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Abstract 
Antibiotic resistance accounts for hundreds of  thousands of  deaths annually, and 
its projected increase has made the WHO recognize it as a major global health 
threat. In the last decade, evidence has mounted suggesting that the environment 
plays an important role in the progression of  resistance. The external 
environment acts as a source of  resistance genes for human pathogens, but is also 
an important dissemination route allowing the spread of  resistant bacteria 
between different environments and human populations. In this thesis, large-scale 
DNA sequencing techniques are used to gain a better understanding of  the risks 
associated with environmental antibiotic resistance. A key task in this process is 
the quantification of  the number of  antibiotic resistance genes in different 
environments using metagenomics. However, equally important is to put this 
information into a larger perspective, by including, for example, taxonomic data, 
concentrations of  antibiotics present, and the genomic contexts of  identified 
resistance genes. This thesis presents a software tool – Metaxa2 – for improved 
taxonomic analysis of  shotgun metagenomic data, which is shown to give more 
accurate taxonomic classifications of  short read data than other tools (Paper I). It 
also provides theoretically predicted no-effect concentrations for 111 antibiotics 
(Paper II), and experimentally determined minimal selective concentrations for 
tetracycline (Paper III). Furthermore, resistance genes are quantified in two 
environments suggested to pose selective conditions for resistance: sewage 
treatment plants (Paper IV) and a lake exposed to waste from pharmaceutical 
production (Paper V). There was no clear evidence for selection of  antibiotic 
resistance genes in sewage treatment plants, however other factors such as oxygen 
availability seem to have much stronger effects on these microbial communities, 
which may mask small selective effects of  antibiotics and other co-selective agents. 
In contrast, in the lake subjected to industrial pharmaceutical pollution, resistance 
genes and mobile genetic elements were both diverse and abundant. Finally, 
Paper VI shows that travel contributes to the spread of  resistance genes against 
several different classes of  antibiotics between countries with higher resistance 
rates and Sweden. In Paper IV–VI, the genetic contexts of  resistance genes were 
assessed through metagenomic assembly, showing how different resistance genes 
are linked to each other in different environments. Through these means, the 
thesis contributes knowledge about risk settings for development and transmission 
of  antibiotic resistance genes, which can be used to guide risk assessment and 
management schemes to delay or reduce clinical resistance development.  

 i



Populärvetenskaplig sammanfattning 
Antibiotika är fantastiska läkemedel som har gjort det möjligt att enkelt bota 
sjukdomar som tidigare ofta ledde till döden. Sedan Alexander Fleming upptäckte 
penicillinet har miljontals människoliv räddats med hjälp av vad som tidigare ofta 
kallades ”mirakelmediciner”. Vi använder dock inte bara antibiotika för att bota 
sjukdomar, utan även kirurgiska ingrepp, cancervård och vård av för tidigt födda 
barn är ofta direkt beroende av fungerande antibiotika. Det är med andra ord 
svårt att tänka sig hur den moderna sjukvården skulle vara utformad utan 
effektiva antibiotika. 

Tyvärr har de senaste 25 åren inneburit att allt fler bakterier överlever 
behandling med antibiotika, så kallad antibiotikaresistens. Särskilt oroande är att 
många bakterier idag kan motstå flera olika typer av antibiotika och att denna 
utveckling verkar gå allt snabbare. Resistensutvecklingen är 2000-talets hälsokris 
och antibiotikaresistenta bakterier beräknas orsaka hundratusentals dödsfall varje 
år. WHO har kallat situationen en av de största utmaningarna för hela den 
moderna sjukvården. En stor del av denna utveckling beror på att bakterier har 
förvärvat nya gener som ger upphov till resistens. De kan göra detta eftersom 
många bakterier har förmåga att utbyta gener med varandra, särskilt under stress. 
Många, kanske till och med de flesta, av dessa nya gener har sitt ursprung i 
ofarliga bakterier som lever i miljön. Till exempel så har jordbakterier och 
bakterier som orsakar sjukdomar hos människor i vissa fall exakt samma 
resistensgener – trots att deras övriga gener uppvisar mycket begränsade likheter. 
Man har också hittat resistensgener i jordprover från 30 000 år gammal 
permafrost, tillsammans med DNA från mammutar. Detta talar för att miljön har 
en viktig roll i både spridning och utveckling av antibiotikaresistens, samt att 
resistensgener från miljön i värsta fall kan dyka upp i sjukdomsbakterier som då 
inte längre går att behandla. Vi vet dock fortfarande väldigt lite om exakt hur 
dessa processer går till och vilka miljöer som utgör särskilt stora risker för att 
resistens ska spridas till sjukdomsbakterier. Vi vet inte heller om de halter av 
antibiotika som påträffas i till exempel kommunala reningsverk kan driva på 
utvecklingen av resistenta bakterier, eftersom de halter av antibiotika som krävs 
för att ge resistenta bakterier en konkurrensfördel inte är kända. 

Flera av studierna i den här avhandlingen använder storskalig sekvensering av 
DNA från bakteriesamhällen i olika miljöer, så kallad metagenomik, för att bättre 
förstå riskerna med antibiotikaresistens i miljön. För att bättre sätta resultaten i ett 
sammanhang har vi också undersökt vilka bakteriearter som finns i de olika 
miljöerna, samt vilka koncentrationer av antibiotika som kan förväntas ge 
resistenta bakterier i miljön en konkurrensfördel. För att kunna göra detta har vi 
inom ramen för avhandlingen behövt utveckla nya verktyg och referensverk och 
avhandlingens första del handlar om dessa. 

I det första delarbetet presenteras ett nytt datorprogram – Metaxa2 – för att 
analysera vilka arter som finns i ett mikrobiellt samhälle baserat på sekvensering 
av blandat DNA från alla arter i ett prov. Vi visar att Metaxa2 överlag är bättre än 
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andra liknande datorprogram på att korrekt klassificera arter baserat på den typ 
av data som ofta generas i metagenomik-studier. 

I det andra delarbetet beräknar vi teoretiskt vilka halter av antibiotika som 
riskerar driva på utveckling av resistens mot antibiotika i komplexa 
bakteriesamhällen (minsta selektiva koncentrationer). Vi antar här att de halter 
som driver utveckling av resistens alltid är lika stora eller mindre än de halter som 
dödar bakterier eller hindrar deras tillväxt. Genom att utgå från kliniskt tillgänglig 
information om hur känsliga ett mycket stort antal olika bakteriestammar är för 
olika antibiotika har vi sedan uppskattat gränsvärden för 111 olika antibiotika. 
Dessa gränsvärden bör inte överskridas om man vill undvika utveckling av 
antibiotikaresistens. För antibiotikumet tetracyklin uppskattades denna minsta 
selektiva koncentration till 1 µg/L. I det tredje delarbetet följer vi upp denna 
studie för just tetracyklin genom en mängd experiment där bakterier får tillväxa i 
akvarier med olika höga halter av tetracyklin. Slutsatsen av denna studie är att just 
1 µg/L verkade vara en rimlig uppskattning av den minsta halt som kan driva på 
resistensutveckling. 

Med denna kunskap undersöker vi sedan två andra miljöer som potentiellt  
kan bidra till ökad resistensutveckling: svenska avloppsreningsverk och en indisk 
sjö förorenad med avfall från produktion av läkemedel, bland annat antibiotika. I 
svenska reningsverk hittade vi koncentrationer av ett par antibiotika som 
eventuellt kan vara tillräckligt höga för att bidra till resistensutveckling. Vi kunde 
dock inte se några tydliga tecken på att en sådan utveckling faktiskt ägt rum i 
reningsverken, och inte heller några tydliga bevis för att andra substanser som 
antibakteriella biocider och metaller skulle orsaka utveckling av antibiotika-
resistens i denna miljö. Det var dock tydligt att andra faktorer, som t.ex. 
syretillgång, påverkar bakterierna mycket mer än vad halterna av antibiotika, 
metaller och biocider gör. Därför kan det finnas effekter som vi inte kan upptäcka 
med metagenomik, eftersom metoden är alltför grovkornig. I den indiska sjön, 
som undersöktes i det femte delarbetet, såg vi däremot tydliga effekter på 
förekomsten av resistensgener, samt på de gener som bidrar till att flytta 
resistensgener mellan olika bakterier. Detta pekar på att utsläpp av antibiotika 
från antibiotikaproduktion kan vara en viktig drivkraft i de processer som orsakar 
resistensutveckling i miljön. 

Slutligen har vi undersökt hur resande påverkar hur resistensgener och 
resistenta bakterier sprids över jorden tillsammans med de bakterier som normalt 
lever i tarmen. Vi studerade här avföringsprov från 35 svenska studenter som rest 
till Indien eller Centralafrika och fann att resistensgener var vanligare i tarmen 
efter resan än de var före. Dessutom ökade förekomsten av de gener som bidrar 
till att flytta DNA mellan bakterier. Detta tyder på att det räcker att vistas i en 
miljö med en värre resistenssituation än i Sverige för att samla på sig resistenta 
bakterier. Eftersom dessa resistenta bakterier kan spridas utan att vi själva blir 
sjuka och märker av dem, kan de snabbt förflytta sig mellan olika världsdelar och 
resande utgör därmed en viktig spridningsväg för resistens över jorden. 
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Mycket tyder på att det oftast är en väldigt liten nackdel för bakterier att bära på 
gener som ger resistens mot antibiotika, och så fort det finns antibiotika 
närvarande utgör dessa gener en stor fördel. Det är därför viktigt att undvika att 
skapa miljöer där bakterier kan utveckla och sprida resistensgener. Det är också 
centralt att försöka stänga de vägar som resistenta bakterier från miljön kan ta för 
att hamna i människor och byta gener med människans tarmbakterier. Antalet 
olika resistensgener som påträffas i miljön är stort och det är därför troligt att det 
fortfarande finns massor av okända resistensgener i miljön som kan hamna i 
sjukdomsbakterier. Att identifiera dessa och så långt som möjligt försöka förhindra 
att de sprids är en enorm utmaning, men extremt angeläget för att fördröja 
utvecklingen av resistenta sjukdomsbakterier. Metagenomik utgör bara en liten 
pusselbit i denna process, men kan ändå bidra med viktig information för att t.ex. 
identifiera vilka miljöer som utgör särskilda risksituationer. Den här avhandlingen 
bidrar till denna kunskapsbas genom att utveckla verktyg för analys av 
resistensgener och deras sammanhang i metagenom, genom att undersöka tre 
särskilt viktiga miljöer där resistensgener eventuellt kan utvecklas och spridas, 
samt genom att föreslå gränsvärden för utsläpp av antibiotika till miljön.  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Introduction 

The importance of antibiotics 
In the twentieth century, the ability to treat bacterial infections was revolutionized by 
a novel category of  drugs – antibiotics, defined as any small molecule that 
antagonizes growth of  microbes (Clardy et al. 2009). This age of  “wonder drugs” 
begun with the introduction of  sulfonamide in 1910, although at the time its 
mechanism of  action was still unclear (Zaffiri et al. 2012). However, the real 
transformation of  healthcare triggered by antibiotics came with Alexander Fleming’s 
discovery of  penicillin (Fleming 1929), and its introduction as a human antibiotic in 
1941 (Chain et al. 1940), with mass production a few years later (Zaffiri et al. 2012). 
Since then, around two scores of  antibiotics classes with different modes of  actions 
have been introduced to the market, along with a large variety of  derivatives within 
each class (Coates et al. 2011). The vast majority of  classes were introduced in the 
1950-ies and 60-ies, and for a long time antibiotics made diseases such as 
tuberculosis, pneumonia, gonorrhea, and puerperal sepsis easily treatable. However, 
virtually no novel classes of  antibiotics have become available for treatment in the last 
fifteen years (Bush 2012), indicating a stagnation of  the development of  new 
therapeutic options. Today, antibiotics are widely used to treat bacterial infections, 
but are also integral as treatment and prophylaxis in surgery, as well as for cancer, 
neonatal and elderly care. Furthermore, antibiotics are widely used in agriculture for 
livestock, although to varying degree in different regions of  the world (Hollis & 
Ahmed 2013; Hellman et al. 2014). It is difficult to imagine how modern healthcare 
would function without antibiotics, and along with hygiene and vaccines, antibiotics 
clearly represent one of  the most important steps forward in the treatment of  
infectious diseases. 

Emergence of antibiotic resistance 
Already in the 1940-ies when penicillin was first used as an antibiotic, enzymes that 
could render bacteria resistant against it were described (Abraham & Chain 1940). 
This discovery foreshadowed a development we have since seen for every new class of  
antibiotics introduced, regardless of  whether it has been derived from natural 
products, or has been a completely novel, chemically synthesized compound – only 
the time between introduction and resistance emergence has varied (Schmieder & 
Edwards 2012). The prevalence of  antibiotic resistance among clinically relevant 
bacteria has steadily increased with antibiotics usage (Pendleton et al. 2013; Wattal & 
Goel 2014). In addition, pathogens are increasingly resistant to several different 
antibiotics – so called multidrug resistance – further complicating treatment strategies 
(Alekshun & Levy 2007; Nikaido 2009; Oliveira et al. 2015). Perhaps most alarming is 
the dramatic increase of  resistance towards what is viewed as last-resort antibiotics: 
carbapenems, vancomycin, and piperacillin/tazobactam combinations 
(Laxminarayan 2014; European Centre for Disease Prevention and Control 2013). 
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The rapid surge of  resistance among pathogens has been fueled by the ability of  
bacteria to share genes with each other through a process called horizontal gene 
transfer (HGT) (Thomas & Nielsen 2005). Resistance genes against antibiotics can 
through these gene transfer processes move between bacterial cells and species on 
mobile genetic elements (MGEs) such as plasmids and integrons, which can be shared 
as needed (Stokes & Gillings 2011). This also allows for resistance genes against 
several different compounds to be collected on the same MGE and move together, 
giving rise to transferrable multidrug resistance. Furthermore, once these genes are 
situated together on the same plasmid, treatment with one antibiotic will select for 
resistance against not only the antibiotic used, but also all other compounds for which 
resistance genes are present on the same MGE, so called co-resistance. Once 
resistance has emerged on an MGE, spread among pathogens can be quick, as shown 
in the case of  the NDM-1 carbapenemase. The NDM-1 gene codes for an enzyme 
that can catalyze cleavage of  most forms of  beta-lactam antibiotics including 
carbapenems, and first appeared in a Swedish patient hospitalized in India in 2007 
(Yong et al. 2009). The gene has subsequently been found to be widespread in the 
Indian environment (Walsh et al. 2011), and is nowadays – less than ten years later – 
detected in clinical isolates worldwide (Wilson & Chen 2012; Johnson & Woodford 
2013). Developments like this have urged the WHO to consider antibiotic resistance 
as a global challenge so serious that it threatens the fundamental achievement of  
modern medicine (WHO 2014). Antibiotic resistance has been attributed to annual 
costs of  at least 1.5 billion euros in Europe alone (Norrby et al. 2009) and has been 
estimated to account for 700,000 deaths every year (Review on Antimicrobial 
Resistance 2014). The problem is set to get worse over time, as bacteria seem to be 
more resistant rather than less and antibiotics usage is not in decline (Laxminarayan 
2014). Recently, the last class of  antibiotics where resistance was limited to individual 
bacterial strains – polymyxins – was faced with a resistance gene able to spread 
between bacteria through horizontal gene transfer (Liu et al. 2016). This means that 
for each class of  antibiotics in use, corresponding resistance now exists on MGEs. 
Judging from the lessons learned from NDM-1, the mcr-1 gene providing resistance to 
polymyxin – such as colistin – may be posed for similar development, perhaps 
signifying the start of  a post-antibiotic era (Kåhrström 2013; WHO 2014). 

The role of the environment 
It is clear that human use of  antibiotics, including overuse and misuse, is a large 
driver behind the global resistance development. However, evidence is mounting that 
resistance genes we see in pathogens today did not initially appear in the clinical 
setting, but have their origins in the environment (Martinez 2008; Wellington et al. 
2013). The external environment hosts a large diversity of  resistance genes, many of  
which have never been seen in human-associated bacteria (Allen et al. 2009; Lang et 
al. 2010; Martiny et al. 2011; Munck et al. 2015). This should not come as a surprise, 
since many of  the compounds we use as antibiotics are derived from environmental 
microorganisms. Thus, antibiotics have been part of  microbial ecosystems for much 
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longer than they have been in clinical use, and many resistance genes may have 
evolved as countermeasures against antibiotics or as protection mechanisms to 
withstand the antibiotic by the producers themselves. Along the same lines, resistance 
genes are essentially omnipresent, having been detected even in pristine environments 
such as glaciers (Segawa et al. 2012). Furthermore, resistance genes similar to those 
found in human pathogens today have been discovered in 30,000 years old 
permafrost samples (D'Costa et al. 2011), and soil bacteria harbors resistance genes 
identical to those found in pathogens – including their flanking regions (Forsberg et al. 
2012). Taken together, it seems most likely that the environment constitutes a source 
of  novel resistance determinants to human-associated bacteria (Wright 2010; Finley et 
al. 2013). 

The environment plays an important role in at least two parts of  resistance 
development: as a source of  resistance genes to pathogens, and for the dissemination 
of  resistant bacteria, including human pathogens. As described above, the 
environment can function as a resistance gene pool for pathogens. In this context, it 
can contribute arenas with sufficient selection pressure to promote recruitment of  
novel resistance determinants, but the same settings can also aid in rearrangement of  
existing resistance factors. The latter scenario may effectively create MGEs carrying 
multiple resistance genes (co-resistance), more efficient resistance gene chimeras, or 
mobilize genes that were previously bound to chromosomes. Since estimates have 
pointed to the existence of  a staggering thousand billion billion billion (1030) bacterial 
cells on earth (Kallmeyer et al. 2012), such rearrangement events are likely to happen 
continuously. However, most of  these do not occur in settings where a selection 
pressure for maintaining novel genetic rearrangement exists, and they are 
consequently not fixated in the bacterial population. The second role of  the 
environment is as a dissemination route for resistant bacteria, such as pathogens 
travelling between hosts. In this latter context, environments such as sewage 
treatment plants and agriculture are likely to be important for the spread of  
resistance (Pruden et al. 2006; 2013; Review on Antimicrobial Resistance 2015). 

Assessing risks related to environmental antibiotic resistance 
To assess the risks associated with environmental antibiotic resistance, the magnitude 
of  the contribution of  the environment needs to be quantified (Pruden et al. 2013; 
Ashbolt et al. 2013; Berendonk et al. 2015). Unfortunately, important information 
required to perform such a quantification of  risks is currently lacking. There are 
several important knowledge gaps that need to be overcome in order to enable proper 
risk assessment of  environmental antibiotic resistance (Table 1). With regards to the 
emergence of  novel resistance determinants, the understanding of  the environments 
where they appear in contexts that enable transfer to human pathogens is limited. It 
has been suggested that particular “hot-spot” environments, such as those subjected 
to pharmaceutical pollution or sewage discharges, as well as aquaculture and 
agriculture, could be potential environments for resistance emergence (Ashbolt et al. 
2013; Berendonk et al. 2015). However, it remains unclear if  these environments are 
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actually where such novel resistance factors emerge, or if  they are barely selected for 
in these settings. For a resistance determinant to be fixated in a bacterial population 
rather than being lost due to other competitive factors, a selection pressure favoring 
maintenance of  the resistance gene is likely to be the most important factor. However, 
knowledge of  selective concentrations of  antibiotics is lacking, particularly in complex 
communities (Ågerstrand et al. 2015), although these concentrations are likely to be 
below the concentrations completely inhibiting growth (Gullberg et al. 2011; 
Andersson & Hughes 2012). Furthermore, other agents than antibiotics, such as 
metals and antibacterial biocides, may indirectly contribute to selection for resistance 
determinants via co-selection (Baker-Austin et al. 2006; Wales & Davies 2015) but at 
what concentrations and in which settings is not known. This makes it complicated to 
address which environments that actually have selective potential. That said, in some 
instances selection pressures are are evident, since concentrations of  antibiotics well-
above the minimal inhibitory concentrations (MICs) for many bacterial pathogens 
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Table 1. Selected knowledge gaps hindering assessment of risks associated with 
environmental antibiotic resistance

Open question Some suggestions

Where do horizontally transferrable 
resistance determinants emerge?

Polluted environments, sewage treatment plants, 
aquaculture, agriculture (Ashbolt et al. 2013; Berendonk 
et al. 2015)

What concentrations of antibiotics and 
other toxicants are selective for 
resistance?

Determination and predictions of minimal selective 
concentrations for antibiotics (Tello et al. 2012; Gullberg 
et al. 2011; 2014; Paper II)

Which environments have the potential 
to drive resistance selection in bacterial 
communities?

Likely: humans and animals given antibiotics, industrially 
polluted environments, aquaculture 
Possible: sewage, sewage treatment plants, waste 
disposal (Ashbolt et al. 2013; Larsson 2014a)

What roles do mobile genetic elements 
play in resistance development?

Transfer of resistance between bacteria, mobilization of 
chromosomal resistance genes, rearrangement of 
existing resistance determinants (Stokes & Gillings 2011)

What concentrations of antibiotics and 
other toxicants induce horizontal gene 
transfer?

Sub-inhibitory concentrations of antibiotics (Beaber et al. 
2004; Prudhomme et al. 2006), few minimal 
concentrations determined (Jutkina et al. 2016)

What are the dissemination routes for 
resistance genes to human pathogens?

Water bodies (Lupo et al. 2012; Pruden 2014), agriculture 
and food trade (Rolain 2013; European Food Safety 
Authority & European Centre for Disease Prevention and 
Control 2013)

Which dissemination routes from 
selective environments connect to 
environments with human pathogens?

Water bodies and agriculture have large potential

How can risks associated with known 
and novel resistance genes be weighed 
against each other?

Viewpoints vary (Martinez et al. 2015; Berendonk et al. 
2015; Paper VII)
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have been measured, e.g. in sediments polluted by discharges from pharmaceutical 
manufacturing (Larsson et al. 2007; Fick et al. 2009). 

Mobilization of  novel resistance determinants is aided by the induction of  
horizontal gene transfer. Exactly which roles different MGEs play in the emergence 
of  resistance is not clear. Likely, integrons and transposons greatly contribute to the 
mobilization of  chromosomal genes to plasmids that can spread through bacterial 
communities (Poirel et al. 2009; van Hoek et al. 2011; Stokes & Gillings 2011; Il'ina 
2012). However, research on when transposases and integrases are induced, when 
horizontal transfer of  plasmids occurs, and the dependence of  these processes on the 
concentrations of  antibiotics and other toxicants is still in its infancy (Marcinek et al. 
1998; Nagel et al. 2011). It is known that the transfer of  genetic material between 
bacteria increases upon exposure to sub-inhibitory levels of  antibiotics (Prudhomme 
et al. 2006; López & Blázquez 2009; Johnson et al. 2015), an effect that has been at 
least partially attributed to the bacterial SOS response (Beaber et al. 2004; Guerin et 
al. 2009), which in turn is dependent on toxicant concentrations (Dörr et al. 2009; 
Torres-Barceló et al. 2015). That said, the lowest concentrations that cause these 
effects remain unknown (Paper II). 

Another concern is the contribution of  the environment to the dissemination of  
resistance genes and resistant bacteria (Pruden et al. 2013). To some extent, the 
environments that facilitate dissemination of  human-associated resistant bacteria are 
the same as those enabling spread of  non-resistant human pathogens. In this process, 
sewage, wastewater treatment plants, water bodies and food trade have been 
identified as important contributing factors (Fernando et al. 2010; Rolain 2013; 
Molton et al. 2013; European Food Safety Authority & European Centre for Disease 
Prevention and Control 2013; Pruden 2014). In addition, human travel is an 
important vehicle for transporting resistant bacteria around the world (Angelin et al. 
2015), which means that once resistance emerges in a pathogen at some location, it 
can quickly gain global spread. These perspectives are important for limiting the 
spread of  human-associated bacteria that have already acquired resistance. However, 
it is much less clear how harmless environmental bacteria carrying resistance genes 
disperse, and in which settings they have the possibility to interact with human-
associated bacteria under conditions that would favor transfer of  antibiotic resistance 
determinants. The dissemination routes that connect hot-spot environments for 
emergence and maintenance of  resistance genes to humans and/or animals 
constitute propagation routes for resistance into the human population, and needs to 
be delineated. Rapid progress in DNA sequencing technology has opened up the 
possibility to study environmental antibiotic resistance on a large-scale using shotgun 
metagenomics (e.g. Kristiansson et al. 2011). However, the development of  methods 
for metagenomic analysis is still in its early stages, and important tools for e.g. 
accurate taxonomic analysis are partially missing. Taken together, these obstacles 
makes it difficult to assess risks, and also to weight the risks associated with presence 
of  known versus novel resistance factors in a given microbiome (Martinez et al. 2015; 
Paper VII).  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The aims of this thesis 
The overarching ambition of  this thesis is to contribute knowledge towards the 
understanding of  how the environment is involved in the emergence and transfer of  
antibiotic resistance genes. Specifically, the aims of  this thesis are: 

• To address the need for software that can reliably detect and extract rRNA 
fragments from shotgun metagenomic data, and accurately classify them to 
at least the genus level (Paper I) 

• To broadly estimate theoretical minimal selective concentrations of  
antibiotics in complex microbial communities, providing guidance to 
regulatory efforts to prevent environmental resistance selection (Paper II) 

• To experimentally determine the minimal selective concentration of  
tetracycline in complex microbial communities, using both genotypic and 
phenotypic endpoints (Paper III) 

• To investigate if  antibiotics exert a direct selection pressure for resistant 
bacteria in Swedish sewage treatment plants (Paper IV) 

• To determine if  antibiotics, biocides and/or metals could co-select for 
antibiotic resistance in sewage treatment plants (Paper IV) 

• To understand how high concentrations of  antibiotics resulting from 
pollution with pharmaceutical waste shape the resistome of  environmental 
microbial communities (Paper V) 

• To assess the context and potential mobility of  resistance genes in polluted 
environments (Paper V) 

• To investigate the extent to which resistance genes are carried within the 
gut microbiome of  visitors to geographical regions with higher prevalence 
of  resistant bacteria at their return to Sweden (Paper VI) 

Through these specific investigations, the thesis contributes knowledge towards the 
identification of  environments that have potential to present selective conditions for 
antibiotic resistance to bacterial communities. The thesis also aims to shed light on 
the role of  horizontal gene transfer in environmental resistance development, and 
seeks to verify suggested dissemination routes for resistance genes. Finally, the 
ultimate objective of  the thesis is to synthesize this knowledge to enable better risk 
assessment of  environmental antibiotic resistance (Paper VII). 
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Metagenomics in antibiotic resistance research 

Studying the environmental resistome 
Resistance patterns among bacteria have traditionally been studied using culturing on 
media selecting for resistant colonies. This method has the advantage of  showing 
phenotypic resistance directly and allows connection of  physiological features to 
genetic information using PCR or genome sequencing. It also provides for isolation 
of  resistance plasmids, which can give unambiguous insights into co-resistance 
patterns and the degree of  transferability of  resistance genes (see e.g. Flach et al. 
2015). The isolate culturing approach works well for the study of  many resistant 
pathogens, which can relatively easily be cultivated under laboratory conditions. 
However, the vast majority of  microorganisms in nature cannot be cultivated, at least 
not by standard methods (Amann et al. 1995). This limits the possible scope of  this 
method and thereby veils much of  the diversity of  species and resistance factors, 
particularly in environmental communities. For this reason, culture-independent 
methods to study resistance genes in environmental samples have been developed. A 
commonly applied approach to quantify resistance gene abundances is quantitative 
real-time PCR (qPCR; Heid et al. 1996). In this method, the abundance of  an 
investigated resistance gene is quantified relative to, e.g., the abundance of  16S rRNA 
genes or the total volume of  the sample. Quantitative PCR has in this way been used 
to study resistance gene abundances in, for example, soil (Knapp et al. 2011), 
aquaculture (Tamminen et al. 2011; Muziasari et al. 2014), sewage treatment plants 
(Gao et al. 2012; Laht et al. 2014), and areas polluted by pharmaceutical pollution 
(Rutgersson et al. 2014). Furthermore, large-scale qPCR arrays allowing the study of  
hundreds of  resistance gene variants in parallel have been developed and applied to 
study the resistomes of  swine farms (Zhu et al. 2013). However, even in the latter case, 
qPCR is restricted to a fixed number of  resistance genes, for which sequences must 
be known to enable the construction of  PCR primers. Thus, while qPCR is highly 
sensitive and can detect resistance genes at very low abundances, it remains a 
somewhat limited and largely non-explorative approach. 

To facilitate the study of  previously undescribed genes and proteins in 
uncultivable organisms, metagenomics was developed (Handelsman et al. 1998). The 
term “metagenome” refers to the collection of  genomes from all organisms in a given 
environment (or sample), and initially their genetic content was studied by 
fragmenting the total DNA from an entire community into shorter pieces, which were 
then inserted into cultivable bacteria. The recipient strains were grown on plates 
selective for the function of  interest. For the study of  antibiotic resistance, selective 
plates containing antibiotics were used. Recipient strains surviving on these plates had 
their inserted sequences from the metagenome sequenced and further characterized. 
Using this technique, which subsequently has been named functional metagenomics, novel 
resistance determinants have been uncovered from soil (Allen et al. 2009; Lang et al. 
2010; Torres-Cortés et al. 2011; Udikovic-Kolic et al. 2014), permafrost (Perron et al. 
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2015b), sea water (Hatosy & Martiny 2015), cow manure (Wichmann et al. 2014), 
birds (Martiny et al. 2011), sewage sludge (Munck et al. 2015), and the human gut 
(Sommer et al. 2009). Functional metagenomics has taught us that that there is an 
enormous diversity of  resistance genes that we have not yet encountered in human 
pathogens, even in the human gut (Sommer et al. 2010; Moore et al. 2011). Still, there 
are important limitations of  functional metagenomics that calls for the use of  
alternative approaches. First, it is highly time-consuming to perform the experiments 
needed for a single screen at a sufficiently large scale. Second, since resistance genes 
are not that common in most environments, very large numbers of  DNA recipients 
often need to be screened to detect a single resistance gene to a given antibiotic. 
Third, for a resistance gene to actually confer phenotypic resistance, the entire gene 
(or at least most of  it) must be captured inside the DNA fragment inserted, as it will 
otherwise not remain functional. Furthermore, the gene must also be compatible with 
the cultivable host, both in terms of  functionality and gene expression. Finally, even 
though the number of  resistant recipients can be counted and compared between 
samples, this does only provides a rough measure of  the resistance gene abundances 
in the studied communities, making functional metagenomics less suitable for 
quantitative resistance gene screening. 

The drawbacks of  functional metagenomics suggest that a more convenient 
method to study the metagenomes of  different communities is needed. Luckily, an 
alternative methodology exists, enabled by rapidly declining costs of  DNA 
sequencing throughout the last decade (Metzker 2010; Hayden 2013; Heather & 
Chain 2016). In this approach, the total metagenomic DNA of  a community is  
randomly fragmented and sequenced by high-throughput DNA sequencing, often 
referred to as shotgun metagenomics (Wooley et al. 2010). The resulting DNA fragments 
can be analyzed using similarity searches to sequence databases, or assembled into 
longer stretches of  DNA, allowing for the reconstruction of  complete genes from the 
relatively short read fragments. However, although shotgun metagenomics is less 
limited to particular predetermined target genes than qPCR, it still essentially 
requires that the obtained genes, or close variants of  them, are present in a reference 
database to enable assignment of  them to a (predicted) resistance phenotype. That 
said, since sequence data can be stored and re-used later, shotgun metagenomics 
allows for retrospective analysis of  resistance genes identified after the initial study  
has been completed (see e.g. Forslund et al. 2013). Furthermore, using homology-
based methods novel resistance genes can be unraveled which may then be confirmed 
in the laboratory, as has been done for the qnr fluoroquinolone resistance genes 
(Boulund et al. 2012; Flach et al. 2013). Shotgun metagenomics has been applied to 
quantify the abundances of  many resistance genes in parallel, for example in 
environments subjected to pharmaceutical pollution (Kristiansson et al. 2011), sewage 
treatment plants (Yang et al. 2013; 2014), sea water (Port et al. 2012), tap water (Shi et 
al. 2013), and the human gut (Forslund et al. 2013; Hu et al. 2013). However, in terms 
of  measuring specific gene abundances, metagenomics is less sensible than qPCR, 
particularly when only a couple of  million reads are generated per sample. In this 
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respect, Illumina sequencing was a major step forward compared to pyrosequencing, 
simply due to the lower costs associated with each read. Limited sequencing depth 
affects the sensitivity to estimate both the abundances and diversity of  resistance 
genes in the sample, which will be discussed in a later section. 

One major advantage of  shotgun metagenomics compared to qPCR and 
functional metagenomics is the ability to detect changes in taxonomic composition 
and other functional genes, for example those involved in horizontal gene transfer. 
This can provide clues about whether the resistance genes detected have potential to 
move between bacterial cells or not. Furthermore, through metagenomic assembly it 
is sometimes possible to uncover co-resistance patterns, or even completely novel 
resistance plasmids (Kristiansson et al. 2011). In this thesis, the main method for 
studying the resistance patterns of  microbial communities has been shotgun 
metagenomics (Papers III–VI). In addition, culturing approaches and/or qPCR have 
been applied to complement the metagenomic data in Papers III and IV, and 
culturing followed by whole-genome sequencing was used in Paper VI.  

Obtaining sequence data from microbial communities 
As a first step of  any metagenomics analysis, DNA must be extracted from the 
community. This is usually done using standard DNA extraction kits. However, as 
environmental samples comprise a large diversity of  different bacteria and also may 
contain contaminants of  different kinds, this process is not always straightforward. In 
addition, although sequencing protocols nowadays require less than a µg of  DNA, 
amplification of  the DNA may be needed to obtain sufficient quantity or 
concentration. It is important to understand that the extraction protocols and 
amplification strategies (if  used) can bias gene frequencies, as not all bacterial species 
are affected equally by the reagents used. Bias has been shown to result from 
differences between DNA extraction kits (Knauth et al. 2013; McCarthy et al. 2015), 
storage of  samples (Choo et al. 2015; McCarthy et al. 2015), DNA amplification kits 
(Pinard et al. 2006), as well as due to biological variation of, for example, GC-content 
(Dohm et al. 2008). All these factors contribute noise to the samples already before the 
sequencing is taking place. However, different sequencing techniques also produce 
different results, partially because of  differences in sequenced length for each 
fragment, but also due to the different methodologies used to determine the 
nucleotides (Glenn 2011). In this thesis, Illumina sequencing has been employed 
exclusively, so in this respect samples should be comparable. However, since different 
extraction kits have been used (and in the case of  Paper V also DNA amplification), 
there might be biases between studies and sample types, and thus cross-study 
comparisons should be interpreted with some caution. Although the exact details 
have varied somewhat between studies, the sequence data has, before any other 
analyses have been performed, been filtered with respect to sequencing adapters and 
low-quality reads. In Paper V, PETKit (Bengtsson-Palme 2012) was used for read 
trimming and filtering, but in Papers III, IV & VI, this was replaced by a software 
called Trim Galore! (Babraham Bioinformatics 2012). Trim Galore! is faster, offers a 
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higher degree of  flexibility, and can remove remnants of  the Illumina sequence 
adapters from the data in a single step, and was therefore preferred over PETKit in 
the later studies. All analyses of  sequence data in all studies of  this thesis are based on 
the quality-filtered reads obtained after this filtering step. 

Detecting and quantifying resistance genes in metagenomes 
Gaining insights into the resistance gene content of  a microbial community from 
sequence data requires the ability to detect resistance genes among sequence 
fragments derived from a multitude of  different genes. This is achieved through 
similarity searches, employing the principle that genes that share homology often 
perform similar functions. This principle is at the heart of  bioinformatic methods, but 
depending on the questions asked, its usefulness differs. Often, changes of  only a few 
amino acid residues in a protein can alter substrate preferences (Smooker et al. 2000; 
Johnson et al. 2001), binding sites (Glaser et al. 2005; Dabrazhynetskaya et al. 2009) or 
the overall functions (Atkinson & Babbitt 2009; Bianchi & Díez-Sampedro 2010) of  
certain proteins. Therefore, the validity of  the assumption that a read matching to a 
protein in a reference database comes from a gene encoding a protein with the same 
function is dependent on how similar the read is to the reference sequence. This 
means that the choice of  method for assigning function to metagenomic reads 
depends on which stringency one aims for. In the case of  mobilized resistance genes, 
their sequences show limited variation once they have appeared on MGEs (Pal et al. 
2014). Chromosomal resistance genes (and other chromosomal genes as well) tend to 
have a lesser degree of  conservation between species, and it is therefore harder to 
detect non-mobile resistance genes with certainty than mobilized ones. Because of  
the inherent dependency on sequence similarity, selecting an appropriate sequence 
identity cutoff  for calling a matching read a resistance gene becomes crucial 
(Martinez et al. 2015). At the same time, reads come with a certain degree of  
sequencing errors, and there might be slight differences between resistance genes that 
do have the same function. Therefore, one wants to allow to a certain degree of  
mismatches between the read and the reference sequence – the question is: how large 
can this difference be if  stringency is to be maintained? The answer to that question 
depends on how similar resistance genes known to carry out the same function are. 
However, the percent identity of  functionally verified resistance genes within the 
same group varies substantially (Figure 1). The average sequence identity between 
sequences associated with the same gene name and function differs between 68% and 
completely identical, and the lowest identity between two sequences with the same 
gene name can be as low as 52.8% (the vanSG vancomycin resistance gene). However, 
applying a universal cutoff  of  50% sequence identity would produce an immense 
number of  false positive hits. Using the CTX-M beta-lactamase as an example, 
performing a BLAST search (Altschul et al. 1997) against the NCBI protein database 
(NCBI Resource Coordinators 2015) with the CTX-M sequences as queries yields 
more than 2000 matches at a 50% identity cutoff  (requiring 30 matching amino 
acids, corresponding to the length of  a typical Illumina read). Many of  these 
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sequences belong to other classes of  beta-lactamases, indicating that this cutoff  would 
not be feasible. 

Indeed, there is not foolproof  approach to make sure that a read comes from a 
functional resistance gene. Even if  100% identical to a resistance gene, the read only 
represents a part of  the gene sequence, and the gene the read is derived from may, for 
example, be truncated and thus non-functional. However, as seen in the example with 
CTX-M, it is important that the cutoffs are not set too low to retain stringency. Thus, 
requiring sequence identity of  80-95% is probably warranted. Furthermore, the 
larger the datasets grow, the more computing resources are required to process them. 
Read mapping allowing for a large number of  mismatches is computationally much 
more expensive than searching for high-identity matches. Thus, the choice of  cutoff  
value becomes a tradeoff  between speed, sensitivity and stringency. In this thesis, the 
Vmatch software (Kurtz 2010) has been used for matching reads to reference 
databases of  resistance genes. Vmatch utilizes suffix trees, which are extremely 
efficient data structures for matching reads with high identity to reference data. 
Generally, a cutoff  of  two amino acid mismatches per read has been used, 
corresponding to a percent identity of  90-94%, depending on the read length. To 
avoid missing known mobile resistance genes, the database therefore includes all 
confirmed variants of  each gene, meaning that a read matching to any of  these 
variants has been counted as a resistance gene fragment. 

To quantify resistance gene abundances, the reads mapped to resistance gene 
variants have been summed for each resistance gene type (i.e. individual gene names). 
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This yields a raw number of  reads associated with each resistance gene type in every 
sample. To avoid overestimating the abundance of  long genes (which will recruit 
more matching reads simply because there are more amino acids to align to), each 
count has been divided by the length of  the reference gene. Furthermore, since 
samples are sequenced to varying depth, i.e. the total number of  reads generated 
differ, and may not contain similar proportions of  bacteria, the length-normalized 
counts have been further divided by the number of  bacterial 16S rRNA sequences in 
each sample, and finally divided by the length of  the 16S rRNA gene. The end 
product is a number that represents the number of  reads matching to a resistance 
gene per bacterial 16S rRNA. These numbers are more comparable between 
samples, and can also to some degree be compared to values from qPCR studies 
normalized in a similar way. 

It should be noted that read mapping against a reference database is not suitable 
for detecting novel resistance genes, for reasons outlined earlier. To successfully 
predict novel resistance determinants not yet present in the database computationally, 
prior knowledge of  the specific gene type is, in principle, required. Through modeling 
of  conserved motifs, discovery of  novel resistance proteins is possible (Boulund et al. 
2012), but without very specific models for the genes studied the risks of  over- and 
under-prediction are high. Instead, functional screening for novel resistance genes is 
more likely to arrive at useful results (Allen et al. 2009; Sommer et al. 2009; Munck et 
al. 2015), since computational predictions nevertheless need to be tested in the 
laboratory to have their function verified (Flach et al. 2013). 

Databases for resistance genes 
In addition to the methodological aspects regarding gene quantification from 
metagenomic data, the choice of  reference databases also has important implications 
for the quality of  the information derived. Since annotation based on bioinformatic 
analysis of  sequence similarity never will be more accurate than that of  the reference 
sequences, selecting a reference database with high-quality annotation is crucial to 
arrive at relevant conclusions. Simply put, if  the database only contains resistance 
genes against beta-lactams, you naturally cannot expect results to cover the full range 
of  resistance genes in the sample, and the total resistance gene content in that 
environment will likely be grossly underestimated. On the other hand, if  the database 
contains genes incorrectly predicted to have resistance functions, the resistance gene 
abundance of  the sample will be overestimated. A number of  databases containing 
antibiotic resistance gene information exist. An often used resource, particularly in 
the early papers using metagenomics to investigate antibiotic resistance, is the 
Antibiotic Resistance Genes Database (ARDB), established in 2008 (Liu & Pop 2009). 
However, a few problems exist with ARDB. Most prominently, its last update was in 
July 2009, meaning that any resistance gene discovered after that date is not included 
in the database (this includes e.g. the NDM-1 carbapenemase mentioned earlier). In 
addition, the ARDB does not make any difference between resistance genes with a 
confirmed resistance function and those predicted to confer resistance based on 
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homology. Thus, the database may contain sequences that in fact are not resistance 
genes. The ARDB has subsequently been structured by resistance types and had 
some obviously erroneous sequences removed (Yang et al. 2013), and this version of  
the database remains in use (e.g. in Ma et al. 2016). However, the basic problems of  
the database being outdated and that the majority of  sequences do not have their 
functionality demonstrated prevails also in this version. The developers of  ARDB 
instead recommend the use of  the Comprehensive Antibiotic Resistance Database 
(CARD; McArthur et al. 2013). This database is still in active curation and is possibly 
the most comprehensive resource for antibiotic resistance gene information available. 
However, although CARD is based on thorough curation, it does not clearly separate 
experimentally verified and predicted entries. Furthermore, it is unclear if  the genes 
in the database have been found on MGEs or only have been detected on 
chromosomes. That said, the use of  a single reference sequence for every resistance 
gene increases the likelihood that each sequence has been confirmed to confer 
resistance in at least some species. Similar problems also haunts the ARG-ANNOT 
database (Gupta et al. 2014), although to a much larger extent. The ARG-ANNOT 
database employs what they refer to as “relaxed search criteria” to identify resistance 
genes, which in reality means that the database contains a multitude of  sequences 
with poor annotation information, and that many entries are unlikely to be functional 
resistance genes. The value of  ARG-ANNOT for identifying true resistance genes is 
thus limited. A more stringent approach to this has been taken by the ResFinder 
(Zankari et al. 2012) and Resqu (1928 Diagnostics 2012) databases. Both these 
databases only contain sequences of  acquired antibiotic resistance genes present on 
MGEs. However, while ResFinder does not pose any experimental validation criteria 
for entries, Resqu also requires each gene to have been experimentally verified for 
inclusion in the database. That said, a drawback associated with Resqu is that it has 
not been updated since 2013, while ResFinder is  still actively curated. In this thesis 
(Papers III-VI), we have used the Resqu database as reference, though in many cases 
we have also verified results against the ARDB and CARD databases. 

In terms of  resistance genes against other compounds that may act as co-selectors 
for antibiotic resistance, such as antibacterial biocides and metals, the available 
database options are more scarce, particularly for biocides. For metals, scattered 
efforts to create databases for particular metals exists, for example for arsenic (Cai et 
al. 2013) and copper (Li et al. 2014). However, in none of  these cases actual verified 
function was required for inclusion, and sequences were instead included based on 
their annotation and similarity searches. Furthermore, there have been attempts to 
define broader sets of  detoxification proteins (Bengtsson-Palme et al. 2014a), but such 
approaches are not well suited for annotating short-read metagenomic data. The lack 
of  comprehensive databases for potential co-selective agents spurred our 
development of  the BacMet database of  resistance genes against antibacterial 
biocides and metals (Pal et al. 2014). This database contains information on 
experimentally verified resistance genes, as well as a separate part covering resistance 
genes predicted by similarity searches. Since this is to date the only comprehensive 

 14



Bengtsson-Palme J   –   Antibiotic resistance in the environment

curated resource of  biocide and metal resistance genes in bacteria, it has been used 
for the identification of  such genes in this thesis (Paper IV). 

How the database content affects results 
Depending on the database used, reported resistance gene abundances may differ, 
despite that the same bioinformatics protocols are applied. For example, ARDB, 
CARD and Resqu report radically different numbers of  resistance genes in the 
human gut and sediment from a Swedish lake (Figure 2). Resqu consistently reports 
the lowest numbers, likely since it only contains resistance genes with a verified 
resistance function that have been shown to be present on mobile genetic elements, 
and thus excludes many generic efflux pumps that may confer low-level antibiotic 
resistance. From a risk perspective, the mobile resistance genes are probably the most 
relevant to detect and quantify. Furthermore, many of  the multidrug efflux pumps 
are relatively well conserved between variants having and not having capacity to 
export antibiotics (Martinez et al. 2015). Using the full CARD database consistently 
reports resistance gene counts two to three times higher than ARDB, while the 
version of  CARD with target sequences removed reports roughly the same results as 
ARDB (although not for the lake sediments). 

The reason why the full CARD database suggests much higher abundance of  
resistance genes is that in addition to genes that actually confer resistance thanks to 
their function, it also include target genes with mutations providing resistance. Genes 
containing such point mutations indeed enable their carrier to survive antibiotics 
treatment, but are not transferrable between bacteria and are – importantly – very 
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similar to the susceptible variants of  the target genes. The latter means that even 
reads stemming from susceptible (“wild-type”) bacteria in a metagenome would map 
to these “resistance genes”, particularly if, e.g., a 90% identity threshold is used. 
Diluting the database with such genes means that the total resistance gene content 
will undoubtedly be overestimated, as many of  these target genes are ubiquitously 
occurring essential genes, highly conserved between bacterial species. For example, 
the rpoB gene (the target gene of  rifampicin; mutated variants are present in the full 
CARD database) is present in a single copy in most bacterial species (Dahllöf  et al. 
2000) and has thus been proposed as a possible per-genome normalization gene for 
metagenomics (Bengtsson-Palme et al. 2014a). The presence of  around one such 
“resistance gene” per 16S rRNA in the Swedish lake sediment, as reported when 
using the full version of  CARD (Figure 2) therefore seems reasonable. However, the 
vast majority of  the reads associated with these “resistance genes” will actually derive 
from antibiotic-sensitive variants of  essential target genes. 

It is important to realize that this is not a problem related to the CARD database 
per se. The database website clearly states that target genes are present among its 
sequences, and since 2015 provides a separate dataset with the target genes removed 
for use in metagenomic studies . Recently, CARD was also updated to fully separate 1

target sequences and functional resistance genes in different files. Still, if  care is not 
taken in examining the content of  the database used, this may lead to partially 
misleading conclusions, with may explain surprising results of  some studies (see e.g. 
Ma et al. 2014). 

A similar problem is the use of  general annotation pipelines, such as the 
commonly used MG-RAST (Meyer et al. 2008), that are not curated with regards to 
antibiotic resistance. The use of  MG-RAST to annotate resistance genes has led to 
some peculiar reports suggesting that almost one in 25 genes found in human feces 
would confer antibiotic resistance (Durso et al. 2012). The non-stringent identity 
cutoffs used by default in MG-RAST are likely to be one major cause of  these results. 
Similar use of  low identity thresholds in other studies has also led to unexpectedly 
high estimates of  resistance gene abundances in human feces (Nesme et al. 2014). 
This emphasizes the importance of  accounting for other factors that could explain 
unexpected results in metagenomic studies. Overall, there is a clear need for 
improved stringency with regards to database usage and parameter choices in 
metagenomics studies aiming to quantify resistance gene abundances. 

The influence of fecal contamination 
Another complication in the inference of  resistance selection in the environment is 
that the abundance of  resistance genes often is tied to the relative proportion of  fecal 
bacteria (Figure 3). This makes it difficult to infer whether an enrichment of  
resistance genes in a particular sample is due to selection for the resistance factor, or 

 This dataset was released as a response to a plenary discussion initiated by the author 1

of  this thesis at the EDAR3 conference in May 2015.
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merely the by-product of  contamination with human feces. This is also suggested 
from the sediments investigated in this thesis, where those sampled downstream a 
Swedish sewage treatment plant (STP) had both higher abundance and diversity of  
resistance genes than those sampled upstream (Figure 4). Apart from environments 
contaminated with antibiotics, human feces contains the highest abundances of  

 17

R2 = 0.82 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0% 5% 10% 15% 20% 25% 30% 35% 40% 

Re
si

st
an

ce
 g

en
es

 p
er

 b
ac

te
ri

al
 1

6S
 rR

N
A

 

Proportion of human-associated bacteria 

Figure'3.!Rela*onship!between!the!abundances!of!humanMassociated!bacteria!(classified!as!
being!present!in!the!Human!Microbiome!Project!genome!catalog)!and!an*bio*c!resistance!
genes!in!the!sewage!treatment!plant!samples!of!Paper!IV.

0% 

5% 

10% 

15% 

20% 

25% 

30% 

35% 

40% 

In
co

m
in

g 
se

w
ag

e 

Pr
im

ar
y 

sl
ud

ge
 

Su
rp

lu
s s

lu
dg

e 

D
ig

es
te

d 
sl

ud
ge

 

Tr
ea

te
d 

w
at

er
 

Sa
nd

-fi
lte

re
d 

w
at

er
 

Ka
zi

pa
lly

 la
ke

 

N
yd

al
as

jö
n 

H
um

an
-a

ss
oc

ia
te

d 
ba

ct
er

ia
 

0 

0.1 

0.2 

0.3 

0.4 

Human fe
ce

s 

Upstr
eam STP 

Downstr
eam STP 

Non-expose
d la

ke 

Re
si

st
an

ce
 g

en
es

 p
er

 b
ac

te
ria

l 1
6S

 rR
N

A

Richness of resistance genes

40 

30 

20 

10 

0

Figure'5.'Propor*on!of!humanMassociated!
bacteria!(classified!so!by!being!present! in!
the! Human! Microbiome! Project! genome!
catalog)! in!STP!sample!types!and!the!two!
lakes!of!Paper!V.

Figure' 4.' Resistance! gene! abundances!
(black! bars)! and! richness! (white! bars)! in!
sediment! samples! taken! upstream! and!
downstream!of! a! Swedish! STP,! and! human!
feces!from!Swedes.



Bengtsson-Palme J   –   Antibiotic resistance in the environment

known resistance genes investigated in this thesis, and thus the detection of  resistance 
gene enrichments in certain sample types will not tell much about selection unless 
placed into a taxonomic context, or if  the levels detected are substantially above those 
in human feces, which would also indicate selection for resistance. The latter is the 
case with, for example, the Indian lake investigated in Paper V, which harbors four 
times as much fecal bacteria than the Swedish lake (Figure 5), clearly indicating 
contamination with human feces, but at the same time contains over a thousand 
times more resistance genes than the Swedish lake, and 80 times more resistance 
genes than feces from Swedish students (Paper VI). 

Because of  the relationship between resistance genes and fecal pollution, it 
becomes important to estimate the proportion of  bacteria derived from feces in 
different environments. There is not any straightforward approach to do this, 
although several methods have been suggested. Several bacteria have been proposed 
as marker species for environmental fecal contamination (Roslev & Bukh 2011). The 
Bacteroidales order could be a suitable target for PCR-based quantification of  feces, 
both specifically from humans (Ashbolt et al. 2010; Harwood et al. 2014), but also 
from other animals (Kildare et al. 2007). However, it is not certain whether such an 
assay would be specific enough on short metagenomic read fragments. Enterococcus 
and Escherichia have also been suggested as fecal markers (Roslev & Bukh 2011), along 
with certain enteroviruses (Wong et al. 2012). Finally, human mitochondrial DNA (He 
et al. 2015) and even antibiotic resistance gene composition (Whitlock et al. 2002) have 
been used to identify pollution with human feces. Since metagenomics enables 
detection of  a wide diversity of  taxa, it has also been proposed to take a larger part of  
the community composition into account for tracking human feces contamination in 
the environment (Lee et al. 2011). One possibility would thus be to use the bacteria 
present in the human gut microbiome genome catalog (Human Microbiome 
Jumpstart Reference Strains Consortium et al. 2010) as reference. This approach (used 
for Figures 3 and 5) will, however, only provide an upper bound for the human-
associated bacterial content, as many of  the species present in that genome catalog 
can exist also in the gut microbiome of  other species, or in the external environment. 
Finding appropriate fecal markers remains a hurdle for using metagenomics in 
environmental resistance gene research, and a perfect solution to the problem may 
not even be possible. 

Unsolved statistical problems for metagenomics 
Once gene counts have been established, the next aim is to identify differences in 
resistance gene abundances between samples. Although this sounds straightforward, a 
number of  technical obstacles remain. The most fundamental problem affecting the 
statistics of  metagenomic data is that the data is high dimensional in the sense that 
there are generally many more observed genes than biological replicates. 
Furthermore, the variation between samples in the same group can be fairly large, 
meaning that even higher numbers of  replicates are required to detect statistically 
significant differences. However, because sequencing is relatively expensive, a tradeoff  
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exists between sufficient sequencing depth for quantification of  genes in each sample 
and the number of  replicate samples sequenced. Finally, since metagenomics 
generates counts, the resulting data is discrete, and many existing statistical tests 
assume continuous, normally distributed data. Thus, strategies to turn up the signal 
and wipe out the noise (Gabriel 2002) are required to gain information from the data. 
The last few years have seen tremendous development of  statistical methods for 
metagenomic analysis (Jonsson et al. 2016), somewhat reminiscent of  the early 
method advances in microarray analysis (Jeffery et al. 2006). However, many of  those 
methods provide a descriptive picture of  the studied community rather than 
highlighting statistically significant differences (Dinsdale et al. 2013). Interestingly, it 
took about ten years of  microarray usage for statistical methods to “catch up” and 
become standardized (Bumgarner 2013), and it is reasonable to assume that shotgun 
metagenomics faces a similar development towards robust standardization within the 
next few years. 

Data transformation approaches 
Currently, the statistics for handling metagenomic count data are centered on three 
fundamentally different approaches: standard tests on transformed counts, tests 
assuming distributions that account for the features of  count data, and non-
parametric tests. Data transformations are often used to change the distribution of  
the data so that it better fits the normal assumptions of  standard tests, such as t-tests 
and ANOVA. For count data, the variance is dependent on the mean, and data 
transformations can also be used to remove this relationship. Such variance-
stabilizing transforms include the square-root transform and various logarithm 
transforms. Note that logarithm transforms “penalize” very large (and very small) 
values harder than the square root transform, and thus analysis of  logarithm-
transformed data is less influenced by the most abundant genes. Transformation 
methods allow to use standard microarray analysis tools on count data, as 
implemented in e.g. the Voom package, which estimates and weights the mean-
variance relationships of  each observation and subsequently analyze the transformed 
counts using the Limma analysis pipeline (Smyth 2004; Law et al. 2014). One 
problem that becomes apparent when applying a logarithm transform to 
metagenomic count data is the large number of  zeros present. Zeros lead to two 
problems. The first is practical – zeros cannot be logarithm transformed, and the 
second is that a zero can either represent that a gene is not present at all, or that it is 
so rare that the sequencing depth was not sufficient to detect it. The transformation 
problem can be solved by adding a pseudocount to all observations in the dataset. 
However, the size of  the pseudocount will influence effect sizes (and thus statistical 
significances), particularly when overall gene counts are low, which have led some 
authors to advise against the use of  transformation methods for count data in those 
cases (O’Hara & Kotze 2010). The latter problem is harder to deal with, and is 
particularly troublesome when estimating the richness and diversity of  taxa or genes, 
a problem we will return to later. Efforts to handle zero-inflation have been made in, 
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for example, the metagenomeSeq package, which uses a zero-inflated Gaussian 
model to correct for undersampling-related bias (Paulson et al. 2013). 

Non-parametric and count-adapted tests 
As an alternative to data transformation, statistical tests that do not make as specific 
assumptions on the distribution of  the data can be used. These are referred to as non-
parametric tests (Schlenker 2016), and include e.g. tests based on the ranks of  the 
observation rather than their actual values. These methods are – for better and worse 
– less sensitive to large variability within the datasets, and are also much more robust 
to outliers in the data. Other non-parametric tests include permutation tests that 
resample the data instead of  assuming that it follows any particular distribution 
(Rodriguez-Brito et al. 2006; White et al. 2009; Bengtsson-Palme et al. 2016). Finally, 
there are also statistical tests designed to better handle count data, usually based on 
assumptions of  Poisson or negative binomial distributed data, such as Shotgun-
FunctionalizeR (Kristiansson et al. 2009), which allows fitting of  generalized linear 
models to metagenomic count data. Such models are also implemented in the 
RNAseq analysis packages edgeR (Robinson et al. 2010) and DESeq (Anders & 
Huber 2010), which couple the variance and mean either naïvely (edgeR) or by 
determining the optimal coupling for each individual gene (DESeq). Both these tools 
are developed for RNAseq data, and although this technique generates similar count 
data, their assumptions may not be entirely valid for metagenomic analysis. A recent 
evaluation of  different statistical approaches to identify significantly differing genes 
between metagenomes concludes that the number of  replicates, the effect sizes and 
the gene abundances greatly affect the outcomes of  each method, and that no single 
method is suitable for all metagenomic datasets and questions (Jonsson et al. 2016). 
That said, the methods based on Poisson or negative binomial distributions used for 
RNAseq overall performed better, particularly with small group sizes, with DESeq 
and overdispersed Poisson linear models coming out on top. Surprisingly, ordinary 
square-root transformed t-tests performed relatively robustly also at small group sizes. 
However, the evaluation also shows that non-transformed methods (standard t-tests, 
Fisher’s exact test and the binomial test) perform poorly and should be avoided. 
Furthermore, non-parametric methods also perform subpar and should in most cases 
be replaced by methods based on transformation or appropriate modeling of  counts. 

Normalization of data to make samples comparable 
Another problem related to metagenomics (and many other types of  large-scale 
techniques) is that the sequencing libraries may be of  vastly different size, which 
influences the number of  counts from different samples. Furthermore, the 
composition of  samples may be different, and technical factors can bias the sample 
processing. To make libraries from different samples comparable, normalization is 
applied. However, depending on the research question, different means of  
normalization can be appropriate. If  one is merely interested in compensating for the 
different size of  the samples, simply dividing each count by the total number of  reads 

 20



Bengtsson-Palme J   –   Antibiotic resistance in the environment

of  each library, generating, for example, a count-per-million value, may be sufficient. 
However, when investigating antibiotic resistance it is often more relevant to 
determine the counts relative to the bacterial fraction of  the sample (trying to exclude 
contributions from e.g. eukaryotes and viruses). For this purpose, a bacterial marker 
gene is often used for normalization, most commonly the SSU 16S rRNA, resulting 
in gene counts per 16S rRNA. However, although the rRNA genes are well studied 
and often applied for normalization purposes, they can occur in multiple copies 
within the same genome (Klappenbach et al. 2000; Větrovský & Baldrian 2013; Angly 
et al. 2014), and thus other, single-copy, bacterial marker genes have been suggested 
(Sunagawa et al. 2013; Manor & Borenstein 2015), such as the ribosomal protein rpoB 
gene (Dahllöf  et al. 2000; Bengtsson-Palme et al. 2014a). However, since these 
normalization methods have not yet gained traction, and because of  the legacy of  
qPCR studies, the 16S rRNA remains the most common normalization gene for 
studies of  bacterial communities. One can imagine other relevant normalization 
strategies, comparing each gene count to, for example, the total plasmid-borne 
material in the sample, or the total content of  resistance genes. Importantly, the 
choice of  normalization method should be based upon the questions asked, and how 
these questions are best answered. It is also important to consider whether there are 
variations between samples that will not be compensated for under the normalization 
method chosen. Such variation may for example be the result of  differing 16S rRNA 
copy numbers, or that not all variants of  the marker gene of  choice are detected by 
the methods used (a common problem in metagenomic studies employing short-read 
sequences, see Paper I). There are also completely different approaches to 
normalization used in RNAseq, based on minimizing the overall fold-change between 
experiments, thereby attempting to reduce technical noise (Robinson & Oshlack 
2010). Similar thoughts have been carried over into recent metagenomic analysis 
packages (Sohn et al. 2015), although the task of  identifying a subset of  genes that can 
be assumed to be stable between samples is not as straightforward in data from 
communities comprised of  a mixture of  species. 

An additional factor that may also influence gene abundance estimates based on 
sequences mapped to a reference database, is the length of  the reference genes. If  this 
is not compensated for, longer genes may recruit more reads simply by chance. This 
effect is not relevant to compensate for if  one only compares data between samples, 
but if  the abundance levels within each sample are compared, taking gene length into 
account becomes appropriate. This type of  normalization makes sense, but whether 
or not it is meaningful to compensate for it in real situations is debated (Rapaport et 
al. 2013; Dillies et al. 2013). Some authors have suggested that compensating for gene 
lengths may even be detrimental to differential analyses in RNAseq data (Oshlack & 
Wakefield 2009), although if  the same argument is valid also for metagenomic data is 
unclear. 
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Correction for multiple testing 
Regardless of  which method that is used to determine which genes that are 
significantly enriched in a group of  samples, one p-value will be obtained for each 
gene tested. This means that with a large reference database, hundreds or thousands 
of  tests will be performed. Since the p-value represents the likelihood of  obtaining a 
certain result by chance, given certain model assumptions (Pearson 1900), performing 
multiple tests will increase the probability of  obtaining false positive observations 
tremendously (Noble 2009). Therefore, large experiments with many measurements, 
such as using metagenomics to detect resistance genes, require some form of  
correction for multiple testing. One way of  doing this is to simply multiply each p-
value with the number of  tests performed (i.e. the number of  genes investigated), 
referred to as the Bonferroni correction (Dunn 1959; 1961). However, in many 
explorative studies the Bonferroni correction is regarded to be too harsh, and 
therefore less stringent approaches, such as the Benjamini-Hochberg false discovery 
rate, are commonly used in large-scale experiments to control the number of  false 
positive observations (Benjamini & Hochberg 1995). 

With this in mind, a simplistic approach (log-transforming the data, followed by 
standard paired or unpaired t-tests) has been chosen for the data analysis in this 
thesis, which should be reasonably robust against false positive detections. 
Furthermore, to account for the large number of  genes investigated, and thereby the 
large number of  tests performed, the p-values for every gene have been corrected 
using the Benjamini-Hochberg false discovery rate (Benjamini & Hochberg 1995; 
Noble 2009). 

Abundance and diversity of resistance genes – the risk perspective 
Many studies of  antibiotic resistance has focused on a few target genes analyzed by 
e.g. qPCR to determine their relative abundance in different environments (e.g. 
Knapp et al. 2011; Laht et al. 2014; Muziasari et al. 2014; Rutgersson et al. 2014). This 
provides good estimates for how common these particular genes are in a sample, but 
contributes no information on whether there are other genes present in the same 
sample or not. Thus, estimating the total resistance gene abundance and diversity in a 
sample using e.g. qPCR would require an overwhelming experimental effort. 
Metagenomics is better suited to achieve a more complete picture both, but is of  
course still limited to detection of  the genes present in the reference database used. 
From a risk perspective, the relation between abundance and diversity is complicated. 
High abundances of  a few resistance genes towards a single compound would likely 
be indicative of  a direct selection pressure for those genes. If  there are only a few 
highly abundant genes present, but they encode resistance towards different 
antibiotics, this suggest co-selection, perhaps of  a single MGE containing all these 
genes together. Inferring the selection pressure is in this situation much more 
complicated, as there could be yet other genes on a plasmid that are selected for, 
which may have little to do with antibiotic resistance. Finally, high abundances of  
many different resistance genes against several classes of  antibiotics are suggestive of  

 22



Bengtsson-Palme J   –   Antibiotic resistance in the environment

selection by multiple antibiotics, either at the same time or consecutively. However, 
this scenario could also arise by extensive co-selection, particularly if  the fitness cost 
of  maintaining resistance genes is low. 

In the context of  risks to human health, this has a number of  implications. If  we 
first consider the dissemination of  resistant pathogens through the environment, the 
risks associated with those would be connected primarily to high abundance rather 
than diversity, simply due to that larger numbers of  resistant pathogens increase the 
likelihood for human exposure to them. The diversity of  resistance genes is from this 
perspective of  less concern than the total abundance, or the abundance of  resistance 
genes against the clinically most relevant antibiotics. However, if  we instead consider 
the risk for recruitment of  resistance genes into pathogens, high abundances of  
resistance genes simply implicates that the number of  potential donors of  
transferrable resistance genes is high (Figure 6). Furthermore, high diversity of  
resistance genes means that there are many potential resistance genes to donate. Thus 
a combination of  high diversity and abundance would be worst from a resistance 
recruitment perspective, as this means that there are many resistance genes and many 
potential donors that could transfer their resistance to pathogens or other human-
associated bacteria. Finally, we may also consider the implications for resistance 
emergence. Novel – or more efficient – resistance mechanisms may emerge anywhere, 
at any time. However, critical for the fixation of  new resistance genes in a population 
is the presence of  a selection pressure for maintenance. High diversity of  resistance 
genes suggests that resistance genes are maintained in the community (perhaps even 
in the absence of  direct selection), and thus high diversity rather than abundance 
would point to risk environments for maintenance of  novel resistance factors. It 
deserves to be noted in this context that there does not seem to be many 
environments with higher resistance gene abundances than in the human gut 
microbiome, but lower diversity (Figure 6). There are, however, several environments 
investigated in this thesis with higher diversity than the human gut, but the same or 
lower abundance. If  a selection pressure is applied to such an environment, there is a 
large potential that the community can respond by increased resistance gene 
abundances, and that it thus serves as a reservoir of  known, and potentially novel, 
resistance genes. A wide diversity of  resistance genes also suggests a certain degree of  
resilience of  the community to perturbations, particularly in the form of  antibiotic 
exposure, since there is already an arsenal of  protective measures present in among 
its populations. It also suggests that there may be additional, uncharacterized 
resistance factors present in the community, and in this way known resistance genes 
may serve as proxies for those not yet described. 

The reasoning that a large diversity of  resistance genes would render a 
community more resilient to antibiotics exposure (and perhaps also other 
perturbations) is an extension of  the insurance hypothesis from metacommunity 
theory (Loreau et al. 2003), also referred to as response diversity (Elmqvist et al. 2003). 
This hypothesis postulates that higher species diversity leads to better adaptive 
capability of  the community to disturbances. Whether similar response diversity can 
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be assumed for resistance genes is not clear, but as they constitute a functional trait, it 
could be argued that considering resistance gene diversity is a more direct measure 
than determining species diversity. However, species diversity per se is also related to 
risk for resistance recruitment to pathogens. A taxonomically highly diverse 
environment increases the numbers of  both potential donors and recipients of  
resistance factors. Thus, large abundance and diversity of  resistance genes in a 
community that also hosts a variety of  taxa would, at least theoretically, be of  higher 
risk for human health than if  the number of  species is low. Finally, it is important to 
note that while the abundances of  resistance genes seem to go down dramatically 
when selection pressure is removed, there is compelling evidence that complete 
removal of  resistance genes takes vastly longer time to happen, if  ever (Levin et al. 
1997; Enne et al. 2001; Björkholm et al. 2001; Enne et al. 2004; Perron et al. 2007; 
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Andersson & Hughes 2010). Thus, once a resistance gene has been enriched in a 
community, it may never be eradicated (Andersson 2003). This means that an 
environment that has once been subjected to antibiotic selection increasing the 
abundances of  a diversity of  resistance genes is more likely to remain diverse also 
after the selection pressure has been removed. It may in this way serve as a reservoir 
for resistance recruitment long after resistance gene abundances have returned to the 
levels of  comparable environments not exposed in the first place. 

Measuring the diversity of resistance genes 
It was established above that not only the abundance of  resistance genes may be of  
importance for determining risks, but also the extent of  different genes found. 
However, it is unclear exactly how to establish the diversity of  resistance genes, for 
example whether or not the relative abundances of  different genes should be taken 
into account. Similar difficulties with estimating species richness in different 
communities have haunted ecology for more than half  a century (Magurran 2004). A 
plethora of  diversity indices designed for community ecology exists and are currently 
in use, each with its own advantages and shortcomings. The most basic such 
measurement would be to simply count the number of  different species (or resistance 
gene types) encountered, establishing what is called the richness of  the sample. This, 
however, is not without problems. First of  all, the richness is intimately connected 
with sampling effort (in the metagenomics case the size of  the sequencing library). 
One could account for this by normalizing the abundances of  each gene in all 
samples to the size of  each sample, thereby making them comparable, and then only 
count entries with a normalized abundance corresponding to finding at least one 
copy of  the gene or species in the smallest sample. However, while this reduces the 
dependency on library size, it instead introduces a bias towards the most abundant 
entities. For this reason, rarefaction methods, in which the number of  different 
species (or resistance gene types) encountered are plotted against the sampling effort 
required to detect them, have instead been suggested to deal with this problem 
(Hurlbert 1971; Hughes & Hellmann 2005). Other authors have argued that this 
practice is inadvisable for detecting differences in diversity between communities, and 
that mixture models are better suited for the task (McMurdie & Holmes 2014). 

If  we also want to account for the how evenly distributed the resistance genes in a 
community are, we need to consider the broad variety of  ecological diversity indices. 
Commonly used indices to assess species diversity have been translated into ecology 
from information theory, although the rationale for their relevance on biological 
communities is somewhat questionable (Hurlbert 1971). In many studies of  species 
diversity, the Shannon (Shannon & Weaver 1949) or Simpson (Simpson 1949) 
diversity indices have been employed. Both take the number of  different species (or 
resistance genes) and their relative abundance into account, and thus entwine these 
two properties in a single number (Magurran 2004). Essentially, the Shannon index 
measures the entropy of  the community (how far from evenly distributed the species/
resistance genes are), while the Simpson index reflects the probability that two 
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sampled individuals in a community would belong to the same species (or resistance 
gene type). 

Both the Simpson and Shannon diversity indices convey information about the 
structure of  the studied community. Yet, are these properties relevant for ranking risks 
associated with resistance genes? Let us consider what a diversity index means in 
practical terms. Assume that you enter a forest looking for orchids. Knowing that the 
forest contains ten different orchid species (the richness) and 100 orchid individuals 
(total abundance) does not tell you much about whether you will be able to spot all 
ten species quickly or not, as some of  them might be represented by a single 
individual. A diversity index would provide more information about this, as they also 
incorporate the aspect of  community evenness. If  the orchid species are evenly 
distributed, the diversity index will be high, and spotting all ten should take less time. 
Now assume that eight out of  these ten orchid species are pollinated by a particular 
type of  insect, and that this insect species is eradicated by an ecosystem perturbation. 
Suddenly, these eight orchid species will now disappear, leaving only the two with 
alternative pollination means. 

What can we learn from this example? An important lesson is that the eight 
orchid species were selected against by the perturbation event, regardless of  their 
abundance. For human health risks associated with antibiotic resistance genes in the 
environment, the reason the diversity of  resistance genes is important is that a larger 
diversity presents the community with a larger arsenal of  defense systems against 
antibiotic selection. As with the orchids, if  a selection pressure from an antibiotic is 
applied, only resistant bacteria (either intrinsically, or those carrying resistance genes) 
will survive. Such events will therefore serve as bottlenecks for fixation of  resistance 
genes in a population. However, as bacteria can also share genes between species and 
strains, a selection pressure promoting resistance genes may also cause these genes to 
end up in new species and genetic contexts. Importantly, these selection pressures will 
apply regardless of  if  the genes were abundant or not, and crucially without any 
respect of  the evenness of  resistance genes in the community. Thus, the usefulness of  
a diversity index such as Shannon’s or Simpson’s is negligible from a human health 
risk perspective. Instead, it makes sense to compare the richness or the shape of  
rarefaction curves between samples to evaluate diversity-related risks. 

Furthermore, we must realize that the studied sample of  resistance genes only 
comprises a subset of  the total resistance gene types likely present in a community. 
Thus, the true richness of  the sample is unknown, and information on the 
abundances associated with lowly abundant genes is either poorly estimated or 
lacking. This means that it might be informative to account for the unseen resistance 
genes in some way. Measures for extrapolating richness could be borrowed from 
ecology, for example the Chao1 (Chao 1984) and ACE (Chao & Lee 1992) estimators. 
In addition, resampling methods have been suggested to estimate true species richness 
of  samples (Colwell & Coddington 1994). However, these estimators have been 
shown to fluctuate substantially with changing sample size (Hughes et al. 2001). As 
ecologists and statisticians still struggle with the problem of  estimating the number of  
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rare species in a community, we can conclude that accounting for those is hard, and 
that for the time being we are probably best off  comparing the richness of  detected 
resistance genes in different samples, and hope that those numbers correspond 
reasonably well to the true richness. In addition, the methods for finding resistance 
genes using shotgun metagenomics only allow detection of  known genes present in a 
reference database. The yet undiscovered resistance genes, of  which there seem to be 
a multitude in the environment (Riesenfeld et al. 2004; Allen et al. 2009; Sommer et al. 
2009; Lang et al. 2010; Torres-Cortés et al. 2011; Wichmann et al. 2014; Munck et al. 
2015), and which avoid detection regardless of  being abundant or rare, are incredibly 
hard to account for using richness estimators. Once again, one could assume that a 
large diversity of  known resistance genes implies a broad range of  unknown 
resistance factors as well, but to which degree this is true remains unknown. 

Why do we want to assemble metagenomes? 
Depending on where an antibiotic resistance gene is located, its ability to confer 
resistance, as well as its potency to spread to other bacteria, varies considerably 
(Dantas & Sommer 2012; Martinez et al. 2015). For example, different promoter 
regions may enhance or reduce the expression of  a gene, and interactions with other 
gene products may influence the resistance function of  the gene. Furthermore, a gene 
that is present on a plasmid or other mobile genetic element is vastly more likely to 
spread between bacteria than one firmly located on the bacterial chromosome 
(Martinez 2011; Martinez et al. 2015). In addition, the compatibility of  a mobile 
resistance gene with its host also influences whether the gene encodes an efficient 
resistance mechanism in that specific context. Finally, genes mobilized by integrases 
may have modified 3’ and/or 5’ ends, which may also alter their expression in the 
new context. The latter is thought to have contributed to the efficiency of  the 
NDM-1 carbapenemase gene in a variety of  hosts (Dortet et al. 2012; Toleman et al. 
2012). Because of  the complex interplay between resistance genes and their genetic 
environment, it is important to consider the genetic context around resistance genes, 
as well as the taxonomy of  their carriers. For the purpose of  investigating the genetic 
and taxonomic context of  resistance genes, both qPCR and functional metagenomics 
approaches falls short. The former does not provide any information of  the genetic 
regions outside of  the PCR primers used, and the latter generally employs too short 
inserted DNA fragments to enable precise contextual information, although often at 
least some usable information can be gained (Forsberg et al. 2012). To fully 
understand the genetic context of  resistance genes, functional selection of  resistant 
strains or resistance plasmids followed by analysis of  their complete sequences is in 
principle required (Johnning et al. 2013; Casali et al. 2014; Salipante et al. 2015; Holt et 
al. 2015; Flach et al. 2015). This is, however, a rather labor-intensive approach, and it 
is also restricted to isolates that can be cultured and/or plasmids that can be captured 
by cultivable bacteria. Another approach to gain insights into the context of  
resistance genes is through the use of  metagenomic shotgun sequencing, followed by 
computational assembly of  the reads (Papers IV, V & VI; Ma et al. 2016). While this 
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method is limited to resistance regions abundant in the sample due to the 
requirement of  large sequencing depth, it circumvents the need for cultivation and 
phenotypic resistance selection. 

The current state of assemblers for metagenomic sequence data 
The goal of  assembling metagenomic data to get better insights into genetic context 
and synteny is not unique to resistance gene research. The uses for assembled 
sequence data vary greatly, and includes identification of  new proteins (e.g. Kannan et 
al. 2007), studies of  uncultivated microbial genomes (e.g. Venter et al. 2004; Hugerth 
et al. 2015), discovery of  novel plasmids (e.g. Kristiansson et al. 2011; Zhang et al. 
2011), and quantification of  species and gene family abundances (see e.g. Qin et al. 
2010; Karlsson et al. 2014; Nielsen et al. 2014). Due to the large variety of  final aims 
for metagenomic assembly, several different assembly strategies for metagenomic data 
exist, and the general applicability of  each approach is somewhat limited. Early 
metagenomics projects, which generated longer and fewer reads, generally utilized 
the same assemblers as genome projects, such as the Celera assembler for Sanger 
sequencing data (Myers et al. 2000), and the 454 assembler Newbler (Margulies et al. 
2005) or MIRA (Chevreux et al. 1999) for pyrosequencing data. The assemblers used 
on long-read data are most often based on the overlap-layout-consensus algorithm 
(Staden 1979), which works well on smaller data sets, but quickly becomes vastly time 
and memory consuming, as complexity scales roughly quadratic with the number of  
reads due to the all-to-all comparisons of  reads required (Pop 2009; Miller et al. 
2010). For the massive amount of  short-reads generated by e.g. the Illumina platform, 
such algorithms are thus unsuitable because of  the dramatically increased complexity. 
The first widely used assemblers for short-read data – e.g. SSAKE (Warren et al. 2007) 
– solved this by greedy approaches, which are less computationally expensive, but 
produce sub-optimal solutions to the assembly problem (Miller et al. 2010). However, 
methods that instead reduce the complexity of  the assembly graph by converting it 
into a de Brujin graph (Idury & Waterman 1995; Pevzner et al. 2001) quickly gained 
traction and remain the most used assembly methods for Illumina data. The de 
Brujin graph is less complex to build and traverse than the overlap-layout-consensus 
graph, making the assembly problem easier to solve (Li et al. 2012). This has resulted 
in a plethora of  assembly algorithms based on de Brujin graphs, of  which some 
popular examples are Euler (Pevzner et al. 2001), Velvet (Zerbino & Birney 2008), 
ABySS (Simpson et al. 2009) and SOAPdenovo (Li et al. 2010). Both Velvet and 
SOAPdenovo have been employed in metagenomic studies in their original forms. 
However, with increasing popularity of  metagenomics, specialized software for 
metagenomic de novo assembly has been developed. These programs are often 
modified versions of  genomic assemblers, such as Meta-Velvet (Namiki et al. 2012), 
Meta-IDBA (Peng et al. 2011) and Ray Meta (Boisvert et al. 2012). Although these 
adaptions in theory can improve assembly quality, the discernible difference between 
assemblies produced by e.g. Velvet and Meta-Velvet is minute (Vázquez-Castellanos et 
al. 2014), which is consistent with our own observations (Bengtsson-Palme, 
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unpublished data). Benchmarking of  different assemblers on data where the true 
result is known has shown that the N50 metric often used to assess assembly quality is 
generally useless since an assembler that merges too many reads together will get high 
N50 values (generally interpreted as good), but does so at the cost of  generating 
chimeric contigs (Salzberg et al. 2012; Magoc et al. 2013). This problem may be 
relatively minor for single genome assembly, since the possibilities for manual 
inspection and correction are fairly large. However, for metagenomic samples where 
many species are mixed, assessing which contigs that may be chimeric is almost 
impossible, which makes the numbers of  errors a central metric in selecting an 
assembler software. In this context, it is worrying to note that particularly 
SOAPdenovo, but also Velvet, produce relatively high number of  errors compared to 
other assemblers (Salzberg et al. 2012), such as ABySS and ALLPATHS-LG (Butler et 
al. 2008). However, ALLPATHS-LG requires a very specific set of  sequence libraries 
to operate properly, making it unsuitable as a general-purpose assembly tool 
Furthermore, other comparisons indicate that ABySS and Velvet perform similarly 
(and produce comparatively few errors) on short-read data from bacterial genomes 
(Narzisi & Mishra 2011). A final interesting note is that the SGA assembler, which is 
based on the somewhat different strategy of  using FM-indices derived from Burrows-
Wheeler transforms of  the data (Simpson & Durbin 2012), performs very well in 
these evaluations (Salzberg et al. 2012; Magoc et al. 2013). This shows promise for 
future method development in the area of  metagenomic assembly. 

Aside of  avoiding assembly errors, another important consideration as 
metagenomic datasets continue to grow is the issue of  scalability. An efficient 
assembler must not only be able to deliver mostly correct contigs, but must also be 
able to do so within a reasonable timeframe and within attainable memory limits. 
Even though assembly is generally carried out on large computer clusters with 
hundreds of  gigabytes of  RAM, assembly of  some metagenomic datasets is still not 
feasible with current methods (Scholz et al. 2012; Howe et al. 2014). This leads to a 
number of  important compromises between the most accurate and most efficient 
assembly algorithms. One key parameter of  large-scale assembly is that the software 
should be scalable across multiple processor cores and nodes (individual machines) in 
a computer cluster. Two assemblers have struck a reasonable balance between 
accuracy and scalability for metagenomic assembly: ABySS and Ray. Both are highly 
scalable, while still producing results comparable to those of  Velvet (Narzisi & Mishra 
2011; Paper VI), which is arguably not the most accurate assembler, but certainly not 
the worst. However, for really large metagenomes neither of  these assemblers are 
sufficiently memory efficient, which has spurred the development of  alternative 
assembly strategies. For example, reads can be binned based on k-mer content prior 
to assembly reducing the need to assemble all the reads at once (Pell et al. 2012). 
Furthermore, reads from low-coverage regions can be filtered out prior to assembly 
(Hess et al. 2011; Mackelprang et al. 2011), or reads from high coverage regions can be 
set aside, a strategy referred to as digital normalization (Howe et al. 2014). Finally, 
merging of  sub-samples of  reads assembled individually has been proposed as a 
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possible, albeit sub-optimal, assembly strategy (Scholz et al. 2014). A completely 
different approach to metagenomic assembly is to target only regions of  interest in 
the metagenome, which also reduces the complexity of  assembly. Such approaches 
has been implemented in assemblers such as EMIRGE for bacterial rRNA (Miller et 
al. 2011), and the general purpose SAT-Assembler (Zhang et al. 2014). In addition, 
Xander provides an approach for parsing the de Brujin graph using hidden Markov 
models (HMMs) representing genes of  interest (Wang et al. 2015). While this provides 
for more accurate assembly of  the target genes, it does not solve the complexity 
problem, as the complete de Brujin graph must still be constructed prior to 
simplifying the graph using HMMs. 

In this thesis, the Velvet assembler was used for the smaller metagenomes of  Paper 
V, while Ray Meta was employed in Papers IV and VI where the sequencing libraries 
were larger. In addition, the Ray assemblies in Paper VI were compared to Velvet 
assemblies of  the same samples, showing very similar results. In Paper IV, the 
merging-of-subsamples strategy (Scholz et al. 2014) was utilized to assemble the 
technical replicates from each sample into a single assembly. For this, we used Ray to 
generate the initial assemblies, and Cap3 (Huang et al. 1999) to merge the contigs 
from each separate assembly together. 

Assembly of genes existing in multiple genomic contexts 
The above-mentioned problems related to increasing dataset sizes and complexity of  
metagenomes are common to all metagenomic studies employing assembly 
approaches. However, there are certain challenges that are relatively unique to the 
assembly of  resistance regions from metagenomic sequencing data (although similar 
problems also appear in other contexts where the genes of  interests are highly 
conserved but can exist in multiple species). The greatest obstacle to enable 
assessment of  the context of  resistance genes identified in metagenomic data is the 
resistance genes themselves. We are often interested in investigating whether a 
resistance gene is present on a mobile genetic element or not, as this property is 
strongly related to the relative risk associated with the gene (Martinez et al. 2015; 
Paper VII). However, resistance genes present on mobile genetic elements are often 
better conserved between species (since they can be transferred directly) than 
chromosomal resistance genes. In addition, if  they are mobilized in integrative 
elements they can exist in multiple similar, but not identical, genetic contexts (Frost et 
al. 2005; Norman et al. 2009). This presents a problem for assembly software working 
with short reads. Many times, there can be multiple possible branches out from a 
highly conserved part of  a resistance gene or resistance gene cassette (Figure 7). 
Almost all assembler software handles this by splitting the contigs at the branching 
points, although some use coverage information or other external data (such as read-
pair information) to avoid unnecessary splits and handle splits more intelligently. 
Regardless, the result is a fragmented assembly that does not contain much 
information about the genetic context of  the resistance gene of  interest. In the 
example presented in Figure 7, no contextual information is retrieved for resistance 
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gene A, since it ends up on a single contig without any flanking regions. This does not 
only obscure the information about whether a resistance gene is transferrable 
between bacteria, but also severely limit our ability to detect resistance genes that are 
co-localized. In addition, resistance genes are often not identical across their entire 
length, but rather contain identical regions. In those cases, the individual resistance 
genes may also be split up on multiple shorter contigs, further complicating the 
assessment of  the assembly (Figure 8). 
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Figure' 7.! Iden*cal! resistance! genes! may! exist! in! mul*ple! gene*c! contexts! (top),! which!
presents!assembly!soWware!with!serious!problems,!as!they!cannot!iden*fy!which!reads!that!
originated! from!which! context! (center).! Almost! all! assemblers! solve! this! by! spliXng! the!
con*gs! at! the! ambiguous! posi*ons,! resul*ng! in! a! fragmented! assembly! (boYom).!No*ce!
how!the!repe**on!of!resistance!gene!A!cause!a!loop!in!the!assembly!graph,!resul*ng!in!two!
short!con*gs!containing!no!genes.
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The problems related to multiple contexts get worse the more common a resistance 
gene is, since common resistance genes are more likely to be detected in multiple 
contexts. In addition to these examples where true biological variation causes 
assembly problems, sequencing errors may also break the assembly up in a similar 
fashion as in Figure 8, although assemblers are generally better at handling such 
problems than true biological variation. In addition to resistance genes existing in 
multiple contexts, integrases and transposases are prone to the same types of  
problems, and break assemblies up in a similar way, resulting in contigs containing, 
e.g., one or two resistance genes and a (sometimes partial) ISCR or integrase 
sequence. 
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The TriMetAss assembler and further method development 
A partial remedy to the problem of  genes occurring in multiple contexts is, as 
mentioned above, to use coverage or read-pair information to traverse the assembly 
graph (Figures 7 and 8; center). Using coverage data, the original contexts of  the 
example sequences in Figure 7 may be reconstructed, given that the four original 
sequences are sufficiently differently abundant in the sample (and thus generates 
differing coverage information. However, coverage information will not be able to 
solve the loop structure resulting from a repetition of  the same gene. Furthermore, in 
the second example (Figure 8), coverage information alone cannot solve the problem, 
as parts of  the gene of  interest are shared between the original sequences and thus 
the coverage of  the different regions will itself  be uneven. The more complex the 
structure of  shared regions is, the harder it will be to predict the original contexts 
using coverage data. In more complicated cases, information about which read pairs 
that were connected can improve the situation, although the usefulness of  this in 
practice is limited unless several sequencing libraries with different insert sizes have 
been constructed. 

Although the specific problem of  highly conserved genes appearing in multiple 
contexts is fairly unique to metagenomic resistome investigations, a closely related 
problem exists in de novo RNA sequencing of  eukaryote organisms. If  there is no 
reference genome for a particular organism, and its gene expression is measured 
using RNAseq, a de novo assembly of  the transcripts is often performed to allow 
estimation of  the relative abundances of  different mRNAs (Wang et al. 2009). In 
many eukaryotes, the same gene may encode several different mRNAs, so called 
alternative splicing (Black 2003). This causes the assembly to branch in ways very 
similar to those in Figure 8. Thus, assembler software adapted for RNAseq data has 
had to deal with similar types of  problems, although only on a local single-gene level. 
Different software tools have been constructed to deal with mRNA assembly, 
including Trans-ABySS (Robertson et al. 2010), Oases (Schulz et al. 2012), and the 
commonly used Trinity package (Grabherr et al. 2011). While it in theory makes sense 
to apply e.g. Trinity directly on metagenomic data, it turns out that this method is not 
feasible in practice, since it requires vast amounts of  computer memory. To reduce 
the complexity of  the assembly problems to the most interesting regions (in our case 
corresponding to resistance genes), a targeted assembly approach was developed to 
improve the assessment of  genetic context around resistance genes (Paper V). In this 
approach, the contigs containing resistance genes from a regular metagenomic 
assembly are used as seed sequences, and turned into a reference database for a 
Vmatch (Kurtz 2010) search against the complete set of  read pairs. The reads 
matching to the seed contigs are then assembled using Trinity. The resulting set of  
contigs from Trinity are then used as seeds for another round of  search using Vmatch 
against the complete set of  reads, as above. All matching read pairs, including those 
matching in the previous round, are then used for another assembly with Trinity. This 
iterative process is repeated until a stop criterion is fulfilled, for example that no more 
reads can be assembled using Trinity. The iterative assembly method has been 
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released as a software package called TriMetAss, and was successful in extending the 
resistance contigs generated in Paper V. However, this iterative assembly scheme is 
both rather time-consuming and also does not solve the problem of  multiple context 
genes – it only partially alleviates the issue. Thus, future method development could 
expand upon the ideas outlined by TriMetAss, by e.g. constructing a complete de 
Brujin graph for all reads matching to a seed sequence, and then present all possible 
contigs that this set of  reads could produce along with the probability for them being 
put together by random chance. This probability could be calculated based on a read 
coverage model, and could also take read pair information into account. The user 
would then be able to set a probability cutoff  for when a contig is to be trusted, and 
get an estimate for when the set of  contigs generated would explain a certain fraction 
of  their reads mapped to, e.g., resistance genes. Unfortunately, the development of  
such assembly software is not straightforward and is out of  scope of  the present 
thesis. 
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Deducing microbial taxonomy from metagenomic data 

Assessing taxonomic composition using metagenomic data 
Since changes of  the resistance gene composition of  a microbial community may not 
only be caused by direct selection for resistance factors, but also by changing 
conditions favoring species that happen to carry certain resistance genes, it is 
important to interpret resistance gene frequencies in the context of  taxonomic 
composition. Furthermore, insights into the types of  bacteria inhabiting an 
environment may provide clues that can guide risk management, e.g. in terms of  the 
presence of  pathogenic species or the proportion of  human-associated bacteria. 
There are several approaches to determine the taxonomic structure of  a studied 
microbial community based on metagenomic sequencing data. Three fundamentally 
different types of  methods are commonly used: mapping of  reads to reference 
genomes, binning based on nucleotide k-mer composition, and classification of  
certain barcoding genes, commonly the 16S or 18S rRNA genes (Zepeda Mendoza et 
al. 2015). The three approaches each have their respective advantages and 
drawbacks, which will be briefly outlined below. 

Genome mapping approaches utilize databases of  completely sequenced 
microbial genomes (or partially sequenced, but the latter may introduce biases that 
are difficult to compensate for). Common reference genome catalogues include the 
human microbiome project reference database (Human Microbiome Jumpstart 
Reference Strains Consortium et al. 2010) and the NCBI GenBank and RefSeq 
databases (O'Leary et al. 2016; Clark et al. 2016). The raw sequence reads are mapped 
to the reference database using read mapping tools such as BWA (Li & Durbin 2009), 
Bowtie (Langmead & Salzberg 2012), STAR (Dobin et al. 2013), or less commonly 
more sensitive alignment programs like BLAST (Altschul et al. 1997) or BLAT (Kent 
2002). In addition, several tools exist that have streamlined this process, of  which 
some include post-processing steps to account for biases in terms of  different genome 
sizes and GC content, for example MEGAN (Huson et al. 2011), CARMA3 (Gerlach 
& Stoye 2011), Genometa (Davenport et al. 2012), MEDUSA (Karlsson et al. 2014) 
and GOTTCHA (Freitas et al. 2015). In addition, several more or less automated 
pipelines for metagenomic analysis exist, which also include whole-metagenome 
similarity strategies for taxonomic classification, such as the frequently used MG-
RAST (Meyer et al. 2008) and CAMERA (Seshadri et al. 2007) web-portals. 

Since the genome mapping approach can be very computationally intensive for 
large metagenomes, an alternative approach to ease the computational load is often 
employed, namely taxonomic binning based on sequence composition. This is 
generally done by counting the occurrences of  short nucleotide sequences (k-mers) of  
e.g. four bases (tetramers). Compositional methods require a database of  k-mer 
frequencies among the reference genomes, which the composition of  each read (or 
assembled contig) can be compared to. Many tools exist for this task, including 
Kraken (Wood & Salzberg 2014), PhyloPhytia (McHardy et al. 2007) and MetaCV 
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(Liu et al. 2012). Furthermore, the Ray assembler (Boisvert et al. 2012) includes the 
option to perform such k-mer based taxonomic assignment of  contigs integrated 
within the assembly process. An alternative way of  reducing computational load of  
classification is to only target specific barcoding genes, most commonly the 16S and 
18S rRNA genes, and infer taxonomy based on only these sequences. These methods 
are generally based on either fishing out the barcoding regions prior to classification, 
or performing a similarity search of  the entire metagenome to a reference database 
only containing barcoding genes. While the latter approach is conceptually identical 
to the whole metagenome similarity based methods described above, the reference 
database of  barcoding genes can be substantially smaller, drastically reducing 
computational time, particularly if  heuristic algorithms are applied in the mapper. An 
upside of  using pre-filtration to extract only the barcoding genes from the 
metagenome is that a more sensitive software tool can be used for classification, as the 
dataset size usually can be reduced between 100 and 1000 times. Quick extraction of  
barcoding regions from a metagenome can be performed using, e.g., the MetaRNA 
(Huang et al. 2009), riboPicker (Schmieder et al. 2012), SortMeRNA (Kopylova et al. 
2012) or Metaxa (Bengtsson et al. 2011) software packages. For the subsequent 
classification step, analysis tools for community composition used in PCR-based 
studies of  barcoding genes can be employed. For example, the QIIME (Caporaso et 
al. 2010), Mothur (Schloss et al. 2009) and Rtax (Soergel et al. 2012) packages support 
classification of  barcoding genes derived from metagenomic DNA fragments. In 
addition, tools used for classification of  complete metagenomic data can also be used 
on extracted fragments. Commonly used tools for this task are MetaPhlAn (Segata et 
al. 2012), MetaPhyler (Liu et al. 2011b) and Phylosift (Darling et al. 2014). 
Furthermore, the RDP naïve Bayesian classifier (Wang et al. 2007) is often employed 
for this classification besides not being designed for classifying fragmentary short read 
data. It has, however, been shown to perform sub-optimally in these circumstances 
(Paper I). 

Depending on the research questions asked and the sample material under study, 
the best choice of  analysis method may vary. Common to most research endeavors is 
the need for reliable classifications at a relevant taxonomic level, often corresponding 
to the species or genus, but sometimes as coarse as the phylum level. In other words, 
although sensitivity in terms of  classifying as many reads as possible is desirable, it is 
most often more important that the reads that are classified are inferred to the correct 
taxa. In addition, it is also crucial that the fraction of  reads classified represents the 
distribution of  organisms present in the original sample. From a recent evaluation of  
different classification methods (Peabody et al. 2015), the following overall conclusions 
can be drawn. First, the accuracy of  methods varies dramatically. The precision 
(correct classifications per total classifications made) of  the methods ranged from 
about 5% (Kraken) to over 90% (DiScRIBinATE; Ghosh et al. 2010). Second, 
although variation was large between methods, similarity-based methods generally 
outperformed k-mer and composition-based approaches in terms of  precision. Third, 
most methods radically overestimated the number of  species present in a mock 
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community with a known number of  taxa. Finally, the only barcoding gene based 
method investigated (MetaPhyler) performed very well in terms of  precision, while 
being among the methods least prone to over-predicting the number of  present 
species. Interestingly, we have found similar large variations of  precision among 
software tools for rRNA analysis (Paper I), suggesting that thorough investigation of  
which tools that are not up to the task of  analyzing short read data is warranted. 
Taken together, it seems that given sufficient computational resources, the use of  
similarity or barcoding gene based analyses of  taxonomy should be preferred over k-
mer and compositional analyses. When choosing between the whole metagenome 
similarity and barcoding gene strategies, it is important to keep the reference database 
in mind. Both methodologies require a sequence from a corresponding taxa to be 
present in the reference database to make a taxonomic classification of  a read. 
However, for many microbial communities, such reference data does not exist. As 
only a minor fraction of  bacteria can be cultured (Amann et al. 1995), most microbes 
have not had their complete genome sequenced. This means that the available 
reference databases are severely biased in terms of  species present, generally with a 
vast overrepresentation of  human-associated bacterial species. Although the same is 
true for the sequences present in reference databases for barcoding genes, such as 
SILVA (Yilmaz et al. 2014), GreenGenes (McDonald et al. 2012) and UNITE (Kõljalg 
et al. 2013), much greater numbers of  barcode sequences exist for microbes than full 
genomes. This means that for communities where a large portion of  the taxa present 
are expected to be represented in a genome database, such as in the case of  human 
gut samples and the HMP reference database (Human Microbiome Jumpstart 
Reference Strains Consortium et al. 2010), it makes sense to use whole metagenome 
similarity based methods for taxonomic assignment of  reads. However, in most 
environmental communities, we do not expect to have a complete picture of  the taxa 
present – most often far from so – and using a whole metagenome based strategy may 
thus strongly bias results towards already sequenced species, and accordingly leave a 
larger portion of  reads unclassified (or misclassified). In this case, a barcoding gene 
based approach would be advisable in order to as far as possible avoid biasing results. 
An additional advantage of  the latter type of  methods is that a large set of  tools for 
downstream analysis of  diversity and community composition is available in, e.g., 
QIIME (Caporaso et al. 2010), Mothur (Schloss et al. 2009), and Vegan (Oksanen et al. 
2011). Directly utilizing such tools on fragmentary data involves some inherent 
obstacles however (Bengtsson et al. 2012), and is therefore, depending on the desired 
analysis, not completely straightforward. In this thesis, a barcoding gene based 
approach – Metaxa2 – has been used (Papers III-VI), complemented with a whole 
metagenome similarity search when human fecal samples were studied (Paper VI).  

Improving the accuracy of taxonomic classification of metagenomic data 
As mentioned above, central features of  methods for taxonomic analysis of  microbial 
communities are that they return results that are representative for the community at 
large, and that taxonomic classifications are correct. Although a range of  tools exist 
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for classification of  barcoding genes, the most commonly used are adapted for 
amplicon sequencing targeting the same region of  the gene, and often expecting each 
read in the input data to be at least a few hundred basepairs long. This, however, is 
not the case for shotgun metagenomic data, which is randomly fragmented and often 
sequenced using technologies yielding reads with a length between 75 and 150 
nucleotides each. Furthermore, many existing methods for extracting rRNA reads 
from shotgun metagenomes perform sub-optimally and either generates excessively 
many false positive or false negative assignments (Bengtsson-Palme, unpublished 
data). On top of  that, they generally do not sort out archaeal, bacterial, eukaryote, 
mitochondrial and chloroplast rRNA sequences efficiently, resulting in bias and noise 
in the downstream analyses (Taberlet et al. 2012). An exception to this is the Metaxa 
software, which was explicitly designed to handle these two types of  problems with 
metagenomic datasets (Bengtsson et al. 2011). However, this software tool was 
designed for Sanger sequencing and pyrosequencing technologies and is thus not very 
efficient for use on the larger short-read datasets generated by the Illumina platform. 

As a solution to these problems, an extensive update to the Metaxa software was 
made. The updated version – Metaxa2 – is adapted for larger datasets with shorter 
read lengths, and also includes a taxonomic classification tool that has among the best 
precision of  current barcoding gene classification tools on shotgun metagenomic data 
(Paper I). Metaxa2 and the evaluation of  the software are described in detail in Paper 
I. Importantly, while all tested classifiers performed well on 1000 basepair reads 
(except the QIIME implementation of  Mothur; Figure 9), precision dropped rapidly 
at shorter read lengths (Figure 10). Particularly, the performance of  Mothur and the 
RDP classifier, which both rely on naïve Bayesian statistics for classification, 
deteriorates quickly with shorter read lengths. Notably, at a read length of  100 
nucleotides even Metaxa2 only classified 70% of  rRNA sequences to the genus level, 
which was slightly lower than the proportion classified by Rtax. However, almost all 
assignments of  rRNA sequences to a genus by Metaxa2 were correct, while Rtax 
displayed a large proportion of  misclassifications (Figure 10). This evaluation shows 
the value of  utilizing classifiers specifically designed to handle fragmentary short read 
data from shotgun metagenomes (such as Metaxa2 and Rtax) rather than relying on 
software originally conceived to deduce taxonomy based on amplicon sequencing 
data from the same region of  the rRNA sequence and with longer lengths (such as 
Mothur and the RDP Naïve Bayesian Classifier). Finally, we also show that Metaxa2 
cuts a reasonable tradeoff  between sensitivity and specificity at short read lengths, 
allowing high-precision taxonomic analysis of  shotgun metagenomes. 

There are several reasons why Metaxa2 achieves better performance than most 
other tools on short read data. First of  all, Metaxa2 only considers rRNA sequence 
fragments for which the conserved regions can be detected (Hartmann et al. 2010). 
This largely avoids false positive identifications due to similarity to the more random 
hypervariable regions of  the rRNA genes. Nonetheless, the hypervariable regions are 
still used in the classification step, as the conserved regions often do not provide 
sufficient variation between species and genera to allow unambiguous species or 
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genus assignments. Second, the database used by Metaxa2 has been manually 
curated to only contain full-length reference sequences with high-quality annotation, 
with a standardized taxonomy. This excludes uninformative entries from e.g. 
uncultured organisms, as well as organisms where taxonomy is only partially defined. 
Third, the Metaxa2 classifier is written from the ground up to rather output a less 
specific taxonomic affiliation than making a precise designation on e.g. the species 
level that is plausible to be incorrect. Finally, since Metaxa2 separates archaeal, 
bacterial, eukaryotic, chloroplast and mitochondrial entries, the potential for 
confusing these disjoint – but homologous – classes of  rRNA with each other is lower 
than for most other software tools. Despite this, the Metaxa2 classifier is not perfect – 
but clearly performs superior in terms of  precision compared to competing software 
packages (Figures 9 and 10).  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Minimal selective concentrations for antibiotics 

Methods for determining minimal selective concentrations 
To be able to define whether an environment presents its inhabitants with a selection 
pressure favoring antibiotic resistance, it is necessary to understand which 
concentrations of  antibiotics and other substances that drive resistance selection. 
Although knowledge in this area is scarce, there have been several attempts to 
determine the minimal selective concentrations (MSCs) of  antibiotics, primarily in 
laboratory setups (Table 2). Initial work establishing the MSC concept deduced the 
selective concentrations by letting isogenic bacterial strains differing only in a certain 
resistance factor (and marker genes) grow in sub-inhibitory concentrations of  
antibiotics (Gullberg et al. 2011). In this work, MSCs at between 1/230 and 1/4 of  
the minimal inhibitory concentrations (MICs) were measured, signifying that the 
difference between the two can be substantial, at least in a simplified, but highly 
controlled, laboratory testing system. Similar experiments have since been repeated 
for complete resistance plasmids and combinations of  antibiotics, biocides and metals 
(Gullberg et al. 2014). 

However, the settings for competition experiments are unlikely to match the 
conditions in environmental compartments subjected to antibiotics. First of  all, this is 
simply due to that in a microbial community, several different species with varying 
degree of  susceptibility to the antibiotic are present. Therefore, community level 
effects acting on the most sensitive species may occur at concentrations below those 
measured in laboratory strains. This also makes it difficult to predict to which extent 
more tolerant species and strains will fill the niches made available by antibiotic 
selection (O'Brien 2002). Second, most environments are nutrient-poor compared to 
laboratory systems, which may alter bacterial susceptibility to antibiotics and change 
the sub-MIC selective window in unpredictable ways. Third, other selective forces, 
including nutrient availability and predation, may influence the selection process and 
render selection by low concentrations of  antibiotics and other toxicants less of  
concern for bacteria competing for available resources (Bengtsson-Palme et al. 2014a). 
At the same time, some antibiotics, such as tetracyclines and fluoroquinolones, are 
not readily degraded in the environment and could thus exert a chronic selection 
pressure on microbial communities. How long-term chronic low-concentration 
presence of  antibiotics influences resistance development is this far uninvestigated, as 
is the influence of  mixtures of  several different antibiotics in combination with other 
selective agents (Backhaus 2014). For all these reasons, it is important to establish 
MSCs not only in competition experiments, but also in ecologically relevant testing 
systems. Some insights can be gained from pioneering research in this direction 
performed within ecotoxicology (Brosché & Backhaus 2010), using planktonic 
bacteria as a testing system. However, the main target of  study in ecotoxicology is 
seldom the minimal selective concentration for resistance selection, but rather to 
measure toxicity in terms of  growth inhibition (Blanck 2002). Thus, results from 
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ecotoxicological community studies cannot straightforwardly be used to infer MSCs, 
and studies directly assessing the MSCs for resistance in microbial communities of  
different antimicrobial agents are therefore warranted. Indeed attempts aimed at 
assessing MSCs in complex communities have been made. The MSC of  tetracycline 
in stream periphyton communities has been reported to be below 0.5 µg/L (Quinlan 
et al. 2011), although limited replication and lack of  a dose-response relationship for 
resistance increase make the results somewhat uncertain. Addition of  oxytetracycline 
to arable soil has been shown to increase resistance gene frequencies at 20 µg/kg soil 
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Table'2.!Experimentally!determined!minimal!selec*ve!concentra*ons!of!an*bio*cs!and!
other!substancesa

Substance Strain-
specific MSC 
(µg/L)

Community-based MSC; type 
of community specified in 
parenthesis

References

Chloramphenicol > 49 µg/L (limnic plankton)b Brosché & Backhaus (2010)

Chlortetracyclin > 4 µg/L (limnic plankton)b Brosché & Backhaus (2010)

Ciprofloxacin 0.1-2.5c Gullberg et al. (2011)

Enrofloxacin < 0.1 mg/kg body weight (rat 
gut)d

Lin et al. (2014)

Erythromycin < 200 Gullberg et al. (2011)

Fusidic acid > 5 µg/L (limnic plankton)b Brosché & Backhaus (2010)

Kanamycin 470 Gullberg et al. (2011)

Oxytetracyclin < 20 µg/kg (soil) Shentu et al. (2015)

Rifampicin > 23 µg/L (limnic plankton)b Brosché & Backhaus (2010)

Streptomycin 1000 > 5700 µg/L (limnic plankton)b Brosché & Backhaus (2010), 
Gullberg et al. (2011)

Tetracycline 15 < 1 µg/L (aquatic biofilms) Gullberg et al. (2011), Paper III

Trimethoprim < 2 Gullberg et al. (2014)

Arsenite 90 µM Gullberg et al. (2014)

Cu(II) sulfate 90 Gullberg et al. (2014)

a  Note that the MSC here is defined as any endpoint for resistance selection, such as resistance gene 
enrichment, competitive advantages in two-strain experiments, or increased number of insensitive 
colonies on selective plates. 
b The concentrations from Brosché & Backhaus (2010) are based on no effect concentration 
calculations derived from effect concentration data and have thus only been estimated, not actually 
measured. 
c Concentration dependent on which resistance mutation that was introduced. 
d Since this corresponds to the dose given to rats, interpretation of this concentration is not 
straightforward. However, 0.1 mg/kg bodyweight corresponds to 1/100 of the therapeutic 
concentration (Lin et al. 2014).
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(Shentu et al. 2015) and a dose of  0.1 mg enrofloxacin per kg bodyweight increased 
the abundance of  resistant E. coli isolates in the rat gut (Lin et al. 2014). Furthermore, 
in Paper III of  this thesis, the MSC for tetracycline resistance in aquatic biofilms is 
shown to below 1 µg/L. Taken together, there are scattered studies showing effects on 
resistance selection at sub-lethal antibiotics concentrations. However, as shown in 
Table 2, the available data is scarce, and more comprehensive studies are needed to 
enable proper risk assessment and regulation of  environmental antibiotic releases 
(Ågerstrand et al. 2015). 

Theoretical estimation of selective concentrations of antibiotics 
Because of  the limited availability of  MSC data for antibiotics and the extensive 
amount of  labor required to perform such studies on large scales, efforts to 
theoretically determine the MSCs for different antibiotics have been attempted (Tello 
et al. 2012). In this study, no-effect concentrations for ciprofloxacin (~0.2 µg/L), 
erythromycin (~8 µg/L) and tetracycline (~10 µg/L) were estimated based on MIC 
data taken from the EUCAST database (European Committee on Antimicrobial 
Susceptibility Testing 2016). However, the incentives to arrive at theoretical selective 
concentrations for a much larger range of  antibiotics are strong, as it would enable 
implementation of  concrete emission limits and environmental standards (Ashbolt et 
al. 2013; Ågerstrand et al. 2015). 

In Paper II, we extend the approach by Tello et al. (2012) and theoretically 
determine MSCs under the assumption that selective concentrations a priori need to 
be lower than inhibitory concentrations. Thus, the lowest MIC for a particular 
antibiotic that has been determined for any species, should correspond to the 
maximum possible MSC for that antibiotic, given that one also compensates for 
limited species sampling when establishing the lowest MIC. Accordingly, we 
investigated the MIC data in EUCAST, and for each of  111 antibiotics and 11 
combinations of  antibiotics present in the database we selected the species with the 
lowest MIC. For 13 antibiotics, the lowest MIC corresponded to the lowest 
concentration tested, and for those we estimated a lowest MIC based on the 
sensitivity distribution for that combination of  antibiotic and species compared to 
that of  all other species. This resulted in lowest MICs in the range of  0.69 – 32,000 
µg/L, although most lowest MICs were in the 4 – 125 µg/L range. After this had 
been established, we investigated if  there was a link between taxonomic distance 
(based on rRNA similarity) of  two species and the difference in lowest MIC. We 
found that if  such a link exists, it is very weak across all antibiotics investigated 
together (R2 = 0.02). When we tested the same relationship for each antibiotic 
separately, eleven had significant associations between rRNA dissimilarity and 
difference in lowest MIC. However, five of  those had negative slopes (indicating that 
more divergent species would have more similar lowest MICs than closely related 
ones; a quite counterintuitive finding). Since there was no apparent systematic link 
between taxonomic distance and lowest MIC, we chose not to compensate for this 
when estimating MSCs for complex communities. To avoid bias due to the small 
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numbers of  tested species for many antibiotics, we subsampled the lowest MIC data 
for all antibiotics that had been tested against more than 30 species, and thereafter 
assessed the effect of  small sample size on the estimated upper boundaries for MSCs. 
We used the result of  the subsampling to estimate how much lower the actual lowest 
MIC could be for antibiotics with small number of  tested species, to account for that 
the EUCAST data may correspond to the upper part of  the sensitivity distribution, 
and that complex communities therefore may contain bacteria that could be more 
sensitive than those reported in EUCAST. Finally, we predicted no-effect 
concentrations (PNECs) for each antibiotic based on an assessment factor of  10 (see 
Paper II for a discussion on the choice of  this assessment factor). The PNECs closely 
correspond to MSC estimates, since a PNEC should (given that it is correctly 
predicted) by definition be slightly lower than the MSC. The final PNECs for 
antibacterials were in the range of  0.016 µg/L to 64 µg/L (Table 3). It should be 
noted that the span between minimal and maximal MSC is very large for some 
antibiotics, such as beta-lactams and quinolones. This is reasonable because these 
antibiotics have seen substantial development of  a variety of  subclasses that are 
effective at very different concentrations. 

Validation of the MSC of tetracycline in complex microbial communities 
The MSC for tetracycline was estimated in Paper II to be above 1 µg/L in complex 
communities. To validate this prediction, the MSC for resistance selection of  
tetracycline was measured experimentally in Paper III. In this paper, the aim was to 

 44

Table'3.!Predicted!noMeffect!concentra*ons!(PNECs)!for!different!classes!of!an*bacterials.!
Concentra*ons!given!in!µg/L

Antibiotics class Average 
PNEC

Median 
PNEC

Minimal 
PNEC

Maximal 
PNEC

Antibiotics 
in class

Beta-lactams 2.888 0.5 0.016 64 48

Quinolones 1.896 0.1875 0.032 16 14

MLSa 1.255 1 0.064 4 12

Aminoglycosides 8.056 2 0.5 32 9

Peptidyl transferases 2.413 1 0.064 8 5

Tetracyclines 1.1 1 0.5 2 5

Polypeptides 4.0 2 2 8 3

Glycopeptides 4.25 4.25 0.5 8 2

Lipopeptide 16.5 16.5 1 32 2

Antifolate 
combinations

0.5 0.5 0.5 0.5 1

DHFR inhibitors 0.5 0.5 0.5 0.5 1

a  Macrolide-Lincosamide-Streptogramin antibiotics
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determine the MSC of  tetracycline for a variety of  phenotypic and genotypic 
endpoints representing resistance selection. To this end, bacterial communities were 
allowed to establish biofilms in aquaria in the laboratory for nine days under different 
tetracycline concentrations. An initial exposure response experiment was carried out 
using a 10-fold dilution series of  tetracycline levels. This experiment provided 
concentration ranges in which selection was observed for different endpoints, and 
constituted an evaluation of  endpoints in terms of  sensitivity to detect tetracycline-
related community changes, including on the taxonomic level. In two follow-up 
experiments, MSCs were established for a subset of  the endpoints, using more 
replicates in the range where selective concentrations were expected to be based on 
the initial exposure response experiment. The biofilms in the different aquaria were 
phenotypically profiled using colony forming unit (CFU) counts, range of  measured 
minimal inhibition concentrations (MICs) for isolates, and pollution-induced 
community tolerance (PICT) quantified as inhibition of  leucine uptake (Blanck 2002). 
Genotypic profiling was based on the frequencies of  antibiotic resistance genes and 
changes of  taxonomic composition between aquaria. In the first experiment genetic 
changes were quantified using metagenomic shotgun sequencing, and then verified 
for tet(A) using qPCR, but in the two follow-up experiments only qPCR quantification 
of  the two most sensitive resistance genes (tet(A) and tet(G)) was performed. The most 
sensitive endpoint for resistance selection by tetracycline in complex bacterial 
communities was shown to be enrichment of  tet resistance genes, which responded to 
1 µg/L – the lowest concentration tested in the follow-up experiments (Table 4). Thus 
the MSC for resistance selection of  tetracycline was determined to be 1 µg/L or less 
in complex communities. 

The experiments of  Paper III validate the prediction of  Paper II that the MSC for 
resistance selection of  tetracycline would be around 1 µg/L. They also indicate that 
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Table'4.!Experimentally!determined!minimal!selec*ve!concentra*ons!of!tetracycline!for!
different!endpoints!in!complex!microbial!communi*es

Endpoint MSC range in dose 
response 
experiment

MSC established in 
follow-up 
experiments

CFU count on R2A plates with 20 µg/mL TC 1-10 µg/L 10 µg/L

MIC range 10-100 µg/L -

PICT, leucine uptake after short-term TC challenge 100 µg/L -

Increased resistance gene abundances, 
metagenomics

0.1-10 µg/L -

Increased resistance gene abundances, qPCR 1-10 µg/L ≤ 1 µg/L

Changes to taxonomic diversity n.d. -

Changes to taxonomic community composition 1-10 µg/L -

TC = tetracycline; n.d. = no change detected
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the MSCs for some endpoints may be even lower than predicted in Paper II. 
However, the work involved in establishing the MSC of  one single antibiotic in one 
single type of  complex community highlights the importance of  the theoretically 
established MSCs from Paper II. Verifying the MSCs for all 111 antibiotics in that 
study would require years of  work, or the collective efforts by a large number of  
research groups. Since scientific data underpinning regulatory documents is needed 
immediately, the value of  the theoretical MSCs in complex communities is high even 
if  some antibiotics would turn out to have MSCs substantially above, or below, those 
predicted in Paper II. 

The many forms of minimal selective concentrations 
It is firmly established that antibiotics concentrations below those completely 
inhibiting bacterial growth can select for resistant bacteria (Gullberg et al. 2011; 
Hughes & Andersson 2012). It is, however, still an open question how low 
concentrations of  different antibiotics need to be to give resistant strains a fitness 
advantage. Andersson and Hughes (2014) define the MSC as “the lowest 
concentration of  an antibiotic that results in the selection of  a resistant mutant in a 
population over an isogenic susceptible strain.” In an assay involving a resistance 
plasmid, Gullberg et al. (2014) instead use the analogous definition that the MSC “is 
the drug concentration where the fitness cost of  the resistance plasmid is balanced by 
the selective effect of  the added drug.” The latter definition is slightly more flexible, 
as it extends the MSC concept to alternative endpoints. In this thesis, the MSC is 
defined as the lowest drug concentration that promotes enrichment of  resistance 
genes or resistant bacteria in a microbial community. Thus the definition used here is 
a community MSC rather than a species or strain specific one. Furthermore, as will 
be discussed in this section, the MSC may represent several different things 
depending on which endpoint that is studied. 

Different endpoints for selective concentrations 
A substance that completely inhibits the growth (or kills) certain bacteria will by 
consequence have a clear selective effect, by providing a dramatic fitness advantage to 
bacteria that are still able to grow. However, even though complete growth inhibition 
could be a relevant endpoint on the community level, measuring inhibitory 
concentrations is likely to be blunt to less dramatic fitness advantages conferred by 
resistance genes and resistance mutations under a low level of  toxicant selection 
pressure (Baquero et al. 1998). Studies comparing the fitness of  two bacterial strains – 
identical in all respects except for the resistance factor – competing with each other 
under different antibiotic concentrations (Liu et al. 2011a; Gullberg et al. 2011) allow 
for very precise determination of  the relative fitness cost of  the specific resistance 
factor, and which concentrations that corresponds to a fitness advantage of  the 
resistant strain. However, the ecological relevance of  this simplistic testing system is 
still rather limited, although efforts have been made to take similar competition 
systems out of  the lab and test them in situ (Andersson & Hughes 2014). 
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The question then arises; what would be a relevant endpoint to measure selection by 
sub-inhibitory levels of  antibiotics in complex ecosystems? A number of  possible 
options exist (many of  which have been explored in Paper III). A simplistic measure 
would be to count the number of  isolates from a community exposed to low 
concentrations of  an antibiotic that survive treatment with high concentrations of  the 
same compound. This number could then be compared to non-exposed communities 
(serving as the “background” of  resistant bacteria), and a significant increase of  the 
proportion of  resistant isolates would indicate that selection has taken place. This 
way, the MSCCFU of  tetracycline was shown to be 10 µg/L in Paper III. However, this 
method is limited to cultivable bacteria and does therefore not consider the majority 
of  the community exposed. A more direct endpoint, that is not dependent on 
cultivability, would be the abundances of  functional resistance genes. One could then 
investigate whether the abundances of  relevant resistance factors are increased at 
different concentrations of  an antibiotic, compared to non-exposed controls.  
Increase of  mobile resistance genes is a directly selectable trait related to resistance 
development. Importantly, increases in mobile resistance genes represent a form of  
increased risks to human health, as higher abundances of  these genes means that 
there are more potential donors of  resistance genes to pathogens. Furthermore, 
measuring gene abundances enables assignment of  MSCs to individual resistance 
genes. For example, the results of  Paper III determines both the MSCtet(A) and the 
MSCtet(G) to be below 1 µg/L tetracycline, while e.g. the MSCtet(E) was around 10 µg/L. 

There are also alternative endpoints to measure the selective effects of  low 
antibiotic concentrations on microbial communities, not directly studying phenotypic 
or genotypic resistance. For example, a concentration of  an antibiotic that has 
selective effects on the community level would be expected to change the taxonomic 
composition of  the community. As shown in Paper III, this endpoint is actually fairly 
sensitive to changes, with the MSCgenus being estimated to be around 1-10 µg/L 
tetracycline. However, while the composition of  bacterial taxa changed, the diversity 
and richness of  genera were largely unaffected, suggesting that resistant bacteria, 
previously outcompeted, take over the niches of  susceptible ones. Nevertheless, it is 
important to note that while the MSCgenus corresponds to a selective effect of  an 
antibiotic, this endpoint may be less related to enrichment of  resistance factors, as 
intrinsically resistant bacteria are as likely to be enriched as those with horizontally 
acquired resistance genes. Other endpoints that could be explored would be the 
lowest concentrations that induce changes in gene expression (which could be 
measured by e.g. metatranscriptomics), induce horizontal gene transfer (studied by 
e.g. Jutkina et al. 2016), cause increased dispersal (for example from a biofilm), or 
cause a shift in abundance of  other genes without resistance function in a microbial 
community (another suitable target for metagenomics). Notably, in some of  these 
cases, it is unclear if  a concentration causing an effect is actually selective, or if  it just 
triggers more random stress responses. Thus, it may be more relevant to refer to 
minimal concentrations causing effects (MCEs) rather than selective concentrations. 
Finally, it would also be important to establish the minimal concentrations that can 
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co-select for antibiotic resistance. For example, biocides and metals have been 
suggested to drive antibiotic resistance development (Baker-Austin et al. 2006; Pal et al. 
2014; Wales & Davies 2015), but the concentrations at which they do so are largely 
unexplored territory. Before determining co-selective concentrations for biocides and 
metals, it would be valuable to determine which ones that actually have the potential 
to co-select for antibiotic resistance, as some studies suggest that the potential for co-
selection between biocide, metal and antibiotic resistance genes is limited (Pal et al. 
2015). 

The relevance of different endpoints for selective and effect concentrations 
Experiments with competing strains have highlighted the importance of  the sub-MIC 
selection landscape in antibiotic resistance evolution (Liu et al. 2011a; Gullberg et al. 
2011; Andersson & Hughes 2012; Gullberg et al. 2014). However, it is still uncertain 
to what extent competition experiments are translatable into selective advantages in 
complex environmental microbial communities, as the studied system disregards, for 
example, competition for available niches, nutrient limitations and predation. In 
addition, the MSCcompetition is strain specific and can thus not be readily extended to a 
community with many different taxa. That said, competition experiments between 
resistant and non-resistant pathogen strains have a strong relevance for investigating 
the relative fitness of  those resistant strains in e.g. the human gut, where we would 
like to avoid selection for resistant mutants. Such relative fitness advantages are much 
harder, if  at all possible, to capture using a community approach. Recommended 
treatment regimens with antibiotics aim to reduce the timeframe during which the 
human microbiome is exposed to sub-inhibitory selection pressures, but avoiding sub-
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Table'5.!Endpoints!for!minimal!selec*ve!concentra*ons!(MSCs)!and!minimal!concentra*ons!
causing!effects!(MCEs)!in!complex!microbial!communi*es

Endpoint Suggested 
abbreviation

Measured by

Fitness advantage of competing strains MSCcompetition Competition experiments 
(Gullberg et al. 2011)

CFU count MSCCFU Plating of isolates (Paper III)

Increased (resistance) gene abundances MSCgene Metagenomics or qPCR 
(Paper III)

Changes of taxonomic composition MSCgenus or 
MSCspecies

Metagenomics or amplicon 
sequencing (Paper III)

Increased rate of horizontal gene transfer MCEHGT HGT assays (Jutkina et al. 
2016)

Increased dispersal rate MCEdispersal Biofilm dispersal assays 
(Jackson et al. 2002; Barraud 
et al. 2006)

Changes of gene expression MCEexpression Metatranscriptomics
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lethal concentrations in all body compartments entirely is likely impossible. That said, 
the most pertinent setting to establish MSCs and MCEs in would probably be those 
where sub-inhibitory concentrations of  antibiotics are expected to be present during 
longer times. This points of  course to the use of  low amounts of  antibiotics as growth 
promoters in animal farming, but also to the external environment and the complex 
microbial communities present there. The most straightforward way of  establishing 
MSCs for those communities would be to setup microcosm experiments subjected to 
a gradient of  antibiotics concentrations and investigate the exposed communities for 
one or several of  the endpoints discussed earlier (Table 5). Particularly, settings such 
as agriculture, sewage and sewage treatment plants, and environments polluted with 
pharmaceutical waste would be of  high relevance to study, since this is where we 
expect antibiotic concentrations to potentially be high enough to exert a selection 
pressure. These environments comprise a vast range of  ecosystem types, and thus 
differently composed microbial communities. Thus, the resulting MSCs could be 
different even if  the same endpoint is used, simply because the communities are so 
disparate. This points to a general concern with MSCs – the concentrations they 
suggest will always be context dependent, varying with respect to both the chosen 
endpoint and the studied community or strain. 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Environmental antibiotic resistance 

Environments that could promote resistance development and dissemination 
Given the selective concentrations established in Papers II and III, we next 
investigated environments that could potentially be exposed to sufficient 
concentrations of  antibiotics to promote resistance development and/or 
dissemination of  resistance genes. Two scenarios for potential selection were 
investigated: low level exposure in Swedish sewage treatment plants (STPs; Paper IV) 
and exposure to high concentrations of  antibiotics in areas in India subjected to 
pollution with pharmaceutical waste (Larsson et al. 2007; Fick et al. 2009; Paper V). 

In the three STPs investigated in Paper IV, we found that the concentrations of  
tetracycline and ciprofloxacin detected in the incoming untreated sewage could be 
selective for resistance (based on the results from Papers II and III). The 
concentrations of  all other antibiotics examined were below predicted MSCs. 
However, we did not detect any selection for the corresponding resistance genes, nor 
for any other particular type of  resistance genes throughout the treatment process 
(except for a non-significant increase of  sulfonamide resistance gene abundances; 
Figure 11). Thus, even if  resistance genes towards fluoroquinolones and tetracyclines 
would be selected for in raw sewage, they seem to be reduced to the same degree as 
other resistance gene classes in the subsequent treatment steps. 

We also assessed whether antibiotic resistance could be co-selected for by other 
antibiotics, antibacterial biocides, or metals. To investigate this, we assembled the 
metagenomic data and annotated the contigs for the presence of  resistance genes. In 
total, 776 out of  1,722,659 assembled contigs (0.045%) carried resistance genes (583 
carrying antibiotic and 216 carrying biocide and metal resistance genes). Only 122 
contigs carried more than one resistance gene and thus showed co-selection potential. 
The genes that most commonly co-occurred with other resistance genes were the 
sulfonamide resistance gene sul1, the qacEdelta resistance gene providing low-level 
resistance to quaternary ammonium compounds, and the aminoglycoside resistance 
gene ant(3’’)-Ia. Often, these genes were co-located with the intI1 class I integrase 
gene. In addition, the genes constituting the mer operon, conferring mercury 
resistance, were frequently encountered together on contigs from several samples. 
The comparably limited number of  co-occurrences, together with the overall limited 
evidence for selection of  resistance genes (Figure 11), suggests that co-selection of  
resistance genes of  different types is limited in STPs. However, the assembly 
approach is generally unable to identify genes situated far from each other on the 
same mobile genetic element. 

We also identified a few resistance genes that were significantly enriched through 
the treatment process. For example, the carbapenemase gene OXA-48 was enriched 
in surplus and digested sludge, indicating that STPs may select for clinically relevant 
antibiotic resistance genes, but likely not through a direct selection pressure by 
antibiotics. Rather, STPs probably select for particular types of  bacteria that happen 
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to carry the OXA-48 gene, perhaps chromosomally. Nevertheless, this might be 
important since a rise of  OXA-48 carriers increases the number of  potential donors 
of  this resistance gene and thus the likelihood for resistance transfer to other bacteria. 

In contrast to this low concentration scenario, we have also investigated 
environments in India subjected to pollution from pharmaceutical manufacturing, In 
these environments, concentrations of  antibiotics can be substantially above the 
predicted MSCs, and sometimes even reach and exceed therapeutic concentrations 
(Larsson et al. 2007; Fick et al. 2009; Kristiansson et al. 2011). In this thesis, we have 
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explored the resistome of  the Kazipally 
lake in India and contrasted it to the 
resistome of  a Swedish lake (Nydala-
sjön near Umeå; Paper V). In addition, 
we also have analyzed data from a river 
receiving effluent from a treatment 
plant handling wastewater from phar-
maceutical industries in the Hyderabad 
area (Kristiansson et al. 2011) using 
Illumina sequencing (unpublished 
data). Remarkably, these analyses show 
a vast diversity of  resistance genes, not 
only against the antibiotics detected in 
the river and lake water (Figure 12). 
Particularly, the aminoglycoside resist-
ance genes aph(3’’)-Ib and aph(6)-Id as 
well as the sulfonamide resistance gene 
sul2 were greatly enriched downstream 
the WWTP. The dramatically high 
abundances of  these particular genes is 
most a reflection of  that the DNA 
extraction protocol for the samples 
included a DNA amplification proce-
dure which introduces bias towards 
certain regions of  DNA (Pinard et al. 
2006), particularly small plasmids, 
which would include those carrying the 
sul2 and qnrD genes (Dr. Nachiket 
Marathe, personal communication). It 
is also interesting to note that the 
diversity of  resistance genes was high 
also upstream from the WWTP, sug-
gesting that pollution occurs also from 
other sources. Indeed there are reports 
of  illegal dumping of  pharmaceutical 
waste in the river (Greenpeace 2004; 
Boralkar et al. 2005). The situation was 
similar in the Kazipally lake, which was 
more thoroughly studied in Paper V. In 
this lake, the sul2 gene and the fluoro-
quinolone resistance gene qnrD were 
present in particularly high abund-
ances. In addition, genes involved in 
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horizontal gene transfer of  resistance genes, such as integrases, transposons and 
plasmid conjugation systems, were vastly more abundant and had higher diversity in 
the Indian lake compared to the Swedish non-polluted lake (Paper V: Figure 4). 
Assembly of  the metagenomic reads from the Indian lake revealed several contigs 
containing resistance genes, as well as 26 novel putative plasmids. Similar results have 
been obtained previously from pyrosequencing data of  the river sediments near the 
WWTP (Kristiansson et al. 2011). 

Community effects of chronic exposure to high levels of antibiotics 
As described above, high concentrations of  antibiotics exert selection not only for  
genes conferring resistance to the antibiotics detected, but to a wide array of  other 
resistance genes and mobile genetic elements (Figure 12; Paper V). This warrants 
further examination of  the effects of  chronic high-level antibiotics exposure. Paper V 
shows that in addition to resistance genes against many different classes of  antibiotics, 
genes involved in processes such as genetic transfer, plasmid maintenance, 
metabolism of  macromolecules and viral reproduction were strongly enriched in the 
polluted Kazipally lake compared to a Swedish lake. However, despite that the overall 
taxonomic diversity was lower in the polluted lake than in the non-polluted one, this 
difference was small. This suggests that a multitude of  species have acquired 
antibiotic resistance or are intrinsically resistant, and therefore able to survive and 
reproduce despite the strong selection pressure from antibiotics (and potentially other 
chemicals). Possibly, this could be a case of  evolutionary rescue, in which the bacterial 
populations of  the lake must either have been inhabited by a fraction of  resistant 
variants already before exposure to antibiotics, or produced such strains rapidly – by 
mutations, horizontal gene transfer, or both – to recover and avoid extinction 
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(Gonzalez et al. 2013). Importantly, these findings are similar to what was found in 
contaminated river sediments from the same region, which also show a large diversity 
of  resistance genes (Figure 13), suggesting that this is not an isolated process unique 
to the lake. 

Dissemination of resistance genes through sewage treatment plants 
As described earlier, we did not find strong evidence for selection of  resistance genes 
in STPs by antibiotics, nor co-selection by biocides or metals (Paper IV). However, 
STPs may also play an important role in dissemination of  resistance genes and 
resistant bacteria from the human population to the environment, enabling 
reinfection with resistant pathogens. To examine this, we quantified the reduction of  
resistance genes in STPs, and set that in relation to changes of  taxonomic 
composition, from feces to STP effluent and digested sludge. We found that although 
resistance genes were reduced more than 50 times in effluent compared to influent in 
terms of  volume, their relative abundances per bacterial 16S rRNA were only 
reduced by 63%. In sludge, the reduction per 16S rRNA was larger, but the reduction 
per volume was less than 70%. Similar patterns were noted for biocide and metal 
resistance genes, chromosomal as well as plasmid-borne. The richness of  resistance 
genes in was reduced by around 50% in the effluent, and around 30% in digested 
sludge. Taken together, this shows that a large quantity of  resistance genes are 
released from STPs into the environment, and that STPs are not efficiently removing 
resistant bacteria. At the same time, the STPs effectively removed most human-
associated bacteria, both from effluent water and sludge. In addition, there was a 
large discrepancy between the microbial communities in feces and the incoming 
sewage, due to a shift from obligate anaerobic bacteria to facultative anaerobes (Paper 
IV: Figure 1). This suggests that the resistance genes in STPs to a large extent are 
carried by non-fecal bacteria, but their distribution remains to be described. As the 
abundances of  mobile genetic elements were not significantly reduced in the effluent, 
this presents an opportunity for resistance genes to not only diffuse through the STPs, 
but also to spread between bacteria, for example if  presented with a sufficient 
selection pressure. Thus, selection per se STPs may be limited in STPs, but they can 
still provide as a dispersal route for resistance genes into the environment. 

The role of travel in disseminating resistance genes across the globe 
The human microbiome carries a range of  both mobile and chromosomal antibiotic 
resistance genes, including genes not yet encountered in pathogens (Sommer et al. 
2010; Forslund et al. 2013; Hu et al. 2013). Since the resistance situation in the world 
varies, with resistance rates being highest primarily in eastern Asia (Bebell & Muiru 
2014), humans traveling around the world can serve as a dissemination route for 
resistant bacteria between countries and continents. It is already well established that 
travelers are more prone to carry ESBL-producing enterobacteria when returning 
from countries with a worse resistance situation (Tängdén et al. 2010; Östholm-
Balkhed et al. 2013; Angelin et al. 2015), however the diversity of  resistance genes 
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brought back has remained unknown. To investigate travel as a general dissemination 
route for resistance genes, we used shotgun metagenomic sequencing of  fecal samples 
taken before and after travel in a cohort of  healthcare students traveling from Sweden 
to the Indian peninsula or central Africa and back again (Paper VI). We found that 
the overall resistance gene abundance increased significantly after travel, and that 
resistance genes towards several classes of  antibiotics were enriched (Paper VI: Figure 
1). However, resistance genes did not increase significantly across all classes of  
antibiotics, and the most common resistance genes did not increase in abundance 
after travel. Although this may partially be due to a limited number of  studied 
individuals (35 persons), it indicates that there exists a stable “core resistome” of  the 
human gut that is not much altered by travel, and a variable part of  the resistome 
that can change depending on the environmental conditions individuals are exposed 
to. Importantly, the changes related to travel occurred in the absence of  antibiotics 
intake (subjects that took antibiotics during or six months prior to their trip were 
excluded), which has been shown to be an important factor in colonization with 
ESBL-producers while abroad (Kantele et al. 2015). While we could not identify any 
significant differences between the resistance gene profiles of  travelers to central 
Africa and the Indian peninsula, only travelers to India acquired ESBL positive 
strains detectable by culturing. Interestingly, all those isolates were positive for the 
CTX-M-15 beta-lactamase, but we could not detect corresponding increases of  the 
CTX-M gene (or any other beta-lactamases) in the metagenomes of  the same 
individuals. This suggests that even when shotgun metagenomics utilizes a large 
sequencing depth, it may be too shallow to detect clinically important resistant 
bacteria in the human gut. Conversely, culturing for ESBL-producing bacteria was a 
poor indicator of  overall resistance gene abundance and diversity, suggesting that the 
two techniques complement rather than replace each other. Finally, not only 
resistance genes, but also integrases and ISCR transposases were enriched after 
travel. Also, bacteria belonging to the Proteobacteria phylum increased in relative 
abundance after travel. Many pathogenic species belong to the Proteobacteria, and 
although not significant after correction for multiple testing there was a tendency for 
the Escherichia genus to increase after travel. However, these taxonomic changes and 
the increases of  resistance genes were not correlated, so changes in taxonomy cannot 
be the sole driver of  resistance gene changes. The findings of  Paper VI support that 
travel facilitates dissemination of  a range of  resistance genes once they have made it 
into the human microbiome. 

Where is the abundance and diversity of resistance genes largest? 
Combining the results of  the four studies in this thesis utilizing shotgun metagenomic 
sequencing makes it is possible to obtain a rough picture of  how the resistomes of  
different environments relate to each other. The most striking feature of  such a 
comparison is how the Indian lake subjected to pharmaceutical pollution stands out 
in terms of  resistance gene abundances (Figure 14). This is almost certainly partly 
due to that the DNA from the Indian lake was obtained using a DNA “random” 
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amplification kit. Thus, the actual abundances of  resistance genes in the Indian lake 
are likely to be substantially lower than those indicated, and should strictly only be 
compared to other amplified samples, such as the Swedish lake Nydalasjön 
investigated in Paper V. Aside from the polluted river and lake sediments, the human 
gut microbiome carries the largest numbers of  known resistance genes. The relative 
abundance of  resistance genes in the human gut is even 45% higher than that in 
incoming sewage to Swedish treatment plants. This comparison between studies also 
contextualizes the findings of  the tetracycline aquarium experiment, in which the 
controls formed biofilms containing approximately the same resistance gene 
abundances as digested sludge or sand-filtered effluent from Swedish STPs. Adding 
10 µg/L tetracycline almost doubles the abundance of  resistance genes compared to 
controls, bringing it to the same range as incoming sewage. This can be compared to 
1000 µg/L aquaria, which host more than twice the resistance genes than found in 
human feces. 

Investigating the richness of  resistance genes in different environments (Figure 15) 
tells a slightly different story, however. The samples taken downstream from Indian 
WWTP receiving wastewater from pharmaceutical industries stands out with the 
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largest resistance gene richness. Primary sludge and incoming sewage water from the 
Swedish STPs follows next, together with the biofilms exposed to the highest 
concentrations of  tetracycline. Perhaps surprisingly, incoming sewage contains more 
different types of  resistance genes than human feces, despite that feces contains larger 
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Human feces:  B = before travel; I = after travel to India; A = after travel to Africa                           
Incoming sewage:  H = Henriksdal; K = Käppala; U = Uppsala                  
Primary sludge:  H = Henriksdal; K = Käppala; U = Uppsala                       
Surplus sludge:  H = Henriksdal; K = Käppala; U = Uppsala                        
Digested sludge:  H = Henriksdal; K = Käppala; U = Uppsala; X = Kemikond treated (Käppala)                     
Treated effluent:  H = Henriksdal; K = Käppala; U = Uppsala                      
Sand-filtered effluent:  H = Henriksdal; K = Käppala            
Tetracycline aquariums:  0 (numbers correspond to tetracycline concentration in µg/L)        
Polluted Indian sediments:  U = Upstream WWTP; W = WWTP discharge site; D = Downstream WWTP;   
 K = Kazipally lake (2007)                                                     
2011 Indian sediments:  U = Upstream WWTP; D = Downstream WWTP; K = Kazipally lake (2011);         
 A = Asanikunta lake                                                       
Swedish sediments:  U = Upstream STP; D = Downstream STP; N = Nydalasjön;                
 H = Härlanda Tjärn; S = Stora ån; A = Axelsmosse                                                     
Indian soil:  P = Polluted; C = Clean                                
Indian well water:  P = Polluted; C = Clean                  

Figure' 16.' Principle! component! analysis! (PCA)! of! resistance! gene! profiles! (presence/
absence)! in! the! environments! inves*gated! in! this! thesis.! The! resistance! genes! separa*ng!
the!samples!are!indicated!in!gray.
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abundances of  resistance genes. The lowest richness was found in Swedish lake and 
river sediments and unpolluted soil – the same samples that also hosted the smallest 
abundances of  resistance genes. Here, less than ten resistance genes had higher 
abundances than 10-3 per bacterial 16S rRNA. Notably, tetracycline selection in 
aquaria gave rise to biofilms carrying a richness of  resistance genes close to that of  
the polluted environments. 

Finally, we may also look at how the composition of  resistance genes differs 
between samples from different environments (Figure 16). Here, it is evident that two 
environmental types stand out in terms of  resistance gene composition: polluted 
sediments and human feces. Notably, the incoming sewage and primary sludge 
samples are not very similar to human feces, for reasons discussed earlier. Treated 
STP effluent is reminiscent of  the resistomes from Indian soil and well-water, and also 
that of  sediments from Swedish lakes. It is interesting to note that the lowest doses in 
the tetracycline aquarium experiment correspond well to treated STP effluent and 
Indian well water in terms of  resistance gene content, but with higher tetracycline 
exposure the resistance profiles become skewed towards the “polluted side” of  the 
figure. Resistance gene composition is still very dissimilar from that of  polluted 
sediments even in the highest tetracycline concentration, but the tendency of  a 
movement in this direction points to that the same set of  genes could be involved in 
resistome changes under antibiotic selection.  

 59



Bengtsson-Palme J   –   Antibiotic resistance in the environment

An ecological framework for antibiotic resistance 
Conventionally, the struggle against antibiotic resistance development has mainly 
taken place in the clinical and community settings – aiming at preventing selection for 
resistant bacteria during antibiotics treatment – and in agriculture, restricting use in 
animals. Recently, the role of  the environment as an important piece in the resistance 
puzzle has been increasingly recognized (Martinez 2008; Wright 2010; Pruden et al. 
2013; Ashbolt et al. 2013; Finley et al. 2013; Bondarczuk et al. 2015). However, the 
understanding of  the environment as a source and dissemination route for resistance 
genes and resistant bacteria is still limited. The lack of  knowledge of  how, and under 
which circumstances, the environment facilitates resistance development makes 
mitigating the emergence and dissemination of  mobile resistance factors problematic 
(Berendonk et al. 2015). To disentangle the different roles of  the environment in these 
processes, we ultimately need to build models for how resistance emerge and is 
disseminated. Such models will by necessity be descriptive at first, as most of  their 
parameters remain unknown, but they regardlessly have value as indicators of  the 
most urgent knowledge gaps to fill in order to develop mitigation strategies. Such one-
health approaches will be instrumental to succeed in the uphill battle against 
antibiotic resistance (Collignon 2013; So et al. 2015; Collignon 2015). This section 
will attempt to formalize a framework for environmental antibiotic resistance, set in 
an ecological context. 

The emergence of mobile resistance factors 
As discussed earlier, novel antibiotic resistance factors could emerge anywhere, at any 
time. The astounding number of  bacterial cells on Earth (around 1030 – a thousand 
billion billion billions; Kallmeyer et al. 2012), means that essentially anything that can 
happen in the bacterial world, will happen at some point. Thus, emergence of  new 
resistance factors is likely to occur continuously. However, there are two reasons that 
we are not flooded by novel resistance genes. First, most resistance factors that have 
just recently become mobilized likely have a fairly high fitness cost associated with 
them. Thus, they would be selected against unless there is a strong selection pressure 
to maintain them. Second, even if  such a resistance factor would have a low or 
negligible fitness cost, it is unlikely to become fixated in the bacterial population 
unless there is a selection pressure to maintain it (Martinez 2011). This selection 
pressure may be weak, but unless it is present the only manner a novel resistance 
factor would be retained is through genetic drift (Baquero et al. 1998).  

If  we assume that a novel resistance factor could be mobilized anywhere but needs 
a selection pressure to be retained, the subsequent question becomes: where are 
selection pressures strong enough to promote maintenance of  mobile resistance 
genes? Considering that most novel resistance factors likely have high costs, 
environments allowing sustained longevity of  a resistance gene regardless of  cost 
would be of  particular importance, since it is reasonable to assume that once a 
resistance gene gains a foothold in a bacterial community, it will rapidly evolve 
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towards diminished fitness cost (Salyers & Amábile-Cuevas 1997). This highlights the 
risks associated with situations in which antibiotics concentrations clearly above the 
MSCs, or even the MICs, as observed in environments polluted with waste from 
pharmaceutical pollution (Larsson 2014b). In addition, the conditions bacteria face 
within antibiotic production plants are largely unexplored, and are also likely to be 
extensively selective, although the number of  bacteria present in such settings may be 
very small. Other settings where exposure to antibiotics is high is in the human and 
animal gut during treatment. 

It is of  course possible that resistance genes with considerably lower fitness costs 
may emerge on mobile genetic elements, and that sub-inhibitory concentrations of  
an antibiotic will suffice to select for their maintenance. Thus, attention also has to be 
pointed to raw sewage, agriculture and sewage treatment plants, where 
concentrations of  antibiotics around the predicted MSCs have been determined 
(Michael et al. 2013; Paper II). Finally, one cannot neglect that novel resistance 
determinants may be selected for naturally, if  they e.g. confer a competitive 
advantage against antibiotics producers, or allow host bacteria to survive higher 
concentrations of  an antibiotic that they themselves produce. 

Horizontal gene transfer of resistance factors 
Horizontal gene transfer is central for the spread of  novel resistance genes as it allows 
resistance determinants to extend their prevalence beyond a particular clone. This 
way, gene transfer makes resistance genes available a much larger part of  the 
bacterial population in a particular environment, often beyond species boundaries 
(Martinez 2011). As for the mobilization of  novel resistance factors, transfer of  genes 
between bacteria can in theory occur anywhere. However, for resistance genes to be 
horizontally transferred to pathogenic bacteria, they need to, at least temporarily, 
share the same habitat (Matte-Tailliez et al. 2002; Wiedenbeck & Cohan 2011). 
Furthermore, horizontal gene transfer is much more likely to occur between 
phylogenetically closely related bacteria (Philippot et al. 2010; Smillie et al. 2011). 
Finally, transfer processes are induced by stressors such as antibiotics (Beaber et al. 
2004; Hastings et al. 2004; Maiques et al. 2006), and antibiotic selection contributes to 
fixation of  transferred resistance genes in their new host. Thus, resistance transfer can 
be expected to be relatively frequent between human-associated bacteria (Salyers et al. 
2004), particularly during treatment with antibiotics. This means that once a 
resistance factor has entered into a human pathogen, it is more likely to further 
spread between pathogens, than being transferred again into another pathogen from 
environmental bacteria (as also argued in Paper VII). Moreover, avoiding transfer of  
resistance between pathogens is likely impossible, since they share habitats, often are 
phylogenetically related, and mobile resistance factors generally seem to be associated 
with low fitness costs (Salyers & Amábile-Cuevas 1997; Andersson & Hughes 2010). 
Somewhat surprisingly, the human microbiome harbors a fairly large number of  
resistance genes that have not been transferred to human pathogens (Sommer et al. 
2009; 2010). The reasons for this are unknown, but one can speculate that strong 
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barriers to transfer are at play. For example, the carriers of  those gene may be 
evolutionary divergent from most human pathogens, or their resistance genes may 
simply not have been mobilized onto a suitable mobile genetic element, complicating 
their transfer (Martinez 2011). 

However, the vast majority of  existing resistance factors are likely not encountered 
in pathogens and human commensals, but present in environmental bacteria (Allen et 
al. 2010). Bacteria not typically associated with the human microbiome may have 
opportunity to interact with human-associated species in various settings. One 
possibility is that environmental bacteria can transiently be present in the human 
microbiome, through e.g. interaction with wild animals, intake of  exotic foods, or 
drinking of  contaminated water (Allen et al. 2010; De Boeck et al. 2012). The impact 
of  these exposure scenarios is uncertain as the timeframes for interaction is limited 
and the incentives for transferring resistance genes would in most cases be low, except 
during antibiotic treatment. That said, there are other settings where human bacteria 
can interface with animal-associated and environmental ones. A key consideration in 
these contexts is the length of  the dispersal route from those milieus back into the 
human population (Baquero et al. 2009). A pathogen (or commensal) that acquires a 
novel resistance factor but is eradicated before it can return to a human host never 
causes any clinical resistance problems, while those that make it back to their hosts 
may do. An obvious setting that offers interaction opportunities for a range of  
different bacterial species, and also may present sufficient conditions for resistance 
selection, is sewage treatment plants (Rizzo et al. 2013). Other milieus that may serve 
as breeding grounds for resistance transfer can be found in agriculture (particularly 
among livestock; Allen 2014), water bodies (Baquero et al. 2008; Lupo et al. 2012), and 
food (Rolain 2013). All these environments have in common that the exposure routes 
to humans after a potential transfer event are relatively short. STPs generally 
discharge their effluent (which has been repeatedly been shown to contain resistance 
genes; see e.g. Paper IV) into water bodies. Humans often use this water for activities 
such as drinking water supply and recreational swimming. Furthermore, animals 
drink the water untreated and may subsequently spread resistant pathogens to 
humans. Global food trade has been shown to also ship pathogenic bacteria around 
the world, for example in the German 2011 Shiga-toxin-producing Escherichia coli 
(O104:H4) outbreak (Rasko et al. 2011; Buchholz et al. 2011). Finally, transfer of  
resistance factors from human pathogens to environmental bacteria is possible, 
enabling human-associated bacteria to use environmental bacterial populations as 
reservoirs for resistance genes that can later be re-recruited into the human-associated 
resistome (Salyers & Amábile-Cuevas 1997; Salyers & Shoemaker 2006). Although 
this process is nearly impossible to quantify, it is likely of  lesser concern than the 
recruitment of  novel resistance factors into pathogens or the dissemination of  
resistant pathogens through the environment. Furthermore, measures to prevent re-
recruitment of  resistance genes from the environment would be almost identical to 
mitigation strategies to avoid spread of  novel resistance factors into pathogens. 
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Dissemination of resistant bacteria 
The main route for human spread of  resistant pathogens is from other people, either 
in clinics or through acquisition in the community setting. The typical dispersal routes 
here are through body contact or indirect contact transmission, aerosols, and food 
prepared by persons carrying the pathogen (Livermore 2000). These are also the 
typical transmission routes for infectious bacteria in general, and interventions 
preventing their circulation are essentially the same as those from classical 
epidemiology (Rao 1998; Livermore 2000; Lipsitch et al. 2000; Levin et al. 2014). 
Importantly, proper hygiene routines constitute the principal dispersal barrier for 
resistant pathogens, and the significance of  sanitation for preventing spread of  
resistant bacteria between humans cannot be overstated (Mattner et al. 2012). 

Apart from transmission between humans, environmental dissemination routes for 
resistant bacteria has also been pointed out as potentially important for the spread of  
antibiotic resistance (Allen et al. 2010; Pruden et al. 2013; Finley et al. 2013; Levin et al. 
2014). Again, environments facilitating dissemination of  resistant bacteria also enable 
spread of  non-resistant human pathogens. Thus, sewage, wastewater treatment 
plants, water bodies, food trade and travel, but also air-borne aerosols, are important 
factors enabling bacterial transmission between hosts through the environment 
(Fernando et al. 2010; Rolain 2013; Molton et al. 2013; European Food Safety 
Authority & European Centre for Disease Prevention and Control 2013; Pruden 
2014; McEachran et al. 2015; Angelin et al. 2015; Barberán et al. 2015; Paper VI). 
Limiting the spread of  human-associated bacteria – resistant or not – requires an 
understanding of  the environmental dispersal barriers that exist. Contrary to the case 
of  clinical and community transmitted bacteria, identifying relevant barriers to 
dispersal is considerably harder in the environment. We may here adopt a 
metacommunity ecology perspective and consider the human and/or animal hosts of  
pathogens as habitable patches, while most other external environments would serve 
as a dispersal matrix (Leibold et al. 2004; Table 6). Metacommunity theory suggests 
that if  patches are of  equivalent quality, the distance between patches and the 
dispersal capability of  species determine their relative success (Bengtsson 2009). 
Thus, the quality of  the dispersal matrix and the ability to survive between hosts are 
fundamental properties for pathogens to spread between humans through the 
environment. Some understanding of  how different pathogens survive in the external 
environment can once again be gained from epidemiology, although this is not a 
particularly well-studied subject outside of  a few select model bacteria. An important 
factor in these dispersal processes may be the presence of  inactive dormant stages, 
e.g. the highly resilient spores formed by some pathogenic bacteria (Leggett et al. 
2012). Such dormant life-stages could vastly help the bacteria to survive in the 
dispersal matrix, almost regardless of  matrix quality, and to re-spawn once in a 
suitable host (Lennon & Jones 2011; Shade et al. 2012).  

The dispersal routes of  bacteria through the environment have not evaded 
investigated, however. Research on microbial source tracking, usually aiming at 
identifying the sources and health risks associated with e.g. leaks of  untreated sewage, 
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have generated some knowledge regarding the persistence and re-infection potential 
of  human-associated bacteria in the environment (Harwood et al. 2014). 
Furthermore, it is known that physical forces, such as wind and watershed, move 
bacteria over large distances. Wild birds and animals in contact with human activities 
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Table 6. Implications of different metacommunity perspectives for resistance selection

Perspective Ecological processes Implications for resistance selection

Species sorting Gene content determined by local 
processes. 
Disturbances decrease local genetic 
diversity. 
Dispersal between patches is almost 
absent.

Antibiotic selection and fitness cost of 
genes determine gene content. 
Antibiotic exposure favors specific 
resistance gene types. 
Little input of resistance genes from 
external sources. 
In the absence of antibiotics, selection 
will be for resistance genes with low 
cost, or for loss of resistance genes. 
Almost independent of matrix quality.

Patch dynamics Patches of roughly equal quality. 

Colonization of patches is dependent 
on distance and dispersal limitations. 
Cost, detoxification effectiveness, and 
dispersal ability of carriers determine 
the success of each resistance gene. 

Loss of resistance genes is stochastic.

Similar antibiotic exposure, such as in 
human gut when not under treatment. 
Human individuals are disconnected 
and hygiene is a dispersal limitation. 
Resistance genes that confer relevant 
resistance and are carried by bacteria 
that spread easily will be most 
successful. 
Selection for resistance genes with low 
cost and high transmission potential. 
Large dependence on matrix quality.

Dispersal-driven 
(mass effects)

Source-sink dynamics. 
 

Patches of different quality. 

Local gene content partially dictated 
by dispersal. 

Resistance genes that confer a fitness 
advantage will be successful.

Resistance genes may “spill over” from 
environments in which they are better 
adapted to poorer ones. 
Some environments may be exposed 
to antibiotics, and others not. 
Gene content dependent on in-flow of 
resistance genes, and subsequent 
selection for efficient variants. 
Resistance genes matching antibiotic 
exposure will be maintained. 
Large dependence on matrix quality.

Neutral All resistance genes have similar 
fitness costs and confer similar 
resistance patterns. 
Ecological drift and mutation of 
resistance genes maintain diversity. 

Only valid on long time scales.

This could be true for e.g. multidrug 
efflux pumps.  

In the absence of selection, genetic 
drift will govern which resistance 
factors that are maintained. 
This may be a relevant perspective in 
pristine environments.  
Matrix quality governs differences 
between environments in terms of 
resistance gene content.
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are known to carry resistance genes, and may also spread them across large areas 
(Baquero et al. 2008; Allen et al. 2010). Still, much remains to be understood in terms 
of  dispersal limitations, environmental survival, competitiveness versus environmental 
species and strains, resistance selection and alternative habitats for human-associated 
bacteria in the environment. Even less is known about how environmental bacteria  
harmless to humans carrying resistance genes disperse and interact with human-
associated bacteria. The dissemination routes from environments presenting a 
selection pressure for initial emergence, mobilization and maintenance of  resistance 
genes to humans and/or animals are poorly understood, but constitute important 
propagation routes for resistance genes into the human population. They thus need to 
be delineated, along with the factors influencing matrix quality for environmental 
bacteria. This calls for efforts to monitor the presence of  pathogens and resistance 
genes in a variety of  environmental settings to better understand possible dispersal 
routes. Furthermore, experimental microcosm setups would be necessary to delineate 
the dispersal parameters in different environmental matrices of  human-associated 
bacteria, environmental bacteria, and individual resistance factors. 

Evolutionary processes influencing environmental antibiotic resistance 
For the long-term maintenance of  antibiotic resistance genes in bacterial 
communities, two antagonistic evolutionary forces are at play: selection promoting 
resistance phenotypes, and selection reducing fitness cost. As discussed earlier, gain 
and fixation of  resistance genes in a bacterial population are largely dependent on a 
direct antibiotic selection pressure (Martinez 2011). The selective forces towards 
maintenance of  resistance genes do not only include direct antibiotic selection 
pressure, however. Even in the absence of  a direct selection pressure from an 
antibiotic, resistance genes may be favored by co-selection by other substances 
presents, such as other antimicrobial agents including metals and biocides (Baker-
Austin et al. 2006). In addition, resistance genes may be maintained because they 
confer advantages to the cell even in the absence of  a selection pressure, in essence 
allowing the bacteria to perform an intrinsic function more efficiently when they 
carry the resistance gene (Enne et al. 2004). However, carriage of  resistance genes 
usually comes with a cost in terms of  reduced fitness, although this cost is sometimes 
small (Andersson & Hughes 2010). This cost is (together with genetic drift) the sole 
factor that acts to reduce the frequency of  resistance genes in bacterial populations. 
Random losses of  resistance genes happen all the time, but seldom result in complete 
elimination from the bacterial community, which means that once a selection pressure 
for resistance re-emerge, resistance development of  bacterial populations previously 
subjected to resistance selection can be quick (Levin et al. 1997). Selection pressure 
acting against resistance is therefore crucial for eradication of  resistance factors from 
a community. 

Bacteria typically become resistant to antibiotics via i) up-regulation of  efflux 
pumps exporting the substance from the cell, ii) expression of  degradation enzymes 
that can render the substance harmless, iii) protection of  the target of  the antibiotic, 
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iv) alternative means to perform inhibited functions, or v) modifications to the cell 
wall, reducing permeability for the antibiotic substance (Walsh 2003). Resistance 
mechanisms associated with efflux pumps and cell wall modifications are often caused 
by mutations in chromosomal DNA, although some efflux pumps are transferrable 
between bacteria on plasmids. Degradation enzymes, target protection proteins, and 
enzymes allowing utilization of  alternative enzymatic pathways are more likely to be 
transmissible on mobile genetic elements as they add functions to the host rather than 
modify existing ones. Thus, fitness costs associated with the latter three mechanisms 
are primarily associated with the cost of  carrying the resistance plasmid and 
expressing its genes, while costs of  mutations are related to decreased growth rate due 
to changes in essential genes and/or altered resource usage. In both cases, 
compensatory mechanisms, such as mutations, can reduce fitness costs over time 
(Andersson 2003). Under antibiotic selection pressure, evolution of  a bacterial 
population towards mutation-mediated resistance depends on both the population 
size and the mutation rate (Perron et al. 2015a). Certain mutations have little or no 
fitness cost, but those have been shown to also confer lower degree of  resistance than 
more costly mutations (Melnyk et al. 2015). Would the same be true for resistance 
genes in microbial communities? Recent meta-analysis of  fitness costs associated with 
different types of  resistance factors suggests that plasmid-mediated resistance infer a 
much smaller cost than mutational resistance, and that the fitness reduction by 
carrying a resistance plasmid is relatively small (Vogwill & MacLean 2015). Indeed 
there are substantial fitness costs associated with the initial uptake of  horizontally 
transferred genes (Baltrus 2013), but both plasmids and hosts seem to compensate for 
those costs within a comparably small number of  generations through plasmid 
domestication (Bouma & Lenski 1988; San Millan et al. 2015; Vogwill & MacLean 
2015). Thus, the majority of  horizontally transferred resistance genes may actually 
present little cost to their host. If  that be the case, the advantage of  losing a resistance 
gene would be small for the individual cell, essentially reducing the gene loss 
mechanism to that of  stochasticity. Random losses, however, are likely not sufficient 
to fully eradicate resistance genes from a population (Levin et al. 1997). 

Given that most antibiotics in use are derived from natural compounds produced 
by microorganisms in the environment, the presence of  genes conferring resistance to 
those compounds across a range of  habitats is not surprising (Allen et al. 2010). Most 
likely, however, resistance genes did not evolve as a means to fight the high 
concentrations of  antibiotics used in therapy, since such high concentrations are not 
encountered in environments with no or little anthropogenic impact (Kümmerer 
2009a; b). Many antibiotics instead seem to primarily function as pigments, toxins, 
and effectors in microbial communities (Demain 1998), or be involved in microbial 
signaling (Linares et al. 2006). A curious property of  antibiotics is that, at low 
concentrations, many of  them seem to escalate mutation rates and mobilize DNA 
(Aminov 2009; Blázquez et al. 2012). The exact reasons for this remain poorly 
understood, but it has been hypothesized that higher mutation rates enable quicker 
niche adaption (Aminov 2009). Thus, a signaling role for antibiotics as secondary 
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metabolites may be that when resources in the habitat begin to decay, they initiate 
generation of  genetic variability that may be favorable in the search for new suitable 
niches and habitats. In essence, this would ensure more efficient utilization of  
resources. In this case, resistance genes may have evolved to balance these needs, or 
to protect bacteria against such signaling schemes of  other species. This implies that 
there may be advantageous to carry resistance genes regardless of  anthropogenic 
antibiotic selection, and that expecting a reversal of  resistance after exposure has 
ceased may be overly naïve. The almost ubiquitous presence of  resistance genes in a 
vast range of  environments (Allen et al. 2009; Sommer et al. 2009; Lang et al. 2010; 
Martiny et al. 2011; D'Costa et al. 2011; Forsberg et al. 2012; Segawa et al. 2012; 
Munck et al. 2015) indeed suggests that this is the case, and that the cost associated 
with carrying resistance genes is almost negligible unless the niche is extremely 
resource-poor, with genome streamlining as a result (Yooseph et al. 2010; Giovannoni 
et al. 2014). 

An ecological framework for antibiotic resistance development 
The above reasoning leads to the identification of  four important steps on the route 
to clinically important antibiotic resistance: emergence of  novel resistance factors, 
mobilization, transfer to human pathogens, and dissemination. Notably, all these steps 
need not to happen in this particular order; transfer to human pathogens may occur 
after dissemination to the human microbiome, or certain steps in the process may 
repeat (Figure 17). A crucial factor for a resistance gene to reach human pathogens in 
that it is maintained throughout all these steps. As argued earlier, resistance genes 
with high costs are very unlikely to be maintained in the absence of  a selection 
pressure, particularly if  located on a mobile genetic element. Furthermore, a scenario 
with a constant selection pressure by antibiotics, from the environmental emergence 
of  a resistance gene to its transfer to a human pathogen, seems improbable, although 
one could argue that there are places in the world where this may be possible. Taken 
together, it seems reasonable that successfully maintained resistance genes have either 
evolved towards low fitness cost in a mobile context (a sort of  evolutionary rescue 
(Gonzalez et al. 2013) on the individual gene level), or were associated with low fitness 
costs from the beginning. Since loss of  resistance genes is likely as long as they bestow 
their carrier with a significant fitness cost, recently mobilized genes that do not 
provide an obvious fitness advantage are undoubtedly sorted out early from mobile 
genetic elements such as plasmids (Baquero et al. 2013). This highlights the 
importance of  environments in which resistance genes provide a strong selective 
advantage, for example milieus subjected to antibiotics pollution (Larsson 2014a; b). 
Since these environments would also present bacteria with conditions that favor 
increased mutation frequency, one consequence may be that resistance genes could be 
present in several slightly different variants, all selected for detoxification efficiency, of  
which only those with a low fitness cost survive when the selection pressure is 
removed (for example after dispersal of  the host to a non-polluted environment). 
Given how long the dispersal route from initial mobilization to human pathogens 
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would generally be for a novel resistance gene, it is not surprising that mobile 
resistance genes found in pathogens today are terribly hard to eliminate from 
bacterial populations (Levin et al. 1997; Andersson 2003; Jernberg et al. 2007; 
Löfmark et al. 2008) and seem to bestow little fitness cost on their carriers (Enne et al. 
2004; Andersson & Hughes 2010; Gullberg et al. 2014; Vogwill & MacLean 2015). 
This suggests that once a resistance gene is widely spread among human pathogens 
(or even among human commensals), the game is lost and we are restricted to 
manage the spread from individual cases of  infection. Mitigation of  the spread of  
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resistance factors to human pathogens should therefore ideally take place before they 
get a foothold in the human microbiome. Thus, detection of  resistance determinants 
in the environment that are not yet widespread among clinical bacteria is a primary concern 
in risk assessment of  antibiotic resistance (Paper VII).  

Which environments pose the most pertinent risks to human health? 
Ultimately, the main reason to study antibiotic resistance in the environment is to 
gain further insights into the risks to human health. This knowledge can then be used 
to design interventions that could prevent or delay the recruitment of  resistance 
factors to pathogens from environmental bacteria. To identify suitable mitigation 
strategies, we need to first define what environments and scenarios that constitute the 
most severe risks. This, however, is not completely straightforward. Some researchers 
have argued that the most severe risk scenarios involve “resistance genes that are 
already known to contribute to the failure of  antibiotic treatment and have previously 
been reported to reside on mobile genetic elements that are hosted by human 
bacterial pathogens” (Martinez et al. 2015). This is of  course the case when such 
genes are encountered in the human microbiome, but while they are clearly of  
importance, finding them in environmental bacterial communities is not necessarily 
indicative of  a high-risk situation. Well-known resistance genes present on mobile 
genetic elements easily spread with human feces, and detection of  them in the 
external environment may simply be an indication of  human fecal contamination 
(Pruden et al. 2006; 2012). Risks associated with human fecal pollution should not be 
neglected, but is almost exclusively related to the dissemination of  already resistant 
bacteria. Furthermore, these genes are already circulating among pathogens, and as 
argued earlier transfer of  them between pathogens within the human microbiome is 
expected to be vastly more frequent than transfer of  the same genes from 
environmental bacteria. Thus, in terms of  future treatment outcomes, the clinical 
consequences of  recruitment of  resistance genes from environmental sources that are 
already present among pathogens are likely to be minor. We therefore think that 
Martínez et al. (2015) overestimate “the risks associated with well-known resistance 
genes that are already circulating among human pathogens and underappreciates the 
potential consequences of  the transfer of  previously unknown resistance 
determinants from the environmental resistome” (Paper VII). 

The risk landscape can essentially be partitioned into three main components: 1) 
the risks for mobilization and fixation of  novel resistance determinants, 2) the risks for 
recruitment of  resistance genes not previously present in human pathogens through 
horizontal gene transfer, and 3) the risks associated with dissemination of  resistant 
bacteria (pathogens or not) through the environment to the human population (Table 
7). We have already learnt that antibiotic selection is likely a central element for all 
these components (Figure 17). Although mobilization of  novel resistance genes could 
happen anywhere, stronger selection pressures are likely directly related to higher 
risks for their fixation in bacterial populations, as the costs for carrying recently 
emerged mobile resistance determinants probably are high. This identifies the human 
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and animal microbiome during antibiotics treatment, intensive aquaculture assisted 
by antibiotics (Cabello 2006), as well as environments polluted with high levels of  
antibiotics, as particular high-risk environments in early resistance emergence. 
Mobilization and transfer of  resistance factors is also driven by antibiotics exposure 
per se (Beaber et al. 2004; Hocquet et al. 2012), and does not seem to require high 
concentrations of  antibiotics (Dörr et al. 2009; Jutkina et al. 2016). Thus, polluted 
environments once again pose a high risk, but e.g. sewage may just as well contain 
sufficient toxicant concentrations to promote horizontal gene transfer. For the transfer 
of  resistance to human pathogens, the abundance of  pathogenic bacteria that can act 
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Table'7.!Human!health!risks!associated!with!environmental!an*bio*c!resistance

Risk scenario Environments of particular 
concern

Possible mitigations

Emergence and fixation of 
novel resistance genes

Human and animal microbiome Reduce antibiotics usage

Intensive aquaculture Ban the use of antibiotics

Environments subjected to 
pharmaceutical pollution

Regulate releases from 
pharmaceutical production

Mobilization and transfer 
of resistance genes

Environments subjected to 
pharmaceutical pollution

Regulate releases from 
pharmaceutical production

Sewage Disinfection of treated sewage 
and sludge

Transfer of resistance 
genes to human 
pathogens

Human microbiome Reduce antibiotics usage, 
avoid transmission of 
pathogens

Animal microbiome Reduce antibiotics usage

Sewage treatment plants Disinfection of treated sewage 
and sludge

Dissemination of resistant 
bacteria

Human-to-human contacts Hygiene

Hospitals Hygiene

Animal agriculture Reduce antibiotics usage, 
avoid direct contact between 
animals and humans, 
treatment/disinfection of 
animal feces

Poorly treated sewage Implement sewage treatment 
in developing nations

Water bodies Ban the release of untreated 
sewage into water bodies, 
regulate industrial releases of 
chemicals
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as recipients is crucial. This means that the human microbiome is likely to be central 
in this process, and that human commensals may play important roles as 
intermediary resistance reservoirs (Sommer et al. 2010; Forslund et al. 2013). In 
addition, animals may also serve as intermediate hosts for resistant bacteria, and 
contribute a breeding ground for resistance transfer to human pathogens (Allen et al. 
2010). The transfer of  novel resistance genes to human pathogens in sewage 
treatment plants seems somewhat more unlikely (Paper IV), but is certainly not 
impossible. Finally, risk scenarios for dissemination of  human-associated resistant 
bacteria are the same as those allowing dispersal of  pathogens in general: human-to-
human contact, hospital settings, animal agriculture, and poorly treated sewage 
(Livermore 2000; Pruden 2014). Conversely, the dissemination routes for 
environmental bacteria carrying resistance genes are much less clear. Regardless, the 
most critical factor is whether there is a quick dispersal route to the human 
population (Baquero et al. 2009). The shorter the “length” of  this route, the higher 
the risks associated with a particular environment. 

Taken together, it is not crystal-clear how high-risk settings for human health 
associated with environmental antibiotic resistance should be defined. However, 
obvious scenarios where interventions could already be applied are environments 
with strong selection pressures from antibiotics. Thus, limiting discharges of  
pharmaceutical waste from antibiotics production and reducing unnecessary use of  
antibiotics in humans, animals, and aquaculture are extremely important first steps 
towards mitigation of  environmental antibiotic resistance development (Pruden et al. 
2013; Review on Antimicrobial Resistance 2014; 2015; Bengtsson-Palme & Larsson 
2016a; Paper II). Second, identifying and closing down important dispersal routes for 
resistant bacteria to the human microbiome is also a high priority. For dissemination, 
targeting critical control points for resistance spread, such as sewage treatment plants, 
would be of  particular importance (Berendonk et al. 2015). For example, disinfection 
of  treated effluent could be an efficient means of  controlling the dispersal of  resistant 
bacteria. However, building out any kind of  modern treatment of  sewage in 
developing countries would probably have larger effects on resistance dissemination 
and would thus be a strategy of  even higher priority (Pruden et al. 2013; Kookana et 
al. 2014), as the resistance problem is a global issue (see Paper VI). 

A future of resistant superbugs? 
Apart from the obvious health hazards associated with increased prevalence of  
resistance genes among human pathogens, there are additional disturbing 
circumstances suggesting that the future holds an even darker resistance development 
than what we may currently appreciate. First of  all, most resistance genes seem to 
bestow little fitness cost on their host, and many resistance genes are readily 
transferred both between bacteria and between plasmids (Normark & Normark 
2002). Resistance genes with low cost tend to be maintained, and evolve in response 
to more efficient variants of  the same antibiotic, as observed for cephalosporins and 
the TEM beta-lactamases (Baquero et al. 1998) as well as tigecycline and the tet 
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tetracycline resistance genes (Linkevicius et al. 2016). Furthermore, accumulation of  
resistance genes against several different antibiotics on the same mobile genetic 
element can happen largely without reducing the fitness of  its carrier. Given that 
several broad-spectrum antibiotics classes are used to treat the same bacteria, such co-
localization is more likely than not to happen over time. Disturbingly, this also means 
that the likelihood that a gene is shared from one plasmid to another increases with 
time, as there are more plasmids that can act as donors for each gene. Thus, we 
would expect to see an increase of  bacteria with plasmid-borne multi-resistance 
phenotypes, and that the rate of  this increase would also increase with time. Indeed, 
this is what is currently observed among clinical isolates (Livermore 2009; European 
Centre for Disease Prevention and Control 2013). Importantly, this increase would 
appear even if  antibiotics usage did not surge. Troublingly, global antibiotics usage is 
also on the rise (Laxminarayan 2014), likely accelerating the multi-resistance problem 
even further. The use of  biocides and metals as antibacterials may also promote 
multidrug resistance, although to what extent is still uncertain (Baker-Austin et al. 
2006; Sütterlin et al. 2014; Pal et al. 2015). 

Multidrug resistance may not be the only problem we will face in the future 
though. Bacteria can generate genetic diversity through mutations, recombination 
and horizontal gene transfer. Each of  these processes is under balancing selection, 
where the benefits of  generating potentially adaptive genetic variants are weighted 
against the risk for fitness-reducing mutations (Gillings 2013). Antibiotic exposure has 
been shown to increase the mutation and recombination frequencies in bacteria, even 
at sub-inhibitory levels, through the SOS response (Beaber et al. 2004; López et al. 
2007; Blázquez et al. 2012). Exposure of  environmental bacteria to varying levels of  
antibiotics is therefore likely to generate variants with higher rate of  genetic change, 
in addition to the selection pressure for resistance. Since bacteria that have higher 
mutation rates are more likely to get beneficial mutations, and also more likely to 
quickly generate compensatory genetic changes, antibiotic exposure may select for 
fixation of  bacterial populations with generally higher rates of  genetic changes 
(Gillings & Stokes 2012). In addition, antibiotics are often released into the 
environment together with bacteria carrying integrons and other mobile genetic 
elements (Gaze et al. 2011; 2013). Since integrase activity is also induced by 
antibiotics (Maiques et al. 2006), this may further increase bacterial evolvability, 
generating ever more complex mobile genetic elements (Gillings 2014). If  those 
rearrangements come together with a generally increased mutation rate, the net result 
would be that evolution towards lower fitness cost of  resistance genes could happen 
even more quickly. It is impossible to predict exactly what consequences this may 
have for the bacterial pangenome. Since integrons and other mobile genetic elements 
allow bacteria to adapt faster to new niches (Gillings 2014), genes mobilized in the 
future would likely not be restricted to conferring antibiotic resistance, but may also 
encompass genes that provide a fitness advantage in terms of  adaption to changing 
environments. Thus genes allowing bacteria to survive highly variable abiotic 
conditions, handle toxicants, utilize novel carbon sources, compete with other 
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microbes, adhere to different types of  surfaces, re-engineer their ecosystems, and 
allow formation of  highly durable spores would be good candidates for future 
mobilization. From a human health perspective, it is easy to imagine that selection by 
antibiotics would favor strains with attributes that are beneficial for colonization and 
invasion of  the human host. This could include mobilization of  genes involved in 
virulence, transmission and pathogenicity (Gillings 2014), but also genes that increase 
competitive ability with human commensals. This paints a picture of  a bleak future in 
which human pathogens are not only non-treatable by most antibiotics, but also 
become more aggressive and spread more easily between humans. This signifies the 
importance of  understanding not only the risks for resistance transmission, but also 
the evolutionary consequences of  antibiotics releases into the environment.  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Concluding remarks 
The risks associated with environmental antibiotic resistance need to be better 
understood to enable implementation of  mitigation strategies to prevent or at least 
delay resistance gene recruitment to human pathogens. In this thesis, metagenomic 
DNA sequencing methods have been applied to contribute to this knowledge. To 
contextualize the results of  studies of  antibiotic resistance using shotgun 
metagenomic sequencing, other factors must be considered, such as whether the 
concentrations of  antibiotics present in a studied environment are selective and the 
taxonomic structure of  the investigated communities. To this end, a software tool 
called Metaxa2 has been developed that can reliably detect and extract rRNA 
fragments from metagenomes and classify these to higher accuracy than other 
competing software solutions (Paper I). Furthermore, the minimal selective 
concentrations in complex bacterial communities of  111 antibiotics were theoretically 
estimated based on publically available data (Paper II), and the specific selective 
concentration for tetracycline validated by experimental studies of  a variety of  
endpoints (Paper III). 

The results of  Papers I-III were used to set the results of  the shotgun 
metagenomic studies into context. In Paper IV, the selection processes for antibiotic 
resistance in Swedish sewage treatment plants were elucidated, and we found that 
there is little evidence for direct selection for resistance against particular antibiotics 
in these settings. Furthermore, we also found that co-selection between resistance to 
antibiotics, antibacterial biocides and metals appears to be limited. Instead, on the 
larger scale studied by metagenomics, shifts of  taxonomic composition – caused by 
changes of  abiotic factors such as oxygen availability – seem to drive changes of  the 
resistomes of  STP communities. These changes limit the interpretability of  
metagenomic data on resistance gene counts. Thus, comprehensive analyses of  the 
resistance patterns in strains within relevant species are warranted to better 
understand the selection processes possibly leading to resistance in STPs. 

On the contrary, the results of  Paper V, as well as other data presented in this 
thesis, suggest that in environments subjected to high concentrations of  antibiotics, 
such as those exposed to waste from pharmaceutical production, both the abundance 
and diversity of  resistance genes are enriched. In addition, a long range of  mobile 
genetic elements, such as plasmids, integrons and transposons, showed elevated 
abundances. Many of  the resistance genes were also found to be associated with such 
mobile genetic contexts. This indicates that pharmaceutical pollution can create 
particularly severe hot-spot environments for resistance development. As evidenced 
by Paper VI, there seem to be a set of  resistance genes that can spread globally by the 
means of  human travel, even in the absence of  antibiotics treatment. Those genes are 
also generally linked to the same mobile genetic elements found to be enriched in 
Paper V, pointing towards the intricate role of  horizontal gene transfer in the 
development and global dispersal of  antibiotic resistance.  
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When the results of  this thesis are combined with other studies of  clinical and 
environmental antibiotic resistance we are able to formalize an ecologically relevant 
framework for antibiotic resistance. This framework suggests that although 
emergence of  novel resistance factors and mobilization of  existing ones probably 
happen continuously, only few of  these determinants are selected for and fixated 
among bacterial populations. Those that do make it to pathogenic species are likely 
evolved to convey very little fitness cost to their hosts, and are thus hard to eliminate 
from pathogen populations. Successful mitigation strategies are therefore in principle 
limited to avoiding creation of  environmental settings that select for, mobilize and 
fixate resistance genes in bacterial communities, closing down the dispersal routes for 
resistant bacteria to the human microbiome, and limiting the selection pressure for 
resistant pathogens (i.e. prudent use of  antibiotics for humans and animals). The 
diversity of  resistance genes present in the environment suggests that there are many 
resistance genes available for pathogens to recruit. Since resistance genes are not 
likely to be eradicated from the bacterial populations of  the human microbiome even 
in the absence of  antibiotics selection, the genes that are already circulating among 
human pathogens may easily re-emerge during antibiotics treatment. The 
recruitment of  novel resistance genes into pathogens, on the other hand, is likely to 
have far more devastating consequences for human health, as resistance genes against 
new antibiotics, or more efficient resistance mechanisms against the ones that already 
face resistance, would further reduce treatment options (Paper VII). Unfortunately, 
shotgun metagenomics is ill-posed to identify these yet unknown resistance factors, 
due to its dependency on reference databases of  described resistance genes. Thus, 
while sequencing metagenomics can provide a snapshot of  the environmental 
resistome, this picture will inevitably be incomplete. Metagenomics will therefore 
never be a panacea for all environmental antibiotic resistance research, but merely a 
tool among others. That said, metagenomic sequencing can provide clues to selection 
pressures, mobility potential of  identified genes, taxonomic structure, and other 
important contextual information that may be impossible to obtain by other means. 
This enables metagenomics to make particularly valuable contributions to the 
growing body of  knowledge on environmental antibiotic resistance. Such 
understanding of  the environmental resistome is instrumental for future mitigation of  
antibiotic resistance development to be successful. 
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Postscript 
It may seem hopeless; and indeed the future appears dark. Many experts fear that we 
are nearing a return to the pre-antibiotic era, which may also represent the end of  
modern healthcare as we know it (Collignon 2013; Kåhrström 2013; Fowler et al. 
2014). That said, there are reasons to be optimistic about our ability to treat bacterial 
infections also in the future. Much research goes into finding antibiotics with novel 
mechanisms (Butler et al. 2013; Hesterkamp 2015), or finding ways of  inhibiting the 
bacterial resistance mechanisms (Cox & Wright 2013), the latter which would re-
enable use of  antibiotics currently faced with immense resistance problems. Recent 
approaches have made it possible to discover novel antibiotic substances from non-
cultivable bacteria, enabling us to tap into the antibacterial potential of  yet 
uncultivable species (Ling et al. 2015). However, the economic incentives for the 
pharmaceutical industry to pursue the highly costly endeavor to find novel antibiotics 
are clearly not sufficient, particularly as new substances successfully killing 
multiresistant bacteria will likely be put on the shelf  to use as last-resort antibiotics 
(Pharmaceutical, Biotechnology and Diagnostics Industries 2016). Thus, efficient new 
antibiotics is not a lucrative product category to invest in (Cooper & Shlaes 2011; 
Coates et al. 2011; Fernandes 2015). It is clear that governmental funding is required 
to sustain the development of  new antibiotics, particularly as phase III trials have 
become vastly costly (Cooper & Shlaes 2011; Fernandes 2015). Several suggestions 
that could alleviate this situation have been made (Pharmaceutical, Biotechnology 
and Diagnostics Industries 2016), including that the public take all or some of  the 
costs for phase III trials for antibiotics (Cooper & Shlaes 2011), that governments 
promise in advance to buy a stockpile of  a successfully developed antibiotic (Cooper 
& Shlaes 2011; Brogan & Mossialos 2016), simplified regulation systems for 
antimicrobial agents (Cooper & Shlaes 2011; Coates et al. 2011; Cole 2014; Tomayko 
et al. 2014; Fernandes 2015), or simply increased funding to research into finding 
novel antibiotics (Cole 2014). 

In addition to the efforts to develop new antibiotics, several alternative treatment 
strategies have emerged. One promising suggestion has been vaccines targeting 
bacteria. Vaccines have mostly been employed to fight viral infections, but there is 
(theoretically) no technical reason why similar approaches would not work also for 
pathogenic bacteria (Mishra et al. 2012; García-Quintanilla et al. 2016). Furthermore, 
targeting bacterial features less likely to drive resistance development is investigated, 
such as specifically attacking virulence (Allen et al. 2014). Other, more speculative, 
strategies involve using bacteriocins – bacterial antimicrobial peptides – as a weapon 
against bacteria, stimulating bacteria producing particular bacteriocins using 
prebiotics (Cotter et al. 2013), or to use bacteriophages to kill pathogens (Verbeken et 
al. 2014; 2016). Finally, it may also be possible to trigger the human immune system 
earlier, which could function as an alternative or supplement to traditional antibiotics 
(Cederlund et al. 2011; Agerberth et al. 2013). Evidently, we have not run out of  ideas 
on how to tackle bacterial infections in the future. However, all these ideas, as well as 
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the antibiotics currently in development, need several years in research and clinical 
trials before they can be used for treatment. Therefore, we need to devise strategies 
that preserve the currently available antibiotics for as long as possible, which includes 
prudent antibiotics usage, dramatically reduced use for non-human treatment, and 
timely action to avoid dissemination of  agents selecting for antibiotic resistance into 
the environment (Table 7). We should also remember that hygiene plays an 
immensely important role in preventing bacterial infections (Weinstein 2001; Sydnor 
& Perl 2011) – a fact often forgotten about when the post-antibiotic era is discussed. 
In fact, mortality rates in infectious diseases had already dropped dramatically when 
penicillin was introduced in the 1940-ies (Armstrong et al. 1999), largely thanks to 
improved recognition of  microbes, implementation of  hygiene routines, and access to 
clean water (Centers for Disease Control and Prevention 1999). It is important to 
recall that we will not lose these means of  fighting microbial infections even if  we run 
out of  antibiotic treatment options. The future may be bleak, but there is hope. 
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