
GU-ISS-2016-01

A free cloud service for OCR /
En fri molntjänst för OCR

Project report

Lars Borin
Gerlof Bouma
Dana Dannélls

Forskningsrapporter från institutionen för svenska språket, Göteborgs universitet
Research Reports from the Department of Swedish

ISSN 1401-5919

www.svenska.gu.se/publikationer/GU-ISS

1 Introduction
The project En fri molntjänst för OCR (‘A free cloud service for OCR’), funded by the National
Library of Sweden (51-KB709-2012), ran from 1st September, 2013 until 31st August, 2014.
The project was a collaboration between the University Library of University of Gothenburg
(henceforth: UB) and Språkbanken at the Department of Swedish of University of Gothenburg
(henceforth: SB), its aim to create a prototype Optical Character Recognition (OCR) web
service for processing old Swedish texts that are printed in a blackletter (fraktur) or roman
typeface, using one of two open source OCR engines. Our ultimate goal is to provide a service
for libraries, museums and archives to upload any digitized document and retrieve an OCRed
text with high quality, independent on the quality of the print. The project reported in this
document is to be considered as the first steps toward this goal.

2 Background and motivation
Optical Character Recognition (OCR) is the process of transforming digital pictures to machine
readable, editable and searchable text. Solutions have existed commercially since the 1950s,
and since then OCR is widely used at the professional as well as the consumer level. Today
there exist several services for smart phones where it is possible to easily take a photo of
a document which can then be uploaded via an application to a server that interprets the
picture and returns a text document. The quality of the services vary depending on how the
picture was taken. The availability of such services is however high.

In many institutions like libraries, archives and museums there are ongoing initiatives to
digitize in-house collections and archives. It is desirable to convert the text in all documents
that have been produced, regardless of their form. One of the main motivations for this
endeavor is to make the text searchable – both internally, within the institution, and externally,
by web search engines. Another motivation is to promote scientific research and studies, as
the availability of large amounts of material opens new possibilities for quantitative research,
drives new learning, improves discovery techniques and facilitates development of language
processing technology tools for historical digitized texts. Although individual pictures can
easily be uploaded and OCR interpreted on for example a telephone, accurate OCRing of
large amounts of digitized textual data is a demanding enterprise.

The quality of OCR depends greatly on the quality and type of material processed. For
modern documents with good print quality, OCR results are typically very good. In such
cases, almost error-free OCR is possible. For older texts the situation is different, however.
Irregularities in the print (e.g., uneven inking and “wavy” baselines), the use of blackletter
and older roman typefaces, deterioration of the paper, and variation in the language may all
affect the accuracy of off-the-shelf OCR.

1

One of the best known commercial systems is Abbyy Finereader,1 which is a high quality
system in use in many institutions in Sweden, including UB. However, since it is a closed
source commercial system, the ways in which we ourselves can use Abbyy to study how we
might improve OCR quality for older material are severely limited, as would be dissemination
of resulting experience and knowledge and our ability to use any results to offer an open OCR
service to third parties.

There are however also high quality open source solutions. The most prominent of these is
Tesseract,2 which started out as a closed source system at HP Labs in the 1980s. After its
release as open source, development has been supported by Google (Smith, 2007). OCRopus3

is a relative newcomer, but with promising performance. Originally related to Tesseract,
OCRopus now uses a completely independent neural-network based method to perform robust
OCR. The evaluation and comparison of these two open source alternatives as the basis of our
online service will be detailed in the following sections.

UB4 was among the first libraries to digitize its catalog, already in the middle of the 1990s.
The team at UB has extensive hands-on experience of large-scale digitization, including OCR.
Today, OCR is part of the post-processing chain for all printed text digitized at UB.

SB5 was established in 1975 as a national center for collection and processing of language
resources,6 primarily for Swedish text corpora and lexicon resources. It combines a high
level of scientific expertise in language technology with a high level and specialised technical
expertise and a well-developed technical infrastructure. Because of the specific needs of different
hardware and software solutions, Språkbanken maintains its own servers for different purposes.

3 Activities and achievements
The reporting below of the project results is organized into five sections. The last of these
sections contains pointers to the website and download locations for the output of the project.

3.1 Reference texts (SB/UB)

We have digitized a selection of 42 (mainly) blackletter texts printed between approx 1600
and 1800 from the collections of UB. The works differ in quality and clarity of the print,
both in terms of the original print and how well the works have preserved, although no really
deteriorated material was used. Most of the works contained a mixture of typefaces: a typical
configuration is to set body text in fraktur, highlights in schwabacher, and names as well as
(Romance) loan words in (italic) roman type. Apart from the mixed type faces, a problematic
aspect for using off-the-shelf OCR, particular to Swedish prints from this time is the alphabet
used. The prints contain ligatures that are rare or non-existent in modern text and are often
not handled by OCR engines. In addition, Swedish blackletter print uses ‘ae ’, ‘oe ’ and ‘å’. The
latter is typically not included in a fraktur character model, and is in addition very easily
confused with the first, especially in deteriorated print.

1<http://finereader.abbyy.com/>
2<https://code.google.com/p/tesseract-ocr/>
3During the course of our project, OCRopus development was dormant. However as of october 2014 the

project has a new location and appears to be more actively maintained. Old site: <https://code.google.com/
p/ocropus>. New site: <https://github.com/tmbdev/ocropy>

4<http://www.ub.gu.se/>
5<http://spraakbanken.gu.se/>
6<http://spraakbanken.gu.se/eng/resources>

2

From the digitized texts, we randomly selected samples each consisting of several consecutive
pages, for a total of 199 pages, which were transcribed externally by a company offering double-
keying services (GREPECT, <http://www.grepect.de>). The guidelines we developed for
transcription are relatively simple, but do contain instructions for ligatures, typeface changes
and some rudimentary type size changes. On the basis of our inspections of the transcriptions,
we consider them to be of very high quality. The full scanned material and the transcribed
selection is available for download.

We divided the transcribed selection into a development set of 130 pages and an evaluation
set of 69 pages. The former is used in the work described in section 3.2, the latter in the work
described in section 3.4.

Further works used in development were Olof v. Dalin’s Swänska Argus (1732–1734, Stock-
holm) and Peter Forsskål’s Tankar om Borgerliga Friheten. The images of Argus were taken
from the Litteraturbanken website (<http://litteraturbanken.se>), they were created by
the National Library of Sweden. Our transcriptions are slightly edited versions of earlier
transcriptions made by Carin Östman and Mats Thelander (Uppsala University). Our tran-
scriptions include a smaller number of error corrections, and in addition we made separate
versions for (part of) the original 1732–1734 edition and for the 1910/12 scientific edition
(see below). The versions of course differ in pagination, but also show sporadic differences at
the text string level. The scans of Tankar were made by UB as part of the present project.
The accompanying transcriptions are based of transcriptions available at Projekt Runeberg
(<http://www.runeberg.org>), which we corrected and adjusted for our project.

For comparison, we also considered some historical text in modern print. We used scans of
a scientific edition of Argus (– Första Delen; Hesselman & Lamm, eds, 1910/1912, Svenska
vitterhetssamfundet; scan taken from <http://litteraturbanken.se>) and Stockholms stads
tänkebocker från år 1529, del XV, 1626 (Wikstöm, ed, 1990, Stockholms stadsarkiv; scan from
UB). For the development of a Swedish alphabet character model for the OCR engine, we
sampled lines of scanned text and their transcriptions from works available at the Projekt
Runeberg website – more on this dataset in the following section.

Part of the data mentioned here will be available from SB’s servers, as detailed in section 3.5.
We will supply links to data that we cannot, or are not allowed to, distribute.

3.2 Evaluation of OCRopus and Tesseract, development and evaluation of
target material adapted language models (SB)

3.2.1 Initial, off-the-shelf evaluations

We started by evaluating the available models for fraktur of OCRopus v0.7 and Tesseract
v3.02.

The version of OCRopus we used is an OCR system that does not rely on any explicit
language information like word lists, character combination statistics (n-grams), etc. However,
its fraktur model was trained on the German alphabet, which means it had no knowledge of ‘å’.
In addition, OCRopus comes with a model for modern print trained on an English alphabet
(no ‘å’, ‘ä’, ‘ö’), and a model that can read mixed fraktur and roman type text (no ‘å’), but
without the ability to say which typeface is being used.

A Tesseract OCR model is a combination of information about the alphabet/characters
and the language being read (primarily in the form of word lists). There are models for modern
Swedish and there is a fraktur model for Swedish, which appears to be a combination of a

3

German character model and a (modern) Swedish word list.
There are many parameters in the evaluation of OCR output that influence its outcome

and several ways of counting errors. As part of the project we wrote software to evaluate
OCR output according to two well-established measures. Given a page of OCR output and
a (correct) transcript of that page, we report the character error rate (CER), which is the
minimal number of character corrections (change, insert or delete one character) one has
to make to completely correct the OCRed text according to the transcript, and word error
rate (WER), analogously the minimal number of word corrections (change, insert or delete a
complete word) one has to correct the OCRed output. These measures are then expressed as
fractions of the size of the correct transcript, which means that it is possible to get an error
rate of more than 100%.7 The evaluation scripts are rather strict in that even mistakes in
punctuation are counted. Material like headers, sidenotes and footnotes are ignored, as these
are typically rearranged or even missing from the transcripts. Implicit in this kind of evaluation
is an alignment of the OCR output and the transcript, where as many characters/words in the
OCR output as possible are matched to their counterparts in the transcript, and vice versa.
This alignment cannot only be used for counting errors, but also for inspection of the kind of
errors produced, creation of training data for post-processing models (see section 3.2.3) and
creation of training data for character models (see section 3.2.4).

The two measures CER and WER highlight different aspects of the performance. Perfor-
mance at word level might generally be the more interesting of the two measures, as it is
the word level that is relevant to indexing, searching and further computational linguistic
processing. However, character level performance is often more indicative of the extent to which
the result is humanly readable: one character error in each word will not impact readability
too severely – reflected by moderate CER (inversely proportional to the average word length)
– but the WER corresponding to this scenario will typically be very high.

Results of evaluating off-the-shelf OCRopus (mixed fraktur and roman type model) and
Tesseract (Swedish fraktur model) are in table 1. As one can see, OCRopus outperforms
Tesseract by a large margin, both in the Argus data (Volume I, issues XVI–XXV; 70 pages,
105k characters) and our mixed samples corpus (130 pages, 180k characters). This difference
is far too large to be ascribed to the fact that we used a Tesseract model that does not handle
roman type. We also see that both systems fare worse on the Mixed samples data, most
likely due to the relatively stable quality of the Argus images. Still, we note that even for
the OCRopus system, WERs lie around 50%, which roughly means that every other word
contains a mistake.

The large difference between Tesseract and OCRopus suggests that the latter is a far
better choice for an online OCR service for blackletter print. Before we dismiss Tesseract,
however, we consider its performance after a bit of training and adjusting. The rows marked
‘Modified Tesseract’ in table 1 give results for Tesseract with a retrained character model and
with a vocabulary compiled from Modern Swedish (nysvenska, 1526–1880) lexica and corpora
available at SB. As one can see, the downloadable model of Tesseract is the best we seem to
be able to get with this level of effort. Because of this, we have chosen to use OCRopus for

7Two extreme cases: On the one end, the OCR output and the transcript may be identical, in which case we
do not have to make any corrections, giving an error rate of 0%. On the other extreme, the OCR output does
not share a single character/word with the transcript, in which case number of errors corresponds to deleting the
complete contents of the OCR output and adding (inserting) the complete contents of the transcript. Counting
one error for each deleted and each inserted character/word, and dividing this by the length of transcript will
give an error rate of 100% or above.

4

Data Engine CER (%) WER (%)
Argus Off-the-shelf OCRopus 10.4 47.2

Off-the-shelf Tesseract 39.1 76.9

Modified Tesseract 48.1 na
Modified OCRopus 11.7 49.1

Mixed samples Off-the-shelf OCRopus 14.0 53.8
Off-the-shelf Tesseract 37.6 72.3

Modified Tesseract 40.2 na
Modified OCRopus 16.8 59.7

Table 1: Initial evaluation results for OCRopus and Tessearct.

the online service.
Rather than being one monolithic program, OCRopus is a suite of utilities to handle

different aspects of OCR. There is software to handle image pre-processing (binarization), to
do basic layout analysis (segmentation), to do OCR, to train new character models, and to
compile HTML files according to the hOCR-standard. There are three downloadable character
models available: for fraktur, for mixed fraktur and roman, and for modern print. The work
that we conducted during the projekt and which is presented below, focusses on the core OCR
parts, that is, the OCR engine itself, the training and the character models. We use the rest
of the OCRopus tools to set up a working pipeline and webservice, but we have not explicitly
evaluated their performance nor have we attempted to make improvements in those parts of
the suite.

3.2.2 Retraining OCRopus character models

Since the downloadable fraktur models for OCRopus target the German alphabet, we have
trained new character models that can recognize ‘å’, and which additionally distinguish between
long-s ‘ſ ’ and short-s. Although part of the software needed for training exists as part of
OCRopus, we needed to create training data, consisting of images of lines of text and the
transcriptions, and design a training regime for these new models. Based on a brief description
(Breuel, A. Ul-Hasan, & Shafait, 2013) of the process, we developed software that creates
training data using outline fonts – this involves composing a text with one/several appropriate
fonts and applying some distortions that may occur in scanned texts like noise, stretching
and line-warping.8 We found that training OCRopus on a mix of synthetic and real data, the
latter taken from Tankar, gives models that approach the quality of the downloadable ones,
with the added benefit of being adapted to the Swedish alphabet. A total of 200 thousand
lines of training data was used. In the future, we intend to use this software to improve upon
our current fraktur model and to create models for other styles.

In addition, we wrote an extension to OCRopus that allows one to combine models for
different typefaces. Although OCRopus comes with a model that can handle a mix of fraktur

8As mentioned, activity at the OCRopus development site was low during the project but has increased
again after our project ended. The OCRopus authors have now released their own scripts implementing the
techniques described in the cited works and used by us.

5

and roman type, that model is not able to indicate which typeface is being used and it is
incompatible with the newly developed Swedish alphabet fraktur model. Using our extension,
we can take two different character models (typically: one for fraktur and one for roman type),
and combine their output, so that we can see which model is used where. Because of the mixed
typefaces in the material, being able to switch typeface is beneficial for the output quality. The
extension can trivially be updated to allow more typefaces (for the early print in particular
Schwabacher).

In table 1, the results of the OCRopus extension and the new character model are given
under the row ’Modified OCRopus’. We see that the modified system approaches the off-
the-shelf system, but is not quite as accurate. In the future we hope to close this gap by
further adjustment of our character training regime. Whether the current drop in accuracy is
acceptable depends on how important the occurrence of ‘å’ in the OCR output is to the user.

3.2.3 Development of post-processing language modelling for OCRopus

Because OCRopus does not have any built-in way of exploiting language specific data to
help OCR, we decided to apply a post-processing step to the OCRopus output. The method
is based on a proposal by Kolak and Resnik (2005), and uses a combination of statistical
knowledge of the type of character mistakes OCRopus makes (a so called error model) and
knowledge of the language of the original document (a language model). Software to build
error models by comparing OCRopus output and manually transcribed pages was developed
in the project, using the OCR output and transcript alignments discussed in section 3.2.1. We
also experimented with different types of language models, and will report here on the use
of statistics over character sequences (n-gram language models), and statistics over full word
occurrences.

We start by building an error model on 5 pages from Argus volume I not included in our
development set. This may seem like a low number of pages, but as each page will contain over
2000 characters this gives us enough information to get character error estimates. Experiments
with a larger selection of pages have not given better results. We also construct a trigram
character model from Argus volume II (again, not included in the development evaluation set).
The post-processor takes OCR output lines and construct hypotheses of what the original text
might have been. The hypothesis that is chosen is the one that balances being a likely string
in the language of the document and being likely to be (mis-)interpreted by the OCR engine
as the output line.

The effect of applying this post-processor to the output of our Modified OCRopus is given
in table 2, the lines marked with ‘w/ trigram stat(istic)s Argus II’. As one can see the results
are mixed. The CERs in both the Argus evaluation set and the Mixed samples evaluation
set is higher than the Modified OCRopus models, however on the Argus test set, the WER
is much lower after post-processing. The WER after post-processing in the Mixed samples
evaluation set is slightly higher, however. We can explain these results in the following way:
the postprocessing method has a tendency of deleting sequences of characters too easily when
constructing a string hypothesis. This leads to increased CERs even if the model is capable
of correcting character errors elsewhere. The improvement in WER in the Argus data shows
that the model in principle is able to improve recognition when it doesn’t show this sequence
deleting behavior. Recall that CER and WER respond differently to the same kind of error: a
concentration of character errors will affect CER as much as character errors that are evenly
spread out. However, the former will not affect WER to the same extent as the latter. We were

6

Data Engine CER (%) WER (%)
Argus Modified OCRopus 11.7 49.1

w/ trigram stats Argus II 15.0 40.2

w/ trigram stats Argus vol II
and Runeberg word stats

14.7 40.8

Mixed samples Modified OCRopus 16.8 59.7

w/ trigram stats Argus vol II 24.2 60.3
w/ trigram stats oracle 17.7 55.2

w/ trigram stats Argus vol II
and Runeberg word stats

25.4 58.9

Table 2: Postprocessing evaluation results for OCRopus (fraktur)

not able to fix this unfortunate behavior of the post-processor in the course of the project,
and intend to look at this as part the continuation of our development of the OCR service.
The second discrepancy is that WER is not improved in the Mixed samples data. This shows
the sensitivity of the language model to the application domain, a phenomenon well-known –
but ill-mastered – in the language technology literature. Recall that the language model was
created on Argus volume II. Although this data was not part of the Argus evaluation data, it
is extremely similar to it, as it was written by the same writer, using the same conventions,
on similar topics, close in time, etc. The Mixed samples data is spread out on all of these
dimensions. To support this error analysis, we also supply evaluation using a ‘biased’ language
model, namely a model constructed on the Mixed samples set itself. Note that this model will
not be a perfect fit for any given document in the evaluation set, exactly because it is so mixed,
but it will be a much better fit than the Argus volume II based model. Indeed, using this
model we can see in the row marked ‘w/ trigram stat(istic)s eval(uation data)’, we see that the
post-processor is able to improve WER. This should not be taken as an indication of the real
performance of the post-processing method, but rather as a demonstration of what is wrong
with the current language model. What we can say, however, is that the effectiveness of using
the current post-processing model depends a lot on how much a user document resembles the
language model data. We have not yet been able to find ways of defining a language model to
overcome this domain sensitivity.

Looking at the output of the post-processor, we have also noted that the post-processor
produces many nonsense strings. This is not surprising per se; a trigram character sequence
model tends to assign high scores to sequences that look ‘wordlike’, but there is no guarantee
that they are words or even possible words of the language. We therefore experimented with a
language model that combines trigram statistics and a word list with frequencies. The favored
hypothesis is then one that balances forming a likely character sequence, being comprised
of frequent words and being likely to be (mis-)interpreted as the OCR output string. The
word frequency list is compiled from 500 works taken from the Projekt Runeberg website and
contains approximately 700 thousand word forms. The result of applying this post-processing
method to the Mixed samples data is in the bottom row of table 2. Although the WER
improves a little bit over only trigram statistics, the difference is negligible. This is in spite of

7

Data Engine CER (%) WER (%)
Argus (1910–12) ABBYY 0.5 2.8

OCRopus Runeberg 1.2 5.7
Tankebok (1990) ABBYY 0.6 6.0

OCRopus Runeberg 0.9 6.7

Table 3: Evaluation of OCRopus with Runeberg-based character model

the fact that the coverage of the word list on the Mixed samples data is pretty good, with 81%
of the tokens in the evaluation data occurring in the word list. The same can be observed for
the Argus evaluation data, were the results with and without Runeberg word list are basically
the same.

3.2.4 Development and evaluation of a roman type OCRopus model

A smaller part of the project was devoted to evaluating the accuracy of OCRopus on roman
type, especially with modern editions of older texts in mind. The roman type character model
that can be downloaded with OCRopus is however trained on English material and does
therefore not know about the characters ‘å’, ‘ä’, ‘ö’. We therefore trained a Swedish alphabet
model for roman type. For the training data, we took images and transcripts from Projekt
Runeberg, making sure to restrict ourselves to the group of fully proofread works. Although
the Runeberg data is divided into pages, it is not divided into lines, which is needed to train
OCRopus. We circumvented this problem as follows: The pages were binarized and segmented
into lines with software from the OCRopus suite, after which we used the default roman
type model to OCR the complete collection. The resulting text lines can then be aligned
to the transcripts – reinserting hyphens – so that we have a set of images of text lines and
their correct transcript. About 200 thousand lines from about 500 different works where then
sampled to form the training data.

The resulting model is evaluated on Volume I, Issues XVI–XXV of Argus (1910–12, 75
pages, 105 thousand characters), and on a selection from Tänkebok’s renskrift (1990, 20 pages,
50 thousand characters). The language in Argus is 18th century Swedish, the language in
Tänkebok is 16th century Swedish. The evaluation set contains high quality scans of clear and
clean pages made with modern printing techniques. Footnotes, margin notes and headers were
ignored in the evaluation. We compare OCRopus performance with the results of running
a commercial solution, ABBYY Recognition Server 3.0, on the same material. As table 3
shows, OCRopus shows very good results on this data. As expected, ABBYY, which can be
considered the current state-of-the-art, does even better here. Interestingly, the WERs for
both systems come really close on the Tänkebok data. This is because inserting a faulty word
break is a particular common mistake ABBYY makes on this data, leading to a high WER, as
every single incorrect word break leads to 2 word errors. Weaknesses of the OCRopus model
include the letter w, capital letters, figures (i.e., numerals), and italics. These can generally
be linked to under-representation of these categories in the training data. We have not given
evaluation figures for the OCRopus’ default roman type character model, but note that since
the incidence of ‘å’, ‘ä’, ‘ö’, ‘Å’, ‘Ä’, ‘Ö’ can be expected to be around 3–5%, the performance
of this model on Swedish text is guaranteed to be worse than what is reported here.

We conclude that training OCRopus to give good character models is possible with

8

relatively little human intervention, provided enough transcribed text images are available. As
in the Projekt Runeberg data, the base data does not have to be specifically intended for OCR
training. Future work on our roman type model should involve careful selection of training
data to amend the problem areas mentioned above.

3.3 Web service development (SB)

Our modified version of OCRopus forms the basis of an online, free OCR service at <http://
demo.spraakdata.gu.se/ocr>. The service is available through a web page as well as through
a programming interface (a REST web service API). We accept images in a variety of formats
(PDF, PNG, JPG or GIF) and return plain text OCR interpretations of the images. Depending
on their wishes, a user can choose for a fraktur-only or a combined fraktur and roman type
OCR, and they can choose to use post-processing or not. If the combined OCR is chosen, the
output also contains simple tags to indicate which typeface OCRopus thinks was used.

The online service runs on Språkbanken’s own servers, it was implemented in Python using
the Flask web application framework.9

3.4 Evaluation of webservice (UB)

An independent evaluation of the web service was performed by the UB partners of the project.
The quality of the OCR as well as the easy of use of the website and the programming interface
was considered.

3.4.1 OCR quality

The accuracy of the OCR system was evaluated on the basis of 69 pages taken from 39 different
works in the collection scanned earlier in the project (97k characters, 16k words). Instead
of our in-house evaluation tool used during development, an independent existing tool was
chosen, ocrevalUAtion, developed in the context of IMPACT’s SUCCEED project, (Carrasco,
2014). The API was used to automate interaction with our web service.

The results are given in table 4. The accuracy without post-processing is as we would
expected from the development phase, with character accuracy in around 15% and word
accuracy around 49%. Unfortunately, we again see that post-processing only deteriorates the
results. There is a large variation in the OCR accuracy, as can be seen from the minimum and
maximum values given in the table. At its worst, an OCRed text may as many mistakes as,
or even more than, the number of words in the original text (WERs of 97.9% and 112.5%,
respectively). On the other hand, some material comes out with WERs as low as 14%, which is
good considering we are dealing with historical print. From inspecting document-by-document
OCR results, it is also clear that the earliest prints (from the 1600s) are interpreted with
lowest reliability.

Some recurrent mistakes in the material are the following:

• one character is interpreted as several, similar characters, for instance ‘f’ as ‘fF’ or ‘m’
as ‘nm’;

• several words are written together as one or (less frequently) one word is split up;
9<http://flask.pocoo.org>

9

CER (%) WER (%)
Method Mean Median Min Max Mean Median Min Max
None 15.7 14.1 4.0 43.2 50.0 49.0 14.4 97.9
Post-processing 23.0 21.7 8.9 50.0 60.1 57.5 31.1 112.5

Table 4: Independent evaluation results through the web service

CER (%) WER (%)
Resolution Mean Median Mean Median
300ppi 15.28 12.90 46.92 47.33
400ppi. 14.79 13.16 45.61 46.06

Table 5: Evaluation of varying image resolution.

• capitals may be misplaced in the text stream, lines and decorative figures are mistaken
for text, text flow in the layout is not managed correctly

• ‘å’ and ‘ä’ are confused

• ‘/’ is interpreted as ‘-’

Part of these problems are related to the layout analysis performed by OCRopus, an aspect
of OCR we have not considered at all. However, other problems, like properly recognizing
word boundaries and character confusion mistakes are problems we had hoped to be able to
address using language modelling.

Image quality will have a great impact on the OCR results. One aspect of an image’s
quality is its resolution. We performed a brief test to assess the impact of varying resolution
on the OCR accuracy. For a selection of 20 documents, we submitted both 300 and 400 ppi
versions to the online service. The results in table 5 show that, although the results for 400ppi
are slightly better, the impact of a using 300ppi is only small. Using a lower resolution may be
attractive to users as it reduces storage and transport loads.

3.4.2 Brief comparison to ABBYY’s fraktur processing

For comparison, UB ran a small selection of 15 documents (23 thousand characters) through
a test version of ABBYY Recognition Server 4.0, which can handle blackletter print. We
will compare these results to our systems. However, the evaluation set is very small due to
restrictions of the test version, so this comparison should only be taken as an indication. The
results in table 6 show that default OCRopus with its downloadable mixed fraktur and roman
model outperforms ABBYY, both in terms of CER and WER. Our modified version with the
Swedish fraktur model beats ABBYY with respect to CER but not WER. Also note that the
error rates reported here are higher than those reported for the Mixed samples development
set and the Mixed samples test set.

3.4.3 Website and API use

The API is well-documented and works well, and the service’s usability is good overall. A
wish list for future improvement, however, includes: support for TIFF input, support for

10

Data Engine CER (%) WER (%)
Mixed sample, 15 pages ABBYY 37.6 70.4

OCRopus 22.6 70.4
Modified OCRopus 28.0 78.4

Table 6: Evaluation of OCRopus with Runeberg-based character model

more output types (for instance PDF, and OCR-particular XML, HTML or JSON types),
task progress indication, and an improved interface when managing several pages at once.
In addition to its failure to improve quality, a problem particular to the post-processing
functionality is its slow speed: it may take 20 minutes for certain pages to process, making the
service impractical in a production work flow. Speed without post processing is however good
enough.

3.5 Dissemination (SB/UB)

The project was presented at the following events:

• Digitalisera vidare, December 2013, Uppsala

• Biblioteksdagarna, Maj 2014, Umeå

• Workshop on Computational Processing of Historical Texts, September 2014, Helsinki

• Digitalisera, men sen då?, November 2014, Stockholm

The material and tools developed in the project can be downloaded from the project web-
site: <http://spraakbanken.gu.se/eng/ocr>. This includes patches to OCRopus, trained
character models for Tesseract and OCRopus and tools to train and evaluate the OCR engines.
Apart from the Swenska Argus transcripts, which we did not create ourselves and were not
obtained from a fully open source, all reference and scanned material is downloadable here,
too. The pilot cloud service and web API are completely free access to anyone, and can be
found at: <http://demo.spraakdata.gu.se/ocr/>.

4 Discussion and future work
In the project En fri molntjänst för OCR, we have evaluated two open-source OCR engines and
further developed one of them: OCRopus. Using OCRopus we have set up a open webservice
for OCR that can handle Swedish blackletter print as well as roman type print. The service is
easy to use and available to anyone. There is both a webinterface for human interaction and
an API, to facilitate automated access.

We have trained character models suitable for Swedish text, that give good results, especially
in case of the roman type models. The new blackletter model comes close to but does not
improve on the previously availabe downloadable OCRopus model, though the latter is not
adapted to the Swedish alphabet. A small comparison to a commercial solution for blackletter
OCR suggests that the OCRopus based OCR pipeline can achieve better results for Swedish
blackletter print.

11

An important premise in the project was the expectation that natural language technology
and the use of digital language resources could help to improve recognition quality. We
investigated this by building a post-processing module for the OCRopus suite that uses
knowledge about the target language to try to improve the OCR quality. The chosen method
has previously been shown to be effective in other settings. However, we were only able to gain
minor and partial improvements over the default OCRopus installation. We can clearly see a
domain effect in the effectiveness of this post-processing model, where the method successfully
reduces WER in data that is very similar to the data used to train the language models. We
have not been able to overcome this lack of robustness. The use of temporally relevant word
lists in addition to the statistical language model led to neither improvement nor deterioration.
Given the framing of the project, this comes as a disappointment.

We conclude that this part of the project results once-again underlines the well-known
natural language processing fact that domain sensitivity is a pervasive and hard-to-deal-with
problem which has existed in the digital humanities for decades.

Even though post-processing is available through the webservice, at the moment it is
probably best to run OCR without it or access the service using REST calls, especially since
post-processing is a very time consuming task.

We intend to keep improving the service, first and foremost by continuing to train better
character models. We have in the course of the project gained some insight into what helps in
this respect, and hope to be able to use this experience to good effect. As far as incorporating
further language resources, we will have to look at the post-processing implementation and
perhaps consider alternative approaches for using such resources in the OCR pipeline.

The speed and efficiency of the webservice is another area to focus on – for the sake of the
users but also to utilize our computing resources more effectively. The post-processing model
was already mentioned as being very slow, and a different method and/or implementation
technique may help this. Another factor in processing speed is OCRopus itself, in particular
the image pre-processing and layout analysis steps. Improving these, something that was
outside the scope of the current project, would help make the service more usable.

References
Breuel, T. M., A. Ul-Hasan, M. A. A., & Shafait, F. (2013). High performance OCR for

printed English and fraktur using LSTM networks. In International Conference on
Document Analysis and Recognition.

Carrasco, R. C. (2014). An open-source ocr evaluation tool. In Proc. of the first international
conference on digital access to textual cultural heritage (pp. 179–184). NY, USA.

Kolak, O., & Resnik, P. (2005). OCR post-processing for low density languages. In Proceedings
of human language technology conference and conference on empirical methods in natural
language processing (HLT/EMNLP). Vancouver, B.C., Canada.

Smith, R. (2007). An overview of the Tesseract OCR engine. In Proc. of the 9th int. conference
on document analysis and recognition (ICDAR) (pp. 629–633). IEEE Computer Society.

12

ISSN 1401-5919

GU-ISS, Forskningsrapporter från Institutionen för svenska språket, är en oregelbundet utkommande
serie, som i enkel form möjliggör spridning av institutionens skriftliga produktion. Det främsta syftet
med serien är att fungera som en kanal för preliminära texter som kan bearbetas vidare för en slutgiltig
publicering. Varje enskild författare ansvarar för sitt bidrag.

GU-ISS, Research reports from the Department of Swedish, is an irregular report series intended
as a rapid preliminary publication forum for research results which may later be published in fuller
form elsewhere. The sole responsibility for the content and form of each text rests with its author.

Forskningsrapporter från institutionen för svenska språket, Göteborgs universitet
Research Reports from the Department of Swedish

ISSN 1401-5919

www.svenska.gu.se/publikationer/GU-ISS

	GUISS-01-16-frams2
	blank
	ocr_project_report_final-guiss
	blank
	b_omslag-guiss-2014-01

