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Abstract

The main objective of this thesis is to implement and evaluate a Lagrangian
heuristic and a branch-and-bound algorithm for solving a class of mathe-
matical optimization problems called mixed binary linear programs. The
tests are performed on two different types of mixed binary linear programs:
the set covering problem and the (uncapacitated as well as capacitated) fa-
cility location problem.

The purpose is to investigate a concept rather than trying to achieve
good runtime performance. The concept involves ergodic iterates, which
are convex combinations of all Lagrangian subproblem solutions found so
far. The ergodic iterates are constructed from the Lagrangian subproblem
solutions with different convexity weight rules.

In the Lagrangian heuristic, Lagrangian relaxation is utilized to obtain
lower bounds on the optimal objective value and the ergodic iterates are
used to create feasible solutions, and whence, to obtain upper bounds on
the optimal objective value. The branch-and-bound algorithm uses the La-
grangian heuristic in each node and the ergodic iterates for branching de-
cisions.

The investigated concept of this thesis is ergodic iterates constructed by
different convexity weight rules, where the different rules are to weigh the
Lagrangian subproblem solutions as follows: put all the weight on the last
one (the traditional Lagrangian heuristic), use equal weights on all, and put
a successively higher weight on the later ones.

The result obtained shows that a convexity weight rule that puts more
weight on later Lagrangian subproblem solutions, without putting all the
weight on the last one, is preferable.

Keywords: Branch-and-bound method, subgradient method, Lagrangian
dual, recovery of primal solutions, ergodic sequence, mixed binary linear
programming, set covering, facility location
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1 Introduction

In this section the subject of this thesis is introduced and briefly explained.
Furthermore, the aims and limitations of the thesis are described and the
outline of this report are presented.

This thesis deals with mixed binary linear programs (MBLP) which are a
class of problems in mathematical optimization. Mathematical optimization
is about finding an optimal solution, i.e., an in some well-defined sense best
solution, to a given problem. An optimization problem consists of an objec-
tive function, for which the maximum or minimum objective value is wanted,
and constraints on the simultaneous choices of values of these variables.
Such a problem could be to minimize the cost or time for manufacturing
certain objects and at the same time fulfill the demands of the clients.

The optimal objective value is the minimum of f(x) for x ∈ X , where
f : X 7→ R is a function from the set X to the set of the real numbers. The
set of vectors satisfying the constraints of the problem defines the set X .
A (suggested) solution x to the optimization problem is said to be feasible
when x ∈ X . Hence, X is referred to as the feasible set. For a solution to
be optimal, it has to be feasible. An optimization problem can be defined as
follows:

minimize f(x), (1.1a)
subject to x ∈ X, (1.1b)

where (1.1a) declares the objective: to minimize the objective function value,
and (1.1b) describes the feasible set, i.e., the constraints. An optimal solu-
tion to the problem and its corresponding objective value is denoted x∗ and
f∗, respectively.

There exist different classes of optimization problems as mentioned above.
If the objective function and the constraints are linear the problem is called
a linear program (LP). If the objective function and the feasible set are con-
vex it is a convex optimization problem. Then there are integer programs
(IP) or, as mentioned, MBLPs. In an integer optimization problem, the vari-
ables are restricted to be integer or binary decision variables. In a mixed
binary linear problem some variables are restricted to be binary while oth-
ers are not. These problems can sometimes be very large and hard to solve,
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but by applying different methods and algorithms they are made easier
and solvable.

If the problem is hard to solve because of one or several constraints,
then these constraints can be relaxed by using Lagrangian relaxation. This
is used to create a relaxed problem which is easier than the original one.
The relaxed problem can be solved by a subgradient method and its solution
provides valuable information, e.g., a bound on the optimal solution to the
original problem.

One method for solving integer programming problems is the branch-
and-bound method, where the original problem is divided into smaller and
smaller subproblems by fixing integer variables one at a time. The idea is to
perform an exhaustive search, i.e., examine all solutions, without actually
having to generate all solutions.

In this work two algorithms to solve the optimization problems are im-
plemented and evaluated. One algorithm is a Lagrangian heuristic. It per-
forms a subgradient method and utilizes the information obtained together
with ergodic iterates to create feasible solutions. The other algorithm builds
a branch-and-bound tree. At each node in the branch-and-bound tree the
Lagrangian heuristic is applied to calculate a lower bound and an upper
bound, respectively. The problems used to evaluate the algorithms are
mixed binary linear programming problems.

1.1 Background

Integer programming problems are well-studied in the literature; they ap-
pear in production planning, scheduling, network flow problems and more.
Many MBLPs are hard to solve and have been studied a lot. For compre-
hensive analysis, see, e.g., Wolsey and Nemhauser [20], Wolsey [19] and
Lodi [16].

Difficult problems, where some constraints are complicated, can be solved
with Lagrangian relaxation. This has been studied and developed a lot over
the years by, e.g., Rockafellar [18, Part 6], Everett [8] and Fisher [9].

A common approach to solve integer programming problems is the
branch-and-bounds method, which was introduced by Land and Doig [14]
and Dakin [7]. A branch-and-bound with Lagrangian heuristic in the nodes
has been studied by, e.g., Borchers and Mitchell [4], Fisher [9] and Görtz
and Klose [11].

The construction of ergodic iterates, a sequence of primal vectors ob-
tained from the Lagrangian dual subgradient method, and their conver-
gence as well as some implementation has been studied by Gustavsson,
Patriksson and Strömberg in [12]. Using ergodic iterates in a subgradient
method to create a feasible solution has been studied by Gustavsson, Lars-
son, Patriksson, and Strömberg [13] where they present a framework for a
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branch-and-bound algorithm with ergodic iterates.

1.2 Aims and limitations

The purpose of this theses is to study a Lagrangian heuristic with ergodic
iterates, where the ergodic iterates are weighted according to different con-
vexity weight rules, and to investigate a branch-and-bound method in which
ergodic iterates are utilized for branching decision and for finding primal
feasible solutions, i.e., to implement and test the third procedure of primal
recovery described in Gustavsson et al. [13].

This work is restricted to investigate a concept; trying to achieve good
runtime performance is excluded. The algorithms are tested on no other
problem types than Facility location problems and Set covering problems.

1.3 Outline

In Section 2 the theory and concepts needed to understand the algorithms
and the following analysis are described. It includes, for instance, general
descriptions of MBLPs and the branch-and-bound method, how to calcu-
late lower bounds with Lagrangian relaxation and the subgradient method,
and how to create ergodic iterates from Lagrangian subproblem solutions.
A small example is provided to visualize some of the concepts.

The algorithms implemented are found in Section 3. They are, in this
work, used on the different types of MBLPs presented in Section 4. The test
results of the algorithms are described in Section 5. Finally, the result is dis-
cussed, and the advantages and drawbacks of the investigated algorithms
are pointed out. This is, together with proposed future research, located in
Section 6.
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2 Theory

The intention of this thesis is to study a method for solving optimization
problems. Each problem studied belongs to a problem class called mixed
binary linear programs (MBLPs). If the objective function is linear, the con-
straints are affine, and there are only continuous variables, then it is a linear
program. However, if there are binary restrictions on some of the variables,
there is a mixture of both binary and continuous variables, and it is there-
fore called a mixed binary linear program. A general MBLP can be defined
as the problem to find

z∗ = minimum cᵀx (2.1a)
subject to Ax ≥ b, (2.1b)

x ∈ X, (2.1c)

where c ∈ Rn, A ∈ Rm×n, b ∈ Rm. The set X = {Dx ≥ e and xi ∈
{0, 1}, i ∈ I}, where I ⊆ {1, . . . , n}, and X is assumed to be compact.
Furthermore D ∈ Rk×n and e ∈ Rk. The following is a small example of a
MBLP which we will utilize throughout this report:

z∗ = min x1 + 2x2 + 2x3, (2.2a)
s.t. 2x1 + 2x2 + 2x3 ≥ 3, (2.2b)

x1, x2, x3 ∈ {0, 1}, (2.2c)

where the objective is to minimize the function, z(x) = x1 + 2x2 + 2x3,
subject to the linear constraint (2.2b) and the binary restrictions on x1, x2
and x3 (2.2c). The optimal objective value z∗ to this problem is 3 and a
corresponding optimal solution x∗ is (1, 0, 1) or (1, 1, 0).

The remainder of this section includes the theory concerning this work,
namely, Lagrangian duality, a subgradient method for solving the Lagrangian
dual problem, how to generate sequences of primal vectors, and the branch-
and-bound method.

2.1 Lagrangian duality

Lagrangian relaxation can be used to relax complicating constraints, which
generates an easier problem than the original one. The original problem is
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called the primal problem. The easier problem is referred to as the Lagrangian
dual problem or just the dual problem. Furthermore, the objective value of
a solution to the dual problem is an optimistic estimate of the objective
value corresponding to a primal optimal solution. Hence, it can be used to
evaluate the quality of a primal feasible solution.

Hereinafter, let the primal problem be the minimization problem in
(2.1). Introduce Lagrangian multipliers, u ∈ Rm

+ . For each i = 1, ...,m
the Lagrangian multiplier, ui, corresponds to the linear constraint aᵀi x ≥ bi,
where ai is row vector i inA. Lagrangian relax by removing the constraints
and add them to the objective function with the Lagrangian multipliers as
penalty parameters. This yields the Lagrange function,

L(x,u) = cᵀx +
m∑
i=1

(bi − aᵀi x)ui = cᵀx + (b−Ax)ᵀu,

which is used to formulate the Lagrangian dual function:

q(u) = min
x∈X
L(x,u) = bᵀu + min

x∈X
(c−Aᵀu)ᵀx, u ∈ Rm. (2.3)

The Lagrangian subproblem at u is identified as the problem

min
x∈X

(c−Aᵀu)ᵀx, (2.4)

with the solution set denoted X(u).
As mentioned, the dual objective value q(u), where u ∈ Rm

+ , is an opti-
mistic estimate to the primal objective value. For a minimization problem
that is a lower bound. Since the best possible lower bound is wanted, the
dual problem is to find

q∗ = supremum q(u), (2.5a)
subject to u ∈ Rm

+ . (2.5b)

The dual function, q, is concave and the feasible set, u ∈ Rm
+ , is convex.

Hence, the problem (2.5) is a convex optimization problem.

Theorem 1 (Weak duality). Assume that x and u are feasible in the problem
(2.1) and (2.5), respectively. Then, it holds that

q(u) ≤ cᵀx,

and, in particular,
q∗ ≤ z∗.

Proof. For all u ≥ 0m and x ∈ X with Ax ≥ b,

q(u) = min
y∈X
L(y,u) ≤ L(x,u) = cᵀx + (b−Ax)ᵀu ≤ cᵀx,
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so
q∗ = max

u≥0m
q(u) ≤ min

x∈X:Ax≥b
cᵀx = z∗.

Weak duality holds, but strong duality (q∗ = z∗) does not hold for the
general case since X is non-convex in general. A convex version of the pri-
mal problem is the one in which X is replaced by its convex hull, conv X ,
i.e., the problem to find

z∗conv = minimum cᵀx, (2.6a)
subject to Ax ≥ b, (2.6b)

x ∈ conv X. (2.6c)

with the solution set X∗conv. One can show (for a proof, see, e.g., [13]) that it
holds that q∗ = z∗conv, i.e., the best dual bound equals the optimal objective
value to (2.6).

To illustrate Lagrangian relaxation consider the following: For the small
example problem (2.2), the Lagrange function is

L(x, u) = x1 + 2x2 + 2x3 + (3− 2x1 − 2x2 − 2x3)u,

and the Lagrangian dual function is then defined by

q(u) = 3u+ min
x∈{0,1}

(
(1− 2u)x1 + (2− 2u)x2 + (2− 2u)x3

)
,

which implies that the Lagrangian subproblem is the problem

min
x∈{0,1}

(
(1− 2u)x1 + (2− 2u)x2 + (2− 2u)x3

)
.

In this small example a feasible solution to the dual problem is any so-
lution where u ≥ 0. Remember that the optimal objective value of the
problem (2.2) is z∗ = 3. Weak duality states that a objective value of any
dual solution is a lower bound to z∗. Let us check this for u = 1:

q(1) = 3 + min
x∈{0,1}

(
(1− 2)x1 + (2− 2)x2 + (2− 2)x3

)
= 3 + min

x∈{0,1}
(−x1)

The Lagrangian subproblem is then

min
x∈{0,1}

−x1

which clearly has x1 = 1 in an optimal solution. Since neither x2 or x3
affect the objective value, they can be either 0 or 1. Consequently, the dual
objective value in this example is

q(1) = 3− 1 = 2,

which is ≤ 3. Hence, Theorem 1 (Weak duality) is fulfilled for u = 1.
A more extended and detailed description of Lagrange duality can be

found in, e.g., [1, Ch.6].
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2.2 Algorithm for the Lagrangian dual problem

Since the Lagrangian dual problem (2.5) is a convex optimization problem,
a subgradient method may be applied to solve it. The method works as
follows. Let u0 ∈ Rm

+ and compute iterates ut+1 according to

ut+1 = [ut + αt(b−Axt)]+, t = 0, 1, ..., (2.7)

where xt ∈ X(ut) is the Lagrangian subproblem solution in (2.4) at ut, [·]+
denotes the Euclidean projection onto the nonnegative orthant, and αt > 0
is the step length chosen in iteration t. Since xt ∈ X(ut), this implies that
the vector b−Axt is a subgradient to q at ut.

Theorem 2 (convergence of the subgradient method). Assume that, when
applied to the problem (2.5), the following conditions for the step length are ful-
filled:

αt > 0, t = 0, 1, . . . , lim
t→∞

t−1∑
s=0

αs =∞, and lim
t→∞

t−1∑
s=0

α2
s <∞,

then the subgradient method will converge, i.e., ut → u∗ and q(ut)→ q∗.

A proof can be found in [2].
The subgradient method is further described in, e.g., [1, Ch.6].

2.3 Generating a sequence of primal vectors

The dual sequence {ut} from the Lagrangian subgradient method con-
verges to a dual optimal solution, but since the corresponding primal se-
quence {xt} can not be guaranteed to converge, ergodic iterates are intro-
duced to obtain a solution to the primal problem.

2.3.1 Ergodic iterates

The ergodic iterates are constructed by using the Lagrangian subproblem
solutions obtained from each iteration of the subgradient method. The er-
godic iterates are convex combinations of all subproblem solutions found
so far. When the Lagrangian dual problem (2.5) is solved by the subgradi-
ent optimization method (2.7), then at each iteration t an ergodic iterate is
composed as

xt =

t−1∑
s=0

µtsx
s,

t−1∑
s=0

µts = 1, µts ≥ 0, s = 0, . . . , t− 1. (2.8)

Here xs is the solution to the Lagrangian subproblem in iteration s and
µts are the convexity weights of the ergodic iterate. The ergodic sequence
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converges to the optimal solution set of the convexified version (2.6), if the
step lengths and convexity weights are chosen appropriately (see [12]). Let

γts = µts/αs, s = 0, . . . , t− 1, t = 1, 2, . . . and (2.9a)
∆γtmax = max

s∈{0,...,t−2}
{γts+1 − γts}, t = 1, 2, . . . . (2.9b)

Assumption 1 (relation between convexity weights and step lengths)
The step length αt and the convexity weights µts are chosen such that the
following conditions are satisfied:

γts ≥ γts−1, s = 1, . . . , t− 1, t = 2, 3, . . . ,

∆γtmax → 0, as t→∞,
γt0 → 0, as t→∞, and γtt−1 ≤ Γ for some Γ > 0, ∀t.

For example, if each ergodic iterate is chosen such that it equals the average
of all previous subproblem solutions and the step length is chosen accord-
ing to the harmonic series, Assumption 1 is fulfilled, i.e., if µts = 1/t, s =
0, . . . , t − 1, t = 1, 2, . . . , and αs = a/(b + cs), t = 0, 1, . . . , where a, b, c > 0
then with (2.9a) it follows that γts = (b + cs)/at for s = 0, . . . , t− 1 for all t.
Hence, γts − γts−1 = c/at > 0 for s = 0, . . . , t − 1 and ∆γtmax = c/at → 0 as
t→∞. Moreover, γ1t → 0 and γtt → c/a as t→∞.

Theorem 3 (convergence of the ergodic iterates). Assume that the subgradi-
ent method (2.7) operated with a suitable step length rule attains dual convergence,
i.e., ut → u∞ ∈ R+, and let the sequence xt be generated as in (2.8). If the step
length αt and the convexity weights µts fulfill Assumption 1, then

u∞ ∈ U∗ and xt → X∗conv

The proof of the theorem can be found in [12]. Conclusively, the theorem
states that if choosing step length and convexity weights correctly the er-
godic sequence converges to the optimal solution set of the convexified
problem (2.6).

2.3.2 Choosing convexity weights

Gustavsson et al. [12] introduces a set of rules (the sk-rules) for choosing
the convexity weights defining the ergodic sequences.

For k = 0 the rule is called the 1/t-rule, where all previous Lagrangian
subproblem solutions are weighted equally. (This has been studied and
analysed by Larsson and Liu [15].) When k > 0, later subproblem solutions
get more weight than the previous ones. This might give a better result
as the later subproblem solutions are expected to be closer to the optimal
solution of the original problem.
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Definition 1 . Let k > 0. The sk-rule creates the ergodic sequences with the
following convexity weights:

µts =
(s+ 1)k∑t−1
l=0(l + 1)k

, for s = 0, . . . t− 1, t ≤ 1. (2.10)

An illustration of the convexity weight µts with k = 0, 1, 4 and 10, and
t = 10 can be found in Figure 2.1.

Figure 2.1: The convexity weight µt
s with k = 0, 1, 4 and 10, and with t = 10.

When constructing the ergodic iterates, only the previous ergodic it-
erate xt−1 and the previous subproblem solution xt−1 is needed, as each
ergodic iterate can be computed the following way

x0 = x0, xt =

∑t−2
s=0(s+ 1)k∑t−1
s=0(s+ 1)k

xt−1 +
tk∑t−1

s=0(s+ 1)k
xt−2, t = 1, 2, . . . .

(2.11)

Hence, in each iteration the ergodic iterate can by updated easily.

2.4 Branch-and-bound algorithms

Branch-and-bound algorithms are methods used to solve integer program-
ming problems. A branch-and-bound algorithm produces easier problems
by relaxing the original problem and adding restrictions on variables to
create subproblems. New subproblems correspond to new nodes in the
branch-and-bound tree. The method find exact solutions to the problems
and each feasible solution to a problem can be found in at least one sub-
problem. If the problem consists of n variables, one could solve at most
2n subproblems, but by pruning nodes the amount is often reduced. For
a more detailed explanation, see, e.g., Lodi [16] and Lundgren, Rönnqvist
and Värbrand [17, Ch.15].

Branch-and-bound algorithms are composed of relaxation, branching, prun-
ing and searching. The relaxation utilized is often LP-relaxation or Lagrangian
relaxation. The solution of the relaxed problem is an optimistic estimate to
the original problem.
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Assuming now a minimization problem, the upper bound is a feasible
solution to the original problem and the lower bound is given by the solu-
tion to the relaxed problem, which can be infeasible in the original problem.

The branching is done on the solution obtained from the relaxed prob-
lem. By restricting one or several variables possessing non-integer values
in the solution of the relaxed problem, subproblems are created. For exam-
ple, a relaxed binary variable is set to one in the first child node and to zero
in the other.

In each node, the upper bound is compared with the global upper bound
and the global upper bound is updated whenever there is a better upper
bound. Furthermore, depending on the obtained solution from a subprob-
lem a node is pruned or not. Nodes are pruned if

• there exists no feasible solution to the subproblem,

• the lower bound is higher than or equal to the global upper bound,

• the global lower bound equals the upper bound, or

• the solution is integer.

If the subproblem, in a node, has no feasible solution, then there is no fea-
sible solution for the primal problem in this branch of the tree, and the
branch can therefore be pruned. If the subproblem solution obtained in a
node is worse or only as good as the best feasible solution found so far, the
branching is stopped in that node of the tree, as the subproblem solution
value can not be improved further in that branch.

The search through the branch-and-bound tree for the solutions, is done
according to certain strategies. There are different ones for the branch-and-
bound method. Depth-first and breadth-first are two of them. The depth-first
strategy finds a feasible solution quickly, it searches through one branch at
the time and goes on to the next branching level immediately, see Figure
2.2. The breadth-first strategy searches through all nodes in the same level
first before going to the next level of branching as illustrated in Figure 2.3.

1

2

3

45

67

8

9

1011

1213

Figure 2.2: Depth-first branch-and-bound tree, where the node numbers illustrate
the order in which the nodes are investigated.
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1

23

567

91011

4

8

1213

Figure 2.3: Breath-first branch-and-bound tree, where the node numbers illustrate
the order in which the nodes are investigated

The variable to branch on can as well be chosen differently, i.e., one can
choose to branch on the variables close to 0 or 1, or the ones close to 0.5.

Let’s continue with the example in (2.2). The branch-and-bound method
applied to that problem, with LP-relaxation and depth-first search strategy,
is illustrated in Figure 2.4 where zi is the objective function value of the
relaxed problem in node i and x is the solution vector.

x = (1, 0.5, 0)

x = (0.5, 1, 0)

x = (1, 1, 0)x = (0, 1, 0.5)x = (1, 0, 1)

x = (1, 0, 0.5)

z0 = 1.5

z1 = 2.5

z2 = 3z3 = 3.5

z4 = 2.5

z5 = 4
Infeasible Worse Worse Feasible

x2 = 1x2 = 0

x3 = 1x3 = 0 x1 = 0 x1 = 1

P0

P1P4

P6 P5 P3 P2

Figure 2.4: Branch-and-bound tree for example 1. P0 is the root node which is
solved by LP-relaxation and the solution obtained is x = (1, 0.5, 0). Then P1 is
solved where x2 = 0 and so on.

First the LP-relaxation to the original problem is solved in the root node
P0, the objective function value z0 obtained is a lower bound. Next the
first branching is done on x2, as this is the only fractional variable obtained
from solving the LP-relaxed problem. x2 is set to be 1 in one branch and 0
in the other. Then an LP relaxed problem is solved again now in the child-
node P1 where x2 is fixed to be 1. The objective function value obtained in
this node is z1. In the solution vector of this node x1 is the only fractional
value, so this is the new variable to branch on by setting x1 to 1 and 0.
The branching then goes on and on until all variables are branched or the
obtained solution vector x in a node contains no fractional values.
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3 Evaluated algorithms

In this section the algorithms that are implemented and tested are pre-
sented. The first algorithm is the Lagrangian heuristic that uses the ergodic
iterates to obtain upper bounds. The second algorithm is a branch-and-
bound method where the Lagrangian heuristic is included and the branch-
ing decisions are based on the ergodic iterates.

3.1 Lagrangian heuristic

A Lagrangian heuristic is a method utilized in order to achieve a feasible
solution to the primal problem by using the Lagrangian subproblem solu-
tions generated in the iterations of the subgradient method.

It is possible to just take the Lagrangian subproblem solution from the
latest iteration and construct, by making adjustments, a primal feasible so-
lution. Unfortunately, there is no guarantee that the Lagrangian subprob-
lem solution is close to the solution set of the primal problem. Thus, great
adjustments might be required. The greater adjustments needed, the more
uncertain is it that the recovered primal feasible solution is a good solution,
i.e., close to optimum. The sequence of Lagrangian subproblem solutions,
{xt}, is expected to get closer to the optimal solution, but does not con-
verge. Consequently, how great adjustments that is needed is unknown.

The sequence of ergodic iterates, {xt}, converges to the optimal solu-
tion set (X∗conv) of the convexified version of the primal problem (2.6). This
solution set is expected to be fairly close to the solution set of the primal
problem. Thus, if the ergodic iterates are used to construct a primal feasi-
ble solution instead of the Lagrangian subproblem solutions, only small ad-
justments are needed. This implies that a Lagrangian heuristic that makes
use of ergodic iterates may be preferable.

A Lagrangian heuristic based on the subgradient method can be de-
scribed as below. This algorithm is also described and used by Gustavsson
et al. [13].
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Algorithm 1: Lagrangian heuristic

1. Choose a suitable step length and convexity weight rule. Decide on
the maximum number of iterations, τ > 0. Let t := 0 and choose
u0 ∈ Rm

+ .

2. Solve the Lagrangian subproblem (2.4) at ut and acquire the solution
xt ∈ X(ut). Calculate the dual function value q(ut) [defined in (2.3)],
which is the lower bound in iteration t. If possible, update the best
lower bound found so far.

3. Update the ergodic iterate xt according to (2.11) and construct a fea-
sible solution to the primal problem by making adjustments to xt.
Calculate the objective function value, which is the upper bound in
iteration t. If possible, update the best upper bound found so far and
the corresponding solution vector.

4. Terminate if t = τ or the difference between the upper and lower
bound is within some tolerance.

5. Compute ut+1 according to (2.7), let t := t+ 1 and repeat from 2.

3.2 Branch-and-bound with Lagrangian heuristic

The aim of this project is to incorporate the ideas of ergodic sequences in a
branch-and-bound method as described in [13].

At each node in the branch-and-bound tree, the subgradient method
(2.7) is applied to the problem (2.5) which yields a lower bound on the
optimal value of (2.1) from an approximation of the optimal value of (2.5).
The upper bound is obtained by applying the Lagrangian heuristic with the
ergodic sequences which gives a feasible solution to the primal problem
(2.1). The branching is performed with the help of the ergodic sequence
xt obtained in each node from the subgradient method, where variable j
is chosen such that xtj is either close to 0 or 1, or such that xtj is close to
0.5. The use of a Lagrangian heuristic with a dual subgradient method for
a lower bound in a branch-and-bound tree has been studied by Görtz and
Klose in [11].

The optimization problem in each node of the branch-and-bound tree
is then the problem (2.6) with the additional constraints

xj =

{
1, j ∈ I1n,
0, j ∈ I0n,

j = 1, . . . nx. (3.1)

where the index sets I1n and I0n denotes the variables that have been fixed
to 1 and 0 during the method.
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The following algorithm creates a branch-and-bound tree, where the
Lagrangian heuristic is applied in each node.

Algorithm 2: Branch-and-bound with Lagrangian heuristic

1. Initialize the Lagrangian multipliers u0 ∈ Rm
+ and the iteration vari-

able τ > 0 for Algorithm 1.

2. For the optimization problem (2.6), (3.1): Let t := 0 and apply τ iter-
ations of Algorithm 1, the Lagrangian heuristic, which gives a lower
and an upper bound.

3. Check if pruning is needed. Prune, if possible.

4. Update the upper bound, if possible.

5. Choose a variable to branch on, based on the ergodic iterate xt .

6. Branch on the chosen variable and repeat from 2.

The method terminates when all interesting nodes have been generated
and investigated. The Lagrangian multipliers u0 in step 1 are often chosen
as the final point (ut) obtained from the subgradient method of the parent
node.
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4 Problem types for algorithm
evaluation

In this section the different problem types that are used for evaluating the
algorithms are presented. The problem types are the set covering problem,
the uncapacitated facility location problem, and the capacitated facility lo-
cation problem. All of these problem types are well-studied mixed binary
linear programs.

4.1 Set covering problem

The set covering problem (SCP) is the problem to minimize the total cost of
chosen sets, such that all elements are included at least once.

The elements and the sets correspond to the rows and the columns, re-
spectively, of a matrix A. Let A = (aij) be aM×N matrix with zeros and
ones. Let c ∈ RN be the cost vector. The value cj > 0 is the cost of column
j ∈ N . If aij = 1, column j ∈ N covers row i ∈ M. This problem has
been studied by, for example, Caprara, Fischetti and Toth [5, 6]. The binary
linear programming model can be formulated as the problem to

minimize
∑
j∈N

cjxj , (4.1a)

subject to
∑
j∈N

aijxj ≥ 1, i ∈M, (4.1b)

xj ∈ {0, 1}, j ∈ N . (4.1c)

The objective function is to minimize the cost. The constraints (4.1b) ensure
that each row i ∈M of the matrix A is covered by at least one column.

Lagrangian relaxation of the SCP problem

The constraints (4.1b) are the ones that are Lagrangian relaxed and ui, i ∈
M, are the dual variables. The Lagrangian dual function q : R|M| 7→ R is
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then defined as

q(u) :=
∑
i∈M

ui + min
∑
j∈N

cjxj , (4.2a)

s.t. xj ∈ {0, 1}, i ∈ N , (4.2b)

where cj = cj −
∑

i∈M aijui, j ∈ N .
The subproblem in (4.2) can be separated into independent subprob-

lems, one for each j ∈ N . These subproblems can then be solved analyt-
ically in the following way. If cj ≤ 0 then xj := 1, otherwise xj := 0, for
j ∈ N .

4.2 Uncapacitated facility location problem

The uncapacitated facility location problem (UFLP) deals with facility locations
and clients. More precisely, the problem is to choose a set of facilities and
from those serve all clients at a minimum cost, i.e., the objective is to min-
imize the sum of the fixed setup costs and the costs for serving the clients.
The problem has been studied by, e.g., Barahona et al. in [3].

Let F be the set of facility locations and D the set of all clients. Then the
UFLP can be formulated as the problem to

minimize
∑
i∈F

fiyi +
∑
j∈D

∑
i∈F

cijxij , (4.3a)

subject to
∑
i∈F

xij ≥ 1, j ∈ D, (4.3b)

0 ≤ xij ≤ yi, j ∈ D, i ∈ F , (4.3c)
yi ∈ {0, 1}, i ∈ F , (4.3d)

where fi is the opening cost of facility i and cij is the cost for serving client
j from facility i. The binary variables yi represents if a facility at location
i ∈ F is open or not. The variable xij is the fraction of the demand from
facility location i ∈ F to client j ∈ D. The constraints (4.3b) ensure that the
demand of each client j ∈ D is fulfilled. The constraints (4.3c) allow only
the demand of a client from a certain facility to be greater than zero if that
facility is open.

Lagrangian relaxation of the UFLP problem

The constraints (4.3b) can be Lagrangian relaxed. Consequently, the La-
grangian subproblem contains |F| easily solvable optimization problems.
When the constraints (4.3b) are Lagrangian relaxed and uj for j ∈ D are the
dual variables, the Lagrangian dual function q : R|D| 7→ R is the following:
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q(u) :=
∑
j∈D

uj + min
∑
j∈D

∑
i∈F

cijxij +
∑
i∈F

fiyi, (4.4a)

s.t. 0 ≤ xij ≤ yi, j ∈ D, i ∈ F , (4.4b)
yi ∈ {0, 1}, i ∈ F , (4.4c)

where cij = cij − uj for i ∈ F , j ∈ D. The problem (4.4) can then be
separated into independent subproblems, one for each i ∈ F :

min
∑
j∈D

cijxij + fiyi, (4.5a)

s.t. 0 ≤ xij ≤ yi, j ∈ D, (4.5b)
yi ∈ {0, 1}, (4.5c)

These problems (4.5) can then be solved as follows: If cij > 0, then xij := 0
for j ∈ D. Define µi =

∑
j:cij≤0 cij . If fi + µi < 0, then yi := 1 and xij := 1

if cij ≤ 0. If fi + µi ≥ 0, then yi := 0 and xij := 0 for all j ∈ D. In this way,
the subproblems can be efficiently solved.

4.3 Capacitated facility location problem

The capacitated facility location problem (CFLP) involves facility locations and
clients. The problem is to choose a set of facilities and from those serve all
clients at a minimum cost, i.e., the objective is to minimize the sum of the
fixed setup costs and the costs for serving the clients. At the same time each
facility has a certain capacity si and the clients have a demand dj that needs
to be fulfilled. This problem has been studied among others by Barahona,
et al. [3] and Geoffrion and Bride [10]. Let F be the set of facility locations
andD the set of all clients. Then the CFLP can be formulated as the problem
to

minimize
∑
i∈F

fiyi +
∑
j∈D

∑
i∈F

djcijxij , (4.6a)

subject to
∑
i∈F

xij ≥ 1, j ∈ D, (4.6b)∑
j∈D

djxij ≤ siyi, i ∈ F , (4.6c)

0 ≤ xij ≤ yi, j ∈ D, i ∈ F , (4.6d)
yi ∈ {0, 1}, i ∈ F . (4.6e)
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where fi is the opening cost of facility i, cij is the cost for serving client j
from facility i, dj is the demand of client j ∈ D, and si is the capacity of the
facility at location i ∈ F . The binary variable yi represents if a facility at
location i ∈ F is open or not. The variable xij is the fraction of the demand
from facility location i ∈ F to client j ∈ D. The constraints (4.6b) ensure
that the demand of each client j ∈ D is fulfilled. The constraints (4.6c)
prohibit the demand part from a certain facility to a client to exceed the
capacity of the facility. The constraints (4.6d) allow only the demand of a
client from a certain facility to be greater than zero if that facility is open.

Lagrangian relaxation of the CFLP problem

The constraints (4.6b) can be Lagrangian relaxed. Consequently, the La-
grangian subproblem contains |F| easily solvable optimization problems.
When the constraints (4.6b) are Lagrangian relaxed and uj for j ∈ D are the
dual variables, the Lagrangian dual function q : R|D| 7→ R is the following:

q(u) :=
∑
j∈D

uj + min
∑
j∈D

∑
i∈F

cijxij +
∑
i∈F

fiyi, (4.7a)

s.t.
∑
j∈D

djxij ≤ siyi i ∈ F , (4.7b)

0 ≤ xij ≤ yi, j ∈ D, i ∈ F , (4.7c)
yi ∈ {0, 1}, i ∈ F , (4.7d)

where cij = djcij − uj for i ∈ F , j ∈ D. The problem (4.7) can the be
separated into independent subproblems, one for each i ∈ F :

min
∑
j∈D

cijxij + fiyi, (4.8a)

s.t.
∑
j∈D

djxj ≤ sy, (4.8b)

0 ≤ xij ≤ yi, j ∈ D, (4.8c)
yi ∈ {0, 1}, (4.8d)

These problems (4.8) can then be solved as follows: First if cj > 0 the xj is
set to 0. Then one orders

c1
d1
≤ c2
d2
≤ c3
d3
· · · ≤ cn

dn
.

Let b(k) =
∑j=k

j=1 dj , where k is the largest index such that
∑j=k

j=1 dj ≤ s, and
let r = (s−b(k))/dk+1. If f +

∑j=k
j=1 cj +ck+1r ≥ 0, then set y = 0 and xj = 0

for all j, otherwise set y = 1 and xj = 1 for 1 ≤ j ≤ k, and xk+1 = r, if xj is
not already set to 0.
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5 Numerical results

The Lagrangian heuristic, Algorithm 1 in 3.1, and the Branch-and-bound
with Lagrangian heuristic, Algorithm 2 in 3.2, are implemented in MAT-
LAB. In Algorithm 1 the Lagrangian relaxation is implemented as described
in Section 4 for each problem type. Algorithm 2 is a depth-first branch-
and-bound algorithm which works recursive. The global upper bound is
in each node compared with the local upper bound and updated if possi-
ble. A global lower bound is not taken care of. In step 2, a slightly modified
version of Algorithm 1 is performed: step 1 is disregarded and instead of
constructing a primal feasible solution in each iteration, this is merely done
after the last iteration.

This section contains numerical results from using the algorithms to
solve test instances of UFLPs, SCPs and CFLPs. Algorithm 1 is utilized in
case of UFLPs and Algorithm 2 is used for the SCPs and CFLPs.

5.1 UFLP

Algorithm 1 is applied to the UFLP defined in (4.3). The test instances of
the problem are from Beasley’s OR library 1.

In the subgradient method (2.7) the step lengths are chosen to be αt =
105

1+t , and the dual variables are initialized to u0j = 0 for j ∈ D. In each
iteration t, the subproblem (4.5), for each i ∈ F , is solved for u = ut, and an
ergodic iterate yt is computed according to (2.11). Randomized rounding
(see [3]) is used for the construction of feasible solutions in step 3 in each
iteration. The procedure for this is as follows:

Open facility i ∈ F with probability yti. If none of the facilities are
opened, just open the one with the highest probability. Assign all clients
j ∈ D to their closest open facility. Generate 10 solutions by 10 tries of
randomized rounding and use the best one, i.e. a feasible solution with the
lowest objective value, as an upper bound.

The number of iterations to obtain an optimal solution is investigated
for different convexity weight rules; the sk-rules (2.10), which are different

1Available at: http://people.brunel.ac.uk/ mastjjb/jeb/orlib/uncapinfo.html (accessed
2015-03-13)
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in regard to their k-value. The different convexity weight rules affect how
the ergodic iterate yt is constructed according to (2.11). The algorithm is
tested for the sk-rules with k = 0, k = 1, k = 4, k = 10, k = 20 and k = ∞,
where k = 0 generates the average of all Lagrangian subproblem solutions
and k =∞ represents the traditional Lagrangian heuristic that only utilizes
the last Lagrangian subproblem solution.

In Table 5.1 and Figure 5.1 the results from running Algorithm 1 on 12
test instances of UFLP for the six different convexity weight rules are il-
lustrated. The result are averages over 100 runs. In Table 5.1 the entries
represent the number of iterations until an optimal solution was found. In
Figure 5.1 the graphs show the performance profiles of Algorithm 1 when
using the different convexity weight rules. The performance is the percent-
age of the problem instances solved within τ times the number of iterations
needed by the method that used the least amount of iterations.

ID Size k = 0 k = 1 k = 4 k = 10 k = 20 k =∞

cap71 16×50 51.9 40.3 34.2 34.5 35.3 74.0
cap72 16×50 87.3 63.6 56.1 55.7 53.8 92.0
cap73 16×50 104.6 82.0 69.2 58.8 57.6 144.0
cap74 16×50 62.9 50.9 38.9 33.1 24.0 105.0
cap101 25×50 152.8 110.0 85.6 77.1 74.4 598.0
cap102 25×50 179.9 137.8 109.4 103.1 99.1 121.0
cap103 25×50 158.7 111.9 86.4 75.8 78.3 337.0
cap104 25×50 98.9 67.7 52.2 45.9 43.2 61.0
cap131 50×50 331.4 206.7 150.7 136.8 133.5 470.0
cap132 50×50 300.0 173.4 130.0 116.3 112.3 466.0
cap133 50×50 376.8 231.1 187.0 168.9 164.8 1193.0
cap134 50×50 165.5 92.5 63.7 56.3 52.4 91.0

Table 5.1: The average number of iterations of Algorithm 1 over 100 runs for find-
ing an optimal solution to each of the 12 test instances using different convexity
weight rules. The best result, i.e., the rule that required the least number of it-
erations to find an optimal solution, for each test instance is marked with a bold
entry.

28



τ

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

0

10

20

30

40

50

60

70

80

90

100

k = 0

k = 1

k = 4

k = 10

k = 20

k = ∞

Figure 5.1: Performance profiles for Algorithm 1 applied on the 12 test instances
from the OR-library. The graphs correspond to the six convexity weight rules and
shows the percentage of the problem instances solved within τ times the number
of iterations needed by the method that used the least amount of iterations, for
τ ∈ [1.0, 3.0].
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5.2 SCP

The SCPs, defined in (4.1), are solved by employing Algorithm 2. The step
lengths are set to αt = 10

1+t for each iteration t and the initial values of the
dual variables are set to u0i = minj∈N :aij=1{cj/|Ij |}, where Ij = {i : aij =
1}, i ∈ M. In each iteration of Algorithm 1 the problem (4.2) is solved and
the ergodic iterates xt are constructed according to (2.11) with the sk-rule
(2.10), where the k-value set to 4. The Lagrangian subproblem solution ob-
tained in each iteration is investigated for feasibility in the primal problem
and saved if feasible. Lastly, a feasible solution is constructed by random-
ized rounding with the ergodic iterates and compared with the saved La-
grangian subproblem solution (if there is one). The best one is then used as
an upper bound.

The randomized rounding is performed by choosing set j ∈ N with
probability xtj . 10 solutions are generated by randomized rounding and
the best feasible one is then used as an upper bound. Then the ergodic
iterate xt is used to choose the next variable to branch on. The branching is
done on the variable closest to 0.5.

For comparison, a branch-and-bound method with LP-relaxation is im-
plemented and tested on the same problems as Algorithm 2. In each node
of the branch-and-bound tree the LP-relaxation is solved by MATLABs own
function linprog and a feasible solution is constructed by randomized
rounding.

In Table 5.2, test instances from Beasley’s OR library 2 are solved either
with Algorithm 2 or a branch-and-bound method with LP-relaxation. The
number of nodes in the branch-and-bound tree is listed for each problem
instance. The maximum number of iterations of Algorithm 1 is set individ-
ually for each problem instance.

In Table 5.3 the the number of nodes of the branch-and-bound tree,
when running Algorithm 2 for different sizes of the SCPs, is presented. The
problem instances are created by setting the cost cj to 1 for all columns and
the elements in the matrix A are randomly set to 0 or 1. In each node ei-
ther a LP-relaxation and randomized rounding or Algorithm 1 are applied
to solve the problem. In case of Algorithm 1, the number of iterations is
10, 50, 100 and 1000 in all nodes except in the root node, in which 10 times
as many iterations are done. Step length, dual variables and k-value are
initialized as above.

In Figure 5.2 the performance profiles for Algorithm 2 and a branch-
and-bound with LP-relaxation on 35 test instances are illustrated. For Al-
gorithm 2, four different maximum number of iterations of Algorithm 1 are
tested. The graphs shows the percentage of the problems solved within τ

2Available at: http://people.brunel.ac.uk/ mastjjb/jeb/orlib/scpinfo.html (accessed
2015-03-13)
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times the number of nodes needed by the method the used the least amount
of nodes, for τ ∈ [1.0, 3.0].

Algorithm 2

ID Size B&B-LP Iterations Nodes

4.1 200×1000 2.44 2000/200 1.96
4.2 200×1000 1 1000/100 1
4.3 200×1000 1 500/200 1
4.4 200×1000 5 5000/500 5
4.5 200×1000 1 500/100 1
4.6 200×1000 8 5000/500 13
4.7 200×1000 1 2000/500 1
4.8 200×1000 15 2000/500 13
4.9 200×1000 7 5000/1000 9
4.10 200×1000 3.4 2000/200 3
5.1 200×2000 72 2000/500 25
5.2 200×2000 49 5000/500 5
5.3 200×2000 2.28 2000/500 1
5.4 200×2000 17 5000/1000 15
5.5 200×2000 3 2000/200 3
5.6 200×2000 1 2000/200 1
5.7 200×2000 16.52 4000/400 13
5.8 200×2000 23 5000/200 15
5.9 200×2000 2.44 5000/1000 3
5.10 200×2000 1.24 1000/100 1
6.1 200×2000 211 1000/500 151
6.2 200×2000 361 1000/500 197
6.3 200×2000 83 1000/500 33
6.4 200×2000 38.8 1000/500 19
6.5 200×2000 83.2 5000/1000 73

Table 5.2: The amount of branch-and-bound nodes for the SCPs, over 25 runs,
solved with Algorithm 2 and a branch-and-bound with LP-relaxation (B&B-LP),
respectively. Algorithm 2 is run for different maximum number of iterations of
Algorithm 1 for each test instance. The maximum number of iterations is stated
for the root node and the remaining nodes, respectively, e.g., 2000/200 stands for
2000 iterations in the root node and 200 iterations in the remaining nodes of the
tree.
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Algorithm 2

Size B&B-LP 100/10 500/50 1000/100 10000/1000

10×10 1.02 1 1 1 1
10×10 1 27.32 1 1 1
10×10 2.32 6.56 1 1 1
10×10 1.58 2.8 1 1 1
10×10 2.42 4.76 2.72 2.74 2.66
10×15 2.1 30.02 2.2 1.98 1.96
10×15 1.54 77 1 1 1
10×15 1.58 147 1 1 1
10×15 1.66 28.12 1 1 1
10×15 2.28 1 1 1 1
10×20 3.04 305 7 5 3
10×20 1.66 105.4 1 1 1
10×20 2 35.54 1 1 1
10×20 4.02 1 1 1 1
10×20 1.62 199 1 1 1
10×25 2.66 739.52 1 1 1
10×25 1.22 264.26 1 1 1
10×25 2.04 288.84 2.08 2.02 2.06
10×25 1.34 1 1 1 1
10×25 1.7 1105 1 1 1
20×20 2.52 276.1 5.96 2.52 1
20×20 4.9 770.62 12.68 2.86 2.9
20×20 3.22 1228.4 1 1 1
20×20 3.72 534.76 3.48 6.18 3.40
20×20 3.54 1256.3 41 11 3
20×30 3.56 2691.1 5.42 5.18 3.32
20×30 3.48 12165 191 27 3
20×30 4.86 3213.1 5 4.62 4.74
20×30 9.46 3502.4 199.94 1 1
20×30 2.70 7820.3 1 1 1
20×40 2.98 7762.8 1 1 1
20×40 2.36 9883.7 423 1 1
20×40 2.02 6625.2 1 1 1
20×40 2.78 8040.6 305 1 1
20×40 8.9 11767 242.16 12.46 6.7

Table 5.3: The average number of branch-and-bound nodes over 100 runs for dif-
ferent sizes of the SCPs, solved with Algorithm 2 and a branch-and-bound with
LP-relaxation (B&B-LP). Algorithm 2 is run for different maximum numbers of
iterations of Algorithm 1 for each test instance. The maximum number of itera-
tions is stated for the root node and the remaining nodes, respectively, e.g., 100/10
stands for 100 iterations in the root node and 10 iterations in the remaining nodes
of the tree.
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Figure 5.2: Performance profiles for Algorithm 2 and a branch-and-bound with
LP-relaxation (B&B-LP) on 35 test instances. Algorithm 2 is run for four different
maximum numbers of iterations of Algorithm 1. The name, e.g., 100/10, is the
maximum number of iterations in the root node and the remaining nodes, respec-
tively. The graphs shows the percentage of the problems solved within τ times the
number of nodes needed by the method the used the least amount of nodes, for
τ ∈ [1.0, 3.0].

33



5.3 CFLP

Running Algorithm 2 on the CFLPs as defined in (4.6), gives the result pre-
sented in Table 5.4 and Figure 5.3.

The CFLPs are created according to Klose and Görtz [11]. Customer
and facility locations are generated as uniformly distributed points in a
unit square [a, b). The demands dj are generated in the interval [5, 35) and
the capacities si in the interval [10, 160). The transportation cost cij are
obtained as the Euclidean distance multiplied by 10dj . The fixed setup
cost for the facilities is fi = [0, 90) + [100, 110)

√
si. The capacities are then

rescaled such that
∑

i si = 5
∑

j dj .
In each node Algorithm 1 is applied to the problem. The number of

iterations is 500 in the root node and 100 in all other nodes. The step length
is set to αt = 103

1+t for each iteration t. The initial values of the dual variables
are set to u0i = minj∈N :aij=1{cj/|Ij |} where Ij = {i : aij = 1}, i ∈ M.
The result is a comparison between different convexity weights (2.10). The
k-value is set to k = 0, k = 4, k = 20, k = ∞, where k = 0 generate
the average of all Lagrangian subproblem solutions and k = ∞ represent
the traditional Lagrangian heuristic that only utilizes the last Lagrangian
subproblem solution.

In each iteration of Algorithm 1 the problem (4.8) is solved and the er-
godic iterates yt are constructed according to (2.11). The Lagrangian sub-
problem solution obtained in each iteration is investigated for feasibility in
the primal problem and saved if feasible. Lastly, a feasible solution is con-
structed by randomized rounding with the ergodic iterates and compared
with the saved Lagrangian subproblem solution (if there is one). The best
one is then used as a upper bound.

The randomized rounding is done by opening facility i ∈ F with prob-
ability yti. Then a linear optimization problem is solved for all xijs with
MATLABs function linprog and the obtained solution is checked for fea-
sibility. If the solution obtained is feasible it is saved. This is done 10 times
and the best solution is then used as a upper bound to the problem. Then
the ergodic iterate yt is used to choose the next variable to branch on. The
branching is done on the variable closest to 0.5.

In Figure 5.3 the performance profiles are illustrated for the 35 test in-
stances created with different size, where the graphs show the percentage
of the problem instances solved by each method depending on τ . The vari-
able τ is the number describing how many times the number of nodes are
needed to solve the problem instance with the method that used the least
amount of nodes.
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Size k = 0 k = 4 k = 20 k =∞

10×10 11 11 13 43
10×10 25 11 5 61
10×10 7 5 5 83
10×10 39 25 25 31
10×10 5 3 3 11

10×15 41 7 7 11
10×15 21 7 7 21
10×15 15 13 13 21
10×15 19 11 13 13
10×15 9 5 5 9

10×20 17 13 13 21
10×20 21 21 21 63
10×20 1 1 1 1
10×20 7 7 7 21
10×20 13 9 15 21

15×15 45 37 37 39
15×15 19 3 17 23
15×15 17 9 17 21
15×15 13 9 5 7
15×15 7 5 5 11

15×20 67 43 43 67
15×20 33 29 33 31
15×20 33 31 33 33
15×20 35 33 33 37
15×20 53 39 39 99

20×20 3 3 3 57
20×20 163 69 83 387
20×20 9 3 3 3
20×20 79 45 43 47
20×20 13 7 21 113

30×30 169 73 107 167
30×30 77 71 99 99
30×30 287 163 247 1823
30×30 147 87 151 127
30×30 67 63 69 63

Table 5.4: The average number of branch-and-bound nodes and the depth of the
tree for different size of the CFLPs and different k-values, k = 0, 4, 20 and∞. The
number of iterations is 500 in the root node and 100 in all other nodes.
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Figure 5.3: Performance profiles for Algorithm 2 on 35 test instances for each of
the four convexity weight rules. The graphs shows the percentage of the problem
instances solved within τ times the number of nodes needed by the method that
used the least amount of nodes, for τ ∈ [1.0, 3.0].
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6 Discussion and conclusions

In this section the results are discussed, conclusions are presented, and fu-
ture work is proposed.

6.1 Discussion

The results from testing the algorithms are commented on for each problem
type, namely UFLP, SCP and CFLP.

6.1.1 UFLP

In Table 5.1 the results from solving test instances of the UFLP with Algo-
rithm 1 using different convexity weight rules are presented. For k = 0,
the constructed ergodic iterate is an average of all Lagrangian subproblem
solutions. When k =∞ no ergodic iterate is created. This is the traditional
Lagrangian heuristic where only the last Lagrangian subproblem solution
is used.

One can conclude that k = 4, 10, and 20 performs much better than
k = 0 and k = ∞. The entries with bold font represent the number of the
least iterations to obtain an optimal solution in each problem instance, and
most of them belong to the same convexity weight rule. Hence, it is clear
that k = 20 is the best, but only slightly better than k = 10. The good
performances of k = 4, 10, and 20 are also visualised in Figure 5.1 with the
performance profiles of all the convexity weight rules. Similar results for
the same test instances can be found in Gustavsson et al. [13].

Note that for k = 20, the last Lagrangian subproblem solution has a
high weight in comparison with weights of the previous Lagrangian sub-
problem solutions and this yields a very good result. However, for k =∞,
where all the weight is on the last Lagrangian subproblem solution, the re-
sult varies but is always worse. This shows the importance of letting the
previous Lagrangian subproblem solutions have an impact.
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6.1.2 SCP

When solving test instances of the SCP with Algorithm 2, a convexity weight
rule with k = 4 is used because it is one of the rules that yields good results.
Another value for k could also be appropriate if it is not too small or too
large.

In Table 5.2 the results from solving 25 test instances of two different
sizes of SCPs with Algorithm 2 and branch-and-bound with LP-relaxation
(B&B-LP) are presented.

In most cases, Algorithm 2 performs better than the B&B-LP. For 22 of
the 25 test instances the number of nodes in the completed branch-and-
bound tree produced by Algorithm 2 is less than or equal to the number of
nodes generated by the B&B-LP.

One drawback with Algorithm 2 is that the maximum number of itera-
tions performed in each node has a great affect on the performance of the
algorithm. The best settings varies from case to case and, unfortunately, the
amount of iterations does not merely depend on the problem size.

Table 5.3 and Figure 5.2 display the results from solving small sized
SCPs with Algorithm 2 and B&B-LP. The number of test instances is 35 in
total and there are five test instances of each size. For Algorithm 2, different
maximum numbers of iterations in the nodes are tested. The maximum
number of iterations are chosen to be 10, 50, 100 and 1000 in all nodes except
in the root node, in which 10 times as many iterations are allowed to be
performed. This is, e.g., denoted 100/10 for the method with, at most, 100
and 10 iterations in the root node and the other nodes, respectively.

Depending on the number of iterations, Algorithm 2 performs better
than the B&B-LP. For the method 100/10 the number of nodes becomes
very large, especially for the larger problems. Therefore, more iterations
are needed. If five times as many iterations are applied, i.e., the method
500/50, it is already enough to be better than B&B-LP for the small problem
instances. For all problem sizes, the methods 1000/100 and 10000/1000
performs the best. This can easily be seen in Table 5.3 and the performance
profiles in Figure 5.2.

6.1.3 CFLP

In Table 5.4 and Figure 5.3 the results from solving test instances of the
CFLP with Algorithm 2 using different convexity weight rules are pre-
sented. The number of iterations is 500 in the root node and 100 in all
other nodes, which was considered appropriate according to the problem
sizes in this experiment. For k = 0, the constructed ergodic iterate is an
average of all Lagrangian subproblem solutions. When k = ∞ no ergodic
iterate is created. This is the traditional Lagrangian heuristic in which the
last Lagrangian subproblem solution is used.
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Since the least number of nodes for each problem instance is marked
with a bold entry in Table 5.4, it is obvious that the algorithm with the con-
vexity weight rule using k = 4 performs the best. Furthermore, to get an
overview of the performance of all four methods one can study the perfor-
mance profiles in Figure 5.3. In this figure it is clear that both k = 4 and
k = 20 are superior to the other two methods. The traditional Lagrangian
heuristic, where k =∞, performs doubtlessly worst.

6.2 Conclusions

For Algorithm 1 and 2, i.e. the Lagrangian heuristic and the branch-and-
bound with Lagrangian heuristic, when solving SCPs, UFLPs and CFLPs,
the choice of the convexity weight rule has a great impact on their perfor-
mance. The traditional Lagrangian heuristic, where all the weight is put
on the last Lagrangian subproblem solution (k = ∞), performs the worst.
This shows the importance of including the previous Lagrangian subprob-
lem solutions. If all Lagrangian subproblem solutions are equally weighted
(k = 0) the performance is only slightly better. However, by using a convex-
ity weight rule which puts more weight on later solutions the performance
is significantly improved. Conclusively, the later solutions are more impor-
tant than the earlier ones. Although, too much weight on the last ones does
not always give the best result. For example, in the case of solving CFLPs,
the algorithm performs better with k = 4 compared to when k = 20.

Algorithm 2, with an appropriate convexity weight rule, can be better
than a branch-and-bound with LP-relaxation. Though, it depends on the
number of iterations of Algorithm 1, which can be hard to choose. The bet-
ter performance can be explained with the fact that xt → X∗conv (Theorem 3)
in Algorithm 2, while xt → X∗LP in branch-and-bound with LP-relaxation
and the solution set X∗conv ⊆ X∗LP .

6.3 Future work

A further development of this thesis could be to implement Algorithm 2
in a more computational efficient programming language. This would give
the possibility to test the algorithm on larger problem instances and its run-
time performance. The branch-and-bound method itself could also be im-
proved by implementing other features, such as different search strategies
and to make use of a global lower bound. Another advanced version of a
branch-and-bound method could be the combination of Algorithm 2 and
the construction of a core problem as described in Gustavsson et al. [13],
where one would fixate more the one variable at the same time in each
branch-and-bound node. Furthermore, another expansion of this project
would be to test the two algorithms on other MBLPs.
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