
Thesis for the Degree of Licentiate of Philosophy

Analysing normative contracts
On the semantic gap between natural and formal languages

John J. Camilleri

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Gothenburg, Sweden 2015

Analysing normative contracts
On the semantic gap between natural and formal languages
John J. Camilleri

© John J. Camilleri, 2015.

Technical Report 141L
ISSN 1652-876X

Research groups: Formal Methods & Language Technology
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Sweden
Telephone +46 (0)31-772 1000

Typeset in Palatino and Monaco by the author using X ETEX
Printed at Chalmers
Gothenburg, Sweden 2015

Abstract

Normative contracts are documents written in natural language, such as English or Swedish,
which describe the permissions, obligations, and prohibitions of two or more parties over a set
of actions, including descriptions of the penalties which must be payed when the main norms
are violated. We encounter such texts frequently in our daily lives in the form of privacy policies,
software licenses, and service agreements. The length and dense linguistic style of such contracts
often makes them difficult to follow for non-experts, and many people agree to these legally-
binding documents without even reading them.

By investigating the processing of normative texts, how they can be modelled formally using
a suitable logic, and what kinds of properties can be automatically tested on our models, we hope
to produce end-user tools which can take a natural language contract as input, highlight any
potentially problematic clauses, and allow a user to easily ask questions about the implications
of the contract, getting a meaningful answer in natural language within a reasonable amount of
time.

This thesis includes four research articles by the author which investigate the various compo-
nents that a system such as this would require; from entity recognition and modality extraction
on natural language texts, to controlled natural languages and visual diagrams as modelling
interfaces, to logical formalisms which can be used for contract representation, to the different
kinds of analysis possible and how this can be linked to user questions in natural language.

to Claudia
for never doubting me

Acknowledgements

“At some point during your PhD you will start to believe that
you know more than your supervisor — but you will be wrong.”

When I first heard this bit of advice from our head of graduate studies, I had no idea how true it
would prove to be. That he was also my supervisor was merely incidental. But this quote nicely
sums up Gerardo Schneider’s style of supervision: always eager to teach, but careful to give you
space. I have learnt many things from him, most of which cannot be found in any paper or book.
I am very grateful to have such a dedicated, patient and wise supervisor.

I would also like to thank my co-supervisor Koen Claessen, for his special knack for asking
questions I’ve never thought of, and for giving me new energy to solve problems which have
tired me out. As if two great supervisors weren’t enough, I am also lucky to have worked with
Aarne Ranta in one way or another for over six years now. After first meeting in 2009, Aarne
apparently saw something in me which I didn’t see myself, and he is entirely responsible for me
being here today. He has probably had the most major role in my career so far, and it would be
no exaggeration to call him a mentor of mine.

The other side of the Gothenburg–Malta connection comes in the form of Mike Rosner and
Gordon Pace, my two undergraduate supervisors who were in no small way my gateway into
academia, and with whom I am very glad to have met and remained in touch with today.

More generally, I would simply like to thank all the people with whom my research has
brought me into contact: my colleagues in the REMU project, the whole GF community, everyone
I know through CLT, my friends at Chalmers, and all the administrative staff at our department.
All of you together make working here a really great experience. Sorry if you came here looking
for your own name!

Finally I must thank my parents for their absolute support, for never questioning the value
of education, and for bringing me up to believe that I could achieve anything I wanted.

This work has been carried out within the REMU project — Reliable Multilingual Digital
Communication: Methods and Applications. The project is funded by the

Swedish Research Council (Vetenskapsrådet) under grant number 2012-5746.

Contents

1 Introduction . 1

2 AnaCon: a framework for conflict analysis of normative texts 21

3 A CNL for C-O Diagrams . 57

4 Modelling and analysis of normative texts with C-O Diagrams 71

5 ConPar: a tool for automatically building partial C-O Diagrams 105

Glossary . 117

Bibliography . 119

Structure of this thesis
This thesis consists of an introduction followed by four individual research papers, each pre-
sented as a separate chapter. While their references have been combined into a single bibliogra-
phy at the end of the thesis, the papers have otherwise only been edited for formatting purposes,
and in general appear in their original form. Thus, it is normal that there is a small element of
overlap in the introductions and related works sections of each of the papers.

1

Chapter 1

Introduction

1.1 Normative contracts

In this thesis we are interested in the modelling and analysis of real-world contracts expressed
using the deontic norms of obligation, permission and prohibition. Such documents occur in
many forms and in various contexts within our everyday lives, including privacy policies, terms
of services, end user license agreements (EULAs), software licenses, service-level agreements,
and regulations. What these examples all have in common is that they are predominantly written
in natural language (NL). The works contained in this thesis only consider contracts written
in English, but the methods described here can be applied analogously to documents in other
natural languages, such as Swedish, Spanish etc. Our use of a formal interlingua means that a
large part of the work is in fact language-agnostic. In considering documents which are authored
in NL, we are specifically talking about contracts which are written by and for humans. Note that
this excludes machine-readable contracts such as, for example, mobile application permission
systems1 which are defined abstractly first, and then given human-readable verbalisations after.

We refer to this somewhat broad class of documents as normative contracts (or texts). It
should be noted that the term contract has different interpretations in different fields. In software
engineering, design by contract refers to the specification of software in terms of assertions and
pre- and post-conditions. The term contract, of course, is standardly defined in legal fields as
an agreement between parties which is protected by law. In fact legal systems generally contain
entire sections specific to contract law. A contract in the world of financial trading is yet another

1Android app permissions: https://support.google.com/googleplay/answer/6014972?hl=en, accessed 2015-08-11

https://support.google.com/googleplay/answer/6014972?hl=en

2 Chapter 1

concept: a promise of payment between parties, whose value changes over time and which can
be traded as an asset.

While these concepts may be related in a general sense, for the remainder of this thesis we
will use the term contract to refer to the class of normative texts described at the beginning of this
section (unless otherwise stated).

1.2 Motivation

To better identify what kinds of contracts we are interested in and what we want to do with them,
let us consider some motivation.

1.2.1 The “biggest lie on the web”

Anyone who uses computers and the internet will have come across license agreements and
privacy policies which they must agree to before using a piece of software or service. These doc-
uments tend to be written in an esoteric legal style which most people do not have the expertise
or patience to understand. Yet the majority of users agree to such documents anyway without
ever reading them, even though they understand that they are entering into a legally binding
agreement. This common habit — which has been called the “biggest lie on the web”2 — can have
a number of negative outcomes, including the erosion of respect for contracts and the potential
for exploitation of users.

In an experiment organised by the security company F-Secure [29], a free public Wi-Fi hotspot
was set up in London with a somewhat unusual terms of service. These terms contained a so-
called “Herod Clause”, stating that users of the hotspot agreed to give up their eldest child to
the service provider “for the duration of eternity.” In the short period the terms and conditions
were live, six people signed up. Of course such a clause would not stand up in court, and the
experiment only set out to prove a point.

Awareness about personal information and online privacy is becoming more widespread.
Terms of service documents play a central role in this, and some projects already exist which try
to make such them easier to understand by users. For example, Terms of Service; Didn’t Read
(ToS;DR)3 is a user initiative which rates and labels the terms and privacy policies of major
websites, giving them classifications on a simple scale from very good to very bad. This rating is

2
http://biggestlie.com/, accessed 2015-07-20

3
https://tosdr.org/, accessed 2015-06-15

http://biggestlie.com/
https://tosdr.org/

Introduction 3

done manually by the community, and the classifications themselves are meant to be clear and
easily accessible.

In a similar way, the Privacy Icons4 project attempts to make internet users more aware of
how their private information may be used by grading the privacy policies of various websites.
They define a few general privacy criteria such as data retention, location information, and SSL
support — each of which is represented by an individual icon. A browser plugin then gives
colour-codes to each icon when visiting a particular site, to indicate how well it ranks in each
area. The icons evolved from a Mozilla-led working group that included privacy organisations
such as the Electronic Frontier Foundation, Center for Democracy and Technology, and W3C.

CommonTerms5 is yet another project with similar goals, which started out as an effort to
identify the most common terms from the policies of 20 popular websites. It has since been
active in raising awareness of the problem, and in trying to connect together the various different
groups dealing with this issue in one way or another. They are responsible for the Biggest Lie6

campaign and for starting the OpenNotice7 group.
In the domain of software licenses, the Choose a License8 website aims to help developers

choose an appropriate Open-Source Software (OSS) license for their project. They do this by
summarising the most popular open-source licenses in use today in terms of what each license
requires, permits, and forbids — allowing for quick and easy comparison between the various
options available.

The different copyright licenses available from the Creative Commons (CC)9 also use icons
to indicate their main features. But their approach goes a little deeper, with all CC licenses incor-
porating a three-layer design. Firstly, each license begins as a traditional legal tool, in the kind
of language and text formats that lawyers work with. Secondly, the licenses are also available in
a non-technical human-readable format called the Commons Deed, summarising and expressing
some of the most important terms and conditions. Thirdly, each license also comes in a machine-
readable version — a summary of the key freedoms and obligations written into a format that
software systems, search engines, and other kinds of technology can process. This is done using
the CC Rights Expression Language (CC REL)10.

The problem of understanding legal texts in the context of the web is becoming more well
known, and technological approaches to solving it are becoming more common. At the same

4
https://disconnect.me/icons, accessed 2015-07-20

5
http://www.commonterms.net/, accessed 2015-07-20

6
http://www.biggestlie.com/, accessed 2015-08-11

7
http://opennotice.org/, accessed 2015-07-24

8
http://choosealicense.com/, accessed 2015-06-15

9
https://creativecommons.org/licenses/, accessed 2015-07-20

10
https://wiki.creativecommons.org/wiki/CC_REL, accessed 2015-07-20

https://disconnect.me/icons
http://www.commonterms.net/
http://www.biggestlie.com/
http://opennotice.org/
http://choosealicense.com/
https://creativecommons.org/licenses/
https://wiki.creativecommons.org/wiki/CC_REL

4 Chapter 1

time, interest in how computers can be used in area of law and contracts is also growing from
within the legal field. In a discussion of the effects that machine intelligence might have on the
delivery of legal services, McGinnis and Pearce [52] believe that computers will take an increas-
ingly larger role and eventually replace humans in certain tasks (e.g. legal search, generation of
documents, and predictive analytics). They predict that as lawyers continue to embrace com-
putaional tools in their work, such technologies will also become more available to non-lawyers,
leading ultimately to “the end of [their] monopoly” over providing legal services. Surden [78] notes
that the benefits of computable contracting could include reduced transaction costs associated with
contracting process, new potential for analysis and prediction, and the possibility of autonomous
computer-to-computer contracting.

1.2.2 Approaches to classification
Most of the projects mentioned in the previous section are concerned with classifying and rating
normative documents according to various criteria. The simplest way of achieving this is of
course manually: with a group of people first deciding on a set of criteria, reading the texts, and
then classifying them. Doing this for a single terms of service document would probably require
a couple of man-hours, and one person alone likely cannot even do this for all the terms and
conditions they’ve ever signed.

Delegating this manual work to a community is one way of tackling this labour-intensive
task, which is what ToS;DR is essentially doing. Given the right community, this approach may
be feasible for classifying small numbers of prominent documents, such as the privacy policies
of the most popular sites on the internet. But of course, the motivation for automating this task
is great. A software tool that could process normative texts and automatically classify them
according to some criteria would benefit everyone, from the writers of the policies to the users
that must decide whether to accept them or not.

On its surface, this can be seen as a natural language processing (NLP) task of classification.
Such tasks usually make good cases for the application of common machine learning techniques,
given the availability of a suitable corpus for use as training data. There is in fact an active re-
search community in the area artificial intelligence (AI) in the legal domain [9], and applying
machine learning and other AI techniques to legal texts is by no means new [75, 57, 37]. Taking
research such as this into the commercial world, a startup company out of Carnegie Mellon Uni-
versity called LegalSifter11 specifically uses machine learning techniques to sell contract analysis
services. Their software claims to help customers to better understand legal documents through

11
http://www.legalsifter.com, accessed 2015-07-24

http://www.legalsifter.com

Introduction 5

summarisation, sorting and advanced search tools.

1.2.3 Beyond classification
Automatic classification is a useful task which can help users to determine at a glance whether
a particular normative contract meets some requirements or not. But there exist many other
properties of contracts that we may wish to be able to determine automatically. Prisacariu [67]
lists a number of interesting contract-processing tasks that would benefit from automation. The
various questions we may have about a contract could be grouped into the following categories:

• Summarisation — can we summarise a long contract into a shorter outline?

• Visualisation — can we represent a natural language contract in other informative graph-
ical formats?

• Comparison — how does one version of a contract compare with a previous version?
What is the effective difference between two similar contracts?

• Conflict detection — does a contract contain the potential for conflicting obligations, mak-
ing it impossible to satisfy?

• Compatibility — do two separate contracts conform with each other, such that I can satisfy
both without violating either?

• Simulation — under a given contract, what would my obligations be after performing a
certain action at a given time?

• Property testing — does a contract contain any loopholes? Is it possible for a party to
escape its obligations without penalty?

• Negotiation — can the terms of a contract be negotiated and changed iteratively until both
parties are satisfied with it?

• Translation — can a contract be translated from one natural language to another in a syn-
tactically correct and meaning-preserving way?

All these kinds of tasks can be thought of generally as contract analysis. The works covered in
this thesis focus specifically on the tasks of conflict detection, visualisation, simulation, and property
testing. In the following section we describe our general approach to performing these types of
analysis.

6 Chapter 1

Intermediate
Representation

Normative Contract

Lorem ipsum
dolor sit amet,
consectetur
adipiscing elit...

Translation

Modelling

Query

Formal Model

Formalisation

Result

Question

Answer

<contract>
 <clause>
 <agent>…</age
 <action>…</ac
 </clause>
</contract>

Analysis

Figure 1.1: General overview of the method we use in our approach. Dotted lines represent tasks which
currently require manual effort by the user. Solid lines are fully automatic.

1.3 Method

Any text in natural language may contain ambiguities or be otherwise unclear, and contracts are
no exception. This can be due to context sensitivity, under-specified terminology, or convoluted
linguistic style. As a result, it is not easy to apply the kinds of automatic analysis we are interested
directly on natural language.

Instead, the approach we adopt is to first represent normative contracts using a formal lan-
guage (FL) — that is, a language having a formal, well-defined syntax and semantics. A formal
language has a limited but clearly-defined expressivity, and can be designed specifically to be
precise and unambiguous. An expression in FL which represents a phrase or text in NL is called
a model. By working with formal models, analysis can then become a well-defined task which
can be automated. The design or choice of an underlying formalism is not easy, though. On the
one hand, such a formalism should be expressive enough to facilitate the kinds of analysis de-
sired. On the other hand, it should also be defined at a level of abstraction which is close enough
to the target domain so as to allow for efficient modelling. In other words, the more abstract the
formalism is, the harder it will be to take a NL sentence and find a formal representation for it.

Even with a formalism which satisfies these criteria, constructing a model to accurately rep-
resent a NL text — the modelling process — is not necessarily trivial. This task requires a certain
level of expertise, not only at the syntactic level (the use of the formal language), but also in its
semantics (the implied meanings of each construct and their composition).

Furthermore, performing the analysis itself generally also requires a particular level of com-

Introduction 7

petence. This includes the construction of queries or properties, running them against the model,
and understanding the results obtained. This is also the case for so-called push-button technologies
such as model checking, where one still needs to write the properties in a logic and interpret the
counter-examples, which are usually given as long formulas representing the trace leading to the
problematic case.

The ideal situation for an end user would be to have the benefit of both worlds; the simplicity
and familiarity of NL combined with the power of formal methods, but without having to be
involved in the technical details of the latter. This sums up the general goal of all the works
contained in this thesis. This method of analysis contracts can be coursely split into the following
tasks, summarised in Figure 1.1:

1. Modelling — providing tools for processing NL, and interfaces for building and working
with formal models (possibly via an intermediate representation).

2. Formalisation — design or choice of a logical formalism to use for modelling contracts.

3. Analysis — processing contract models to detect conflicts, answer queries, or test if a prop-
erty holds.

1.3.1 Modelling

Broadly, modelling is the process of going from a representation in some original format — in this
case NL — into a corresponding representation in a target format — in this case our formalism.
We tend to refer to modelling as the front-end of the system, and it is what the domain expert or
end user will spend considerable time on. It is important to note that a model can only be an
interpretation of an original text. The meaning of a model depends on the semantics of the for-
malism, and it may or may not match the original or intended meaning. In general, modelling is
a process that can introduce errors or change meaning. Furthermore, if a normative text is inher-
ently ambiguous, building a model of it in an unambiguous formalism can force the modeller to
choose one out of multiple possible interpretations. The modelling process itself often uncovers
such ambiguities.

Given that our goal is build a system for end users, we are of course interested in making
the modelling process as user-friendly as possible. Thus we tend to provide an intermediate
representation between the user and the underlying formalism (as shown in Figure 1.1). The
idea is that while models in this intermediate representation are directly translatable into models
in the formal language, they also have some properties which make them easier to handle for

8 Chapter 1

end users. To further explain this idea, we summarise the two main intermediate representations
considered in this thesis: controlled natural languages and visualisation as structured diagrams.

Controlled Natural Language (CNL)

A controlled natural language [81] is a deliberately constrained or restricted version of a natural lan-
guage, typically for the purposes of performing automatic processing of some kind. The syntax
of a CNL is formally defined and generally simpler that of its parent NL, while its vocabulary
is also reduced (at least in the case of structural words). These limitations make it possible to
have a precise semantics for the CNL, which would be difficult or impossible for unrestricted
language. For a survey of different kinds of CNLs, see Kuhn [49].

By designing a CNL which is close to a NL which the users understand, and using this as an
interface for a purely logical language, users who are not experts in the underlying formalism
can both read and write formal contract models, while at the same time not needing to deal with
the issues that arise when unrestricted NL is used.

Both of the CNLs discussed in this work have been implemented using the Grammatical
Framework (GF) [72], which is a programming language and platform for interlingua-based mul-
tilingual grammars. A distinct advantage of using GF is that it is built with translation in mind,
making it a natural choice for building tools which convert statements in CNL into another rep-
resentation, such as the concrete syntax of the formal language. As an example, consider the
following sentence taken from the case study in Chapter 2:

The ground crew is obliged to open the check-in desk and request the passenger manifest two
hours before the flight leaves.

Using the CNL defined in that chapter, this clause would be written as:

if {the flight} leaves {in two hours} then both

- {the ground crew} must open {the check-in desk}

- {the ground crew} must request {the passenger manifest}

This verseion of the clause contains some extra markup and is not entirely natural, but it is
straightforward to follow for anyone who understands English.

The introduction of a CNL means that when creating models, users are restricted in what
they can express. In other words, many expressions in NL will not be valid in the CNL. We thus
come to the issue of how to help the user to know what is valid in the CNL and what is not.
The simplest solution is to present some kind of manual for them to read, essentially teaching

Introduction 9

them the language’s grammar. A better solution is to construct a suitable user interface (UI)
which interactively helps the user construct valid CNL statements and provides helpful error
messages. This idea is covered in this thesis (see Chapter 3) but also discussed further in Future
Work (Section 1.6).

Visualisation

As an alternative to text-based representations of contract models, we also consider the idea of
having a visual representations in the form of structured tree-like diagrams. For this we use the
Contract-Oriented (C-O) Diagram representation introduced by Martínez et al. [51]. The motiva-
tion behind these diagrams is to help users clearly see the hierarchical and sequential dependen-
cies that exist between the different clauses in a contract.

The main idea is that each box (Figure 1.2) represents a single norm, specifying a deon-
tic modality (obligation, permission, or prohibition) over an agent and action. Each box may
also have conditional expressions, timing restrictions, and reparation information. These boxes
are then combined through operators for conjunction, sequence and choice, to build a complete
model which is visualised as a graph structure (see example in Figure 1.3). Our work in Chap-
ter 3 covers a web-based editor for working with C-O Diagrams and converting them into contract
models.

A Model for Visual Specification of e-Contracts

Enrique Martı́nez, Gregorio Dı́az, M. Emilia Cambronero
Department of Computer Science

University of Castilla - La Mancha
Albacete, Spain

{emartinez, gregorio, emicp}@dsi.uclm.es

Gerardo Schneider
Department of Applied IT

University of Gothenburg, Sweden
Department of Informatics
University of Oslo, Norway

gersch@chalmers.se

Abstract—In a web service composition, an electronic con-
tract (e-contract) regulates how the services participating in the
composition should behave, including the restrictions that these
services must fulfill, such as real-time constraints. In this work
we present a visual model that allows us to specify e-contracts
in a user friendly way, including conditional behavior and real-
time constraints. A case study is presented to illustrate how this
visual model defines e-contracts and a preliminary evaluation
of the model is also done.

Keywords-contracts; deontic specifications; visual models;

I. I NTRODUCTION

Most of the research efforts spent on the theory of
electronic contracts in service-oriented architectures have
been oriented to the formal definition of a public service
interface with which other services can interact [5]. How-
ever, services e-contracts not only refer to the interfaces
provided by these services, they also refer to a certain
number of clauses that must be satisfied by several parties.
These clauses regulate how participants should behave,
what are the penalties in case of misbehavior, and under
which conditions such clauses must be enacted (e.g. time
restrictions such as deadlines). When a clause is violated,
the contract is breached. However, if the clause defines a
reparation (secondary clauses that come into force when the
main clause is not satisfied), and this reparation is fulfilled,
then the clause is eventually fulfilled [1].

Recently some works about specifying services e-
contracts in a formal manner have been released [2], [4], [7],
[18]. These approaches consist of formal languages which
are hard to study and manipulate by untrained final users of
this technology, as business process developers.

The goal of this work is to introduce a new approach for
the specification of e-contracts in a user friendly way. E-
contracts may be complex, consisting of composite clauses
making reference to other clauses in the same or in another
contract. Furthermore, we consider contracts with timed
restrictions and conditions under which the contract clauses
must be applied. Hence, our approach is based on a visual
model, since it is well-known that the use of visual models
makes easier the perception of knowledge, and in this way,
the intuitive understanding, reading and maintenance of
complex problems [8], [9]. This approach can be useful not

name

agent

Figure 1. Box structure

only in service-oriented architectures but also in component-
based systems, requirements acquisition, software product
lines, etc.

The contribution of this work is twofold. First, we define
a visual model to deal with the acquisition and elicitation of
requirement and restrictions. This visual model allows us to
specify the notions of obligation, permission and prohibition
[14] as elements of a hierarchical diagram. In this way, these
elements are clauses that can be refined hierarchically and
can include (real-time) constraints and a reparation that must
be performed when the main norm is not fulfilled. Second,
a preliminary evaluation of the model is presented, based on
user-based tests and the principles defined in [16].

The rest of the work is structured as follows: Section
II describes the visual model we have developed, showing
in Section III a case study where this model is applied.
In Section IV we present the results of the preliminary
evaluation and Section V is concerned with related work.
Finally, in Section VI, we present the conclusions and future
work.

II. V ISUAL MODEL

In our visual model we define a hierarchical tree diagram
used to specify the contract clauses. We call this diagram
Contract-Oriented Diagramor C-O Diagramfor short.

In Figure 1 we show the basic element of ourC-O
Diagram. It corresponds to a contract clause and we call
it box. This box consists of four fields, allowing us to
specify normative aspects or simple norms (P), reparations
(R), conditions (g) and time restrictions (tr). Each box has
a name and an agent. Thenameis useful both to describe
the clause and to reference the box from other clauses, so it
must be unique. Theagent indicates who is the performer
of the action.

On the left-hand side of the box we specify the conditions
and restrictions. Theguard g specifies the conditions under
which the contract clause must be taken into account. The

Figure 1.2: C-O Diagram: basic box structure where g = guard, tr = timing restriction, P = propositional
content, R = reparation. [51]

1.3.2 Formalism

The formal languages used in this thesis for modelling contracts are based on deontic logic, con-
taining at their core operators for obligation, permission, and prohibition of agents over ac-
tions. Deontic logics in general are known to suffer from a number of paradoxes, which mainly
stem from problems or limitations attributed to Standard Deontic Logics (SDLs) [55, 53]. The
formalisms covered here are thus not SDLs, but more restricted systems which take inspiration
from deontic logic.

10 Chapter 1

-

Test_Result

Software_Revision

-

Correct_Software

Oa9

Test_Reports

O

¬Tests_Ok Tests_Ok
O a10

Software_Delivery

Software_Integration

O a7

Provider_Reports

a8a

Client_Reports

a8b

Software provider Testing agency

Software provider Software provider

-

AND OR

SEQ

Figure 11. Decomposition of clauseCorrect Software

this scale for our model. This is a score that clearly shows
the user’s preference to use the visual model instead of the
textual notation.

All these tests can be accessed via the Moodle course“C-
O Diagrams” in http://moodle.retics.uclm.info/. Anyone can
access this course login as a guest. The tests are available
at theSocial Activitiesbox, through the preview option.

V. RELATED WORK

To the best of our knowledge, there is not any other visual
model specially created for the definition of e-contracts.
However, several works in the literature define a meta-
model for the specification of e-contracts whose purpose
is the enactment or the enforcement of this e-contract.
For instance, in [6] Chiu et al. present a meta-model for
e-contract templates written in UML, where a template
consists of a set of contract clauses of three different types:
obligations, permissions and prohibitions. These clausesare
later mapped into event-condition-action (ECA) rules for
contract enforcement purposes, but the templates do not
include any kind of reparation or recovery associated to the
clauses, and the way of specifying the different possible rela-
tionships between clauses is not clear. In [11] Krishna et al.
propose another meta-model of e-contracts based on entity-
relationship diagrams that they use to generate workflows
supporting e-contract enactment. This meta-model includes
clauses, activities, parties and the possibility of specifying
exceptional behavior, but this approach is not based on the
deontic notions of obligation, permission and prohibition,
and says nothing about including real-time aspects natively.
Another approach can be found in [20], where Rouached
et al. propose a contract layered model for modeling and
monitoring e-contracts. This model consists of a business
entities layer, a business actions layer, and a business rules
layer. These three layers specify the parties, the actions
and the clauses of the contract respectively, including the
conditions under which these clauses are executed. However,
real-time restrictions are not included and the specification
of the clauses follows an operational approach, not a deontic
approach.

The approach followed inC-O Diagramsfor the specifi-
cation of e-contracts is close related to the formal language
CL [18]. In this language a contract is also expressed as
a composition of obligations, permissions and prohibitions
over actions, and the way of specifying reparations is the
same that in our visual model. The main difference withC-
O Diagrams is that CL does not support the specification
of agents nor timing constraints natively, so they have to be
encoded in the definition of the actions. Also, inCL there
is no sequence operator to combine the different clauses,
so the notion of sequence has to be expressed always
by means of specifying the application of a clause after
performing a certain action (denoted as[α]C, whereα is
a compound action andC is a general contract clause), like
in propositional dynamic logic. Refer to [15] for a general
description of deontic logic.

In [14] Marjanovic and Milosevic also defend a deontic
approach for formal modeling of e-contracts, paying special
attention to the modeling of time aspects. They distinguish
between three different kinds of time in e-contracts: absolute
time, relative time and repetitive time. The two first kinds
are supported byC-O Diagrams, but repetitive time is not in-
cluded yet in our model. Nevertheless, with the combination
of the other two kinds of time and the repetition structure, we
can achieve some repetitive time behaviors in our model. In
[13] Lomuscio et al. present an approach to verify contract-
regulated service compositions. They use the orchestration
language WS-BPEL to specify all the possible behaviors of
each service and the contractually correct behaviors. After
that, they translate these specifications into timed automata
supported by the MCMAS model checker to verify the
behaviors automatically. In this work we have that the scope
of the e-contracts is limited to web services compositions,
specifying the e-contract corresponding to each one of the
services separately. The specification of real-time constraints
is not allowed because they are not supported by MCMAS
and the deontic norms are restricted to only obligations.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper we have presentedC-O Diagrams, a new
visual formalism for electronic contracts. Though we have

Figure 1.3: Full example of a C-O Diagram, modelling a software development process. [51]

In Chapter 2 we the use the CL language [69] as a logic for specifying normative contracts.
CL is an action-based logic, meaning that modalities are applied to actions (e.g. “the customer
must sign the agreement”) as opposed to state-of-affairs (e.g. “the customer agreement must be
signed”). Complex actions can be expressed using operators for choice, sequence, concurrency
and repetition. Clauses in CL can also have reparations — sub-clauses which are applied as a
penalty when the primary obligation or prohibition is violated. These are respectively referred
to as contrary-to-duties (CTDs) and contrary-to-prohibitions (CTPs), and play a central role in how
contracts are defined and used. CL combines deontic logic with propositional dynamic logic
(PDL), and avoids many of the major paradoxes of SDL by applying to actions rather than states
— the so-called ought-to-do approach [68, 70]. More details about CL can be found in Section 2.2.1.

The remainder of the works included in this thesis (Chapters 4, 3 and 5) use the C-O Dia-
gram [26] language as a formalism. Apart from the visual representation discussed in the pre-
vious section, C-O Diagrams also have a formal syntax and can thus be considered a logic. As
with CL, the C-O Diagram language is based on the three main deontic modalities defined over
complex actions. In addition, clauses themselves can combined with refinement operators for
conjunction, sequence, and choice. The biggest novelty with C-O Diagrams is their handling of
time using clocks, taken from the theory of Timed Automata (TA) [1]. Each C-O Diagram has a
set of real-valued variables which increment at the same rate, representing the passage of time
in the wall-clock sense. The value of a clock may be reset to zero, and any clock can be used to
create a timing restriction on a clause. This makes it possible to express time windows and clause
expirations, both in absolute time and relative to other clauses. C-O Diagrams also differ from
CL in that agents are separated from actions, the condition expression language is a lot more

Introduction 11

expressive, and name-based referencing is used for reparations (as opposed to inline nesting).
The C-O Diagram language is covered in more depth in Section 4.2.

1.3.3 Analysis
The point of modelling contracts in a formal language is to be able to perform some kind of
analysis on them. In the case of CL contracts, we check these for deontic conflicts using the CLAN
analysis tool [31]. Conflicts in this context can arise when there exists an obligation or permission
together with a prohibition on the same action, or when two mutually exclusive actions are both
permitted and/or obliged at the same time. The tool will search the entire possibility space of
a contract, and if such a conflict is found it will return a counter-example in the form of a trace
which leads to the conflicted state. This kind of analysis does not require any query or property
as input. The AnaCon framework described in Chapter 2 automatically verbalises any counter-
examples produced in the analysis using the same CNL for defining the contract model.

to specify properties to be checked, is a subset of TCTL (timed computation tree
logic) [39,3]. In this section we present the modelling and the query languages
of Uppaal and we give an intuitive explanation of time in timed automata.

2.1 The Modelling Language

Networks of Timed Automata A timed automaton is a finite-state machine
extended with clock variables. It uses a dense-time model where a clock variable
evaluates to a real number. All the clocks progress synchronously. In Uppaal,
a system is modelled as a network of several such timed automata in parallel.
The model is further extended with bounded discrete variables that are part of
the state. These variables are used as in programming languages: They are read,
written, and are subject to common arithmetic operations. A state of the system
is defined by the locations of all automata, the clock values, and the values of the
discrete variables. Every automaton may fire an edge (sometimes misleadingly
called a transition) separately or synchronise with another automaton1, which
leads to a new state.

Figure 1(a) shows a timed automaton modelling a simple lamp. The lamp
has three locations: off, low, and bright. If the user presses a button, i.e.,
synchronises with press?, then the lamp is turned on. If the user presses the
button again, the lamp is turned off. However, if the user is fast and rapidly
presses the button twice, the lamp is turned on and becomes bright. The user
model is shown in Fig. 1(b). The user can press the button randomly at any time
or even not press the button at all. The clock y of the lamp is used to detect if
the user was fast (y < 5) or slow (y >= 5).

off low bright

press?

y:=0

y>=5

press?

press?

y<5

press?

‚

‚

‚

‚

‚

idle
press!

(a) Lamp. (b) User.

Fig. 1. The simple lamp example.

We give the basic definitions of the syntax and semantics for the basic timed
automata. In the following we will skip the richer flavour of timed automata
supported in Uppaal, i.e., with integer variables and the extensions of urgent
and committed locations. For additional information, please refer to the help

1 or several automata in case of broadcast synchronisation, another extension of timed
automata in Uppaal.

2

Figure 1.4: Example of an NTA, modelling the state transitions of a simple lamp (left) and the user operating
it (right). [8]

The kind of analysis performed on C-O Diagrams is considerably more general than direct
conflict detection. Díaz et al. [26] introduce a translation from C-O Diagram models into networks
of timed automata (NTA) [10] (see Figure 1.4 for an example). NTAs are amenable to model
checking using the using the Uppaal [8] tool, which allows properties written a subset of timed
computation tree logic (TCTL) to be validated against the system. This allows us to test the
following kinds of properties:

1. Reachability — is a certain scenario possible, given the constraints in a contract?

2. Safety — can we guarantee that an undesirable situation is always avoided?

3. Liveness — will a certain outcome always be eventually reached?

An important issue with this method of performing analysis is that the underlying NTA
system, while semantically equivalent to the original C-O Diagram model, is at a much lower

12 Chapter 1

level of abstraction. While a C-O Diagram is defined in terms of clauses and refinement, NTAs are
defined in terms of locations and edges. This means that a high-level query about C-O Diagram
must first be converted into a lower-level property in TCTL in order to be tested against the NTA.
This translation issue is not covered in the present work, but is one of the primary directions of
future work (see Section 1.6).

1.4 Related work
Each paper in this collection includes its own related work section which lists works that are
more closely related to the specific topic. We present here some more generally related work on
the application of computational solutions to the legal domain.

Working with similar deontic formalisms, Pace and Schapachnik [62] present a method of
modelling contracts which regulate two-party systems as automata. They are particularly inter-
ested in the relationship between permissions and obligations, interpreting them as a form of
synchronisation between parties. For example, “John is permitted to withdraw cash” is both a per-
mission for John as well as an obligation on the other party — the bank — to provide the with-
drawal facility and honour it. This effectively treats permission as a first-class deontic modality.
On top of this, the authors define a notion on contract strength which can be used to compare the
relative strictness of two contracts.

Flood and Goodenough [32] also explore the idea of representing financial contracts as finite-
state automata, where the automaton’s locations represent the states that a financial relationship
can be in (such as default or delinquency), and its transitions are labelled with events (such as pay-
ment arrives or due date passes). They then use standard automaton-based techniques to determine
whether a contract is internally coherent and whether it is complete relative to a particular event
alphabet. After illustrating their approach with a simple loan agreement case study, they go on
to suggest how financial contracting could be conceived computationally in general and explore
some of the wider implications that grow from viewing contracts as a system of computation.

Peyton Jones and Eber [65] introduce a functional combinator language for working with
complex financial contracts — the kind which are traded in financial derivitive markets — to-
gether with an implementation12 of it as a domain-specific language (DSL) embedded in Haskell.
These kinds of contracts are somewhat different from the normative contracts we are concerned
with in that they do not feature the deontic modalities, and are thought of as having an inherent
financial value which varies over time. For recent work continuing this along these lines, see [6].

12
https://web.archive.org/web/20130814194431/http://contracts.scheming.org, accessed 2015-09-09

https://web.archive.org/web/20130814194431/http://contracts.scheming.org

Introduction 13

In his PhD thesis, Wyner [82] presents the Abstract Contract Calculator — a Haskell pro-
gram for representing the contractual notions of an agent’s obligations, permissions, and prohi-
bitions over abstract complex actions. Actions are treated as transition functions between states-
of-affairs. The tool is designed as an abstract, flexible framework in which alternative definitions
of the deontic concepts can be expressed and exercised. The program is however not a logic, and
its high level of abstraction and lack of temporal operators means it is limited in its application
to processing concrete contracts. In particularly, a focus of the work was on avoiding deontic
paradoxes by using a dynamic language with rich markers for fulfillment and violation.

There is also considerable work in the representation of contracts as knowledge bases or on-
tologies, rather than using logic-like languages. The LegalRuleML project [5] embodies one of
the strongest efforts in this area. LegalRuleML is a rule interchange format for the legal domain,
allowing implementers to structure the contents of the legal texts in a machine-readable format.
The format aims to enable modelling and reasoning that allow users to evaluate and compare le-
gal arguments which have been constructed using the rule representation tools provided as part
of the project. It is part of the larger RuleML initiative [74], set up within the OASIS consortium
for open standards. LegalRuleML takes inspiration from another XML-based ontology language
— the Legal Knowledge Interchange Format (LKIF), developed as part of the ESTRELLA project
[28] — but is considered to be more powerful than it, especially in the expression of temporal
aspects [5].

A similar project with a broader scope is the CEN MetaLex language [12] — an open XML
interchange format for legal and legislative resources. Its goals include enabling public admin-
istrations to link legal information between various levels of authority and different countries
and languages, allowing companies to connect to and use legal content in their applications, and
improving transparency and accessibility of legal content for citizens and businesses.

The Semantics of Business Vocabulary and Business Rules (SBVR) [60] uses a CNL to pro-
vide a fixed vocabulary and syntactic rules for expressing of terminology, facts, and rules for
business documents. The goal is to allow natural and accessible descriptions of the conceptual
structure and operational controls of a business, yet which at the same time can be represented in
predicate logic and converted to machine-executable form. It also includes an associated XML
Metadata Interchange (XMI) format, which supports the exchange of documents across busi-
nesses. SBVR is geared towards business rules, and not specifically at the kinds of normative
texts in which we are interested.

Related to this work is also the area of argumentation theory — the study of how conclusions
can be reached through logical reasoning. Carneades [36] is both a mathematical model of argu-
mentation as well as a software toolbox for argument evaluation, construction and visualisation.

14 Chapter 1

The software provides support for constructing, evaluating and visualising arguments using for-
mal representations of facts, concepts, defeasible rules and argumentation schemes. Any number
of argumentation schemes may be used together, making it an open architecture for hybrid rea-
soning. Carneades has been used in Elterngeld, a system which makes automatic decisions on
child benefit claims in Germany. The system determines whether the statements put forward
to support a particular claim are justified based on the tenets of the law, by coding them in a
machine-readable format and then comparing them with elements of the law to score the claim
[42].

When it comes to combining controlled language with visual representations, it is worth
mentioning the work of Haralambous et al. [39] who introduce the idea of a controlled hybrid
language (CHL) that allows information sharing and interaction between a CNL (specified by
a context-free grammar) and a controlled visual language (specified by a symbol-relation gram-
mar). Their INAUT system is used to represent French nautical charts together with their com-
panion texts in a combined and complimentary way, effectively achieving the kind of multi-
modal presentation of structured data which we envision for normative contracts. The kind of
charts in their system are cartographic maps, and use a visual formalism which is considerably
different to C-O Diagrams.

Introduction 15

1.5 Outline and contributions
The main body of work in this thesis is covered in the following research papers, each of which
is presented as a separate chapter:

Paper I Krasimir Angelov, John J. Camilleri, and Gerardo Schneider. A framework for conflict
analysis of normative texts written in controlled natural language. Logic and Algebraic
Programming, 82(5-7):216–240, 2013. doi: 10.1016/j.jlap.2013.03.002.

Paper II John J. Camilleri, Gabriele Paganelli, and Gerardo Schneider. A CNL for Contract-
Oriented Diagrams. In Workshop on Controlled Natural Language (CNL 2014), volume 8625
of LNCS, pages 135–146. Springer, 2014.

Paper III John J. Camilleri, Filippo del Tedesco, and Gerardo Schneider. Modelling and analysis
of normative texts. 2015. (Under submission).

Paper IV John J. Camilleri, Normunds Grūzītis, and Gerardo Schneider. Extracting formal mod-
els from normative texts. 2015. (Under submission).

In Paper I (Chapter 2) we start by taking the CL language and the accompanying conflict
analysis tool CLAN. The work presents a CNL for CL, and joins these components together to
produce a basic tool for writing contracts in CNL and checking them for conflicts. My contri-
butions here include implementing the AnaCon tool, which uses a GF grammar to parse CNL
contracts into expressions in CL, passes these expressions into the CLAN tool, and renders any
potential counter-examples back into CNL using the same grammar. I also worked on applying
to the tool to the two case studies described in the article.

Paper II (Chapter 3) also presents a CNL for contracts implemented using GF. In this work
however we use the C-O Diagram formalism, which amongst other things includes the ability to
express timing constraints on clauses and comes with a visual representation. Apart from the
design of the CNL itself, this work also includes working implementations of a CNL editor, a
visual editor for working with the diagrams, and a common interchange format between them.
My role here was the complete design of the CNL, along with the web-based CNL editing tool
and back-end conversion tools.

In Paper III (Chapter 4) we look further into the language of C-O Diagrams and the kinds of
analysis possible on them. This includes some of our own modifications to the original formal-
ism, the definition of a trace semantics, and a complete working implementation of the transla-
tion from C-O Diagrams into NTA. We apply this method to a small case study, and demonstrate

16 Chapter 1

our methods for syntactic and semantic analysis of contract models. My work here included
the changes to the formalism, the work on the trace semantics, the entire implementation of the
translation back-end, and the work on the case study.

Finally, Paper IV (Chapter 5) addresses the front-end task of modelling, investigating the
use of NLP methods for parsing normative texts and building partial models in the C-O Diagram
formalism. The idea behind this tool is to provide a first-pass processing phase which could au-
tomatically extract some information from a contract and reduce some of manual work required
in modelling. My contribution in this work included consultation on the system’s heuristic rules,
the design of the experiments and carrying out the evaluation.

1.6 Reflections & future work
While each remaining chapter contains a short summary and a list of possible improvements,
we present here some overall reflections about the current limitations of our work, together with
some ideas for future work.

1.6.1 Structure of C-O Diagrams
Hierarchy. The design of C-O Diagrams promotes a structure which is highly hierarchical, where
each clause is refined into sub-clauses in a tree-like fashion. Our experience of working with nor-
mative contracts such as terms of services is that these documents tend to in fact have very little
depth. For the most part, these documents are written as a list of top-level clauses. One plausible
explanation for this is that natural language does not nest particularly well; humans are more
used to writing and expressing ourselves in a linear fashion, which is why the normative texts we
have seen lack any deep structure. This kind of flat structure is supported by C-O Diagrams in the
formal sense, but the tree-like visual representation of the formalism feels a little too hierarchical
for models which are mostly flat.

Timing constraints. C-O Diagrams come with some powerful temporal features, where every
clause can be given an activation window as well as a completion window, which may be ex-
pressed absolutely or relative to the completion of another clause. However, it seems to be the
case that timing constraints on clauses are in fact quite rare in the kinds of normative contracts
we have looked it. This is not to say that the ability to specify timing restrictions is an unim-
portant feature. However it must be recognised that the majority of normative clauses have no
temporal specification at all, and are just implied to hold persistently for as long as the contract

Introduction 17

is in force. This should be realised in the form of reasonable defaults which take effect when
temporal constraints are omitted — which seems to be true in the majority of cases.

Clocks. The idea of having multiple clocks which run simultaneously but which can be reset
individually comes directly from the theory of timed automata. While it is powerful enough
to allow expression of both absolute and relative timing constraints, doing so requires that the
modeller has a thorough understanding of how and when these clocks are reset, and that they
are able to encode their timing restrictions using clock conditions. We consider this to be the
wrong level of abstraction for a user who is building contract models based on normative texts
in NL. Rather, these kinds of low-level clock conditions should be replaced by more high-level
temporal operators which are based on how we express time in NL, such as since, until, between
and so on.

1.6.2 Design choices

Persistence. Should a normative clause apply continually or just once? From a natural lan-
guage perspective, the answers seems to differ between the three modalities. Assuming that
we are only considering norms over actions (not states), we are inclined to treat obligation as a
one-time specification. For example, if you are obliged to pay a bill, then after paying it your
obligation has been fulfilled and you should not have to pay it again (note that repetitive obli-
gations, such as paying the rent every month, are a different matter). Prohibition on the other
hand suggests persistence — if you are forbidden from killing, then this surely must continue
to hold even if actually do kill someone. This tends to apply to permission too — for example,
permission to drive a car. However it is not hard to think of an example where a permission
should hold only once — such as the permission to vote. The question then arises as to whether
persistence should be built into the formalism, whereby each norm can be explicitly marked as
persistent, or whether we can avoid this and achieve the same thing with the right defaults and
proper encoding. For example, a permission to vote exactly once could simply be guarded with
a “not yet voted” condition.

Default modality. When a contract says nothing about action in its alphabet, what should its
modality be? It seems excessively restrictive to prohibit all actions by default. But if all actions
are permitted by default, what is the point of having a permission operator at all? It seems
clear that an explicit permission should be stronger than a default permission. This also becomes
useful when detecting conflicts — having both a prohibition and an explicit permission to do the

18 Chapter 1

same action is clearly something we want to avoid. An alternative approach to this would be to
have every action prohibited by default. The purpose of permission then becomes clear, and the
function of the prohibition operator is then to introduce a reparation for the violation.

Declarative statements. All the normative texts we have looked at so far generally include
some non-normative statements, often defining the roles or details of the parties involved. We
refer to these kinds of statements collectively as declarations. While important to the text from a
legal point of view, these statements may or may not play a role in the application of the nor-
mative clauses with which we are concerned. Our approach so far has been to ignore such state-
ments when modelling contracts, although as we work towards a more user-oriented tool this
feature will become more important. A proper investigation of the best way of incorporating
these statements into our contract models has yet to be carried out.

1.6.3 CNL editing
Along with the CNL introduced in Chapter 3, we also present a web-based tool for working with
CNL contracts. This tool offers some basic features which are common to modern text editors,
including syntax highlighting, text completion, templates, and section folding. In addition to
this, there is a help panel showing the main types of constructs available in the language. While
useful, features such as these are usually of most utility for users who are already familiar with
the underlying language and know what kinds of constructs it supports. Realistically however,
a user who is untrained in the CNL would still need some amount of training before being able
to jump in and use a tool such as this.

We plan to continue developing the user interface aspects of working with CNL, experiment-
ing with a combined multi-modal editor which brings together the structural view of the C-O
Diagrams with the natural linearisations of CNL. This must definitely be combined with a thor-
ough evaluation of usability, to measure the effectiveness of the different methods with respect
to modelling effort required.

1.6.4 Querying
Levels of abstraction. The methods of analysis presented in Chapter 4 are quite powerful, mak-
ing use of timed automata and the TCTL-based property language of Uppaal. However, from
the point of view of a user, these tools are very low-level, and the connection between automata
and normative contracts is not obvious. In addition to the issues related to abstraction levels
during modelling, we also have similar problems when it comes to performing analysis. Given

Introduction 19

a question in NL, this must first be converted into a low-level query. This requires not just knowl-
edge of the property language, but also the details of the model and our translation algorithm (for
example, the significance of location names and variable values in the resulting NTA). For this
we may consider adopting OCLR [27], a temporal extension to the Object Constraint Language
(OCL), which was designed with the analysis of legal texts in mind.

Once this is done and the query can be run, the next problem is how to interpret the result.
While yes/no responses may be self-explanatory, any result that includes a counter-example
trace requires skill and time to understand. As before, an in-depth understanding of the model
and the details of its encoding are needed, together with the patience to follow a potentially long
trace to determine the point of failure. The problem of how to best convert such traces back into
answers which are meaningful to the user is still an open one.

Scalability. Model checking may be a very powerful method of analysis, but it is well-known
that it can easily become intractable for non-trivial automata. The time required for verification
is very sensitive to factors such as the number of locations, amount of variables, and the use
of channel synchronisations. As such our work thus far has not focused at all on optimisation
or even on evaluating the time and space requirements for analysis, yet this is also considered
important future work. One possibility for avoiding the potentially long execution times as-
sociated with traditional model checking would be to investigate the use of statistical model
checking techniques for NTA, which can provide faster testing of properties within some degree
of certainty [23].

1.6.5 Translation
An area which has not been touched upon in this thesis is the translation of normative contracts
from one natural language to another in a meaning-preserving way. While this task is orthogo-
nal to the idea of general contract analysis, the methods we use in fact make this kind of machine
translation quite a realistic task. As we are using a language-independent semantic representa-
tion for modelling contracts, the job of translation becomes a case of parsing from NL into our
interlingua and linearising that to another NL. This model of translation is that supported by GF,
which is already used for other purposes in our work.

20 Chapter 1

21

Chapter 2

AnaCon: a framework for conflict
analysis of normative texts
Krasimir Angelov, John J. Camilleri and Gerardo Schneider

Abstract. In this paper we are concerned with the analysis of normative conflicts, or the de-
tection of conflicting obligations, permissions and prohibitions in normative texts written in a
Controlled Natural Language (CNL). For this we present AnaCon, a proof-of-concept system
where normative texts written in CNL are automatically translated into the formal language CL
using the Grammatical Framework (GF). Such CL expressions are then analysed for normative
conflicts by the CLAN tool, which gives counter-examples in cases where conflicts are found.
The framework also uses GF to give a CNL version of the counter-example, helping the user to
identify the conflicts in the original text. We detail the application of AnaCon to two case studies
and discuss the effectiveness of our approach.

22 Chapter 2

Chapter contents
2.1 Introduction . 23
2.2 Background . 24

2.2.1 The contract language CL . 24
2.2.2 CLAN . 26
2.2.3 Controlled Natural Languages (CNLs) . 28
2.2.4 The Grammatical Framework . 29

2.3 The AnaCon framework . 30
2.3.1 System workflow . 30
2.3.2 About the CNL . 32
2.3.3 Linearisation and parsing in GF . 36

2.4 Case studies . 40
2.4.1 Case Study 1: Airline check-in process . 40
2.4.2 Case Study 2: Internet Service Provider . 45
2.4.3 Some reflections concerning the case studies . 49

2.5 Related work . 50
2.6 Conclusion . 53

2.6.1 Limitations . 53
2.6.2 Future work . 55

AnaCon: a framework for conflict analysis of normative texts 23

2.1 Introduction

In this paper we present the AnaCon framework as a proof-of-concept system for the analysis of
normative texts. We start by considering NL contracts taken from the real world, and describe a
CNL which attempts to represent them in a meaningful way. We then explain and demonstrate
the use of the AnaCon framework to transform such CNL contracts into expressions in a formal
language which can then be analysed with a conflict detection tool. AnaCon also allows the
translation of counter-examples (witnessing the existence of conflicting clauses) back into our
CNL, facilitating the identification of the problem in the original text.

A conceptual model of AnaCon was first introduced in the workshop paper [58]. In this work
we keep the same fundamental idea introduced there and consider the same class of contracts—
namely those which can be expressed as formulae in the formal language CL and thus processed
with the CLAN analysis tool. We have thus not changed the name of the framework, though
most of the system design and implementation of the individual sub-modules has been changed
significantly. In summary, the contributions of this paper are:

1. The definition and implementation of a CNL for writing normative texts. The CNL anal-
yser implemented allows the parsing of full sentences by identifying relevant verbs, in
particular those connoting obligations, permissions and prohibitions.

2. A formal syntax for the input file format to AnaCon, along with a parser that automati-
cally extracts action names from the CNL text, taking away from the user the burden of
including an action dictionary.

3. A complete implementation of AnaCon. We provide fully-working versions of all the
modules described in the framework, including the translation from resulting counter-
examples in the formal language CL back into our CNL.

4. The application of AnaCon to 2 case studies:
(i) A work description procedure for an airport check-in desk ground crew, and

(ii) A legal contract between an Internet provider and a client.

The paper is organised as follows. In the next section we recall the necessary technical back-
ground the rest of the paper is based on, including CL, CLAN, CNLs and GF. In Section 2.3
we present our framework in general terms, and provide some details on the implementation
of AnaCon. We then go into the application of the framework on two separate case studies in
Section 2.4, as proof-of-concepts to show the feasibility of our approach. Before concluding in
the last section, we discuss related work in Section 2.5.

24 Chapter 2

C := CO | CP | CF | C ∧ C | [β]C | ⊤ | ⊥
CO := OC(α) | CO ⊕ CO

CP := P (α) | CP ⊕ CP

CF := FC(α)

α := 0 | 1 | a | α&α | α.α | α+ α

β := 0 | 1 | a | β&β | β.β | β + β | β∗

Figure 2.1: CL syntax.

2.2 Background
In this section we present the background relevant to understanding the main components of
AnaCon. We first introduce the contract language CL, and continue with a description of the
conflict analysis tool CLAN. We then discuss controlled natural languages in general and finish
with a presentation of the Grammatical Framework.

2.2.1 The contract language CL

The formal language CL has been designed for specifying contracts containing clauses deter-
mining the obligations, permissions and prohibitions of the involved parties [68, 69, 66]. CL
is inspired by dynamic, temporal, and deontic logic, and combines concepts from each. Being
action-based, modalities in CL are applied to actions and not to state-of-affairs. Complex actions
can be expressed in the language by using operators for choice, sequence, conjunction (concur-
rency) and the Kleene star. CL also allows the expression of what penalties (reparations) apply
when obligations and prohibitions are not respected, which form a central part of how contracts
are defined and used.

For these reasons, CL was chosen for the underlying representation of the class of contracts
in which we are interested. Combined with the availability of the conflict-detection tool CLAN
(Section 2.2.2), CL forms the formal basis of the AnaCon framework. In what follows we present
the syntax of CL, and give a brief intuitive explanation of its notations and terminology, following
[69]. A contract in CL may be obtained by using the syntax grammar rules shown in Figure 2.1.

CL contracts in general consist of a conjunction of clauses representing (conditional) norma-
tive expressions, as specified by the initial non-terminal C in the definition. A contract is defined
as an obligation (CO), a permission (CP), a prohibition (CF), a conjunction of two clauses or a

AnaCon: a framework for conflict analysis of normative texts 25

clause preceded by the dynamic logic square brackets. ⊤ and ⊥ are the trivially satisfied and
violating contracts respectively. O, P and F are deontic modalities; the obligation to perform an
action α is written as OC(α), showing the primary obligation to perform α, and the reparation
contract C if α is not performed. This represents what is usually called in the deontic commu-
nity a Contrary-to-Duty (CTD), as it specifies what is to be done if the primary obligation is not
fulfilled. The prohibition to perform α is represented by the formula FC(α), which not only spec-
ifies what is forbidden but also what is to be done in case the prohibition is violated (the contract
C); this is called Contrary-to-Prohibition (CTP). Both CTDs and CTPs are useful to represent nor-
mal (expected) behaviour, as well as alternative (exceptional) behaviour. P(α) represents the
permission of performing a given action α. As expected there is no associated reparation, as a
permission cannot be violated.

In the description of the syntax, we have also represented what are the allowed actions (α and
β in Figure 2.1). It should be noted that the usage of the Kleene star (∗)—which is used to model
repetition of actions—is not allowed inside the above described deontic modalities, though they
can be used in dynamic logic-style conditions. Indeed, actions β may be used inside the dynamic
logic modality (the bracket [·]) representing a condition in which the contract C must be executed
if action β is performed. The binary constructors (&, ., and +) represent (true) concurrency,
sequence and choice over basic actions (e.g. “buy”, “sell”) respectively. Compound actions are
formed from basic ones by using these operators. Conjunction of clauses can be expressed using
the ∧ operator; the exclusive choice operator (⊕) can only be used in a restricted manner. 0 and
1 are two special actions that represent the impossible action and the skip action (matching any
action) respectively.

The concurrency (or synchrony) action operator & should only be applied to actions that can
happen simultaneously. CL offers the possibility to explicitly specify such actions by defining
the following relation between actions: a#b if and only if it is not the case that a&b. We call such
actions mutually exclusive (or contradictory). An example of such actions would be “the ground
crew opens the check-in desk” and “the ground crew closes the check-in desk”, which intuitively cannot
occur at the same time.

It is worth mentioning that much care has been taken when designing CL to avoid deontic
paradoxes, as this is a common problem when defining a language formalising normative con-
cepts (cf. [53]). Besides this, CL enjoys additional properties concerning the relation between
the different normative notions, as for instance that obligations implies permissions, and that
prohibition may be defined as the negation of permission. It has also been proven that some
undesirable properties do not hold, such as that the permission of performing a simple action
does not imply the permission of performing concurrent actions containing that simple action

26 Chapter 2

(similarly for prohibitions). See [68, 70] for a more detailed presentation of CL, including a proof
of how deontic paradoxes are avoided as well as the properties of the language.

Example

As an example of how CL can be used to represent contracts, let us consider the following sample
clause:

The ground crew is obliged to open the check-in desk and request the passenger manifest two
hours before the flight leaves.

Taking a to represent “two hours before the flight leaves”, b to be “the ground crew opens the check-in
desk”, and c to be “the ground crew requests the passenger manifest”, then this clause could be written
in CL as [a]O(b&c). We may also wish to include an additional reparation clause, such as:

If the ground crew does not do as specified in the above clause then a penalty should be paid.

This penalty must be applied in case the ground crew does not respect the above obligations.
Assuming that p represents the phrase “paying a fine”, one would capture all the above in CL as
[a]OO(p)(b&c).

This example serves not only to provide samples of normative statements written in CL, but
also to highlight the significant gap between natural language descriptions and formal repre-
sentations of contracts. This paper attempts to bridge this gap through the introduction of an
intermediary controlled natural language (CNL) to reconcile these two distinct representations.
More background on CNLs can be found in Section 2.2.3.

2.2.2 CLAN
CLAN1 is a tool aimed at the detection of normative conflicts in contracts written in CL, giving
the possibility for automatically generating a monitor for the CL formula [31]. There are four
main kinds of conflicts in normative systems. The first arises when there is an obligation and
a prohibition to perform the same action. Such cases will inevitably lead to a violation of the
contract, independently of what the performed action is. The second type of conflict happens
when there is a permission and a prohibition on the same action, which may or may not lead
to a contradicting situation. The other two cases occur when there is an obligation to perform
mutually exclusive actions, and when there exist both a permission and an obligation to perform
mutually exclusive actions.

1
http://www.cs.um.edu.mt/~svrg/Tools/CLTool, accessed 2015-08-13

http://www.cs.um.edu.mt/~svrg/Tools/CLTool

AnaCon: a framework for conflict analysis of normative texts 27

(a) Main user interface

(b) Automaton generated for [c]O(b) ∧ [a]F (b)

Figure 2.2: Screenshots of the CLAN tool [31]

28 Chapter 2

The core of CLAN is implemented in Java, consisting of just over 700 lines of code. The tool
provides a graphical user interface as shown in the screen shot depicted in Figure 2.2a. CLAN
allows the user to input a CL contract together with a list of the actions to be considered mutually
exclusive. If a conflict is detected, CLAN gives a counter-example trace showing where the con-
flict arises and giving a sequence of actions realising the path to that conflict state. It is possible
to visualise the corresponding automaton, as for instance shown in Figure 2.2b. The complexity
of the automaton increases exponentially on the number of actions, since all the possible combi-
nations to generate concurrent actions must be considered.

The analysis provided by CLAN enables the discovery of undesired conflicts. This is partic-
ularly useful both when a contract is being written, as well as before adhering to a given contract
(to ensure its unambiguous enforcement). AnaCon uses CLAN as its back-end conflict analyser,
yet abstracts over both the input to and output from CLAN via the CNL interface described in
Section 2.3.2.

2.2.3 Controlled Natural Languages (CNLs)
CNLs are artificial languages engineered to be simpler versions of full (or plain) natural languages
such as English. Such simplified languages are obtained through careful selection of vocabu-
lary and restriction of grammatical rules, and are normally tailored to be used in a particular
domain. Among other applications, CNLs are useful when considering human-machine inter-
actions which aim for an algorithmic treatment of language. Unlike plain natural languages,
the simplifications applied to CNLs usually allow them to be expressed and processed formally,
while remaining easy to understand and use for speakers of the original parent natural lan-
guage. This idea of using a CNL as a natural language-like interface for a formal system is not
new [58, 35, 15], and is also the solution chosen in AnaCon.

In general, the richer a CNL is, the more complex is its automation. So, it is a challenge
when designing CNLs to find a good trade-off between expressiveness (i.e. how close they are to
natural languages) and formalisation. This trade-off is also affected by the richness of the parent
NL and the formalism in which the CNL is defined [81].

As an example of the kinds of restrictions found in CNLs, consider again the following nat-
ural language clause:

The ground crew is obliged to open the check-in desk and request the passenger manifest two
hours before the flight leaves.

Using the CNL introduced later in this paper, such a clause would be re-written as:

AnaCon: a framework for conflict analysis of normative texts 29

if {the flight} leaves {in two hours} then both

- {the ground crew} must open {the check-in desk}

- {the ground crew} must request {the passenger manifest}

Even though the structure of the CNL version is noticeably less natural, it is sufficient for our
purposes to be merely close enough to English as to be understood by any non-technical person,
while retaining the possibility of being unambiguously translated into an equivalent CL expres-
sion. It is worth mentioning that the conversion of NL to CNL is not necessarily a trivial process,
owing to the ambiguities and potential for misinterpretation in NL. Conversely however, CNLs
should be immediately understandable to any speaker of the parent NL, as the former is very
much a subset of the other. This means that while it may require some training to convert a
contract in NL to CNL, once that conversion has been made then anyone should be able to easily
understand that CNL version of the contract. Further details about the design of the CNL for
AnaCon is explained in Section 2.3.2.

2.2.4 The Grammatical Framework

With both the formal language CL and a controlled natural language for the framework in place,
what remains is the software implementation for performing this bi-directional translation be-
tween representations. As in [58], we retain the use of the Grammatical Framework (GF) as a
grammar formalism and runtime parser/lineariser for converting between CNL and CL.

GF is a logical framework in the spirit of Harper, Honsell and Plotkin [40], which lets us de-
fine logics tailored for specific purposes, rather than trying to fit everything in a single model. At
the same time, GF is also equipped with mechanisms for mapping abstract logical expressions
to a concrete language. This is a distinct feature since most other logical frameworks come with
a predefined syntax. This same feature is a notable characteristic of GF as a linguistic frame-
work. While the logical framework encodes the language-independent structure (ontology) of
the current domain, all language-specific features can be isolated in the definition of the concrete
language. In other words, the definitions in the logical framework comprise the abstract syntax
of the domain, while the concrete syntax is kept clearly separated [72]. This is a realisation of
the separation between tectogrammatical and phenogrammatical features as was first proposed by
Curry [21].

Furthermore, it is usual and actually very common to equip the same abstract syntax with
several concrete syntaxes. Since GF has both a parser and a lineariser, in this case, the abstract
syntax can serve as an interlingua. When a sentence is parsed from the source language, then

30 Chapter 2

the meaning of the sentence is extracted as an expression in the abstract syntax. The abstract
expression then can be linearised back into some other language and this gives us bi-directional
translation between any two concrete languages. Most of the time the concrete languages are
natural languages, but it is also possible to define a linearisation into some formal language. In
AnaCon, we have two concrete syntaxes—one for English (CNL) and one for the source language
of CLAN (CL). Thanks to the bi-directionality of GF we can go freely from CNL to logic and vice
versa.

Another important advantage of GF from an engineering point of view is the availability
of the Resource Grammar Library (RGL) [71]. Since every domain is logically different, it is also
necessary to define different concrete syntaxes. When these are natural languages, then it means
that a lot of tedious low-level details like word order and agreement have to be implemented
again and again for each application. Fortunately, RGL provides general linguistic descriptions
for several natural languages which can be reused by using a common language independent
API. We implemented the AnaCon syntax for English by using this library, which both simplifies
the development and makes it easy to port the system to other languages.

The GF runtime system also features an incremental parser, which can parse partial sentences
and suggest valid completions according the underlying grammar [2]. While not used in the
current version of AnaCon, this feature becomes very useful when composing sentences in CNL,
as users do not necessarily need to know the specific grammar rules which define the language.
In other words, the incremental parser can be used to provide a guided user-input experience.
This feature was a further motivator for choosing GF as the framework for the implementation
of AnaCon’s CNL.

2.3 The AnaCon framework
In this section we start with the presentation of our framework, AnaCon, in general terms. We
then discuss some issues concerning the particular CNL we are using as an input language for
the framework, and present some details on the linearisation and parsing processes via GF.

2.3.1 System workflow

AnaCon takes as input a text file containing the description of a contract in two parts: (i) The
contract itself written in CNL; (ii) A list of mutually exclusive actions.2 Figure 2.3 shows a sample

2AnaCon can be downloaded from: http://www.cse.chalmers.se/~gersch/anacon/.

http://www.cse.chalmers.se/~gersch/anacon/

AnaCon: a framework for conflict analysis of normative texts 31

[clauses]

if {the flight} leaves {in two hours} then both

- {the ground crew} must open {the check-in desk}

- {the ground crew} must request {the passenger manifest}

[/clauses]

[contradictions]

{the ground crew} open {the check-in desk} # {the ground crew} request {the passenger manifest}

[/contradictions]

Figure 2.3: Sample contract file in AnaCon format.

of the input file to the framework, containing part of the description of what an airline ground
crew should do before flights leave (details on the CNL syntax will be given in Section 2.3.2).

The entire system is summarised in Figure 2.4 where arrows represent the flow of informa-
tion between processing stages. AnaCon essentially consists of a translation tool written in GF,
the conflict analysis tool CLAN, and some script files used to connect these different modules
together. The typical system workflow is as follows:

1. The user starts with a contract (specification, set of requirements, etc.) in plain English,
which must be rewritten in CNL. This is primarily a modelling task, and it must be done
manually. It requires no technical skills from the user, but does demand a knowledge of
the CNL syntax and the set of allowed verbs.

2. The CNL version of the contract in AnaCon text format (Figure 2.3) is then passed to the
AnaCon tool, which begins processing the file.

3. The clauses in the contract are translated into their CL equivalents using GF. This trans-
lation is achieved by parsing the CNL clauses into abstract syntax trees, and then re-
linearising these trees using the CL concrete syntax (see Section 2.3.3).

4. From the resulting CL clauses, a dictionary of actions is extracted. Each action is then
automatically renamed to improve legibility of the resulting formulae, and a dictionary
file is written. The list of mutually exclusive actions from the CNL contract is verified to
make sure that each individual action actually does appear in the contract.

5. Using the renamed CL clauses from the previous step and the list of mutually exclusive
actions, an XML representation of the contract is prepared for input into the CLAN tool.

6. This XML contract is then passed for analysis to CLAN via its command-line interface,
which checks whether the contract contains any normative conflicts. If no such conflicts
are found, the user is notified of the success. If CLAN does detect any potential conflicts,
the counter-example trace it provides is linearised back into CNL using the GF translator

32 Chapter 2

Contract
(Natural Language)

Contract
(AnaCon format)

 Manual re-writing

GF translation

 Clauses (CNL)

CLAN Input (XML)

 Exclusive
actions

Dictionary

 Dictionary
extraction

 Clauses (CLAN)

GF translation

CNL Output

 Contradictory clause
(CNL)

Dictionary

 Action
renaming

CLAN analysis

CLAN analysis

CLAN Output

 Contradictory clause
(CLAN)

Figure 2.4: AnaCon processing workflow.

in the opposite direction. The dictionary file is used to re-instate the original action names.
7. The user must then find where the counter-example arises in the original contract. This

last step must again be carried out manually, by following the CNL trace and comparing
with the original contract.

2.3.2 About the CNL

Wyner et al. [81] have identified the following general questions one should ask when designing
a CNL:

(i) Who are the intended users?
(ii) What is the main purpose of the language?

(iii) Is the language domain-dependent?
In our particular case we have the following answers to these questions:

(i) The intended user is any person writing normative texts;
(ii) The main purpose of the language is that it is close enough to English as to be understood

by any person, yet at the same time structured in such a way that its translation into CL is
feasible;

(iii) The language is not specifically tailored for an application domain, however, it should be
easy to parse it in such a way that obligations, permissions and prohibitions are easily

AnaCon: a framework for conflict analysis of normative texts 33

identified.

Actions. The most primitive element in CL is the action and this is the starting point in the de-
sign of our CNL. While in CL these are just variable names, in natural language they correspond
to sentences stating who is doing what. As a very rough approximation, every English sentence
has an SVO structure (subject, verb, object), for example:

the ground crew opens the check-in desk
subject verb object

This is what we take as the basic syntax for actions in our CNL. Obviously, if this is taken
directly, it will rule out many natural language constructions like the usage of adverbs and the
attachment of prepositional phrases. These constructions usually express different moods for
performing the action (e.g. quickly, slowly, immediately, etc.) or define time and space locations
for the action (e.g. at the airport). As this kind of information cannot be expressed in CL, we omit
it from the CNL altogether. Still, since we permit the subject and the object to be free text, the
user has the freedom to include more information than just the noun phrase of the subject or the
object. It is also possible to have ditransitive verbs, i.e. verbs with more than one object. In this
case we simply insert both objects in the free text slot for the object. If the verb is intransitive
(without objects) then we can just leave the object slot empty.

The slot for the verb is not free text and must come from a set of predefined verbs. While we
do not have to analyse the subject and the object slots, the ability to analyse the verb is important
since we use modal verbs like must and may to indicate obligation, prohibition and permission.
The restriction to use known verbs is not so hard since the grammar has a lexicon with all verbs
from the Oxford Advanced Learners Dictionary [45, 56]. A given user will almost certainly find
the verb that is needed—or a synonym of it—in the lexicon. The verb should be always in the
present tense, and it can be in first, second or third person, in singular or plural. We check the
tense but we cannot check the agreement with number and person, since we do not analyse the
subject of the sentence. The only exception is when the verb is used with some of the modal
verbs, then it must be in the infinitive.

When analysing the action, we must be able to correctly identify the beginning and the end
of each slot, which is difficult when there are free text slots. Our simple solution is to require that
the object and subject must be surrounded with curly braces, i.e. the user actually writes:

{the ground crew} opens {the check-in desk}

34 Chapter 2

In some cases, the system can do the splitting even without the help of the curly braces since
from the context it knows where each slot starts, and can guess the end of the slot by looking for
known words. For instance we can guess the end of the slot for the ground crew since the next
word opens is a known verb. Unfortunately, with the big verb lexicon this is often ambiguous
since for instance ground is also a verb although here it is used as an adjective. The guessing
can be made more sophisticated by using statistical part of a speech tagger which will try to
predict whether ground is used as a verb or as an adjective. Unfortunately even the best part of
speech taggers are still far from perfect, with precision of about 95%–97% (the precision of the
Stanford Tagger, for instance, is 96.86% [80]). Instead, we opted for a solution that is simple and
predictable. Integration of statistical tools can be done later, while still keeping bracketing as a
safe alternative.

Connectives over actions. The two main operations on actions are concurrency (&) and choice
(+). In natural language, they are represented by joining the sentences for the different actions
with the conjunctions and and or. When there are more than two actions the usual English rules
apply, i.e. the first actions are separated by comma and the last two with the conjunction. When
the same expression mixes concurrency and choice, then in order to avoid ambiguities we use
the usual conventions in logic and we give higher priority to the concurrency. In other words, if
we have the expression a and b or c, then it will be interpreted as (a and b) or c. The user can
also use parenthesis to override the default priorities.

A sequence of actions (.) in the CNL is introduced with the keyword first, followed by a list
of actions. The actions are separated by commas except the last two which are separated with a
comma followed by the conjunction then. For example:

first {the ground crew} opens {the desk},

then {the ground crew} closes {the desk}

We omit from the CNL the two special actions 0 and 1 since they have no obvious equivalent in
English. Although they have useful algebraic properties in the logic, they do not appear naturally
in any real contracts. A notable exception is the construction [1∗]C which means that the clause
C must be enforced at any state. For this purpose, we added the keyword always which can
be used in front of any clause, which adds the condition [1∗] in the corresponding CL formula.
Similarly we did not include the Kleene star in our CNL, except for its use in relation to always.

Deontic modalities. On the next level, from every action, we can construct a clause express-
ing the obligation, the prohibition or the permission to perform an action. For representing the

AnaCon: a framework for conflict analysis of normative texts 35

modalities we use the modal verbs must, shall and may, and the adjectives required and optional.
In this way we implement the Internet recommendation RFC 21193 for requirement levels. The
only difference is that they also define the verb should which is used for recommendations. Since
the CL logic does not support this modality, we do not have it in the CNL either.

More concretely, if we take for example the action “the ground crew opens the desk”, then in the
different modalities it can be written in one of the following ways:

Obligation
{the ground crew} must open {the desk}

{the ground crew} shall open {the desk}

{the ground crew} is required to open {the desk}

Permission
{the ground crew} may open {the desk}

it is optional for {the ground crew} to open {the desk}

Prohibition
{the ground crew} must not open {the desk}

{the ground crew} shall not open {the desk}

The two operations on clauses—conjunction (∧) and the exclusive choice (⊕)—are rendered
in English with the keywords both (or each of) and either, followed by a bullet list of clauses. Each
list item starts on a new line and begins with a dash. If some of the list items contain clauses which
themselves contain conjunction or exclusive choice, then the list items for such clauses must be
indented with more spaces than the spaces before the dash of the parent clause. Contrary to the
case with the concurrency and choice over actions, here we do not have any risk of ambiguity
since the indentation level clearly indicates the nested structure of the logical formula.

Reparations. In the case of obligation and prohibition, the user can specify a reparation clause
which must be hold if the contract is violated. In the CNL the reparation is introduced with
comma and the keyword otherwise after the main action. For example:

{the ground crew} must open {the desk}, otherwise

{the ground crew} must pay {a fine}

Here we can have an arbitrarily long list of clauses, which are applied in the order in which they
are written. The last clause is not followed by otherwise, which is an indication its reparation is ⊥.
This is also the only way to introduce ⊥ in the logic. Similarly to 0 and 1 for actions, the clauses
⊤ and ⊥ cannot be used directly in the CNL.

3
http://www.ietf.org/rfc/rfc2119.txt, accessed 2015-08-13

http://www.ietf.org/rfc/rfc2119.txt

36 Chapter 2

The last thing to mention about the CNL is the syntax for conditions. As already mentioned,
the syntax for the special condition [1∗]C is introduced with the keyword always followed by the
content of the clauseC. The general conditions are introduced with the usual if …then statements
in English, for example:

if {the ground crew} opens {the desk}

then {the ground crew} must close {the desk}

Note that here the verb opens is not used with a modal verb; this is an indication that this is an
action and not a clause. In fact the expression between if and then can be a combination of many
actions joined with the different action operators.

2.3.3 Linearisation and parsing in GF
In what follows we present how the major features of CL are represented in the abstract syntax,
and look at how these features are handled in the concrete syntax for our CNL and the symbolic
language for CLAN. As the chosen CNL covers a subset of CL’s full expressivity, some CL oper-
ators are accordingly absent from the grammars—namely ⊤, 0, 1 and a∗. With the GF grammars
for our two representations, the framework provides parsing and linearisation to and from the
abstract syntax for free. In this way we can achieve two-way translation between the CNL and
the CLAN language by having one concrete syntax for each, with shared abstract syntax.

To begin with, we define the following categories based on the BNF of CL (square brack-
ets denote lists over a category). These correspond to the left-hand-side of the productions in
Figure 2.1.

cat

Act; [Act]; Clause; [Clause]; ClauseX;

ClauseO; [ClauseO]; ClauseP; [ClauseP]; ClauseF;

Conjunction of clauses. In the abstract syntax, conjunction over clauses is defined as a function
collapsing a list of heterogeneous clauses into one.

fun

andC : [Clause] -> Clause ;

Our CNL as defined in Section 2.3.2 dictates that two or more clauses joined by conjunction
should be bulleted and indented (for legibility and to avoid ambiguity), and preceded with a
keyword token both or each of. As there are no other binary operations over clauses, operator
precedence is not an issue (unlike for the action operators) and our code is fairly simple:

AnaCon: a framework for conflict analysis of normative texts 37

lin

andC lst = indentS ("both"|"each of") (mkS bullet_Conj lst) ;

oper

indentS : Str -> S -> S = \keyword,sen -> lin S {

s = keyword ++ "[" ++ sen.s ++ "]" ;

} ;

bullet_Conj = mkConj "-" "-" ;

A few different things are happening here. Firstly, the linearisation of andC is delegated to the
indentS operation4, which prefixes our list with either of the variants both or each of, and encloses
the rest of the term in square brackets. The role of the brackets is to encode the beginning and
the end of an indentation level. Since GF grammars work on token level and the spaces and the
new lines are ignored, they cannot handle the indentation directly. Instead a custom lexer and
unlexer are used to convert between the square brackets and the indentation levels. In this way
the indentation is handled outside of the grammars. We also see the reference to mkS, an operation
defined in the GF Resource Grammar Library (RGL). This library call does all the work of joining
our clauses into a single token list using a hyphen symbol as a delimiter (bullet_Conj).

Conditionals. The modality [β]C is used to express conditional obligations, permissions and
prohibitions, where the condition is a simple or compound action. The abstract syntax declara-
tion and CNL linearisation are given below:

fun

when : Act -> Clause -> Clause ;

lin

when act c =

mkS if_then_Conj (act.s ! Default) c ;

This example makes use of another version of the overloaded mkS operation from the RGL,
which constructs an English if …then sentence given the appropriate arguments. The linearisa-
tion of such a clause in the CL concrete syntax is a simple string concatenation:

lin

when act c = "[" ++ act.s ++ "]" ++ "(" ++ c.s ++ ")" ;

Obligations, permissions and prohibitions. Obligations, permissions and prohibitions have
a similar implementation as they all follow the same pattern. Each is built from an action and a

4 oper judgements in GF are operations which can be re-used by linearisation judgements, but do not themselves
represent linearisations of syntactic constructors.

38 Chapter 2

reparation clause (CTP or CTD) where appropriate. Choice over obligations and permissions is
defined in the same way as conjunction of clauses above.

fun

O : Act -> ClauseX -> ClauseO ;

P : Act -> ClauseP ;

F : Act -> ClauseX -> ClauseF ;

choiceO : [ClauseO] -> ClauseO ;

choiceP : [ClauseP] -> ClauseP ;

Understanding the linearisation of an obligation also requires a look at the reparation clauses.
While CL uses the bottom symbol ⊥ to indicate a null CTD, in natural language it sounds very
awkward to say something like “one is obliged to pay a fine, otherwise nothing”. It is much more
natural to simply omit the “otherwise nothing” altogether. So, the linearisation of obligations is
dependent on the type of the reparation clause (the ty field, where False indicates a null CTD).

lincat

ClauseO = S ;

ClauseX = {s : S; ty : Bool} ; -- CTD/CTP

lin

O act cl = case cl.ty of {

True => mkS (mkConj ", otherwise") (act.s ! Obligation) cl.s ;

False => lin S {s = cl.s.s ++ (act.s ! Obligation).s}

} ;

reparation c = { s = c ; ty = True } ;

failure = { s = lin S {s=""} ; ty = False } ;

Actions. Atomic actions are defined as a “triple” containing a subject, a verb and an object,
e.g. <the crew, requests, the boarding pass>. These are covered by the lexical categories NP (noun
phrase), V (verb) and NP respectively:

flag

literal = NP ;

cat

NP ; V ;

fun

atom : NP -> V -> NP -> Act ;

By specifying the literal = NP flag, the GF compiler is instructed to treat NP as a literal cate-
gory, which means its linearisation is that of a simple string. To achieve a degree of modularity
between the logical and the linguistic, all verbs are defined in a separate abstract GF module
Verbs.gf. In this case, the CNL concrete syntax VerbsEng.gf is also imported in the CL concrete

AnaCon: a framework for conflict analysis of normative texts 39

syntax, exhibiting how GF’s module system may help avoid duplication of code. The verbs
themselves are also defined using the RGL, such that all that is required in our linearisation is a
call to the mkV smart paradigm:

fun

close_V : V;

request_V : V;

...

lin

close_V = mkV "close" "closes" "closed" "closed" "closing";

request_V = mkV "request";

...

The CNL linearisation of actions is defined as a table parametrised with a mode. This essen-
tially reflects the idea that a single action can be realised in four different modalities:

• Default: the crew requests the boarding pass
• Obligation the crew must request the boarding pass
• Permission: the crew may request the boarding pass
• Prohibition: the crew shall not request the boarding pass

With this approach, each atomic action internally contains each of these possible linearisations,
which must be selected elsewhere in the grammar using the selection operator !.

To add a degree of naturalness to the grammar, we also introduce the concept of linearisation
variants. Variants are a way of adding alternative, non-deterministic linearisations to an abstract
syntax tree, and are defined in GF using the pipe symbol |. Using variants, we allow the single
abstract syntax tree O (atom (np "the crew") close_V (np "the check-in desk")) to have any of the
following linearisations:

1. the crew is required to close the check-in desk
2. the crew shall close the check-in desk
3. the crew must close the check-in desk

param

Mode = Default | Obligation | Permission | Prohibition ;

lincat

Act = {s : Mode => S; p : Prec} ;

lin

atom = mkAtom 0 | mkAtom 1 | mkAtom 2 ;

oper

mkAtom : Ints 2 -> NP -> V -> NP -> {s : Mode => S; p : Prec} ;

mkAtom n s p o = {

s = table {

Default => mkS (mkCl s (mkVP (mkV2 p) o)) ;

40 Chapter 2

Obligation => case n of {

0 => mkS ...

1 => mkS ...

2 => mkS ...

} ;

Permission => ...

Prohibition => ...

} ;

p = highest

} ;

Operations over actions are defined in the abstract syntax in a way which we are already
familiar with. As CL defines more than one operator over actions, an order of precedence must
be enforced to avoid ambiguities in phrases involving compound actions. With the help of the
RGL’s Precedence module, this is achieved by including a precedence field (p : Prec) in the lin-
earisation type of actions. The linearisations of the operators are then explicitly given precedence
levels, where conjunction is the highest (p = 2) and sequence is the lowest (p = 0).

fun

andAct, choiceAct, seqAct : [Act] -> Act ;

lin

andAct as = {s = \\m => mkS and_Conj (as!2!m); p=2} ;

choiceAct as = {s = \\m => mkS or_Conj (as!1!m); p=1} ;

seqAct as = {s = \\m => mkS then_Conj (as!0!m); p=0} ;

2.4 Case studies
In this section we apply AnaCon to two case studies, as a proof-of-concept of the feasibility of our
approach. The first is concerned with the workflow description of an airline check-in, including
the penalties applicable when the work is not carried out as prescribed. The second case study
is a legal contract concerning the provision of Internet services. We finish the section with a
discussion on the lessons learned from the case studies.

2.4.1 Case Study 1: Airline check-in process
Our first case study has been taken from [30]. It consists of the description of the check-in process
of an airline company, given in Figure 2.5.

To show the modelling and re-writing process, we will first consider two clauses from this
contract and show their equivalent CNL representations. Note that in our CL expressions, the

AnaCon: a framework for conflict analysis of normative texts 41

1. The ground crew is obliged to open the check-in desk and request the passenger manifest from the
airline two hours before the flight leaves.

2. The airline is obliged to provide the passenger manifest to the ground crew when opening the desk.
3. After the check-in desk is opened the check-in crew is obliged to initiate the check-in process with

any customer present by checking that the passport details match what is written on the ticket and
that the luggage is within the weight limits. Then they are obliged to issue the boarding pass.

4. If the luggage weighs more than the limit, the crew is obliged to collect payment for the extra
weight and issue the boarding pass.

5. The ground crew is prohibited from issuing any boarding passes without inspecting that the details
are correct beforehand.

6. The ground crew is prohibited from issuing any boarding passes before opening the check-in desk.
7. The ground crew is obliged to close the check-in desk 20 minutes before the flight is due to leave

and not before.
8. After closing check-in, the crew must send the luggage information to the airline.
9. Once the check-in desk is closed, the ground crew is prohibited from issuing any boarding pass or

from reopening the check-in desk.
10. If any of the above obligations and prohibitions are violated a fine is to be paid.

Figure 2.5: Airline contract case study. [30]

actions have been renamed for brevity. This replacement is performed automatically by AnaCon
and is completely reversible.

Original: The ground crew is obliged to open the check-in desk and request the passenger
manifest from the airline two hours before the flight leaves.

CNL:

if {the flight} leaves {in two hours} then {the ground crew} must open {the check-in

↪→ desk} and {the ground crew} must request {the passenger manifest from the

↪→ airline}

For this clause, AnaCon gives the following CL formula as output:

CL: [b3]O(a7&b2)

where from the dictionary file we see that:

b3 = {the flight} leave {in two hours}

a7 = {the ground crew} open {the check-in desk}

b2 = {the ground crew} request {the passenger manifest from the airline}

42 Chapter 2

In the example above we see an obligation over two concurrent actions, which only become
effective after an initial constraint is met—i.e. if it is two hours before the flight leaves. Note how
this constraint is moved to the beginning of the clause and expressed using the if keyword. As
defined by our CNL, conjunction over actions is expressed by joining together the individual
actions with the keyword and. Conjunction over clauses however must be handled differently,
as shown in the second example below:

Original: Once the check-in desk is closed, the ground crew is prohibited from issuing any
boarding pass or from reopening the check-in desk.

CNL:

if {the ground crew} closes {the check-in desk} then both

- {the ground crew} must not issue {boarding pass}

- {the ground crew} must not reopen {the check-in desk}

AnaCon gives the following CL formula as output (again generating the corresponding ac-
tion names in the dictionary file:

CL: [b6]((F(a1))∧(F(a4)))

In this case, using and to separate our clauses would be ambiguous with the conjunction
over actions (shown above). Thus the bullet syntax is used here to clearly indicate the level of
the conjunction.

While we have taken the above two examples individually, in real contracts clauses often
refer to and depend on each other. When read in NL the reader can easily make the connections
between the different clauses, but when it comes to modelling the contract formally these need
to be handled explicitly.

Firstly, it is a common assumption that all the individual clauses in a contract are active
together and thus there is an implicit conjunction between them. Furthermore, note how clause
10 in the example specifies a CTD for violating any part of the contract. Thus combining clauses
1, 8, 9, and 10 from the contract in Figure 2.5 we end up with:

CNL:

if {the flight} leaves {in two hours} then each of

- {the ground crew} must open {the check-in desk} and {the ground crew} must request

↪→ {the passenger manifest from the airline}

- if {the ground crew} closes {the check-in desk} then each of

- {the ground crew} must send {luggage information to airline}

AnaCon: a framework for conflict analysis of normative texts 43

- {the ground crew} must not issue {boarding pass}

- {the ground crew} must not reopen {the check-in desk}

which results in the following CL formula:

CL: [b4]((O(b1&a2))∧[b6]((O(b2))∧((F(a1))∧(F(a4)))))

When processed with AnaCon, the first conflicting state reported was reached after a single ac-
tion:

1 counter example found

Clause:

(((O(a7&b2))_(Oa3))^(((Oa2)_(Ob1))^(([a7]((O(a6.(b4.(a8.a5))))_(Ob7)))^(((F(b5)_(

↪→ Oa3))^(((Ob6)_(Oa3))^(([b6](Oa9))^(([b6](Fa1))^([b6](Fa4)))))))))

Trace:

1. the flight leave in two hours

Note that the counter-example above contains two parts: (i) a CL formula, and (ii) a trace in
CNL. The first part is the formula representing the state of the automaton where the normative
conflict happens, which is not particularly helpful for the end user. The second part is a lineari-
sation of the output of CLAN showing what is the sequence of actions leading to the conflict; in
this case only one.

A quick analysis of the original contract reveals that the two mutually exclusive actions open-
ing the check-in desk and closing the check-in desk were erroneously obliged at the same level in the
contract. This is a modelling error, and is corrected in a second version of the case study CNL.

When rewriting the second version we have not only addressed the issue of the arrangement
of the actions corresponding to opening and closing the check-in desk, but we have also added
more mutually exclusive actions. Such actions are considered mutually exclusive because they
are logically contradictory and thus cannot happen at the same time, or because they cannot
occur simultaneously due to physical constraints (e.g. “the check-in crew issue the boarding pass”
and “the check-in crew check that the passport details match what is written on the ticket”). By adding
such pairs of mutually exclusive (contradictory) actions we are avoiding some possible unnatural
traces and at the same time reducing the size of the CLAN automaton, improving its time and
space requirements.

By executing AnaCon a third time and analysing the counter-example given, it becomes ap-
parent that there is something wrong with clause 5 (cf. Figure 2.5). In effect, this clause has two
problems: (i) it is ambiguous as the whether the “details” refer to the passport or to the ticket;

44 Chapter 2

(ii) it is redundant as it is somehow contained in clause 3. The latter adds some complexity to
the analysis, so we decided to eliminate clause 5, without changing the intended meaning of the
description.

Re-running AnaCon on this new contract also reveals another conflict, relating to the initia-
tion of check-in and the closing of the gate being obliged at the same level in the contract:

CNL:

if {the airline crew} provides {the passenger manifest to the ground crew} then each

↪→ of

- first {the check-in crew} must initiate {the check-in process} ...

- {the ground crew} must close {the check-in desk 20 mins before flight leaves} ...

- if {the ground crew} closes {the check-in desk 20 mins before flight leaves} then

↪→ ...

CL: [a5]((O(a8&…))∧((O(b5))∧[b5](…)))

Resulting AnaCon output:

4 counter examples found (only showing first)

Clause:

((((Oa8)_(Ob6))^([a8]((O(b4.(a7.a6)))_(Ob6))))^(((Ob5)_(Oa3))^(([b5](Ob1))^(([b5](

↪→ Fa1))^([b5](Fa4))))))

Trace:

1. the flight leave in two hours

2. the ground crew open the check-in desk 2 hours before

3. the ground crew request the passenger manifest from the airline

4. the airline crew provide the passenger manifest to the ground crew

This leads to yet another re-writing of this final part of the contract, where the closing of the gate
is now properly obliged after the initiation of the check-in process (note that by adding a new
action, the re-written action names have changed):

CNL:

if {the airline crew} provides {the passenger manifest to the ground crew} then each

↪→ of

- first {the check-in crew} must initiate {the check-in process} ...

- if {the flight} leaves {in 20 mins} then both

- {the ground crew} must close {the check-in desk}

- if {the ground crew} closes {the check-in desk} then each of

- {the ground crew} must send {the luggage information to the airline}

- {the ground crew} must not issue {boarding pass}

- {the ground crew} must not reopen {the check-in desk}

AnaCon: a framework for conflict analysis of normative texts 45

1. The Client shall not:
(a) supply false information to the Client Relations Department of the Provider.

2. Whenever the Internet Traffic is high then the Client must pay [price] immediately, or the Client
must notify the Provider by sending an e-mail specifying that he will pay later.

3. If the Client delays the payment as stipulated in clause 2, after notification he must immediately
lower the Internet traffic to the normal level, and pay later twice (2 ∗ [price]).

4. If the Client does not lower the Internet traffic immediately, then the Client will have to pay 3 ∗
[price].

5. The Client shall, as soon as the Internet Service becomes operative, submit within seven (7) days
the Personal Data Form from his account on the Provider’s web page to the Client Relations De-
partment of the Provider.

6. Provider may, at its sole discretion, without notice or giving any reason or incurring any liability
for doing so:

(a) Suspend Internet Services immediately if Client is in breach of clause 1;

Figure 2.6: ISP Contract case study.

Generated CL: [a6]((O(a9&…))∧
([a5]((O(b6))∧[b6]((O(b2))∧((F(a7))∧(F(a4)))))))

In order to truly cut down the size of the generated automaton to a bare minimum, a cross
product of all possible mutually exclusive actions is generated using a simple shell script. From
this, only the actions that are allowed to occur concurrently are removed; namely all those includ-
ing the paying of fines, since a fine can be paid at any time. As this case study turns out to have
a highly sequential nature, it makes sense that the list of mutually exclusive actions should be
quite large.

Finally, after the iteration process described above we arrive at a final version of the contract
without conflicts. It should be noted that for this case study we modelled the contract as a single
instance of a sequence of events, i.e. considering a single airline and ground crew, a single check-
in desk and indeed a single passenger. Extending the example with the always operator to model
multiple check-ins occurring simultaneously introduces a number of difficulties and moreover
reveals certain shortcomings of CL and CLAN. These are discussed further in Section 2.4.3 and
Section 2.6.

2.4.2 Case Study 2: Internet Service Provider
We apply AnaCon here to part of a contract between an Internet provider and its clients, taken
from [64]. The fragment of the contract which we will consider is reproduced in Figure 2.6.

46 Chapter 2

The first clause imposes a prohibition for the client to give false information, while clauses
2 through 5 stipulate the obligations of the client in what concerns keeping the use of Internet
below a certain limit (here specified as high) and the penalties to be paid in case these clauses
are not respected. Clause 6 refers to the right of the provider to suspend the service if the client
provides false information.

In what follows we rewrite the above clauses into our CNL and apply AnaCon. Our first
attempt to analyse our CNL contract produces a parsing error on the following fragment:

CNL:

if {Internet traffic} becomes {high} then either

- {the Client} must pay {price P}

- each of

- {the Client} must notify {the Provider ...}

- if {the Client} notifies {the Provider ...} then {the Client} must lower {

↪→ Internet traffic to the normal level}, otherwise {the Client} is required

↪→ to pay {price 3P}

- if first {the Client} notifies {the Provider ...}, then {the Client} lowers {

↪→ Internet traffic to the normal level} then {the Client} must pay {price 2

↪→ P}

The syntax error in this example stems from the use of disjunction (either on line 1) over clauses,
which this is not allowed by CL and therefore in our CNL. The solution in this case is to treat this
disjunction as a reparation, which is indeed the intended meaning in such cases:

CNL:

if {Internet traffic} becomes {high} then {the Client} must pay {price P}, otherwise

↪→ first {the Client} must notify {the Provider ...}, {the Client} must lower {

↪→ Internet traffic to the normal level}, then {the Client} must pay {price 2P},

↪→ otherwise {the Client} is required to pay {price 3P}

CL: [a4]((O(a8)_((O(a2.b1.a9)_((O(a3)))))))

Note how rewriting the above clauses actually leads to a neater implementation, both in terms
of the CNL and in the underlying CL expression.

Running this corrected version of the contract with AnaCon, we are returned with a list of no
fewer than 473 counter-examples which CLAN determined would lead to a state of conflict. An
excerpt of the full output from CLAN shown below indicates that there is no proper handling of
inherent sequence of the preliminary steps in the contract—i.e. those referring to customer data

AnaCon: a framework for conflict analysis of normative texts 47

and the application procedure—which should apply before any clauses about the Internet traffic
are even considered.

473 counter examples found (only showing first)

Clause:

((((F(a7)_(Pa1))^([1]([(*1)]((F(a7)_(Pa1)))))^((((Oa9)_(Oa3))^(((Oa8)_(((Oa2)_(Oa3

↪→))^(([a2]((Ob1)_(Oa3)))^([a2]([b1]((Oa9)_(Oa3)))))))^(([a4]((Oa8)_(((Oa2)

↪→ _(Oa3))^(([a2]((Ob1)_(Oa3)))^([a2]([b1]((Oa9)_(Oa3))))))))^([1]([(*1)]([

↪→ a4]((Oa8)_(((Oa2)_(Oa3))^(([a2]((Ob1)_(Oa3)))^([a2]([b1]((Oa9)_(Oa3))))))

↪→)))))))^(([a5](Oa6))^([1]([(*1)]([a5](Oa6)))))))

Trace:

1. Internet traffic become high

2. the Client provide false information to the Client Relations Department of the

↪→ Provider and the Internet Service become operative

3. the Client notify the Provider ... and the Internet Service become operative

↪→ and the Client submit ... the Personal Data Form ...

4. the Client notify the Provider ... and the Internet Service become operative

↪→ and the Client submit ... the Personal Data Form ...

5. the Internet traffic become high and the Client lower Internet traffic to the

↪→ normal level and the Client submit ... the Personal Data Form ...

More than a modelling problem, this tends to indicate some underlying assumptions in the
original contract which need to be explicitly handled. This leads to the restructuring of the con-
tract. In particular, the new contract was conceptually split into two sections, where all clauses
referring to the application process form a prefix to the rest of the contract, which subsequently
deals with the service once it has been activated. This is shown below (the corresponding CL
formula has been omitted):

CNL:

if {the Client} submits {the data} then each of

- {the Provider} must check {the data}

- if first {the Provider} checks {the data}, then {the Provider} disapproves {the

↪→ data} then {the Provider} may cancel {the contract}

- if first {the Provider} checks {the data}, then {the Provider} approves {the data}

↪→ then each of

- {the Internet Service} must become {operative}

- if {the Internet Service} becomes {operative} then always ...

It should be noted that this rewriting of the contract may in fact depart from the original meaning
of the natural language contract we began with. This however should not be seen as a flaw;

48 Chapter 2

indeed the very aim of contract analysis tools like AnaCon is to help identify weaknesses in
existing contracts and facilitate their improvement.

Running this new contract through AnaCon produces a reduced—though still large—set of
counter-examples from CLAN:

147 counter examples found (only showing first)

Clause:

(((Ob1)_(Oa2))^(((Oa6)_(((Oa1)_(Oa2))^(([a1]((Ob2)_(Oa2)))^([a1]([b2]((Ob1)_(Oa2))

↪→)))))^(([a9]((Oa6)_(((Oa1)_(Oa2))^(([a1]((Ob2)_(Oa2)))^([a1]([b2]((Ob1)_(

↪→ Oa2))))))))^([1]([(*1)]([a9]((Oa6)_(((Oa1)_(Oa2))^(([a1]((Ob2)_(Oa2)))^([

↪→ a1]([b2]((Ob1)_(Oa2)))))))))))))

Trace:

1. the Client submit the data

2. the Provider check the data

3. the Provider approve the data

4. the Internet Service become operative

5. Internet traffic become high

6. Internet traffic become high

7. Internet traffic become high and the Client pay price P and the Client notify

↪→ the Provider ...

8. Internet traffic become high and the Client pay price P and the Client notify

↪→ the Provider ...

9. Internet traffic become high and the Client pay price P and the Client lower

↪→ Internet traffic to the normal level

The initial reaction to this large number of counter-examples is to explicitly add more mutually
exclusive actions to the contract to reduce the size of the automaton produced. While adding
5 pairs of exclusive actions reduces the number of possible counter-examples to just 18, a new
issue with the contract emerges. In the new trace produced by CLAN it can be seen that if the
action of the Internet traffic becoming high occurs twice (or more) in succession, the contract will
always end in conflict, as shown in the counter-example below.

18 counter examples found (only showing first)

Clause:

((Oa2)^(((Oa6)_(((Oa1)_(Oa2))^(([a1]((Ob2)_(Oa2)))^([a1]([b2]((Ob1)_(Oa2)))))))

↪→ ^(([a9]((Oa6)_(((Oa1)_(Oa2))^(([a1]((Ob2)_(Oa2)))^([a1]([b2]((Ob1)_(Oa2))

↪→))))))^([1]([(*1)]([a9]((Oa6)_(((Oa1)_(Oa2))^(([a1]((Ob2)_(Oa2)))^([a1]([

↪→ b2]((Ob1)_(Oa2)))))))))))))

Trace:

1. the Client submit the data

2. the Provider check the data

3. the Provider approve the data

4. the Internet Service become operative

AnaCon: a framework for conflict analysis of normative texts 49

5. Internet traffic become high

6. Internet traffic become high

7. the Client pay price P and the Client notify the Provider ...

8. the Client notify the Provider ...

9. Internet traffic become high

Further analysis of CLAN output indicates that this issue is actually due to the use always opera-
tor, which essentially allows for parallel branches to be created in the contract automaton which
cannot then both be satisfied. This ultimately points to a weakness in CL. In our case we were
able to achieve a contract-free contract by removing the always keyword on line 10, however
this would arguably result in a non-intended meaning. A proper solution would require further
remodelling or even augmenting CL itself.

2.4.3 Some reflections concerning the case studies
The two case studies examined in this paper come from unrelated domains. However they both
share the property that they treat norms, and thus fall into the general group of texts which we
are interested in analysing. While we do not claim that AnaCon is yet general enough to handle
any such contract, we believe that these two case studies serve as a good proof-of-concept of the
framework.

Applying AnaCon to the above 2 case studies provides us with some interesting insights on
how to improve our framework.

The first observation is that our CNL is quite rich in terms of vocabulary and it is suitable
as a high level language to be translated into CL. However, the contract author needs to know
the CNL syntax and be able to mentally convert NL clauses into valid CNL. This is for instance
the case when writing obligations over sequences: it is not possible to write that in our CNL,
and they must instead be written as a sequence of obligations, with only one CTD associated to
the whole sequence. Though this is a limitation at the CNL level, it is not the case for CL, as
sequences of obligations cannot be expressed directly.

A second observation is that it would be desirable to have causal/temporal relationships
among actions in addition to the declaration of mutual exclusive actions (#). This would allow
a radical reduction in the size of the underlying CLAN automaton and thus improve efficiency
and avoid some redundant counter-examples which are eliminated by rephrasing the CNL doc-
ument. This redundancy is due to the semantics of &, discussed later in this section.

Concerning the output of CLAN, when a conflict is found the output produced by the CLAN
tool consists of a list of tuples containing a conflict state and an action trace, as shown in Fig-

50 Chapter 2

(((Ob1)_(Oa2))^(((Oa6)_(((Oa1)_(Oa2))^(([a1]((Ob2)_(Oa2)))^([a1]([b2]((Ob1)_(Oa2)))))))^(([a9]((Oa6)

↪→ _(((Oa1)_(Oa2))^(([a1]((Ob2)_(Oa2)))^([a1]([b2]((Ob1)_(Oa2))))))))^([1]([(*1)]([a9]((Oa6)_

↪→ (((Oa1)_(Oa2))^(([a1]((Ob2)_(Oa2)))^([a1]([b2]((Ob1)_(Oa2)))))))))))))

b3,a7,a8,a5,a9,a9,a9&a6&a1,a9&a6&a1,a9&a6&b2

(((Ob1)_(Oa2))^((((Oa1)_(Oa2))^(([a1]((Ob2)_(Oa2)))^([a1]([b2]((Ob1)_(Oa2))))))^(((Oa6)_(((Oa1)_(Oa2

↪→))^(([a1]((Ob2)_(Oa2)))^([a1]([b2]((Ob1)_(Oa2)))))))^(([a9]((Oa6)_(((Oa1)_(Oa2))^(([a1]((

↪→ Ob2)_(Oa2)))^([a1]([b2]((Ob1)_(Oa2))))))))^([1]([(*1)]([a9]((Oa6)_(((Oa1)_(Oa2))^(([a1]((

↪→ Ob2)_(Oa2)))^([a1]([b2]((Ob1)_(Oa2))))))))))))))

b3,a7,a8,a5,a9,a9,a9&a6&a1,a9&a6&a1,a9&b2

Figure 2.7: Sample CLAN output.

ure 2.7. In this output, CLAN is reporting all possible combinations of actions that would lead
to a state of contradictions. As one can imagine this number could explode exponentially as
the total number of actions increases, and for this reason adding multiple mutually exclusive
actions to the CL contract helps to keep this under control. The two traces shown in Figure 2.7
end with the action expressions a9&a6&b2 and a9&b2 respectively, and it is fairly obvious to no-
tice that in this example the performing of action a6 along with a9 and b2 is, for our purposes,
irrelevant. From this observation, it follows that we are not necessarily interested in all possible
action combinations which could lead to a state of conflict; rather, we are interested only in the
minimal subset of them. A fairly simple algorithm could be given to determine which are minimal
counter-examples knowing then that any other counter-example would be thus redundant.

In fact, the above problem could easily be solved by eliminating the & action operator in CL.
After working on the above (and other small) case studies it would seem that it is not needed,
as in most practical cases actions happening simultaneously are either uncommon, or can be
expressed using interleaving. The elimination of this action operator will not only simplify the
syntax but will radically reduce the complexity of CLAN (the main reason of exponential blow-
up in CLAN’s execution is due to such concurrent actions).

2.5 Related work
The basic ideas of this journal paper have appeared on the workshop paper [58], where the con-
ceptual model of AnaCon was first introduced. The only commonalities between our current
version of AnaCon and the one in [58] are the use of CL [69] and CLAN [31], besides the overall
idea of the framework. In [58] it was shown that it was possible to relate the formal language

AnaCon: a framework for conflict analysis of normative texts 51

for contracts CL and a restricted NL by using GF [72]. Our CNL, however, is based on a formal
grammar inspired from NL sentences (i.e. using a subject, verb and complement) unlike that in
[58] which was very much an “if-then-else” language enriched with keywords for obligation,
permission and prohibition. Besides this, we have made extensive use of GF libraries and state-
of-the-art constructions to make the definition of the abstract and concrete syntaxes much clearer
and modular. We have reimplemented all the modules and implemented the counter-example
generation in CNL, not done in the previous paper. Though we do not have (formal) experimen-
tal results to show the advantages of this new implementation, we do claim an improvement in
performance and clarity of presentation based on its use in the case studies presented in this
paper.

Using CNLs as a means to obtain a tractable language which is understandable to humans is
not new. To date at least 40 different CNLs have been defined with different purposes and thus
following different design decisions (cf. [81]).

A notable example of this is Attempto Controlled English (ACE) [34]. The difference between
Attempto and our CNL is that while ACE aims to be an universal domain-independent language,
we choose to make a language that is specifically tailored for the description of normative texts.
Although ACE has syntactic constructions for expressing modalities, it also covers a lot of other
constructions that we cannot handle in CL. The proper handling of the whole language would
make the underling logic unnecessarily complicated. Furthermore, ACE tries to perform full
sentence analysis, while in our case this is not necessary since the semantics of the sentence would
not be expressible in the logical fragment of CL. Instead, we combine controlled language with
free text which allows us to analyse only the relevant structures, while taking the rest as atomic
literals. Another advantage of our choice is that the user does not need, as in ACE, to add new
words for each domain since there is already a large lexicon of verbs and the nouns are just
literals. A reimplementation of the original ACE grammar in GF has been presented in [3] where
this controlled language was also ported from English to French, German and Swedish.

An initial exploratory design of another CNL specifically targeted for contracts is presented
in [61], where the underlying logic and a sketch for the language are discussed. The chosen logic
is actually close to CL except that it is more liberal. This broader logic gives flexibility in the
translation to and from CNL, but it does not automatically exclude the possibility of paradoxes.
In addition, their logic adds to CL temporal features as well as test operators for querying over
the external game state. The logic is implemented with their own custom-build reasoner instead
of CLAN. The actual CNL, however, is not implemented yet, and it remains only a sketch. Still,
the initial design can be traced in Camilleri et al. [15], where, in their implementation of the game
of Nomic, they employed a specialized CNL based on the same logic. The latter also used GF to

52 Chapter 2

translate between natural and logical representations, but their CNL involves only predefined
actions and thus avoids the treatment of free-text, verbs, and actions as triples as in our approach.
This also means that the system in [15] cannot be used for diverse contracts as in our case.

Our work is also similar to [38] where Hähnle et al. describe how to get a CNL version of
specifications written in OCL (Object Constraint Language). The paper focuses on helping to
solve problems related to authoring well-formed formal specifications, maintaining them, map-
ping different levels of formality and synchronising them. The solution outlined in the paper
illustrates the feasibility of connecting specification languages at different levels, in particular
OCL and NL. The authors have implemented different concepts of OCL such as classes, objects,
attributes, operations and queries. The difference with our work is that CL is a more abstract and
general logic, allowing the specification of normative texts in a general sense. In addition, we are
not interested only in logic to language translation but rather in the use of the formal language
to further perform verification (in our case conflict analysis) which is then integrated within our
framework by connecting GF’s output into CLAN, and vice versa.

It is worth mentioning that there is a general interest in the application of CNL for authoring
and maintenance of legislative text. For instance [44] studies the typical linguistics structures
in the German laws and relates them to constructions in first-order logic and deontic logic. The
ultimate goal is the creation of Controlled Legal German as a human-oriented CNL for defining
laws. Similarly [43] studies the legislative drafting guidelines for Austria, Germany and Switzer-
land, issued by the Professional Association for Technical Communication, from the perspective
of controlled language. In both cases, however, the controlled language is aimed for human-to-
human communication and its level of formalization is far from what is needed for computer
based interpretation.

Rosso et al. [73] have used the passage retrieval tool JIRS to search for occurrences of words
from a counter-example in natural language legal texts. In particular, they have applied their
technique to a counter-example generated by CLAN on the airline check-in desk case study (the
very same we have presented here as Case Study 1). JIRS is fed with a manual translation into
English from CL formulae representing the counter-example given by CLAN, and uses an n-gram
approach to automatically retrieve those sentences in the contract where the conflict occurs. JIRS
does this by returning a ranking list with the passages found to be most similar to each query.
We briefly discuss in next section how our work could be combined with passage retrieval tools
like JIRS.

Finally, in what concerns deontic logic, and a presentation on the classical paradoxes, please
refer to McNamara’s article [53], and references therein.

AnaCon: a framework for conflict analysis of normative texts 53

2.6 Conclusion
We have presented in this paper AnaCon, a framework aimed at analysing normative texts con-
taining obligations, permissions and prohibitions. We introduced a CNL for writing such texts,
and provided a new and complete implementation of the AnaCon framework. AnaCon auto-
matically converts normative texts written in CNL into the formal language CL, using GF as a
technology to perform bi-directional translations. The analysis performed on such texts is cur-
rently limited to the detection of normative conflicts, using the tool prototype CLAN. In line with
the aims listed in the beginning of this paper, we have applied our framework to two case stud-
ies as a proof-of-concept of the system, detailing the iterative process that writing and revising
such contracts involves. These two case studies have been specifically chosen from unrelated
domains (one a document describing the working procedure of a check-in ground crew, and the
other a legal contract on Internet services) in order to demonstrate that the CNL used is a general
one. AnaCon is indeed agnostic in what concerns the content or final intention of the document
to be analysed; what is important is that it contains clauses that could be analysed for normative
conflicts.

While the mapping between CL and our CNL may seem trivial, we believe that the use of
an intermediary CNL has some important benefits. As the CNL is more human-focused than
the purely logical CL, certain unnatural logical constructions have no equivalent representation
in the CNL. In this sense, the CNL is strictly less expressive than CL. Yet the nearness of CNL to
regular unrestricted natural language, when compared to a purely formal language like CL can
go a long way towards making the authoring of such contracts easier. The use of our CNL also
allows actions names to contain arbitrary strings, which may convey valuable information for the
human reading of the contract. They can also be very helpful when it comes to understanding the
output of the conflict analysis step and identifying the source of conflicts within a contract. This
is in fact a general property of CNLs; while it is true that constructing valid sentences in a CNL
does require some training (although still less than is required to write pure logical formulas),
understanding something written in CNL should be effortless for any speaker of the parent NL.
In other words, the benefits of using CNL as a verbalisation for some formal language can be felt
by both authors and readers.

2.6.1 Limitations

The intention for AnaCon is that it can become a general framework for analysis of any text
which contains normative clauses. While the two case studies presented in this paper make

54 Chapter 2

a good argument for the framework’s generalisability, we recognize that more extensive work
would be required for it to reach that stage. Aside from this, we also identified a number of
smaller issues with the current implementation.

First, though CL can be used as a formal language to specify normative texts in general,
many aspects have to be abstracted away from, such as for instance timing constraints. Other
limitations of CL, and similar contract languages, are described in [63].

Secondly, there is the issue of CLAN efficiency. The current version is not optimised to ob-
tain small non-redundant automata. The tool is very much a specialised explicit model checker,
where a high number of transitions is generated due to the occurrence of concurrent actions. One
practical way to reduce the size of the automaton created by CLAN is to try to identify and list
as many mutually exclusive actions as possible. Note that some of the actions in our case studies
are obviously mutually exclusive from the logical point of view (e.g. open the check in desk and
close the check in desk), while others are mutually exclusive in a pragmatic sense, that is we know
that they cannot occur at the same time (for instance, issue a fine and issue the boarding pass, if
we consider that these actions are done by the same person). The performance of CLAN might
be considerably improved by reducing the size of the automaton while building it, though a
more fundamental way of improving it would be by eliminating & from CL as discussed in Sec-
tion 2.4.3.

Third, CLAN is limited to conflict analysis and clearly it could be replaced by a more general
model checker to check richer properties of normative documents in general, and contracts in
particular.

As noted in Section 2.4.1 and Section 2.4.2, during the modelling and analysis of our two case
studies problems were encountered with the always operator, expressed in CL as the prefix [1*].
While conceptually it is convenient and easy to think of a clause applying at all times, when
modelled in CL and interpreted in CLAN it becomes clear that the true meaning of always in
the natural sense is harder to formalise than anticipated. In order to overcome these issues, in
this paper we were forced to exclude the use of this operator and instead model each contract
as only covering a single “instance”. The justification behind this is that if a contract holds for
a single sequence of events, then it could later be generalised to run on concurrent instances of
such sequences. In particular, we could consider adding features to the language to being able
to distinguish between different instances of a contract, as done in the language FLAVOR [79].

AnaCon: a framework for conflict analysis of normative texts 55

2.6.2 Future work
Though in this paper we are not directly concerned with the translation from NL into CNL, it is
worth mentioning that such translations could be carried out in a semi-automatic manner using
guided-input techniques, or even better by using machine-translation.

In what concerns the ease of using CNL (vs. the use of a formal language) it could be very
informative to perform experiments on different groups of users to have a qualitative analysis
on the use of CNL and CL. Evaluating CNL is not easy in general, and any experiment to do so
should be carefully designed [47].

Another interesting future work concerns the use of passage retrieval tools like JIRS [73, 14]
to help finding the counter-examples in the original English contract. This could be done by
sending the CNL output from AnaCon to JIRS to automatically get a list of possible clauses where
a conflict may arise. We envisage in this way a big increase in efficiency and precision when
analysing counter-examples.

Finally, we believe that the development of a legal corpus could improve our CNL, giving the
possibility to get a richer language even closer to natural language and enhancing the potential
for obtaining a semi-automatic translation from NL documents into CNL.

56 Chapter 2

57

Chapter 3

A CNL for C-O Diagrams
John J. Camilleri, Gabriele Paganelli and Gerardo Schneider

Abstract. We present a first step towards a framework for defining and manipulating norma-
tive documents or contracts described as Contract-Oriented (C-O) Diagrams. These diagrams pro-
vide a visual representation for such texts, giving the possibility to express a signatory’s obliga-
tions, permissions and prohibitions, with or without timing constraints, as well as the penalties
resulting from the non-fulfilment of a contract. This work presents a CNL for verbalising C-O
Diagrams, a web-based tool allowing editing in this CNL, and another for visualising and manip-
ulating the diagrams interactively. We then show how these proof-of-concept tools can be used
by applying them to a small example.

58 Chapter 3

Chapter contents
3.1 Introduction and background . 59

3.1.1 C-O Diagrams . 59
3.1.2 Grammatical Framework . 60

3.2 Implementation . 61
3.2.1 Architecture . 61
3.2.2 Editing tools . 62
3.2.3 Syntactic extensions to C-O Diagrams . 63

3.3 CNL . 63
3.3.1 Grammar . 63
3.3.2 Language features . 64

3.4 Coffee machine example . 65
3.5 Evaluation . 67

3.5.1 Metrics . 67
3.5.2 Classification . 67

3.6 Related work . 69
3.7 Conclusion . 69

A CNL for C-O Diagrams 59

3.1 Introduction and background
Formally modelling normative texts such as legal contracts and regulations is not new. But the
separation between logical representations and the original natural language texts is still great.
CNLs can be particularly useful for specific domains where the coverage of full language is not
needed, or at least when it is possible to abstract away from some irrelevant aspects.

In this work we take the C-O Diagram formalism for normative documents [26], which speci-
fies a visual representation and logical syntax for the formalism, together with a translation into
timed automata. This allows model checking to be performed on the modelled contracts. Our
concern here is how to ease the process of writing and working with such models, which we
do by defining a CNL which can translate unambiguously into a C-O Diagram. Concretely, the
contributions of our paper are the following:

1. Syntactical extensions to C-O Diagrams concerning executed actions and cross-references
(Section 3.2.3);

2. A CNL for C-O Diagrams implemented using the Grammatical Framework (GF), precisely
mapping to the formal grammar of the diagrams (Section 3.3).

3. Tools for visualising and manipulating C-O Diagrams (Section 3.2):
(a) A web-based visual editor for C-O Diagrams;
(b) A web-based CNL editor with real-time validation;
(c) An XML format COML used as a storage and interchange format.

We also present a small example to show our CNL in practice (Section 3.4) and an an initial eval-
uation of the CNL (Section 3.5). In what follows we provide some background for C-O Diagrams
and GF.

3.1.1 C-O Diagrams

Introduced by Martínez et al. [51], C-O Diagrams provide a means for visualising normative texts
containing the modalities of obligation, permission and prohibition. They allow the represen-
tation of complex clauses describing these norms for different signatories, as well as reparations
describing what happens when obligations and prohibitions are not fulfilled. The basic element
is the box (see Figure 3.4), representing a basic contract clause. A box has four components:

(i) guards specify the conditions for enacting the clause;
(ii) time restrictions restrict the time frame during which the contract clause must be satisfied;

(iii) the propositional content of a box specifies a modality applied over actions, and/or the ac-
tions themselves;

60 Chapter 3

C := (agent, name, g, tr,O(C2), R)

| (agent, name, g, tr, P (C2), ϵ)

| (agent, name, g, tr, F (C2), R)

| (ϵ, name, g, tr, C1, ϵ)

C1 := C (And C)+ | C (Or C)+ | C (Seq C)+ | Rep(C)

C2 := a | C3 (And C3)
+ | C3 (Or C3)

+ | C3 (Seq C3)
+

C3 := (ϵ, name, ϵ, ϵ, C2, ϵ)

R := C | ϵ

Figure 3.1: Formal syntax of C-O Diagrams [26]

(iv) a reparation, if specified, is a reference to another contract that must be satisfied in case the
main norm is not.

Each box also has an agent indicating the performer of the action, and a unique name used for
referencing purposes. Boxes can be expanded by using three kinds of refinement: conjunction,
choice, and sequencing.

The diagrams have a formal definition given by the syntax shown in Figure 3.1. For an exam-
ple of a C-O Diagram, see Figure 3.5 (this example will be explained in more detail in Section 3.4).

3.1.2 Grammatical Framework

GF [72] is both a language for multilingual grammar development and a type-theoretical logical
framework, which provides a mechanism for mapping abstract logical expressions to a concrete
language. With GF, the language-independent structure of a domain can be encoded in the ab-
stract syntax, while language-specific features can be defined in potentially multiple concrete
languages. Since GF provides both a parser and lineariser between concrete and abstract lan-
guages, multi-lingual translation can be achieved using the abstract syntax as an interlingua.

GF also comes with a standard library called the Resource Grammar Library (RGL) [71]. Shar-
ing a common abstract syntax, this library contains implementations of over 30 natural lan-
guages. Each resource grammar deals with low-level language-specific details such as word
order and agreement. The general linguistic descriptions in the RGL can be accessed by using a
common language-independent API. This work uses the English resource grammar, simplifying
development and making it easier to port the system to other languages.

A CNL for C-O Diagrams 61

Back-end

Natural Language

Normative
Contract

Spreadsheet

Mod Agent Action

O user pay

P . block

CNL Editor

Front-end

C-O Diagram Editor

 P O

COML (XML)
<contract>
 <clauses>
 <cl>[a3](P(a1))</cl>
 </clauses>
 <concurrentActions>
 <action>a3#a4</action>
 </concurrentActions>
</contract>

Model Checker

Figure 3.2: The contract processing framework. Dashed arrows represent manual interaction, solid ones
automated interaction.

3.2 Implementation

3.2.1 Architecture

The contract processing framework presented in this work is depicted in Figure 3.2. There is
a front-end concerned with the modelling of contracts in a formal representation, and a back-
end which uses formal methods to detect conflicts, verify properties, and process queries about
the modelled contract. The back-end of our system is still under development, and involves
the automatic translation of contracts into timed automata which can be processed using the
UPPAAL tool [50].

The front-end, which is the focus of this paper, is a collection of web tools that communicate
using our XML format named COML.1 This format closely resembles the C-O Diagram syntax
(Figure 3.1). The tools in our system allow a contract to be expressed as a CNL text, spreadsheet,
and C-O Diagram. Any modification in the diagram is automatically verbalised in CNL and vice
versa. A properly formatted spreadsheet may be converted to a COML file readable by the other
editors. These tools use HTML5 [59] local storage for exchanging data.

1An example of the format, together with an XSD schema defining the structure, is available online at http://remu.
grammaticalframework.org/contracts

http://remu.grammaticalframework.org/contracts
http://remu.grammaticalframework.org/contracts

62 Chapter 3

CNL
English

GF
AST

Haskell
source code

Haskell
object COML

unpretty-print,
parse linearise read pickle

unpickleshowparselinearise,
pretty-print

Figure 3.3: Conversion process from CNL to COML and back.

Translation process

The host language for all our tools is Haskell, which allows us to define a central data type pre-
cisely reflecting the formal C-O Diagram grammar (Figure 3.1). We also define an abstract syntax
in GF which closely matches this data type, and translate between CNL and Haskell source code
via two concrete syntaxes. As an additional processing step after linearisation with GF, the gen-
erated output is passed through a pretty-printer, adding newlines and indentations as necessary
(subsubsection 3.3.2). The Haskell source code generated by GF can be converted to and from
actual objects by deriving the standard Show and Read type classes. Conversion to the COML
format is then handled by the HXT library, which generates both a parser and generator from a
single pickler function. The entire process is summarised in Figure 3.3.

3.2.2 Editing tools

The visual editor allows users to visually construct and edit C-O Diagrams of the type seen in
Section 3.4. It makes use of the mxGraph JavaScript library providing the components of the
visual language and several facilities such as converting and sending the diagram to the CNL
editor, validation of the diagram, conversion to PDF and PNG format.

The editor for CNL texts uses the ACE JavaScript library to provide a text-editing interface
within the browser. The user can verify that their CNL input is valid with respect to grammar,
by calling the GF web service. Errors in the CNL are highlighted to the user. A valid text can
then be translated into COML with the push of a button.

A CNL for C-O Diagrams 63

3.2.3 Syntactic extensions to C-O Diagrams

This work also contributes two extensions to C-O Diagram formalism:

1. To the grammar of guards, we have add a new condition on whether an action a has been
performed (done(a));

2. We add also a new kind of box for cross-references. This enhances C-O Diagrams with
the possibility to have a more modular way to “jump” to other clauses. This is useful for
instance when referring to reparations, and to allow more general cases of “repetition”.

Our tool framework also includes some additional features for facilitating the manipulation of
C-O Diagrams. The most relevant to the current work is the automatic generation of clocks for
each action. This is done by implicitly creating a clock t_name for each box name. When the action
or sub-contract name is completed, the clock t_name is reset, allowing the user to refer to the time
elapsed since the completion of a particular box.

3.3 CNL

This section describes some of the notable design features of our CNL. Examples of the CNL can
be found in the example in Section 3.4.

3.3.1 Grammar

The GF abstract syntax matches closely the Haskell data type designed for C-O Diagrams, with
changes only made to accommodate GF’s particular limitations. Optional arguments such as
guards are modelled with a category MaybeGuard having two constructors noGuard and justGuard,
where the latter is a function taking a list of guards, [Guard]. The same solution applies to timing
constraints. Since GF does not have type polymorphism, it is not possible to have a generalised
Maybe type as in Haskell. To avoid ambiguity, lists themselves cannot be empty; the base con-
structor is for a singleton list.

In addition to this core abstract syntax covering the C-O Diagram syntax, the GF grammar also
imports phrase-building functions from the RGL, as well as the large-scale English dictionary
DictEng containing over 64,000 entries.

64 Chapter 3

3.3.2 Language features

Contract clauses

A simple contract verbalisation consists of an agent, modality, and an action, corresponding to
the standard subject, verb and object of predication. The modalities of obligation, permission and
prohibition are respectively indicated by the keywords required, may (or allowed when referring
to complex actions) and mustn't (or forbidden).

Agents are noun phrases (NP), while actions are formed from either an intransitive verb (V),
or a transitive verb (V2) with an NP representing the object. This means that every agent and
action must be a grammatically-correct NP/VP, built from lexical entries found in the dictio-
nary and phrase-level functions in the RGL. This allows us to correctly inflect the modal verb
according to the agent (subject) of the clause:

1 : Mary is required to pay

2 : Mary and John are required to pay

Constraints

The arithmetic in the C-O Diagram grammar covering guards and timing restrictions is very gen-
eral, allowing the usual comparison operators between variable or clock names and values, com-
bined with operators for negation and conjunction. Their linearisation can be seen in line 9 of
Figure 3.6.

Each contract clause in a C-O Diagram has an implicit timer associated with it called t_name,
which is reset when the contract it refers to is completed. These can be referred to in any timing
restriction, effectively achieving relative timing constraints by referring to the time elapsed since
the completion of another contract.

Conjunction

Multiple contracts can be combined by conjunction, choice and sequencing. GF abstract syntax
supports lists, but linearising them into CNL requires special attention. Lists of length greater
than two must be bulleted and indented, with the entire block prefixed with a corresponding
keyword:

1 : all of

- 1a : Mary may eat a bagel

- 1b : John is required to pay

A CNL for C-O Diagrams 65

When unpretty-printed prior to parsing, this is converted to:

1 : all of { - 1a : Mary ... bagel - 1b : John ... pay }

For a combination of exactly two contracts, the user has the choice to use the bulleted syntax
above, or inline the clauses directly using the appropriate combinator, e.g. or for choice. This
applies to combination of contracts, actions and even guards and timing restrictions.

In the case of actions the syntax is slightly different since there is a single modality applied
to multiple actions. Here, the actions appear in the infinitive form and the combination operator
appears at the end of each line (except the final one):

2 : Mary is allowed

- 2a : to pay , or

- 2b : to eat a bagel

This list syntax allows for nesting to an arbitrary depth.

Names

The C-O Diagram grammar dictates that all contract clauses should have a name (label). These
provide modularity by allowing referencing of other clauses by label, e.g. in reparations and
relative timing constraints. Since the CNL cannot be lossy with respect to the COML, these labels
appear in the CNL linearisation too (see Figure 3.6). Clause names are free strings, but must not
contain any spaces. This avoids the need for double quotes in the CNL. These labels do reduce
naturalness somewhat, but we believe that this inconvenience can be minimised with the right
editing tool.

3.4 Coffee machine example
A user Eva must analyse the following description of the operation of a coffee machine, and
construct a formal model for it. She will do this interactively, switching between editing the
CNL and the visual representation.

To order a drink the client inputs money and selects a drink. Coffee can be chosen either with or
without milk. The machine proceeds to pour the selected drink, provided the money paid covers its
price, returning any change. The client is notified if more money is needed; they may then add more
coins or cancel the order. If the order is cancelled or nothing happens after 30 seconds, the money is
returned. The machine only accepts euro coins.

66 Chapter 3

payment

Contract

client

payRight

pay euro

Obligation

client

payWrong

pay wrong coins

Forbiddance

AND

(a) Payment options

client

t_payRight<30

Obligation
refund

abort chooseCoffeeMilk

choose coffee

with milk

chooseCoffee

choosing

OR OR OR

choose

coffee
press

abort

(b) Choices in selection

1 payment :

2 payWrong : client mustn't pay wrong coins otherwise see refund and

3 payRight : client is required to pay euro

4 choosing : when clock t_payRight less than 30 client is required

5 - abort : to press abort , or

6 - chooseCoffeeMilk : to choose coffee with milk , or

7 - chooseCoffee : to choose coffee otherwise see refund

Figure 3.4: Different kinds of complex contracts and their verbalisation.

Eva first needs to identify: (i) the actors (client and machine), (ii) the actions (pay, accept,
select, pour, refund), (iii) and the objects (beverage, money, timer). The first sentence suggests
that to obtain a drink the client must insert coins. Eva therefore drops an obligation box in the
diagram editor and fills the name, agent and action fields. Only accepting euro is modelled as a
prohibition to the client using a forbiddance box. The two boxes are linked using a contract box
as shown in Figure 3.4a.

Eva now wants to model the choice of beverage, and the possibility the aborting of the pro-
cess. She creates an obligation box named choosing, adding the timed constraint t_payRight <
30 to model the 30 second timeout. She then appends two action boxes using the Or refinement,
corresponding to the choice of drinks (see Figure 3.4b). Eva translates the diagram to CNL and
modifies the text, adding the action abort : to press abort as a refinement of choosing. The
result is shown in line 4 of Figure 3.6.

The C-O Diagram for the final contract is shown in Figure 3.5. It includes the handling of
the abort action and gives an ordering to the sub-contracts. Note how there are two separate
contracts in the CNL verbalisation: coffeeMachine and refund, the latter being referenced as a
reparation of the former.

The C-O Diagram editor allows changes to be made locally while retaining the contract’s
overall structure, for instance inserting an additional option for a new beverage. The CNL editor

A CNL for C-O Diagrams 67

is instead most practical for replicating patterns or creating large structures such as sequences
of clauses, that are faster to outline in text and rather tedious to arrange in a visual language.
The two editors have the same expressive power and the user can switch between them as they
please.

3.5 Evaluation

3.5.1 Metrics

The GF abstract syntax for basic C-O Diagrams contains 48 rules, although the inclusion of large
parts of the RGL for phrase formation pushes this number up to 251. Including the large-scale
English dictionary inflates the grammar to 65,174 rules. As a comparison, a previous similar
work on a CNL for the contract logic CL [4] had a GF grammar of 27 rules, or 2,987 when includ-
ing a small verb lexicon.

3.5.2 Classification

Kuhn suggests the PENS scheme for the classification of CNLs [49]. We would classify the CNL
presented in the current work as P5E1N2-3S4, F W D A. P (precision) is high since we are imple-
menting a formal grammar; E (expressivity) is low since the CNL is restricted to the expressivity
of the formalism; N (naturalness) is low as the overall structure is dominated with clause labels
and bullets; S (simplicity) is high because the language can be concisely described as a GF gram-
mar. In terms of CNL properties, this is a written (W) language for formal representation (F),
originating from academia (A) for use in a specific domain (D).

The P, E and S scores are in line with the problem of verbalising a formal system. The low
N score of between 2–3 is however the greatest concern with this CNL. This is attributable to a
sentence structure is not entirely natural, somewhat idiosyncratic punctuation, and a bulleted
structure that could restrict readability. While these features threaten the naturalness of the CNL
in raw form, we believe that sufficiently developed editing tools have a large part to play in
dealing with the structural restrictions of this language. Concretely, the ability to hide clause
labels and fold away bulleted items can significantly make this CNL easier to read and work
with.

68 Chapter 3

client

payWrong

pay wrong coins

Forbiddance

client

payRight

pay euro

Obligation

AND

payment

OR

client

choosing

t_payRight<30

Obligation
refund

machine

pourCoffee

done(chooseCoffee)

pour coffee

Obligation

refund

machine

pourCoffeeMilk

done(chooseCoffeeMilk)
pour coffee

and milk

Obligation

refund

OR

pouringProcess

machine

giveChange

paid>10

give change

Obligation

SEQ
pourEnoughCredit

paid ≥ 10

!done(abort)
Contract

machine

refundAbort

done(abort)

refund money

Obligation

AND

AND

pouring

SEQ

machine

noPour

paid<10
pour

anything

Forbiddance

refunding

refundNotEnough

machine

refund

refund money

Obligation

coffeeMachine

Contract

Contract

Contract

Contract

refund money

Obligationpaid<10

machine

Contract

abort chooseCoffeeMilk

choose coffee

with milk

chooseCoffee

choose

coffee
press

abort

OR OR

OR

Figure 3.5: The complete C-O Diagram for the coffee machine example.

1 coffeeMachine : the following, in order

2 - payment : payWrong : client mustn't pay wrong coins otherwise see refund and payRight : client

↪→ is required to pay euro

3 - choosing : when clock t_payRight less than 30 client is required

4 - abort : to press abort , or

5 - chooseCoffeeMilk : to choose coffee with milk , or

6 - chooseCoffee : to choose coffee otherwise see refund

7 - pouring : all of

8 - pourEnoughCredit : when abort is not done and variable paid not less than 10 first

↪→ pouringProcess : pourCoffee : if chooseCoffee is done machine is required to pour

↪→ coffee otherwise see refund or pourCoffeeMilk : if chooseCoffeeMilk is done machine is

↪→ required to pour coffee and milk otherwise see refund , then giveChange : if variable

↪→ paid greater than 10 machine is required to give change

9 - noPour : if variable paid less than 10 machine mustn't pour anything

10 - refunding : refundNotEnough : if variable paid less than 10 machine is required to refund

↪→ money and refundAbort : if abort is done machine is required to refund money

11 refund : machine is required to refund money

Figure 3.6: The final verbalisation for the coffee machine example.

A CNL for C-O Diagrams 69

3.6 Related work
C-O Diagrams may be seen as a generalisation of CL [68, 69, 70] in terms of expressivity.2 In a
previous work, Angelov et al. introduced a CNL for CL in the framework AnaCon [4]. AnaCon
allows for the verification of conflicts (contradictory obligations, permissions and prohibitions)
in normative texts using the CLAN tool [31]. The biggest difference between AnaCon and the
current work, besides the underlying logical formalism, is that we treat agents and actions as
linguistic categories, and not as simple strings. This enables better agreement in the CNL which
lends itself to more natural verbalisations, as well as making it easier to translate the CNL into
other natural languages. We also introduce the special treatment of two-item co-ordination, and
have a more general handling of lists as required by our more expressive target language.

Attempto Controlled English (ACE) [34] is a controlled natural language for universal domain-
independent use. It comes with a parser to discourse representation structures and a first-order
reasoner RACE [33]. The biggest distinction here is that our language is specifically tailored for
the description of normative texts, whereas ACE is generic. ACE also attempts to perform full
sentence analysis, which is not necessary in our case since we are strictly limited to the semantic
expressivity of the C-O Diagram formalism.

Our CNL editor tool currently only has a basic user interface (UI). As already noted however,
it is clear that UI plays a huge role in the effectiveness of a CNL. While our initial prototypes have
only limited features in this regard, we point to the ACE Editor, AceRules and AceWiki tools
described in [48] as excellent examples of how UI design can help towards solving the problems
of writability with CNLs.

3.7 Conclusion
This work describes the first version of a CNL for the C-O Diagram formalism, together with
web-based tools for building models of real-world contracts.

The spreadsheet format mentioned in Figure 3.2 was not covered in this paper, but we aim to
make it another entry point into our system. This format shows the mapping between original
text and formal model by splitting the relevant information about modality, agent, object and
constraints into separate columns. As an initial step, the input text can be separated into one
sentence per row, and for each row the remaining cells can be semi-automatically filled-in using

2On the other hand, CL has three different formal semantics: an encoding into the µ-calculus, a trace semantics, and
a Kripke-semantics.

70 Chapter 3

machine learning techniques. This will help the first part of the modelling process by generating
a skeleton contract which the user can begin with.

We plan to extend the CNL and C-O Diagram editors with better user interfaces for easing the
task of learning to use the respective representations and helping with the debugging of model
errors. We expect to have more integration between the two applications, in particular the abil-
ity to focus on smaller subsections of a contract and see both views in parallel. sWhile the CNL
editor already has basic input completion, it must be improvemed such that completion of func-
tional keywords and content words are handled separately. Syntax highlighting for indicating
the different constituents in a clause will also be implemented.

We currently use the RGL as is for parsing agents and actions without writing any specific
constructors for them, which creates the potential for ambiguity. While this does not effect the
conversion process, ambiguity is still an undesirable feature to have in a CNL. Future versions of
the grammar will contain a more precise selection of functions for phrase construction, in order
to minimise ambiguity.

Finally, it is already clear from the shallow evaluation in Section 3.5 that the CNL presented
here suffers from some unnaturalness. This can to some extent be improved by simple tech-
niques, such as adding variants for keywords and phrase construction. Other features of the C-O
Diagram formalism however are harder to linearise naturally, in particular mandatory clause la-
bels and arbitrarily nested lists of constraints and actions. We see this CNL as only the first step
in a larger framework for working with electronic contracts, which must eventually be more
rigorously evaluated through a controlled usability study.

71

Chapter 4

Modelling and analysis of normative
texts with C-O Diagrams
John J. Camilleri, Filippo del Tedesco and Gerardo Schneider

Abstract. Our work is concerned with the formal analysis of normative texts such as terms of
use, privacy policies, and service agreements. We begin by modelling such documents in terms
of obligations, permissions and prohibitions of agents over actions, restricted by timing con-
straints. This is done using the C-O Diagram formalism, which we have extended syntactically
and defined a new trace semantics for. We then describe our method for translating models in
this formalism into networks of timed automata, for which we have a complete working imple-
mentation. By applying this approach to a real-world case study, we show the kinds of analysis
possible through both syntactic querying on the structure of the model, as well as verification of
properties using Uppaal.

72 Chapter 4

Chapter contents
4.1 Introduction . 73
4.2 A formalism for normative texts . 74

4.2.1 Formal syntax . 75
4.2.2 Extensions to C-O Diagrams . 75
4.2.3 Trace semantics . 77

4.3 Translation to timed automata . 80
4.3.1 Correctness of the translation . 81

4.4 Analysis . 82
4.4.1 Syntactic analysis . 83
4.4.2 Semantic analysis . 84

4.5 Case study . 85
4.5.1 Model . 85
4.5.2 Syntactic analysis . 87
4.5.3 Semantic analysis . 88

4.6 Related work . 89
4.7 Conclusion . 90
4.8 Appendix: Translation to NTA & proof of correctness . 92

4.8.1 Outline . 92
4.8.2 UPPAAL trace semantics . 92
4.8.3 Notes and notation . 93
4.8.4 Thread automaton . 94
4.8.5 Case analysis . 95

Modelling and analysis of normative texts with C-O Diagrams 73

4.1 Introduction
We frequently encounter normative texts such as terms of use, software licenses and service-level
agreements, and often accept these kinds of contractual agreements without really reading them.
Writing and understanding such documents usually requires legal experts, and ambiguities in
their interpretation are commonly disputed. Our goal is to model such texts computationally,
helping the authorship process and enabling possibilities for querying and analysis which would
benefit all parties involved.

Formal analysis requires a formal language. Well-known generic formalisms such as first-
order logic or temporal logic would not provide the right level of abstraction for a domain-
specific task such as modelling normative documents. Instead, we choose to do this with a
custom formalism based on the deontic modalities of obligation, permission and prohibition,
and containing just the kinds of operators that are relevant to our domain.

Specifically, we use the Contract-Oriented (C-O) Diagram formalism [26], which provides both
a logical language and a visual representation for modelling normative texts. This formalisation
allows us to perform syntactic analysis of the models using predicate-based queries. Addition-
ally, models in this formalism can be translated into networks of timed automata (NTA) which
are amenable to model checking techniques, providing further possibilities for analysis.

Building such models from natural language texts is a non-trivial task which is currently
done manually, and which therefore can benefit greatly from the right tool support. In previous
work [16] we presented front-end user applications for working with C-O Diagram models both
as graphical objects and through a controlled natural language (CNL) interface. The ability to
work with models in different higher-level representations makes the formalism more attractive
for real-world use when compared to other purely logical formalisms.

The current work is concerned with the back-end of this system, focusing on the details of
the modelling language and how different kinds of analysis can be performed on these models.
Concretely, the contributions of this paper are:

1. An extended definition of C-O Diagrams including syntactic extensions aimed at easing
the modelling process (Section 4.2).

2. A novel trace semantics for these extended C-O Diagrams defined in terms of trace accep-
tance (Section 4.2.3).

3. A new translation function to NTA which fixes some issues with the previous transla-
tion (Section 4.3), and a proof of its correctness with respect to the trace semantics (Sec-
tion 4.3.1).

4. The first full implementation of a system for working with C-O Diagrams and translating

74 Chapter 4

company

isDone(SLA1)

tresponse < 24

Obligation
respond #credit

response

The company must respond to an SLA1 request
within 24 hours. If this target is not met, the
customer is entitled to credit.

Figure 4.1: Example of a C-O Diagram box together with the natural language clause it models.

them into Uppaal automata, written in Haskell.
5. A discussion of methods for syntactic querying and semantic property checking of norma-

tive texts modelled in this formalism (Section 4.4). These are demonstrated by applying
our methods to a case study (Section 4.5).

We conclude with a comparison of some related work (Section 4.6) and a final discussion (Sec-
tion 4.7).

4.2 A formalism for normative texts

The C-O Diagram formalism was introduced by Martínez et al. [51] as a means for visualising
normative texts involving the modalities of obligation, permission and prohibition. They allow
the representation of these norms for different agents and actions, as well as reparations when
obligations and prohibitions are violated. The basic element in a C-O Diagram is the box (Fig-
ure 4.1), representing a simple clause. A box has four components (from top to bottom, left to
right):

(i) guards specify the conditions for enacting the clause;
(ii) an interval restricts the time frame during which the clause must be satisfied;

(iii) the propositional content of a box specifies a modality applied over actions;
(iv) a reparation, if specified, refers to another clause that must be enacted if the main norm is

not satisfied (a prohibition is violated or an obligation not fulfilled; there is no reparation for
permissions).

Each box also has an agent indicating the performer of the action, and a unique name for refer-
encing purposes. Boxes can be expanded by using three kinds of refinement: conjunction, choice,
and sequence.

The formalism presented here adds a number of extensions to the definition given in [26] (for
simplicity we continue to refer to this extended formalism as simply C-O Diagrams).

Modelling and analysis of normative texts with C-O Diagrams 75

4.2.1 Formal syntax

Figure 4.2 shows the grammar of our extended C-O Diagram syntax. A contract specification
is a forest of top-level clause trees, each of which is tagged as either Main (instantiated when
the contract is executed) or Aux (instantiated only when referenced). A clause C is primarily
a modal statement, expressing the obligation O(·), permission P (·), or prohibition F (·) of an
agent over an action C2, where the finite set of agents is A. A clause can also be a refinement
over sub-clauses using conjunction And, sequence Seq or choice Or. In either case, the clause
is always given a unique name from a set of names N and an optional set of conditions. An
action, as defined byC2, may be a single atomic action from the set Σ, or a complex one obtained
by conjunction, choice or sequence. A clause may also have a reparation R, specifying another
clause to be enacted if the main part of the clause is not satisfied.

Conditions affect the applicability of a clause, and are defined as tuples of guards and inter-
vals. A guard is a conjunction of variable and timing constraints which govern the enactment of
a clause. An interval is a conjunction of only timing constraints, which govern the window in
which a clause is applicable.

If we consider a finite set of integer variables V , then a constraint over variables is a boolean
formula of the form: v ∼ n or v − w ∼ n, for v, w ∈ V , ∼ ∈ {<,=, >} and n ∈ Z. It can also be
a predicate of the form pred(name) where pred ∈ {isDone, isComplete, isSat, isV io, isSkip},
and name ∈ N .

Similarly, considering a finite set of variables C standing for clocks, then a timing constraint
is a conjunction of constraints of the form: c ∼ n or c − d ∼ n, for c, d ∈ C, ∼ ∈ {<,=, >} and
n ∈ Z. By convention, we assume that for every name ∈ N there is a clock in C with identifier
tname.

Well-formedness. Not all contracts which can be built from this grammar are considered valid.
We define a well-formed C-O Diagram model to be one in which: (i) there is at least one main
clause, (ii) all names are unique, (iii) all cross-references are valid, (iv) reparations and references
do not lead to cycles, (v) clock names and predicates refer to existing boxes, and (vi) timing
constraints in the interval can only refer to the current box.

4.2.2 Extensions to C-O Diagrams

This section describes the syntactic extensions we have made to the C-O Diagram language as
it is presented by Díaz et al. [26]. The purpose behind these extensions is to help the modeller,

76 Chapter 4

Contract :=
{
⟨C, Type⟩+

} where Type ∈ {Main,Aux}
C := ⟨name, agent, Conditions,O(C2), R⟩

| ⟨name, agent, Conditions, P (C2)⟩
| ⟨name, agent, Conditions, F (C2), R⟩
| ⟨name,Conditions, C1, R⟩
| Ref

C1 := C (And C)+ | C (Or C)+ | C (Seq C)+

C2 := action | C3 (And C3)
+ | C3 (Or C3)

+ | C3 (Seq C3)
+

C3 := ⟨name,C2⟩
R := Ref | ⊤ | ⊥

Ref := #name
Conditions := ⟨{Constraint∗}, {TimeConstraint∗}⟩
Constraint := v ∼ n

| v − w ∼ n where v, w ∈ V ∪ C,∼ ∈ {<,=, >} and n ∈ Z
| isDone(name) | isComplete(name) | isSat(name)
| isVio(name) | isSkip(name)

TimeConstraint := v ∼ n

| v − w ∼ n where v, w ∈ C,∼ ∈ {<,=, >} and n ∈ Z

Figure 4.2: Extended version of the C-O Diagram grammar [26], defining the formal syntax of a contract,
where name ∈ N , agent ∈ A and action ∈ Σ.

by making common contract constructs naturally expressible in C-O Diagrams without requiring
extra encoding.

Guards and intervals. We make a distinction between the conditions which determine the en-
actment of a clause (“guard”), and those which give a time range in which a clause may be
completed (“interval”). The former give bounds on when the clause itself should be considered
applicable, whereas the latter are applied only when the clause has been enacted.

Predicates as guards. In addition to variable comparisons, we also add a set of predicates over
box and action names, which can be used as guards. They have been introduced into the syntax
in order to help abstract away from low-level implementational details. They include isDone
which is true when an action has been performed or a clause has been satisfied, isSat and isV io

Modelling and analysis of normative texts with C-O Diagrams 77

which indicate if a clause has been satisfied or violated, isSkip which is true when a clause was
not enacted due to the guard not being satisfied, and isComplete which is the disjunction of
isSat and isSkip.

Top/bottom reparations. When a clause has no reparation, we make a distinction between the
trivially-satisfiable reparation ⊤ (“top”) and the always unsatisfiable ⊥ (“bottom”). Using the
former means that even if a clause is violated, the contract may continue (though the violation
will be recorded). This is the default when a reparation is not specified. The latter is used to
indicate that a violation cannot be repaired.

Forests of clauses. Instead of modelling an entire contract as a single monolithic tree, we re-
interpret a C-O Diagram as a set of clauses (or forest of trees) which are active in parallel. We
allow a clause to be referred to from multiple parts of the contract, both within a guard and as
a reparation. This follows the way in which most normative texts are written; with a generally
flat structure, but with occasional references between clauses.

An additional cross-reference operator allows a single clause to be re-used, analogous to a sub-
routine. The name given as the reference must be a top-level clause in the contract. We also
introduce a distinction between main and auxiliary top-level clauses in the contract forest, pro-
viding control over which clauses are instantiated when the contract is initialised.

4.2.3 Trace semantics
C-O Diagrams did not have a formal semantics: the “meaning” of C-O Diagrams were given by
an encoding into network of timed automata [26]. We introduce here a completely new trace
semantics for our extended formalism, beginning with the definition of a trace.

Definition 1. An event trace (or simply trace) is a finite sequence of events σ = [e0, e1, . . . , en] where
an event is a triple e = ⟨a, x, t⟩ consisting of an agent a ∈ A, an action x ∈ Σ and a time stamp t. The
projection functions agent(e), action(e) and time(e) extract the respective parts from an event.

We give here some notation concerning traces: σ(i) denotes the event at position i in trace σ,
σ(i..) denotes the finite subtrace starting at event in position i until the end of the trace, and σ(..j)
is the subtrace from the beginning of the trace to event σ(j − 1). Finally, σ(i..j) is the subtrace
between indices i and j − 1.

The events in a trace are ordered by ascending time stamp value (earliest events first) and
indexed from 0 onward. We say that a trace is well-formed iff ∀i, j, 0 ≤ i < n, i < j < n :

78 Chapter 4

σ ⊨
{
Cl1, . . . , Cln

} iff
∧

1≤i≤n

σ ⊨∅ Ci where Cli = ⟨Ci,Main⟩ (4.1)

σ ⊨c ⟨n, a, c′, O(C2), R⟩ iff checkg(c ∪ c′) implies (σ ⊨c∪c′
a C2 or σ ⊨c R

) (4.2)
σ ⊨c ⟨n, a, c′, P (C2) ⟩ (4.3)
σ ⊨c ⟨n, a, c′, F (C2), R⟩ iff checkg(c ∪ c′) implies (σ ⊨c∪c′

a C2 implies σ ⊨c R
) (4.4)

σ ⊨c ⟨n, c′, C1, R⟩ iff checkg(c ∪ c′) implies (σ ⊨c∪c′ C1 or σ ⊨c R
) (4.5)

σ ⊨c C′ And C′′ iff σ ⊨c C′ and σ ⊨c C′′ (4.6)
σ ⊨c C′ Seq C′′ iff ∃i : 0 < i < length(σ) and (4.7)

σ(..i) ⊨c C′ and σ(i..) ⊨c C′′

σ ⊨c C′ Or C′′ iff either σ ⊨c C′ or σ ⊨c C′′ (4.8)
σ ⊨c

a x iff ∃i : 0 < i < length(σ) and (4.9)
⟨a, x, t⟩ = σ(i) and checki(c, t)

σ ⊨c
a C

′
3 And C′′

3 iff σ ⊨c
a (C′

3 Seq C′′
3) Or (C′′

3 Seq C′
3) (4.10)

σ ⊨c
a C

′
3 Seq C′′

3 iff ∃i : 0 < i < length(σ) and (4.11)
σ(..i) ⊨c

a C
′
3 and σ(i..) ⊨c

a C
′′
3

σ ⊨c
a C

′
3 Or C′′

3 iff either σ ⊨c
a C

′
3 or σ ⊨c

a C
′′
3 (4.12)

σ ⊨c
a ⟨n,C2⟩ iff σ ⊨c

a C2 (4.13)
σ ⊨c ⊤ (4.14)
σ ⊭c ⊥ (4.15)

σ ⊨c #name iff σ ⊨c C′ where C′ = lookup(name) (4.16)

Figure 4.3: Trace semantics for our extended C-O Diagram language.

time(σ(i)) ≤ time(σ(j)). The definition naturally extends to infinite traces, however we do not
consider them here. We assume all our traces are well-formed.

The semantics of our language is defined in terms of the respects relationship (⊨) between
traces and contracts:

Definition 2. We write σ ⊨ K to mean trace σ respects the contract K and σ ⊭ K for trace σ does
not respect contract K. The set of all traces respected by a contract defines its trace semantics. This
relationship may be parametrised by a set of conditions c and an agent a, written as ⊨c

a.

The rules defining the respects relation are given in Figure 4.3. Actions are not consumed from
the trace when they satisfy a particular clause. In other words, we do not recurse over the length
of the trace, but rather over the structure of the C-O Diagram, considering the entire trace in each

Modelling and analysis of normative texts with C-O Diagrams 79

case. Each rule searches for the earliest event that satisfies it. Rules for sequential refinement (4.7
and 4.11) are the only ones that divide a trace into subtraces, as they enforce order.

The evaluation of clause constraints requires an environment Γ of variables and clocks. As
these values may change over time, we model the environment as a function from a time stamp
to set of valuations:

Env : TimeStamp→ (V ∪ C) → Z (4.17)
get : Env → T imeStamp→ (V ∪ C) → Z (4.18)
set : Env → T imeStamp→ (V ∪ C) → Z → Env (4.19)

The environment can be queried via the get function (4.18) and updated using the set function
(4.19), allowing clock resets and re-assignment of variables. An update affects all valuations
from the given time stamp onward. Environment updates are not detailed in the trace semantics
described in Figure 4.3, however they are an essential part of the operational definition of our
language. Similarly, for the sake of clarity we do not explicitly mark the environment in the
rules, though it is implied to be globally accessible. The environment also contains one clock
never-reset t0 which represents the “current time”, such that ∀t : get(Γ, t, t0) = t.

Checking condition satisfaction is defined in the checkg function for guards (4.20) and the
checki function for intervals (4.21). These look up the state of the environment Γ at the current
time t0 and return the conjunction of each of the individual boolean expressions in the respective
part of the condition.

checkg
(⟨

{c1, . . . , cn},
⟩)

=
∧

1≤j≤n

eval(cj , t0) (4.20)

checki

(⟨
, {c1, . . . , cn}

⟩)
=

∧
1≤j≤n

eval(cj , t0) (4.21)

eval
(
v ∼ n, t

)
= get(Γ, t, v) ∼ n (4.22)

eval
(
v − w ∼ n, t

)
= get(Γ, t, v)− get(Γ, t, w) ∼ n (4.23)

eval
(

isPred(name), t
)
= get(Γ, t, Pred_name) (4.24)

where Pred ∈ {Done, Sat,Vio, Skip}

eval
(

isComplete(name), t
)
= eval(isSat(name), t) (4.25)

∨ eval(isSkip(name), t)

80 Chapter 4

The environment also contains a number of implicit boolean variables which represent the
status of every box and action in a model, for example whether an action has been completed
or a clause has been violated. The predicates listed in Section 4.2.2 are encoded as comparisons
involving these variables.

Finally, we also need the function lookup : Contract → N → C for resolving references by
name. This function searches recursively over the structure of the contract model, returning ⊥ if
not found.

4.3 Translation to timed automata

In order to enable property-based analysis on these models, Díaz et al. [26] introduce a transla-
tion from C-O Diagrams into Networks of Timed Automata (NTAs). A timed automaton (TA) [1] is a
finite automaton extended with clock variables which increase their value as time elapses, all at
the same rate. These clocks can be used in guards on transitions and invariants on locations, and
can be reset to zero during the execution of a transition. The model is also extended with clock
constraints, which are conditions on the transitions that restrict the behaviour of the automaton.
An NTA is a set of TAs which are run in parallel, using the same set of clocks. An NTA also
defines a set of channels which allow synchronisation between automata.

Díaz et al. [26] describe a translation from C-O Diagrams into abstract NTA, followed by ex-
planations of how these can be encoded in theUppaal tool [50]. In this work we present a revised
translation function trf : Contract → UPPAAL, together with a full implementation in Haskell. Our
translation contains a number of modifications which fix some encoding problems found in the
original. As there is no difference in abstraction level between NTA and Uppaal models, we
skip the intermediate representation altogether and directly produce an Uppaal model from a
C-O Diagram.

Figure 4.4 shows a generic obligation clause together with the Uppaal automata produced
from its translation. Informally, this box is interpreted as follows: when guards become true,
agent is obliged to do action C2 within the time frame described by interval. Should they fail to
do this, the reparation clause R will come into effect.

Our translation separates this single clause into two concerns: (i) the processing of the con-
ditions which would enable the obligation, and (ii) the obligation itself. The former is handled
by an automaton we call the thread, shown in Figure 4.4 (bottom left). The guard from the origi-
nal clause is separated into lower and upper bound timing constraints, and variable constraints.
First the lower bounds must be satisfied in order to progress in the automaton. The variable con-

Modelling and analysis of normative texts with C-O Diagrams 81

agent

guards

interval

Obligation
C2

R

name

C =
⟨
name, agent, ⟨guards, interval⟩, O(C2), R

⟩
where guards = glow ∧ gupp ∧ gvars

t0 t1

t2

t3 t4glow

¬gvars ∧ gupp

changed?

gvar ∧ gupp
Cenable!

Ccomplete?

¬gupp

¬gupp

s0 s1
interval

s2

s3
Cenable?

interval

¬interval

Ccomplete!

Figure 4.4: Simplified translation of an obligation clause (top) into two timed automata: the thread (left) and
main automaton (right). The dashed edges s1–s3 and s2–s3 are filled with the translations of the complex
action C2, and of the reparation R, respectively. White nodes indicate committed locations.

straints gvars are then actively checked within the given time window (until the expiration of the
upper bounds), such that the main obligation is enabled as soon as the constraints are satisfied.
This is achieved by having separate check and wait states (t1 and t2). The check state is commit-
ted, meaning that no time can pass while in this state. Whenever a variable changes value in the
system, a broadcast signal is sent on the changed channel which causes the waiting automaton to
re-check its constraints. When the constraints are met, the thread automaton transitions to t3,
activating the main automaton.

Once activated, the main automaton may wait for as long as its intervals allow (enforced
by an invariant on location s1). From here, either the top transition is taken before expiration,
corresponding to the action being done, or the time expires and the lower path is taken, enacting
the clause’s reparation. Finally, the main automaton synchronises with the thread and enters the
initial idle state (where it could possibly be re-triggered), while the thread automaton reaches a
final end state. For further details of the translation, refer to Section 4.8.

4.3.1 Correctness of the translation

The previous section informally describes the translation function trf, which converts a C-O Dia-
gram into an Uppaal model. In order to trust any analysis performed on this translated model,
we need to be certain that the translation itself is correct with respect to the trace semantics de-
fined in Section 4.2.3. We approach this by discussing the relation of our trace semantics with

82 Chapter 4

those of Uppaal.
David et al. [22] define a trace of an Uppaal model as a sequence of configurations, where a

configuration describes the current location of all automata in a system and gives valuations for
all its variables and clocks. A timed trace is a trace which begins from an initial configuration and
ends in a maximally extended one, where each consecutive configuration can be reached from
its previous one in a single step (further details on this can be found in Section 4.8).

Let TU (M) denote the set of timed traces for an Uppaal model M . This set includes all timed
traces which are either infinite or maximally extended (deadlocked). We are however interested
in a subset of TU (M), namely finite traces ending in a configuration which represents the com-
pletion of all top-level clauses in our contract K. We shall indicate this set with T K

U (M).
Let us assume an abstraction function abstr : TU → T , which transforms an Uppaal trace

σU into an event trace σ by extracting the time stamps at which each action was performed. The
following theorem then relates our trace semantics for C-O Diagrams with Uppaal model traces:

Theorem 1. Given a contract K and its translation into an Uppaal model M = trf(K), for every σ in
T it is the case that:

σ ⊨ K iff ∃ σU ∈ T K
U (M) : σ = abstr(σU)

Proof sketch

The proof is performed by structural induction over the C-O Diagram syntax (see Figure 4.2).
In each case, we consider its translation into an Uppaal model by the trf function. Using the
formalisation of Uppaal models and their trace semantics given by David et al. [22], we then
characterise the set of Uppaal traces which represent the satisfaction of the case we are mod-
elling. We then show how this set of Uppaal traces is related to the event traces which would
respect the original clause, effectively characterising the abstr function. Further details of this
proof are included in Section 4.8.

As a corollary of Theorem 1, we have that the translation is sound.

Corollary 1. The translation function trf is sound with respect to the trace semantics as defined in Sec-
tion 4.2.3.

4.4 Analysis
The main purpose of formalising normative texts is to be able to perform automated analysis, by
which we mean running queries of various kinds against our model. This of course pre-supposes

Modelling and analysis of normative texts with C-O Diagrams 83

C-O Diagram
K

Uppaal Model
M

Event Trace
σ

Uppaal Trace
σU

respects
σ ⊨ K

abstr(σU)

trf(K)

timed trace
σU ∈ TU (M)

Figure 4.5: Different representations in our framework and the relations between them.

that the model is an accurate representation of the original text. Some queries can be checked at
a syntactic level, such as checking if a normative text contains any permissions for a particular
agent or identifying obligations without constraints or reparations. We refer to these as syntactic
properties as they can be computed purely syntactically on the model.

Other properties cannot be tested in this way, such as checking whether a clause may be
enacted within a certain amount of time. This may depend on a previous sequence of events, and
determining whether these events could happen or not cannot be inferred from the syntax alone.
We call these semantic properties, and verify them by converting our models to timed automata
and using model checking techniques.

4.4.1 Syntactic analysis
We begin by introducing predicates over single clauses, which are the building blocks for defining
syntactic properties. The predicate isObl(C) for example is true if the clause C is an obligation.
Predicates may also take additional arguments, such as agentOf(a,C), which is true if agent a ∈ A
is responsible for clause C. The predicates here cover general properties over clauses, which can
be used as building blocks for a general property language:

isObl, isFor, isPer(C) iff clause C is an obligation, prohibition, permission
isAnd, isOr, isSeq(C) iff clause C contains conjunction, choice, sequence

hasUppBound(C) iff clause C has an upper bound in its interval
agentOf(a,C) iff agent a is responsible for clause C

repair(r, C) iff (isObl(C) or isFor(C)) and r is a reparation of C

The syntactic properties defined for single clauses can also be extended to contract specifi-
cations as a whole. In this way we can, for example, collect all the obligations contained in a

84 Chapter 4

Q : (C → Boolean) → Contract→ P(C) (4.26)

Q(ψ,
{
⟨C1, T 1⟩, . . . , ⟨Cn, Tn⟩

}
) =

∪
1≤i≤n

{
{Ci} if ψ(Ci)

∅ otherwise
(4.27)

Figure 4.6: Definition of the Q operator for querying a contract.

contract. We refer to syntactic properties that apply to contract specifications as queries, since
they are the result of querying a contract with clause properties. The Q function, defined in Fig-
ure 4.6, returns the set of all clauses in the contract that satisfy the predicate provided as the first
argument. This has also been implemented as a Haskell function and command-line program,
together with the translation function from the previous section.

4.4.2 Semantic analysis

Syntactic analysis alone cannot be used to answer queries about the possibility of certain situa-
tions arising within a contract. Doing this involves taking into account the conditions applied
to each box, as well as a possible trace of previous events. These kinds of semantic properties are
computed by first translating a contract model into a network of timed automata (NTA) and
then applying model checking techniques. This translation is based on that introduced in [26],
yet we have made a number of changes to it in order to fix problems discovered in the original
definition, as well as to match our updated syntax. We have a fully working implementation of
this translation function, written as a Haskell program which takes a C-O Diagram as input and
produces an Uppaal file.

Given a contract and a property, we compute the Uppaal representation of the contract us-
ing the function trf (Section 4.3), and encode the property in Uppaal’s specification language,
which is a subset of TCTL [8]. We then use Uppaal to verify whether the property holds (is sat-
isfiable) against the model. Any formula that can be expressed within the Uppaal language can
be interpreted as a semantic property.

Possibility. The query E♢ψ is satisfied if there is any sequence through the automaton where
the expression ψ is true. We call this a possibility property. From a contract perspective, such a
property checks whether the set of prescriptions contained in the contract make it possible for ψ
to happen.

Modelling and analysis of normative texts with C-O Diagrams 85

1.3 Customer may initiate a request for Standard Support via the technical helpdesk. A Support
Request must include the following information: (i) type of service, (ii) details for contacting
the Customer, and (iii) a clear description of Support required. Company may refuse a Support
Request if it is unable to establish that the Support Request is made by an authorised person.

1.4 The table below sets forth the Response Time for any request for Support made in accordance
with Section 1.3 above. The Response Time Target depends on the SLA level that the Customer
has chosen.

SLA Level Response Time Target
Basic 24 hours
Bronze 4 hours

1.5 In the event Company does not respond within the applicable Response Time Target, Customer
shall be eligible to receive a Service Credit. If Customer does not pay a Monthly Recurring Charge
then Customer shall not be eligible to any Response Time Credit.

1.6 Customer shall ensure that it will at all times be reachable on Customer’s emergency numbers,
specified in the Customer Details Form. No Response Time Credit shall be due in case the Cus-
tomer is not reachable.

Figure 4.7: Extract from the SLA from LeaseWeb Inc. covering hosting services.

Invariance. Properties dealing with invariance are satisfied if the expression in question holds
at all locations in the evolution of the system. Such queries are specified using the A□ operator.

4.5 Case study
As a case study for applying these methods we choose a service level agreement (SLA) from
the hosting company LeaseWeb Inc.1 This 6-page document is divided into 6 chapters and 59
sections, many of which consist of multiple sentences. We have so far modelled one chapter of
this agreement (7 sections), but for space reasons present here an abridged version of this chapter
(Figure 4.7).

4.5.1 Model

The task of building a C-O Diagram model from this text is a manual one, which can be done using
the front-end tools introduced in previous work [16]. In place of a diagram, we provide the model
for this snippet as a formula in our language (Figure 4.8). The contract is built from main and
auxiliary clauses, linked together using cross-referencing. The primary clause is request, which

1
https://www.leaseweb.com/legal

https://www.leaseweb.com/legal

86 Chapter 4

K =
{⟨

⟨request, ϵ, #req_type Seq #req_info Seq #resp,⊤⟩,Main
⟩
,⟨

⟨req_type, customer, ϵ, P (standard support)⟩,Aux
⟩
,⟨

⟨req_info, customer, ϵ, O(C2),⊤⟩,Aux
⟩
,⟨

⟨cust_auth, customer, ϵ, O(prove authorisation),⊤⟩,Main
⟩
,⟨

⟨req_refuse, company, ⟨¬isDone(cust_auth), ϵ⟩, P (refuse request)⟩,Main
⟩
,⟨

⟨chooseSLA, customer, ϵ, P (⟨sla1, basic⟩ Or ⟨sla2, bronze⟩)⟩,Main
⟩
,⟨

⟨resp, ϵ, #resp1 And #resp2,⊤⟩,Aux
⟩
,⟨

⟨resp1, company, ⟨isDone(sla1), tresp1 < 24⟩, O(respond), #credit⟩,Aux
⟩
,⟨

⟨resp2, company, ⟨isDone(sla2), tresp2 < 4⟩, O(respond), #credit⟩,Aux
⟩
,⟨

⟨credit, company, ⟨isDone(reach) ∧ isDone(monthly), ϵ⟩, O(give credit),⊤⟩,Aux
⟩
,⟨

⟨monthly, customer, ϵ, P (pay monthly)⟩,Main
⟩
,⟨

⟨reach, customer, ϵ, O(be reachable),⊤⟩,Main
⟩}

C2 = ⟨ri1, service type⟩ And ⟨ri2, contact details⟩ And ⟨ri3, problem description⟩

Figure 4.8: The C-O Diagram model of the case study (Figure 4.7) in formal language syntax.

we model as a sequence of clauses governing the initiation of the request (req_type), the details
required (req_info), and the response obligations from the company (resp).

The response time targets for dealing with customer requests are described in clause 1.4.
Each SLA level is treated individually (resp1 and resp2), both depending on which level has been
chosen by the customer in chooseSLA, using the isDone predicate as a guard. These targets are
encoded as intervals, e.g. tresp1 < 24 enforcing that the response is completed within 24 hours.

Clause 1.5 says that the customer is entitled to credit when the company fails to respond
within their target time. This is a typical example of a reparation. We model this as the clause
credit, which is given as the reparation for both resp1 and resp2. The guards in this reparation
restrict the situations in which credit can be given. Finally, the requirement for the customer to
be reachable (clause 1.6) is encoding as a standalone obligation reach, which is also given as a
guard to the credit clause.

The model described here contains 2 agents, 12 actions and 12 boxes (clauses). The Uppaal
system produced from its translation consists of 13 processes, 113 locations, and 122 transitions.
It uses 15 channels, 30 clocks, and 116 boolean variables.

Modelling and analysis of normative texts with C-O Diagrams 87

4.5.2 Syntactic analysis

Missing reparations. We can identify clauses in our contract with potentially problematic char-
acteristics by inspecting the model syntactically. For example, the following query returns all
clauses with no reparation:

Q(repair(⊤),K) = {request, req_info, resp, cust_auth, credit, reach}

As ⊤ is the default reparation, it is no surprise that most clauses are returned here. However this
is valuable first step in identifying clauses which can be violated without any repercussions. If
the company doesn’t honour its promise to credit the customer, for example, there should surely
be some recourse for this. By taking the names in the query response and tracing them back to
original text, we find that all clauses except 1.4 in fact contain under-specified reparations.

Unbounded obligations. As a second example, we may wish to list all obligations without an
upper bound in their interval:

Q(isObl ∧ ¬hasUppBound,K) = {req_info, cust_auth, credit, reach}

Even if the company may be obliged to credit the customer, without any time constraints they
can effectively avoid doing this. Though it is common for normative documents such as this to
contain clauses without specific time restrictions, this is a common source of problems when it
comes to their formalisation. Even though the clause names in the response are different from
those in the previous example, they still correspond to the same clauses from the original text.
This is because the clauses in the model are more fine-grained than those in the text, where each
clause contains significant information in multiple sentences.

Possible choices. As a final example, we may wish to filter out the clauses in the contract which
provide a choice to the customer, using the following query:

Q(isOr ∧ agentOf(customer),K) = {chooseSLA}

This query returns a single clause chooseSLA, indicating the customer’s choice of service level,
as described in clause 1.4. As we can see here, these predicates can be combined in multiple ways
to produce different kinds of syntactic queries on our contract models. The execution of these
queries is very quick, and linear in the size of the model.

88 Chapter 4

4.5.3 Semantic analysis
Consider the last sentence of clause 1.3 in Figure 4.7. We would like to use verification to check
whether it is possible for the company to refuse the request, even though the customer has suc-
cessfully identified themselves. This can be expressed with the following query:

E♢ isComplete(request) ∧ isDone(cust_auth) ∧ isDone(req_refuse)

Running this on our model with the Uppaal model checker returns Sat in under 1 second, to-
gether with an example trace. Despite the guard on the req_refuse clause, the trace shows that it
is possible for the request to be refused before the customer has a chance to authorise. This shows
how under-specification of the timing constraints between related clauses can lead to undesirable
situations.

We can attempt to fix the contract by adding a window of 2 hours for customers to authen-
ticate themselves. This can be encoded by adding the guard tcust_auth > 2 to clause req_refuse.
We then update the query accordingly:

E♢ isComplete(request) ∧ isDone(cust_auth) ∧ Clocks[cust_auth] < 2 ∧ isDone(req_refuse)

Running this query now takes considerable longer (approx. 3 mins), though we now get UnSat
which verifies that the problem case is no longer possible. The query can also be reformulated
as an invariant, for which we get Sat within a similar amount of time:

A□ isComplete(request) ∧ isDone(cust_auth) ∧ Clocks[cust_auth] < 2 =⇒ ¬isDone(req_refuse)

When it comes to giving service credit to the customer, we may want to verify that this can
also only occur when we intend. Considering the basic support level, we come up with the
following pair of queries:

A□ isComplete(request) ∧ isDone(resp1) ∧ isDone(monthly) ∧ isDone(reach)

∧ Clocks[resp1]− Clocks[company.respond] > 24 =⇒ isDone(credit)

A□ isComplete(request) ∧ isDone(resp1)

∧ Clocks[resp1]− Clocks[company.respond] < 24 =⇒ ¬isDone(credit)

Note how we used the difference between two clocks to determine the relative time at which the

Modelling and analysis of normative texts with C-O Diagrams 89

response occurred. Running both queries returns a Sat result as expected, taking around 4 mins
each to complete.

Execution times. The model checking times presented here are rather low, because they refer
to the small model snippet presented in Figure 4.8. These times increase dramatically however
as we model increasingly larger fragments of the case study text.

4.6 Related work
C-O Diagrams were introduced by Martinez et al. in [51], and further refined in [26]. While our
work is heavily based on their formalism, we make a number of extensions to it. Most signifi-
cantly, Díaz et al. convert guards in C-O Diagrams quite literally into edge guards in the resulting
NTA. When a guard is true, a possible path is enabled in the automaton, but there is nothing forc-
ing this path to be taken. Our translation has a stricter interpretation of guards, ensuring that if a
guard becomes true during the specified time frame, then the resulting path must be taken. Our
other extensions to the formalism were introduced to make the modelling task more natural. The
trace semantics defined in Section 4.2.3 is also completely new for the C-O Diagram formalism.
We follow the approach of [30] where a trace semantics is defined for the CL language [69]. Also,
unlike [51, 26] we have a full working implementation of the translation of C-O Diagrams into
Uppaal (no implementation existed before) allowing us to perform model checking, as well as
an implementation for performing syntactic queries.

Angelov et al. [4] introduce a similar framework AnaCon for the analysis of contracts, based
on the contract logic CL. Their system allows for the detection of contradictory clauses in nor-
mative texts using the CLAN tool [31]. In comparison, the underlying logical formalism we use
includes timing aspects which provides a whole new dimension to the analysis. Besides this,
our translation into Uppaal allows for checking more general properties, not only normative
conflicts.

Earlier work by current authors discusses the front-end of this system [16]. This includes
tools for working with contracts represented diagrammatically, and the definition of a controlled
natural language (CNL) which can be used as both a source and a target interface for contracts
modelled in this formalism.

In their work, Pace and Schapachnik introduce the Contract Automata formalism [62] for
modelling interacting two-party systems. Their approach is similarly based on deontic norms,
but with a strong focus on synchronous actions where a permission for one party is satisfied

90 Chapter 4

together with a corresponding obligation on the other party. Their formalism is limited to strictly
two parties, and does not have any support for timing notions as C-O Diagrams do.

Much work on analysing texts in general exists in the Natural Language Processing commu-
nity. However, this is limited to processing text for the sake of analysing linguistic aspects (e.g.,
co-reference resolution [11]) and thus not directly comparable with our approach. This kind of
work would be useful to us as a pre-processing step, helping to bridge the gap between natural
language text and our formal language. The exceptions to the above are maybe some specific
works using passage retrieval techniques, and the work by the Attempto group with controlled
natural languages, discussed below.

Rosso et al. [73] use passage retrieval techniques to analyse legal texts. Their analysis, how-
ever, cannot handle verification of timing constraints as we do, since their technique is limited
to very specific kinds of (untimed) conflicts.

Attempto Controlled English (ACE) [34] is one of the best examples of a controlled natural
language (CNL) designed for universal use. It comes with a parser to discourse representation
structures (a syntactic variant of first-order logic) and a first-order reasoner RACE [33], and has
been used in a variety of applications. The biggest distinction here is that our analysis is specif-
ically concerned with timing constraints, whereas to our knowledge there is no such capability
with RACE.

4.7 Conclusion
This work presents a number of extensions to the C-O Diagrams formalism for normative texts, to-
gether with a new translation to Uppaalmodels and a fully working implementation in Haskell.
We have provided a novel trace semantics for our language, defining what it means for a trace of
events to respect a contract specification, and proved the correctness of the translation with re-
spect to the trace semantics. We have also defined and implemented algorithms for performing
both syntactic and semantic queries, the former being an ad hoc implementation while the latter
uses the Uppaal model checker.

Scalability. Space limitations prevent us from providing a larger case study, though it is sig-
nificant enough to display the details of the approach. It is well-known that model checking may
easily become intractable for non-trivial models, and verification time is very sensitive to the size
of the automata and the use of channel synchronisations. Our translation is currently not opti-
mised and may as such produce unnecessarily large/many automata. A thorough investigation

Modelling and analysis of normative texts with C-O Diagrams 91

of possible optimisations and their effect on performance is regarded as important future work,
but outside the scope of the present paper.

It would also be relevant to work out which clauses in a model are independent of each
other, as this could be used to exclude parts of the model when model checking and thus reduce
verification time. We also point out that scalability is not an issue for the syntactic analysis, which
is linear in the size of the model.

Future work. While we have only presented a single case study here, these methods have also
been applied to various other real-world examples of normative texts to guide to design process.

We show here that analysis of normative texts is possible with the right formalisation and
querying system. In our work so far, the formalisation of both contract and queries is still a
manual task. Working towards a higher level of automation in this process reduces the workload
for the user, and also indirectly creates a higher level of predictability.

This work forms the core of a larger toolkit for working with normative texts. On the front-
end, we already have tools for building contract models graphically and using controlled natural
language (CNL). We are currently working on applying NLP techniques for producing partial
models from natural language documents, to ease the modelling burden on the user [18].

92 Chapter 4

4.8 Appendix: Translation to NTA & proof of correctness

4.8.1 Outline
We prove here the correctness of our translation function to Uppaal models with respect to the
trace semantics for C-O Diagrams defined in Section 4.2.3. We do this by structural induction
over the syntax in Figure 4.2, in each case considering the translated Uppaal model obtained
from the trf function and comparing the sets of traces which are allowed by our trace semantics
and by Uppaal’s.

4.8.2 UPPAAL trace semantics
David et al. [22] give a formalisation for Uppaal models, together with a definition of their trace
semantics. We briefly repeat their definitions here.

Definition 3 (UPPAAL process). AnUppaal processA (single automaton) is a tuple ⟨L, T, Type, l0⟩,
where

1. L is a set of locations,
2. T is a set of transitions between two locations, each containing optionally a guard g, synchronisa-

tion label s and assignment a,
3. Type is a typing function which marks each location as ordinary, urgent or committed, and
4. l0 ∈ L is the initial location.

Definition 4 (UPPAAL model). An Uppaal model M (network of automata) is a tuple ⟨A⃗, V ars,
Clocks, Chan, Type⟩, where

1. A⃗ is a vector of processes A1, . . . , An;
2. V ars is a set of variables,
3. Clocks is a set of clocks,
4. Chan is a set of synchronisation channels, and
5. Type is a polymorphic typing function for locations, channels, and variables.

Definition 5 (Configuration). A configuration of an Uppaal model is a triple (⃗l, e, v), where
1. l⃗ = (l1, . . . , ln) where li ∈ Li is a location of process Ai,
2. e is a valuation function mapping every variable to an integer value, and
3. v is a valuation function mapping every clock to a non-negative real number.

Modelling and analysis of normative texts with C-O Diagrams 93

Definition 6 (Simple action step). For a configuration (⃗l, e, v) a simple action step is enabled if there
exists a transition l g,a−−→ l′ such that

1. l ∈ l⃗,
2. its guards g evaluate to true given e, v,
3. the invariant on l′ will hold after assignment a, and
4. if any other locations in l⃗ are committed, then l is also committed.

Definition 7 (Synchronised action step). For a configuration (⃗l, e, v) a synchronised action step is
enabled iff for a channel b there exist two transitions li

gi,b!,ai−−−−−→ l′i and lj
gj ,b?,aj−−−−−→ l′j such that

1. li, lj ∈ l⃗ and i ̸= j,
2. the guards gi ∧ gj evaluate to true given e, v,
3. the invariants on l′i and l′j will hold after assignments ai and aj , and
4. if any other locations in l⃗ are committed, then li and/or lj are also committed.

Definition 8 (Delay step). For a configuration (⃗l, e, v) a delay step is enabled iff
1. none of the locations in l⃗ is urgent or committed,
2. no synchronised actions steps are enabled on channels marked as urgent, and
3. the invariants on all locations in l⃗ will still hold after the delay.

Definition 9 (Timed trace). A sequence of configurations {(⃗l, e, v)}K of length K ∈ N ∪ {∞} is a
timed trace for a Uppaal model M if

1. all locations in configuration 0 are the initial locations for their respective processes,
2. all variables and clocks evaluate to 0 in configuration 0,
3. if the sequence is finite, then at the last configuration no further steps are enabled (system is maxi-

mally extended/deadlocked),
4. if the trace is infinite, eventually every clock value exceeds every bound, and
5. every pair of consecutive configurations in the sequence are connected by a simple action step,

synchronised action step, or delay step.

4.8.3 Notes and notation
In each case of the proof, we present the automata resulting from the translation in graphical
form, simply because they are more concise and easier to read than formulae. Similarly, details
about variable and channel declarations are omitted for brevity. The following is a legend to the
conventions we use:

1. Initial nodes are drawn with a double border.
2. Committed nodes are shown in white.

94 Chapter 4

3. Dashed lines indicate edges that are to be filled in recursively.
4. A guard is split up into

(a) lower-bound time constraints glow (i.e. using the greater-than operator)
(b) upper-bound time constraints gupp (i.e. using the less-than operator)
(c) non-temporal constraints gvars

5. We use int to indicate the interval component of a set of conditions.
6. The symbol ¬ indicates the negation of constraints.
7. Constraints on a node indicate invariants.
8. The function calls reset(name), vio(name), done(name), sat(name), and skip(name) are

abbreviated to r, v, d, s, sk respectively, where name is the name of the current box.
9. We use the term end of time to mean a time stamp value which is sufficiently large to be

later than all events in the trace and all constraints in the model.

4.8.4 Thread automaton

All top level clauses (cases 4.2–4.8) may contain conditions which govern their enactment. As the
translation of this logic into automata is identical for all clauses, we use a standard automaton
model called the thread (shown below).

t0 t1

t2

t3 t4glow

¬gvars ∧ gupp

changed?

gvars ∧ gupp
Cenable!

Ccompl?

¬gupp

sk

¬gupp

sk

The thread starts the main automaton corresponding to the original clause via channel syn-
chronisation on Cenable. Its structure ensures that the main automaton is guaranteed to be acti-
vated if and when the guard gvars becomes true within the time frame specified by glow and gupp.
When any of these is missing, it is replaced with a trivial condition true. Each time a variable
in the system is updated, there is a synchronisation action on the broadcast channel changed,
which causes all waiting threads to re-check their guards. If the time window expires without
the guards becoming true, the main automaton is never enacted but instead skipped. There are
various cases to consider here:
(a) glow is false: Wait until glow is true (must happen eventually).

Modelling and analysis of normative texts with C-O Diagrams 95

(b) gvars is immediately true: Transition to t3, activating main automaton.
(c) gvars becomes true before gupp expires: Wait in t2 until gvars changes, then transition to t1

and then to t3, activating main automaton.
(d) gvars becomes true, but after gupp expires: Wait in t2 until gvars changes, then transition to

t1 and then to t4, skipping main automaton.
(e) gvars never becomes true: Wait in t2 until gupp expires, then transition to t4, skipping main

automaton.

4.8.5 Case analysis
Note that the case numbers here correspond to the rules in the trace semantics in Section 4.2.3
(Figure 4.3).

Case 4.1: Contract.

σ ⊨
{
Cl1, . . . , Cln

} iff
∧

1≤i≤n

σ ⊨∅ Ci where Cli = ⟨Ci,Main⟩

Event traces. Traces respecting this formula must respect each of the individual clauses inde-
pendently.

Translation. Each main clause in a contract is translated into an automaton which is instantiated
as a process in the UPPAAL model.

Uppaal traces. Traces satisfying this model must contain configuration steps that take each in-
dividual process representing clause name from its initial state to one in which no further steps
are possible, and in which isComplete(name) is true.

Argument. In both formalisms it is required that the trace must satisfy all clauses individually
and concurrently.

Case 4.2: Obligation.

σ ⊨c ⟨n, a, c′, O(C2), R⟩ iff checkg(c ∪ c′) implies (σ ⊨c∪c′
a C2 or σ ⊨c R

)
Event traces. Traces must contain events respecting C2 while the conditions c′ hold, or respect-
ing R. We consider the following cases:
(a) Guards from combined conditions c ∪ c′ are never true in the trace: the obligation is not

enacted and thus trivially respected.

96 Chapter 4

(b) Guards from combined conditions c ∪ c′ become true in the trace: the obligation is enacted
and can be respected in one of two ways:

i. The actions in C2 are performed by agent a at times which satisfy combined conditions
c ∪ c′.

ii. The entire reparation clause R is completed while the inherited conditions c hold.

Translation. All automata from the translation of R, one thread automaton (see Section 4.8.4)
and one main automaton as follows, where edge s1 → s3 is filled with the translation of C2 and
s2 → s3 is filled with the thread from the translation of R.

s0 s1
int

s2

s3
Cenable?

r

int

d, s

¬int
v

s

Ccompl!

Uppaal traces. In order to reach a state where the obligation is complete, a transition marked
with s (satisfied) or sk (skipped) must be taken. This may happen in the following ways:
(a) The thread automaton ends up in t4 by skipping the main automaton.
(b) The thread automaton enables the main automaton, one of the following occurs:

i. Transition s1 → s3 is taken while interval int holds, respecting the translation of C2.
ii. Interval int expires and s3 is reached via s2, respecting the translation of R.

Finally both automata synchronise on Ccompl reaching maximally extended states.

Argument. The case distinctions above map directly to each other, such that both sets of traces
require that if the clause is enacted, then either C2 is respected while the conditions c′ hold, or
R is respected.

Case 4.3: Permission.

σ ⊨c ⟨n, a, c′, P (C2) ⟩

Event traces. Any trace will respect a permission.

Translation. One thread automaton (see Section 4.8.4) and one main automaton as follows, where
edge s1 → s2 is filled with the translation of C2.

Modelling and analysis of normative texts with C-O Diagrams 97

s0 s1
int

s2
Cenable?

r

¬int
s

int

d, s

Ccompl!

Uppaal traces. In order to reach a state where the permission is complete, a transition marked
with s (satisfied) or sk (skipped) must be taken. This may happen in the following ways:
(a) The thread automaton ends up in t4 by skipping the main automaton.
(b) The thread automaton enables the main automaton, one of the following occurs:

i. Transition s1 → s2 is taken while interval int holds, respecting the translation of C2.
ii. Interval int expires and s2 is reached via the lower transition. If no interval exists, the

automaton will take this transition at the end of time.
Finally both automata synchronise on Ccompl reaching maximally extended states.

Argument. As any event trace is accepted, so is any Uppaal trace which satisfies our basic con-
ditions for completion.

Case 4.4: Prohibition.

σ ⊨c ⟨n, a, c′, F (C2), R⟩ iff checkg(c ∪ c′) implies (σ ⊨c∪c′
a C2 implies σ ⊨c R

)
Event traces. If traces contain events respecting C2 while the conditions c′ hold then they must
also respect R. We consider the following cases:
(a) Guards from combined conditions c ∪ c′ are never true in the trace: the prohibition is not

enacted and thus trivially respected.
(b) Guards from combined conditions c∪ c′ become true in the trace: the prohibition is enacted

and can be respected in one of two ways:
i. The actions in C2 are performed by agent a at times which satisfy combined conditions
c ∪ c′, followed by reparation clause R being completed while the inherited conditions
c hold.

ii. No action is taken until the conditions expire.

Translation. All automata from the translation of R, one thread automaton (see Section 4.8.4)
and one main automaton as follows, where edge s1 → s2 is filled with the translation of C2 and

98 Chapter 4

s2 → s3 is filled with the thread from the translation of R.

s0 s1
int

s2 s3
Cenable?

r

¬int
s

int

v s

Ccompl!

Uppaal traces. In order to reach a state where the prohibition is complete, a transition marked
with s (satisfied) or sk (skipped) must be taken. This may happen in the following ways:
(a) The thread automaton ends up in t4 by skipping the main automaton.
(b) The thread automaton enables the main automaton, one of the following occurs:

i. Transition s1 → s2 is taken while interval int holds, respecting the translation of C2,
followed by transition s2 → s3, respecting the translation of R,

ii. Interval int expires and transition s1 → s3 is taken.
Finally both automata synchronise on Ccompl reaching maximally extended states.

Argument. The case distinctions above map directly to each other, such that both sets of traces
require that if the clause is enacted, then when C2 is respected while the conditions c′ hold, then
R must necessarily be respected too.

Case 4.5: Refinement.

σ ⊨c ⟨n, c′, C1, R⟩ iff checkg(c ∪ c′) implies (σ ⊨c∪c′ C1 or σ ⊨c R
)

Argument. Refinement is covered in cases 4.6–4.8 below.

Case 4.6: Conjunction.

σ ⊨c C′ And C′′ iff σ ⊨c C′ and σ ⊨c C′′

Event traces. Traces must respect both C′ and C′′ individually while the conditions c′ hold, or
respect the reparation R.

Translation. All automata from the translations of C′, C′′ and R, one thread automaton (see
Section 4.8.4) and one main automaton as follows, where edge s6 → s7 is filled with the thread
from the translation of R.

Modelling and analysis of normative texts with C-O Diagrams 99

s0 s1
int

s2 s3
int

s4 s5

s6

s7

Cenable?

r

C′
enable! C′′

enable! C′
compl? C′′

compl? int

d, s, r

¬int
d, v

s, r¬int
v

¬int
v

Ccompl!

Uppaal traces. The thread ensures that the main automaton is only enacted if and when the
variable and time constraints in c′ are met. The sub-automata for C′ and C′′ are both enacted
(the order is not significant since the intermediate node is committed) ensuring that a trace of
configurations must either satisfy both of these while the conditions c′ hold, or the translation of
R. The synchronisation with Ccompl means that both thread and main automaton should reach
a maximally extended state together.

Argument. Both sets of traces require that either both the clauses in the refinement are respected,
in any order, while the conditions c′ hold, or that the reparation is respected.

Case 4.7: Sequence.

σ ⊨c C′ Seq C′′ iff ∃i : 0 < i < length(σ) and σ(..i) ⊨c C′ and σ(i..) ⊨c C′′

Event traces. Traces can be divided in two, such that first subtrace respects C′ and the second
subtrace respects C′′ while conditions c′ hold, or the whole trace respects R.

Translation. All automata from the translations of C′, C′′ and R, one thread automaton (see
Section 4.8.4) and one main automaton as follows, where edge s6 → s7 is filled with the thread
from the translation of R.

s0 s1
int

s2
int

s3 s4
int

s5

s6

s7

Cenable?

r

C′
enable! C′

compl? C′′
enable! C′′

compl? int

d, s, r

¬int
d, v

s, r¬int
v

¬int
v

¬int
v

Ccompl!

100 Chapter 4

Uppaal traces. The thread ensures that the main automaton is only enacted if and when the
variable and time constraints in c′ are met. The sub-automata for C′ and C′′ are enacted in
sequence, such that C′ must be complete before C′′ is enacted. A trace of configurations must
either satisfy both of these in order, while the conditions c′ hold, or the translation ofR. The syn-
chronisation withCcompl means that both thread and main automaton should reach a maximally
extended state together.

Argument. Both sets of traces require that either both the clauses in the refinement are respected,
in order, while the conditions c′ hold, or that the reparation is respected.

Case 4.8: Choice.

σ ⊨c C′ Or C′′ iff either σ ⊨c C′ or σ ⊨c C′′

Event traces. Traces must respect either C′ or C′′ while the conditions c′ hold, or respect the
reparation R.

Translation. All automata from the translations of C′, C′′ and R, one thread automaton (see
Section 4.8.4) and one main automaton as follows, where edge s5 → s6 is filled with the thread
from the translation of R.

s0 s1
int

s2

s3
s4

s5

s6

Cenable?

r

C′
enable! C′

compl?

C′′
enable! C′′

compl?

int

d, s, r

¬int
d, v

s, r¬int
v

Ccompl!

Uppaal traces. The thread ensures that the main automaton is only enacted if and when the
variable and time constraints in c′ are met. Only one of the sub-automata for C′ and C′′ can be
enacted, introducing non-determinism at node s1. A trace of configurations must either satisfy
one of these while the conditions c′ hold, or the translation of R. The synchronisation with
Ccompl means that both thread and main automaton should reach a maximally extended state
together.

Modelling and analysis of normative texts with C-O Diagrams 101

Argument. Both sets of traces require that either only one of the clauses in the refinement is
respected, while the conditions c′ hold, or that the reparation is respected.

Case 4.9: Simple action.

σ ⊨c
a x iff ∃i : 0 < i < length(σ) and ⟨a, x, t⟩ = σ(i) and checki(c, t)

Event traces. Traces must contain an event involving agent a and action x with a time stamp
that complies with interval in c.

Translation. An action is simply an edge which synchronises on a broadcast channel cha.x ded-
icated for that agent/action combination (below left). Each action also gets a corresponding doer
automaton which broadcasts on this channel to represent the action being performed (below
right). This can happen at any time, providing the action has not already been performed.

s0 s1cha.x? s0

¬isDone(a.x)
cha.x!

d, r

Time constraints do not appear at this level, however this simple automaton is always embedded
within a larger one which would enforce such constraints (this is true of all the following action
cases).

Uppaal traces. Traces must contain a synchronisation on the cha.x channel.

Argument. Both sets of traces require that the action is performed within a certain frame.

Case 4.10: Action conjunction.

σ ⊨c
a C

′
3 And C′′

3 iff σ ⊨c
a (C′

3 Seq C′′
3) Or (C′′

3 Seq C′
3)

Argument. In both the trace semantics and the translation to Uppaal, the And refinement is
defined in terms of Seq and Or, and thus needs no special treatment here.

Case 4.11: Action sequence.

σ ⊨c
a C

′
3 Seq C′′

3 iff ∃i : 0 < i < length(σ) and σ(..i) ⊨c
a C

′
3 and σ(i..) ⊨c

a C
′′
3

Event traces. Traces can be divided in two, such that first subtrace respects C′
3 and the second

subtrace respects C′′
3 .

102 Chapter 4

Translation. The following automaton fragment, where each dashed edge is filled in with the
translation of its label.

s0 s1 s2
C′
3 C′′

3

Uppaal traces. A satisfying sequence of configurations must satisfy the translationsC′
3 andC′′

3 ,
strictly in that order.

Argument. Both sets of traces ensure that both sub clauses are respected, in order.

Case 4.12: Action choice.

σ ⊨c
a C

′
3 Or C′′

3 iff either σ ⊨c
a C

′
3 or σ ⊨c

a C
′′
3

Event traces. Traces must respect either C′
3 or C′′

3 .

Translation. The following automaton fragment, where each dashed edge is filled in with the
translation of its label.

s0 s1

C′
3

C′′
3

Uppaal traces. A satisfying sequence of configurations must satisfy either the translation of C′
3

or that of C′′
3 , introducing non-determinism at node s0.

Argument. Both sets of traces require that only one of the sub clauses is respected.

Case 4.13: Action naming.

σ ⊨c
a ⟨n,C2⟩ iff σ ⊨c

a C2

Argument. This case is simply handled recursively by considering the inner C2 element.

Case 4.14: Top.

σ ⊨c ⊤

Event traces. Any event trace respects top.

Modelling and analysis of normative texts with C-O Diagrams 103

Translation. The following automaton fragment.

s0 s1true

Uppaal traces. This automaton is trivially satisfied by any trace.

Argument. Both sets of traces are maximally inclusive.

Case 4.15: Bottom.

σ ⊭c ⊥

Event traces. No event trace respects bottom.

Translation. The following automaton fragment.

s0 s1
false

Uppaal traces. This automaton is satisfied by no trace.

Argument. Both sets of traces are empty.

Case 4.16: Reference.

σ ⊨c #name iff σ ⊨c C′ where C′ = lookup(name)

Translation. A reference is translated by looking up the clause in the contract with name name
and making a copy of its translation.

104 Chapter 4

105

Chapter 5

ConPar: a tool for automatically
building partial C-O Diagrams
John J. Camilleri, Normunds Grūzītis, and Gerardo Schneider

Abstract. Our goal is to analyse normative texts by converting natural language into models in
the C-O Diagram formalism. We present an experimental tool to help automate this modelling
task. Using dependency structures obtained from the Stanford Parser and applying our own
extraction rules, we produce a table which can then be converted into a C-O Diagram. We per-
form experiments of the tool on several documents from different domains, providing an initial
evaluation of our approach.

106 Chapter 5

Chapter contents
5.1 Introduction . 107
5.2 Extracting predicate candidates . 107

5.2.1 Expected input and intended output . 109
5.2.2 Rules . 109
5.2.3 Heuristics . 110
5.2.4 Post-editing . 111

5.3 Experiments . 111
5.3.1 Evaluation criteria . 112
5.3.2 Observations . 112
5.3.3 Paraphrasing . 113

5.4 Formal analysis . 114
5.5 Related work . 114
5.6 Summary . 115

ConPar: a tool for automatically building partial C-O Diagrams 107

5.1 Introduction
Normative texts are natural language documents which are concerned with deontic norms: what
must, may be, and should not be done. These may include legal contracts, terms of usage and
service level agreements. We can analyse such texts by modelling them within a formalism that
allows us to perform complex queries and verify properties about them. The formalism used for
this task is Contract-Oriented (C-O) Diagrams [51, 26], which provides a language for visualising
normative texts involving the modalities of obligation, permission and prohibition (indicated
by the letters O, P and F respectively). These norms can be expressed over agents and actions,
together with reparations which apply when obligations and prohibitions are violated.

Models in this formalism can be converted automatically into networks of timed automata
(NTA) [1, 10], which are amenable to verification using the Uppaal tool [8]. Much work has
gone into building an implementation of a framework for the modelling and analysis of C-O
Diagrams. There is, however, a large semantic gap between texts in natural language and their
formal representations. The task of modelling has thus far been completely manual, requiring a
good knowledge of both domain and formalism.

Contributions. We aim here to address this front-end task by presenting a tool for processing
normative texts and building partial models from them, by analysing their syntactic structure
and extracting relevant information. Our method uses dependency structures obtained from the
general-purpose the Stanford Parser [46, 77], which are then processed using custom rules and
heuristics that we specified based on a small development corpus in order to produce a table of
clauses (predicate candidates). This can be seen as a specific information extraction task. While
this method may only produce a partial model requiring post-editing, our goal is to automate
the most tedious part of the work so that the user (knowledge engineer) can focus better on
formalisation details. We also discuss the application of this method to a small test corpus of
unseen sentences, and report on the performance based on a simple precision-recall metric.

5.2 Extracting predicate candidates
The proposed approach is application-specific but domain-independent. We assume that norma-
tive texts tend to follow a certain restricted style of natural language, despite variations across
and within domains. However, as we do not impose any grammatical or lexical restrictions on
the input texts, we first apply a general-purpose statistical parser to obtain a syntactic depen-
dency tree for each sentence. Provided the syntactic analysis does not contain significant errors,

108 Chapter 5

Refin. Mod. Subject Verb Object Adverbials

You must not, in the use of the Service, violate any laws in your jurisdiction (including copyright or trademark
laws).
- F User violate law in User’s jurisdiction

You will not upload viruses or other malicious code.
F User upload virus -

OR F User upload other malicious
code

-

The examiner may, in consultation with the principal supervisor, assess whether the applicant has the capacity
to successfully complete the doctoral programme.
- P examiner assess applicant have

capacity
in consultation with the
principal ...

The RENTER shall pay all reasonable attorney and other fees, the expenses and costs incurred by OWNER in
protection its rights under this rental agreement and for any action taken OWNER to collect any amounts due
the OWNER under this rental agreement.
- O renter pay reasonable

attorney
under this rental agree-
ment

AND O renter pay other fee under this rental agree-
ment

The equipment shall be delivered to RENTER and returned to OWNER at the RENTER’s risk, cost and expense.
- O equipment [is] delivered [to] renter at the renter’s risk, cost

and expense
AND O equipment [is] returned [to] owner at the renter’s risk, cost

and expense

Table 5.1: Sample input and partial output.

we then apply a number of interpretation rules and heuristics on the dependency structures, ob-
taining predicate candidates as shown in Table 5.1. More than one candidate is extracted in the
case of explicit or implicit coordination of subjects, verbs, objects or main clauses.

In our experiment, we use the Stanford Parser whose accuracy on Penn Treebank (the WSJ
section) is around 90% [77]. Using the Stanford dependency representation [24] allows for a
more straightforward predicate extraction based on the syntactic relations, compared to using
phrase structure. However, our approach is not restricted to a specific parser or dependency
representation. The Stanford dependency representation [24] is being increasingly adapted to
parsers for other languages as well, for instance, Chinese [19], Finnish [41] and Persian [76], and
it is the basis for the Universal Dependencies project [25].

ConPar: a tool for automatically building partial C-O Diagrams 109

5.2.1 Expected input and intended output
The input text is pre-processed by splitting each sentence on a new line. In this experiment, we
have manually selected only the relevant sentences, ignoring (sub)titles, introductory notes, etc.
Automatic analysis of the document structure is a separate issue. We also expect that sentences
do not contain grammatical errors that would considerably affect the syntactic analysis. The out-
put of the tool is a table (in tab-separated format) where each line corresponds to a C-O Diagram
box (clause) with the following fields:

• Subject — the agent of the clause;
• Verb — the verbal component of an action;
• Object — the object component of an action;
• Modality — obligation (O), permission (P), prohibition (F) or declaration (D) for clauses

which only state facts;
• Refinement — whether a clause should be attached to the preceding clause by conjunction

(AND), choice (OR) or sequence (SEQ);
• Time — adverbial phrases indicating temporality;
• Adverbials — other adverbial phrases that modify the action;
• Conditions — phrases indicating conditions on agents, actions or objects;
• Notes — other phrases that provide additional information (e.g. relative clauses), indicat-

ing the element (head word) they attach to.
Values of the subject, verb and object fields undergo certain normalisation: head words are

lemmatised, Saxon genitives are converted to of-constructions if contextually possible, the prepo-
sition “to” is explicitly added to indirect objects, and definite and indefinite articles are omitted.

A complete document in this format can be converted automatically into a C-O Diagram
model. Our tool however does not necessarily produce a complete table, in that fields may be left
blank when we cannot determine what to use. Correctness of the output is also not guaranteed;
certain clauses may be encoded in multiple ways, and, while all fields may be filled, the user
may find it more desirable to change the encoding.

5.2.2 Rules
The rules in our system include everything that explicitly follows from the dependency relations
and part-of-speech tags. For example, when present, the head of the subject noun phrase (NP)
(labelled by nsubj), and the head of the direct object NP (dobj) are straightforwardly used to fill
the subject and object fields (see Figure 5.1).

As another example, modal verbs and other auxiliaries of the main verb are labelled as aux

110 Chapter 5

Figure 5.1: Sample dependency tree.

but words like “may” and “must” clearly indicate the respective modalities P and O. Auxiliaries
can also be combined with other modifiers, such as the negation modifier “not” (neg), indicating
F. In such cases, the rule is that obligation overrides permission, and prohibition overrides both
obligation and permission.

In order to provide concise values for the subject and object fields, relative clauses (rcmod),
verbal modifiers (vmod) and prepositional modifiers (prep) that modify heads of the subject and
object NPs are separated in the notes field.

Adverbial modifiers (advmod), prepositional modifiers and adverbial clauses (advcl) that mod-
ify the main verb are separated, by default, in the adverbials field. If the main clause is expressed
in the passive voice, and the agent is mentioned (expressed by the preposition “by”), the resulting
predicate is converted to the active voice.

5.2.3 Heuristics
In addition to the obvious extraction rules, we apply a number of heuristic rules based on the
development examples and our intuition about the application domains and of normative texts.

First of all, auxiliaries are compared and classified against extended lists of keywords; e.g.
the modal verb “can” most likely indicates P while “shall” and “will” indicate O. We also consider
the predicate itself (expressed by a verb, adjective or noun); e.g. words like “responsible”, “liable”
and “require” most likely express O.

For prepositional phrases (PP) that are direct dependents of the verb, we first check if they
reliably indicate a temporal modifier. The list of such prepositions include “after”, “before”, “un-
til” etc. If not unambiguous, the head of the NP is checked to see if it bears a meaning of time.
There is a relatively open list of such potential keywords, including “day”, “week”, “month” etc.
Syntactic parsers often make PP-attachment errors, so if a PP attached to the object matches the
above indicators, it is still put in the verb-dependent Time field.

ConPar: a tool for automatically building partial C-O Diagrams 111

The markers (mark) of adverbial clauses are also checked for indications of time (“while”,
“when” etc.) and conditions (e.g. “if”). Adverbial modifiers are also checked against a list of
irrelevant adverbs used for emphasis (e.g. “very”) or as gluing words (“however”, “also” etc.).

If there is no direct object in the sentence, or, in the case of the passive voice, no agent ex-
pressed by a prepositional phrase (using the preposition “by”), the first PP governed by the verb
is treated as a prepositional object and thus is included in the object field. Finally, anaphoric ref-
erences by personal pronouns are detected, normalised and tagged (e.g. “we”, “our” and “us”
are all rewritten as “<we>”). In the case of terms of services, for instance, pronouns “we” and
“you” are often used to refer to the service and the user respectively. The tool can be customised
to carry out this simple but effective kind of anaphora resolution (see Table 5.1).

5.2.4 Post-editing

Our tool is not intended to completely replace a human knowledge engineer, and a certain
amount of post-editing is often required. This can be sub-categorised into the following tasks,
listed here in approximate order of effort required:

(i) filling in empty fields;
(ii) adding/removing adverbial information from subject and object;

(iii) changing verb/modality;
(iv) refinement into sub-clauses;
(v) complete paraphrasing.

5.3 Experiments
To test the potential and feasibility of the proposed approach, we have selected four normative
texts from three different domains: a terms of service agreement, a rental agreement and research
school regulations.

1. PhD regulations from our research school.1

2. Equipment rental agreement from RSO, Inc.2

3. Terms of service for GitHub, Inc.3

4. Terms of service for Facebook, Inc.4

1
http://document.chalmers.se/doc/fce9499c-feac-4152-809e-bfbbaf0fd8e9, accessed 2015-06-15

2
http://www.rsoinc.com/pdfs/equip_rental_revb.pdf, accessed 2015-06-15

3
https://github.com/site/terms, accessed 2015-06-15

4
https://www.facebook.com/legal/terms, accessed 2015-06-15

http://document.chalmers.se/doc/fce9499c-feac-4152-809e-bfbbaf0fd8e9
http://www.rsoinc.com/pdfs/equip_rental_revb.pdf
https://github.com/site/terms
https://www.facebook.com/legal/terms

112 Chapter 5

Document Rules only Rules + heuristics
Precision Recall F1 Precision Recall F1

PhD 0.66 0.73 0.69 0.82 0.90 0.86
Rental 0.75 0.67 0.71 0.71 0.66 0.69
GitHub 0.46 0.53 0.49 0.48 0.55 0.51
Facebook 0.43 0.54 0.48 0.43 0.57 0.49

Table 5.2: Evaluation results.

In the development stage we used 10 sentences from each document to help develop the tool
heuristics. For the evaluation, we applied the tool to another 10 sentences of each document and
manually evaluated the output for each.

5.3.1 Evaluation criteria
In our evaluation we use a simple precision/recall metric over the Subject, Verb, Object, and
Modality fields. The other fields in the output were not included as they are too unstructured
and always require some post-processing in order to be usable. The evaluation was performed
twice: first on the output of the tool when using only the rules, and then again when using the
rules and heuristics together. A summary of our experimental results can be found in Table 5.2,
including the harmonic mean between precision and recall (F1 scores).

Precision is concerned with rating the accuracy of the output. For each field in every row,
one point is assigned when its value matches with our assessment of the correct value. When
a single sentence results in multiple clauses, each of these is scored individually. Recall is a
measure of how much information the tool was able to extract. For each sentence in the origi-
nal text, we check whether the correct values have been extracted, scoring accordingly. When a
sentence should result in multiple clauses, we score for each of these separately. The local scores
for precision and recall are often identical, as one sentence in the original text generally corre-
sponds to one clause. This does not hold when unnecessary refinements are added by the tool
or, conversely, when co-ordinations in the text are not correctly added as refinements.

5.3.2 Observations
The large differences in the F1 scores between documents (from 0.49 to 0.86) are mainly due to
variations in language style. The heuristics do improve the scores, though the improvement is
not equal across the different documents. Many sentence patterns handled in the heuristics do
not in fact appear in the test sets. Of course the tiny corpus size is an issue here, and we cannot

ConPar: a tool for automatically building partial C-O Diagrams 113

make any strong statements about the representative coverage of the test set.
Analysing the modal verb shall seems to be particularly difficult. It may either be an indica-

tion of an obligation when concerning an action, or a prescriptive construct as in shall be which
is more indicative of a declaration.

5.3.3 Paraphrasing
The task of extracting the correct fields from each sentence can be seen as paraphrasing from the
given sentence into one of the known patterns which can be handled by our rules. We give here
some examples of errors encountered in the experiments, which can only currently be fixed by
making non-trivial paraphrasings.

GitHub reserves the right at any time to modify or discontinue, temporarily or permanently,
your access to the API (or any part thereof) with or without notice.

For this sentence, our tool picks up reserve as verb and right as object, but this should really be
realised as a permission with modify as the verb ad access to API as object. This could furthermore
be refined as a permission of a choice of actions (modify, discontinue temporarily, discontinue
permanently). Additional phrases such as at any time and with or without notice are actually not
valuable here, as they reflect the default behaviour of the formalism (i.e. lack of constraints).

We require applications to respect your privacy, and your agreement with that application
will control how the application can use, store, and transfer that content and information.

Here we get an obligation with subject we, verb require and object applications to respect your pri-
vacy. The correct encoding however would be to make applications the subject, with respect as the
verb and the object being your privacy.

When you publish content or information using the Public setting, it means that you are
allowing everyone, including people off of Facebook, to access and use that information, and
to associate it with you.

In this case the tool fails completely, returning it as the subject, mean as verb and object allowing
everyone, with the declarative modality (D). Here, the entire when clause should be treated as a
condition. The phrase you are allowing everyone should more correctly be paraphrased as everyone
is allowed, making this actually a permission with subject everyone, verb access and object [that]
information.

114 Chapter 5

To learn more about Platform, including how you can control what information other people
may share with applications, read our Data Policy and Platform Page.

Other sentences such as this are generally unimportant for our purposes and should be skipped
altogether, however we currently have no way identifying unhelpful sentences and ignoring
them.

5.4 Formal analysis
The ultimate goal of this formalisation is automated analysis; by which we mean running queries
of various kinds against a model. Syntactic queries are based on predicates defined over single
clauses. The predicate isObl(C) for example is true if clause C is an obligation. Such predicates
are combined into larger queries over a model, such as checking if a model contains permissions
for a particular agent or identifying obligations without constraints or reparations.

Queries dealing with timing constraints, possibility and invariance cannot be answered from
syntactic model analysis alone. Such semantic queries are computed by converting our C-O
Diagram model into a network of timed automata (NTA) and applying model checking using the
Uppaal requirement specification language, which is a subset of TCTL.

5.5 Related work
Information extraction is a large topic, where examples generally tend to consist of applying
standard NLP techniques combined with customised rules to some specific domain and problem.
Mercatali et al. [54] tackle the automatic translation of textual representations of laws to UML.
This formalism is very different, primarily modelling the hierarchical structure of the documents
rather than norms. Their method does not use dependency or phrase-structure trees but shallow
syntactic chunks. Cheng et al. [20] also describe a system for extracting structured information
for texts in a specific legal domain, combining surface-level methods like tagging and named
entity recognition (NER) with semantic analysis rules which were hand-crafted for their domain.

Controlled natural language (CNLs) are often used to bridge the gap between natural and
formal languages. This may be done using a general-purpose CNL such as Attempto Controlled
English [35] which comes with a parser to discourse representation structures, or by writing
a custom CNL specifically for C-O Diagrams, as in Camilleri et al. [16]. However a gap still
exists between a natural language text and its CNL representation, which acts as a barrier to full
automation. FrameNet-CNL by Barzdins [7] proposes an approach to the information extraction

ConPar: a tool for automatically building partial C-O Diagrams 115

problem by combining CNL with FrameNet — a lexicographic database describing semantic
frames and their syntactic realisation. This is a relevant approach to adapt and test on normative
texts. This system encompasses a powerful abstract knowledge representation paradigm along
with real-world information extraction system, based on frame-semantic parsing.

5.6 Summary
We have described our work-in-progress tool for processing normative texts in natural language
and semi-automatically modelling them as C-O Diagrams. Our evaluation measures the accuracy
of the tool in terms of precision and recall, but it would also be interesting to measure the time
spent building a model from scratch versus post-editing the output from our tool.

It is common that some paraphrasing is needed during post-editing. This may purely syn-
tactic (e.g. fixing adverbial attachment) but may also require using related or opposite concepts
which simply cannot be determined without more processing on the semantic level.

Though the results of our experiments are indicative at best (because of the tiny corpus), we
feel that applying the tool to the case studies reported here has undoubtedly eased the modelling
task and warrants further work in this direction.

The C-O Diagram formalism is essentially action-based, where clauses prescribe what an agent
should or shouldn’t do. However in the texts from our experiments we have found that it is very
common to describe what should or should not be, i.e. referring to states of affairs. Handling
such sentences will require more effective paraphrasing patterns for these cases.

116 Chapter 5

117

Glossary

API Application Programming Interface
AST Abstract Syntax Tree
CL Contract Logic [69]
CLAN CL Analyser [31]
CNL Controlled Natural Language
CSV Comma-Separated Values
CTD Contrary-to-Duty reparation
CTP Contrary-to-Prohibition reparation
C-O Contract-Oriented
DSL Domain-Specific Language
FL Formal Language
GF Grammatical Framework [72]
NTA Networks of Timed Automata [10]
NLP Natural Language Processing
PDL Propositional Dynamic Logic
RGL GF Resource Grammar Library [71]
SDL Standard Deontic Logic
TA Timed Automata [1]
TCTL Timed Computation Tree Logic
TSV Tab-Separated Values
UI User Interface
XML Extensible Markup Language

118 Chapter 5

119

Bibliography

[1] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

[2] Krasimir Angelov. Incremental parsing with parallel multiple context-free grammars. In
Conference of the European Chapter of the Association for Computational Linguistics (EACL 2009),
pages 69–76. Association for Computational Linguistics, 2009.

[3] Krasimir Angelov and Aarne Ranta. Implementing controlled languages in GF. In Workshop
on Controlled Natural Language (CNL 2010), volume 5972 of LNCS, pages 82–101. Springer,
2010. ISBN 978-3-642-14417-2.

[4] Krasimir Angelov, John J. Camilleri, and Gerardo Schneider. A framework for conflict anal-
ysis of normative texts written in controlled natural language. Logic and Algebraic Program-
ming, 82(5-7):216–240, 2013. doi: 10.1016/j.jlap.2013.03.002.

[5] Tara Athan, Harold Boley, Guido Governatori, Monica Palmirani, Adrian Paschke, and
Adam Wyner. OASIS LegalRuleML. In International Conference on Artificial Intelligence and
Law (ICAIL 2013), pages 3–12, 2013. doi: 10.1145/2514601.2514603.

[6] Patrick Bahr, Jost Berthold, and Martin Elsman. Certified symbolic management of financial
multi-party contracts. In International Conference on Functional Programming (ICFP 2015),
pages 315–327, New York, NY, USA, 2015. ACM. doi: 10.1145/2784731.2784747.

[7] Guntis Barzdins. FrameNet CNL: A knowledge representation and information extraction
language. In Controlled Natural Language, volume 8625 of LNCS, pages 90–101. Springer,
2014. ISBN 978-3-319-10222-1. doi: 10.1007/978-3-319-10223-8_9.

[8] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on UPPAAL 4.0. Technical
report, Department of Computer Science, Aalborg University, Denmark, 2006.

120 Chapter 5

[9] Trevor Bench-Capon, Michał Araszkiewicz, Kevin Ashley, Katie Atkinson, Floris Bex, Filipe
Borges, Daniele Bourcier, Paul Bourgine, Jack G. Conrad, Enrico Francesconi, Thomas F.
Gordon, Guido Governatori, Jochen L. Leidner, David D. Lewis, Ronald P. Loui, L. Thorne
Mccarty, Henry Prakken, Frank Schilder, Erich Schweighofer, Paul Thompson, Alex Tyrrell,
Bart Verheij, Douglas N. Walton, and Adam Z. Wyner. A history of AI and law in 50 papers:
25 years of the international conference on AI and law. Artificial Intelligence and Law, 20(3):
215–319, September 2012. ISSN 0924-8463. doi: 10.1007/s10506-012-9131-x.

[10] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools. In Jörg
Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Lectures on Concurrency and Petri
Nets, volume 3098 of LNCS, pages 87–124. Springer, 2004. ISBN 978-3-540-22261-3. doi:
10.1007/b98282.

[11] Anders Björkelund and Pierre Nugues. Exploring lexicalized features for coreference reso-
lution. In CoCNLL 2011 Shared Task, pages 45–50, Portland, Oregon, USA, 2011. Association
for Computational Linguistics.

[12] Alexander Boer, Radboud Winkels, and Fabio Vitali. MetaLex XML and the Legal Knowl-
edge Interchange Format. In Pompeu Casanovas, Giovanni Sartor, Núria Casellas, and
Rossella Rubino, editors, Computable Models of the Law, pages 21–41. Springer, 2008. doi:
10.1007/978-3-540-85569-9_2.

[13] Lionel Briand. Capturing and analyzing legal requirements. Slide presentation, 2015. URL
http://www.slideshare.net/briand_lionel/capturing-and-analyzing-legal-requirements.
MoDRE keynote talk.

[14] D. Buscaldi, P. Rosso, J.M. Gómez-Soriano, and E. Sanchis. Answering questions with an
n-gram based passage retrieval engine. Intelligent Information Systems, 34(2):113–134, 2009.

[15] John J. Camilleri, Gordon J. Pace, and Michael Rosner. Controlled Natural Language in a
Game for Legal Assistance. In Controlled Natural Language, volume 7175 of LNCS, pages
137–153. Springer, June 2012.

[16] John J. Camilleri, Gabriele Paganelli, and Gerardo Schneider. A CNL for Contract-Oriented
Diagrams. In Workshop on Controlled Natural Language (CNL 2014), volume 8625 of LNCS,
pages 135–146. Springer, 2014.

[17] John J. Camilleri, Filippo del Tedesco, and Gerardo Schneider. Modelling and analysis of
normative texts. 2015. (Under submission).

http://www.slideshare.net/briand_lionel/capturing-and-analyzing-legal-requirements

BIBLIOGRAPHY 121

[18] John J. Camilleri, Normunds Grūzītis, and Gerardo Schneider. Extracting formal models
from normative texts. 2015. (Under submission).

[19] Pi-Chuan Chang, Huihsin Tseng, Dan Jurafsky, and Christopher D. Manning. Discrimi-
native reordering with Chinese grammatical relations features. In Syntax and Structure in
Statistical Translation (SSST 2009), pages 51–59, Stroudsburg, PA, USA, 2009. Association for
Computational Linguistics. ISBN 978-1-932432-39-8.

[20] Tin Tin Cheng, J.L. Cua, M.D. Tan, K.G. Yao, and R.E. Roxas. Information extraction from
legal documents. In Symposium on Natural Language Processing (SNLP 2009), pages 157–162,
2009. doi: 10.1109/SNLP.2009.5340925.

[21] H. B. Curry. Some logical aspects of grammatical structure. In Structure of Language and
its Mathematical Aspects: Proceedings of the Twelfth Symposium in Applied Mathematics, pages
56–68. American Mathematical Society, 1963.

[22] Alexandre David, M. Oliver Möller, and Wang Yi. Verification of UML statechart with real-
time extensions. Technical report, Department of Information Technology, Uppsala Uni-
versity, Sweden, 2003.

[23] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikucionis, and Zheng Wang. Time
for statistical model checking of real-time systems. In International Conference on Computer
Aided Verificaiton (CAV 2011), pages 349–355, 2011.

[24] Marie-Catherine de Marneffe and Christopher D. Manning. The stanford typed depen-
dencies representation. In COLING Workshop on Cross-Framework and Cross-Domain Parser
Evaluation, pages 1–8, 2008.

[25] Marie-Catherine de Marneffe, Timothy Dozat, Natalia Silveira, Katri Haverinen, Filip Gin-
ter, Joakim Nivre, and Christopher D. Manning. Universal Stanford dependencies: A cross-
linguistic typology. In Language Resources and Evaluation Conference (LREC 2014), pages
4585–4592, 2014.

[26] Gregorio Díaz, Maria Emilia Cambronero, Enrique Martínez, and Gerardo Schneider. Spec-
ification and verification of normative texts using C-O Diagrams. IEEE Transactions on Soft-
ware Engineering, 40(8):795–817, 2014. ISSN 0098-5589. doi: 10.1109/TSE.2013.54.

[27] Wei Dou, Domenico Bianculli, and Lionel Briand. OCLR: a more expressive, pattern-based
temporal extension of OCL. Technical report, Interdisciplinary Centre for Security, Relia-
bility and Trust, University of Luxembourg, 2014.

122 Chapter 5

[28] ESTRELLA Project. The legal knowledge interchange format (LKIF). Technical report, 2008.
URL http://www.estrellaproject.org/doc/Estrella-D4.1.pdf.

[29] F-Secure. Tainted love: How Wi-Fi betrays us, 2014. URL https://fsecureconsumer.files.

wordpress.com/2014/09/wi-fi_report_2014_f-secure.pdf.

[30] Stephen Fenech, Gordon J. Pace, and Gerardo Schneider. Automatic conflict detection
on contracts. In International Conference on Theoretical Aspects of Computing (ICTAC 2009),
volume 5684 of LNCS, pages 200–214. Springer, 2009. ISBN 978-3-642-03465-7. doi:
10.1007/978-3-642-03466-4.

[31] Stephen Fenech, Gordon J. Pace, and Gerardo Schneider. CLAN: A tool for contract analysis
and conflict discovery. In Automated Technology for Verification and Analysis (ATVA 2009),
volume 5799 of LNCS, pages 90–96. Springer, 2009. ISBN 978-3-642-04760-2.

[32] Mark D Flood and Oliver R Goodenough. Contract as automaton: The computational rep-
resentation of financial agreements. SSRN Electronic Journal, 2015. ISSN 1556-5068. doi:
10.2139/ssrn.2538224.

[33] Norbert E Fuchs. First-order reasoning for Attempto controlled english. In Workshop on
Controlled Natural Language (CNL 2010), volume 7175, pages 73–94. Springer, 2012.

[34] Norbert E. Fuchs, Uta Schwertel, and Rolf Schwitter. Attempto controlled english (ACE)
language manual, version 3.0. Technical Report 99.03, Department of Computer Science,
University of Zurich, August 1999.

[35] Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn. Attempto controlled english
for knowledge representation. In Reasoning Web, volume 5224 of LNCS, pages 104–124.
Springer, 2008. ISBN 978-3-540-85656-6.

[36] Thomas F. Gordon. An overview of the Carneades argumentation support system. In
C. Reed, editor, Dialectics, Dialogue and Argumentation - An Examination of Douglas Walton’s
Theories of Reasoning, pages 145–156. King’s College London, London, 2010. ISBN 978-1-
84890-005-9.

[37] Ben Hachey and Claire Grover. Automatic legal text summarisation: Experiments with
summary structuring. In International Conference on Artificial Intelligence and Law (ICAIL
2005), pages 75–84, New York, NY, USA, 2005. ACM. ISBN 1-59593-081-7. doi: 10.1145/
1165485.1165498.

http://www.estrellaproject.org/doc/Estrella-D4.1.pdf
https://fsecureconsumer.files.wordpress.com/2014/09/wi-fi_report_2014_f-secure.pdf
https://fsecureconsumer.files.wordpress.com/2014/09/wi-fi_report_2014_f-secure.pdf

BIBLIOGRAPHY 123

[38] Reiner Hähnle, Kristofer Johannisson, and Aarne Ranta. An authoring tool for informal and
formal requirements specifications. In International Conference on Fundamental Approaches to
Software Engineering (FASE 2002), volume 2306 of LNCS, pages 233–248. Springer, 2002.

[39] Yannis Haralambous, Julie Sauvage-Vincent, and John Puentes. A hybrid (visual/natural)
controlled language. Language Resources and Evaluation, Special Issue: Controlled Natural
Language, 2015. To appear.

[40] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. ACM,
40:143–184, January 1993. ISSN 0004-5411.

[41] Katri Haverinen, Jenna Nyblom, Timo Viljanen, Veronika Laippala, Samuel Kohonen, Anna
Missilä, Stina Ojala, Tapio Salakoski, and Filip Ginter. Building the essential resources for
Finnish: the Turku dependency treebank. Language Resources and Evaluation, 48(3):493–531,
2014. ISSN 1574-020X. doi: 10.1007/s10579-013-9244-1.

[42] Hal Hodson. AI gets involved with the law. New Scientist, (2917), 2013. URL https://www.

newscientist.com/article/mg21829175.900-ai-gets-involved-with-the-law/.

[43] Stefan Höfler. Legislative drafting guidelines: How different are they from controlled lan-
guage rules for technical writing? In Workshop on Controlled Natural Language (CNL 2012),
number 7427 in LNCS, pages 138–151. Springer Verlag, 2012. CNL 2012.

[44] Stefan Höfler and Alexandra Bünzli. Designing a controlled natural language for the repre-
sentation of legal norms. In Workshop on Controlled Natural Language (CNL 2010), September
2010.

[45] Albert Sydney Hornby. Oxford Advanced Learner’s Dictionary of Current English, Third Edition.
Oxford University Press, 1974.

[46] Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In Annual Meeting
of the Association for Computational Linguistics (ACL 2003), pages 423–430, 2003.

[47] Tobias Kuhn. An evaluation framework for controlled natural languages. In Workshop on
Controlled Natural Language (CNL 2009), volume 5972 of LNCS, pages 1–20. Springer, 2010.
ISBN 3-642-14417-9, 978-3-642-14417-2.

[48] Tobias Kuhn. Controlled English for Knowledge Representation. Doctoral thesis, Faculty of Eco-
nomics, Business Administration and Information Technology, University of Zurich, 2010.

https://www.newscientist.com/article/mg21829175.900-ai-gets-involved-with-the-law/
https://www.newscientist.com/article/mg21829175.900-ai-gets-involved-with-the-law/

124 Chapter 5

[49] Tobias Kuhn. A survey and classification of controlled natural languages. Computational
Linguistics, 40(1), 2014.

[50] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. Software Tools for
Technology Transfer, 1(1-2):134–152, 1997. ISSN 1433-2779. doi: 10.1007/s100090050010.

[51] Enrique Martínez, Emilia Cambronero, Gregorio Díaz, and Gerardo Schneider. A model
for visual specification of e-contracts. In IEEE International Conference on Services Computing
(IEEE SCC 2010), pages 1–8. IEEE Computer Society, 2010. ISBN 978-0-7695-4126-6. doi:
10.1109/SCC.2010.32.

[52] Jo McGinnis and Rg Pearce. The great disruption: How machine intelligence will transform
the role of lawyers in the delivery of legal services. Fordham Law Review, 3041(14):3041–3066,
2014. ISSN 0015704X.

[53] Paul McNamara. Deontic logic. In D.M. Gabbay and J. Woods, editors, Handbook of the
History of Logic, volume 7, pages 197–289. North-Holland Publishing, 2006.

[54] Pietro Mercatali, Francesco Romano, Luciano Boschi, and Emilio Spinicci. Automatic trans-
lation from textual representations of laws to formal models through UML. In Conference
on Legal Knowledge and Information Systems (JURIX 2005), pages 71–80. IOS Press, 2005.

[55] J.-J. Ch. Meyer, F.P.M. Dignum, and R.J. Wieringa. The paradoxes of deontic logic revis-
ited: A computer science perspective. Technical report, Department of Computer Science,
Utrecht University, Utrecht, 1994.

[56] Roger Mitton. A partial dictionary of English in computer-usable form. Literary & Linguistic
Computing, 1:214–215, December 1986.

[57] Marie-Francine Moens, Erik Boiy, Raquel Mochales Palau, and Chris Reed. Automatic de-
tection of arguments in legal texts. In International Conference on Artificial Intelligence and Law
(ICAIL 2007), pages 225–230, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-680-6. doi:
10.1145/1276318.1276362.

[58] Seyed M. Montazeri, Nivir Roy, and Gerardo Schneider. From contracts in structured En-
glish to CL specifications. In Workshop on Formal Languages and Analysis of Contract-Oriented
Software (FLACOS 2011), volume 68 of EPTCS, pages 55–69, 2011.

BIBLIOGRAPHY 125

[59] Erika Doyle Navara, Silvia Pfeiffer, Robin Berjon, Steve Faulkner, Travis Leithead, and Ed-
ward O’Connor. HTML5. Candidate recommendation, W3C, 2014. URL http://www.w3.

org/TR/2014/CR-html5-20140204/.

[60] Object Management Group (OMG). Semantics of business vocabulary and business rules
(SBVR). Technical Report formal/2015-05-07, 2015. URL http://www.omg.org/spec/SBVR/1.

3/PDF.

[61] Gordon J. Pace and Michael Rosner. A controlled language for the specification of contracts.
In Workshop on Controlled Natural Language (CNL 2009), volume 5972 of LNCS, pages 226–
245. Springer, 2010. ISBN 978-3-642-14417-2.

[62] Gordon J. Pace and Fernando Schapachnik. Contracts for interacting two-party systems.
In Workshop on Formal Languages and Analysis of Contract-Oriented Software (FLACOS 2012),
2012. doi: 10.4204/EPTCS.94.3.

[63] Gordon J. Pace and Gerardo Schneider. Challenges in the specification of full contracts. In
Integrated Formal Methods (iFM 2009), volume 5423 of LNCS, pages 292–306, February 2009.
ISBN 978-3-642-00254-0.

[64] Gordon J. Pace, Cristian Prisacariu, and Gerardo Schneider. Model checking contracts — a
case study. In Automated Technology for Verification and Analysis (ATVA 2007), volume 4762
of LNCS, pages 82–97. Springer-Verlag, 2007. ISBN 978-3-540-75595-1.

[65] Simon Peyton Jones and Jean-Marc Eber. How to write a financial contract. In Gibbons
and de Moor, editor, The Fun of Programming, pages 105–129. Palgrave Macmillan, 2003.
doi: 10.1.1.14.7885.

[66] Cristian Prisacariu. A Dynamic Deontic Logic over Synchronous Actions. PhD thesis, Depart-
ment of Informatics, University of Oslo, 2010.

[67] Cristian Prisacariu. Logics for terms of services and their usefulness for automation. Slide
presentation, 2013. URL https://frab.fscons.org/en/fscons13/public/events/27. FSCONS
2013.

[68] Cristian Prisacariu and Gerardo Schneider. A formal language for electronic contracts. In In-
ternational Conference on Formal Methods for Open Object-Based Distributed Systems (FMOODS
2007), volume 4468 of LNCS, pages 174–189. Springer, 2007.

http://www.w3.org/TR/2014/CR-html5-20140204/
http://www.w3.org/TR/2014/CR-html5-20140204/
http://www.omg.org/spec/SBVR/1.3/PDF
http://www.omg.org/spec/SBVR/1.3/PDF
https://frab.fscons.org/en/fscons13/public/events/27

126 Chapter 5

[69] Cristian Prisacariu and Gerardo Schneider. CL: An action-based logic for reasoning about
contracts. In Workshop on Logic, Language, Information and Computation (WOLLIC 2009), vol-
ume 5514 of LNCS, pages 335–349. Springer, 2009. ISBN 978-3-642-02260-9.

[70] Cristian Prisacariu and Gerardo Schneider. A dynamic deontic logic for complex contracts.
Logic and Algebraic Programming, 81(4):458–490, 2012. ISSN 1567-8326.

[71] Aarne Ranta. The GF resource grammar library. Linguistic Issues in Language Technology, 2
(2), December 2009.

[72] Aarne Ranta. Grammatical Framework: Programming with Multilingual Grammars. CSLI Pub-
lications, Stanford, 2011.

[73] Paolo Rosso, Santiago Correa, and Davide Buscaldi. Passage retrieval in legal texts. Logic
and Algebraic Programming, 80(3–5):139–153, 2011. ISSN 1567-8326.

[74] RuleML. Rule markup language initiative, 2015. URL http://wiki.ruleml.org/.

[75] Erich Schweighofer, Andreas Rauber, and Michael Dittenbach. Automatic text represen-
tation, classification and labeling in european law. In International Conference on Artificial
Intelligence and Law (ICAIL 2001), pages 78–87, New York, NY, USA, 2001. ACM. ISBN 1-
58113-368-5. doi: 10.1145/383535.383544.

[76] Mojgan Seraji, Carina Jahani, Beáta Megyesi, and Joakim Nivre. A Persian treebank with
Stanford typed dependencies. In Language Resources and Evaluation Conference (LREC 2014),
Reykjavik, Iceland, 2014. European Language Resources Association (ELRA). ISBN 978-2-
9517408-8-4.

[77] Richard Socher, John Bauer, Christopher D. Manning, and Andrew Y. Ng. Parsing with
compositional vector grammars. In Annual Meeting of the Association for Computational Lin-
guistics (ACL 2013), pages 455–465, 2013.

[78] Harry Surden. Computable contracts. UC Davis Law Review, 46:629–700, 2012.

[79] Romuald Thion and Daniel Le Métayer. FLAVOR: A formal language for a posteriori veri-
fication of legal rules. In IEEE International Symposium on Policies for Distributed Systems and
Networks (POLICY 2011), pages 1–8. IEEE Computer Society, 2011. ISBN 978-1-4244-9879-6.

[80] Kristina Toutanova and Christopher D. Manning. Enriching the knowledge sources used
in a maximum entropy part-of-speech tagger. In Conference on Empirical Methods in Natural

http://wiki.ruleml.org/

BIBLIOGRAPHY 127

Language Processing (EMNLP 2000), volume 13, pages 63–70. Association for Computational
Linguistics, 2000.

[81] Adam Wyner, Krasimir Angelov, Guntis Barzdins, Danica Damljanovic, Brian Davis, Nor-
bert Fuchs, Stefan Höfler, Ken Jones, Kaarel Kaljurand, Tobias Kuhn, Martin Luts, Jonathan
Pool, Mike Rosner, Rolf Schwitter, and John Sowa. On controlled natural languages: Prop-
erties and prospects. In Workshop on Controlled Natural Language (CNL 2009), volume 5972 of
LNCS/LNAI, pages 281–289. Springer-Verlag, 2010. ISBN 3-642-14417-9, 978-3-642-14417-2.

[82] Adam Zachary Wyner. Violations and Fulfillments in the Formal Representation of Contracts.
PhD thesis, Department of Computer Science, King’s College London, 2008.

	Introduction
	AnaCon: a framework for conflict analysis of normative texts
	A CNL for C-O Diagrams
	Modelling and analysis of normative texts with C-O Diagrams
	ConPar: a tool for automatically building partial C-O Diagrams
	Glossary
	Bibliography

