers University to find the
shortest proofs of the test items. I also contributed in writing.

Paper III
C. Strannegård, A. R. Nizamani, A. Sjöberg, F. Engström, Bounded Kolmogorov
Complexity Based on Cognitive Models, in: K. Kühnberger, S. Rudolph, P. Wang
(Eds.), Artificial General Intelligence, Vol. 7999 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2013, pages 130–139.

Publication: This paper was presented by Claes Strannegård at The Sixth Con-
ference on Artificial General Intelligence, July 31 – August 3, 2013, held at Peking
University, Beijing. It was published in a volume named Artificial General In-
telligence, 2013, edited by Kai-Uwe Kühnberger, Sebastian Rudolph, and Pei
Wang, pages 130–139. This volume contains proceedings of the conference and
is included in the subseries Lectures Notes in Artificial Intelligence, part of the
series Lecture Notes in Computer Science (LNCS), volume 7999, published by
Springer Berlin Heidelberg. This paper received the Kurzweil Prize for Best AGI
Paper, sponsored by KurzweilAI.net. Springer-Verlag Berlin Heidelberg owns the
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copyrights of this paper and permits the paper to be used for defending the the-
sis. An explicit license was obtained by this author to reproduce this paper in
the printed version of this thesis. The paper is reproduced in its official, pub-
lished form.

Contribution: This paper was mainly authored by Claes Strannegård and my-
self, with support from the other two coauthors. I collaborated in the construc-
tion of the model and the writing. My major contributions were in software de-
velopment of SeqSolver, defining term preference, and computation of results
from other software.

Paper IV

C. Strannegård, A. R. Nizamani, F. Engström, O. Häggström, Symbolic Reason-
ing with Bounded Cognitive Resources, in: P. Bello, M. Gaurini, M. McShane,
B. Scassellati (Eds.), 36th Annual Conference of the Cognitive Science Society,
Cognitive Science Society, Austin, Texas, 2014, pages 1539–1544.

Publication: This paper was presented by Claes Strannegård at CogSci 2014
conference, the 36th annual meeting of the Cognitive Science Society, held on
23–26 July 2014 in Quebec City, Canada. It was published in the proceedings of
the conference edited by P. Bello, M. Gaurini, M. McShane, and B. Scassellati,
and published by the Cognitive Science Society, Austin, Texas. These proceed-
ings are open access and are freely available on the web. The copyright for the
complete proceedings is held by the Cognitive Science Society, while copyrights
for individual articles are held by the authors1. The paper is reproduced in this
thesis in its published form.

Contribution: In this paper, I mainly contributed in the development of the
computational model, collaborated in the brainstorming sessions for construct-
ing the formal model, and wrote the software implementation of Occam. I also
collaborated in writing of the paper.

1Source: an email message received by this author from the Cognitive Science Society
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Paper V

C. Strannegård, A. R. Nizamani, U. Persson, A General System for Learning and
Reasoning in Symbolic Domains, in: B. Goertzel, L. Orseau, J. Snaider (Eds.),
Artificial General Intelligence, Vol. 8598 of Lecture Notes in Computer Science,
Springer International Publishing, 2014, pages 174–185.

Publication: This paper was presented by Claes Strannegård at The Seventh
Conference on Artificial General Intelligence, August 1–4, 2014, held in Que-
bec City, Canada. It was published in a volume named Artificial General In-
telligence, 2014, edited by Ben Goertzel, Laurent Orseau, and Javier Snaider,
pages 174–185. This volume is part of the subseries Lecture Notes in Artificial
Intelligence, in the series Lecture Notes in Computer Science (LNCS), volume
8598, published by Springer International Publishing. This paper received the
Kurzweil Prize for Best AGI Paper (for the second time), sponsored by KurzweilAI.net.
Springer International Publishing Switzerland owns the copyrights of this paper
and allows it to be used for the purpose of defending a thesis. An explicit li-
cense was obtained by this author to reproduce this paper in the printed version
of this thesis. The paper is reproduced in its official, published form.

Contribution: In this paper, I contributed to the formal model and collabo-
rated in writing some of the sections in the paper. I continued the development
of the software.

Paper VI

A. R. Nizamani, C. Strannegård, Learning Propositional Logic From Scratch,
The 28th Annual Workshop of the Swedish Artificial Intelligence Society (SAIS),
May 22–23, 2014, Stockholm.

Publication: I presented this paper at the 28th annual workshop of the Swedish
Artificial Intelligence Society (SAIS), held on May 22–23, 2014 in Stockholm.
The paper was peer-reviewed and included in the conference proceedings, which
will be published by Linköping University Electronic Press. The copyright is
held by the authors. The paper is included in this thesis in its submitted form,
as official proceedings are not published yet.
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Contribution: I was the main author in this paper. I wrote and presented the
paper. I wrote the computer program (Occam⋆) and used it to compute the re-
sults.

Paper VII
A. R. Nizamani, J. Juel, U. Persson, C. Strannegård, Bounded Cognitive Re-
sources and Arbitrary Domains, in: J. Bieger, B. Goertzel, A. Potapov (Eds.),
Artificial General Intelligence, Vol. 9205 of Lecture Notes in Computer Science,
Springer International Publishing, 2015, pages 166–176.

Publication: I presented this paper at The Eighth Conference on Artificial
General Intelligence, held in Berlin on July 22–25, 2015. The paper is published
in a volume named Artificial General Intelligence, 2015, edited by Jordi Bieger,
Ben Goertzel and Alexey Potapov, pages 166–176. This volume is part of the
subseries Lecture Notes in Artificial Intelligence, part of the series Lecture Notes
in Computer Science (LNCS), volume 9205, published by Springer Interna-
tional Publishing. This paper received the Cognitive Science Society Prize for
Best Student Paper, sponsored by Cognitive Science Society. Springer Interna-
tional Publishing Switzerland owns the copyrights of this paper and allows it to
be used for the purpose of defending a thesis. An explicit license was obtained
by this author to reproduce this paper in the printed version of this thesis. The
paper is reproduced in its official, published form.

Contribution: I contributed in writing this paper with Claes Strannegård, and
collaborated in the construction and development of the computational model.
I also contributed with designing and coding the computer program AIW and
used it to compute the results in the paper. This model covers most of the func-
tionality in the previous models and required many long sessions of collective
brainstorming. The authors met each week and discussed potential changes to
improve the model and the results. The computer program evolved together
with the formal model, each affecting the design of the other. The paper itself
is a short description of the model, and an extended paper is being written to
report the complete model in a scientific journal.
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2
Theoretical background

Due to the interdisciplinary nature of this thesis, the papers draw upon a num-
ber of scientific areas for theoretical and methodological support. Major areas
include cognitive science, cognitive modeling, artificial intelligence, and philos-
ophy of science. The next section describes the background of this thesis and
relevant previous works. Later sections discuss some of the theories that are im-
portant for the discussion of contributions in later chapters.

2.1 Bounded cognitive resources
The model of bounded cognitive resources is central to this dissertation. It has
been used in various forms in all the papers contributing to this thesis. It is
a simple cognitive model derived from the memory model of Atkinson and
Shiffrin [25], which divides the human memory system into three stages: sen-
sory memory, working memory and long term memory. The long term mem-
ory was further grouped into declarative memory and procedural memory by
Park and Gutches [26]. Sensory memory can be categorized by the various senses,
most common types include visual memory and auditory memory.

Human cognitive resources are severely limited in size, creating a bottle-
neck effect when processing sensory information. The short term memory is
known to store 7±2 chunks of information at once in most individuals [27].
Visual short term memory retains visual scene information for only a few sec-
onds. Another interesting cognitive limit is the counting ability, called subitiz-
ing. It refers to the ability of most individuals to count instantaneously up to
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four items [28]. Although it is not a fixed number, counting more than three or
four items requires considerably more time.

Anthropomorphic Artificial Intelligence

The work presented in Paper-I and -II is in continuity of earlier works by Stra-
nnegård and others. The idea of designing computational solutions—particularly
logical proof methods—based on psychological experiments was conceived in
2005 [29]. It was called anthropomorphic artificial intelligence, in contrast to
traditional artificial intelligence that is less connected to human cognitive at-
tributes. The goals of Anthropomorphic AI are two-fold.

1. The first goal is to use cognitive psychology methods (for instance, intro-
spection and experimentation) to guide the design of computational so-
lutions to the problems where humans are usually better than machines.
For instance, search algorithms that fail because of a lack of good heuris-
tics, can be guided through cognitive limitations such as working mem-
ory capacity.

2. The second goal is to find solutions that are comprehensible for people.
For instance, logical proofs computed from traditional automated the-
orem provers tend to be lengthy, complicated and better suited for ma-
chines than for people. Considering the cognitive limitations of humans,
proof systems can be designed that produce easily comprehensible proofs
for human verification.

The method proposed for anthropomorphic AI is a production system
outlined in [29]. The author presents a formal model of a production system
restricted by cognitive heuristics, gives some examples, and discusses potential
applications of such a model.

Classical AI algorithms that use search can be equipped with an anthro-
pomorphic module that cuts off complex search paths. In this thesis, we tried it
specifically on domain-specific AI programs for number sequences, arithmetic
and logic. We also used it to construct some domain-independent AGI pro-
grams. In all cases the programs without the anthropomorphic module would
be computationally expensive. Using such a module, some problems would go
from less feasible to more feasible, and others may become computable from
undecidable.
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Bounded proof systems

Reasoning in propositional logic with bounded cognitive resources was first
sketched in [30]. A psychological experiment for studying reasoning processes
in propositional logic was reported in [31, 32], similar to the experiment de-
scribed in Paper-I. University students were recruited as subjects, and their ac-
curacy and latency (mean response time) were recorded for the test questions.
Questions were of the format: “Is this sentence a tautology?” followed by a propo-
sitional sentence. These questions comprised forty tautologies and forty non-
tautologies, presented randomly to the participants. The tautologies from this
experiment are also used for evaluation in one of the papers contributing to this
thesis (Paper-VI).

The authors in [31] also presented a proof formalism for propositional
logic constructed with bounded cognitive resources, by modeling and bounding
declarative memory, procedural memory, visual memory and working mem-
ory, following the Atkinson and Shiffrin memory model [25]. They present two
proof systems: T for proving tautologies and NT for proving non-tautologies.
A computer program was developed to automatically generate proofs of the test
items in these bounded proof systems. The mathematical complexities of those
proofs (formula length, minimum proof length, etc.) were correlated with the
psychological difficulty of the problems (accuracy and latency) using Pearson
product-moment correlation. Results show high correlations between the psy-
chological and mathematical complexities of the problems. For instance, the
correlation between latency and minimum proof length was .89 for tautologies
and .87 for non-tautologies.

It should be noted that these high correlations did not occur automati-
cally. Instead, the proof system was designed from the experimental data, and
different variations were tested against the experiment results to achieve the
highest possible correlations. The experiment was not conducted to evaluate the
proof systems, rather to guide their development and make them more psycho-
logically plausible.

The above mentioned approach can also be applied to other kinds of for-
mal logics. Goal-driven bounded proofs in first-order logic have been proposed
in [33]. The author suggests a proof formalism for first-order logic that is com-
plete, subformula-preserving and goal-driven, and can be adapted to cognitive
modeling for constructing comprehensible proofs, in a fashion similar to those
for propositional logic.
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Anthropomorphic method for inductive reasoning

The method of generating computations with bounded cognitive resources has
been applied earlier to inductive reasoning tasks, e.g., IQ tests. Modern IQ tests
involve inductive reasoning and contain specialized sub-tests with inductive
questions. Two obvious subsets of problems in IQ tests are number sequence
problems and progressive matrices. Some IQ tests consist entirely of such prob-
lems (e.g., Raven’s progressive matrices).

The method of cognitive modeling using bounded cognitive resources has
been applied, in various forms, for solving number sequence problems [34, 35]
and Raven’s progressive matrices [36, 37]. In [34], the authors describe a model
of solving number sequence problems that makes use of a model of human rea-
soning including a set of cognitive resources. A computer program Asolver is
presented that can solve all of the problems of an IQ test called PJP, whereas
other mathematical software and online resources could only solve a small sub-
set of the problems. Paper-III in this thesis is a major extension of the work
presented in [34] and the results are tested against three different IQ tests.

2.2 Logical reasoning
Reasoning (or simply Reason) is the ability to think logically and consciously
derive new information from known facts. It is often associated with logic and
rationality, and is also related to argumentation. It is an essential component of
intelligence.

Human logical reasoning is studied in a number of scientific disciplines.
In cognitive psychology, the mental models tradition and the mental logic tra-
dition are two prominent subfields. Mental logic tradition tries to explain hu-
man deductive reasoning in terms of logical rules [38]. PSYCOP is a computer
program that simulates human reasoning with mental logic and uses a formal-
ism similar to natural deduction [39]. The theory of mental models argues that
formal logic is insufficient to model human deductive reasoning, as the later is
affected not only by the rules but also by the content. It postulates that human
reasoning occurs by modeling the possibilities that can arise from a discourse
[40].

In cognitive science, human reasoning has been modeled in cognitive ar-
chitectures such as Soar [18], ACT-R [17], CLARION [41], Polyscheme [42]
and NARS [19]. Some of the cognitive architectures are specialized for human
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cognition and try to accurately model mental reasoning. Others such as Soar
and NARS are used for general reasoning by relaxing the anthropomorphic lim-
itations. Many AGI systems are similar to cognitive architectures, though not
restricted to mental reasoning.

Logical reasoning is often categorized into different modes or forms. A
traditional division distinguishes between deductive and inductive reasoning.
Deductive reasoning derives the conclusion based on complete knowledge of
the premises. Induction on the other hand is based on deriving rules from in-
complete knowledge. Inductive reasoning can be rule-based or stochastic. Stochas-
tic reasoning deals with probability distributions and estimation of random
variables from partial observations [43]. This thesis does not deal with stochas-
tic reasoning.

In mathematics, reasoning is often modeled using formal symbolic log-
ics. Although it is highly debated whether mental reasoning can be accurately
modeled with formal systems or not, reasoning in general can be expressed and
formalized in symbolic logics. There are many systems of formal logic. Below I
describe a few of them that are relevant to this thesis.

Symbolic logics

Logic and logical inference have been studied for millennia in the human his-
tory. Formal logic started in ancient Greece, India and China, and developed
further in the Middle Ages by Islamic and Christian philosophers. Modern for-
mal logic traces backwards to Greek logic, particularly Aristotelian syllogism.

Recently, logical formalisms have adopted symbolic representations with
strict semantics. One of the simple symbolic logics is propositional logic. The
atomic sentences in propositional logic are indivisible statements represented
by a proposition symbol. Each such symbol can be either true or false. For ex-
ample, the statement “it is raining” can be assigned a symbolic label A, where
A can either be true or false. Propositional logic does not involve time, while
in temporal logics time is explicity modeled. Another classical symbolic logic
is the first-order logic (FOL), also called predicate logic or predicate calculus,
which uses predicates and quantified variables over objects. It can express quan-
tified statements such as “all apples are green” or “there is a red temple”. Many
variants of FOL exist, for instance those with different quantifiers.

Description logic is a family of logical formalisms widely used for knowl-
edge representation in real-world applications, for instance in medical ontolo-
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gies and the semantic web. It is more expressive than propositional logic but
computationally more efficient than first-order logic, and can be regarded as
a guarded fragment of first-order logic [44]. A number of computational lan-
guages have been constructed to implement DL (or a variant of it), which in-
clude Web Ontology Language (OWL) [45], DARPA Agent Markup Language
(DAML), Ontology Inference Layer (OIL) and DAML+OIL [46].

Due to its popularity in building ontologies for knowledge-based systems,
many automated reasoners are available for DL and its sub-languages. Protégé
is one of the well known reasoners for DL, which is a set of tools to construct
domain models and ontologies. Other DL reasoners include FaCT++ [47] and
Pellet [48]. There have been a number of competitions of automated DL rea-
soners. One of the workshops in the Vienna Summer of Logic 2014 was OWL
Reasoner Evaluation Workshop. In addition to the regular paper presentations,
this also hosted a competition of OWL reasoners on different tasks with real-
world and challenging ontologies. Results of this competition were announced
in the annual DL workshop 2014, attended by this author.

The classical formal logics include a binary version of truth, consisting of
true and false values, often denoted with ⊤ and ⊥ symbols respectively. Non-
classical logics can have more than two truth values. Three-valued logics such
as Priest logic P3 include a third value of undefined or indeterminate I. Four-
valued logics consider additional truth values. Fuzzy logics deal with approxi-
mate truth values in the range 0..1, with 0 standing for absolute falsity and 1 for
absolute truth.

Methods and formalisms developed in this thesis use binary truth values
but can be extended to multi-valued logics with discrete truth values. However,
they are not appropriate for fuzzy logics which deal with continuous values.

Proof systems

There are several formal systems of deductive reasoning in symbolic logics. A
common system of logical proofs is natural deduction, which expresses deduc-
tive reasoning in terms of inference rules. The modern version of natural de-
duction was first proposed by Gentzen [49, 50]. Other deductive proof formalisms
include Hilbert calculus, sequent calculus [51], natural deduction in sequent
calculus style [51], and the method of analytical tableaux [52]. In artificial intel-
ligence, automated reasoning systems include resolution system with unification
[53] and Stålmarck’s method [54].

16



Soundness and completeness are two essential properties of a logical proof
system. Soundness is the property of a formal system such that the theorems in
that system only derive true formulas. If any false formula can be derived in a
formal system, then the system is known to be unsound. In comparison, com-
pleteness is the property of a logical system that every true formula can be de-
rived in that system. Thus, if there exists a formula that is true in a system but
cannot be derived in the system due to the lack of a necessary theorem, then
the system is incomplete.

Soundness and completeness are fundamental attributes of any proof for-
malism. In Paper-I, a proposition is given about soundness and completeness of
the proof system TM . An informal proof for this proposition is also provided.
The proof system for DL in Paper-II is also sound and complete (a short sketch
of its proof is given in the paper).

The inductive reasoning system described in Paper-V was able to learn a
complete theory of integer arithmetic. Thus, it can theoretically solve any prob-
lem of elementary arithmetic, provided infinite computational resources. While
in Paper-VI, we did not find a complete theory of propositional logic with the
same system. This however was not the intended goal of the system.

In addition to soundness and completeness, logical proof formalisms can
have other desirable properties. The proof systems of first-order logic and de-
scription logic, described in papers I and II, produce proofs that are linear, local
and goal-driven. These properties are not necessary for any proof system, but
are useful for producing comprehensible and easy-to-follow proofs.

• A proof is linear when every sentence in the proof is derived from a sin-
gle sentence rather than a set of sentences. Such a proof is a linear se-
quence of sentences.

• A proof is local when every step in the proof follows from its immediate
predecessor. Thus, to check whether a sequence of steps is a valid proof, it
is sufficient to look at two consecutive steps at a time.

• A proof is goal-driven if it starts with a goal—the desired conclusion—and
by applying rules, ends in the true statement ⊤ (or the false statement ⊥
for proving falsity).

Principle of Compositionality

The principle of compositionality is the principle that the meaning of a complex
whole is determined from the meaning of its constituent parts and the rules
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used for combining those parts [55]. In semantics, it is called the principle of
semantic compositionality, and is often known as Frege’s Principle.

The main rule used in the deductive model of bounded computations,
used throughout this thesis, is designed from this principle. Called Substitution
(in later papers, Rewrite or Deep Rewrite), it replaces a sub-expression A in a
larger expression T with another equivalent expression B. If A and B are equiv-
alent, then the meaning (e.g., truth-value) of T should not change. For instance,
in arithmetical expressions, we can always replace an expression with its value.
E.g., (2 + 3) ∗ 4 will still be computed as 20 when (2 + 3) is replaced with 5.

This principle is not accepted as a universal truth, rather as a philosoph-
ical view. In fact, there are many more arguments against it than in its favor
[56]. Many of the discussions about its validity revolve around the notion of
compositionality and how and where it can be accommodated, as Pelletier puts
it:

“... and that other discussions are best described as ‘how compo-
sitionality can/cannot be accommodated within theory X ’ rather
than whether The Principle is or is not true.” [56]

Apart from Substitution, there are a number of rules used in the papers
that do not follow this principle (or follow it in a different style). The rules Weak-
ening and Strengthening in Paper-I are two instances that do not follow compo-
sitionality of logical expressions. These rules can rewrite a term, but not a sub-
term inside it with another term. Furthermore, the equivalence of two terms A
and B is unidirectional for these rules: A can be replaced with B, but not in the
other direction.

The Strengthening rule in Paper-II uses a restricted version of composi-
tionality. A term A can be replaced with B inside a larger term T if A is nega-
tion free (does not appear inside a negated expression). The equivalence is still
unidirectional.

2.3 Occam’s razor
The principle of parsimony, also known as the Occam’s razor, is a scientific
principle for preferring simplicity when deciding between competing theories.
It is generally considered a fundamental tenet of modern science and is used in
many different scientific disciplines. Most leading scientists have accepted it in
one or the other form [57]. Einstein is quoted to have stated:
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“The grand aim of all science…is to cover the greatest possible num-
ber of empirical facts by logical deductions from the smallest possi-
ble number of hypotheses or axioms.” (Einstein, quoted in [58])

The principle of simplicity was first devised by William of Ockham (1285-
1349), translated approximately to “Entities should not be multiplied beyond
necessity” [59, 57]. Modern versions of this principle are more elaborate than
this original statement, and different definitions and formalizations exist. The
basic notion of simplicity is a universal scientific proposition, though different
interpretations exist that can lead to different formalizations and varying lev-
els of scientific acceptance. For instance, consider the following two common
interpretations of the Occam’s razor: [59]

1. Simplicity is a goal in itself.
2. Simplicity leads to greater accuracy.

The first is often equated to a preference for selecting more comprehen-
sible hypotheses and is generally accepted to be valid. The second one is prob-
lematic and is not considered a universal principle. Accuracy does not necessar-
ily lead to comprehensibility and accurate models are often more complex and
less likely to be easily understandable. One possible method to achieve compre-
hensibility is to extract a simpler version of a more complex but accurate model
by abstraction.

The first interpretation is generally accepted; however, simplicity itself can
have many definitions, and not all of these can lead to comprehensibility. Sim-
plicity is not always equivalent to comprehensibility. In inductive models, for
instance, a rule is more comprehensible if it is consistent with previous knowl-
edge.

This thesis uses the principle of simplicity mostly as a heuristic technique
to select an axiom from a set of axioms that all are valid for a given problem
(observation). Multiple definitions of simplicity are used for this purpose, for
instance, the size of an axiom (i.e., number of symbols) and the size of the com-
putation resulting from the use of an axiom to solve a particular problem. A
number of other preferences are also utilized for further comprehensibility and
elegance.

A number of mathematical formalizations of Occam’s razor exist, for in-
stance, Solomonoff ’s theory of inductive inference and Kolmogorov complexity.
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Solomonoff probability

Ray Solomonoff (1926–2009) proposed a method to assign a priori probabilities
to observations, which is generally called algorithmic probability. It combines
Occam’s razor with Epicurus’ principle of multiple explanations, and uses the
Bayes’ rule and Universal Turing Machines. Solomonoff ’s algorithmic probabil-
ity is incomputable and can only be approximated. [60, 61]

Kolmogorov complexity

Andrey Kolmogorov (1903–1987) proposed an approach to analyze patterns in
sequential data or other data structures. Kolmogorov complexity [62] is a for-
mal description of the complexity and simplicity of data. For instance, a string
can be described either by writing it down in full, or by writing a shorter de-
scription that can be used to produce the full length string.

Kolmogorov complexity K(x) of an object x is formally defined as the
length of the shortest program p that when run on a universal computer U ,
outputs x and then halts. The definition is formally written as:

K(x) := min
p

{ℓ(p) : U(p) = x}

where ℓ(p) is the length of a program p [63].
The major problem with Kolmogorov complexity is its incomputability.

Some bounded versions of Kolmogorov complexity are computable, for exam-
ple, the time-bounded “Levin” complexity.

Levin complexity

Leonid Levin proposed a computable version of Kolmogorov complexity, called
Kt or Levin complexity. The main idea is to add logarithm of the time a pro-
gram p takes to output a string x to its length ℓ(p). It is formally written as:

Kt(x) := min
p

{ℓ(p) + log(time(p)) : U(p) = x}

Essentially, Levin complexity penalizes the slow programs with the time
they take to produce their output. The theoretical algorithm that runs the pro-
grams in parallel to find Kt is called Levin’s Universal Search (US). Though it is
bounded by run time and computable in theory, the algorithm is not practically
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viable in its original form due to unrealistically large multiplicative constants in
the running time [63].

Paper-III presents a version of Kolmogorov complexity in the case of num-
ber series extrapolation problems, which is bounded by cognitive resources and
psychological difficulty. Although it is a special case, the notion of bounding
computational complexity by cognitive limitations is a general idea, which is
further explored in later papers.

2.4 Artificial General Intelligence
Research in artificial general intelligence (AGI) receives a variety of approaches
and methods. Considering the very nature and complexity of intelligence, no
single method may be able to produce realistic models of AGI for real-world
applications. Although the goal itself is to have a single model of intelligence
that can learn and solve any problem that a human is able to, this has not been
achieved yet and might be possible in near (or distant) future. However, today
many methods exist for designing artificial systems with general intelligence of
a lower grade or specific to a subset of the problems. A historical review of AGI
methods and approaches is given in [64] together with a theoretical account of
intelligence as used in AGI. Modern methods of AGI are summarized in [65].

One of the oldest traditions in AI and recently in AGI is symbolic systems
that can learn, produce, store and modify symbolic entities. Symbolic cognitive
architectures have some form of explicit representation of working memory,
that draws upon long term memory for storing and retrieving knowledge.

Some methods in AGI assume that symbolic processing can emerge auto-
matically from lower level subsymbolic processing. These designs can be called
emergentist approaches to AGI. One of the oldest methods in this tradition is
artificial neural networks, which come in various forms and designs. A more
recent method is Hierarchical Temporal Memory (HTM) [66].

Computational neuroscience approach to AGI is a set of methods to sim-
ulate whole brains at varying levels of abstraction and accuracy. The argument
is that human-level artificial intelligence can be realized by emulating the hu-
man brain down to molecular or atomic level. Major projects relevant to brain
emulation include IBM’s “Blue Brain Project”, currently hosted by EU under
the name “Human Brain Project,” China-Brain Project [67], and Japanese Fifth
Generation Computer Systems project [68]. Emergentist cognitive architectures
are also employed in artificial life systems and developmental robotics.
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Some architectures and AGI systems take an integrative approach by merg-
ing the symbolic and emergentist methods. The symbolic and subsymbolic dis-
tinction is already a matter of dispute, the hybrid approach makes it further
vague by making use of both methods towards a single goal. Many symbolic
systems already use probabilistic and fuzzy logic methods, blurring their status
as purely symbolic. For example, ACT-R has subsymbolic structures and NARS
uses fuzzy logic, though both are categorized into symbolic cognitive architec-
tures. However, some architectures explicitly use symbolic and subsymbolic
structures in their design. Examples of hybrid architectures include CLARION,
CogPrime, and MicroPsi.

Another important tradition in AGI is universal algorithmic intelligence.
Its roots go back to Solomonoff ’s probabilistic inference and Kolmogorov com-
plexity. The aim is to study theoretical and computational essence of general
intelligence, without considering the actual methods to implement the models.
Some particular cases of universalist approach are Marcus Hutter’s AIXI sys-
tem [69] and Juergen Schmidhuber’s Goedel Machine [70]. These systems are
not practical for realizing AGI as they require infinite computational resources.
Scaled-down versions of these systems have also been designed, which are theo-
retically computable, yet still computationally intractable.

2.4.1 Symbolic AGI

A major part of this thesis is dedicated to constructing generic models of sym-
bolic reasoning, and can be classified as part of the symbolic AGI tradition. I
will briefly mention some of the methods in symbolic AGI.

A common approach to symbolic AGI is symbolic cognitive architectures,
which are large frameworks for developing, running and testing cognitive mod-
els. The models presented in this thesis can potentially be constructing in some
of the AGI architectures such as Soar or NARS. However, this requires a con-
siderable amount of effort, not very different than the effort of implementing
the models in a standard programming language. Furthermore, every architec-
ture is different and there is a large learning curve before being able to imple-
ment a large-scale cognitive model in it. Therefore, the reasoning models of this
thesis were implemented in a general-purpose programming language as it was
quicker and easier to work with.

An interesting case in symbolic AGI is the General Game Playing (GGP)
project and competition at Stanford University [71, 72]. GGP involves creat-
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ing computer programs that can play strategy games without knowing the rules
of the game, which are provided at runtime. A GGP system can play any game
that can be described using some game description language. GGP players are
generally able to play a wide array of possible games, including complex games
like Chess, games in static or dynamic environment, games with multiple play-
ers and with or without communication between players, games involving chance
and partial information. Such programs cannot rely on algorithms designed for
specific games, and must learn or encode general strategies for playing.

Inductive programming is a subfield of automatic programming aimed at
automatically learning computer programs from incomplete specifications, such
as input/output examples or program traces [73]. There are many approaches to
inductive programming, including inductive functional programming and in-
ductive logic programming. Other similar approaches include machine learn-
ing, grammar induction, structural mining or structural learning, constraint
programming, probabilistic programming, and genetic programming.

Inductive functional programming uses functional languages for learning
programs, including Lisp and Haskell. Systems that can automatically find com-
puter programs include ADATE [74], IGOR2 [75] and MagicHaskeller [76, 77].
Such systems are able to find small programs (or functions) based on a small set
of examples. Even though such programs can be helpful in some cases, they are
bound by the choice of language and the set of preliminary functions they can
use. I tried MagicHaskeller to find patterns for number series problems used
in Paper-III without success. Though other programs exist that can efficiently
solve complete IQ tests, they are specific to this task and cannot generalize to
arbitrary sequences of non-numeric symbols.

2.4.2 Some comments on cognitive modeling

Cognitive models are constructed at different levels of abstraction. The most
detailed cognitive model would be a simulation of the whole brain, for instance,
the EU’s Human Brain Project. However, most often, the cognitive models are
built on a much higher level of abstraction, removing or hiding the real com-
plexity of a human brain.

Cognitive architectures are often grouped into symbolic and subsymbolic,
although the division is not so tangible. Some are specifically denoted as hybrid,
combining symbolic and subsymbolic processes. They can also be graded on a
scale of anthropomorphism: some are more relevant to the human mind than

23



others. For instance, ACT-R tries to model human cognition as accurately as
possible on a symbolic level. In comparison, Soar is better suited for modeling
artificial agents than biological ones. While both of them have many similarities
in structure and function, in practice their intended goals are rather unlike.

In the field of AGI, there is a common understanding that the goals of
AGI are to reach human-level general intelligence. However, there is no spe-
cific requirement for designing models of human-like general intelligence. The
relation between human and artificial intelligences within AGI is quite loose.
However, one of the most popular approaches towards AGI is to utilize human
cognitive models, as humans are the best example of general intelligence (bio-
logical or otherwise) known to this date.

Cognitive models in AGI are not required to be psychologically plausible
and anthropomorphic: they can very well be inaccurate models of human cog-
nition. In fact, the principle of abstraction ensures that every cognitive model
is as inaccurate as any other, compared to the biological brain system. The in-
accuracy is directly related to the level of abstraction of a cognitive model: the
higher the abstraction level, the less accurate and plausible a model will be.

Cognitive models can be grouped by psychological plausibility into bidi-
rectional and unidirectional. The ones that more or less accurately model cog-
nitive processes of human mind can be considered bidirectional; the ones that
are inaccurate with regards to human cognition yet useful in a model of artifi-
cial intelligence can be considered unidirectional. Direction can be thought of
as the relation between computational model and psychological model of a cog-
nitive process.

The cognitive model that is used in this thesis, called the bounded cogni-
tive resources, is a unidirectional cognitive model. It may not be a very elab-
orate model of deductive reasoning, yet it captures the basic cognitive func-
tions and structures that are employed during deductive reasoning. It models
the working memory explicitly as a term-rewriting system in which terms are
bounded by a maximum size (similar to short term memory capacity) and the
length of a computation is also limited to a max size (inspired by span of atten-
tion). The long term memory is modeled as a linear theory containing facts and
rules. The last paper elaborates the long term memory contents with frequency
and other attributes that can be useful for better memory retrieval.

This simple cognitive model has worked for our objectives as reported in
the papers. Nonetheless, it is always possible to improve it for better results.
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3
Contributions in Logic

The papers contributing to this thesis can be grouped in two parts. The first
part contains two papers that pertain to mathematical logic. This chapter will
summarize the contributions of these two papers.

Papers I and II present models of deductive reasoning in symbolic log-
ics and form the grounds for the later papers, which employ the same deduc-
tive model in inductive systems. The proof systems described below use the no-
tion of cognitively bounded computations to produce short and comprehensive
proofs. The papers described in the next chapter also use bounded computa-
tions as the main reasoning system for deduction, and use it as an advantage for
induction.

The first section summarizes the proof systems designed with the boun-
ded cognitive resources model, for proving truth or falsity of first-order logic
sentences in finite models. The second section describes the proof model of
comprehensible explanations of entailments in description logic.

I Reasoning About Truth in First-Order Logic
Paper-I describes a proof formalism for verifying truth or falsity in first-order
logic that is designed for human comprehension and incorporates elements of
psychology, and uses explicit models of cognitive resources. It is a formal model
of human deductive reasoning in the field of model-based first-order logic.

The paper first describes a psychological experiment that was conducted
to investigate problem-solving in the domain of logic. Ten computer science
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students participated in the experiment, where they were asked fifty questions
of the form: “Is sentence A true in model M?”, where A was a sentence in first-
order logic and M was a finite directed graph with colored nodes. A sample
problem is depicted in Figure 3.1. Test items (formulas and graphs) were man-
ually selected from a set of randomly generated samples, half of them were true
and the others false. The test was conducted on computers and questions were
randomly presented to each participant. Their answers and response times were
recorded for each item.

Figure 3.1: Screenshot of the web-based user interface for the experiment. Max-
imum time to answer a question was 90 seconds. Red(x) means that node x is
colored red, and E(x,y) means there is a directed edge from x to y. Solution to the
above problem is No for x = 3 and y = 4.

Next, the paper presents a proof system TM for proving truth of logical
sentences in finite models, and a corresponding system FM for proving falsity.
These proof systems are calibrated with the experimental data as explained later.
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Proof Systems TM and FM

The proof system TM is designed for proving logical sentences to be true in a
finite model M . Unlike traditional proof systems in logic, this is a goal-driven
proof system that produces local and linear proofs. It is an extension of the
bounded cognitive resources model, in which a proof can be seen as a bounded
computation from a logical sentence A to the truth value ⊤.

The main components of TM are axioms and rules. Axioms model the
declarative memory contents of a fictitious logician, and form the knowledge
about sentences and models. The results in the paper were computed by us-
ing axioms from logic text books that we expected the participants to know by
heart. Rules are similar to procedural memory and are used for rewriting sen-
tences. TM contains two main rules: Substitution, which is the main rule in
the system and is based on the principle of compositionality, and Strengthen-
ing which is a non-deep rule for rewriting expressions based on implications. A
variant or special case of substitution is the Truth Recall rule which replaces a
formula A with ⊤ if A is known to be true (in the long term memory).

The proof system FM is designed for proving falsity of a logical sentence
in a finite model. The axioms in FM are the same as in TM , rules are designed
for falsity. It uses the Substitution rule for rewriting that is identical to the one
in TM , Weakening rule for implications, and a special case of substitution Fal-
sity Recall.

Bounded Proof Systems

TM and FM are general proof systems without any limitation on the size of for-
mulas or proofs. The proof systems BT M and BFM are described in the pa-
per as resource-bounded versions of TM and FM respectively. To that objective,
first the length of a formula is defined as (roughly) the number of nodes in its
parse tree, counting the uninspected (un-expanded) subtree as size 1. Then, the
bounds are defined as follows:

• Working memory capacity: The maximum length of a formula that can fit
in WM is set to 8.

• Sensory memory limit: The rule Substitution can only use axioms of length
7.

These proof systems were implemented in a computer program written
in Haskell. The program works as an automated theorem prover, and finds the
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shortest computations/proofs automatically given the problem and the long
term memory (set of axioms). It is described in Appendix A.

Complexity measures

To determine the psychological complexity (difficulty) of a problem, the paper
first defines a number of mathematical complexity measures of problems. The
difficulty of a problem can be related to the logical sentence (such as formula
length, number of quantifiers, number of negations, or a combination of these),
or it can be related to the size of the model (number of nodes, edges, etc.). Or,
it could be a combination of these two complexities, e.g., a linear or polynomial
combination.

However, it is not obvious if any of the above numerical complexities can
estimate the psychological difficulty of a problem, which may depend on more
intricate relations between the sentence and the model. One such type of re-
lations is the length or size of the computation to solve that problem (in this
case, a proof). Thus, we defined two more complexity measures to take into
account the complexity of the solution: minimum proof length and minimum
proof size. Here, length refers to the number of steps in a proof and size refers
to the sum of formula lengths of all proof steps. These were computed using the
computer program that searched for and found the shortest proofs for all test
items.

Results

The bounded proof systems, their rules and axioms, were the result of many
brainstorming sessions for finding the best model given the experiment results.
We tested many variations to find the one whose numerical complexities best
correlated with the psychological difficulty.

It turned out that model size had no effect on problem difficulty, probably
because the graphs used in the experiment were small and homogeneous. For-
mula length was moderately correlated with difficulty, as was the size of partici-
pants’ working memory. Highest correlations were obtained between minimum
proof size and item latency, validating our initial argument that psychological
difficulty is more than a combination of formula and model sizes.

However, the results did not meet our expectations formed from results
in an earlier experiment in propositional logic [31]. This may be because first-
order logic is considerably more difficult than propositional logic. The mean
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latency in propositional logic experiment was 16.0 seconds for tautologies and
14.5 seconds for non-tautologies [31], while in FOL experiment, it was 33s for
true items and 37s for false items. In general, more complex tasks require bet-
ter cognitive models to simulate. Thus, one possible way to improve the re-
sults would be to use additional cognitive resources and an improved cognitive
model for the proof systems BT M and BFM .

Comments

Proofs in the proposed proof systems are psychologically linear. The substitu-
tion rule uses an axiom A to rewrite a proof step T to T ′. Mathematically, it
would not be correct to call this a linear proof rule, as T ′ is derived from both
A and T . However, A comes from the declarative memory contents that form
the common knowledge of first-order logic, thus the main inference is from T

to T ′.

Example 1. Following is an example of a proof that is psychologically linear, al-
though the derivation comes from more than one piece of knowledge. ⊤ is de-
rived from ⊤ ∨ C and ⊤ ∨ x → ⊤ (where C is a formula and x a variable).

⊤ ∨ C Substitution (⊤ ∨ x → ⊤)⊤

In logic, proving that A is false is equivalent to proving that ¬A is true.
From a logician’s point of view, the system for truth TM can be used to com-
pute proofs for false test items, with only a small increase in the length of a
FOL sentence (+1 for negation symbol). However, negations are cognitively de-
manding and there is overwhelming evidence that negated statements are more
difficult to prove [78, 79, 80]. The results of the experiment reported in the pa-
per also support this: negations were correlated to reduced accuracy. Consid-
ering this, using TM for false items may not be a good choice for systems de-
signed for cognitive accessibility.

The design of long term memory (set of axioms) in the automated proof
finder is an important task. To achieve better correlations between proof com-
plexity and experimental results, the axioms in the long term memory (LTM)
must be reasonably simpler and presumptuously known by the participants. The
skill level of the participants will also affect the design of LTM axioms—expert
participants will presumably know expert rules; novices will have simpler rules

29



in memory. Thus, it is quite possible to find shorter and simpler proofs by in-
cluding advanced axioms in the LTM, at the cost of making those proofs ac-
cessible only to the experts. The participants in the reported experiment were
university students of logic with only moderate knowledge of first-order logic.
Therefore, advanced axioms such as the following were excluded from the LTM,
even though such axioms may be found in standard textbooks of logic:

∀xP(x) → ¬∃x[¬P(x)]

The paper gives mean lateny and accuracy of the experimental data, how-
ever the variance is missing. Table 3.1 provides the means and standard devia-
tions of the data.

True False
mean sd dev mean sd dev

Latency (seconds) 32.6 9.4 37.2 11.6
Accuracy (%) 74.2 15.0 66.9 20.0

Table 3.1: Means and standard deviations of the experimental data in Paper-I

II Generating Comprehensible Explanations in De-
scription Logic

In Paper-II, the method of bounded computations was applied to description
logic, to construct a deductive proof system and an automated theorem prover
to produce comprehensible explanations in DL. This proof system is designed
to compute cognitive complexity of justifications in DL, while simultaneously
producing bounded explanations similar to logical proofs.

Description logic is the dominant logical formalism for constructing on-
tologies, for example, medical knowledge bases and the semantic web. Many
automated reasoners can validate logical entailments of a query by finding a
justification, i.e., a small number of facts and rules that are sufficient to show
whether the query is true.

A justification is the least number of theorems sufficient to prove a query.
While such justifications may be optimal in mathematical sense, many such jus-
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tifications are difficult to understand for a human user. The authors in [81] ex-
plored the cognitive complexity (or psychological difficulty) of abstract justifica-
tions, and carried out an experiment with a small number of subjects to explore
it. Using the experimental data from that study, we tried to construct a proof
model for deriving proof of such justifications using basic axioms of DL, sim-
ilar to the one built for first-order logic. Such a system was not just useful for
explaining to the user why the query was true, it could also be used to measure
cognitive complexities of different justifications in terms of the smallest proof
length or size.

Explanations in DL

A user can query an ontological reasoning system and ask the question: is the
logical statement φ valid in the set of hypotheses Γ? If the answer is yes, this is
an entailment of φ in Γ, written:

Γ ⊢ φ

If the reasoner deduces φ to be valid in Γ, it can output the smallest sub-
set of axioms in Γ from which φ can be deduced. This subset of axioms Γ′ ⊆ Γ

is the justification for the entailment Γ ⊢ φ, such that Γ′ ⊢ φ.
Modern reasoners such as Protégé can find justifications in large ontolo-

gies in reasonable time. However, they go no further than this, and produce no
explanations of why the entailment is valid given the justification. Such an ex-
planation may be necessary for the user, who otherwise may not be able to de-
duce Γ′ ⊢ φ.

Proof system

A proof system is proposed that produces deep and linear proofs (aka. explana-
tions) to the justifications in DL. It operates with sets of formulas and a number
of manually constructed rewrite rules, and produces bounded proofs for better
human understandability.

A computer program called DLvalidity was implemented to search for
shortest proofs to justifications in the proposed proof system. The program was
implemented in Haskell and used the standard breadth-first algorithm to search
for shortest explanations. A number of restrictions were introduced in the pro-
gram to reduce computational complexity of the search, such as acyclic proofs.
See Appendix A for further details.
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Evaluation

We used our explanation generator program to find the shortest proofs to the
problems used in the experiment [81]. The complexity measures of the gener-
ated proofs were matched with those provided by the authors of [81]. Due to
the scarcity of data, it is hard to find a numerical relationship between the two
proposed complexities. However, based on our earlier experiments, we believe
that our proof system for DL is better suited for human understandability due
to its use of bounded cognitive resources.

Comments

An evaluation of the proposed proof system with regards to comprehensibility
of explanations is not given in the paper. The reason is the scarcity of data on
which the system was built: only six justifications were used in the experiment.
Furthermore, those justifications consisted of symbolic concepts which adds to
the difficulty as concrete concepts may be easier to understand. The proof sys-
tem can indeed be evaluated properly by an additional experiment with similar
justifications. However, it was beyond my resources to conduct such an experi-
ment.
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4
Contributions in Artificial General

Intelligence

The first two papers, summarized in the previous chapter, used bounded cog-
nitive resources to construct proof systems in mathematical logic. The models
were deductive and the rules were manually crafted to match the results with
the empirical data. No inductive reasoning or learning was possible. In the fol-
lowing papers, the method of bounded proofs is redesigned as bounded compu-
tations and is merged with the Occam’s razor to construct models of reasoning
that include both deduction and induction.

Bounded computations
The papers summarized in the present chapter use bounded computations as
their core deductive mechanism. Bounded computations are similar to bounded
proofs mentioned in the previous chapter, and are computations produced by a
term-rewriting system that follow the restrictions defined by bounded cognitive
resources.

Following is a generic version of the bounded computations model de-
scribed semi-formally. Each paper in this chapter redefines this generic model
and adds extensions that will be briefly described in the respective sections. Re-
fer to the papers for a complete description.

Definition 1 (Term). A term is a finite binary tree whose nodes contain values
or variables. A term is open if any of its nodes contains a variable; otherwise it is
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closed.

The nodes in a term contain values that can be of various types. For in-
stance, the model in Paper-III uses positive integers as values, and the model
AIW in Paper-VII uses strings. For a system that is aimed to be independent of
types, string values can be used, preferably in Unicode encoding.

From here onwards, terms will be written as strings using standard prac-
tice of applying brackets to disambiguate subtrees. Binary operators will be writ-
ten in infix form.

Example 2. Following are examples of closed terms:
Arithmetic: (1), (2+3), (5 > 1), (even(3)), (−1), ((1#0)+5), (2×(9÷3))
Logic: (⊤), (¬⊤), (P ∨ Q), (A ⊢ B), (C1 ⊑ C2), (raven(A) ∨ swan(A))
English: (Alice # runs), (Bob # plays), (She # (walks # fast))

Definition 2 (Term size). Term size is defined as the number of nodes in the tree.
Special subtrees can be assigned a size of 1.

In the first two papers summarized in previous chapter, the uninspected
parts of a term were assigned a size of 1. This reflected the psychological dif-
ficulty of an unexamined formula stored in external memory (e.g., computer
screen).

Definition 3 (Rule). A rule is an expression of the form t1 ⊕ t2, where t1 and t2
are terms and ⊕ indicates the type of rule.

The terms in a rule can contain variables, which carry values from t1 to
t2. An added condition on rules is purity, i.e., t2 can only have variables that
appear in t1. Rules can be of different types. In general, there are deep and shal-
low rules. Deep rules can rewrite a subexpression inside a larger expression,
while shallow rules can only rewrite a complete expression but not its constituent
parts.

Definition 4 (Theory). A theory is a finite set of rules.

Theories are collections of rules. An agent’s long term memory is modeled
as a theory. In Paper-VII, theories can contain rules annotated with additional
numerical values, such as frequency and time of last usage. These additional
values are experimental and not all are used in the system.

Definition 5 (Agent). An agent is a tuple (P,T,C), where
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• P is a collection of parameters,
• T is a theory, and
• C is a set of concepts.

Definition 6 (Computation). Given a theory T, a computation is a sequence of
closed terms (t1, t2, . . . , tn), such that every tk+1 is obtained from tk by applying
one of the rules of T.

Computations are a general term-rewriting system, where each term is
rewritten using a rule. Computation length is the number of terms in a compu-
tation.

Definition 7 (Bounded computation). A bounded computation is a computation
bounded by a maximum computation length, with each term bounded by term
size ≤ working memory capacity. If theory T is bounded in size, then a computa-
tion in T is also bounded by rules.

Bounded computations are a simple cognitive model of working memory,
inspired by Baddeley’s model of human memory system.

Example 3. Following is an abstract example of a bounded computation. A, B
and C are terms with a maximum term size ts, r1 and r2 are rewrite rules, and
computation length is 3.

A r1
B r2
C

Example 4. Here is a bounded computation in basic arithmetic (without the
rules).

19 ∗ 2
(20− 1) ∗ 2

(20 ∗ 2)− (1 ∗ 2)
(20 ∗ 2)− 2

40− 2
(30 + 10)− 2

30 + (10− 2)

30 + 8
38
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Bounded computations in arithmetic

In the start of my PhD studies, my research interest was to construct a model
of bounded computations for arithmetic that can be used to produce intuitive
and easy-to-follow computations for integer arithmetic. This was intended for
education and would help children in learning arithmetic. A model of boun-
ded computations similar to the one mentioned earlier and a web-based user
interface was developed, that could produce arithmetic computations based on
individualized bounded resources. By setting the working memory capacity,
maximum length of computations and long term memory (factual knowledge
assumed to be possessed by a child of school grade n), the program produced
computations bounded by these limitations.

This model of individualized education in arithmetic was to be used by an
automatic tutoring agent that would act as a virtual teacher for children. How-
ever, this part (developing a virtual humanoid emotional tutor) failed to realize
and the system was never tested and used in real environment. Later, it was re-
alized that this model can be used for other purposes as well, such as solving
number sequence problems of standard IQ tests. The next section summarizes
the paper about inductive pattern discovery in number series problems.

III Bounded Kolmogorov Complexity Based on Cog-
nitive Models

Paper-III employs bounded computations for realizing inductive reasoning and
tests its model with intelligence tests that are designed for humans. It is the first
among the five papers that aim to produce a unified model of reasoning. The
model is built iteratively in this series of papers, so I will discuss each paper and
describe the improvements and extensions in relation to the previous paper.

Pattern discovery is a major component of modern IQ tests, and is the
ability tested in number series prediction problems and geometric matrix com-
pletion, among others. Some IQ tests consist solely of such problems, for exam-
ple, Raven’s progressive matrices [82] and PA [83]. Number sequence problems
are often considered stereotypical examples of inductive reasoning.

Number series extrapolation is a typical example of inductive reasoning.
This is a common task in standard IQ tests, appearing in various forms such as
extrapolation and interpolation in linear number series or matrices of numbers.
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A common pattern of such questions is to find the next number from a finite
series of integers, illustrated below.

1, 1, 2, 3, 5, 8, ?

The model of bounded computations used in this paper is similar to the
one described in the beginning of this chapter. Important differences are listed
below.

• Natural numbers are used as basic values in terms. In addition, a special
variable n is a term, representing the index of a number.

• f(n− c) is a term representing the number at index n− c for any positive
integer c. The term size of f(n− c) is 1.

• For any terms t1 and t2, t1 + t2 is also a term (other binary operators in-
clude: −, ×, ÷).

Using the model of bounded computations, we developed a model of in-
ductive reasoning to solve number sequence problems of standard IQ tests. The
model was implemented as a computer program called SeqSolver in Haskell,
and this program was used to solve number series problems of some of the stan-
dard IQ tests, including PJP (11 items) [84], PA (29 items) [83] and IST (38
items) [85]. The problems of the IST test were new and unseen during the de-
velopment of the program. Yet, it scored above average human performance.
For benchmarking purposes, we used a number of other mathematical software
that could extrapolate number sequences, including Maple [86], Mathematica
[87] and Wolfram Alpha [88], and an online database of interesting integer se-
quences called OEIS [89]. These software performed poorly on the problems.
The results are summarized in table 4.1.

Program PJP PA IST
SeqSolver 11 29 28
Mathematica 6 9 9
Maple 6 6 9
OEIS 4 11 11
Wolfram Alpha 6 9 12

Table 4.1: Score of different software on the number sequence problems of IQ tests.

37



Comments

There are a number of explanations why the standard mathematical software
packages failed so poorly and scored very low. They are intended for mathe-
matical sequences and are devoid of any cognitive component. For instance,
they utterly fail on modulo m sequences (e.g., alternate terms of a sequence
forming a subsequence), while many of the items in the IQ tests were of this
type. In addition, they consider index number as more basic than previous val-
ues, while many items in the tests used more than one previous values in their
pattern.

Kolmogorov complexity is a mathematical formalization of Occam’s ra-
zor, which does not consider psychological difficulty of the problems. IQ tests
are designed for humans and by humans, and have a strong psychological basis.
Pattern discovery in number sequence problems or any other items in the IQ
tests is dependent on how humans perceive patterns, rather than strict mathe-
matical definitions of such patterns.

This paper proposes a computable version of Kolmogorov complexity,
bounded by psychological and cognitive limitations. The method is not lim-
ited to number series only, and can be applied analogously to build models of
pattern discovery in other term-rewriting systems and production systems. On
these grounds, a more general method of pattern discovery was developed for
arbitrary symbolic domains, which is discussed in the next section. A formal
version of the bounded Kolmogorov complexity can be stated as:

KT (x) := min
p

{ℓ(p) : p ⊢∗
T x}

where x is a sequence, T is a theory, and ∗ indicates bounds (e.g., working mem-
ory capacity). Intuitively, the Kolmogorov complexity of a sequence x with re-
spect to a theory T is the shortest program p that will produce x with a compu-
tation that uses T and is bounded by ∗. This is a simpler version of the model
used in the program, which uses additional constraints on p.

IV Symbolic Reasoning with Bounded Cognitive Re-
sources

In Paper-IV, the model for pattern discovery in number series problems was
extended and generalized from numerical values to arbitrary symbolic input.
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This new model was designed to meet human performance in more than one
domains, while keeping a single set of principles and methods. Together with
the deduction method of bounded cognitive resources, the present model used
a formulation of the Occam’s razor to choose the simplest axiom from a ran-
domly generated list of axioms that could account for the observations (exam-
ples). This model was implemented as a computer program in Haskell and was
named Occam, in memory of William of Ockham who first formulated the
principle of parsimony, what today is known as Occam’s razor.

To transcend the limitation of a single domain and learn multiple dom-
ains, Occam needs to know the grammars of the domains it is going to learn.
In the previous paper, the grammar of patterns for decoding number sequences
was built into the program. In the current model, the grammar is represented
as languages: grammar rules that define the correct form of expressions for a
particular domain. For any language L, its elements are called L-terms. Some
examples of L-terms are listed below:

English “Alice plays”, “Bob walks”, “OK”.
Arithmetic 2, 3 + 5, 0 ∗ 9, even(2), f(x).
Logic ⊤, P, P ∨Q, x ∧ ⊥ → ⊥.
Haskell reverse([2,3]), [] ++ [1,2], f(x:xs).

A rule in this model is called L-axiom and has the form t � t′, where t
and t′ are L-terms. A finite set of L-axioms is a L-theory.

Occam contains a single rewrite rule. Given an axiom t1 � t2 and an ex-
pression t that contains t1 as a subterm, the rule will rewrite t to t′ by replacing
(or substituting, see [4] for details) exactly one occurrence of t1 in t to t2. This
is a deep rule.

t(t1)
(t1 � t2)

t′(t2)

Here is an example of a bounded computation in this model:

3 + (0 ∗ 2)
(0 ∗ x � 0)

3 + 0
(x+ 0 � x)

3

Note that the numbers above are mere strings, unlike previous section
where numbers were represented as integer values in the program. Thus, the
following computation is equivalent to above:
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Three+ (Zero ∗ Two)
(Zero ∗ x � Zero)

Three+ Zero
(x+ Zero � x)

Three

An agent is defined as a tuple (L,T ,W ,S,D), where

L a language (set of grammar rules)
T L-theory (declarative memory)
W working memory capacity (a natural number)
S assimilation capacity (a natural number)
D accommodation capacity (a natural number)

The size of a L-term t is defined as the number of nodes in the (small-
est) parse tree of t. The size of t may be considered as a simple measure of the
cognitive load of t on working memory. The size of an axiom is the sum of the
sizes of its left and right terms. The size of a theory is the sum of the sizes of its
axioms.

The paper includes a short description of Occam function that is respon-
sible to find the shortest and simplest solution to a new problem. It takes as ar-
guments an agent A and an induction problem I , and outputs a small theory
∆ such that adding ∆ to the A’s existing theory will produce an optimal so-
lution to I . To do this, Occam generates a small set of possible ∆’s and tries
them over I . If more than one ∆ solve I optimally, following selectors are ap-
plied in the given order to choose one from the set of optimal ∆:

1. ∆ has the minimum size.
2. ∆ contains the maximum number of variable occurrences.
3. ∆ contains the minimum number of variables.
4. ∆ is lexicographically minimal.

A more precise and algorithmic description of the Occam function is stated
in Paper-V.

Occam was implemented in Haskell with approximately 1,500 lines of
code. It was tested in a number of domains, including basic English grammar,
integer arithmetic, propositional logic and Haskell-like syntax.

The learning process in Occam begins with an agent containing empty
theory of a given domain. This theory is gradually extended with new rules
learned from positive and negative examples. The main mechanism is the sim-
ple cognitive model with bounded cognitive resources, which is responsible for
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deductive functions and bounds the combinatorial explosion in the inductive
tasks.

One limitation of the current version of Occam is that it is unable to
learn the grammars, and the grammar of a new domain is manually provided.
Once Occam knows the grammar, it is able to learn the axioms for rewriting
expressions from the examples provided to it. Additionally, the examples pro-
vided to Occam must be designed properly in order for Occam to make sense
of them. Each example is a small set of positive and negative facts tailored for a
particular axiom. These deficiencies are addressed in the later papers.

Example 5. Suppose that Occam is given the following example:
5 + 0 = 5

6 + 0 = 6

5 + 1 ̸= 5

Then, Occam learns the following axiom:
x+ 0 � x

Example 6. Following computation shows the reversing of a short list by a func-
tion inductively learned by Occam (in Haskell-like syntax).

rev([1,2])
rev(x:xs) � rev(xs) ++ [x]

rev([2]) ++ [1]
rev(x:xs) � rev(xs) ++ [x]

(rev([]) ++ [2]) ++ [1]
rev([]) � []

([] ++ [2]) ++ [1]
[] ++ xs � xs

[2] ++ [1]
[x] ++ xs � x:xs

[2,1]

V A General System for Learning and Reasoning in
Symbolic Domains

Paper-V presents an extended version of the formerly described Occam system,
now called Occam⋆, and illustrates its usage by following a line of examples in
the domain of elementary arithmetic.

The major improvement in the new system is the ability to learn grammar
rules of a new domain, which were previously provided manually. No longer
does the system need an inner (pre-programmed or pre-written) representation
of the grammar of terms for any domain. Given suitable examples of terms, it
can discover the general patterns for forming correct terms. The paper also pro-
vides a more precise definition of the main function responsible for learning,
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i.e., the Occam function. Many small improvements were made in the com-
puter program for efficiency and better results.

Occam⋆ uses type labels to annotate its memory contents with types.
Variables, which were previously just letters (i.e., x, y, z), are now labeled with
their type. For example, (x : Number) and (y : Boolean) are variables. Note
that the basic values are still symbolic (strings), not the programming types
such as integer and boolean.

Similarly, axioms contain a type that shows what domain they are useful
for. Axioms are written (τ, t, t′), indicating that t is equivalent to t′ in the do-
main τ .

Occam⋆ was implemented in Haskell with around 2,500 lines of code,
starting from the code of Occam. The program takes as input an agent and a
small set of facts, and outputs a new agent with updated memory (or replaces
the old agent). In the process, it also produces bounded computations of the
facts.

VI Learning Propositional Logic from Scratch

Occam⋆ was designed to reason in arbitrary symbolic domains, with no domain-
specific knowledge built-in in the system. In the last paper, this was applied to
an example domain, i.e., elementary arithmetic. To further test and improve the
system, it was applied to propositional logic and illustrated with examples in
Paper-VI with how it could learn logical axioms from concrete examples. This
resulted in further extensions and improvements in the system, especially, si-
multaneous learning in multiple domains.

In the previous two papers, there was a single rewrite rule that used ax-
ioms of the form t → t′ to rewrite a term t to t′. This was a deep rule, such
that it could rewrite exactly one occurrence of a subterm in a larger term. Se-
mantically, this rewrite rule preserved equivalence of the two sides of an axiom
(though it was never applied in reverse, to rewrite t′ to t given t → t′.)

In logic, however, the deep rewrite rule is insufficient. Therefore, this pa-
per introduced a shallow rewrite rule that rewrites a term t to t′, but does not
rewrite any subterm.

The paper includes a set of examples to illustrate the learning process of
an agent in Occam⋆. The program was evaluated by comparing its performance
with average human performance on a set of problems.
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Shallow rule

t
(t 7−→ t′)

t′

Deep rule

t(t′)
(t′ Z=⇒ t”)

t(t”)

P ∨ (P ∨ ¬(Q ∧ P))
(x ∨ y 7−→ y)

P ∨ ¬(Q ∧ P)
(x ∨ y Z=⇒ y ∨ x)

¬(Q ∧ P) ∨ P
(¬x ∨ y Z=⇒ x → y)

(Q ∧ P) → P
((x ∧ y) → y Z=⇒ ⊤)

⊤

Figure 4.3: Computation of an item from the set of problems used for evaluating
Occam⋆. This is a proof that the item is a tautology. It was automatically generated
by Occam⋆ using axioms learned from examples.

Eighty problems were used to evaluate human performance in [31]. Each
problem was a question of the form “Is A a tautology?”, where A was a proposi-
tional statement. Half of the problems were true and half were false, randomly
presented to the participants who were undergraduate students in computer
science with some tuition in logic. We took these problems and used an agent
trained in Occam⋆ to solve them. This agent was trained automatically, start-
ing from a blank theory, and no manual changes were made to its learned the-
ory. This agent solved 34 of the 40 tautologies (only tautologies were used for
evaluation), compared to the average participant accuracy of 32.1. It would not
be right to claim that this agent outperformed humans (maximum score was
35), nonetheless, the scores indicate that Occam⋆ can compete with humans in
more than one domains (including the arithmetic domain used in the previous
paper).

Comments

This paper did not delve into the problem of learning a complete theory of logic.
The reported theory in the appendix is probably incomplete, however no formal
analysis of completeness was performed. It still remains to be checked whether
an agent constructed and trained in Occam⋆ will eventually learn a complete
set of logical axioms in the domain of propositional logic. Though interesting in
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itself, this question is more relevant to traditional AI where solutions to prob-
lems are often required to be globally optimal.

Tautology 70 in the appendix of the paper is incorrectly reproduced and
would evaluate to a non-tautology. This however does not change the results as
the correct form of the formula was used for computing the results, which is the
following:

¬(¬((P → Q) ∧ Q) ∧ Q)

The shallow rewrite rule was introduced not for completeness but for boost-
ing performance and solving more problems within the bounded resources. It
may not be necessary for a complete theory of logic, and therefore may be re-
dundant. In Occam⋆, redundancy is not addressed and redundant axioms and
rules are allowed. The next paper addresses the issue of redundancy.

Other kinds of rewrite rules can also be constructed, as evident in Paper-
II where a number of different rules were introduced. However, automatic learn-
ing of different types of rules is considerably more difficult. Other techniques
for increasing the performance may also be possible, such as abstraction boxes,
which were used in Paper-I and II. It should be noted that every method has its
pros and cons and a only thorough testing can reveal these. Additionally, these
techniques should be as general as possible to avoid adhoc solutions.

VII Bounded Cognitive Resources and Arbitrary Dom-
ains

One of the major problems with Occam and Occam⋆ was that these models
required a fine-tuned set of examples from which they could deduce a rule.
This necessitated the use of an intelligent tutor, without which the models were
unable to learn properly. Paper-VII describes a new system called Alice In Won-
derland (AIW) that can learn rules from an arbitrary sequence of examples.
Another important difference is that AIW is able to update the theory by not
only adding new knowledge but also removing existing knowledge. Axioms are
removed either due to inconsistency (wrong axioms are removed immediately)
or due to overload (inefficient axioms are removed if the theory exceeds long
term memory capacity).

AIW is an extension of the Occam model with major changes and im-
provements, and contains more sophisticated perception, knowledge represen-
tation and reasoning methods. The main learning algorithm narrows down
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from an exhaustive search of random patterns to an analytic approach of con-
structing axioms from examples. A more fine-grained mathematical model of
inductive reasoning is constructed, with the aim of learning complete theories
of arbitrary domains from a random stream of examples. Furthermore, AIW is
re-written in Haskell with a graphical user interface for better accessibility (see
Appendix A for further details). Paper-VII includes a short description of the
model, which is currently being extended and improved with precise definitions
of concepts and structures involved in induction and learning, and a larger pa-
per is under way for submission to a scientific journal.

Figure 4.4: A screenshot of AIW. The theory is visible in the left most two columns:
closed and open axioms are listed separately. The third column (from left) shows the
random sequence of facts presented to the program (generated automatically). The
right most column shows a question entered by the user and its solution generated
by the program.

Comments

In AIW, redundancy of axioms in a thoery is generally disabled for improving
the learning rate. With redundant axioms in the theory, deductive computa-
tions become more computationally complex due to a larger branching factor
in the search algorithm. Since bounded computations are used for evaluating
the simplicity and effectiveness of proposed new axioms, it is important to keep
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the search complexity low for faster learning. However, it is not strictly the best
option. For instance, performance of a learned theory on a set of problems will
be higher if redundant axioms are allowed (leading to shorter computations).
Therefore, the redundancy is introduced as a parameter in the agent that can be
changed by the user.

The paper lacks a proper evaluation of the system due to insufficient space.
The system was tested in a variety of different domains, and was able to learn
integer arithmetic in decimal and binary systems, even and odd functions and
other modulo n functions, propositional logic with and without propositional
variables, quantifier-free first-order logic, quantifier-free second-order logic, ba-
sic grammar, and analogical reasoning. By learning addition first, it was even
able to correctly learn modulo 3 function by acquiring the following axiom:

mod3(x # y) ⊢ mod3(x+ y)

The learning rate is fast in the beginning and slows down as the theory
increases in size. This is one of the major problems with AIW and program
optimization is needed for higher performance. However, even with current
speed, AIW learned a complete theory of arithmetic on a standard laptop com-
puter. With suitable streams of facts, it also learned a good theory of proposi-
tional logic enough to solve many of the tautologies reported in Paper-VI. A
more thorough evaluation will be reported in a future paper.
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5
Discussion

This chapter discusses some of the issues related to the published papers sum-
marized in previous chapters, mostly issues that relate to more than one papers.
Important issues include the problem of vapidity in inductive reasoning, aes-
thetics and elegance, and design choices in programming.

5.1 The problem of vapidity
Vapidity is one of the major problems of using classical logic to characterize
human reasoning [90]. Logical conclusions, when drawn mathematically and
without psychological factors, are often vapid and non-interesting even if valid
and correct. An example is to rewrite a proposition as a conjunction of itself
some arbitrary number of times. That is, if A is true, then so is A ∧ A ∧ A.

This problem is faced by all the inductive models described in chapter 4.
These models try to solve this problem by using a range of selection criteria to
choose the best rule/axiom for the current situation from a set of numerous
valid rules. These selection criteria are inspired by the philosophy of science
and cognitive theories. The foremost of them is Occam’s razor, which is for-
malized in a number of ways including the minimum length of a rule and the
shortest computation a rule generates. These ways are then put in an order to
form the criteria for selecting the best rule at any instance.

When confronted with a new item, AIW uses any of the two update types
to keep its theory updated. If the item is incomputable with the current theory,
it becomes necessary to add an axiom that can make it computable. Even if the
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item is computable, AIW updates the theory with an axiom that may enhance
its performance in future. This, however, can lead to vapid and non-sensible ax-
ioms to be added to the theory. To illustrate this, the axioms in Table 5.1 are all
valid, yet only one of these is necessary for the commutative law.

AIW tackles this problem using a variety of approaches. One of them
is the requirement of irredundance, that ensures that the theory can only be
updated with non-redundant axioms, and the redundant ones can later be re-
moved. This leads to a learned theory that contains the minimum set of axioms
necessary for a complete theory of that particular domain. It ensures that only
non-vapid axioms are acquired. Although many other non-vapid axioms will be
ignored (for example different forms of the associativity rule), this minor loss is
smaller than the accumulation of a large number of vapid axioms.

In the case when the system is designed for a particular domain, adhoc
solutions can be used to minimize vapidity. To exemplify, the model in Paper-
III can possibly benefit from a weighted version of arithmetic such that mul-
tiplication weighs more than addition. As a result, arithmetic patterns will be
preferred over geometric ones. This is however subject to testing and was not
used to avoid adhocism.

5.2 Validation

A candidate axiom needs evidence to show that it is a valid and correct axiom,
before considering it for theory update. Theoretically, the required evidence
for inductive axioms is infinite (if the values are infinite, e.g., in arithmetic). In
practice, however, a certain amount of verification is deemed sufficient for the
validity of an axiom.

Algorithm 1 summarizes the function of AIW program that validifies a
candidate axiom from the set of substitutions that lead to convergence. Many
different versions of this function were tried during the development. Some
were practically infeasible as they required high amount of evidence, others led
to false positives (wrong axioms labeled as correct). This algorithm is not in-
cluded in the paper and is part of a manuscript that contains extended descrip-
tion of the AIW model. To illustrate this satisfy function, consider the follow-
ing axiom:

(x+ (y + z)) I ((x+ y) + z)
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It has three variables and is the associative law in arithmetic. By limiting
the possible values of variables to single digits, there are 103 = 1000 substitu-
tions for which it is valid. Finding all 1000 substitutions (for all 3-variable ax-
ioms) is hopeless on a personal computer. Instead, the program slowly accumu-
lates the substitutions for which the axiom converges (is true). Then, Algorithm
1 applies a recursive strategy to check if the number of substitutions is sufficient
for the correctness of the axiom.

Algorithm 1: Algorithm for measuring evidence of a candidate axiom for
satisfiability.
Function: satisfy
Input: n // number of variable types in axiom, e.g., 2 in x+y=x
Input: evidence // set of substitutions for which the axiom

converges
begin

case n == 1
let requiredEvidence = if concepts > 2 then 3 else 2
return ( length(evidence) >= requiredEvidence )

case n > 1
let evidences’ = for each value of first variable (e.g., x), get values of
remaining variables
let result = select ev in evidences’ for which (satisfy (n-1) ev) is True
return (length(result) >= 2)

end

5.3 Aesthetics and elegance
Some of the selection preferences are employed basically for aesthetic purpose,
though they also help in reducing search complexity. AIW uses three variables
for forming axioms, so a single axiom can come in a variety of forms. For ex-
ample, commutativity of addition can be expressed in any of the forms listed in
Table 5.1. All those forms are equivalent, though adding all of them to a theory
is unnecessary and against the requirement of non-redundancy in the long-term
memory. Furthermore, all these are of equal size. However, the notion of sim-
plicity in the Occam’s razor does not have to be numerical (size/length). Ele-
gance is another form of simplicity and comprehensibility, and can be formal-
ized as Occam’s razor.
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1 x+ y I y+ x

2 x+ z I z+ x

3 y+ x I x+ y

4 y+ z I z+ y

5 z+ x I x+ z

6 z+ y I y+ z

Table 5.1: Commutativity law in arithmetic

Generally, elegance is subjective. Yet there is some form that looks ele-
gant to the most users. Subjective values are not necessarily random and can
be agreed upon by a vast majority. We have seen this in the IQ tests, where an-
swers are psychologically subjective, but a correct answer is the one considered
correct by a majority of the test designers or test subjects. In mathematics as
well as everyday English, variable x is often used to denote the unknown1, and
is arguably more common than letters l or e.

AIW applies the following aesthetic conditions that not only help chose
an elegant version of the commutative law, but also help in reducing the com-
plexity of search (by ignoring all other alternatives).

1. The order of variables in the left hand side should be lexicographic. e.g.,
x+ y, x+ z and y+ z are elegant, but not y+ x.

2. Variables should appear consecutively. Thus, x + y and y + z are elegant,
but not x+ z.

3. The first variable must be x. Thus, x + y is the only possible left hand side
(for commutativity law).

5.4 Scientific contribution
One of the frequently posed questions I have been asked is that what scientific
fields have I contributed to, and what exactly are those contributions? To satisfy
such queries, I have divided the contributing papers in two parts.

1Variable x traces itself historically to the Arabic word “shai’a” which means something. From
Arabic, this word was translated into Greek with the letter χ for phonetic reasons. Later, when
translating into Latin, letter x was chosen to indicate an unknown value, probably due to its visual
resemblance with χ. [91]
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The first part (chapter 3) contributes mainly to mathematical logic and
secondly to artificial intelligence. In mathematical logic, the papers introduce
new proof formalisms that are designed with bounded cognitive resources and
aimed at producing comprehensive and understandable proofs which are local
and linear. The use of a term-rewriting system and a simple cognitive architec-
ture also acts as a heuristic in automated proof generation, thus contributing to
artificial intelligence and its subfield automated theorem proving.

The second part (chapter 4) consists of five papers that mainly contribute
to the field of artificial general intelligence. Three of the five papers were pre-
sented in annual AGI conferences and all three received awards. AGI is a broad
area with many different theories, methods and approaches towards realizing
AGI systems. These papers are specific to symbolic approaches in AGI, and par-
ticularly relevant to inductive programming. Research in inductive program-
ming focuses on automatic generation of computer programs from incomplete
data (e.g., instances of input-output or program traces), while the papers in this
thesis focus on automatically learning symbolic domains from random exam-
ples.

5.5 Design choices
Almost all the programming work for this research was done in Haskell, which
is a declarative, statically typed, purely-functional programming language. It is a
popular choice for researchers who work within computational sciences, partic-
ularly in Gothenburg, Sweden. It has a number of advantages in comparison to
popular programming languages such as Java and C++, and also to other func-
tional languages such as Lisp and ML.

My choice of using Haskell for the computer implementation of our mod-
els is based on the following reasons:2

• Models of human cognition and problem solving are frequently programmed
with functional programming techniques [92, p.172].

• All of the models in this thesis incorporate algebraic types and mathemat-
ical structures that are easier to implement using Haskell.

2In addition to the listed reasons, I chose Haskell because it receives considerable support at
the Chalmers University of Technology and the University of Gothenburg, including a number of
elementary and advanced courses at the department of computer science.
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• Haskell is reputed for saving programmer time more than computational
complexity. As our models were continually evolving and changing, a
substantial effort went into rewriting the code of a program to match the
ongoing changes, sometimes to the extent that the whole program had to
be rewritten. This would have required significantly more programmer
time if non-functional languages were used.

It is noteworthy that a number of other cognitive architectures are also
written in functional programming languages. ACT-R’s primary implementa-
tion is in Common Lisp. CHREST allows specific models to be written in Lisp.
Epic, CHREST, FORR, GLAIR and REM have a Lisp version besides other im-
plementations.3

5.6 Conclusion
Automated theorem provers are invaluable tools for mathematicians and sci-
entists. Inductive reasoning techniques can even automate scientific discovery.
Inductive programming will eventually enable computers to write their own
programs and to rewrite existing programs into more efficient and verified pro-
grams. However, generalized domain-independent symbolic reasoning is still a
major problem.

The model of bounded cognitive resources has proved valuable in the
construction of automated proof generators. The proofs produced in such sys-
tems are linear and local, and are more comprehensible than proofs generated
through classical methods. The search complexity is also reduced by the use of
such resource bounds.

Bounded computations are also valuable to define the simplicity of ax-
ioms, that in turn leads to a better inductive learning of logical axioms. The pa-
pers in the second part of this thesis present models of inductive reasoning that
use bounded computations and other simplicity measures (the Occam’s razor)
to find the best solution for any inductive problem.

Inductive reasoning has been a hard problem in computer science and AI.
This thesis, as well as many new methods for inductive reasoning in computer
science, show that it is not an impossible task. We already have automated space
vehicles exploring the solar system. We are now moving towards driver-less ve-
hicles and pilot-less airplanes in near future, with several other applications of

3http://bicasociety.org/cogarch/architectures.htm, accesed 2015-09-18
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AI in real life. Thus, I believe that we will have computers doing programming,
formal reasoning and scientific discovery for us in not-so-distant future, and
research like the current thesis is very valuable to that goal.

Predicting specific timelines for major technological advances such as self-
improving robots, superintelligence and singularity is beyond the scope of this
thesis. However, the social and scientific change is not just moving ahead, but
accelerating [93]. Thus, creating artificial systems with general intelligence is no
more a question of possibility, or a question of how, but a question of when.

Future prospects
Some possible ways to improve the models of this thesis include (i) introducing
a more complex cognitive model and (ii) using probabilistic methods and algo-
rithms for reducing complexity with negligible loss of correctness of solutions.
The models in this thesis are deterministic, which can be coupled with proba-
bilistic methods to produce hybrid models of reasoning.

Further research in this area can possibly lead to a universal reasoner that
is able to learn and reason in more complex symbolic systems such as higher
order logics and programming languages. Inductive programming techniques
can benefit from the body of knowledge collected in this thesis.
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A
Software

This chapter describes the computer programs that are outcomes of my research
work in addition to the attached papers. These programs are reported in the
research papers, however a full account of these programs was not produced
earlier and is now reported here. All these programs were coded by this author
independently; design issues were decided collaboratively with Claes Stranneg-
ård. Brief instructions for how to compile are provided, together with example
usage.

The programs listed below were all coded in Haskell with Haskell Plat-
form, and compiled with the GHC compiler. All the programs use parallel pro-
cessing and require the -threaded compiler option for enabling parallel compu-
tations. The -O option enables optimization within reasonable time.

# ghc programname.hs -threaded -O

To run a program with parallel processing, the Haskell runtime system
needs to know how many logical processors are available to the program. This
is achieved by providing runtime system (RTS) parameters. For example, the
following command line can be used to run a program on 4-core processor (or
4 virtual processors).

# programname.exe [arguments] +RTS -N4 -RTS

For further information on compiling Haskell programs, consult the GHC
User’s Guide [94].

Some of the programs use extended parsing of algebraic expressions and
other structures. The parsing modules for these programs were automatically

55



generated by BNF Converter, a compiler construction tool that can generate
parser code from an abstract syntax [95], in conjunction with Alex [96] and
Happy [97].

Following Haskell libraries have been used in the computer programs
mentioned earlier. These libraries may have additional dependencies which
must be installed. The cabal tool takes care of the dependencies.

1. ansi-terminal: Simple ANSI terminal support.
2. array: Mutable and immutable arrays.
3. astar: General A* search algorithm, used to search for the shortest boun-

ded computations.
4. base: Basic libraries that include data types, control structures (e.g., Mon-

ads, Arrows [98]) and System (console IO).
5. containers: Assorted concrete container types (maps, sets, trees, graph).
6. deepseq: For fully evaluating data structures.
7. directory: Library for directory handling.
8. gtk: Binding to the Gtk+ graphical user interface library.
9. haskell-src: Manipulating Haskell source code.

10. monad-parallel: Parallel execution of monadic computations.
11. mtl: Monad transformer library.
12. parallel: Parallel programming library.
13. PSQueue: Priority Search Queue.
14. QuickCheck: Automatic testing of Haskell programs.
15. random: Random number library.
16. text: An efficient packed Unicode text type.
17. time: A time library.
18. transformers: Concrete functor and monad transformers.
19. utf8-string: Support for reading and writing UTF8-encoded strings.

A.1 FOLP
FOLP is a computer program that proves truth or falsity of a first-order sen-
tence in a finite directed graph with colored nodes. Parsing functionality was
automatically generated with BNF Converter.

FOLP was written in Haskell and compiled on a Windows 64-bit platform
with GHC compiler. It comprises approximately 2,000 lines of code including
comments and blank lines (excluding the automatically generated code).
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A small program of 300 lines was written to generate random problems
for the experiment (Folpgenerator.hs).

The program does not use many standard libraries from the Haskell reper-
toire as much of the algorithmic functionality is designed by the author. Apart
from the base library, it uses parallel for parallel processing and deepseq for
fully evaluating data structures.

FOLP uses a number of arguments, indicated in the following line:

# folp.exe "formula" axioms rules models model (T | NT) SM WM

where,

formula is a first-order logic formula.
axioms is a file containing the set of axioms to use.
rules is a file containing rules.
models is a file containing description of the models.
model is the model number to be used.
(T | NT) proof system to use: T specifies truth and NT specifies falsity.
SM is the size of the sensory memory, e.g., 5.
WM is the working memory capacity, e.g., 8.

The program also accepts following optional arguments:

--length to search for proofs of minimum length (default).
--size to search for proofs of minimum size.
--weight to search for proofs of minimum weighted length.
--latex to produce latex code of the proof.

The program can be downloaded from GitHub from the following URL:

https://github.com/arnizamani/FOLP

A.2 DLvalidity
DLvalidity is a program written in Haskell that automatically generates shortest
explanations of justifications in description logic. Its formal model is described
in Paper-II, where it was used to solve the problems used in the psychological
experiment. Parsing functions were generated automatically with BNF Con-
verter using an abstract syntax of description logic and rewrite rules.
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The program uses the following standard Haskell libraries: astar, base,
containers, directory, monad-parallel, parallel, time, transformers, utf8-
string. The source code can be downloaded from GitHub from the following
URL: https://github.com/arnizamani/DLvalidity

The program accepts the following arguments:

# DLvalidity.exe problem output width depth [{start} {goal}]

where,

problem a file that contains the logical justification as a small set of axioms.
output filename to store results.
width maximum width of a proof step, e.g., 8.
depth maximum length of a proof, e.g., 10. This can be iteratively increased if

proofs are not found at smaller lengths. The program gets slower with in-
creasing depth.

{start} (optional) the set of axioms to prove. Default is {C1− > C2}.
{goal} (optional) the set of axioms to look for. Default is {} (to prove that {start}

is true).

A.3 SeqSolver
SeqSolver version 5.0 is developed in Haskell and has been compiled and tested
on Windows 64-bit platform. Parsing functionality was automatically generated
with BNF Converter using an abstract syntax of arithmetic expressions.

Following Haskell libraries were used in the program: array, astar, base,
containers, directory, mtl, QuickCheck, PSQueue.

SeqSolver program contains two modules, SeqSolver5.hs and Sequence5.hs,
and an additional set of modules for bounded computations in arithmetic, un-
der the Amath folder (included in the source code). The source can be down-
loaded from GitHub from the following URL:

https://github.com/arnizamani/SeqSolver

The program accepts a number of arguments:

# SeqSolver5.exe expression Min-len Max-len dm-file pm-file WM

where,

expression is a sequence of at least three integers, e.g., [1,2,3].
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Min-len is the minimum length of the pattern, usually 3.
Max-len is the maximum length of the pattern and can be up to 8. More than

this will render the program extremely slow and the patterns found might
be cognitively implausible.

dm-file contains declarative memory contents.
pm-file contains rules and user-defined functions.
WM is the working memory capacity, e.g., 8.

The dm-file contains arithmetic tabular facts in the format a * b = c. Facts
must be separated by a semicolon. C-style single line comments can be used to
hide some lines from the program.

The pm-file contains a list of rules the program is allowed to use. Rules
are defined in the program code, however this file can enable or disable cer-
tain rules. Additionally, it contains simple user-defined functions that can be
used in the patterns to reduce pattern size (e.g., sqr(x) instead of x*x). These
functions can also be used to utilize memorized sequences into the program
(such as digits of Pi and prime numbers). The syntax is similar to the C lan-
guage functions. A single parameter is used to indicate to the program whether
a rule/function is enabled or not (0 for disabled, 1 for enabled). Below is a glimpse
from the rules file.

/ / b u i l t −i n r u l e s
Expand ( 1 ) { }
R e c a l l ( 1 ) { }
/ / use r−d e f i n e d r u l e s
Add i t i onCommuta t i v i t y ( 1 )

{ x + y = y + x ; }
Square ( 1 )

{ Sqr ( x ) = x * x ; }
/ / memorized s equenc e s
P i ( 0 ) {

P i ( 0 ) = 3 ;
P i ( 1 ) = 1 ;
P i ( 2 ) = 4 ;
P i ( 3 ) = 1 ;
P i ( 4 ) = 5 ;
P i ( 5 ) = 9 ;
P i ( 6 ) = 2 ;
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Pi ( 7 ) = 6 ;
}

A.4 Occam⋆

Occam⋆ (and its predecessor Occam) is written in Haskell. It reads and writes
Haskell source code (for agent memory) using the haskell-src library. It has
been compiled and tested on Windows 64-bit platform.

Following Haskell libraries are used in Occam⋆: astar, base, contain-
ers, directory, haskell-src, parallel, time.

Occam⋆ source code contains the following modules.

• OccamStar.hs the main module
• Interpreter.hs functions for deductive computations
• Haskell.hs Haskell source code interpreting functions
• Parsing.hs parsing functions
• Instances.hs data types and class instances
• Niz.hs general purpose helper functions not available in standard Haskell

To create a new agent, Occam⋆ is run with the following syntax:

# Occam.exe -create AgentFile

To run the program on an agent (AgentFile) with a new problem (IPFile), fol-
lowing syntax is used:

# Occam.exe -run AgentFile IPFile

Occam⋆ can be downloaded from GitHub from the following URL:

https://github.com/arnizamani/OccamStar

A.5 Alice InWonderland
AIW is a major extension to Occam⋆ and, apart from the changes in reason-
ing model, the user interface is fully changed to GUI. The program is coded en-
tirely in Haskell with approximately 5,000 lines of code. It has been compiled
and tested on Windows 8 64-bit with Haskell Platform. Gtk+ was used as the
graphics library together with Haskell bindings to it (gtk library).
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The program AIW was coded by me together with Claes Strannegård. I
would also like to credit Ulf Persson for his contributions to its development.

Following Haskell libraries were used in the program AIW: ansi-terminal,
array, astar, base, containers, directory, gtk, monad-parallel, mtl, paral-
lel, QuickCheck, random, text, time. Source code can be downloaded from
GitHub from the following URL: https://github.com/arnizamani/aiw

The program code contains the following modules.

• Alice.hs the main module containing the graphical user interface
• AliceLib.hs functions implementing the computational model
• Instances.hs data structures and class instances
• Parsing.hs parsing functions
• Interpreter.hs functions for bounded computations
• Domains.hs functions for generating random streams of facts for vari-

ous domains

The program AIW is graphical and needs the -optl-mwindows compiler op-
tion to hide the command line window when the program is run. Compilation
has been tested using GHC version 7.8.3.

# ghc Alice.hs -threaded -O -optl-mwindows

AIW uses parallel processing and might not function properly without it.
To run it, use the following command syntax:

# Alice.exe +RTS -N4 -RTS
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cause and effect reasoning, 4
deductive reasoning, iii, 14, 15, 24,

25

fallacious reasoning, 4
human reasoning, 14, 15, 47
inductive reasoning, iii, 4, 14, 15,

36, 37, 45
logical reasoning, 4, 14
modes of reasoning, 4, 15
stochastic reasoning, 15

sensory memory, 57
SeqSolver, 8, 37, 58
sequent calculus, 16
shallow rule, 34, 42
simplicity, 4, 18, 19, 49, 52, see also

Occam’s razor
singularity, 53
size function, 27, 40
Soar, 3, 14, 15, 24
Solomonoff probability, 20
soundness, 17
span of attention, 24
strengthening, 18, 27
strong AI, 3
Stålmarck’s method, 16
substitution, 18, 27, 29
superintelligence, 53

truth, values, 16
Turing, 2

unification, 16
universal reasoner, iii, 53

vapidity, 47

weakening, 18, 27
William of Ockham, 19, 39
Wolfram Alpha, 37
working memory, iii, 11–13, 21, 24, 27,

28, 35, 36, 40, 57, 59
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capacity, 12, 24, 27, 35, 36, 40, 57,
59

load, 40
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Today’s computers are only as smart as the programmer who wrote their software. 
But what if computers can write their own programs and robots can learn to do 
several tasks? The scientific field that explores such systems is called artificial ge-
neral intelligence, which aims to arm computers with general intelligence so they 
can create new and better intelligence.

This thesis explores computational models of general intelligence, in particular 
learning and reasoning, in symbolic areas such as numbers and logic. Some mo-
dels produce computations or proofs that are easily comprehensible and acces-
sible to humans. Others can learn any kind of symbolic systems without any prior 
knowledge about it, and even outperform humans in some of them. The models 
utilize two important scientific discoveries: that the memory systems of humans 
are severely bounded, and that people prefer simplicity when choosing between 
patterns. The thesis ends with a model called Alice In Wonderland, which learns 
about new unseen worlds (symbolic domains) from random encounters.
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