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Abstract 
Membrane proteins are essential components of the cell and responsible 
for the communication with the outside environment and transport of 
molecules across the membrane. Water transport is facilitated by 
aquaporins, which are water selective transmembrane pores that serve 
to maintain cell homeostasis. Aquaporins have been well characterized 
in terms of structure and function and a broad variety of cell based assays 
have given insight into their mechanism of regulation, including 
membrane localization and conformational changes. High-resolution 
structural information on aquaporins has emerged mainly using X-ray 
crystallography, which require large quantities of pure and homogenous 
protein.  

This thesis presents the importance of codon optimization and clone 
selection in the first step of the pipeline to obtain high yields of 
recombinant membrane protein. This, in turn, enables biochemical 
characterization of the protein of interest. One such target, the human 
aquaporin 10, was found to be glycosylated in P. pastoris, increasing the 
protein stability in vitro but without any measurable impact on function.  

Aquaporin function is regulated by both physiological signals and 
interactions with other proteins. The regulation of the plasma membrane 
abundance of hAQP5 shows that three independent mechanisms – 
phosphorylation at Ser156, protein kinase A activity and extracellular 
tonicity – work in synergy to fine-tune the fraction of membrane 
localized protein. Furthermore, an overview of the literature of AQP 
protein:protein interactions reveal that the C-terminus is the most 
diverse sequence between aquaporins and that the majority of the 
known interactions map there.  

Obtaining high-resolution structural information of protein:protein 
complexes is one of the future challenges in structural biology. We 
developed a novel method for the characterization and purification of 
membrane protein complexes using hAQP0 and calmodulin as the proof-
of-principle interaction partners. Our approach combined bimolecular-
fluorescence complementation to characterize the interaction and 
fluorescence detection to detect the complex throughout purification. 
This resulted in a versatile method to purify intact protein complexes in 
enough yields for crystallization, potentially facilitating future structural 
determination by X-ray crystallography or electron microscopy.  
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1 Introduction 
 

Several billion years ago life appeared on planet Earth. How it came about 
is a fundamental question that has been discussed for thousands of years. 
Irrespective of whether the process of replication or metabolism was the 
first step towards life as we know it today, most scientists agree that life 
first evolved in the oceans of the young Earth, making water an essential 
molecule for life. 

The formation of lipid vesicles that came to enclose the replicating 
biomolecules created the first plasma membrane and defined an “inside” 
and an “outside”. Text books often visualize the membranes as a lipid sea 
with membrane proteins floating around like icebergs. Even though the 
membrane is indeed comparable to a fluid in some respects the 
complexity of the membrane should not be underestimated. The protein 
content of membranes can vary between 20% and 80% and the presence 
of sterols can alter the fluidity and thickness of the membrane 
significantly [1,2]. In the human body the lipid composition of different 
tissues and intracellular compartments exhibit large specificity and 
lipids often influence protein function [3]. As we learn more about the 
membrane heterogeneity it becomes evident that the studies of 
membranes and membrane proteins are closely intertwined.  

 

1.1 Membrane proteins 
About one third of any given genome is constituted of genes encoding 
membrane proteins involved in cellular processes ranging from 
facilitated transports of nutrients and byproducts to cellular structure, 
environmental sensing, signaling and movement [4,5]. It is estimated 
that 50% of the drugs available on the market target membrane localized 
proteins and many disorders are associated with defects in membrane 
protein functions [6].  

The close relationship between structure and function is explored by 
structural biology. Determining the protein structure is vital in 
understanding the function of the protein on a molecular level. Despite 
their biological and physiological relevance, the number of solved 
membrane protein structures severely lags behind their soluble 
counterparts constituting less than 1% of the known protein structures 
[7]. The big discrepancy is due to the difficulty of extracting membrane 
proteins from their native membrane environment and keeping the 
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protein functional and stable on the time scales of purification and 
crystallization. In addition, the natural abundance of membrane proteins 
is low compared to soluble proteins. Increased yields are obtained by 
recombinant protein production which has been the most common 
source of protein for structure determination over the past ten years [8].  

 

1.2 Aquaporins 
Water flows in and out of the cell and is facilitated by water channels in 
the membrane called aquaporins. The existence of aquaporins was 
postulated in the 1970s and there was much discussion on whether 
water transporting proteins were actually required for the cell to 
maintain homeostasis or if the passive diffusion across the plasma 
membrane was sufficient (reviewed in [9]). Certain cell types show 
elevated water permeability and treatment with mercurial compounds 
effectively decreased the water permeability to levels compared to pure 
lipid bilayers which indicated the presence of proteins with water 
transporting abilities [10]. In 1991, the Agre lab was investigating the 
rhesus blood group antigens and a contaminant at 28 kDa kept appearing 
in the SDS-PAGEs. They injected oocytes with the cRNA of the responsible 
gene and transferred them to a hypotonic buffer. This resulted in 
increased inflow of water causing swelling and finally rupturing of the 
oocyte [11]. This discovery of protein channels with water transporting 
abilities, the aquaporins, and their impact on physiology was awarded 
with the Nobel prize in 2003 [12]. 

Aquaporins adopt a common fold with six transmembrane helices 
connected by five loops with both the N- and C-termini on the cytosolic 
side of the membrane. The Asn-Pro-Asp (NPA) aquaporin signature motif 
is located in loops B and E which fold back into the membrane and create 
a seventh pseudo helix (Figure 1A). Four monomers come together in 
the physiological unit, the tetramer, where each pore acts as an 
independent water channel (Figure 1B). The central pore formed in the 
middle of the tetramer has been implicated in transport of both CO2 and 
ions, but this is still an ongoing controversy in the aquaporin field [13–
16]. 
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Figure 1. bAQP1 (PMID: 1J4N) show the general fold of aquaporins. A) Front view of 
the tetramer showing the half helices (pink). B) Top view of the tetramer showing the water 
molecules (red) and the central pore.  
 
Aquaporins can transport water at rates close to the rate of diffusion 
since the pore is lined with hydrogen bond donating residues. They 
replace the hydrogen bonds between the water molecules as they pass 
through the channel, resulting in high water flow capacities and high 
specificity. A highly selective transport of water is crucial as co-transport 
of protons in particular would have severe consequences for the cell as it 
would disrupt the electrochemical proton gradient across the membrane. 
The proton motive force stored in a transmembrane proton gradient is 
used to synthesize the majority of the cells’ ATP supply.  

The available AQP structures together with complementary molecular 
dynamics (MD) simulations show how water molecules pass through the 
pore. The aquaporin maintains its specificity by combining channel 
restriction and electrostatic barriers (reviewed in [17]). The two half 
helices, where the NPA motif is located, act as two macro dipoles, 
introducing an electrostatic barrier that repulses positively charged ions 
and acts as a proton exclusion mechanism. The restriction site with the 
aromatic/arginine (ar/R) region is located closer to the extracellular side 
(Figure 2). A conserved arginine and aromatic residues narrows the 
pore to exclude larges solutes [18]. Mutations in the ar/R enable the 
passage of glycerol, urea and ammonia which suggest that this region is 
also important in the selectivity of AQPs but exactly how this is achieved 
is still not known [19]. 
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Figure 2. The selective transport of water is created by the NPA motif and the ar/R 
region. The asparagines of the NPA motifs on the tips of the half helices acts as an 
electrostatic barrier. The ar/R region (purple) is part of the constriction site. Two helices 
have been removed for a better view.  
 
Proton exclusion requires a mechanism different from other solutes 
since the hydronium ions are so structurally similar to water. The 
Grotthuss mechanism predicted the presence of proton conducting 
networks in water almost 200 years ago [20]. In bulk water protons can 
“hop” from one water molecule to another, via hydrogen bonds and 
transient hydronium ions, which substantially increase their diffusion 
mobility compared to other ions [21]. Disrupting these networks is 
essential in preventing the protons from passing across the membrane 
through the water channels, keeping the electrochemical gradient across 
the membrane intact. Amazing detail of the water flow through the 
Pichia pastoris aquaporin AQY1 was captured at 1.15 AÅ  [22]. Together 
with the more recent structure at 0.88 AÅ  the movements and hydrogen 
bonds of the water molecules in the pore can be analyzed, giving insights 
into how the proton exclusion and selectivity work [23]. From these 
structures and the complementary MD simulations it seems like the 
water molecule movements are synchronized and that they move in a 
pairwise fashion through the pore. A rotation of the water molecules as 
they move allows the hydrogen bonding to be broken and would 
effectively prevent proton hopping by the Grotthuss mechanism [23,24].  
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1.2.1 Human aquaporins 

13 aquaporin homologues have been identified in the human body 
(hAQP0-hAQP12). Historically, they have been divided into three 
different classes depending on their substrate specificity and sequence 
homology (Table 1). Orthodox aquaporins (hAQP1, hAQP2, hAQP4, 
hAQP5, hAQP6 and hAQP8) exclusively transport water while the 
aquaglyceroporins (hAQP3, hAQP7, hAQP9, hAQP10) also transport 
glycerol, urea and/or other small solutes [25]. The third class, the super 
aquaporins (hAQP11 and hAQP12), remains relatively unexplored and 
their specificity is thought to be different from the other aquaporins 
based on their lower sequence homology [26].  
Table 1. Substrate specificity and tissue distribution of the 13 human aquaporins. 
The table is prepared based on data from [25,27–31].  

Protein Substrate specificity Major tissue distribution 

hAQP0 water eye lens 

hAQP1 water erythrocytes, kidney, lung, brain, eye, 
vascular endothelium 

hAQP2 water kidney 

hAQP3 water, glycerol, urea skin, kidney, lung, eye 

hAQP4 water brain, kidney, lung, muscle, stomach 

hAQP5 water lungs, salivary-, lacrimal- and sweat 
glands, lung, eye 

hAQP6 water, anions kidney (intracellular) 

hAQP7 water, glycerol, urea, arsenite adipocytes, kidney, testis 

hAQP8 water kidney, liver, pancreas, intestine, colon, 
testis 

hAQP9 water, glycerol, arsenite liver, leukocytes, brain, testis 

hAQP10 water, glycerol, urea intestine, skin, adipocytes 

hAQP11 water brain, liver, kidney (intracellular) 

hAQP12 water (?) pancreas (intracellular) 

 
Even though the human aquaporins is a homogenous protein family the 
recombinant overproduction in the yeast P. pastoris give rise to a large 
variation in production levels (Figure 3) [32]. Highly produced hAQPs 
are found in all three classes as are hAQPs produced at levels below 
detection. In this host, a higher fraction of the aquaglyceroporins are 
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inserted into the membrane compared to the orthodox aquaporins, but 
the determinants of high or low production levels are not obvious.  

 

Figure 3. The aquaporin family show large variations in overproduction yields. The 
total production levels are normalized to SoPIP2;1, a plant aquaporin used as in-house 
reference for production levels. The yields range from non-detectable to high production 
[32].  
 
This thesis focuses on the characterization of hAQP0, hAQP5 and hAQP10 
and these aquaporins are described below.  

 

1.2.2 Aquaporin 0 

In the 1980s, AQP0 (also known as Major Intrinsic Protein, MIP26) was 
the first aquaporin discovered. It is the most abundant membrane 
protein in lens fiber cells where it regulates the transparency of the lens 
in the eye [33]. In comparison to other aquaporins, AQP0 transport water 
at remarkably low rates and instead it is more involved in cell adhesion. 
It acts as a thin junction protein [34,35], reducing the refractive index in 
the lens by efficiently decreasing the intercellular distances. AQP0 also 
regulates the formation of gap junctions, membrane-spanning proteins 
that form pores that connect the cytoplasm of cells. The gap junctions are 
made up by complexes of connexins that allow small (<1kDa) molecules 
to pass between the cells, something that is particularly important in the 
lens as there are no blood vessels to supply the cells with nutrients and 
discard the byproducts of the cell metabolism [36].  
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The function and localization of AQP0 is closely regulated by C-terminal 
truncation [37], pH and Ca2+/Calmodulin (CaM) [38,39]. The C-terminal 
is vital for the proper trafficking of AQP0 to the membrane and naturally 
occurring truncations affect the translocation of the protein to the 
plasma membrane [40]. Once in the membrane, three histidine residues 
in the extracellular loops are responsible for the pH dependent reduction 
in water transport that occur when lowering the pH from 7.5 to 6.5 [38]. 
Interestingly, CaM turned out to increase the permeability of endogenous 
AQP0 in lens fiber cells while AQP0 expressed in oocytes showed an 
CaM-mediated inhibition under similar conditions [39]. It has been 
reported that both AQP0 and AQP4 have a close relationship between 
function and the lipid environment with respect to composition, 
thickness and elasticity [41,42] which could be the reason for the 
different behavior in the two systems.  

  

1.2.3 Aquaporin 5 

hAQP5 is primarily found in tissues such as lungs, airways, tear- and 
salivary glands. Malfunction of hAQP5 causes Sjögren’s syndrome with 
symptoms such as dry mouth and eyes [25,43,44]. This is an systemic 
disease with multi-organ consequences and without any treatment [45]. 
Current evidence suggests that this is an effect of improper trafficking 
rather than nonfunctional protein. Patients with Sjögren’s syndrome 
show accumulation of hAQP5 at the basal membranes while hAQP5 in 
healthy individuals is mainly targeted to the apical membranes [46,47].  

In 2005, the high resolution structure of hAQP5 was determined to a 
resolution of 2.0 AÅ  [48]. It is one of the few published aquaporin 
structures that contain the full tetramer in the asymmetric unit. This 
gives a chance to see differences between the individual monomers 
showing two different conformations of the C-terminus, indicating high 
flexibility and thus a possible role in regulation. A similar flexibility in the 
C-terminus was observed in the recently solved structure of hAQP2 
where its position differed between all four monomers [49]. The space 
group also allows the central pore to be studied further. In the hAQP5 
structure a lipid corresponding to phosphatidylserine was present in the 
central pore, effectively blocking it. With the implied involvement of the 
central pore in gas transport of aquaporins [50,51] it is interesting to 
note that hAQP5 knock-out mice showed a reduction in the water 
permeability while the CO2 transport was unaffected [52]. 
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1.2.4 Aquaporin 10 

hAQP10 is one of the most recently discovered aquaglyceroporins and it 
was found in the human small intestine [53]. This first discovery was 
soon proven to be an incompletely spliced gene product that lacks the 
sixth transmembrane domain and shows very low water transport rate 
and no glycerol transport at all. Shortly after, a correctly spliced version 
was discovered that contained all the six transmembrane domains and 
displayed the transport of water, glycerol and urea at high rates in a 
mercury sensitive manner (Figure 4) [54]. hAQP10 has also been found 
in adipocytes [55,56] and in the skin [57] where it could be involved in 
obesity and eczema, respectively.  

 
Figure 4. hAQP10 contain a glycosylation site in the extracellular loop C. The predicted 
topology of hAQP10 show an extended loop C with the glycosylation site (orange). TM 
regions (teal), NPA motifs (purple) and his tag (red) are labeled. The figure was made using 
TexTopo [58].  
 
The small intestine is the main site for nutrient absorption and as such it 
has a large surface area of lining cells to increase the uptake. In its relaxed 
state the small intestine stretches for up to 6.5 meters and the surface 
area has been estimated to cover ca 300 m2 [59], although recent studies 
imply that this is exaggerated and that the more accurate number is 
30 m2 [60]. The large surface is achieved by the intestinal villi that are 
lined with the absorbing cells, the enterocytes which further increase the 
surface. hAQP10 was found to localize to the apical membrane of the 
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enterocytes, thus absorbing water and glycerol from the intestine lumen 
[61].  

 

1.3 Protein:protein interactions 
The famous poem “No man is an island” could easily be related to 
proteins, as they are connected to the cellular environment in which they 
exist and come in contact with each other. Protein interactions are the 
basis for protein function and as such they are vital in our understanding 
of cellular processes. Protein:protein affinities range from stable protein 
complexes, which together carry out a function, to transient complexes 
that mediate signals in cellular pathways. Stable protein complexes can 
usually be purified using conventional methods. Other approaches are 
needed to obtain structural information from protein assemblies with 
low affinities between the proteins within the complex.  

In the 1960s it was discovered that the E. coli β-galactosidase could be 
translated as two separate peptide chains that assembled to make up a 
functional enzyme [62]. Since then, many proteins have been identified 
where fragments spontaneously associate to form a functional complex 
including dihydrofolate reductase (DHFR) [63], β-lactamase [64], 
luciferase [65], TEV protease [66] and fluorescent proteins. This was the 
basis for the development of protein complementation assays (PCAs). 
Two target proteins are fused to non-functional fragments and upon 
complex formation, the activity of the reporter protein is regained and 
the output can be recorded.  

One of the more successful approaches in screening for novel PPIs has 
been the yeast two-hybrid (YTH) system where multi domain 
transcription factors are divided into fragments that together enable the 
transcription of a reporter gene. The first report of YTH in 1989 
emphasize the advantage of studying PPIs in vivo and today YTH has been 
used to study interactomes of a wide range of organisms, from bacteria 
to human [67–69]. However, the high rates of false positives, which has 
been estimated to be up to 50%, calls for confirmation of the interaction 
using other methods.  

Bimolecular fluorescence complementation (BiFC) is a more recent assay 
to study PPIs using fluorescence as readout. It is based on the 
complementation of fluorescent proteins. Green fluorescent protein 
(GFP) was first discovered in 1962 as an accompanying protein to a 
protein purified from an Aequorea jellyfish [70]. This 27 kDa protein folds 
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into an 11 strand β-barrel with an α-helix treading through the center. 
This α-helix contains an amino acid triad – Ser65, Tyr66 and Gly67 – that 
undergo an autocatalytic post-translational modification, leading to the 
formation of the chromophore (Figure 5). The maturation is a three-step 
process starting with the cyclization of Ser65 and Gly67 followed by the 
oxygenation of Tyr66 resulting in a conjugated π system that fluoresce 
upon excitation. 

 

 
Figure 5. Cyclization and fluorophore formation in GFP is a three-step process. Figure 
reprinted with permission from reference [71]. 
 
Through mutagenesis the properties of the wild type GFP has changed, 
yielding enhanced GFP (GFP-F64L, S65T). These mutations caused a shift 
in optimal excitation wavelength as well as a 35-fold increase in the 
fluorescence intensity [72]. From a protein engineering point of view it 
is interesting to note that mutations that improve the fluorescence 
properties often destabilize the protein and interfere with folding and 
maturation, which call for additional mutations to regain protein 
stability. Mutations in the direct proximity of the chromophore have 
given rise to a new set of fluorescent proteins emitting light with a variety 
of wavelengths [73]. Further improvements affecting the oligomeric state 
[74], fluorescence intensity [75] and maturation efficiency [76] have 
resulted in protein variants with properties well suited for many 
different applications. Improving GFP with respect to these factors has 
created a large number of variants (the variants related to SYFP2, used 
in this thesis, are summarized in Table 2).  
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Table 2. Yellow fluorescent protein variants derived from GFP. 

Fluorescent protein Mutations 

YFP GFP - T203Y 

EYFP [77] YFP - S56G, S72A 

SEYFP [77] YFP - S56G, F64L, S72A, M153T, V163A, S175G 

venusYFP [77] YFP - F46L, S56G, F64L, S72A, M153T, V163A, S175G 

SYFP2 [78] YFP - F46L, S56G, F64V, S72A, M153T, V163A, S175G 

 
The BiFC assay is based on that YFP can be divided into two non-
fluorescent fragments that regain fluorescence as they refold. For protein 
interaction studies, the target proteins are fused to either of the 
fragments and upon complex formation YFP is reassembled and 
fluorescence is obtained [79]. YFP is split at positions in the loop between 
the β-strands where two main sites are used in BiFC. Most common is 
splitting between the 8th and 9th strand (generating YFPN1-173/YFPC174-
239) or alternatively between the 7th and 8th strand (generating the 
combination used in this thesis, YFPN1-154/YFPC155-239) [80]. Several 
combinations between the YFP fragment and target protein as well as the 
fusion sites (N-terminal versus C-terminal YFP) should be evaluated as 
the YFP fragments must be able to associate for the fluorescent complex 
to form (Figure 6).  

 
Figure 6. YFP is a β-barrel with an α-helix treading through the center. All YFP (PDB 
ID: 1MYW) variants have the GFP-T203Y mutation in the vicinity of the chromophore  
(orange) which shift the emitted light to longer wavelengths.  
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The maturation of the fluorophore is the rate limiting step in the use of 
fluorescent proteins and for BiFC in particular. The two fragments of the 
fluorescent protein need to come together in order to form the chemical 
environment that is necessary for the fluorophore to mature. The two 
YFP fragments come together in minutes while the formation of the 
chromophore usually is slower. Important for the BiFC assay is the notion 
that the assembly to the full fluorescent protein is practically irreversible 
even though reversibility has been reported in some cases [81–83]. In 
general, the fluorophore maturation time limits the use of BiFC for 
monitoring PPIs in real time. However, variants with extremely short 
maturation times have been developed that has made it possible to 
follow reactions on the timescale of minutes [84].  

 

1.4 Recombinant protein production 
Characterization and structure determination requires large amounts of 
protein. When working with eukaryotic and human membrane proteins 
in particular, the conventional approach is to use a recombinant source.  

 

1.4.1 Protein production systems 

The recombinant production of eukaryotic integral membrane proteins, 
with a few exceptions, requires a eukaryotic host [85]. Factors such as 
lipid composition, chaperones and a post-translational machinery are all 
necessary to produce properly folded and functional protein located in 
the membrane [86]. Unicellular organisms such as yeasts combine many 
of the benefits of a eukaryotic system with the easy and inexpensive 
means of genetic modification and culturing. In this thesis two different 
species of yeast, Saccharomyces cerevisiae and Pichia pastoris, were used 
in protein production, both with their specific advantages.  

S. cerevisiae was the first organism to have its complete genome 
sequenced [87] and there is a large amount of knowledge concerning the 
genetics and molecular biology associated with it in the literature [88]. 
There are a large number of strains and vectors available that can be used 
to tailor the production system for your needs which allow a multitude 
of experiments to be carried out.  

P. pastoris is known for its ability to grow to extremely high cell densities, 
especially when grown in bioreactors where parameters such as 
aeration, pH and nutrient supply can be closely regulated [89]. The 
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P. pastoris genome is now publicly available [90], but the genetic tools are 
not as elaborate as for S. cerevisiae. The presence of a strong, inducible 
promoter – alcohol oxidase1 (AOX1) – is the key to success for this 
production system. P. pastoris is a methylotrophic yeast which can utilize 
methanol as the sole carbon source. The enzyme is present in the first 
step of the methanol utilization pathway where it oxidizes methanol. To 
compensate for its very poor affinity for oxygen, the enzyme is present in 
large quantities. Replacing the AOX1 gene with the recombinant gene 
generate a potentially high-yielding production system.  

 

1.4.2 Posttranslational modifications 

There is a vast diversity in protein modifications that take place during 
or after the translation of the peptide chain. Amino acids can be 
chemically altered or have smaller chemical groups attached. More 
complex molecules such as carbohydrates, lipids or small proteins can be 
transferred to the peptide chain and proteolytic cleavage is common [91]. 
The many purposes of these modifications include fine-tuning of protein 
function, altering protein stability and aiding protein folding and 
localization [92].  

Glycosylations occur in all domains of life [93] and in eukaryotes they can 
be divided into two classes depending on if the glycan is attached to a 
nitrogen (N-linked) or oxygen (O-linked) [94]. The assembly of the 
glycosylations in the two classes is completely different. O-linked 
glycosylations are characterized by a sequential addition of 
monosaccharides to hydroxyl groups in sequences rich in serine, 
threonine and proline without them being part of a particular 
recognition sequence. O-linked glycosylation in mammalian cells is 
initiated in the Golgi apparatus, when the protein has already folded and 
awaits cellular sorting [95,96]. In contrast, the O-linked glycosylation in 
yeast is exclusively initiated in the endoplasmic reticulum (ER) resulting 
in a larger potential influence on protein folding [97].  
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s 

 7. The glycosylation pattern in P. pastoris are structurally similar to that of higher 
eukaryotes. There are two main types of N-linked glycosylations in humans, mannose-rich 
oligosaccharides (A) and complex oligosaccharides (B). P. pastoris predominantly produce 
mannose-rich glycosylations with high resemblance to the human high-mannose 
glycosylations. Figure adapted from reference [98]. 
 
In yeast, the majority of the glycosylations characterized so far have been 
N-linked [99]. N-linked glycosylations are built on a lipid carrier before 
transfer en bloc to an asparagine of a N-X-S/T sequon in the acceptor 
protein [100]. Further processing after the transfer allows a wide 
variation of glycosylation structures, something that is species specific in 
its appearance. S. cerevisiae is known to hyperglycosylate its proteins 
with up to 150 mannose residues being attached to a single site [99], 
while P. pastoris adds 8-14 mannose residues on average, which is in the 
same range as observed in higher eukaryotes (Figure 7) [101]. 

The presence of glycosylations introduces micro-heterogeneity into the 
protein sample which could interfere with crystal growth. Nevertheless, 
several protein structures have been solved with the glycosylation 
present and it could be critical in obtaining a functional and properly 
folded protein [102]. Glycosylation of aquaporins has shown to be 
required for proper trafficking in plants [103]. hAQP1 and hAQP3 have 
also been shown to be subjected to glycosylation but without any obvious 
impact on function [104]. 
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2 Scope of the thesis 
 

This thesis deals with the production of membrane proteins and membrane 
protein complexes. It is also a thorough examination of protein 
characterization with respect to aquaporin function and regulation.  

 

Membrane proteins are the gatekeepers of the cell and the targets of the 
majority of the drugs on the market today. The mechanism of protein 
function is tightly connected to protein structure and high resolution 
structures by X-ray crystallography have provided exciting details of an 
ever increasing number of protein families. Method development is 
necessary to enable structure determination and this thesis starts at the 
first step: the protein production which creates the foundation for a 
successful project in structural biology. 

In Paper I we studied the production of aquaporins, a membrane protein 
family that despite high sequence similarity shows large variations when 
produced recombinantly in P. pastoris. The importance of careful clone 
selection and codon optimization of the targets was evident and 
something that could be incorporated in all the following work.  

Characterization of aquaporin regulation was carried out in the following 
papers. Paper II investigates the effect of glycosylation on the 
thermostability of hAQP10, without any significant effect on function or 
selectivity. Paper III reports how hAQP5 translocation is regulated by at 
least three independent mechanisms involving phosphorylation at 
Ser156, protein kinase A activity and extracellular tonicity.  

Human aquaporins are mainly regulated by trafficking and 
protein:protein interactions are vital for proper function and 
localization. The extensive literature study of a selection of AQPs 
presented in Paper IV identifies the C-terminus as the major site of 
aquaporin interaction and also summarizes the diversity of the protein 
families that are known to directly interact with AQPs. As protein:protein 
interactions provide the means of regulation, a novel method to produce 
and purify protein complexes was developed and reported in Paper V. 
The use of BiFC to study protein:protein interactions in vivo was 
extended and used to successfully purify a protein complex of high purity 
in quantities suitable for crystallization.  
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3 Protein production optimization 
 

The first membrane protein structures determined by X-ray 
crystallography were purified from native sources where the protein was 
present in high amounts [105]. The development of recombinant protein 
production made it possible to produce targets that are less predominant 
in their native environment. Indeed, the fraction of membrane proteins 
purified from recombinant sources has surpassed the protein purified 
from native sources and is now the method of choice for most structural 
biology projects (Figure 8) [106].  

 

Figure 8. The number of unique membrane proteins increases exponentially. The 
majority of the structures are determined on protein from recombinant hosts [106]. 
 
With the increased use of recombinant protein overproduction, the 
development of strategies to optimize the yields took off. There are two 
different approaches to optimize the production depending on how well 
characterized the target is. General methods to increase protein yields 
can be applied to all targets while specific mechanisms that improve 
protein stability requires knowledge of the protein to be an option. In this 
thesis both approaches have been used on different targets. 

P. pastoris as a protein factory has been optimized and the workflow is 
now available from Invitrogen [99]. The gene of interest is cloned into a 
pPICZ vector and amplified in E. coli. Following linearization, the plasmid 
is transformed to P. pastoris where homologous recombination inserts it 
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into the genome, localizing the gene downstream of the AOX promoter. 
The Zeocin selection marker accompanies the gene and is used to assist 
in clone selection. P. pastoris was used as the host for protein production 
in Paper I and Paper II.  

 

3.1 Generating high yielding clones 
Working with membrane proteins the strategies for overproduction can 
be a bit different when compared to soluble proteins. It may not be 
beneficial to push the production to a maximum as the protein sorting 
and translocation systems need to keep up for the protein to be properly 
processed and translocated. The rate at which the proteins are 
transcribed and translated is faster in prokaryotes compared to 
eukaryotes which is one of the reasons why eukaryotic proteins are often 
more successfully produced in eukaryotic hosts [89]. By slowing down 
the translation rate in E. coli, Siller et al showed how the protein folding 
was improved and resulted in less aggregation [107]. Taken together, 
strategies that have proven successful for soluble proteins need to be 
evaluated for membrane proteins. The effects of codon optimization and 
transformation methods were evaluated for human aquaporins in 
Paper I.  

The genetic code is built from four nucleotides that combine into triplets 
to be translated into amino acids. Since there are more triplets (codons) 
than unique amino acids most amino acids are encoded by more than one 
codon, a phenomenon referred to as the degeneracy of the genetic code. 
Different species use the degenerate codons with a different frequency 
and in general, highly expressed genes are biased towards codons that 
are recognized by the most abundant tRNA. The tRNA pool is species 
specific and the use of different codons can be compared between 
organisms using the codon adaptive index (CAI). For example 
Plasmodium falciparum, the malaria parasite, has a remarkable high A 
and T content in its genome [108] which could be a problem when 
expressing genes originating from it in recombinant hosts (Table 3). For 
the only aquaglyceroporin present in the parasite, PfAQP, codon 
optimization of the gene for production in P. pastoris increased the yields 
enough to make protein characterization and initial crystallization 
possible [109].  
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Table 3. The codon adaptive index for PfAQP, hAQP1 and hAQP4 of the wildtype sequence 
compared to the sequence optimized for S. cerevisiae. A higher value indicate a higher 
proportion of the more abundant codons.  

Protein CAI native seq CAI optimized seq 
PfAQP 0.55 0.97 
hAQP1 0.05 0.97 
hAQP4 0.05 0.97 

  
By understanding the host organism and its translation machinery, 
substantial improvements can be made by optimizing the codon usage to 
fit the production host [109]. In Paper I the yields of hAQP4 could be 
increased 10-fold by codon optimizing the gene (creating Opt-hAQP4) for 
production in P. pastoris. Table 3 shows that the large difference in 
production between hAQP1 and hAQP4 cannot be explained solely by 
relating the native DNA sequence and the yields in yeast. There must be 
other factors also affecting the final yields in protein overproduction.  

P. pastoris strains were traditionally created by chemical transformation 
of linearized DNA, but more efficient and convenient methods have now 
been developed [110]. The linearized DNA is incorporated into the 
genome by homologous recombination and electroporation has been 
shown to increase the chance of insertion of several copies of the gene. 
The multi-copy integrants occur with a frequency ranging from 1-10% 
and is generally correlated with a higher protein production when 
evaluated for soluble proteins. In Paper I we investigated the influence 
of transformation method on the production of aquaporins, comparing 
chemical transformation by standard LiCl protocols and electroporation. 
The effect on production of high yielding targets was negligible, as 
exemplified by hAQP1, while hAQP8, normally produced at moderate 
levels, showed a five-fold increase when using electroporation compared 
to the chemical transformation. The same effect was seen for low-
producing targets where the production of hAQP4 was increased from 
non-detectable to detectable levels.  

 

3.2 Clone selection 
An important consequence of the multi-copy integration events of the 
transformed gene is the introduced variation between the clones. 
Evaluating the growth at a higher selection pressure could help in 
estimating the number of inserts introduced into the P. pastoris 
genome [99]. Since overproduction of functional membrane proteins can 
affect the viability of the cell and large amounts of protein can choke the 
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protein production machinery, the localization and protein yields should 
be confirmed by more thorough analysis. Growth on high Zeocin media 
should be used as a screening procedure where clones producing large 
colonies are taken to quantitative analysis. Further evaluation with 
respect to protein stability and localization are made from medium scale 
cultures after 6 h of induction followed by western blot on total cell lysate 
and fractioned membranes as described earlier [32]. There is a strong 
correlation between colony size and protein signal detected by western 
blot (Figure 9). This correlation is not given for membrane proteins but 
holds for the aquaporins. To confirm proper membrane localization and 
stability, a small number of colonies should be selected for quantitation 
(Paper I).  

 
Figure 9. The protein production can be correlated to growth on high concentration 
Zeocin medium. A) Quantitation of the protein signal from cell lysate. The protein signal 
correlate well with the colony size (bottom). B) Growth on high Zeocin plates can be used to 
select clones for further evaluation. Figure adapted from Paper I. 
 
 
3.3 Protein stability 
Protein stability is key to successful overproduction and crystallization 
of proteins. Fusion proteins are frequently used to improve the solubility, 
production yields and/or trafficking of the target. For the G-protein 
coupled receptors (GPCRs), signal transducers that are highly flexible 
and thus difficult to crystallize, T4 lysozyme (T4L) was critical in 
obtaining high-diffraction quality crystals [111]. T4L was engineered 
into one of the intracellular loops, stabilizing it and providing critical 
crystal contacts via the hydrophilic domain, leading to the first high 
resolution structure of a GPCR [112]. 
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In membrane protein production the use of GFP fused to the target 
protein significantly streamlined the screening of optimal conditions for 
protein production, solubilization and purification. GFP-fusions of 
eukaryotic membrane proteins have been produced in a high-throughput 
fashion in S. cerevisiae [113]. Rapid cloning, taking advantage of the 
homologous recombination, allow an efficient evaluation of the 
production levels and protein behavior during solubilization and 
purification. In Paper III we utilize hAQP5-GFP fusions to study the 
trafficking of hAQP5 (Section 4.3). Further, Paper V utilizes the 
experiences from work on GFP fusions in a novel purification method for 
protein complexes (Section 4.4). 

Mistic, a soluble bacterial protein that strongly associates with the 
membrane [114], has shown to be a successful fusion protein for 
overproducing both human and bacterial membrane proteins in E. coli 
[115,116]. However, as Paper I reports, this approach is not transferable 
to yeast. Mistic was codon optimized for P. pastoris and used as a leader 
sequence for hAQP1 and hAQP8 without any increase in protein yields. 
As membrane proteins are processed in the ER, the mechanisms for 
protein sorting in eukaryotes seem to suppress the positive effects of 
Mistic seen in prokaryotic systems. We also tried fusions of hAQP1 to the 
N-terminal of hAQP8 which resulted in substantial degradation and 
aggregation, suggesting that the fusions were unstable.  

We turned to investigate why aquaporins display large variation in 
production levels despite their high sequence homology. We sought to 
find the sequence(s) within hAQP1 that is responsible for high 
production. Chimeric constructs where hAQP8, produced at moderate 
levels, was stepwise replaced by the corresponding sequence of hAQP1 
was tested to determine the effect on production levels. The fact that the 
chimeras resulted in a complete loss of protein production (N-terminal 
and TM1) or no effect (TM1-2 and TM1-3) indicate that hAQP8 does not 
fold properly when merged with hAQP1, possibly explained by different 
folding pathways.  
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Figure 10. The folding pathway of aquaporins can be determined by two 
amino acids. The folding pathway of hAQP4 (A) can be changed to mimic the 
folding pathway of hAQP1 (B) by the mutations of two amino acids close to TM2 
and TM4. Figure inspired by reference [117]. 
 
Extensive studies of aquaporin stability have been carried out using 
hAQP1 and hAQP4, two orthodox aquaporins with almost 50% sequence 
identity that nevertheless show one of the largest differences in 
production yields [32]. hAQP4 folds sequentially into a six 
transmembrane (TM) helix structure as the peptide emerges from the 
ribosome (Figure 10). hAQP1 on the other hand, folds into an four helix 
intermediate state before rearranging to the final topology [117,118]. 
The signals that stop translocation of the helices have been shown to 
involve two hydrophilic amino acids in the beginning of TM2 and TM4, 
and explain this intermediary topology of hAQP1 [119]. The 
corresponding amino acids in hAQP4 are of hydrophobic nature and 
point mutations to exchange them for the corresponding amino acids in 
hAQP1 (hAQP4-M48N, L50K, generating hAQP4*) changes the folding 
pathway to mimic that of hAQP1. These mutations have a dramatic effect 
on the hAQP4 yield which is increased more than 10-fold (Figure 11).  
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Figure 11. Codon optimization and rational site directed mutagenesis increased the 
yields of hAQP4 significantly. Figure adapted from Paper I.  
 
The final yield of hAQP4 is a result of optimization on many levels. A 
higher gene dosage, improved transcriptional efficiency (sequence 
analysis performed previously by OÖ berg et al [32]) and more efficient 
translation result in higher protein levels. Including the improved protein 
stability due to the modified folding pathway, we have generated a 
functional hAQP4 construct that can be obtained in sufficient amounts 
for functional and structural investigation (hAQP4*-Opt). 
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4 Aquaporin characterization 
 

Protein characterization is a sub discipline that involve scientists from a 
wide variety of fields including physicians, protein chemists and 
structural biologists. Together we aim to describe a biological system, 
approaching it from different angles. This thesis contribute to the 
characterization of hAQP0, hAQP5 and hAQP10.  

hAQP10 is one of the human aquaporins with the highest production 
levels in P. pastoris and the only aquaporin that consistently give rise to 
distinct double bands on SDS-PAGE [32]. In Paper II we showed that this 
is caused by a glycosylation. Two out of three putative glycosylation sites 
in hAQP10 are found in the extracellular loops and are thus accessible for 
glycosylation under physiological conditions. To determine the 
glycosylation pattern of hAQP10, the two bands discussed were analyzed 
by mass spectrometry, unambiguously locating the glycosylation to 
Asn133 in loop C. This glycosylation was shown to be a standard 
mannose-rich, N-linked glycosylation with nine mannose residues 
attached to the glycosylation backbone.  

Mutagenesis of a glycosylation site is a common strategy to prevent a 
glycosylation from being transferred to the protein. By mutating the Asn 
in the N-X-S/T recognition site to a Gln, the site is disrupted while the 
chemical properties of the amino acid are maintained. In Paper II we 
investigated the effect of the glycosylation on protein function and 
stability. We created hAQP10-N133Q which specifically abolishes the 
glycosylation motif. Additional purification steps made it possible to 
isolate the unglycosylated population of the wild type mixture, 
hAQP10Δglyc. These hAQP10 samples were compared with respect to 
function and thermostability.  

 

4.1 Thermostability 
Glycosylations play a major role in the protein sorting and even small 
deviations from the normal glycosylation patterns can have severe 
effects. Glycosylations can often modulate protein folding, function and 
stability [120,121], which lead us to investigate the impact this specific 
glycosylation might have on hAQP10.  

Protein stability was measured as the loss of secondary structure with an 
increase in temperature using circular dichroism (CD) (Figure 12). By 
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monitoring the CD-signal at 222 nm the loss of α-helical content can be 
observed over time while ramping the temperature. Reproducible curves 
revealed a 3-5 °C difference in apparent melting temperature between 
the non-glycosylated hAQP10 and the wild type (Paper II). The 
monomodal appearance of all curves suggest that we have a uniform 
population in all the samples of hAQP10. Quantitation of the ratio of 
glycosylated:nonglycosylated protein in the wild type sample lead us to 
the conclusion that one monomer per tetramer is glycosylated. The 
relation to protein stability in a physiological context is not entirely 
obvious, but nevertheless the glycosylation seem to play a role in protein 
stability.  

 
Figure 12. The glycosylation increases the thermostability of hAQP10 by 3-6°C. The 
thermostability of hAQP10 was measured as loss of α-helical content with increased 
temperature using CD at 222 nm. hAQP0Δglyc has an apparent melting temperature 
approximately 5°C lower than wild type hAQP10.  Figure from Paper II.  
 
Could it be that the asymmetrical glycosylation pattern of hAQP10 is an 
artefact from a strong overproduction where the post-translational 
modification machinery cannot keep up with the amounts of protein 
produced? Our standard protocol of cultivation by fermentation, where 
the cells are fed 100% methanol for induction, could indeed push the 
cells into a very non-physiological growth pattern. Fermentation 
protocols involving a lower induction was investigated and a mixed feed 
(40% methanol + 60% sorbitol) was employed for induction. The cells 
are provided with a non-repressing carbon source that allow the cells to 
continue to grow. This had no impact on the yield or relative amount of 
glycosylation in hAQP10. On the other hand, some protein degradation 
products were no longer seen with the mixed feed induction and this 
approach was used subsequently for hAQP10 cultivation.  
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For crystallographic purposes the heterogeneity introduced by this 
partial glycosylation is decreasing the probability of obtaining well-
ordered crystals. In order to obtain the first structure of a human 
aquaglyceroporin, this problem might need to be addressed from a 
different perspective, maybe by generating more thermostable hAQP10 
mutants that could give a stable, homogenous protein suitable for 
crystallization. 

 

4.2 Functional assays 
An important part of protein characterization is to determine or confirm 
functionality. The difficulties associated with measuring water transport 
are related to the large abundance of water, the very fast transport rates 
and the background transport across the membrane. These experiments 
can be carried out in vivo – using either oocytes or spheroplasts (yeast 
cells with the cell wall removed) – or in artificial membrane mimicking 
systems such as liposomes. In vivo systems will produce and transport 
the protein to the plasma membrane and this is advantageous as all the 
protein will have the same, correct localization. As the protein is never 
removed from its more native, cellular environment the problems 
associated with protein purification are bypassed. However, targets with 
low water transporting abilities could be difficult to measure reliably and 
inherent variations in protein production levels are challenging to 
correct for.  

In Paper II the functional studies of hAQP10 were carried out by 
reconstituting purified protein into liposomes. The compartment made 
up by the lipid vesicles is smaller than the cell based systems and the lipid 
membrane will mimic the native lipid bilayer. With this artificial 
approach it is possible to manipulate the lipid composition to suit the 
target protein. The lipids are solubilized in a detergent solution with the 
addition of the protein, and as the detergent is slowly adsorbed by 
polystyrene beads, proteoliposomes are formed. As the water transport 
through aquaporins is both bidirectional and passive, a random 
orientation of the protein in the liposome is often not a problem. Using 
stopped flow spectroscopy the liposomes are rapidly mixed with a 
hypertonic sucrose buffer which cause an outward flow of water and a 
shrinking of the vesicles. This can be followed by measuring the increase 
in light scattering as a function of time resulting in exponential curves 
which can be fitted with a one or a two exponential function. The control 
liposomes of only lipids are fitted with a one exponential equation 
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estimating the passive water transport across the membrane. This 
contribution is also present in the proteoliposome measurement, but a 
faster component is also present which correspond to the transport 
facilitated by the aquaporins.  

 

 

Figure 13. Glycosylated hAQP10 transport water, glycerol and erythritol as the wild 
type hAQP10. The graphs show the transport of water (A), glycerol (B) and erythritol (C) 
for wildtype (blue), hAQP10Δglyc (green) and hAQP10-N133Q (orange) and control 
liposomes (grey). Figure from Paper II. 
 
In addition to water, hAQP10 has also shown to transport glycerol [54]. 
This can be measured in the liposome system by suspending the 
liposomes in a glycerol containing buffer that is isotonic to the sucrose 
buffer used to drive the transport. As the liposomes are mixed with the 
sucrose buffer, glycerol is transported out of the cell, along the gradient. 
The increase in solutes on the outside of the liposomes cause water to be 
co-transported and the vesicles to shrink. The same approach was used 
to measure the transport of erythritol.  
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Erythritol is a four-carbon sugar alcohol commonly used as a food 
additive in calorie-reduced beverages (known as E968). Larger sugar 
alcohols (sorbitol, xylitol etc.) are not absorbed very well by the intestine 
and irritate the large intestine causing a laxative effect. Interestingly, 
90% of the erythritol ingested is absorbed and never reach the large 
intestine [122]. In Paper II we show that hAQP10 transport erythritol 
(Figure 13) and can facilitate the uptake in the small intestine. We’ve 
also showed that hAQP10 transports xylitol at very low rates and that the 
sorbitol transport is non-detectable (Fischer, OÖ berg, Sjöhamn, 
unpublished data). As a consequence, xylitol and sorbitol end up in the 
large intestine where they cause the side-effects commonly associated 
with sugar alcohols. The rates of glycerol and erythritol is unaltered by 
the glycosylation while hAQP10-N133Q showed a slower water transport 
compared to the hAQP10 with wild type sequence (Figure 13, Paper II).  

Reports on glycosylated aquaporins in their native tissue also suggest an 
asymmetric glycosylation of the tetramer. hAQP1 purified from 
erythrocytes had N-linked glycosylations attached to 50% of the 
monomers, but removing it had no impact on functionality or 
oligomerization state [123]. Whether or not the glycosylation affect 
hAQP10 trafficking in the small intestine is something that remains to be 
determined, but in P. pastoris there is no difference in membrane 
localization between the wildtype and the mutated hAQP10 protein.  

 

4.3 Trafficking and regulation  
Modulation of aquaporin activity is critical in controlling the water flux 
across the membrane. Aquaporins in plant and fungi have been shown to 
undergo conformational changes that close the pore. Structural evidence 
of gating has been found in the plant aquaporin SoPIP2;1 [124] and in 
the yeast aquaglyceroporin AQY1 [22]. Conformational changes of loop D 
and the N-terminus, respectively, cause a single residue to be inserted 
into the channel resulting in closing of the pore. Gating of human 
aquaporins seems to be more controversial but has been implied in 
AQP0, hAQP2 and hAQP4 while the evidence of gating of hAQP5 mainly 
include molecular dynamics simulations [125].  

In mammals, the water permeability of the membrane is instead fine-
tuned by regulating the amount of aquaporin present in the membrane. 
The protein is stored in intracellular vesicles that merge with the plasma 
membrane in response to external stimuli, a mechanism referred to as 
trafficking. The most well-understood case of aquaporin trafficking is the 
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absorption of primary urine by hAQP2 in the collecting ducts of the 
kidneys [126]. hAQP2-containing vesicles are fused to the plasma 
membrane in response to the hormone vasopressin and in a matter of 
minutes the permeability of the plasma membrane is increased [127]. 
Vasopressin activates protein kinase A (PKA) in a cAMP-dependent 
manner, triggering phosphorylation of serine residues in the hAQP2 
C-terminus where Ser256 is the most prominent one [128]. In the case 
of hAQP2 phosphorylation, dephosphorylation and ubiquitination 
together regulate the amount of hAQP2 active in the membrane [129]. 
Mutations in hAQP2 that interfere with trafficking lead to conditions 
such as nephrogenic diabetes insipidus (NDI) where an inability to 
reabsorb water in the kidneys cause severe dehydration [130]. 

hAQP5, the closest homologue to hAQP2 with 63% sequence identity, is 
also regulated by trafficking. hAQP5 contains a number of putative PKA 
consensus sites of which Ser156 in loop D is thought to be the main 
responsible in trafficking. In Paper III we investigate the role of the 
phosphorylation of residue Ser156 by mutating the residue to either 
abolish the phosphorylation site or introducing an amino acid that 
mimics a phosphorylation (S156A and S156E respectively). Using 
hAQP5-GFP fusions in HEK293 cells the cellular localization of hAQP5 
can be observed in real-time. In agreement with previous results, wild 
type hAQP5 and hAQP5-S156A have the same relative membrane 
localization. In comparison, the basal membrane localization of hAQP5-
S156E is elevated (Figure 14A). The results presented in Paper III show 
for the first time how a phosphomimicking mutant is linked to a 
difference in translocation of hAQP5 and it suggests that the 
phosphorylation state of Ser156 does indeed affect the membrane 
targeting of hAQP5. Interestingly, the crystal structure of hAQP5-S156E 
does not deviate significantly from the wild type structure (Paper III). 
Thus, the phosphorylation of Ser156 does not act through 
conformational changes of the C-terminus. 
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Figure 14. hAQP5 membrane localization depend on the phosphorylation state of 
Ser156. A) Introducing the S156E mutation increases the membrane localization in 
unstimulated cells in comparison to WT hAQP5 and hAQP5-S156A. B) PKA inhibition 
increases the membrane localization of all hAQP5 variants. Figure adapted from Paper III.  
 
AQP5 membrane localization displays a biphasic response to elevated 
cAMP levels [131]. Within 2 min of cAMP exposure the membrane 
abundance was reduced. However, after 8 h of incubation, the amount of 
hAQP5 localized to the membrane was higher than the baseline. These 
effects were abolished by a PKA inhibitor indicating that PKA activity is 
important in both responses. In our experiments, wild type hAQP5, 
hAQP5-S156A and hAQP5-S156E all exhibit increased membrane 
localization upon PKA inhibition (Figure 14B). Whether PKA affects 
hAQP5 trafficking via the phosphorylation of other proteins or simply 
other residues in hAQP5 is not possible to determine just from these 
result. There is evidence of phosphorylation of Thr259 in human cell 
lines and from tissue specimens of mouse salivary glands, but without an 
effect on hAQP5 trafficking [132].  

Changes in tonicity have been shown to increase the amount of hAQP5 
found in mouse lung tissue. Zhou et al show that an increased 
transcription and mRNA stability lead to higher hAQP5 levels when cells 
are subjected to hypertonic induction [133]. However, the study did not 
specify the cellular localization of hAQP5 and the membrane localized 
fraction is not known. From the results presented in Paper III, it is clear 
that the membrane localization of hAQP5 in HEK293 cells is increased as 
the extracellular tonicity is decreased (Figure 15). This mechanism is 
independent of the phosphorylation of Ser156 and of PKA activity.  
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Figure 15. Extracellular tonicity increase the membrane localized hAQP5. The 
mechanism by which extracellular hypotonicity change the membrane localization of 
hAQP5, hAQP5-S156A and hAQP5-S156E is unrelated to Ser156 phosphorylation and PKA 
activity. Figure adapted from Paper III. 
 
This systematic investigation on the effect of phosphorylation of Ser156, 
PKA activity and the surrounding tonicity lead to the conclusion that 
three independent mechanisms regulate the trafficking in a coordinated 
fashion (Figure 16). As with most processes in the cell, trafficking is an 
equilibrium. Both the rate of trafficking to the membrane and the rate of 
internalization are regulated and affect the final membrane abundance. 
Changes in membrane permeability are accommodated by a shift in the 
trafficking equilibrium leading to changes in the amount of membrane 
localized hAQP5. 
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Figure 16. hAQP5 is regulated by trafficking by three independent mechanisms. A) 
wild type AQP5 under isotonic conditions. B) Phosphorylation of hAQP5 target the protein 
to the membrane. C) PKA relocalizes hAQP5 to intracellular vesicles. D) An extracellular 
decrease in tonicity increase the hAQP5 abundance in the membrane. Figure adapted from 
Paper III. 
 
The complex regulation of hAQP5 trafficking has been shown to also be 
depending on an interaction with the prolactin-inducable protein (PIP) 
via a C-terminal interaction. PIP is a 17 kDa glycoprotein with a large 
number of interaction partners including actin, myosin and CD4 and has 
been considered a biomarker in breast and prostate cancer due to its 
overexpression and secretion from those tissues [134,135]. PIP is 
expressed at lower levels in mouse models of Sjögren’s syndrome and 
has been implicated in the incorrect hAQP5 localization associated with 
the condition. The evidence of proteins interacting with aquaporins to 
affect cellular translocation and protein function is increasing and a more 
complete understanding of aquaporin regulation is now emerging.  

 

4.4 Protein:protein interactions  
The extensive literature study of aquaporin protein:protein interactions 
presented in Paper IV summarizes the direct interaction partners 
known for some medically relevant aquaporins: AQP0, hAQP2, hAQP4 
and hAQP5. These aquaporins represent diverse mechanisms of 
regulation and cellular function. We conclude that almost 70% of the 
interactions summarized in Paper IV involve the C-terminus. This is the 
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most diverse sequence in the aquaporin family and as such it is often 
implicated as the main site of regulation.  

hAQP2, hAQP4 and hAQP5 are all regulated by trafficking. This is 
reflected in the nature of the interaction partners which affect the 
translocation. Even though phosphorylation is an important factor in the 
trafficking signaling, only three kinases have been identified. As these 
interactions are likely to be more transient than the other interaction 
partners, the sensitivity of the assays used may not be high enough to 
detect them.  

The majority of the interaction partners reported for AQP0 and APQ4 are 
proteins involved in intercellular interactions and cell shape. Both AQP0 
and hAQP4 are known to be involved in maintaining the cellular 
structure in the lens and brain respectively. The arrangement of hAQP4 
into crystalline arrays in the membrane is reminiscent of the junction 
formation of AQP0 in the lens. Both processes are regulated by the 
termini of protein. There are two splice variants of hAQP4 (hAQP4M1 and 
hAQP4M23 respectively) resulting from two translation initiation sites. 
They differ by 22 amino acids in the N-terminus which has been shown 
to be important in regulating the formation of the large crystalline 
ordering of hAQP4 seen in astrocytes [136,137]. In a similar fashion, 
proteolytic C-terminal truncation of AQP0 regulate the formation of tight 
junction which in turn affect the water permeability through the pore.  

Several AQP0 structures determined by X-ray crystallography and 
electron diffraction have linked the formation of tight junctions to an 
open and closed state of the pore [138–142]. A 2D electron 
crystallography structure solved to 1.9 AÅ  revealed how the two 
constriction sites, one which is unique to AQP0, elongates to involve a 
stretch up to 10 AÅ  in junctional AQP0, making the channel too narrow for 
water to pass [143]. The AQP0 interaction partners identified to date are 
proteins mainly involved in the formation of gap junctions or otherwise 
affecting the cell organization (Paper IV). AQP0 is the only known 
example of an aquaporin where a protein interaction directly affects the 
water permeability by induced gating. The AQP0-Calmodulin interaction 
is well characterized and used as a proof-of-principle system in the 
development of a novel strategy for purification of protein complexes 
presented in Paper V. 
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4.4.1 The AQP0-CaM interaction 

In cell signaling Ca2+ acts as a second messenger and sudden increases in 
intracellular Ca2+ concentration activates a huge number of downstream 
targets. Calmodulin (CaM) is one of the major calcium sensor proteins in 
eukaryotes with the ability to interact with a diverse collection of 
proteins in the response to Ca2+ [144]. This 17 kDa protein has four 
EF-hand Ca2+ binding motifs localized in two globular C- and N-terminal 
domains separated by an α-helical linker. As Ca2+ binds these domains 
undergo large conformational changes (Figure 17), shifting outward and 
exposing the α-helix linking the EF-hands together [145,146].  

 

Figure 17. Calmodulin undergo large structural changes upon Ca2+ binding. A) CaM 
without Ca2+ (PDB ID: 1CFD). B) CaM with Ca2+ (grey spheres) (PDB ID: 1CLL). 
 
The hydrophobic stretch of amino acids in the linking α-helix interact 
with the amphipathic α-helix in the C-terminus of AQP0, an interaction 
that has been characterized using both biochemical and structural 
methods [147–149]. NMR titration experiments of labeled CaM showed 
binding of a peptide corresponding to the AQP0 C-terminus with a 1:2 
stoichiometry, confirmed by the EM structure of the AQP0-CaM complex 
published in 2013 [148,150]. MD simulations show an allosteric 
mechanism that links the CaM binding to movement of residues in the 
second constriction site, ultimately closing the channel [148,151]. 
Altogether, this led to a model where CaM binds the C-termini of two 
neighboring AQP monomers simultaneously in an antiparallel fashion 
(Figure 18). This is an unusual arrangement represented by only 1% of 
the structures available of CaM complexes available in the protein data 
bank [106].  
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 Figure 18. AQP0-CaM model based on EM (PDB ID: 3J41) [151]. Two calmodulins (green) 
bind to the C-termini (orange) of AQP0 (blue). This interaction is depending on Ca2+ (grey 
spheres) binding to calmodulin. 
 
One of the future challenges in the field of structural biology is to 
understand the mechanisms of protein interactions. We developed a 
purification strategy to purify intact protein complexes with the benefit 
of the characterization and localization confirmation in vivo. 

In Paper V the complex formation of hAQP0 and CaM was observed in 
S. cerevisiae using BiFC. The constructs were based on two halves of YFP 
(YFPN and YFPC) fused to the target proteins in different combinations. 
Positive controls showing hAQP0 tetramerization confirm correct 
localization to the membrane and that the BiFC complexes develop 
fluorescence as a result of the protein interaction with signals similar to 
an YFP-hAQP0 fusion (Figure 19). A BiFC pair of hAQP0 and hAQP2 
cause a loss in fluorescence consistent with a decrease in tetramer 
formation. The combination with YFPC fused to hAQP0 showed no 
fluorescence while the other combination, YFPN-hAQP0 + YFPC-hAQP2, 
did show some fluorescence, indicating that there is an interaction 
between hAQP0 and hAQP2. hAQP2 was selected as the negative control 
of hAQP0 tetramerization based on their high sequence (60%) and the 
different tissue distribution in the human body. The fluorescence of the 
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YFPN-hAQP0 + YFPC-hAQP2 complex suggest that there is a hAQP0-
hAQP2 complex forming. hAQP2 has previously been shown to interact 
with hAQP5, indicating a role for aquaporin regulation by each other 
[152]. In plants, AQPs have been confirmed to interact [153,154] and 
heterotetramerization has been suggested to regulate the trafficking of 
some plant aquaporins [155]. 

 
Figure 19. Aquaporins form tetrameric complexes in S. cerevisiae. A) In vivo 
fluorescence of YFP-hAQP0 and a tetramerization control (YFPN-hAQP0+YFPC-hAQP0) were 
tested. As negative control we combined hAQP0 and hAQP2 in two ways where 
YFPN-AQP0+YFPC-hAQP2 showed some fluorescence. B) Microscopy image of YFP-hAQP0. 
Figure adapted from Paper V. 
 
The complex formation of AQP0 and calmodulin was also investigated. 
For AQP0-CaM, fluorescence was observed when YFPN was fused to the 
N-terminus of hAQP0 (Figure 20). For all the cases reported, fusing YFPC 
to hAQP0 always resulted in a loss of fluorescence, possibly caused by 
steric hindrance where the YFP fragments consistently end up too far 
away from each other. Truncation of the hAQP0 C-terminus (resulting in 
hAQP0Δ) removed the CaM interaction site, leading to an efficient and 
specific loss of fluorescence as the complex formation was impaired 
(Figure 20). BiFC locks the interacting proteins by linking them via the 
YFP. The YFPN-hAQP0Δ + YFPC-CaM combination demonstrate that the 
fluorescence is a result of the protein interaction and not the other way 
around. 
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Figure 20. hAQP0 and CaM form a complex in vivo. A) YFPN-hAQP0 + YFPC-CaM form a 
complex in vivo. Truncation of hAQP0 at residue 221 removes the CaM binding site and 
result in a complete loss of fluorescence. B) Microscopy image of YFPN-hAQP0 + YFPC-CaM 
cells. Figure adapted from Paper V. 
 
By the emergence of fluorescence, we can observe the complex formation 
of hAQP0-CaM using BiFC in S. cerevisiae (Figure 21). The membrane 
localization of the fluorescence signal indicate that the YFP fragments do 
not interfere with the production and translocation of the proteins. To 
understand the interaction on a molecular level the complex was 
purified, taking advantage of YFP to hold hAQP0 and CaM together in 
stoichiometric ratios in addition to acting as a tracing probe during all 
the purification steps. 

 

Figure 21. Schematic figure of the hAQP0-YFP-CaM complex assembly. YFPN-hAQP0 
(blue) is located in the membrane while YFPC-CaM (green) is located in the cytoplasm. 
Together they form the hAQP0-YFP-CaM complex.  
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4.4.2 Purification of protein complexes 

 

Using X-ray crystallography we want to understand the interaction 
between hAQP0 and CaM on a molecular level. The complex was purified 
using standard protocols including ion exchange and size exclusion 
chromatography with fluorescence detection (Figure 22). Recombinant 
hAQP0 is known to form octamers during the purification [139], which 
correlate well with the retention volume seen for the major peaks in the 
size exclusion chromatography (SEC).  

 

 

Figure 22. Purification of the YFPN-hAQP0 + YFPC-CaM complex show a peak at a 
retention volume consistent with an octameric complex. 
 
Analysis of the purified complex on native-PAGE using immunodetection 
with antibodies specific for the his-tag and CaM, respectively, show a co-
localization of the two signals (Figure 23). The band appears close to 
500 kDa, confirming the purification of the full hAQP0-CaM-YFP complex 
(expected molecular weight of an octameric complex is 495 kDa). There 
is also a substantial shift in comparison to the positive control, purified 
hAQP0 (octamer expected at 230 kDa).  
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A                                        B 

                         

Figure 23. hAQP0 and CaM are both detected in a band around 500kDa, indicating 
an intact complex. A) Anti-his (detecting the YFPN-hAQP0 fusion) show a signal larger 
than 480 kDa. Purified hAQP0 is loaded as a reference for size. B) Anti-CaM western also 
show a signal larger than 480 kDa. Together, this is a strong indication of an intact 
YFPN-hAQP0+YFPC-CaM complex. Figure adapted from Paper V. 
 
Using BiFC in protein complex purification aiming at crystallization has 
several benefits. First, the complex formation in vivo confirms that the 
protein targets localize to their native cellular compartment. This can be 
compared to PPI identified by immunoprecipitation where a large 
number of the false positives is a direct result of the method of 
preparation. Since immunoprecipitation is based on cell lysate all 
proteins in the cell, irrespective of localization, are able to interact and 
can be detected.  

Second, the mature fluorescent complex can be traced throughout the 
solubilization and purification steps. As with the conventional GFP tag, 
the optimal conditions for each purification step can easily be 
determined using fluorescence detection.  

Third, during crystallization the YFP provide an increased hydrophilic 
surface beneficial for making crystal contacts. In the case of aquaporins 
and other membrane proteins with small soluble domains this can prove 
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important, as shown by the use of GFP previously [156]. By crystallizing 
the full complex the termini or other flexible regions that are part of the 
interaction site will be stabilized allowing them to be visible in the 
structure. Further, depending on the size of the complex, YFP can be used 
as an initial search model to obtain the phases for molecular 
replacement. Structural biology will benefit from revealing the molecular 
mechanisms of protein:protein interactions. The combination of BiFC 
and fluorescence detection provide a promising tool for producing and 
purifying protein complexes to crystallization grade quality in sufficient 
yields. 

 

4.5 Future directions for structure determination of 
protein complexes  

Most methods for protein interaction studies have problems including 
full length membrane proteins due to their high hydrophobicity. With the 
aquaporin C-terminus being the main site for protein interactions 
(Paper IV), a solution has been to generate peptides corresponding to 
the terminal sequences. Using these peptides as bait it is possible to get 
around the problems associated with membrane proteins in the 
interaction assays. BiFC allows for full-length proteins to be used and 
since the complex formation takes place in vivo only proteins that localize 
to the same cellular compartment can interact (Paper V). In addition, the 
fluorescence resulting from the complex formation of the target proteins 
makes it possible to confirm their proper localization using fluorescence 
microscopy, an especially important quality control in the case of 
membrane proteins [157]. The fluorescence of YFP, just like GFP, needs a 
reducing environment in order to develop, limiting the use to the 
intracellular environment [158,159]. As a consequence, this particular 
BiFC system can only be applied to targets where the interaction site is 
intracellular. However, there are GFP variants that retains their folding 
when secreted to the extracellular space [160] which could be adapted 
to BiFC to cover virtually every interaction in the cell.  

Another consideration when working with protein complexes is the 
molecular weight. Although X-ray crystallography is the dominating 
method for structure determination of membrane proteins, other 
methods may be worth considering. Knowing that hAQP0 has a high 
tendency to form octamers, interacting via the extracellular loops, the 
hAQP0-CaM complex linked by YFP (495 kDa) could be considered for 
cryo-electron microscopy (cryo-EM). The combination of BiFC and cryo-
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EM could be used to determine structures of large protein complexes 
held together by low affinity interactions.  

The ongoing advances in cryo- EM, casually referred to as the 
“EM-revolution” due to its rapid development, has improved the 
resolution of the recovered protein complex structures immensely 
during the past 25 years, and even more so the past 2 years [161,162]. 
Single particle cryo-EM effectively bypass the process of crystallization 
and hence the need for large amounts of protein. As the protein is present 
in a liquid environment upon freezing, the hydration layer around the 
protein remains intact and the protein environment is more similar to a 
native state [163]. The initial limitations to study only very large protein 
complexes is now starting relax with exciting structures also emerging 
for smaller protein complexes of 200-300 kDa. To date, the highest 
resolution obtained with the method was the structure determined of a 
β-galactosidase tetrameric complex (1.8 MDa) at 2.2 AÅ  [164] while 
human γ-secretase (170 kDa) is the smallest protein complex to be 
structurally determined by cryo-EM to 3.4 AÅ  [165]. For a successful EM 
experiment, a structurally homogenous sample is more important than 
protein purity. Similarly to X-ray crystallography, regions displaying high 
degrees of random movement are difficult to resolve but, in contrast, 
ordered conformational changes can sometimes be visualized. The 
trapping of conformational states by cryo-EM and fitting the density with 
existing atomic models can be used to define large structural changes 
[166].  
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5 Concluding remarks  
 

Aquaporins, the cellular water channels, are more than pores in the 
membrane: they facilitate water transport at the rate of diffusion with 
high specificity. The 13 isoforms found in the human body display a wide 
variation in tissue distribution, cellular localization, regulation 
mechanism and specificity. Aquaporins have been shown to transport 
water, glycerol, urea, anions, cations and even CO2. The complexity of the 
function and regulation of these proteins increase as we learn more 
about them.  

Bottlenecks associated with structural determination of proteins get 
narrower when dealing with membrane protein. Robust strategies to 
improve yields and protein stability are necessary to achieve the first 
goal: sufficient amounts of protein for functional and structural 
characterization.  

The aquaporin protein family was used as a model system for 
investigating general and specific means of increasing the obtained 
protein yields. We clearly show that codon optimization and 
transformation method can be adapted as general methods to obtain 
higher yields of this class of membrane proteins. This effect was more 
pronounced for proteins produced at low to moderate levels. hAQP4, an 
aquaporin found in the brain, was previously not detectable when 
overproduced in P. pastoris. With knowledge of how rational mutagenesis 
increased the yield and together with the codon optimization presented 
here, we now have a hAQP4 mutant with wildtype characteristics and 
increased stability that can be subject to a large number of experiments. 

Post-translational modifications can influence protein behavior and are 
known to influence trafficking of aquaporins. Paper III provided new 
insights to the trafficking of hAQP5. These experiments, performed in 
HEK293 cells, led us to the conclusion that a number of mechanisms act 
together to determine the final membrane abundance of hAQP5. Based 
on the independent nature of the PKA inhibition, it is possible that some 
regulatory mechanism is mediated via protein:protein interactions. Also, 
the behavior of hAQP5-GFP seem to differ between cell lines when 
comparing HEK293 and MDCK cells. It is always important to keep in 
mind that while heterologous cell based assays are a convenient way of 
studying protein regulation, the results must be correlated to 
information from in vivo observations.  
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Glycosylation has been shown to affect the stability of hAQP10 in vitro, 
but has so far not been seen to have any effect on aquaporins in vivo. Since 
glycosylations are not encoded by the genome but a result of enzymatic 
reactions, they introduce heterogeneity into the protein population that 
could be relevant for modulating protein function. 

Protein:protein interactions are critical for cellular function and thus 
important for our understanding of the working mechanisms in the cell. 
We combined established methods for investigating PPIs (BiFC) and 
protein purification (fluorescence detection) to achieve a promising tool 
to purify intact complexes where the constituting proteins have low 
affinity for each other. The large flexibility of the method will potentially 
provide the means to study a wide variety of protein targets.  

Structural biology has so far given us a number of revelations regarding 
protein function and mechanisms of action. To fully understand the role 
of proteins within the cell, structures of protein complexes will be 
essential. The collective knowledge of crystallizing difficult targets, 
including membrane proteins, and new developments in technology will 
all be important in determining high resolution structures of protein 
complexes. Combining BiFC with protein X-ray crystallography or 
cryo-EM can potentially cover a wide range of complexes with respect to 
affinity and size. The recent advances presented here lay technical 
foundations for the structural characterization of novel targets and the 
elucidation of protein complexes are expected to be one of the new 
frontiers of structural biology. 
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6  Future perspectives  
 

Membrane proteins are key players in many biological processes and 
crucial targets of drugs and antibiotics. Understanding the protein 
structure, function and interactions with other proteins are of great 
importance in developing new drugs for existing and novel targets. The 
ongoing unraveling of aquaporin regulation and function is far from 
complete and many exciting discoveries are still waiting to be made.  

For the aquaporins, the variations seen in specificity between isoforms 
are most likely based on structural differences. It would be interesting to 
understand how these structural changes ultimately affect the fine-
tuning of aquaporin function. Some aquaporins have very special, and for 
the protein, essential variations in the NPA motif and the effect on 
function is an area that has not received much attention so far.  

There is a large number of interaction partners found that affect the 
aquaporin function and regulation. New methods to study and 
structurally determine these protein complexes will provide us with a 
way to answer novel scientific questions. 
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