
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Methods and tools for automating language engineering

GRÉGOIRE DÉTREZ

Department of Computer Science and Engineering
Chalmers University of Technology & University of Gothenburg

Göteborg, Sweden 2016

Methods and tools for automating language engineering
GRÉGOIRE DÉTREZ
ISBN 978–91–628–9854–0 (Print) 978–91–628–9855–7 (PDF)

© GRÉGOIRE DÉTREZ, 2016

Technical Report no. 127D
Department of Computer Science and Engineering
Chalmers University of Technology & University of Gothenburg
SE-412 96 Göteborg
Sweden
Telephone: + 46 (0)31–772 1000

Typeset with LuaLATEX
Printed by Ineko AB
Göteborg, Sweden 2016

Methods and tools for automating language engineering
Thesis for the degree of Doctor of Philosophy in Computer Science
GRÉGOIRE DÉTREZ
Department of Computer Science and Engineering
Chalmers University of Technology & University of Gothenburg

Abstract
Language-processing software is becoming increasingly present in our society. Making
such tools available to the greater number is not just a question of access to technology
but also a question of language as they need to be adapted, or localized, to each linguistic
community. It is thus important to make the tools necessary to the engineering of
language-processing systems as accessible as possible, for instance through automation.
Not so much to help the traditional software creators but more importantly to enable
communities to bring their language use into the digital world on their own terms.

Smart paradigms are created in the hope that they can decrease the amount of work
for the lexicographer who wishes to create or update a morphological lexicon. In the first
paper, we evaluate smart paradigms implemented in GF. How good are they to guess
the correct inflection tables? How much information is required? How good are they at
compressing the lexicon?

In the second paper, we take some distance from the smart paradigms, although they
have been used in this work, they are not the main focus of the study. Instead, we compare
two rule-based machine translation systems based on different translation models and try
to determine the potential of a possible hybridization.

In the third paper we come back to the smart paradigms. If they can reduce the work
of the lexicographer, someone still needs to create the smart paradigms in the first place.
In this paper we explore the possibility of automatically creating smart paradigms based
on existing traditional paradigms using machine-learning techniques.

Finally, the last paper presents a collection of tools meant to help grammar engineering
work in the Grammatical Framework community: a tokenizer; a library to embedded
grammars in Java applications; a build server; a document translator and a kernel to
Jupyter notebooks.

Keywords: Natural language processing, Language Engineering, Morphology, Lexicon,
Complexity

i

ii

Acknowledgements
I thank my supervisor—Aarne Ranta—and the members of my PhD committee—Lars
Borin, Harald Hammarström, Sally McKee and Bengt Nordström. I thank my co-authors
and collaborators as well as the anonymous reviewers who provided comments on the
publications included in this thesis. I also thank my friends and colleagues at the
University of Gothenburg and Chalmers University of Technology, with
a special mention to Peter Dybjer for his kindness and Guilhem for many interesting
discussions.

This work would not have been possible without the support of the Swedish National
Graduate School of Language Technology, GSLT, who funded my graduate studies.

I am grateful to my parents, Éric and Isabelle, who always believed in me even when I
didn’t and to my brothers, family and friends for providing a much needed alternative
reality.

Finally, and maybe most of all I would like to thank Leonor for her support, her
patience and her understanding during all this years.

iii

iv

Thesis
This thesis consists of an introduction and the following appended papers:

Paper A
G. Détrez and A. Ranta (2012). “Smart paradigms and the predictability
and complexity of inflectional morphology”. In: Proceedings of the 13th
Conference of the European Chapter of the Association for Computational
Linguistics. Association for Computational Linguistics, 645–653

Paper B

G. Détrez, V. M. Sánchez-Cartagena, and A. Ranta (2014). “Sharing
resources between free/open-source rule-based machine translation sys-
tems: Grammatical Framework and Apertium”. In: Proceedings of the
Ninth International Conference on Language Resources and Evaluation
(LREC’14). European Language Resources Association (ELRA)

Paper C G. Détrez. “Learning Smart Paradigms”. Under journal submission.

Paper D G. Détrez (2015). Tools for a grammar engineering community. Tech. rep.

Contributions

Paper A: My contribution to this paper was to organize and run all the experiments on
the smart paradigms, except the compression experiments, and 50% of the writing.

Paper B: I contributed about half of the experiments and writing.

Paper C: I am the only contributor to this paper.

Paper D: I am the only contributor to the work and writing of this paper except for
the JPGF library to which I contributed about two-third of the coding.

v

vi

Contents

Abstract i

Acknowledgements iii

Thesis v

Contents vii

Introduction 1
1 On the definition and challenges of language engineering 1
1.1 ˈlæŋɡwɪdʒ ˌen.dʒɪˈnɪə.rɪŋ . 1
1.2 The importance of free software . 2
1.3 Challenges in language engineering . 4
2 On lexicons . 5
2.1 Motivation: what are lexicons for? . 5
2.2 What exactly is a lexicon? . 6
2.3 Lexicon creation . 10
3 The many ways to improve language engineering 13
4 Future prospects . 13
References . 13

Paper A 15
Abstract . 17
1 Introduction . 17
2 Smart paradigms . 18
2.1 Paradigms in GF . 20
3 Cost, predictability, and complexity . 20
4 Experimental results . 22
4.1 English . 23
4.2 Swedish . 24
4.3 French . 24
4.4 Finnish . 24
4.5 Complexity and data compression . 25
5 Smart paradigms in lexicon building . 26
6 Related work . 27
7 Conclusion . 28
References . 28

Paper B 31
Abstract . 33
1 Introduction . 33

vii

2 Integration . 34
2.1 Differences between GF and Apertium . 34
2.2 Augmenting the GF lexicon with Apertium data 35
2.3 Generating Apertium shallow-transfer rules from GF data 37
3 Evaluation . 40
4 Conclusions and future work . 42
5 Acknowledgements . 42
References . 42

Paper C 45
1 Introduction . 47
2 Background . 48
2.1 Morphological lexicon . 48
2.2 Paradigms . 49
2.3 Smart Paradigms . 51
3 Experiments . 53
3.1 Lexicons . 54
3.2 Sub-sequences and string kernels . 56
3.3 Experiment 1 . 58
3.4 Experiment 2 . 58
4 Results . 59
4.1 Experiment 1 . 59
4.2 Experiment 2 . 60
5 Related work . 60
6 Future work . 63
7 Conclusion . 63
References . 64

Paper D 67

1 A GF tokenizer 69
1.1 Introduction . 69
1.2 Description of the algorithm . 69
1.3 Usage . 70
1.4 Current status . 72

2 A Java Interpreter for PGF 73
2.1 Introduction . 73
2.2 JPGF . 73
2.2.1 Overview . 73
2.2.2 Implementation . 74
2.2.3 Source code . 74
2.2.4 Evaluation . 75
2.3 Tutorial . 76

viii

2.3.1 Introduction . 76
2.3.2 Start the android application . 77
2.3.3 Application interface . 78
2.3.4 Application code . 79
2.3.5 Add he JPGF library and the PGF file . 82
2.3.6 Implement the PGF functions . 83
2.4 PhraseDroid . 91
2.5 Related work . 92
2.6 Conclusion and acknowledgments . 92

3 A GF Mailing list 94
3.1 What’s a mailing list . 94
3.2 Implementation . 95
3.3 Usage . 96
3.3.1 Subscribing . 96
3.3.2 Posting . 97
3.4 Statistics . 97
3.5 Conclusion . 98

4 A Build Server 100
4.1 Introduction . 100
4.2 Implementation . 101
4.3 Github code mirror . 104
4.4 Continuous Evaluation . 105
4.5 Future Work . 109
4.6 Conclusion . 109

5 A GF document translator 110
5.1 Idea and related work . 110
5.2 Usage . 111
5.3 Implementation . 111

6 A GF notebook kernel 115
6.1 Introduction . 115
6.2 A short overview of Jupyter . 115
6.2.1 Presentation . 115
6.2.2 Architecture . 116
6.3 iGF implementation . 117
6.4 Usage . 118
6.4.1 Installation . 118
6.4.2 Quick start . 119
6.5 Related work . 120
6.6 Conclusion and future work . 120

ix

A Code for Tokenizer.hs 121

B iGF notebook demo 124
B.1 Examples . 124
B.1.1 Graphs . 125

C References 126

x

Introduction
1 On the definition and challenges of language engi-

neering

1.1 ˈlæŋɡwɪdʒ ˌen.dʒɪˈnɪə.rɪŋ

Language engineering means different things in different communities. Two existing
uses of the term are particularly relevant to the work presented in this thesis: language
engineering as the application of natural language processing research; and language
engineering as a form of language planning.1

Language engineering as applied natural language processing. The Oxford
English Dictionary gives the following definition for language engineering:

The field of computing that uses tools such as machine-readable dictionaries
and sentence parsers in order to process natural languages for applications
such as speech synthesis and machine translation.

Similarly, about twenty years ago, Cunningham 1998 suggested the following answer to
the question “What is language engineering”:

Language Engineering is the discipline or act of engineering software systems
that perform tasks involving processing human language. Both the construc-
tion process and its outputs are measurable and predictable. The literature of
the field relates to both application of relevant scientific results and a body of
practice.

In practice language engineering may involve various tasks such as lexicon creation,
grammar engineering or corpus annotation; and has multiple well-known applications like
spell-checking, machine translation, question answering and text analysis.

Stretching the definition we might also include internationalization and localization,
the former being the process of designing or modifying software so that it can potentially
be adapted to various languages and regions whereas the later is the process of adapting
(internationalized) software to a specific region2. Internationalization and localization are
sometimes included under the umbrella of language engineering, as it is the case at the
Wikimedia Foundation3.

In the context of translation, Sager 1994 suggests that “language engineering is
concerned with the design and use of tools for activities involving languages”. This is a
rather broad definition but the interesting difference with the previous view of language

1 A third use of language engineering is the design and implementation of programming languages.
While not directly relevant to this thesis, it is worth mentioning that a tool like Grammatical Framework,
that defines a domain-specific (programming) language to write grammars for (natural) languages, is also
an example of language engineering in this sense.

2 Source: https://en.wikipedia.org/wiki/Internationalization_and_localization>
3 Source: https://www.mediawiki.org/wiki/Wikimedia_Language_engineering.

1

https://en.wikipedia.org/wiki/Internationalization_and_localization
https://www.mediawiki.org/wiki/Wikimedia_Language_engineering

engineering as applied natural language processing is that not only creators but also users
of the tools are viewed as doing language engineering. It also does not limit the definition
to systems that process language (where we interpret “process language” as operate on
language as data4).

Indeed localization can be applied to almost any existing software product and while
it is traditionally done by human translators, it may involve complex natural language
processing applications (see for instance Ranta, Unger, and Hussey 2015 for the use of
GF in localization).

In this context, language engineering is best seen not as just a particular case of
software engineering but as a trans-disciplinary activity which, as we observe below, may
be done by different communities with different skills sets.

Language engineering as a form of language planning. Language engineering is
sometimes used to describe the intentional modification of the language itself though
engineering practices. In this sense it has been used as an alternative term to language
planning or language cultivation describing “how an existent language is standardized to
meet the exigencies of the modern wold” (Ammon et al. 2006). Interestingly Sager 1994, in
its glossary, also gives a second definition of language engineering as “the techniques and
practices concerned with adjusting the instrument of language to a number of specified
uses, usually by the development of subject or situation-specific sub-languages.”

While in practice most of the work presented in this thesis is related to natural language
processing and its applications, and hence would fall under the corresponding use of lan-
guage engineering, its motivation lies in the realization that there is a growing intersection
between the two different uses of the term presented above: as our communications, our
writings and our use of language in general is increasingly enabled and shaped by software
that automatically analyses, ‘auto-corrects’ or even censors what we say and what we
write, we need to look at how the software designed to process language is also used to
shape it. It is our belief that a community should be able to shape its own language and
for this to be possible, language engineering need to be made as accessible as possible, in
both senses of the term.

1.2 The importance of free software
“Free software” means software that respects users’ freedom as defined by the Free Software
Foundation5:

• The freedom to run the program as you wish, for any purpose (freedom 0).

4 According to the Oxford Dictionary, “Process: (Computing) Operate on (data) by means of a
program.”

5 Note that we ignore here the distinction which is sometimes made between free software and
open-source software and which is technically between copyleft and non-copyleft licences. For more
information, we invite the reader to look at the definition from the Free Software Foundation (https://www.
gnu.org/philosophy/free-sw.html) and the Open Source Initiative (https://opensource.org/faq).

2

https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/free-sw.html
https://opensource.org/faq

• The freedom to study how the program works, and change it so it does your
computing as you wish (freedom 1). Access to the source code is a precondition for
this.

• The freedom to redistribute copies so you can help your neighbor (freedom 2).

• The freedom to distribute copies of your modified versions to others (freedom 3).
By doing this you can give the whole community a chance to benefit from your
changes. Access to the source code is a precondition for this.

The case have been made many times as to why research software, and in particular
software that is the product of publicly funded research, should be made available as free
software. The main arguments are that

• Publicly funded research should have as a primary goal to advance the sum of human
knowledge. As such, its output should be made as widely available as possible.

• As more and more research critically depends on increasingly complex computer
programs, sometimes specifically built for the task at hand, to generate and analyze
data—and, as argued for instance by Hey, Tansley, and Tolle 2009, this is not
anymore limited to a few fields such as computer science—, limiting access to those
programs and their source code is harmful for the peer review process and for
reproducibility in general.

• Research is an iterative process where new results are built on top of existing ones.
As the complexity of the software systems used in published research increases
it becomes more and more difficult to rebuild the foundation that allows the
improvement of existing results.

In this section, we would like to bring the reader’s attention to some reasons more
specific to language engineering, whether the software is produced by researchers or not.

Misaligned economic incentives. Adapting software to a new language, a process
often known as localization, has a certain cost. In the case of nonfree software, whether or
not the software is adapted to a particular language depends only on the will of the original
software creator. Naturally, for them it might seem like a simple cost-benefit economic
trade-off: can the cost of localizing the software in a given language be outweighed by the
expected benefits from catering to this language community?

This trade-off is not favorable to smaller languages as the cost of localization is more or
less constant (although for many languages it might be difficult to find language experts
which can make localization in those languages more expansive) but the expected return
on investment varies with the size and economic weight of the language community.

In addition, in many places where multilingualism is the norm, it might be tempting
to think that it is enough to cater for the official language or the one with the largest
community, thus reinforcing the dominant position of one language over the others.

To take a recent example, an article from The Atlantic relates the sudden increase
of Facebook usage in Myanmar, where prohibitive barriers in the acquisition of cell

3

phones have recently been relaxed6. This article reports that, despite the popularity of
the Facebook application in the country, people are forced to use it in English as the
application is not available in Burmese, let alone in any of the country’s regional languages
and only Facebook has the possibility to adapt the interface to another language.7

It may be argued that those communities may be perfectly happy to use the software
in the dominant language. Nonetheless we believe that it is a moral imperative that they
are in a position to make this choice for themselves.

The language-planning aspect of language engineering. As argued in the pre-
vious section, language-processing software is increasingly in a position to shape our
language in its everyday use.

An open-source license does not only make the source freely available for anyone to
examine and adapt to their own (language) preferences but in addition the transparent
governance that is common in free-software communities makes is possible for anyone to
study, discuss or challenge the decisions that have been implemented, whether technical or
linguistic. (For an overview of governance in free-software communities, see Fogel 2014.)

So not only, as argued above, free software allows communities to adapt and use
systems in the language of their choosing but it is also a prerequisite for them to take a
greater role in shaping and governing their language.

1.3 Challenges in language engineering
We see as an additional challenge in language engineering the fact that it is unlikely that
software creators can themselves produce a tool which is useful for more than a handful
of languages. The traditional way to solve this problem is to outsource the translation, or
other tasks necessary to localize the software to other people who in addition to their
own language, know the original language of the product (most likely English).

In free software, it is not uncommon to see those translators organizing themselves
in communities which are transversal to the groups that develop the software. So on
one hand there are groups of people dedicated to a particular piece of software, like the
document reader Evince8, and on the other hand groups of people dedicated to making
free software available in a particular language and who may work on many different
pieces of software. A good example are the language teams in Gnome9.

Ideally, and in the simplest cases, this is a simple task of translating text from one
language to the other, but as the complexity of the linguistic functionalities of the software
increases, the task becomes more and more technical. Example of common tasks may
be maintaining a dictionary for spell-checking, writing rules for a grammar checker, or
localizing a controlled language.

6 Craig Mod, The Facebook-Loving Farmers of Myanmar, January 21, 2016.
7 Note that while we are here concentrating on the language engineering aspect of the problem, there

are other potentially more concerning issues when a community, and in particular a community in a
transition to a more democratic governance, is relying on a centrally censored and opaquely governed
infrastructure.

8https://wiki.gnome.org/Apps/Evince
9https://l10n.gnome.org/

4

http://www.theatlantic.com/technology/archive/2016/01/the-facebook-loving-farmers-of-myanmar/424812/
https://wiki.gnome.org/Apps/Evince
https://l10n.gnome.org/

Many languages used today may not have in their community enough members with
the necessary skills to perform the work necessary for their language to be available with
the same level of functionality as those with more resources. Thus we consider that it is
important to make the tools necessary for language engineers as accessible as possible.
This is the motivation behind most of the work presented in this thesis.

2 On lexicons
Descriptions of natural languages are often divided in two parts: on one side there is
the language lexicon, the list of its words, sometimes also called the language wordstock.
On the other side there is the language grammar that describes how those words can be
assembled together to create larger items such as sentences and paragraphs.

Natural language processing is a field at the intersection of computer science, linguistics
and artificial intelligence which is focused on the manipulation of human languages by
machines. Lexicons are nowadays a cornerstone of a large set of tasks in natural language
processing.

2.1 Motivation: what are lexicons for?
One first example of a task which is part of natural language processing, with which the
reader is undoubtedly already familiar, is spell-checking. In its simplest form, a spell
checker is a very trivial program that marks in a document every word that does not
belong to its predefined lexicon. Of course modern spell checkers do much more than just
looking up words in a lexicon: they are able to automatically detect the language in use,
propose alternatives to incorrect forms and learn new words, but the essence of a good
spell-checker is still to build a large, high quality lexicon for a particular language.

Another familiar task of natural language processing is information retrieval, which
most people probably know better as “searching” in a set of documents, the most common
example of which would be web search. Lexicons are very useful for search engines and
are used for instance to automatically expand a query to include related word forms.
For example, modern search engines automatically provide you with result for both
the singular and the plural form of an English keyword (when searching for automaton,
Google returns results for both automaton and automata). This is especially important
for languages where every word can have a great number of different forms. Although it
would be possible to manually provide to the search engine the two forms of an English
word (singular and plural, like automaton and automata) it would be much more work for
a Finnish speaker who may have to write thousands of forms for a single noun!

A close parent of information retrieval is information extraction where the goal is not
anymore to find a particular document but to extract structured data from a collection of
text documents. Structured data is a term used in software engineering to refer to data
that fits a predefined structure, or model. Note that texts written in natural language
are usually considered unstructured data in this context although language has a lot of
internal structure (defining the model underlying this structure is still a major challenge
for formal linguists and natural language processing researchers).

5

One of the major and oldest application of natural language processing is automated
translation of natural language, often called machine translation. Here as well, lexicons
are used. They can be a central part of the translation process, providing the basis for
analysing the language to be translated (the source language), translating (using what is
often referred to as a bilingual lexicon) and generating text in the target language (the
language to translate into). But a lexicon can also be used for peripheral tasks such as
text-alignment, which is a process during which a text and its translation are aligned
on a detailed level (usually the sentence or the word). Alignment is a very important
step in statistical machine translation, where instead of designing the translation process
manually, the programmer lets the computer “learn” the correct way to translate between
two languages by analysing a large quantity of texts aligned with their manual translation.

Other, more technical tasks in natural language processing use lexicons as well. Part
of speech tagging is one of them. It is the process of assigning to each word in a sentence
its grammatical category, such as noun or verb. Having a lexicon can greatly reduce the
work needed for such a task by taking care of most forms, for which the lexicon gives you
only one possible tag, leaving only the job of disambiguating homographs and handling
unknown words (which is in no way a trivial job).

There are still many other tasks that could be listed here, and I do not intend to give
a comprehensive list. The last example I can mention is parsing. Parsing a sentence is
trying to extract its internal structure, the way it is constructed, according to a grammar
of the language. This may include identifying the main verb, its subject and complement,
etc. Parsing is what GF10 does and why it needs lexicons.

2.2 What exactly is a lexicon?
The word lexicon comes from the Greek λεξικός (lexikos, “of words”). A lexicon is often
defined as a list of words. One problem with this definition is that the term word is not
precisely and uniquely defined in linguistics. So we prefer to speak about a list of lexemes.
From the same origin as the word lexicon itself, a lexeme is an abstraction that groups
together inflected forms taken by a single word.

Let me elaborate.
A word form is a unique suite of letters that appears in a sentence. For instance woman

and women are two different word forms. A lexeme on the other hand is abstracted away
from the inflection, so woman and women are said to belong to the same lexeme. A
lexicon is a list of lexemes.

A lexeme being an abstract entity, we need a concrete way to represent the abstract
lexemes. This is often solved by choosing a representative among the word forms of the
lexeme. This representative is called a lemma or dictionary form because it generally
coincides with the form which is listed in traditional dictionaries, which are themselves a
form of lexicon.

Most dictionaries are written to be used by human, and are example of unstructured
data or semi-structured data (as opposed to structured data which is data structured
against a predefined formal data model).

10Grammatical Framework, or GF, is a set of tools and libraries for parsing, generation and translation
of natural language using multilingual grammars and type theory.

6

Dictionaries are only one possible form of lexicon. The main difference between different
types of lexicons is the data associated with each lemma. In a traditional dictionary,
each lemma is associated with some inflection information (e.g. a plural form), its part of
speech and one or several definitions.

Figure 1.1: Entry for the word “Automaton” in A New English Dictionary on Historical
Principles: Founded Mainly on the Materials Collected by the Philological Society (1893),
James A. H. Murray.

7

An example of dictionary entry for the word “automaton” is given Figure 1.1. The
entry gives several definitions (six) and also provides information about pronunciation
and morphology.

Figure 1.2: Wiktionary entry for the word “Automaton”. Retrived 2013–12–11

Some dictionaries may give a lot more information. For instance, the automaton entry
in the English Wiktionary provides etymology, pronunciation, derived terms, related

8

terms, hyponyms and translations (Figure 1.2).

In this thesis, we focus on lexicons which are primarily targeted to be used by a
computer and not read by a human. Those are instances of structured data and written
in a strict, formally defined syntax which makes them easy for a computer program to
handle. For instance, Listing 1 shows a small extract of a morphological lexicon encoded
using a common markup language called XML.

<lexicalEntry id="automate_2">
<formSet>

<lemmatizedForm>
<orthography>automate</orthography>
<grammaticalCategory>commonNoun</grammaticalCategory>
<grammaticalGender>masculine</grammaticalGender>

</lemmatizedForm>
<inflectedForm>

<orthography>automate</orthography>
<grammaticalNumber>singular</grammaticalNumber>

</inflectedForm>
<inflectedForm>

<orthography>automates</orthography>
<grammaticalNumber>plural</grammaticalNumber>

</inflectedForm>
</formSet>
<originatingEntry target="Morphalou-1.0">automate commonNoun masculine</originatingEntry>

</lexicalEntry>

Listing 1: Morphalou extract. The format of the lexicon is not easily understood by a
human but is designed to be parsed by programs.

Other lexicons associate with a lemma in one language one or more lemmas of a
different language. This kind of lexicon is referred to as bilingual lexicon. An example of
bilingual entries used in the Apertium machine translation system for the English/Spanish
language pair is given Listing 2.

<e><p><l>autobiography<s n="n"/></l><r>autobiografía<s n="n"/><s n="f"/></r></p></e>
<e><p><l>automatism<s n="n"/></l><r>automatismo<s n="n"/><s n="m"/></r></p></e>
<e><p><l>automaton<s n="n"/></l><r>autómata<s n="n"/><s n="m"/></r></p></e>
<e><p><l>automedication<s n="n"/></l><r>automedicación<s n="n"/><s n="f"/></r></p></e>
<e><p><l>automotion<s n="n"/></l><r>automoción<s n="n"/><s n="f"/></r></p></e>
<e><p><l>autonomy<s n="n"/></l><r>autonomía<s n="n"/><s n="f"/></r></p></e>
<e><p><l>autopsy<s n="n"/></l><r>autopsia<s n="n"/><s n="f"/></r></p></e>
<e><p><l>autumn<s n="n"/></l><r>otoño<s n="n"/><s n="m"/></r></p></e>

Listing 2: Small extract of the Apertium bilingual dictionary for the English → Spanish
translator.

The particular kind of lexicon we concentrate on in this thesis is what we refer to as a
morphological lexicon. It is a machine readable database that lists, for each lexeme, all
the possible inflected forms associated. The Morphalou snippet above is an example of
a morphological lexicon, one that we use again later in this thesis. An other example,

9

with a somewhat simpler format where we list the forms separated by a comma is given
Listing 3.

automaatio,automaatio,automaation,automaatiota,automaationa,automaatioon,automaatioiden,…
automaatti,automaatti,automaatin,automaattia,automaattina,automaattiin,automaattien,…
automaattisuus,automaattisuus,automaattisuuden,automaattisuutta,automaattisuutena,…
automatiikka,automatiikka,automatiikan,automatiikkaa,automatiikkana,automatiikkaan,…
automatisointi,automatisointi,automatisoinnin,automatisointia,automatisointina,…
autonomia,autonomia,autonomian,autonomiaa,autonomiana,autonomiaan,autonomioiden,…
autonominen,autonominen,autonomisen,autonomista,autonomisena,autonomiseen,autonomisten,…

Listing 3: A few entries from a morphological lexicon in comma separated value format,
extracted from the Finnish lexicon in GF.

2.3 Lexicon creation
Creating a morphological lexicon is a tedious task, especially for languages having a
richer morphology than English and which can have tens of forms for a single lexeme.
For instance, on some account, Finnish verbs are said to have more than ten thousand
(10 000) forms.

Even if a lexicon already exists for a particular language, it might not be usable for a
variety of reasons:

• It may not be distributed. Companies selling proprietary spell checking software, for
instance, might create large lexicons but won’t distribute them to the community.

• It is only available at a prohibitive cost. It is important for researchers to be able to
validate each other’s results. The need to buy an expansive lexicon to replicate a
study is an obstacle in that direction.

• The format is difficult to exploit. This is often the case in digitalized paper lexicons.

• The license may prohibit some usages. For instance it might prevent you from
distributing your changes to the lexicon (adding information or new entries, or
correcting errors) or you may not be able to use it in a commercial activity.

Because of all those reasons, lexicons often have to be created not once but several
times for the same language. In addition, even once the lexicon is created and made
available under satisfying conditions it still needs to be regularly updated to include new
words, remove deprecated ones and incorporate orthographic changes.

This explains why, despite being one of the central piece of natural language processing,
lexicon creation is not, and is probably never going to be, a finished task and why it is
important to make it as non work intensive as possible. This is especially true for small
and under-resourced languages, which are often ignored by large companies because the
market for linguistic tools in those languages is too small to be economically interesting.
Many such languages rely only on their community to create those tools using open-source
methodologies. In those cases, you cannot always expect the lexicographer to be a trained
expert and it is critical to have tools that can help them as much as possible.

10

For many years, linguists have studied patterns in the formation of word forms and
have written rules that can be used to correctly generate the forms of a particular lexeme
from its lemma. By grouping together all the lexemes following the same rules in what
we call a paradigm, the work needed to create a morphological lexicon can be greatly
reduced: instead of having to write all the forms manually, the rules for the paradigm
only have to be defined once, and then one only needs to list the lemmas of the lexemes
in this paradigm.

Classical examples of paradigms are Latin declensions. Each declension encapsulates
a set of rules that, when applied to a lemma, allow the construction of all forms of the
word. For instance, the first declension, traditionally exemplified by the word rosa:

Case Singular Plural
nominative rosa rosae
genitive rosae rosārum
dative rosae rosīs
accusative rosam rosās
ablative rosā rosīs
vocative rosa rosae

We can refer to the same table not only to find the forms of the word rosa itself but
any first declension noun, such as for instance machina by following the model:

Case Singular Plural
nominative māchina māchinae
genitive māchinae māchinārum
dative māchinae māchinīs
accusative māchinam māchinās
ablative māchinā māchinīs
vocative māchina māchinae

We can do this extrapolation because we are able to see the table as a set of rules
instead of just word forms:

Case Singular Plural
nominative ##+a ##+ae
genitive ##+ae ##+ārum
dative ##+ae ##+īs
accusative ##+am ##+ās
ablative ##+ā ##+īs
vocative ##+a ##+ae

11

This mechanism is really useful and allows a formidable compression of the work
needed to describe a lexicon. To give an idea of what this compression represents, let’s
take another example. One of the reference for verb conjugation in French is a book
titled La Conjugaison pour tous (Conjugation for all) in the collection Bescherelle, often
referred to as “The Bescherelle”. The book first gives the full inflection tables for model
verbs, about a hundred of them depending on the edition. It then provides a list of several
thousands verbs (9600 in the 2012 edition) for which only the lemma is given, together
with a pointer to the model table (the models are all given a unique number, different
from the page number, which is used to identify them).

From this information only, the lemmas and the inflection tables for the model verbs,
the reader is able to reconstruct the inflection table of any verb. Now, still in the 2012
edition, if you count the number of pages, you get the following: 104 pages for the model
tables (each table fits on one page) and 81 pages for the list of verbs. (The book itself
contains more than 185 pages, including some grammar rules but we consider those
irrelevant for our current calculation.)

If the author had needed instead to give the full inflection table for each of the 9600
verbs, it would have required 9600 pages. This means that we saved about 9400 pages, or
that we have a compression ratio of 185/9600 = 0.019, about 2%: The space needed to
describe the lexicon was reduced by a factor 50. We come back to this idea of lexicon
compression when evaluating the Grammatical Framework smart paradigms.

There is a natural trade-off between the work needed to define and apply the paradigms
and the creation of the lexicon: having more complex paradigms allows you to have
less of them and thus makes the work of the lexicographer easier because they have less
alternatives to choose from; on the other hand it requires more work to apply those rules
when computing the forms in the lexicon. The idea behind the smart paradigms is that
this trade-off is not optimized in traditional paradigms. More precisely, the traditional
paradigms, written to be understood and applied by human readers, are not making use
of the full potential of the computer which is very good at consistently applying complex
rules. By creating more complex paradigms, the work of the lexicographer can be greatly
reduced, ideally to listing the lemmas and letting the computer figure out the inflection
automatically. (In practice we still need to help the process by sometimes giving “hints”
on how the lexeme is inflected. In the case of smart paradigms, those hints are additional
inflected forms.)

Paper A in this thesis describes in more details the smart paradigms as implemented
in GF and proposes an evaluation of some of the existing smart paradigms.

In Paper B we present different methods for sharing data between two open-source
machine translation projects. While not focused on smart paradigms, this work shows an
example of their usage in reducing the manual work needed to port a lexicon from one
format to an other (from Apertium to GF).

In Paper C, we attempt to automatically learn smart paradigms on top of existing
“classical” paradigms using machine learning.

12

3 The many ways to improve language engineering
We have defined language engineering as an activity at the intersection of many disciplines
from translation to software engineering. Many of those disciplines have large bodies
of knowledge, tools and practices that we can draw upon. In this thesis, we have also
experimented with some of those ideas, which are presented in Paper D.

Some of the tools come directly from software engineering. In particular, as they are
often working on the same product, language engineers and software engineers also often
share the same tools. Examples are code repositories (git, darcs, CVS, etc.) or compilers
(gcc, ghs, etc. but also tools like gettext and GF). The line is even thinner in grammar
engineering in GF as the grammar is written in a domain-specific language, which is a
programming language specially created to write natural language grammars.

The large body of work about the development and governance of free-software
communities can also teach us a lot on how language engineering can be done in an
open and sustainable way. One example is the mailing list, which is a common tool in
free-software communities, whether of software development communities (one of the most
famous is certainly the LKML, the Linux kernel mailing list) or language communities
(like the linuxfr mailing list or the fsfe translator mailing list).

Finally, by automating interesting research evaluations developed by computational
linguists, we can use new metrics and tools to not only evaluate the linguistic quality of
the software but also to make sure that projects like Grammatical Framework continue to
be state-of-the art tools that researchers can use with confidence to build new results on.

We have barely scratched the surface of what each of those fields could bring to
language engineering and how to improve the work process of many of those who dedicate
time, often as volunteers, to improve the linguistic quality and availability of the tools we
use every day.

4 Future prospects
In the first paper, we have defined and used several metrics to evaluate smart paradigms. A
natural question that we plan to explore in the future is what else can we learn from those
metrics? Are they only useful for grammar engineering or can they reveal something on
the modeled language? Does the complexity of the smart paradigms reflect the complexity
of a language’s morphology or does it only reflect different programmers’ styles?

Another interesting question is to see whether a correlation exists between metrics on
GF code and traditional linguistic metrics such as indices of synthesis and fusion. I wish
to explore the relation, if it exists, between the complexity of the model (the GF code)
and the complexity of the languages in traditional linguistics.

Finally, we hope to be able to move beyond morphology and investigate syntactic
complexity using techniques borrowed from software complexity measurement.

13

References
Ammon, U. et al., eds. (2006). Sociolinguistics : an international handbook of the science

of language and society. Berlin; New York: Walter de Gruyter.
Cunningham, H. (1998). “A definition and short history of Language Engineering”. In:

Natural Language Engineering 5.01.
Fogel, K. (2014). Producing Open Source Software: How to Run a Successful Free

Software Project. 2nd ed. O’Reilly Media. url: http://www.producingoss.com/.
Hey, T., S. Tansley, and K. Tolle, eds. (2009). The Fourth Paradigm: Data-intensive

Scientific Discovery. Redmond, Washington: Microsoft Research.
Ranta, A., C. Unger, and D. V. Hussey (2015). “Grammar Engineering for a Customer: a

Case Study with Five Languages”. In: doi: 10.18653/v1/w15-3301.
Sager, J. C. (1994). Language Engineering and Translation. Amsterdam, Netherlands:

John Benjamins Publishing Co.

14

http://www.producingoss.com/
http://dx.doi.org/10.18653/v1/w15-3301

Paper A

Smart paradigms and the predictability and
complexity of inflectional morphology

16

Abstract

Morphological lexica are often implemented on top of morphological paradigms,
corresponding to different ways of building the full inflection table of a word. Com-
putationally precise lexica may use hundreds of paradigms, and it can be hard for a
lexicographer to choose among them. To automate this task, this paper introduces
the notion of a smart paradigm. It is a meta-paradigm, which inspects the base
form and tries to infer which low-level paradigm applies. If the result is uncertain,
more forms are given for discrimination. The number of forms needed in average
is a measure of predictability of an inflection system. The overall complexity of
the system also has to take into account the code size of the paradigms definition
itself. This paper evaluates the smart paradigms implemented in the open-source GF
Resource Grammar Library. Predictability and complexity are estimated for four
different languages: English, French, Swedish, and Finnish. The main result is that
predictability does not decrease when the complexity of morphology grows, which
means that smart paradigms provide an efficient tool for the manual construction
and/or automatically bootstrapping of lexica.

1 Introduction
Paradigms are a cornerstone of grammars in the European tradition. A classical Latin
grammar has five paradigms for nouns (“declensions”) and four for verbs (“conjugations”).
The modern reference on French verbs, Bescherelle (Bescherelle 1997), has 88 paradigms
for verbs. Swedish grammars traditionally have, like Latin, five paradigms for nouns and
four for verbs, but a modern computational account (Hellberg 1978), aiming for more
precision, has 235 paradigms for Swedish.

Mathematically, a paradigm is a function that produces inflection tables. Its argument
is a word string (either a dictionary form or a stem), and its value is an n-tuple of
strings (the word forms):

P : String → Stringn

We assume that the exponent n is determined by the language and the part of speech.
For instance, English verbs might have n = 5 (for sing, sings, sang, sung, singing), whereas
for French verbs in Bescherelle, n = 51. We assume the tuples to be ordered, so that for
instance the French second person singular present subjunctive is always found at position
17. In this way, word-paradigm pairs can be easily converted to morphogical lexica and to
transducers that map form descriptions to surface forms and back. A properly designed
set of paradigms permits a compact representation of a lexicon and a user-friendly way to
extend it.

Different paradigm systems may have different numbers of paradigms. There are two
reasons for this. One is that traditional paradigms often in fact require more arguments
than one:

P : Stringm → Stringn

Here m ≤ n and the set of arguments is a subset of the set of values. Thus the so-called
fourth verb conjugation in Swedish actually needs three forms to work properly, for

17

instance sitta, satt, suttit for the equivalent of sit, sat, sat in English. In Hellberg (1978),
as in the French Bescherelle, each paradigm is defined to take exactly one argument, and
hence each vowel alternation pattern must be a different paradigm.

The other factor that affects the number of paradigms is the nature of the string
operations allowed in the function P . In Hellberg (1978), noun paradigms only permit the
concatenation of suffixes to a stem. Thus the paradigms are identified with suffix sets. For
instance, the inflection patterns bil–bilar (“car–cars”) and nyckel–nycklar (“key–keys”)
are traditionally both treated as instances of the second declension, with the plural ending
ar and the contraction of the unstressed e in the case of nyckel. But in Hellberg, the word
nyckel has nyck as its “technical stem”, to which the paradigm numbered 231 adds the
singular ending el and the plural ending lar.

The notion of paradigm used in this paper allows multiple arguments and powerful
string operations. In this way, we will be able to reduce the number of paradigms
drastically: in fact, each lexical category (noun, adjective, verb), will have just one
paradigm but with a variable number of arguments. Paradigms that follow this design
will be called smart paradigms and are introduced in Section 2. Section 3 defines
the notions of predictability and complexity of smart paradigm systems. Section 4
estimates these figures for four different languages of increasing richness in morphology:
English, Swedish, French, and Finnish. We also evaluate the smart paradigms as a data
compression method. Section 5 explores some uses of smart paradigms in lexicon building.
Section 6 compares smart paradigms with related techniques such as morphology guessers
and extraction tools. Section 7 concludes.

2 Smart paradigms
In this paper, we will assume a notion of paradigm that allows multiple arguments
and arbitrary computable string operations. As argued in (Kaplan and Kay 1994) and
amply demonstrated in (Beesley and Karttunen 2003), no generality is lost if the string
operators are restricted to ones computable by finite-state transducers. Thus the examples
of paradigms that we will show (only informally), can be converted to matching and
replacements with regular expressions.

For example, a majority of French verbs can be defined by the following paradigm,
which analyzes a variable-size suffix of the infinitive form and dispatches to the Bescherelle
paradigms (identified by a number and an example verb):

mkV : String → String51 mkV(s) =

• conj19finir(s), if s ends ir
• conj53rendre(s), if s ends re
• conj14assiéger(s), if s ends éger
• conj11jeter(s), if s ends eler or eter
• conj10céder(s), if s ends éder
• conj07placer(s), if s ends cer
• conj08manger(s), if s ends ger
• conj16payer(s), if s ends yer

18

• conj06parler(s), if s ends er

Notice that the cases must be applied in the given order; for instance, the last case
applies only to those verbs ending with er that are not matched by the earlier cases.

Also notice that the above paradigm is just like the more traditional ones, in the
sense that we cannot be sure if it really applies to a given verb. For instance, the verb
partir ends with ir and would hence receive the same inflection as finir ; however, its real
conjugation is number 26 in Bescherelle. That mkV uses 19 rather than number 26 has a
good reason: a vast majority of ir verbs is inflected in this conjugation, and it is also the
productive one, to which new ir verbs are added.

Even though there is no mathematical difference between the mkV paradigm and
the traditional paradigms like those in Bescherelle, there is a reason to call mkV a
smart paradigm. This name implies two things. First, a smart paradigm implements
some “artificial intelligence” to pick the underlying “stupid” paradigm. Second, a smart
paradigm uses heuristics (informed guessing) if string matching doesn’t decide the matter;
the guess is informed by statistics of the distributions of different inflection classes.

One could thus say that smart paradigms are “second-order” or “meta-paradigms”,
compared to more traditional ones. They implement a lot of linguistic knowledge and
intelligence, and thereby enable tasks such as lexicon building to be performed with less
expertise than before. For instance, instead of “07” for foncer and “06” for marcher, the
lexicographer can simply write “mkV” for all verbs instead of choosing from 88 numbers.

In fact, just “V”, indicating that the word is a verb, will be enough, since the name
of the paradigm depends only on the part of speech. This follows the model of many
dictionaries and methods of language teaching, where characteristic forms are used
instead of paradigm identifiers. For instance, another variant of mkV could use as its
second argument the first person plural present indicative to decide whether an ir verb is
in conjugation 19 or in 26:

mkV : String2 → String51 mkV(s, t) =

• conj26partir(s), if for some x, s = x+ir and t = x+ons
• conj19finir(s), if s ends with ir
• (all the other cases that can be recognized by this extra form)
• mkV(s) otherwise (fall-back to the one-argument paradigm)

In this way, a series of smart paradigms is built for each part of speech, with more and
more arguments. The trick is to investigate which new forms have the best discriminating
power. For ease of use, the paradigms should be displayed to the user in an easy to
understand format, e.g. as a table specifying the possible argument lists:

verb parler
verb parler, parlons
verb parler, parlons, parlera, parla, parlé
noun chien
noun chien, masculine
noun chien, chiens, masculine

19

Notice that, for French nouns, the gender is listed as one of the pieces of information
needed for lexicon building. In many cases, it can be inferred from the dictionary form
just like the inflection; for instance, that most nouns ending e are feminine. A gender
argument in the smart noun paradigm makes it possible to override this default behaviour.

2.1 Paradigms in GF
Smart paradigms as used in this paper have been implemented in the GF programming
language (Grammatical Framework, (Ranta 2011)). GF is a functional programming lan-
guage enriched with regular expressions. For instance, the following function implements
a part of the one-argument French verb paradigm shown above. It uses a case expression
to pattern match with the argument s; the pattern _ matches anything, while + divides
a string to two pieces, and | expresses alternation. The functions conj19finir etc. are
defined elsewhere in the library. Function application is expressed without parentheses,
by the juxtaposition of the function and the argument.

mkV : Str -> V
mkV s = case s of {
_ + "ir" -> conj19finir s ;
_ + ("eler"|"eter")

-> conj11jeter s ;
_ + "er" -> conj06parler s ;
}

The GF Resource Grammar Library11 has comprehensive smart paradigms for 18
languages: Amharic, Catalan, Danish, Dutch, English, Finnish, French, German, Hindi,
Italian, Nepalese, Norwegian, Romanian, Russian, Spanish, Swedish, Turkish, and Urdu.
A few other languages have complete sets of “traditional” inflection paradigms but no
smart paradigms.

Six languages in the library have comprehensive morphological dictionaries: Bulgarian
(53k lemmas), English (42k), Finnish (42k), French (92k), Swedish (43k), and Turkish
(23k). They have been extracted from other high-quality resources via conversions to GF
using the paradigm systems. In Section 4, four of them will be used for estimating the
strength of the smart paradigms, that is, the predictability of each language.

3 Cost, predictability, and complexity
Given a language L, a lexical category C, and a set P of smart paradigms for C, the
predictability of the morphology of C in L by P depends inversely on the average
number of arguments needed to generate the correct inflection table for a word. The lower
the number, the more predictable the system.

Predictability can be estimated from a lexicon that contains such a set of tables.
Formally, a smart paradigm is a family Pm of functions

11Source code and documentation in http://www.grammaticalframework.org/lib.

20

http://www.grammaticalframework.org/lib

Pm : Stringm → Stringn

where m ranges over some set of integers from 1 to n, but need not contain all those
integers. A lexicon L is a finite set of inflection tables,

L = {wi : Stringn | i = 1, . . . ,ML}

As the n is fixed, this is a lexicon specialized to one part of speech. A word is an
element of the lexicon, that is, an inflection table of size n.

An application of a smart paradigm Pm to a word w ∈ L is an inflection table
resulting from applying Pm to the appropriate subset σm(w) of the inflection table w,

Pm[w] = Pm(σm(w)) : Stringn

Thus we assume that all arguments are existing word forms (rather than e.g. stems), or
features such as the gender.

An application is correct if
Pm[w] = w

The cost of a word w is the minimum number of arguments needed to make the
application correct:

cost(w) = argmin
m

(Pm[w] = w)

For practical applications, it is useful to require Pm to be monotonic, in the sense that
increasing m preserves correctness.

The cost of a lexicon L is the average cost for its words,

cost(L) =

ML∑
i=1

cost(wi)

ML

where ML is the number of words in the lexicon, as defined above.
The predictability of a lexicon could be defined as a quantity inversely dependent

on its cost. For instance, an information-theoretic measure could be defined

predict(L) = 1

1 + log cost(L)

with the intuition that each added argument corresponds to a choice in a decision tree.
However, we will not use this measure in this paper, but just the concrete cost.

The complexity of a paradigm system is defined as the size of its code in a
given coding system, following the idea of Kolmogorov complexity (Solomonoff 1964a;
Solomonoff 1964b). The notion assumes a coding system, which we fix to be GF source
code. As the results are relative to the coding system, they are only usable for comparing
definitions in the same system. However, using GF source code size rather than e.g. a
finite automaton size gives in our view a better approximation of the “cognitive load”

21

of the paradigm system, its “learnability”. As a functional programming language, GF
permits abstractions comparable to those available for human language learners, who
don’t need to learn the repetitive details of a finite automaton.

We define the code complexity as the size of the abstract syntax tree of the source
code. This size is given as the number of nodes in the syntax tree; for instance,

• size(f(x1, . . . , xn)) = 1 +

n∑
i=1

size(xi)

• size(s) = 1, for a string literal s
Using the abstract syntax size makes it possible to ignore programmer-specific variation
such as identifier size. Measurements of the GF Resource Grammar Library show that
code size measured in this way is in average 20% of the size of source files in bytes. Thus
a source file of 1 kB has the code complexity around 200 on the average.

Notice that code complexity is defined in a way that makes it into a straightforward
generalization of the cost of a word as expressed in terms of paradigm applications in GF
source code. The source code complexity of a paradigm application is

size(Pm[w]) = 1 +m

Thus the complexity for a word w is its cost plus one; the addition of one comes from the
application node for the function Pm and corresponds to knowing the part of speech of
the word.

4 Experimental results

We conducted experiments in four languages (English, Swedish, French and Finnish12),
presented here in order of morphological richness. We used trusted full form lexica (i.e.
lexica giving the complete inflection table of every word) to compute the predictability,
as defined above, in terms of the smart paradigms in GF Resource Grammar Library.

We used a simple algorithm for computing the cost c of a lexicon L with a set Pm of
smart paradigms:

• set c := 0

• for each word wi in L,

– for each m in growing order for which Pm is defined:
if Pm[w] = w, then c := c+m, else try with next m

• return c

The average cost is c divided by the size of L.
The procedure presupposes that it is always possible to get the correct inflection table.

For this to be true, the smart paradigms must have a “worst case scenario” version that is
12This choice correspond to the set of language for which both comprehensive smart paradigms and

morphological dictionaries were present in GF with the exception of Turkish, which was left out because
of time constraints.

22

Table 4: Lexicon size and average cost for the nouns (N) and verbs (V) in four languages,
with the percentage of words correctly inferred from one and two forma (i.e. m = 1 and
m ≤ 2, respectively).

Lexicon Forms Entries Cost m = 1 m ≤ 2

Eng N 2 15,029 1.05 95% 100%

Eng V 5 5,692 1.21 84% 95%

Swe N 9 59,225 1.70 46% 92%

Swe V 20 4,789 1.13 97% 97%

Fre N 3 42,390 1.25 76% 99%

Fre V 51 6,851 1.27 92% 94%

Fin N 34 25,365 1.26 87% 97%

Fin V 102 10,355 1.09 96% 99%

able to generate all forms. In practice, this was not always the case but we checked that
the number of problematic words is so small that it wouldn’t be statistically significant.
A typical problem word was the equivalent of the verb be in each language.

Another source of deviation is that a lexicon may have inflection tables with size
deviating from the number n that normally defines a lexical category. Some words may
be “defective”, i.e. lack some forms (e.g. the singular form in “plurale tantum” words),
whereas some words may have several variants for a given form (e.g. learned and learnt
in English). We made no effort to predict defective words, but just ignored them. With
variant forms, we treated a prediction as correct if it matched any of the variants.

The above algorithm can also be used for helping to select the optimal sets of char-
acteristic forms; we used it in this way to select the first form of Swedish verbs and the
second form of Finnish nouns.

The results are collected in Table 4. The sections below give more details of the
experiment in each language.

4.1 English
As gold standard, we used the electronic version of the Oxford Advanced Learner’s
Dictionary of Current English13 which contains about 40,000 root forms (about 70,000
word forms).

Nouns. We considered English nouns as having only two forms (singular and plural),
excluding the genitive forms which can be considered to be clitics and are completely
predictable. About one third of the nouns of the lexicon were not included in the
experiment because one of the form was missing. The vast majority of the remaining
15,000 nouns are very regular, with predictable deviations such as kiss, kisses and fly,
flies which can be easily predicted by the smart paradigm. With the average cost of 1.05,
this was the most predictable lexicon in our experiment.

Verbs. Verbs are the most interesting category in English because they present the
richest morphology. Indeed, as shown by Table 4, the cost for English verbs, 1.21, is

13available in electronic form at http://www.eecs.qmul.ac.uk/~mpurver/software.html

23

http://www.eecs.qmul.ac.uk/~mpurver/software.html

similar to what we got for morphologically richer languages.

4.2 Swedish
As gold standard, we used the SALDO lexicon (Borin, Forsberg, and Lönngren 2008).

Nouns. The noun inflection tables had 8 forms (singular/plural indefinite/definite
nominative/genitive) plus a gender (uter/neuter). Swedish nouns are intrinsically very
unpredictable, and there are many examples of homonyms falling under different paradigms
(e.g. val, val “choice” vs. val -valar “whale”). The cost 1.70 is the highest of all the lexica
considered. Of course, there may be room for improving the smart paradigm.

Verbs. The verbs had 20 forms, which included past participles. We ran two
experiments, by choosing either the infinitive or the present indicative as the base form. In
traditional Swedish grammar, the base form of the verb is considered to be the infinitive,
e.g. spela, leka (“play” in two different senses). But this form doesn’t distinguish between
the “first” and the “second conjugation”. However, the present indicative, here spelar,
leker, does. Using it gives a predictive power 1.13 as opposed to 1.22 with the infinitive.
Some modern dictionaries such as Lexin14 therefore use the present indicative as the base
form.

4.3 French
For French, we used the Morphalou morphological lexicon (Romary, Salmon-Alt, and
Francopoulo 2004). As stated in the documentation15 the current version of the lexicon
(version 2.0) is not complete, and in particular, many entries are missing some or all
inflected forms. So for those experiments we only included entries where all the necessary
forms were presents.

Nouns: Nouns in French have two forms (singular and plural) and an intrinsic gender
(masculine or feminine), which we also considered to be a part of the inflection table.
Most of the unpredictability comes from the impossibility to guess the gender.

Verbs: The paradigms generate all of the simple (as opposed to compound) tenses
given in traditional grammars such as the Bescherelle. Also the participles are generated.
The auxiliary verb of compound tenses would be impossible to guess from morphological
clues, and was left out of consideration.

4.4 Finnish
The Finnish gold standard was the KOTUS lexicon (Kotimaisten Kielten Tutkimuskeskus
2006). It has around 90,000 entries tagged with part of speech, 50 noun paradigms, and 30
verb paradigms. Some of these paradigms are rather abstract and powerful; for instance,
grade alternation would multiply many of the paradigms by a factor of 10 to 20, if it was
treated in a concatenative way. For instance, singular nominative-genitive pairs show
alternations such as talo–talon (“house”), katto–katon (“roof”), kanto–kannon (“stub”),

14http://lexin.nada.kth.se/lexin/
15http://www.cnrtl.fr/lexiques/morphalou/LMF-Morphalou.php, accessed 2011–11–04

24

http://lexin.nada.kth.se/lexin/
http://www.cnrtl.fr/lexiques/morphalou/LMF-Morphalou.php

Table 5: Paradigm complexities for nouns and verbs in the four languages, computed as
the syntax tree size of GF code.

language noun verb total
English 403 837 991
Swedish 918 1039 1884
French 351 2193 2541
Finnish 4772 3343 6885

rako–raon (“crack”), and sato–sadon (“harvest”). All of these are treated with one and
the same paradigm, which makes the KOTUS system relatively abstract.

The total number of forms of Finnish nouns and verbs is a question of definition.
Koskenniemi (Koskenniemi 1983) reports 2000 for nouns and 12,000 for verbs, but most
of these forms result by adding particles and possessive suffixes in an agglutinative way.
The traditional number and case count for nouns gives 26, whereas for verbs the count is
between 100 and 200, depending on how participles are counted. Notice that the definition
of predictability used in this paper doesn’t depend on the number of forms produced
(i.e. not on n but only on m); therefore we can simply ignore this question. However,
the question is interesting if we think about paradigms as a data compression method
(Section 4.5).

Nouns. Compound nouns are a problem for morphology prediction in Finnish, because
inflection is sensitive to the vowel harmony and number of syllables, which depend on
where the compound boundary goes. While many compounds are marked in KOTUS, we
had to remove some compounds with unmarked boundaries. Another peculiarity was that
adjectives were included in nouns; this is no problem since the inflection patterns are the
same, if comparison forms are ignored. The figure 1.26 is better than the one reported in
(Ranta 2008), which is 1.42; the reason is mainly that the current set of paradigms has a
better coverage of three-syllable nouns.

Verbs. Even though more numerous in forms than nouns, Finnish verbs are highly
predictable (1.09).

4.5 Complexity and data compression
The cost of a lexicon has an effect on learnability. For instance, even though Finnish
words have ten or a hundred times more forms than English forms, these forms can be
derived from roughly the same number of characteristic forms as in English. But this
is of course just a part of the truth: it might still be that the paradigm system itself is
much more complex in some languages than others.

Following the definitions of Section 3, we have counted the the complexity of the smart
paradigm definitions for nouns and verbs in the different languages in the GF Resource
Grammar Library. Notice that the total complexity of the system is lower than the sum
of the parts, because many definitions (such as morphophonological transformations) are
reused in different parts of speech. The results are in Table 5.

These figures suggest that Finnish indeed has a more complex morphology than French,

25

Table 6: Comparison between using bzip2 and paradigms+lexicon source as a compression
method. Sizes in kB.

Lexicon Fullform bzip2 fullform/bzip2 Source fullform/source
Eng N 264 99 2.7 135 2.0
Eng V 245 78 3.2 57 4.4
Swe N 6,243 1,380 4.5 1,207 5.3
Swe V 840 174 4.8 58 15
Fre N 952 277 3.4 450 2.2
Fre V 3,888 811 4.8 98 40
Fin N 11,295 2,165 5.2 343 34
Fin V 13,609 2,297 5.9 123 114

and English is the simplest. Of course, the paradigms were not implemented with such
comparisons in mind, and it may happen that some of the differences come from different
coding styles involved in the collaboratively built library. Measuring code syntax trees
rather than source code text neutralizes some of this variation (Section 3).

Finally, we can estimate the power of smart paradigms as a data compression function.
In a sense, a paradigm is a function designed for the very purpose of compressing a lexicon,
and one can expect better compression than with generic tools such as bzip2. Table 6
shows the compression rates for the same full-form lexica as used in the predictability
experiment (Table 4). The sizes are in kilobytes, where the code size for paradigms is
calculated as the number of constructors multiplied by 5 (Section 3). The source lexicon
size is a simple character count, similar to the full-form lexicon.

Unexpectedly, the compression rate of the paradigms improves as the number of forms
in the full-form lexicon increases (see Table 4 for these numbers). For English and French
nouns, bzip2 is actually better. But of course, unlike the paradigms, it also gives a global
compression over all entries in the lexicon. Combining the two methods by applying bzip2
to the source code gives, for the Finnish verb lexicon, a file of 60 kB, which implies a joint
compression rate of 227.

That the compression rates for the code can be higher than the numbers of forms in
the full-form lexicon is explained by the fact that the generated forms are longer than the
base forms. For instance, the full-form entry of the Finnish verb uida (“swim”) is 850
bytes, which means that the average form size is twice the size of the basic form.

5 Smart paradigms in lexicon building
Building a high-quality lexicon needs a lot of manual work. Traditionally, when one is
not writing all the forms by hand (which would be almost impossible in languages with
rich morphology), sets of paradigms are used that require the lexicographer to specify the
base form of the word and an identifier for the paradigm to use. This has several usability
problems: one has to remember all the paradigm identifiers and choose correctly from
them.

26

Smart paradigm can make this task easier, even accessible to non-specialist, because of
their ability to guess the most probable paradigm from a single base form. As shown by
Table 4, this is more often correct than not, except for Swedish nouns. If this information
is not enough, only a few more forms are needed, requiring only practical knowledge of
the language. Usually (92% to 100% in Table 4), adding a second form (m = 2) is enough
to cover all words. Then the best practice for lexicon writing might be always to give
these two forms instead of just one.

Smart paradigms can also be used for an automatic bootstrapping of a list of base
forms into a full form lexicon. As again shown by the last column of Table 4, one form
alone can provide an excellent first approximation in most cases. What is more, it is often
the case that uncaught words belong to a limited set of “irregular” words, such as the
irregular verbs in many languages. All new words can then be safely inferred from the
base form by using smart paradigms.

6 Related work

Smart paradigms were used for a study of Finnish morphology in (Ranta 2008). The
present paper can be seen as a generalization of that experiment to more languages and
with the notion of code complexity. Also the paradigms for Finnish are improved here (cf.
Section 4.4 above).

Even though smart paradigm-like descriptions are common in language text books,
there is to our knowledge no computational equivalent to the smart paradigms of GF.
Finite state morphology systems often have a function called a guesser, which, given a
word form, tries to guess either the paradigm this form belongs to or the dictionary form
(or both). A typical guesser differs from a smart paradigms in that it does not make it
possible to correct the result by giving more forms. Examples of guessers include (Chanod
and Tapanainen 1995) for French, (Hlaváčová 2001) for Czech, and (Nakov et al. 2004)
for German.

Another related domain is the unsupervised learning of morphology where machine
learning is used to automatically build a language morphology from corpora (Goldsmith
2006). The main difference is that with the smart paradigms, the paradigms and the
guess heuristics are implemented manually and with a high certainty; in unsupervised
learning of morphology the paradigms are induced from the input forms with much lower
certainty. Of particular interest are (Chan 2006) and (Dreyer and Eisner 2011), dealing
with the automatic extraction of paradigms from text and investigate how good these can
become. The main contrast is, again, that our work deals with hand-written paradigms
that are correct by design, and we try to see how much information we can drop before
losing correctness.

Once given, a set of paradigms can be used in automated lexicon extraction from raw
data, as in (Forsberg, Hammarström, and Ranta 2006) and (Clément, Sagot, and Lang
2004), by a method that tries to collect a sufficient number of forms to determine that
a word belongs to a certain paradigm. Smart paradigms can then give the method to
actually construct the full inflection tables from the characteristic forms.

27

7 Conclusion
We have introduced the notion of smart paradigms, which implement the linguistic
knowledge involved in inferring the inflection of words. We have used the paradigms to
estimate the predictability of nouns and verbs in English, Swedish, French, and Finnish.
The main result is that, with the paradigms used, less than two forms in average is always
enough. In half of the languages and categories, one form is enough to predict more
than 90% of forms correctly. This gives a promise for both manual lexicon building and
automatic bootstrapping of lexicon from word lists.

To estimate the overall complexity of inflection systems, we have also measured the
size of the source code for the paradigm systems. Unsurprisingly, Finnish is around seven
times as complex as English, and around three times as complex as Swedish and French.
But this cost is amortized when big lexica are built.

Finally, we looked at smart paradigms as a data compression method. With simple
morphologies, such as English nouns, bzip2 gave a better compression of the lexicon than
the source code using paradigms. But with Finnish verbs, the compression rate was
almost 20 times higher with paradigms than with bzip2.

The general conclusion is that smart paradigms are a good investment when building
morphological lexica, as they ease the task of both human lexicographers and automatic
bootstrapping methods. They also suggest a method to assess the complexity and
learnability of languages, related to Kolmogorov complexity. The results in the current
paper are just preliminary in this respect, since they might still tell more about particular
implementations of paradigms than about the languages themselves.

Acknowledgements
We are grateful to the anonymous referees for valuable remarks and questions. The
research leading to these results has received funding from the European Union’s Seventh
Framework Programme (FP7/2007–2013) under grant agreement no FP7-ICT-247914
(the MOLTO project).

References
Beesley, K. R. and L. Karttunen (2003). Finite State Morphology. CSLI Publications.
Bescherelle (1997). La conjugaison pour tous. Hatier.
Borin, L., M. Forsberg, and L. Lönngren (2008). “SALDO 1.0 (Svenskt

associationslexikon version 2)”. In: Sprakbanken.
Chan, E. (2006). “Learning probabilistic paradigms for morphology in a latent class

model”. In: Proceedings of the Eighth Meeting of the ACL Special Interest Group on
Computational Phonology and Morphology. SIGPHON ’06. Stroudsburg, PA, USA:
Association for Computational Linguistics, pp. 69–78. doi:
10.3115/1622165.1622174.

Chanod, J.-P. and P. Tapanainen (1995). “Creating a tagset, lexicon and guesser for a
French tagger”. In: CoRR.

28

http://dx.doi.org/10.3115/1622165.1622174

Clément, L., B. Sagot, and B. Lang (2004). “Morphology based automatic acquisition of
large-coverage lexica”. In: Proceedings of LREC-04, Lisboa, Portugal, pp. 1841–1844.

Dreyer, M. and J. Eisner (2011). “Discovering morphological paradigms from plain text
using a Dirichlet process mixture model”. In: Proceedings of the Conference on
Empirical Methods in Natural Language Processing. EMNLP ’11. Stroudsburg, PA,
USA: Association for Computational Linguistics, pp. 616–627. isbn:
978-1-937284-11-4.

Forsberg, M., H. Hammarström, and A. Ranta (2006). “Morphological Lexicon
Extraction from Raw Text Data”. In: FinTAL 2006. Ed. by T. Salakoski. Vol. 4139.
LNCS/LNAI. doi: 10.1007/11816508_49.

Goldsmith, J. (2006). “An Algorithm for the Unsupervised Learning of Morphology”. In:
Natural Langage Engineering 12.4, pp. 353–371. issn: 1351-3249. doi:
10.1017/S1351324905004055.

Hellberg, S. (1978). The Morphology of Present-Day Swedish. Almqvist & Wiksell.
Hlaváčová, J. (2001). “Morphological Guesser of Czech Words”. In: Text, Speech and

Dialogue. Ed. by V. Matoušek et al. Vol. 2166. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, pp. 70–75. doi: 10.1007/3-540-44805-5_9.

Kaplan, R. and M. Kay (1994). “Regular Models of Phonological Rule Systems”. In:
Computational Linguistics 20, 331–380.

Koskenniemi, K. (1983). “Two-Level Morphology: A General Computational Model for
Word-Form Recognition and Production”. PhD thesis. University of Helsinki.

Kotimaisten Kielten Tutkimuskeskus (2006). KOTUS Wordlist. url:
http://kaino.kotus.fi/sanat/nykysuomi.

Nakov, P. et al. (2004). “Guessing morphological classes of unknown German nouns”. In:
Recent Advances in Natural Language Processing III. John Benjamins Publishing
Company, p. 347. doi: 10.1075/cilt.260.39nak.

Ranta, A. (2008). “How predictable is Finnish morphology? An experiment on lexicon
construction”. In: Resourceful Language Technology: Festschrift in Honor of Anna
Sågvall Hein. Ed. by J. Nivre, M. Dahllöf, and B. Megyesi. University of Uppsala,
pp. 130–148.

— (2011). Grammatical Framework: Programming with Multilingual Grammars. Stanford:
CSLI Publications. isbn: 1-57586-626-9 (Paper), 1-57586-627-7 (Cloth).

Romary, L., S. Salmon-Alt, and G. Francopoulo (2004). “Standards going concrete: from
LMF to Morphalou”. English. In: The 20th International Conference on
Computational Linguistics - COLING 2004. coling. Geneva, Switzerland.

Solomonoff, R. J. (1964a). “A formal theory of inductive inference: Part I”. In:
Information and Control 7 (1), pp. 1–22. doi: 10.1016/s0019-9958(64)90223-2.

— (1964b). “A formal theory of inductive inference: Part II”. In: Information and
Control 7 (2), pp. 224–254. doi: 10.1016/s0019-9958(64)90131-7.

29

http://dx.doi.org/10.1007/11816508_49
http://dx.doi.org/10.1017/S1351324905004055
http://dx.doi.org/10.1007/3-540-44805-5_9
http://kaino.kotus.fi/sanat/nykysuomi
http://dx.doi.org/10.1075/cilt.260.39nak
http://dx.doi.org/10.1016/s0019-9958(64)90223-2
http://dx.doi.org/10.1016/s0019-9958(64)90131-7

30

Paper B

Sharing resources between free/open-source
rule-based machine translation systems: Grammatical
Framework and Apertium

32

Abstract

In this paper, we describe two methods developed for sharing linguistic data
between two free and open source rule based machine translation systems: Apertium,
a shallow-transfer system; and Grammatical Framework (GF), which performs a
deeper syntactic transfer. In the first method, we describe the conversion of lexical
data from Apertium to GF, while in the second one we automatically extract
Apertium shallow-transfer rules from a GF bilingual grammar. We evaluated the
resulting systems in a English-Spanish translation context, and results showed the
usefulness of the resource sharing and confirmed the a-priori strong and weak points
of the systems involved.

Keywords: rule-based machine translation, linguistic resource sharing, open-
source linguistic resources

1 Introduction
Machine Translation (MT) can be defined as the use of software to translate content from
one natural language, the source language (SL), into another, the target language (TL).
Two main MT paradigms can be established according to the kind of knowledge involved
in the translation process.

On the one hand, corpus-based approaches use large parallel corpora as the source of
knowledge. A parallel corpus is a collection of parallel texts, that is, texts in one language
together with their translation into another language. The statistical machine translation
(SMT; Koehn 2010) corpus-based approach is currently the leading paradigm in MT.
SMT systems can be built with little human effort, provided that a large enough parallel
corpus is available.

Rule-based machine translation (RBMT; Hutchins and Somers 1992) systems on the
other hand are best characterized by their use of explicit linguistic knowledge. This
knowledge can take many forms, from simple monolingual dictionaries to complex semantic
structures but it usually needs to be manually encoded by experts, which represents a big
part of the effort needed to create such systems and has a great influence on their overall
performance.

Among the different RBMT approaches, transfer-based systems are those in which the
translation process can be split in the following three steps: they perform an analysis of the
SL text into an SL intermediate representation; after that, the intermediate representation
is transferred to the TL; and finally the translation is generated from the TL intermediate
representation.

Software licensed as Open Source allows anyone to study, change and distribute the
software to anyone and for any purpose. In the case of RBMT systems, this creates the
possibility of reusing the linguistic knowledge encoded in one system to create, or at least
bootstrap, a different system.

In this paper, we started exploring the many possible ways for sharing linguistic
data between the free/open-source RBMT systems Apertium (Forcada et al. 2011) and
Grammatical Framework (GF, Ranta 2011) with two new methods. Apertium is a
shallow-transfer system, which means that it does not perform a full syntactic analysis to
build the intermediate representation. Contrarily, GF is a multilingual grammar formalism

33

that has been used to build MT systems, among other applications. The methods we
developed allowed us to create two RBMT systems from the same resources and do an
empirical comparison between Apertium and GF, analyzing their strong and weak points.

Previous strategies to share Apertium or GF linguistic resources include using Aper-
tium data to enrich statistical machine translation (Tyers 2009; Sánchez-Cartagena,
Sánchez-Martínez, and Pérez-Ortiz 2011) and example-based systems (Sánchez-Martínez,
Forcada, and Way 2009), and combining SMT systems with GF (Enache et al. 2012).
Resource sharing between Apertium and GF has however never been explored.

2 Integration
We have developed two sharing strategies: augmenting the GF lexicon with entries from
an Apertium dictionary, and creating Apertium shallow-transfer rules from GF grammars.
They are described in this section together with the main differences between GF and
Apertium.

2.1 Differences between GF and Apertium
GF (Grammatical Framework, Ranta 2011) is a multilingual grammatical formalism,
and the key point of its design is the separation of a language independent abstract
syntax from multiple concrete syntaxes. GF also provides the Resource Grammar Library
(RGL; Ranta 2009), a model of the low level structures of syntax and morphology for
(at the time of this writing) 29 natural languages. Thanks to the RGL, When writing
a domain-specific grammar, one needs only to concentrate on the abstract syntax for
her domain, leaving the tedious linguistic details to the library. However, the linguistic
information of the RGL can also be exploited to perform open-domain translation by
using the common API of the RGL as a pivot (Figure 3), which is the configuration
explored in this paper. In a taxonomy of MT according to the abstraction level of the
intermediate representation, this last configuration can be seen as a form of syntactic
transfer.

Unlike GF, the Apertium shallow-transfer RBMT platform (Forcada et al. 2011) was
initially designed for open-domain translation. Apertium uses a simple, flat, intermediate
representation: a sequence of lexical forms representing the lemma, lexical category and
morphological inflection information of the words to be translated. E.g.:

the.det.def red.adj car.n.pl

The translation between the source-language (SL) and the target-language (TL) lexical
forms is carried out by a set of shallow-transfer rules performing operations such as
agreements, re-orderings, preposition changes, etc (see Figure 4). Each rule processes a
chunk of lexical forms and they are applied in a greedy manner.

While GF guarantees a grammatically correct output and allows more sophisticated
transformations (e.g. long-distance re-orderings), the quality of the translation drops
when the sentence cannot be fully parsed because out-of-vocabulary words or an irreg-
ular grammatical structure. Although, for such sentences, GF generates some partial

34

NP

Det

Quant

the

CN

AP

A

red

CN

N

cars

(a) English concrete
tree obtained after
parsing the red cars

DetCN

DetQuant

DefArt NumPl

AdjCN

PositA

red_A

UseN

car_N

(b) Abstract syntax tree

NP

Det

Quant

los

CN

CN

N

coches

AP

A

rojos

(c) Spanish concrete
tree which is linearized
to los coches rojos

Figure 3: Example of parse trees in GF when performing an English-Spanish open-domain
translation

subtrees (Angelov 2011), the shallow-transfer approach followed by Apertium allows for
more robustness.

The 37 language pairs supported by Apertium include 17 languages not present in
GF RGL (Aragonese, Asturian, Basque, Breton, Galician, Icelandic, Indonesian, Kazakh,
Macedonian, Mataysian, North, Nynorsk, Occitan, Portugese, Serbo-Croatian, Slovenian,
Sámi, Tatar and Welsh16), while the RGL contains data for 23 languages (Amahric,
Chinese, Estonian, Finnish, German, Greek, Hebrew, Hindi, Japanese, Latin, Latvian,
Mongolian, Nepali, Persian, Punjabi, Polish, Russian, Sundhi, Swahili, Thai, Tswana,
Turkish and Urdu17) and more than 700 language pairs not yet present in Apertium. This
shows the potential advantages of sharing resources between Apertium and GF.

2.2 Augmenting the GF lexicon with Apertium data
Lexica in RBMT contain the analysis of each word the system is able to translate or
generate, and mappings between analyzed forms in different languages. In Apertium and
GF, inflection paradigms are used to efficiently encode them.

The first system in our comparison was based on the GF Resource Grammar Library, in
which lexicon entries from open lexical categories have been replaced with the information
from the Apertium dictionaries. Although the GF Resource Grammar Library already
contained a huge English lexicon, for the purposes of this work we only included in the
resulting system the entries from closed lexical categories. Regarding Spanish, the GF
lexicon contains all the words from closed lexical categories but only a few words from

16List of stable language pairs. Retrieved October 21, 2013, from http://wiki.apertium.org/wiki/
Main_Page.

17The Status of the GF Resource Grammar Library. Retrieved October 21, 2013, from
http://www.grammaticalframework.org/lib/doc/status.html.

35

http://wiki.apertium.org/wiki/Main_Page
http://wiki.apertium.org/wiki/Main_Page
http://www.grammaticalframework.org/lib/doc/status.html

the red cars

analysis

the.det.def red.adj car.n.pl

transfer

el.det.def.m.pl coche.n.m.pl rojo.adj.m.pl

generation

los coches rojos

Figure 4: Lexical forms produced by the Apertium engine when translating the English
phrase the red cars into Spanish. Lemmas are shown in italics and lexical categories in
bold. det stands for determiner, adj means adjective and n means noun. The determiner
is definite (def), the gender is masculine (m) and the noun is plural (pl).

open categories. The latter were removed too and replaced with the ones from Apertium.
For many lexicon entries, porting them from Apertium to GF simply meant dealing

with the different encoding details of both systems. First, we expanded the Apertium SL
monolingual dictionary entries (i.e., to apply the corresponding paradigm to the stem to
generate all word forms) and created a new entry in the GF SL lexicon for each of them
by providing to a smart paradigm (Détrez and Ranta 2012) all the expanded forms.

For instance, the following was the entry for the English noun car in the Apertium
monolingual dictionary.

<e><i>car</i><par n="house__n"/></e>

The entry indicates that the noun car is inflected in the same way house is (the plural
form is built by adding -s, and when adding the genitive marker to it, the suffix becomes
-s’.) In that case, the result of the expension was:

car:car.n.sg
cars:car.n.pl
car’s:car.n.sg.gen
cars’:car.n.pl.gen

And the resulting GF entry, using the smart paradigm mkN for nouns:

lin car_N = mkN "car" "cars" "car's" "cars’'" ;

The same process was repeated for the target language. In our example, the entry for
the translated lexeme in the target language was:

36

<e><i>coche</i><par n="abismo__n"/></e>

Which was converted to:

lin car_N = mkN "coche" "coches" masculine ;

Note that in both cases the GF function is named car_N instead of coche_N in the
target language. This was necessary to map the entry to its source language equivalent
and it was achieved by looking up the lemma in Apertium’s bilingual dictionary.

This simple startegy was made possible by the design of GF’s smart paradigms (Détrez
and Ranta 2012) which allowed the creation of a valid lexicon entry giving only partial in-
formation, the missing forms and parameters being infered using the language morphology.
For instance, adjective entries in the English GF lexicon had their adverbial form attached,
while Apertium had separated entries for adjectives and adverbs. When porting English
adjectives from Apertium to GF, we let the GF smart paradigms infer the adverbial
form of the adjective. An other example, still regarding adjectives: Spanish adjectives
are usually placed after the noun they modify, but a few of them, called prepositive
adjectives, are placed after the noun. This feature was needed in the GF lexicon, but was
not present in the Apertium one. As a consequence, when including Spanish adjectives
from Apertium in the GF lexicon, we could not provide any information about this to the
smart paradigms. When there was not enough information, the smart paradigms chose
the most common option: in this case, that the adjective was not prepositive. Finally,
English nouns contain a humanity feature in GF, which is not encoded in Apertium and
in this case, all Apertium nouns were imported as non-human (the most common value).

In addition, since GF uses a deeper intermediate representation, some additional
linguistic information was required when inserting certain entries in the GF lexicon. In
particular, in the case of verbs, the GF lexicon contains valency information used in
parsing. For instance, the valency V indicates an intransitive verb (for example: run), V2
a transitive verb (hit), VA states that a verb is complemented by an adjective (become)
and so on. Since it was not possible to infer the verb valencies we imported them from
the existing GF English lexicon18 and used them for both English and Spanish verbs (in
the RGL API, the valency is encoded in the language-independent abstract syntax, so it
is necessarily the same for linearization of the same abstract function.)

2.3 Generating Apertium shallow-transfer rules from GF data
The second system used the Apertium engine and lexicon but we extracted structural
transfer rules from the GF resource grammar library. The Apertium shallow-transfer
rules process fixed-length chunks of lexical forms and perform agreements, re-orderings,
preposition changes and other grammatical transformations. Naturally, since Apertium
does not perform a full parsing, we could not simply re-encode the gf grammars into
Apertium rules. Instead, we developed a method based on flattening abstract syntax
trees.

18The GF RGL originally contains over 60.000 entries in the English lexicon, but only a few dozens in
the Spanish one.

37

DetCN

DetQuant

DefArt NumPl

AdjCN

PositA

red_A

UseN

car_N

(a) GF abstract syntax tree

the.det.def red.adj car.n.pl → el.det.def.m.pl coche.n.m.pl rojo.adj.m.pl
(b) Its linearization into English (left) and Spanish (right) when replacing the linearization of
terminal symbols with Apertium lexical forms

the.det.def adj n.pl|m.pl → el.det.def.m.pl n.m.pl adj.m.pl
(c) Same example with nouns and adjectives replaced by word classes.

the.det.def adj n.pl|m.pl → el.det.def.m.pl $3.n.m.pl $2.adj.m.pl
(d) Apertium rule extracted from it. The rule matches the definite determiner the, followed
by any adjective and a plural noun whose gender after being looked up in the bilingual lexicon
is masculine, and its number is plural.The expression $i means that the lemma is obtained by
looking up in the bilingual lexicon the i-th matching SL lexical form

Figure 5: Steps carried out obtain an Apertium shallow transfer rule from a GF abstract
syntax tree.

38

In a nutshell, our strategy involved generating, for each GF abstract syntax function
from the Resource Grammar Library, all the possible abstract trees which could be built
(up to a certain depth). Each tree was then linearized in both SL and TL to obtain a
bilingual phrase (the GF engine provides the word-by-word alignment), and an Apertium
shallow-transfer rule was extracted from the pair of linearizations using the algorithm
developed by Sánchez-Martínez and Forcada (Sánchez-Martínez and Forcada 2009).

The depth limit was important to obtain a finite and manageable set of abstract syntax
trees. In order to avoid the generation of an unmanageable set of bilingual phrases, we
also took advantage of the fact that in GF the grammar rules are not influenced by a
word form but only by the features (e.g. two masculine nouns will appear in exactly the
same set of trees) Thus, for each open lexical category, only one for each combination of
SL and TL features was included in the GF lexicon used to generate bilingual phrases.
For instance, with regard to common nouns when translating from English to Spanish,
the only relevant feature for translation was the gender in Spanish. Consequently, we only
needed to include in the lexicon a noun which is masculine in Spanish (such as car), and
another one which is feminine (for instance, house). In addition, other modifications were
carried out to ensure that Apertium shallow-transfer rules could be obtained from the
pair of linearizations. First, the linearization of each GF lexical function was replaced by
its corresponding Apertium lexical form. In this way, pairs of lexical form sequences were
obtained when linearizing the abstract function trees. These pairs could then be directly
converted into Apertium shallow-transfer rules.

However, the approach which has just been described would generate a vast amount
of rules, since a rule for each combination of lexical entries would be obtained. Since it
was desirable to obtain a smaller set of rules, we performed a further modification: the
introduction of word classes. We modified again the GF lexicon, in which previously
the original entries have been replaced with Apertium lexical forms, and replaced lexical
forms from open lexical categories with word classes. The word class of an SL lexical form
is defined as the concatenation of its lexical category, morphological inflection information
and morphological inflection information obtained when looking it up in the Apertium
bilingual dictionary. Word classes group together words which behave in the same way
when being translated. For example, the word class of lexical forms such as car.n.pl,
phone.n.pl, or day.n.pl is n.pl|m.pl, since all of them are plural nouns in English which
are translated as masculine plural nouns in Spanish. Word classes of TL lexical forms only
contain the lexical category and TL morphological inflection information (the bilingual
dictionary is not involved). Figure 5c shows the pair of linearizations from the tree
presented in figure 5a, in which lexical forms have been replaced by word classes.

Although the pair of lexical form sequences just shown is more similar to an actual
Apertium rule than the previous examples, one detail remain to be fixed: alignments
were needed in order match SL and TL word classes and allow the Apertium engine to
collect the lemmas of the TL word classes by looking up in the bilingual dictionary the
corresponding SL words. Fortunately, the GF engine provides them. The final Apertium
rule obtained is depicted in figure 5d. This rule matches the definite determiner the,
followed by an adjective and a plural noun which is masculine and plural in Spanish,
and generates, in Spanish, a definite, masculine, plural determiner; a masculine plural
noun whose lemma is obtained by looking up in the bilingual dictionary the lemma of the

39

Corpus System BLEU METEOR TER
newstest2011A sharedGF 0.027 0.181 0.847

sharedApertium 0.138 0.390 0.678
Apertium word-for-word 0.111 0.368 0.703
Apertium 0.200 0.443 0.617

newstest2011B sharedGF 0.152 0.388 0.703
sharedApertium 0.148 0.391 0.691
Apertium word-for-word 0.106 0.361 0.713
Apertium 0.212 0.451 0.620

Table 7: Values of the evaluation metrics obtained by the different English-Spanish
MT systems. A score in bold for sharedApertium means that it outperforms sharedGF
by a statistically significant margin computed by paired bootstrap resampling (Koehn
2004) with p = 0.05. An underlined score indicate that the system outperforms Apertium
word-by-word translation, according to the same criterion.

English noun, and a masculine plural adjective whose lemma is obtained by looking up in
the bilingual dictionary the lemma of the English adjective.

3 Evaluation
We used the methods described above to build two English-Spanish MT systems stemming
from the same resources: the Apertium lexicon and the GF RGL. sharedApertium
is an Apertium-based system containing the original Apertium lexicon and a set of
shallow-transfer rules created from the GF RGL, while sharedGF is a GF-based system
in which the lexicon has been ported from Apertium.

We performed an automatic evaluation using two subsets of the newstest201119 set.
We computed BLEU (Papineni et al. 2002), METEOR (Lavie and Agarwal 2005) and
TER (Snover et al. 2006) scores for the aforementioned systems, along with out-of-the-box
Apertium and a word-for-word translation with the Apertium lexicon. The subset
newstest2011A (1896 sentences) contains the parallel sentences from newstest2011 which
can be parsed (either fully or partially) by GF in a reasonable time, while newstest2011B
(130 sentences) contains only those fully parsed by GF. Results are shown in Table 7.

The most remarkable conclusion that can be drawn from the results is that our resource
sharing strategies eased the development of new RBMT systems: an Apertium-based
system which outperformed word-for-word translation has been created without manually
writing a single shallow-transfer rule; and a GF-based system, which also outperformed
Apertium word-for-word translation on the smallest corpus, has been built despite that
the GF lexicon only contained originally a few entries in the Spanish side.

Regarding the differences between sharedGF and sharedApertium, GF performed
poorly on the bigger, newstest2011A corpus, mainly due to out-of-vocabulary words and

19Distributed as part of the WMT 2011 shared translation task: http://www.statmt.org/wmt11/
translation-task.html

40

http://www.statmt.org/wmt11/translation-task.html
http://www.statmt.org/wmt11/translation-task.html

out-of-grammar constructions. These are less of an issue for Apertium, which simply
translates word-by-word when no rule matches the input chunks. An example of this
situation is presented in Figure 6.

source: Vengeful hackers and spies are waiting
spy_V : V

spy

vengeful_A : A

vengeful

DetCN : NP

UseN : CN

GerundN : N

wait_V : V

waiting

adj_Conj : Conj

sharedGF : vengativo espiar
sharedApertium: Vengativo hackers y espías son esperando

Figure 6: SL sentence from the newstest2011A evaluation corpus, partial parse trees
obtained by the GF parser of the sharedGF system, their translation, and the translation
of the same SL sentence by sharedApertium. Observe that the out-of-vocabulary word
hackers prevents GF from fully parsing the sentence.

sharedGF catches up with sharedApertium on the smaller, fully-parsed, evaluation
corpus. As pointed out previously, analyzing the whole sentences allowed GF to perform
more accurate translations than Apertium for some constructions, as in the example
presented in figure 7. The GF parser was also able to automatically detect named entities,
which lead to the correct translation of Saxon genitives even when the proper noun was
not in the lexicon. See Figure 8 for an example.

source: But the man remains (V) skeptic
sharedGF : Pero el hombre queda (V) escéptico
sharedApertium: Pero el hombre restos (N) escéptico

source: The matter examines the type of damage (N)
sharedGF : El asunto examina el tipo de daño (N)
sharedApertium: El asunto examina el tipo de averiar (V)

Figure 7: SL sentences from the newstest2011A evaluation corpus and their translation
with the systems being evaluated. Lexical category is shown in parentheses.

However, even when the sentence was fully parsed, the GF-based system had some
drawbacks when compared to Apertium. For instance, the Apertium analyzer correctly
handled most multi-word expressions encoded in the lexicon because it always tries to
match the longest possible segments, but the GF parser relies on statistics to choose among

41

source: This is Dan Brown’s success mechanism
sharedGF : Éste es mecanismo de éxito de Dan Brown
sharedApertium: Esto es Dan Brown mecanismo de éxito

Figure 8: SL sentence from the newstest2011B evaluation corpus and its translation with
the systems being evaluated.

the possible parse trees, which could lead to situations such as the one shown in Figure 9.
One could remedy to this problem by tuning the probability in the GF grammar—either
manually or using treebank data—so that the idiosyncratic interpretation is chosen over
the compositional one. On the other hand, GF could also analyze discontinuous multiword
expressions which cannot be encoded in Apertium’s lexicon.

source: An extra portion of sugar is needed for lemon
ice cream

sharedGF : Una porción extra de azúcar está necesitada
para crema de hielo de limón

sharedApertium: Una porción extra de azúcar es necesitar para
limón helado

Figure 9: SL sentence from the newstest2011B evaluation corpus and its translation
with the systems being evaluated. The right translation into Spanish of the multi-word
expression ice cream is helado, while crema de hielo is the literal translation.

4 Conclusions and future work
We have presented two strategies for sharing linguistic resources between Apertium and
GF and used them to create two RBMT systems stemming from the same linguistic
resources. Our experiments showed the usefulness of the resource sharing and confirmed
the a-priori strong and weak points of the systems involved.

Possible future works include exploring other ways to share Apertium and GF’s
resources. For instance, porting the GF lexicon to Apertium or using GF smart paradigms
(Détrez and Ranta 2012) to ease the creation of the Apertium lexicon. A deeper integration
of Apertium and GF could also be achieved by combining them at runtime, following a
approach similar to the strategy designed to integrate GF and SMT(Enache et al. 2012).

5 Acknowledgements
Work partially supported by the Spanish government through project TIN2012–32615
and by Generalitat Valenciana through grant ACIF/2010/174 and Swedish Research
Council through financial support under grant nr. 2012–5746 (Reliable Multilingual
Digital Communication: Methods and Applications).

42

References
Angelov, K. (2011). “The Mechanics of the Grammatical Framework”. PhD thesis. isbn:

978-91-7385-605-8.
Détrez, G. and A. Ranta (2012). “Smart Paradigms and the Predictability and

Complexity of Inflectional Morphology”. In: Proceedings of the 13th Conference of the
European Chapter of the Association for Computational Linguistics. Association for
Computational Linguistics, pp. 645–653.

Enache, R. et al. (2012). “A Hybrid System for Patent Translation”. In: The 16th Annual
Conference of the European Association for Machine Translation. Trento, Italy,
pp. 269–276.

Forcada, M. L. et al. (2011). “Apertium: a free/open-source platform for rule-based
machine translation”. In: Machine Translation 25.2. Special Issue: Free/Open-Source
Machine Translation, pp. 127–144. doi: 10.1007/s10590-011-9090-0.

Hutchins, W. and H. Somers (1992). An introduction to machine translation. Vol. 362.
Academic Press New York.

Koehn, P. (2004). “Statistical significance tests for machine translation evaluation”. In:
Proceedings of the Conference on Empirical Methods in Natural Language Processing.
Vol. 4, pp. 388–395.

Koehn, P. (2010). Statistical Machine Translation. 1st. New York, NY, USA: Cambridge
University Press. isbn: 0521874157, 9780521874151.

Lavie, A. and A. Agarwal (2005). “METEOR: An Automatic Metric for MT Evaluation
with Improved Correlation with Human Judgments”. In: Proceedings of the Second
Workshop on Statistical Machine Translation - StatMT ’07. Stroudsburg, PA, USA:
Association for Computational Linguistics, pp. 65–72. doi:
10.3115/1626355.1626389.

Papineni, K. et al. (2002). “BLEU: a Method for Automatic Evaluation of Machine
Translation”. In: ACL ’02: Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational
Linguistics, pp. 311–318. doi: 10.3115/1073083.1073135.

Ranta, A. (2009). “The GF Resource Grammar Library”. In: Linguistic Issues in
Language Technology 2.2.

— (2011). Grammatical Framework: Programming with Multilingual Grammars. Stanford:
CSLI Publications. isbn: 1-57586-626-9 (Paper), 1-57586-627-7 (Cloth).

Sánchez-Cartagena, V. M., F. Sánchez-Martínez, and J. A. Pérez-Ortiz (2011).
“Integrating shallow-transfer rules into phrase-based statistical machine translation”.
In: Proceedings of the XIII Machine Translation Summit. Xiamen, China, pp. 562–569.

Sánchez-Martínez, F. and M. L. Forcada (2009). “Inferring shallow-transfer machine
translation rules from small parallel corpora”. In: Journal of Artificial Intelligence
Research 34.1, pp. 605–635.

Sánchez-Martínez, F., M. L. Forcada, and A. Way (2009). “Hybrid rule-based –
example-based MT: Feeding Apertium with sub-sentential translation units”. In:
Proceedings of the 3rd Workshop on Example-Based Machine Translation. Ed. by
M. L. Forcada and A. Way. Dublin, Ireland, pp. 11–18.

43

http://dx.doi.org/10.1007/s10590-011-9090-0
http://dx.doi.org/10.3115/1626355.1626389
http://dx.doi.org/10.3115/1073083.1073135

Snover, M. et al. (2006). “A study of translation edit rate with targeted human
annotation”. In: In Proceedings of Association for Machine Translation in the
Americas, pp. 223–231.

Tyers, F. M. (2009). “Rule-based augmentation of training data in Breton-French
statistical machine translation”. In: Proceedings of the 13th Annual Conference of the
European Association for Machine Translation. Ed. by L. Màrquez and H. Somers,
pp. 213–217.

44

Paper C

Learning Smart Paradigms

46

Abstract

Lexicons are an important component of many applications upon which we have
come to rely, from word processors to machine translation systems. The lexicon
builder traditionally creates a lexicon by defining a set of morphological paradigms
and then associates each lemma in the language with one of those paradigms. This
task can be accomplished more efficiently via constructs such as smart paradigms;
functions that take lemmas of a particular part of speech and produce correct
inflection tables according to the rules of the target language. This not only speeds
the work of the lexicon builder, who can simply list lemmas with their respective
part of speech without having to manually assign a paradigm to each lemma, but
it also makes lexicon building accessible to those lacking detailed knowledge of
the underlying morphology. Here we demonstrate an approach to learning smart
paradigms from existing sets of paradigms. Our results show that learned smart
paradigms perform similarly to manually written equivalents. Further we show that
the method provides benefits even if the existing lexicon is small, indicating that
the method can be useful from an early point in the lexicon building process.

1 Introduction

From simple spell-checking applications to state-of-the-art machine translation systems,
lexicons are an essential ingredient of many natural language processing tasks, but their
creation and maintenance remain labor-intensive and costly. Even though large lexicons
may exist for the major languages of the world, they often need to be adapted to new
usages or even re-created for legal or technical reasons (e.g., a lexicon distributed under a
restrictive license cannot be used in a free/libre spell checker). Finally, many communities
using less privileged languages cannot afford the creation of those resources, which prevents
those languages from competing on an equal ground in an increasingly digitalized world.
Which may even accelerate language disappearance.

Many solutions have been proposed (see Section 5). Here we concentrate on one,
in particular, the GF smart paradigms (Ranta 2009; Ranta 2011). A smart paradigm
is a function that infers full inflection tables from one or a few forms, thus easing the
creation and maintenance of morphological lexicons by hiding the details of the underlying
morphology. But smart paradigms have until now been built by hand, which requires
skills both in linguistics and computer programming.

We explore a way to automatically create smart paradigms from existing lexicon data
using machine learning techniques, and we evaluate their accuracy and usefulness on four
different languages: Finnish, French, German and Maltese.

More precisely, the contributions of this paper are three fold:

• we introduce a method for constructing a smart paradigm from existing lexicon
entries;

• we evaluate our approach on different lexicons and show that we can achieve similar
results as manually created smart paradigms; and

47

• we evaluate the usefulness of this approach in lexicon building by showing that
even with a small amount of data the learned smart paradigm can provide some
assistance to the lexicon builder.

2 Background
We first define important concepts used in this paper: morphological lexicon (§ 2.1),
paradigm (§ 2.2) and smart paradigm (§ 2.3).

2.1 Morphological lexicon
A morphological lexicon is a structure in which each word, or more precisely each lexeme, is
associated with all possible inflectional forms that it can take. For instance, a morphological
lexicon for English verbs gives seven forms for most entries: infinitive, imperfect, present,
third person singular present, past, past participle and present participle. Lexemes in a
morphological lexicon are identified by a lemma, which is most often one of the inflected
forms that has been chosen to represent the whole lexeme.

The word forms of a lexeme may be classified according to shared inflection categories
and arranged into tables (see for instance the Latin forms for lūdus ‘game’ given in
Table 8). We build upon this tradition by defining an inflection table as the n-tuple
Stringn of word forms for a lexeme, where each slot in the tuple corresponds to one or
more combinations of values for each inflectional category. The choice of the relevant
inflectional categories and their possible values (and thus the size n of the tuple) depend
on the syntactic rules of the language and somewhat on the tradition of the lexicographer.
Note that because the inflection table is a tuple, not a set, it is possible for the same word
form to appear in different slots. For instance, a possible inflection table for the English
lexeme go20 is 〈go, go, go, goes, went, gone, going〉 (respectively infinitive, imperfect,
present, third person singular present, past, past participle, present participle).

Intensional and extensional lexicon. There are two ways to structure a morphologi-
cal lexicon. An intensional lexicon lists the lexemes of the language and associates with
each lexeme its inflection table (and potentially other information related to the lexicon’s
purpose). Example 1 shows simplified intensional lexicon entries for the English verbs eat
and play and the noun play. Note that syncretism between the third person singular
simple present of the verb and plural of the noun plays or between the simple past and
past participle form played is handled naturally. A more common way to represent an
intensional lexicon is to replace the inflection table by a lemma and an identifier for the
inflection class. Where the identifier references rules to construct the inflectional forms
from the lemma. See Section 2.2.

On the other hand, an extensional lexicon lists all inflected forms individually. As
Example 2 shows each form can be associated with a lexeme identifier and a morpho-

20Typographic conventions In this paper, we use the following conventions to distinguish lexemes
from inflectional forms: we use small caps to write lexemes (represented by their lemma) and italics to
write inflectional forms. E.g. man is one inflectional form of the lexeme man.

48

Singular Plural
nominative lūdus lūdī
genitive lūdī lūdōrum
dative lūdō lūdīs
accusative lūdum lūdōs
ablative lūdō lūdīs
vocative lūde lūdī

Table 8: Example of how the word forms of a lexeme may be arranged into a table, here
the Latin forms for lūdus ‘game’. The word forms are classified according to shared
inflectional categories: all the forms in a column share the same number whereas forms in
a row share the same grammatical case.

eat V 〈eat, eat, eat, eats, ate, eaten, eating〉
play V 〈play, play, play, plays, played, played, playing〉
play N 〈play, plays, play’s, plays’〉

Example 1: This example of an intensional lexicon shows entries for the English verbs
eat and play and the noun play. Note that the second and third entries share the same
lemma, although they have different inflection tables. We can also see that syncretism
between the third person singular simple present of the verb and plural of the noun plays
or between the simple past and past participle form played is naturally represented.

syntactic analysis. The amount and nature of associated information depends on the task
for which the lexicon is built. For machine translation, for instance, the form might be
associated with a lemma, morpho-syntactic analysis and semantic information to help
choose the appropriate translation. A simple spell checker, on the other hand, needs no
extra information, and it suffices to list the accepted forms. Example 2 also shows that
alternative forms (such as the alternative forms learnt and learned for the simple past
and past participle of learn) are easy to add to an extensional lexicon by creating a new
entry (although not represented in this example, if a form is missing there is no entry).
In cases of syncretism though, entries share the same form, thus creating ambiguity in
analysis.

In practice, intensional lexicons are easier to create and maintain thanks to their more
hierarchical structure, whereas extensional lexicons lend themselves better to analysis
tasks and it is common for the lexicographer to work on the former, using paradigm
functions that we define in the next section to generate the inflection tables and use
automated tools to convert the intensional lexicon to an extensional form.

2.2 Paradigms
In this paper, a paradigm is a function P : String → Stringn producing an inflection
table from a word string (either a lemma or a stem)21.

21Here we choose to use the term paradigm as a formal description of an inflection pattern, and we
use the term inflection table for the list of inflected forms of a lexeme, which is also sometimes called its

49

learn V learn imperative
learn V learn infinitive
learn V learn simple present
learned V learn simple past
learned V learn past participle
learning V learn present participle
learns V learn third-person singular simple present
learnt V learn simple past
learnt V learn past participle
play N play singular
play V play simple present
play V play infinitive
play V play imperative
played V play simple past
played V play past participle
playing V play present participle
plays N play plural
plays V play third-person singular simple present

Example 2: This example shows an extensional lexicon in which each form is associ-
ated with a part-of-speech, lemma and a morpho-syntactic analysis. Alternative forms
(learnt/learned for the simple past and past participle of learn) are represented by
creating a new entry. In case of syncretism, two or more entries entries share the same
form.

50

The same paradigm function can be used for different lexemes. Each paradigm function
defines an inflectional class, which is the set of all lexemes for which the paradigm produces
the expected inflection table. For instance lūdus above belongs to the same inflectional
class as dominus and filius, the second Latin declension. In the rest of the paper we use
the terms paradigm and inflectional class interchangeably: saying that a lexeme belongs
to a paradigm implies that it belongs to its inflectional class.

Inflection classes are a way to make lexicons more compact. For instance, the French
Bescherelle, a reference book for French conjugation (Arrivé 2012), allows one to check
the conjugation of several thousand French verbs (about 9600 in the 2012 edition). Given
that the complete inflection table of a single verb takes one full page, it would take 9600
pages to print the complete inflection tables of all verbs. Using inflectional classes allows
the authors to compress this to 184 pages (103 full inflection tables for the model verbs
plus eighty-one pages of index giving a reference to the corresponding model for each of
the 9600 verbs). In this particular case, the space needed to describe the lexicon was
reduced by a factor 50.

This compression effect is also useful when learning a new language: in Latin, for
instance, it is common to learn first a full inflection table of an example lexeme for each
inflection class and then, when learning a new word, the pupil needs only remember to
which inflectional class the word belongs to be able to reconstruct any form required.

2.3 Smart Paradigms
Different paradigm systems for the same language can have different numbers of paradigms.
To continue our example above, the Bescherelle defines about eighty-two inflection classes
for French verbs, whereas traditional French grammar has only three (premier, deuxième
et troisième groupes).

One factor that determines the number of paradigms needed to cover the morphology
of a lexicon is the set of string operations a paradigm is allowed to use. If the paradigms
are limited to simple operations like concatenating a suffix to a stem, more paradigms are
required. For example, if one were to define a paradigm to inflect English nouns, most
could be inflected with the following function:

noun(l) = 〈l, l + “s”〉

e.g.:

(1) noun(game) = 〈game, games〉

But this would fail to produce the expected result for a noun like baby:

(2) noun(baby) = 〈baby, babys〉

If we assume the only operation allowed in our paradigms is suffixing, we have no
other choice but to define a new paradigm to handle nouns ending with -y:

ynoun(l) = 〈l + “y”, l + “ies”〉

This then produces the expected forms:
inflectional paradigm.

51

(3) ynouns(bab) = 〈baby, babies〉

Now not only do we need to know that we should use a different paradigm to handle
nouns ending with -y, but we also need to remember that the argument is the singular
form without the -y suffix. By contrast, if we have access to a more powerful set of
operations to define our paradigms, we can extend the original function:

noun(l) = 〈l, if l matches x + “y” then x + “ies” else l + “s”〉

The number of arguments also affects the minimum number of paradigms required.
For example, verbs ending in -ir in French can belong either to the second group (finir,
‘finish’) or third group (venir, ‘come’), and it is impossible to guess to which group it
belongs based on the lemma alone. As a result, no matter how powerful our paradigms,
we need at least two different ones to handle those verbs. If, on the other hand, we have
access to other forms of the verbs, we can use this additional information. In our example,
the third person singular indicative present is enough to differentiate between second and
third groups (nous finissons versus nous venons).

If we allow paradigms with with arbitrarily complex string operation and multiple
arguments, we need a smaller number of them.In GF, for some languages there is only one
paradigm for each part of speech, but that paradigm has variable number of arguments.
This unique paradigm is called a smart paradigm.

A common way to implement smart paradigms is to first implement a set of simpler
paradigm functions, as in traditional paradigm systems, and then to create an “intelligent”
function implementing a heuristic to pick one of the “dumb” paradigms. For instance,
the function in Example 3 can correctly inflect a majority of French verbs.

mkV : String → String51

mkV(s) =
conj19finir(s), if s ends with "ir"
conj53rendre(s), if s ends with "re"
conj14assiéger(s), if s ends with "éger"
conj11jeter(s), if s ends with "eler" or "eter"
conj10céder(s), if s ends with "éder"
conj07placer(s), if s ends with "cer"
conj08manger(s), if s ends with "ger"
conj16payer(s), if s ends with "yer"
conj06parler(s), if s ends "er"

Example 3: This example shows a smart paradigm for French verbs. Here simpler
paradigms are available as the conj* functions modeled after the conjugations in the
Bescherelle (like conj19finir). The smart paradigm chooses which one to use based on
the ending of the lemma passed as argument (the infinitive form of the verb in this case).

In Table 9, we reproduce the evaluation of some of the manually written GF smart
paradigms from Détrez and Ranta 2012. Most of the smart paradigms frequently generate

52

Lexicon Accuracy
One argument Two arguments

Eng N 95% 100%
Eng V 84% 95%
Swe N 46% 92%
Swe V 97% 97%
Fre N 76% 99%
Fre V 92% 94%
Fin N 87% 97%
Fin V 96% 99%

Table 9: GF smart-paradigm accuracy, as measured by Détrez and Ranta 2012. It
reports the accuracy of the one-argument smart paradigms (e.g. Fre. mkV "manger") and
two-arguments smart paradigms (e.g. Fre. mkV "jeter" "jette"). While most smart
paradigms are already good at generating the expected inflection table based on the
lemma only (one argument), adding a second argument improves the results to more than
90% for all lexicons in this evaluation.

the expected inflection table based on the lemma only (one argument), but adding a
second argument improves the results to more than 90% for all tested smart paradigms.22

Creating those heuristics manually is difficult and requires an intimate knowledge not
only of the underlying paradigms but also of their distribution in the language (so that in
case of ambiguities, the most frequent paradigm is picked). As a result, many languages
in the GF resource grammar do not have smart paradigms.

Assuming the underlying “dumb” paradigms exist, the function of a smart paradigm
can be seen as a classification task: given a new lemma, return its most probable inflection
class considering only the string of characters: that is, the smart paradigms do not make
use of external knowledge—such as a corpus—or feedback loops—like generating the
forms and checking that the lemma is correctly re-generated. We thus hypothesize that
smart paradigms can be created by training classifiers on existing lemma-paradigm pairs.

3 Experiments

First we describe the data we use in our experiments; these data come from a variety of
lexicon projects (§ 3.1). Then we describe the machine learning techniques we use (§ 3.2).
The purpose of our first experiment is to refine our approach to building smart paradigms
(§ 3.3) and the purpose of the next is to evaluate its usefulness in the context of lexicon
building (§ 3.4).

22If you are familiar with French, it might seem strange that the smart paradigm for nouns with two
arguments does not reach 100% as French nouns have two forms (singular and plural). This is due to
the fact that the creator of the grammar choose to use the noun’s gender as the second argument to the
smart paradigm as it was thought to be more informative because less predictable (so, one would write
mkN "maison" feminine).

53

3.1 Lexicons
We describe our chosen lexicons below. We use a variety of lexicons from different sources
during our experiments. First we want to apply our method on different languages to
show the linguistic applicability of the method. We also want to show that the technique
is not bound to a particular project (e.g., GF).

Note that we require data in a specific format: we use an intensional lexicon that gives
for each lexeme the lemma (base form) and an identifier to the inflection class this lexeme
belongs to. This is a standard way of representing lexicons but not necessarily the way
they are distributed as it might be more practical for other usages to have the full form
lexicon (where inflection tables are fully expanded and the paradigm identifiers are not
necessarily retained)23.

Finnish. For Finnish we use the KOTUS wordlist, published by the Institute for the
Languages of Finland (Kotimaisten Kielten Tutkimuskeskus 2006). In this lexicon, each
inflection class is represented by an integer (1–50 are nouns paradigms and 52–79 are
verbs paradigms) sometimes accompanied by a letter indicating a consonant gradation
(see Example 4). We combined those labels to create a new set of inflection classes where
for instance, e.g. 1 and 1B are considered separate inflection classes.

<st><s>leikki</s><t><tn>5</tn><av>A</av></t></st>
<st><s>leikkiä</s><t><tn>61</tn><av>A</av></t></st>

Example 4: This example shows two entries in the Finnish lexicon: the noun leikki
‘game’ and the verb leikkiä ‘play’. Each element st is one entry where st/s is the
lemma, st/t/tn the inflection class and st/t/av the optional consonant gradation.

French. For French, we use nouns and verbs from the Lefff (Lexique des Formes Fléchies
du Français—Lexicon of French inflected forms, Sagot 2010). The Lefff is distributed in
two different forms. The “source” format is the form that we are most interested in in
this paper, where each entry corresponds to a different lexeme with a lemma, paradigm
identifier and morpho-syntactic information (intentional lexicon). This is also the form
used by the lexicographer to make changes to the lexicon (insertion, deletion or editing of
entries) so it is where smart paradigms can be most useful. The second format lists each
inflected form as a separate entry associated with all its possible morpho-syntactic analyses
and syntactic information (extensional lexicon). This second format is automatically
generated from the first and it is the format which most natural language processing tools
use for text analysis. Example of entries from each format are given in Example 5.

Although, as described above, the Lefff contains morpho-syntactic information about
the lexemes, we have limited ourself to predicting the inflection classes and ignored the
syntactic information in our experiments. The main reason is that we wanted to have

23A full-form lexicon is a lexicon that lists all possible word forms of its lexeme. Extensional lexicon
are full-form lexicon (e.g. Example 2) but intensional lexicons can also be full-form lexicons as it is the
case in Example 1.

54

joueur nc-eur \
100;Lemma;nc;<Objde:(de-sinf|de-sn),Objà:(à-sinf)>;cat=nc;%default

joueur 100 nc \
[pred="joueur_____1<Objde:(de-sinf|de-sn),Objà:(à-sinf)>",cat=nc,@ms] \
joueur_____1 Default ms %default nc-eur

joueurs 100 nc \
[pred="joueur_____1<Objde:(de-sinf|de-sn),Objà:(à-sinf)>",cat=nc,@mp] \
joueur_____1 Default mp %default nc-eur

joueuse 100 nc \
[pred="joueur_____1<Objde:(de-sinf|de-sn),Objà:(à-sinf)>",cat=nc,@fs] \
joueur_____1 Default fs %default nc-eur

joueuses 100 nc \
[pred="joueur_____1<Objde:(de-sinf|de-sn),Objà:(à-sinf)>",cat=nc,@fp] \
joueur_____1 Default fp %default nc-eur

Example 5: Examples of entries for the lexeme joueur (‘player/gamer’) from the
Lefff. Top: intentional lexicon with one entry per lexeme. The first column is the
lemma (joueur), then comes the paradigm (nc-eur) and the last part are the syntactic
information. Bottom: extensional version where each inflected form gets its own entry.
From left to right are the word form, a weight (can be used to favor some entries, for
instance if the weight of a multi-word expression is greater than the sum of the weight of
its constituents), then the syntactic and morphological information. (A \ indicate that
the line had to be broken to fit the paper but in the original data it continues on the
same line.)

55

comparable experiments across languages and not all of the other lexicons have such
detailed morpho-syntactic information. In addition, where the possibility of predicting
the paradigms from the lemma (with a reasonable confidence) has been shown by the GF
smart paradigm (Détrez and Ranta 2012), the relation between syntactic properties of a
lexeme and the form of the lemma is not as clear and, to us, not obvious. It is though an
interesting question that we would like to investigate in the future.

German. From the same author as the Lefff, we use the German lexicon DeLex (Sagot
2014). We also applied the method on both nouns and verbs. The comments made above
about the Lefff apply here as well.

Maltese. Finally we used the list of Maltese verbs from Camilleri 2013. This lexicon
was created as part of the Maltese resource grammar library for GF. Maltese is a Semitic
language but thorough its history has been heavily influenced by Romance languages
(mostly Sicilian and Italian) and, more recently, English. Thus, words in Maltese can
exhibit either a concatenative or a root-and-pattern morphology (Spagnol 2011). This
lexicon lists the verbs belonging to the second category, those exhibiting a root-and-pattern
inflection.

The Maltese verb list is written in the GF programming language (Ranta 2011). As it
is implemented, the lexicographer needs to manually specify the root of the lexeme to
get the inflection table (in Example 6, the root would be l-għ-b). Although it means that
we wouldn’t be able to reconstruct the full inflection table from the lemma by simply
guessing the paradigm without also having a way to automatically extract the root, we
believe the predicted information might still be useful to the lexicographer. In addition we
were curious to see how the method would perform on a non-concatenative morphology.

3.2 Sub-sequences and string kernels
Sub-sequences for a string work in the following way: given a sub-sequence length k and
a decay factor λ, every, non-necessarily continuous, sub-sequence of k characters present
in the input string is a feature with value λi where i is the span of the subsequence in the
instance.

For instance, the strings linguistics and immunology both include the sub-sequence
i-n-g. In the former, the sub-sequence spans 3 characters (linguistics) so the corresponding
feature is attributed the value λ3, whereas in the later it spans 9 characters (immunology)
so the value is λ9. As the decay factor λ is chosen between 0 and 1, the higher the
exponent the lower the value.

Table 10 gives an example of feature values for the strings dire and lire. A method for
efficiently computing the kernel matrix for sub-sequences is given in Lodhi et al. 2002.

We chose to use sub-sequences as features inspired by the way smart paradigms have
been constructed in GF. As shown in example 3, the GF paradigm for French verbs works
mostly by inspecting the lemma’s suffix to select the best paradigm. The smart paradigm
for Maltese verbs, on the other hand, uses the root of the verb to select the paradigm
(in the example 6, the root was the disjoint sub-string l-għ-b). To make our method as
general as possible, we decided to use all sub-sequences as input features.

56

{ s = table {
VPerf (AgP1 Sg) => lgħabt ;
VPerf (AgP1 Pl) => lgħabna ;
VPerf (AgP2 Sg) => lgħabt ;
VPerf (AgP2 Pl) => lgħabtu ;
VPerf (AgP3Sg Masc) => lagħab ;
VPerf (AgP3Sg Fem) => lagħbet ;
VPerf AgP3Pl => lagħbu ;
VImpf (AgP1 Sg) => nilgħob ;
VImpf (AgP1 Pl) => nilogħbu ;
VImpf (AgP2 Sg) => tilgħob ;
VImpf (AgP2 Pl) => tilogħbu ;
VImpf (AgP3Sg Masc) => jilgħob ;
VImpf (AgP3Sg Fem) => tilgħob ;
VImpf AgP3Pl => jilogħbu ;
VImp Sg => ilgħob ;
VImp Pl => ilogħbu ;

};
i = {

class = Strong LiquidMedial;
form = FormI;
imp = "ilgħob";
root = {C1 = "l"; C2 = "għ"; C3 = "b"; C4 = []};
vseq = {V1 = "a"; V2 = "a"}

};
}

Example 6: Example of entry in the GF Maltese lexicon for the verb lagħab ‘(he) plays’
(simplified for readability). This is an example of intensional lexicon: here the inflection
table is represented as an associative array where the keys are the morpho-syntactic
analyses and the values are the forms. In the case of Maltese, the GF smart paradigm for
verbs need to be given the consonantal root, e.g. mkV "lagħab" (mkRoot "l-għ-b").

d-i-e d-i-r d-r-e i-r-e l-i-e l-i-r l-r-e
dire λ4 λ3 λ4 λ3 0 0 0
lire 0 0 0 λ3 λ4 λ3 λ4

Table 10: Example of feature space for the forms dire and lire. The features are all
possible sequences of letters of length k (here k = 3) and their values is either 0 if the
sequence does not appear in the word form (e.g., the sequence d-i-e is not a sub-sequence
of the form lire) and λl otherwise, where l is of the span of the subsequence in the form
(e.g., the sequence d-i-e is a subsequence of dire spanning four characters).

57

3.3 Experiment 1
In our first experiment, we evaluate our method on the different lexicons. As the machine
learning technique we have chosen requires some parameters to be set, the first part of
the experiment tries to experimentally select the best values for those parameters.

The first parameter, the soft margin parameter C controls the trade-off between
correctly classifying more instances (in the training data) or maximizing the margin of
the classifier. Lower values of C produce a classifier that fits the training data better, but
may not generalize as well, whereas higher values of C produce classifiers that may not
classify the training data as well but might generalize better.

The other two parameters are k and λ, related to the sub-sequence features: k represents
the length of the extracted subsequences and λ, the decay factor (see Section 3.2).

There is, to our knowledge, no theory-based method to choose the parameter C for a
given classification task. As for k and λ, as we want our method to work without linguistic
knowledge from the user, we want to have them selected automatically as well.

We used a classic grid search method to select the parameters where we checked
all combination of parameters with C ∈ {2−5, 2−3, . . . , 29}, k ∈ {3, 4, 5} and λ ∈
{0.1, 0.3, . . . , 0.9}.

Train, tune and test data. To make the results more comparable between languages,
we first randomly extracted 3000 verbs and 3000 nouns from each lexicon. We then
divided each of those lists into three subsets. The biggest part, 1800 entries, is used to
train the classifiers with different values of C, k and λ. Half of the remaining 1200 entries
are used to evaluate those classifiers a during the grid-search algorithm. Finally we use
the final part of our data, (the last 600 entries), for the evaluation of the final classifier
using the best parameters from the grid search. It is important here that we do not use
the same set we used during the grid search to do the final evaluation in order to avoid
over-fitting.

We did this separately for each lexicon. The result of the grid search and accuracies of
the resulting classifiers are presented Section 4.1.

3.4 Experiment 2
One natural question at this point is the following: We may be able to build a smart
paradigm by training a classifier on an existing lexicon, but if one already has the lexicon,
why would one be interested in building smart paradigms? We believe there is two parts
to answering this question. First, training a smart paradigm on a large existing lexicon
can be used to extend and otherwise maintain it. No lexicon is ever complete as languages
evolve as new words are introduced. Furthermore, an existing lexicon might need to be
adapted to a new domain and enriched with a specific terminology. Smart paradigms can
make this work easier and cheaper, especially if they can be obtained automatically.

With this in mind, we can push this idea of extending the lexicon further and see
lexicon development as an iterative process where lexemes are added one by one and
consider each addition an extension of the existing lexicon. Then the question becomes
at which point in the lexicon creation—from how many existing entries—does it become

58

interesting to train a smart paradigm from the existing lexicon to help add the rest of the
lexemes?

To get an estimation for this, we ran the following experiment: we divided the lexicon
into slices S1, . . . , SN and, we train N − 1 classifiers C1, . . . , CN−1 where classifier Ci is
trained on slices S1, . . . , Si and evaluated on slice Si+1. This should simulate a process of
iteratively training classifiers and using them to add more words. In this experiment we
use the same lexicon subsets as in Experiment 1, divided into thirty slices of one hundred
lemmas each.

The results of those experiments are presented in Section 4.2.

4 Results

This section presents the results of the experiments described in Section 3.

4.1 Experiment 1

To evaluate our smart paradigms, we use different metrics corresponding to slightly
different use cases:

First-best accuracy. When applied to an unseen lemma, the learned smart paradigms
can return an ordered list of possible paradigms where the first one is the most likely
guess and so on. We define first-best accuracy as the ratio of lemmas for which the correct
paradigm is the first one returned by the classifier. The intention here is to measure the
ability of the method to work entirely automatically, without manual correction.

Recall. We define recall as the ratio of lemmas for which the correct paradigm is one of
the returned candidates. (we followed Lindén 2009 in limiting the number of candidates
to 6 for computing precision and recall). Together with the average precision, this metric
aims at evaluating the usefulness of the method as an aid to lexicon creation (where the
best candidates are given as suggestion to the lexicographer).

Average precision. We define average precision on a single lemma as 1/r where r is
the rank of the correct paradigm in the candidate list or 0 if the correct paradigm is not
in the list of predictions. We then average this number over the whole lexicon.

We compare the results to a simple baseline that returns the most frequent paradigms
over the whole lexicon and, when available, to the accuracy of the manually written GF
smart paradigms as measured in Détrez and Ranta 2012 (note however the results for
French were computed on a different lexicon were the inflection classes might not be
exactly the same).

59

Lexicon Smart paradigm Baseline GF
k λ C acc. rec. prec. acc. rec. prec. acc.

Finnish N 3 0.5 8 0.73 0.84 0.78 0.14 0.55 0.27 0.87
Finnish V 3 0.5 2 0.90 0.94 0.92 0.21 0.55 0.31 0.96
French N 4 0.5 2 0.75 0.96 0.84 0.44 0.94 0.66 0.76
French V 4 0.5 32 0.95 0.96 0.95 0.85 0.93 0.88 0.92
German N 4 0.7 2 0.26 0.47 0.33 0.30 0.65 0.42 -
German V 3 0.7 0.5 0.49 0.89 0.65 0.15 0.62 0.32 -
Maltese V 4 0.3 128 0.94 1.00 0.96 0.29 0.94 0.50 -

Table 11: Results of experiment 1, for each lexicon. k, λ and C are the parameters that
were established during the grid search. Accuracy (acc.), recall (rec.) and precision (prec.)
are calculated as defined in Section 4.1. Results for both the learned smart paradigms
and the baseline are presented here. Where available, we also reproduced the accuracy of
the GF smart paradigm for comparison.

As can be seen in Table 11, the learned smart paradigms beat the baseline for all but
one lexicon for every metric, showing that the method might indeed be useful both as a
way to automatically extend a lexicon and also as an aid to a human lexicographer.

Compared to the manually created smart paradigms from GF, for the languages that
are common to this experiment and Détrez and Ranta 2012 we can observe that the
learned smart paradigms obtain a comparable accuracy, although generally a bit lower.

4.2 Experiment 2
Results from experiment 2 are presented in Figure 10 where the x axes represents the
size of the lexicon and the y axes the classifier accuracy when evaluated on the next 100
lemmas. This aims to be a simplified simulation of an hypothetical lexicon creation task
where a lexicographer provides 100 entries with their paradigms, train a classifier on those
and use it to classify the next 100 entries. Then they can fix the errors in those 100
entries and train a new classifier for the next batch, etc.

On the graph for each lexicon, we have also represented the accuracy of the smart
paradigm and baseline from the first experiments as a dark (resp.: light) horizontal line.

As can be seen from the graph, in almost every case the smart paradigm, even when
trained on a small amount of data, provide an improvement compared to the baseline. In
most cases, it also performs well (as good as can be expected in light of the results of
the previous experiment) with only about 1000 training examples. These results indicate
that, in different languages, this technique could be of real help to a lexicon builder.

5 Related work
Nakov et al. 2003 introduce MorphoClass, a system designed to analyze unknown nominal
word forms in German texts, group them into possible inflection tables and suggest a

60

0 1k 2k 3k
0

0.2

0.4

0.6

0.8

1

0.14

0.73

Finnish Nouns

0 1k 2k 3k
0

0.2

0.4

0.6

0.8

1

0.21

0.9

Finnish Verbs

0 1k 2k 3k
0

0.2

0.4

0.6

0.8

1

0.44

0.75

French Nouns

0 1k 2k 3k
0

0.2

0.4

0.6

0.8

1

0.85

0.95

French Verbs

0 1k 2k 3k
0

0.2

0.4

0.6

0.8

1

0.3
0.26

German Nouns

0 1k 2k 3k
0

0.2

0.4

0.6

0.8

1

0.15

0.49

German Verbs

0 1k 2k 3k
0

0.2

0.4

0.6

0.8

1

0.29

0.94

Maltese Verbs

Figure 10: Incremental accuracies of the learned smart paradigms. On the X axis is the
size of the lexicon and on the Y axis, the accuracy of the smart paradigm when evaluated
on the next 100 lemmas. The two horizontal lines represent the baseline (bottom,
except for German nouns) and the accuracy of the smart paradigm from experiment 1
(top, except for German nouns).

61

stem and an inflection class. For the last part, the assignment of an inflection class, a
short list of paradigms compatible with the grouped forms is ranked using an heuristic
based on the stem ending. This ranking is then refined using articles, prepositions and
pronouns preceding the considered word forms in the corpus (so for instance, as nouns
in German have an intrinsic gender, if one of the form is preceded by a feminine article,
then paradigms that apply to feminine nouns should be preferred).

Lindén 2009 proposes an way to generate lexicon entries from unknown word forms
using analogies. Two methods are proposed, and eventually combined to solve the problem.
One is corpus based, where two models are trained separately: the first guesses a base
form from an inflected form and the second assigns a paradigm to the base form. The
corpus material required are a list of inflected forms annotated with their corresponding
base forms and a list of base forms annotated with their corresponding paradigms. The
second method uses the implementation of a finite state transducer for the language
morphology, that relates base forms to inflected forms, to create an entry generator that
directly predict a lexicon entry (base form + paradigm identifier) from an inflected form.
On Finnish, they obtain 0.89 recall, 0.81 precision and 0.85 f-score using the combined
model. The first model which does not use the transducer achieves 0.80 recall, 0.69
precision and 0.74 f-score.

Šnajder 2013 proposes to use a binary classifier to predict whether a lemma-paradigm
pair is correct. This differs from most other work in this domain (including the work
described here) that consider the task as a multi-label classification problem (i.e. given
a lemma, predict the paradigm label). They use a handcrafted set of linguistically
motivated features as input to the machine learning algorithm, both string-based features
(i.e. properties of the lemma or word form) and corpus based features (attested word-form
count and distribution). They report results of 0.37 precision, 0.92 recall and 0.52 f-score
for nouns and 0.33 precision, 0.83 recall and 0.47 f-score for verbs.

Ahlberg, Forsberg, and Hulden 2014; Ahlberg, Forsberg, and Hulden 2015 describe a
method to extend a full-form lexicon by first automatically extracting paradigms from
the inflection tables using the longest common subsequence (e.g. swim, swam, swum
→ sw[iau]m which is then generalized to x1[iau]x2). Then they try to automatically
assign those paradigms to unseen word forms. They first exclude the paradigms that are
incompatible with the word form (if a paradigm cannot possibly generate this form, it is
excluded). Then, two different methods are proposed to rank the remaining paradigms.
One uses a corpus to count how many of the generated forms are attested and paradigms
generating more attested forms are ranked higher. The second method uses suffixes and
prefixes as feature for a multi-label classification task using machine learning.

Novák 2015 proposes a supervised machine learning algorithm to predict the correct
paradigm for a new lexicon entry using longest matching suffixes and some morpho-
syntactic features such as part of speech, gender, etc. In addition, some paradigms have
an associated suffix which limits their applicability, which means that it is known in
advance that this paradigm can only be applied if the given suffix is present in the lemma.

We believe that the technique proposed in this paper differs from previous work in that
it has fewer requirements and thus should be more generally applicable. In particular:
there are no constraints on the way the paradigms are implemented (e.g. using finite-state
transducers); it does not make use of linguistically motivated features or heuristics which

62

are often language dependent and it does not require the availability of a corpus.
With regard to making the task of inserting new entries in a lexicon easier, Esplà-Gomis

et al. 2014 is interesting. The objective of their method is to be usable by people with
only speaker-level knowledge of the language, not trained lexicographers. To do this, they
present the user with generated word forms and ask if those are valid forms of the word
to be inserted. Machine learning is used to minimize the number of questions to ask the
user but the possible paradigms need to be ranked first, for which they use a large corpus.
Our technique could easily be used in place of the corpus based ranking if no large corpus
is available for a given language.

A different but related stream of research is the unsupervised learning of morphology
where the input is raw (unannotated) text and the goal is to extract some kind of
morphological analysis in an unsupervised way. The level of analysis varies and can go
from simple segmentation of the text to a complete morphological analysis of the language,
See Hammarström and Borin 2011 for a recent review.

6 Future work

Our most immediate plan is to extend this research to more languages and more language
families.

An other interesting direction is to evaluate the usefulness of the method in an actual
lexicon creation task. This includes figuring out the best way to present the output of
the smart paradigms to the user. One could imagine that different users may require
different interfaces: for instance a linguist familiar with the set of traditional inflection
classes could be presented with a list sorted according to the smart paradigm preferences,
whereas a native speaker without specific linguistic training could be shown the generated
inflection table and asked to decide if the forms are correct. A more sophisticated version
of the later is presented by Esplà-Gomis et al. 2014 and could be adapted to work with
our smart paradigms.

Finally, one major difference between the work presented here and the GF smart
paradigms that inspired it is the fact that, in cases where the generated inflection table
is incorrect, with the GF smart paradigm the grammar developer has the possibility to
give more forms as arguments to guide the smart paradigm toward the correct inflection
table. We plan to extend the classifiers presented here to include features from multiple
forms to reproduce this behavior. Note that this present an extra challenge because, while
the citation form used as the first argument of the smart paradigms is often dictated by
the linguistics tradition of a language, the choice of what form to give for subsequent
arguments is generally no as clear so as an extra step we need to automatically determine
the most discriminative forms.

7 Conclusion
In this paper, we have seen that we can use machine learning together with substring
features to learn the association between lemmas and paradigms to create what we refer

63

to as a smart paradigm and evaluated this technique on different languages (Finnish,
French, German and Maltese) in two different scenarios.

While providing comparable accuracy as heuristics manually crafted by experts,
this technique has two main advantages: It does not require linguistic resources (such
as a corpus) or advanced skills (e.g. the creation of linguistically motivated features).
Additionally, it can be applied no matter which formalism has been chosen to implement
the language’s morphology. The technique seems to also be applicable to a variety of
languages, and notably to languages that do not exhibit a concatenative morphology.
Finally, we show that the technique gives good result with a modest amount of labeled
data (around 1000 lexical items in our experiments) and that it can thus be useful during
the creation of a new lexicon.

Some lexicons, as argued by Détrez and Ranta 2012, may have a lower intrinsic
predictability, and our technique won’t work in those cases, but neither do the manually
created heuristics and it might be necessary to use external resources such as a corpus—
another possibility is to change the form selected as lemmas, as different forms have
different predicting power.

Finally, the accuracy of a smart paradigm can be used as a measure of the predictability
of the lexicon (Détrez and Ranta 2012). We believe that this applies to the automatically
created smart paradigms as well.

We believe that techniques like the one we presented, that are able to accelerate the
creation of linguistic resources, are more and more crucial to develop since, in the words
of Allwood 2006, p. 8: “the number of endangered languages is high, time is short, and
economic resources are limited.”

References
Ahlberg, M., M. Forsberg, and M. Hulden (2014). “Semi-supervised learning of

morphological paradigms and lexicons”. In: Proceedings of the 14th Conference of the
European Chapter of the Association for Computational Linguistics. Association for
Computational Linguistics, pp. 569–578. doi: 10.3115/v1/e14-1060.

— (2015). “Paradigm classification in supervised learning of morphology”. In: Proceedings
of the 2015 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. Association for
Computational Linguistics. doi: 10.3115/v1/n15-1107.

Allwood, J. (2006). “Language survival kits”. In: Lesser-Known Languages of South Asia.
Trends in Linguistics. Studies and Monographs. Walter de Gruyter GmbH. doi:
10.1515/9783110197785.3.279.

Arrivé, M., ed. (2012). Bescherelle – La conjugaison pour tous. Hatier.
Camilleri, J. J. (2013). “A Computational Grammar and Lexicon for Maltese”. Master

thesis. Chalmers University of Technology.
Détrez, G. and A. Ranta (2012). “Smart Paradigms and the Predictability and

Complexity of Inflectional Morphology”. In: Proceedings of the 13th Conference of the
European Chapter of the Association for Computational Linguistics. Avignon, France:
Association for Computational Linguistics, pp. 645–653.

64

http://dx.doi.org/10.3115/v1/e14-1060
http://dx.doi.org/10.3115/v1/n15-1107
http://dx.doi.org/10.1515/9783110197785.3.279

Esplà-Gomis, M. et al. (2014). “An efficient method to assist non-expert users in
extending dictionaries by assigning stems and inflectional paradigms to unknown
words”. In: Proceedings of the 17th Annual Conference of the European Association for
Machine Translation. Dubrovnik, Croatia, pp. 19–26.

Hammarström, H. and L. Borin (2011). “Unsupervised learning of morphology”. In:
Computational Linguistics 37.2, pp. 309–350. doi: 10.1162/COLI_a_00050.

Kotimaisten Kielten Tutkimuskeskus (2006). KOTUS Wordlist. url:
http://kaino.kotus.fi/sanat/nykysuomi.

Lindén, K. (2009). “Entry Generation by Analogy – Encoding New Words for
Morphological Lexicons”. In: Northern European Journal of Language Technology 1,
pp. 1–25. doi: 10.3384/nejlt.2000-1533.09111.

Lodhi, H. et al. (2002). “Text Classification Using String Kernels”. In: Journal of
Machine Learning Research 2, pp. 419–444.

Nakov, P. et al. (2003). “Guessing morphological classes of unknown German nouns”. In:
Recent Advances in Natural Language Processing III, Selected Papers from RANLP
2003, Borovets, Bulgaria, pp. 347–356. doi: 10.1075/cilt.260.39nak.

Novák, A. (2015). “Making Morphologies the “Easy” Way”. In: Computational Linguistics
and Intelligent Text Processing. Ed. by A. Gelbukh. Vol. 9041. Lecture Notes in
Computer Science. Cairo, Egypt: Springer International Publishing, pp. 127–138. doi:
10.1007/978-3-319-18111-0_10.

Ranta, A. (2009). “The GF Resource Grammar Library”. In: Linguistic Issues in
Language Technology 2.2.

— (2011). Grammatical Framework: Programming with Multilingual Grammars.
1-57586-626-9 (Paper), 1-57586-627-7 (Cloth). Stanford: CSLI Publications.

Sagot, B. (2010). “The Lefff, a freely available and large-coverage morphological and
syntactic lexicon for French”. In: Proceedings of the Seventh conference on
International Language Resources and Evaluation (LREC’10). Valletta, Malta:
European Languages Resources Association.

— (2014). “DeLex, a freely-avaible, large-scale and linguistically grounded morphological
lexicon for German”. In: Proceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC-2014). Reykjavik, Iceland: European
Languages Resources Association.

Spagnol, M. (2011). “A Tale of Two Morphologies: Verb structure and argument
alternations in Maltese”. PhD Thesis. University of Konstanz.

Šnajder, J. (2013). “Models for predicting the inflectional paradigm of croatian words”.
In: Slovenšcina 2, pp. 1–34.

65

http://dx.doi.org/10.1162/COLI_a_00050
http://kaino.kotus.fi/sanat/nykysuomi
http://dx.doi.org/10.3384/nejlt.2000-1533.09111
http://dx.doi.org/10.1075/cilt.260.39nak
http://dx.doi.org/10.1007/978-3-319-18111-0_10

66

Paper D

Tools for a grammar engineering community

68

Chapter 1

A GF tokenizer

1.1 Introduction
Tokenization is the operation that consists in taking a string of characters and slicing it
into “chunks” called tokens. Natural language grammars are often written on the token
level, which means that the described language is a sequence of tokens and not a sequence
of characters. So tokenization is very often a pre-requisite for parsing.

Token or words? The concept of ‘token’ might be difficult to distinguish from the
concept of ‘word’. The notion of token does not totally overlap with our idea of a word, for
instance punctuation marks are often considered separate tokens, or some words might be
split in several tokens (e.g. Compound words in Swedish such as sjöodjur ‘sea-monster’).
In addition, the notion of token is more “technical” in the sense that the precise definition
of what constitute a token might depend on the application of the tokenizer. For instance,
there is a variant of the GF grammar for Finnish which, to reduce the number of different
tokens the grammar has to consider, treat some morphological suffixes as separate tokens.
We refer the reader to He and Kayaalp 2006 for a comparison of 13 off-the-shelve tokenizers
for English and their differences.

1.2 Description of the algorithm
In this section we describe the algorithm used to tokenize a string based on the list of
terminals recognized by the grammar.

We use as an example a very simple language with only three terminals: foo, bar and
barfoo. Those tokens may be separated by a space character but not necessarily. For
example, the following productions are considered valid in this language: barfoo␣bar,
foo␣barbar but not foo␣baz.

The output of the tokenizer, which is used as an input for the parsing algorithm,
should consist of a string of tokens separated by a single space character and including the
special terminal symbol &+ to indicate that the surrounding tokens where concatenated

69

start
f/f o/o o/o

start
b/b a/a r/r

start
b/b a/a r/r f/f o/o o/o

Figure 1.1: This figure shows individual transducers for each of the valid tokens in our
toy language that only accept the given token as input and print it back exactly the same
way on the output.

start

f/f
o/o o/o

b/b
a/a r/r f/f o/o o/o

Figure 1.2: This figure shows the union of the transducers from Figure 1.1. This unique
transducer can accept any of token from the language but can still only accept a single
token.

in the original input string. For instance, tokenizing foo␣bar should return foo␣bar
whereas foobar should return foo␣&+␣bar.

We first build a simple finite state transducer for each of the valid token. As shown in
figure 1.1, those transducers only accept the given token and print it back on the output.

Then, we take the union of those transducers to get a single transducer that accepts
(and print back) any of the valid tokens. See Figure 1.2.

Finally, for each final state in our union transducer, we create two extra transitions to
the initial state, one accepting a space character and printing it back and one accepting
an empty string (ε) and printing a binding terminal (&+). Figure 1.3 shows the complete
transducer, with the extra transitions, for our running example. This means that two
tokens separated by a space are printed as is but if two tokens are concatenated spaces
are inserted together with the spacial terminal &+1.

Note that the resulting transducer can be ambiguous. For instance in our toy example,
the string barfoo has two possible tokenization: bar␣foo on bar␣&+␣foo.

1.3 Usage
Once an application grammar has been loaded, the tokenizer is available in the GF shell
as the command t or tokenize. Example 7 shows an example of usage with a German

1 In this example, we used a space as the separator because this is what GF does. This might not be
suitable for every application though, as space might be a valid character in a token in other applications
(for example if a multi-word expression is to be interpreted as a single token). In those cases, one may
replace the output character in those extra transitions with the chosen separator.

70

start

f/f
o/o o/o

b/b
a/a r/r f/f o/o o/o

␣/␣
ε/&+

␣/␣
ε/&+

␣/␣
ε/&+

Figure 1.3: This figure shows the final transducer used to do tokenization. By adding
transitions from the final states back to the initial state, we can parse arbitrary long
sequences of tokens. If the tokens are separated by a space, it is printed unchanged but
if the tokens are glued the transducer inserts the special sequence &+ to indicate to the
parser that the two tokens are concatenated in the original string.

71

example.

ExampleAbs> t "rhabarberbarbarabarbar"
rhabarber &+ barbara &+ bar &+ bar

3 msec

Example 7: Example of using the tokenizer in the GF shell.

Note that the transducer described in Section 1.2 is constructed and compiled when
the command is first used, which means that the first invocation of the command takes
longer to execute but subsequent invocations should be fairly quick.

Example 8 shows what happens when the input string can be tokenized in different
ways: the tokenizer return every possible combination of tokens satisfying the input string.

ExampleAbs> t "rhabarberbarbarabarbarbarenbartbarbierbier"
rhabarber &+ barbara &+ bar &+ barbaren &+ bart &+ bar &+ bier &+ bier
rhabarber &+ barbara &+ bar &+ barbaren &+ bart &+ barbier &+ bier

3 msec

Example 8: Example of tokenizing an ambiguous string: all possible tokenizations are
printed.

Finally, the output of the tokenizer command can be send to the parser using the
standard piping mechanism in the GF shell.

The help page for this command is accessible from the shell with the command help
tokenize (also given in Example 9). The code for the tokenizer is available in Appendix A.

ExampleAbs> help tokenize
t, tokenize
Tokenize string using the vocabulary

flags:
-lang The name of the concrete to use

0 msec

Example 9: The help page for the tokenizer command.

1.4 Current status
The work described here has now been superseded by a parser enhancement that is now
capable of doing tokenization on the fly. For more information about this work see Angelov
2015.

72

Chapter 2

A Java Interpreter for PGF

2.1 Introduction
This chapter describes our work in implementing the basic GF runtime system in Java
and using it for building applications on the Android platform.

We describe the implementation and usage of a PGF runtime library implemented
for the JVM. PGF is a binary format used by GF to efficiently store a set of grammars
sharing the same abstract syntax. A PGF runtime is what allow a program to do parsing
and linearization (and hence translation) using those grammars.

There are many motivations to make linguistic applications for handled devices. One
can think of automatic translation, tools for languages learner or for travelers and help
for impaired people. Many existing services in those categories requires a live connection
to the Internet, which is not always available, especially when one is traveling abroad.

One of the advantage of GF is its extensive and growing resource library, with formal
grammar and basic vocabulary for over 37 languages (Ranta 2009). The library provides
the linguistic background for developing domain-specific grammars and other language
applications.

And finally, we choose the Android platform to experiment on because of its openness
and growing adoption.

In this chapter, § 2.2 describes the JPGF library; § 2.3 reproduces the text version of
a tutorial that was given at the GF summer school of 2013; § 2.4 presents PhraseDroid,
an application written using JPGF for android devices; § 2.5 summarize related work;
and § 2.6 concludes.

2.2 JPGF

2.2.1 Overview

JPGF is a PGF runtime implementation for the JVM1. It was written as part of an
effort to make GF-based applications easier to write, as more developers are familiar with

73

Java than Haskell. In addition, compiling Haskell code to run on android devices and to
communicate with the Android framework provides significant difficulties whereas code
written for the JVM can easily be adapted to run in the android runtime environment2.

The main operations that can be performed on a GF grammar are parsing—from
natural language to the abstract syntax tree representing the underlying concept—and
linearization—generating natural language constructions in a certain language from an
abstract syntax tree. By combining this two operations one obtains a translation between
any two concrete grammars. This approach has the advantage that the translation is
always syntactically correct, due to the fact that the linearization in a certain grammar,
uses the implementation of the concrete syntax module.

In addition to this, GF provides a portable runtime format, PGF (Angelov, Bringert,
and Ranta 2010) which can be used to embed the libraries further on in applications
written in programming languages that provide a suitable interpreter. This way, other
projects can use GF modules, as normal software libraries for the development of other
projects. When we started this work, up-to-date PGF interpreters existed for Haskell and
JavaScript, and our work resulted in a Java version of the interpreter.

2.2.2 Implementation

To use the PGF grammars in android applications we needed to re-implement the runtime
system from scratch for two reasons: first, the existing runtime system is written in
Haskell and second, since the algorithms for parsing and linearization are specific to GF,
we couldn’t use other existing parsing libraries.

The library is composed of four somewhat independent modules: A PGF reader that
reads the PGF binary into memory; a parser that analyzes strings into abstract-syntax
trees (ASTs); a linearizer that turns ASTs into concrete strings (the opposite of the
parser) and a random generator that randomly generates valid ASTs according to the
current grammar.

The parsing algorithm is described by Angelov 2009, and the linearization algorithm
by Angelov and Ranta 2010.

2.2.3 Source code

The source code for the library and the demo application is available under the terms of
the GNU lesser general public license at https://github.com/GrammaticalFramework.

In Table 2.1 we give an overview of the size of both the JPGF and the example
application PhraseDroid (presented in § 2.4).

2 While the JVM is mostly known to run Java programs, many new languages (and compiler for old
languages) have been created that target the same bytecode. One of those newer languages, which is
becoming increasingly popular, is Scala. Part of the JPGF library (the parsing algorithm) have been
written in Scala, although form a developer point of view using the library, it does not make a difference.

2 Until 2013, Davlik was used as the principal runtime environment for android apps. It has then been
progressively replaced by ART (Android Runtime) to provide better performances. Both use .dex files as
input that can be easily obtain from Java .class files.

74

https://github.com/GrammaticalFramework

Language Files Code Comment Comment % Blank Total
JPGF
java 91 4279 1844 30.1% 777 6900
scala 5 275 210 43.3% 71 556
Phrasedroid
java 12 1123 372 24.9% 232 1727

Table 2.1: Table showing the size of the JPGF library and the example application
PhraseDroid, measured in lines of code by ohcount.

Java

Haskell

Parsing Lineariza-
tion

Random
generation

Dependent
types

Logical
framework

Figure 2.1: This figure shows a comparison of the implemented runtime features in the
reference Haskell implementation and the JPGF library. Missing features in JPGF are
due to the time constraints for the implementation and also to the limited computing
power of the targeted hardware (mobile phones). Although we do not expect this situation
to last given the current rate at which embedded hardware is improving. We hope to be
able to address those missing feature in future work.

2.2.4 Evaluation

This section compares the new JVM library with the preexisting Haskell implementation.
First, we compare the set of implemented feature and then we present a small benchmark
of the parsing algorithm.

Implemented features

In this project, the focus was on implementing and optimizing parsing and linearization.
The main reason is that the limited computing power of the targeted devices would make
difficult to implement the full GF runtime system. Figure 2.2 gives an overview of the
implemented features.

Those components are already enough to build interesting applications using natural
language (see § 2.4). Moreover, for complex grammars, we quickly reach the limits of the
devices computing power.

75

https://github.com/blackducksoftware/ohcount

Haskell

Java

Android

1ms

28ms

3s

Figure 2.2: This figure shows the results of a benchmark of the JPGF library: average
translation time per sentence. The first line is the performance of the reference Haskell
implementation, the second the new library evaluated on the same hardware (desktop PC)
and the last one is the result of the same benchmark on Android hardware (Nexus One).

Parsing benchmark

A small benchmarking experiment was conducted where the sames sentence was parsed
multiple times (to average on multiple runs) in different settings: 1. using the Haskell
runtime on a desktop computer; 2. using the JPGF runtime on the same desktop using
the JVM computer and 3. using the JPGF runtime on an android device using Davlik
(Nexus One). Figure 2.2 shows the results.

The poor parsing performances on the android device are expected given the lower
processing power available. The gap between the two runtime on the desktop computer
requires more investigation. One possible explanation is that comparing benchmarks
across programming language is not trivial, even if the task is the same. But the main
reason explaining the difference is that JPGF is at its first version and the focus of the
developers was mainly on the correctness of the algorithm, leaving optimization for a
later phase whereas the Haskell implementation has already been heavily optimized.

2.3 Tutorial
This section reproduces the text of a tutorial that was given at the GF summer school of
20133.

2.3.1 Introduction
In this tutorial we go through the necessary steps to build a small translation application
using a PGF grammar on android. The specification of the application are quite simple:

• The interface should display a text box, a “Translate!” button and a space to show
translations.

• The grammar is loaded when the application is started.
3 The GF summer school is a bi-annual event where users, developers and researchers meet to present

their work, discuss ideas and learn from each other, focusing on GF and the Resource Grammar Library.
More information about the 2013 summer school can be found at http://school.grammaticalframework.
org/2013/

76

http://school.grammaticalframework.org/2013/
http://school.grammaticalframework.org/2013/

Figure 2.3: Screen capture of the interface of the complete application.

• When the user enters a sentence in the text box and clicks the button, the sentence
is split into tokens and the grammar is used to retrieve translations

• The translations are then displayed in a list on the screen.

The final application should look like Figure 2.3.

2.3.2 Start the android application
This section is similar to the android “Hello world” tutorial4. Note that the exact syntax
of the command may change in the future version of the SDK. Please refer to the official
android developer website for the latest instructions.

Let’s now create our android project. For that we the command line tools bundled
with the android SDK. You can of course use the eclipse plug-in to create the android
project. Please refer to the page linked above for instructions on how to do that.

$ android create project \
> --package com.example.translateapp \
> --activity Translate \
> --target 2 \
> --path TranslateApp

This should create a new directory called TranslateApp containing the basic structure
of an android application. Right now the application does not do much, but it is still
possible to test your application: enter the newly created directory then build and install
the application (for this to work you need to have either a running emulator or a connected
android device):

$ cd TranslateApp
$ ant install

4http://developer.android.com/resources/tutorials/hello-world.html

77

http://developer.android.com/resources/tutorials/hello-world.html

Figure 2.4: Main interface of the application

2.3.3 Application interface
We can now create the application’s interface. Figure 2.4 shows what we are aiming for.
To do that we modify the main layout file under res/layout/main.xml. We include
a text field with a button and then a ListView to display the list of translation. The
translation into the android user-interface language is given next:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<!-- The textbox where the user will enter a sentence -->
<EditText

android:id="@+id/edittext"
android:layout_width="fill_parent"
android:layout_height="wrap_content"/>

<!-- The "Translate!" button -->
<Button

android:id="@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:onClick="translate"
android:text="Translate!" />

<!-- the list to display the translations -->
<ListView

android:id="@+id/list"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_weight="1"/>

78

</LinearLayout>

Test your application again. The interface should now look like the screen-shot in
Figure 2.4.

2.3.4 Application code
Skeleton Let’s now take a look at the Java code for the application. In the current

state, the interface should display properly and let the user enter text but it does not do
anything else. It might even crash if you press the button.

This is because we didn’t implement the translation() function that is specified as
onClick parameter for the button. Let’s add a dummy function for now, to understand
how it works.

Open the file src/com/example/translateapp/Translate.java, it should look like
this:

package com.example.translateapp;

import android.app.Activity;
import android.os.Bundle;

public class Translate extends Activity
{
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}
}

Let’s add our translate function. According to the android developer documentation,
it should have the signature public void translate(View v). Since we do not have to
return anything, we can just add an empty function:

public void translate(View v) {

}

For this to work, we need to include the View class from the android library:

import android.view.View;

Your code should now look like this:

79

package com.example.translateapp;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;

public class Translate extends Activity
{
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

public void translate(View v) {

}
}

Reading the input text and populating the list The application does not crash
anymore but it still does not do anything. Let’s fix this.

We update our translate function so that it grabs the input text and copies it
10 times in the list. Reading the input text is done by first getting a handle to the
corresponding view and then getting the text:

TextView tv = (TextView)findViewById(R.id.edittext);
String input = tv.getText().toString();

And import the necessary class:

import android.widget.TextView;

Now, we can copy it in the list. First, we should setup a data structure for the list, we
use a ArrayAdapter in this example. In the onCreate function, just add:

mArrayAdapter = new ArrayAdapter(this, R.layout.listitem);
ListView list = (ListView)findViewById(R.id.list);
list.setAdapter(mArrayAdapter);

Again we need to import some classes from the code to work:

import android.widget.ListView;
import android.widget.ArrayAdapter;

Then we need add a new class member:

80

private ArrayAdapter mArrayAdapter;

The resource id R.layout.listitem references a new layout that controls how each
item is displayed in the list. Let’s use a simple TextView. Create the file res/listitem.xml
with this content:

<?xml version="1.0" encoding="utf-8"?>
<TextView

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>

Finally, we can populate the list in the translate function:

//... Getting the input string
mArrayAdapter.clear();
for (int i = 0; i < 10 ; i++)
mArrayAdapter.add(input);

Now your Translate.java file should look like this:

package com.example.translateapp;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.TextView;
import android.widget.ListView;
import android.widget.ArrayAdapter;

public class Translate extends Activity
{

private ArrayAdapter mArrayAdapter;

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

mArrayAdapter = new ArrayAdapter(this, R.layout.listitem);
ListView list = (ListView)findViewById(R.id.list);
list.setAdapter(mArrayAdapter);

}

81

Figure 2.5: Screen capture of the application where the translation functionality is not
yet implemented and replaced by a test function that populates the list with the “Hello
World” message ten times.

public void translate(View v) {
TextView tv = (TextView)findViewById(R.id.edittext);
String input = tv.getText().toString();
mArrayAdapter.clear();
for (int i = 0; i < 10 ; i++)
mArrayAdapter.add(input);

}
}

Run and test your application, you should be able to get something like the screen
capture in Figure 2.5.

2.3.5 Add he JPGF library and the PGF file
Now that we have a working application, let’s do something useful. First, we have to
add the JPGF library to our project. Download the latest version of the library from
GitHub5; and add the jar file to the libs folder in your project.

Next, we add the PGF file itself. In this example, we use the food grammar, but feel
free to use your own file if you want.

We need to use extra option during the PGF compilation in order to make a PGF
that is optimized and indexed. This allows android to cope more easily with big PGF
files. Here is the command for the food grammar:

$ gf -make -s -optimize-pgf -mk-index Foods???.gf

Now copy the file Foods.pgf into res/raw and rename it to foods.pgf (resource file
names should contain only lower case letters). Your project directory should now look
like this:

5https://github.com/GrammaticalFramework/JPGF

82

https://github.com/GrammaticalFramework/JPGF

TranslateApp
+ libs:
+ JPGF-1.0rc1.jar

+ res:
+ layout/

+ listitem.xml
+ main.xml

+ raw/
+ foods.pgf

+ values/
+ strings.xml

+ src:
+ com/

+ example/
+ translateapp/
+ Translate.java

+ AndroidManifest.xml
+ build.xml
+ local.properties
+ build.properties
+ default.properties
+ proguard.cfg
+ bin/
...

+ gen/
...

Compile and test the project again to make sure everything is in order.

2.3.6 Implement the PGF functions
Last but not least, we can now implement the translating functionality. We need to do
two things:

• loading the PGF in memory in onCreate

• translate the input when translate() is called.

A word on performances. PGF operations are costly. On a cell phone, reading a
PGF can take several seconds, depending on the size of the grammar and it is not unusual
for parsing to take 1 or two seconds as well. If we do that in the main thread for our
application, called the “UI thread”, we block the user interface. This is not very good
practice and it could even lead the OS to believe that our application is stalled and to
display an error message.

83

To avoid this problem we need to put the PGF computations in other threads. The
android framework offers different ways to do that. In this tutorial, we use the AsynTask6

class.
Explaining how to use this class is not in the scope of this tutorial so I invite interested

readers to look at the class documentation. There is only three important methods for
our example in this class:

onPreExecute used to setup the interface when the task start (e.g. displaying a progress
window.)

doInBackground used to do the expensive computation. This cannot modify the UI.

onPostExecute used to update the UI when the task is completed (e.g. removing the
progress window.)

Loading the PGF. Loading a PGF file is done with the class PGFBuilder. It offers
two static methods that both return a PGF object: fromFile and fromInputStream.
The first expects a file name. Since, in an android project, static resource files are better
accessed by resource id, we use the second one and open an InputStream7. This is done
like this:

InputStream is = getResources().openRawResource(R.raw.foods);

Then we give this stream to PGFBuilder. In addition we give the list of desired
concrete grammar so only those be kept in memory, this allow us to be more efficient in
memory usage.

PGF pgf = PGFBuilder.fromInputStream(
is, new String[] {"FoodsEng", "FoodsCat"});

Now, as explained above, we do not do this directly in onCreate to avoid blocking the
UI. Instead we need to subclass AsyncTask and read the PGF in the doInBackground
method. In addition, we add the code for the progress window:

/**
* This class is used to load the PGF file asynchronously.
* It display a blocking progress dialog while doing so.
*/

private class LoadPGFTask extends AsyncTask<Void, Void, PGF> {

private ProgressDialog progress;

protected void onPreExecute() {
// Display loading pop-up
this.progress =

6http://developer.android.com/refeorence/android/os/AsyncTask.html
7http://developer.android.com/reference/java/io/InputStream.html

84

http://developer.android.com/refeorence/android/os/AsyncTask.html
http://developer.android.com/reference/java/io/InputStream.html

ProgressDialog.show(
Translate.this, "Translate",
"Loading grammar, please wait", true);

}

protected PGF doInBackground(Void... a) {
int pgf_res = R.raw.foods;
InputStream is = getResources().openRawResource(pgf_res);
try {
PGF pgf = PGFBuilder.fromInputStream(

is, new String[] {"FoodsEng", "FoodsCat"});
return pgf;

} catch (Exception e) {
throw new RuntimeException(e);

}
}

protected void onPostExecute(PGF result) {
mPGF = result;
if (this.progress != null)

this.progress.dismiss(); // Remove loading pop-up
}

}

Finally, we need a new class member for the PGF

private PGF mPGF;

And we need to launch the task from onCreate:

new LoadPGFTask().execute();

The translation task. Translation is just the combination of parsing and lineariza-
tion. In JPGF, those tasks are respectively done with a Parser and a Lnearizer object.
Those are easily created given the PGF and the concrete grammar:

Parser mParser = new Parser(mPGF, "FoodsEng");
Linearizer mLinearizer = new Linearizer(mPGF, "FoodsCat");

The parser object expect an array of tokens, which means that we need to tokenize
the sentence first:

String[] tokens = sentence.split(" ");

And returns a ParseState object from which we can retrieve parse trees:

ParseState mParseState = parser.parse(token);
Tree[] trees = (Tree[])mParseState.getTrees();

85

The Linearizer takes a tree and return a string:

String s = mLinearizer.linearizeString(trees[0]);

Finally, once enclosed in an AsyncTask sub-class with the code for the progress window
and some boilerplate code we get:

/**
* This class is used to parse a sentence asynchronously.
* It display a blocking progress dialog while doing so.
*/

private class TranslateTask
extends AsyncTask<String, Void, String[]> {

private ProgressDialog progress;

protected void onPreExecute() {
// Display loading pop-up
this.progress =

ProgressDialog.show(
Translate.this, "Translate",
"Parsing, please wait", true);

}

protected String[] doInBackground(String... s) {
try {
// Creating a Parser object for the FoodEng
// concrete grammar
Parser mParser = new Parser(mPGF, "FoodsEng");
// Splitting the input (basic tokenization)
String[] tokens = s[0].split(" ");
// parsing the tokens
ParseState mParseState = mParser.parse(tokens);
Tree[] trees = (Tree[])mParseState.getTrees();

String[] translations = new String[trees.length];
/* Creating a Linearizer object for the FoodCat
* concrete grammar */
Linearizer mLinearizer = new Linearizer(

mPGF, "FoodsCat");
// Linearizing all the trees
for (int i = 0 ; i < trees.length ; i++) {

try {
String t = mLinearizer.linearizeString(trees[i]);
translations[i] = t;

} catch (java.lang.Exception e) {

86

translations[i] = "/!\\ Linearization error";
}

}
return translations;

} catch (Exception e) {
throw new RuntimeException(e);

}
}

protected void onPostExecute(String[] result) {
mArrayAdapter.clear();
for (String sentence : result)
mArrayAdapter.add(sentence);

if (this.progress != null)
this.progress.dismiss(); // Remove loading pop-up

}
}

And again, we launch the task when appropriate: in the translate method

public void translate(View v) {
TextView tv = (TextView)findViewById(R.id.edittext);
String input = tv.getText().toString();
new TranslateTask().execute(input);

}

Add the right classes to the imports:

import android.app.ProgressDialog;
import android.os.AsyncTask;
import java.io.InputStream;
import org.grammaticalframework.Linearizer;
import org.grammaticalframework.PGF;
import org.grammaticalframework.PGFBuilder;
import org.grammaticalframework.Parser;
import org.grammaticalframework.parser.ParseState;
import org.grammaticalframework.Trees.Absyn.Tree;

Full Translate.java. Here is the final Translate.java for this tutorial.

package com.example.translateapp;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.TextView;

87

import android.widget.ListView;
import android.widget.ArrayAdapter;

import android.app.ProgressDialog;
import android.os.AsyncTask;
import java.io.InputStream;
import org.grammaticalframework.Linearizer;
import org.grammaticalframework.PGF;
import org.grammaticalframework.PGFBuilder;
import org.grammaticalframework.Parser;
import org.grammaticalframework.parser.ParseState;
import org.grammaticalframework.Trees.Absyn.Tree;

public class Translate extends Activity
{

private ArrayAdapter mArrayAdapter;
private PGF mPGF;

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

new LoadPGFTask().execute();

mArrayAdapter = new ArrayAdapter(this, R.layout.listitem);
ListView list = (ListView)findViewById(R.id.list);
list.setAdapter(mArrayAdapter);

}

public void translate(View v) {
TextView tv = (TextView)findViewById(R.id.edittext);
String input = tv.getText().toString();
new TranslateTask().execute(input);

}

/**
* This class is used to load the PGF file asynchronously.
* It display a blocking progress dialog while doing so.
*/

private class LoadPGFTask extends AsyncTask<Void, Void, PGF> {

88

private ProgressDialog progress;

protected void onPreExecute() {
// Display loading pop-up
this.progress = ProgressDialog.show(

Translate.this, "Translate",
"Loading grammar, please wait", true);

}

protected PGF doInBackground(Void... a) {
int pgf_res = R.raw.foods;
InputStream is = getResources().openRawResource(pgf_res);
try {
PGF pgf = PGFBuilder.fromInputStream(

is, new String[] {"FoodsEng", "FoodsCat"});
return pgf;

} catch (Exception e) {
throw new RuntimeException(e);

}
}

protected void onPostExecute(PGF result) {
mPGF = result;
if (this.progress != null)

this.progress.dismiss(); // Remove loading pop-up
}

}

/**
* This class is used to parse a sentence asynchronously.
* It display a blocking progress dialog while doing so.
*/

private class TranslateTask
extends AsyncTask<String, Void, String[]> {

private ProgressDialog progress;

protected void onPreExecute() {
// Display loading pop-up
this.progress =

ProgressDialog.show(
Translate.this, "Translate",
"Parsing, please wait", true);

}

89

protected String[] doInBackground(String... s) {
try {
// Creating a Parser object for the FoodEng
// concrete grammar
Parser mParser = new Parser(mPGF, "FoodsEng");
// Spliting the input (basic tokenization)
String[] tokens = s[0].split(" ");
// parsing the tokens
ParseState mParseState = mParser.parse(tokens);
Tree[] trees = (Tree[])mParseState.getTrees();

String[] translations = new String[trees.length];
// Creating a Linearizer object for the FoodCat
// concrete grammar
Linearizer mLinearizer = new Linearizer(mPGF, "FoodsCat");
// Linearizing all the trees
for (int i = 0 ; i < trees.length ; i++) {

try {
String t = mLinearizer.linearizeString(trees[i]);
translations[i] = t;

} catch (java.lang.Exception e) {
translations[i] = "/!\\ Linearization error";

}
}
return translations;

} catch (Exception e) {
throw new RuntimeException(e);

}
}

protected void onPostExecute(String[] result) {
mArrayAdapter.clear();
for (String sentence : result)

mArrayAdapter.add(sentence);
if (this.progress != null)

this.progress.dismiss(); // Remove loading pop-up
}

}
}

If you compile and test your application now, you should be able to translate sentences
from the Foods grammar from English to Catalan. Feel free to play with other languages
and other grammars.

90

Figure 2.6: PhraseDroid icon picturing the “o” from the MOLTO project logo (http:
//www.molto-project.eu/).

2.4 PhraseDroid

We developed a simple phrasebook application to demonstrate a possible use of the
library. The application allows the user to enter simple sentences in a controlled language
and translate them in different languages. This application is based on the MOLTO
phrasebook project8. This is a relevant use case as it has a clear potential for usage
because of the high quality of the translations and the variety of languages for which the
grammar was devised. It is also worth mentioning that the reasonable coverage of the
grammar makes the phrasebook applicable in many day-to-day situations for tourists
traveling abroad.

To allow easy and fast input while restraining the user to the controlled language, we
used an interface similar to the fridge magnets application9. This demonstrate the utility
of predictive parsing on the cell phone. This feature is a great aid for users of a controlled
language, since they can always be aware of the coverage, and the possibilities that the
grammar offers. (See screen captures of the application in figure 2.7.)

In addition, the Android platform provides services for high-quality voice synthesis for
a number of languages, which can be plugged to the grammar applications. This gives
our approach a great advantage over the traditional phrase books.

License: The application has been released under the terms of the GNU lesser general
public license, same as the JPGF library itself, and the source code is available at
https://github.com/GrammaticalFramework/PhraseDroid.

Distribution: PhraseDroid has been submitted to the Android Market (now Google
Play) and made available at no cost (Figure 2.8). During the first six months, the
application was installed by more than 300 users. Figure 2.9 shows the number of devices
on which the application is installed at time t (Number of installation minus number of
removal until t.)

8http://www.molto-project.eu/demo/phrasebook
9The original fridge magnets application at http://tournesol.cs.chalmers.se:41296/fridge is

no longer available but a more recent version, the “GF minibar” can be found at http://cloud.
grammaticalframework.org/minibar/minibar.html

91

http://www.molto-project.eu/
http://www.molto-project.eu/
https://github.com/GrammaticalFramework/PhraseDroid
http://www.molto-project.eu/demo/phrasebook
http://tournesol.cs.chalmers.se:41296/fridge
http://cloud.grammaticalframework.org/minibar/minibar.html
http://cloud.grammaticalframework.org/minibar/minibar.html

Figure 2.7: Screen captures from the PhraseDroid app. From left to right: the home
screen where the user can choose the target language (by default the source language is set
to the language of the phone interface but it can also be changed); the “fridge magnet”
interface demonstrating the application of predictive input; and the result page showing all
possible translations of the input sentence, with disambiguation information.

2.5 Related work
Java implementation: Preexisting work includes an embedded GF interpreter written
in Java. Among other differences, this implementation uses an earlier algorithm than the
one describe in Angelov 2009 based on approximating of the GF grammar by a (potentially
over-generating) context-free grammar. It was also written for an earlier version of the
PGF format (the binary format used by GF to represent compiled grammars). For more
information, see Bringert 2005.

C binding: Since this work was conducted, a new runtime has been implemented in
the C programming language named libpgf and the recommended way to use a PGF file
in Java is to use the Java binding to the C library, see GF Developers Guide for more
information. This provides much better performances and reduces the maintenance effort
(as only one runtime needs to be maintained) at the expanse of portability, as one need
to build the C library for every particular architecture.

2.6 Conclusion and acknowledgments
This chapter gave an overview of JPGF, a PGF runtime for the JVM and provided a
tutorial on how to use it to build a PGF based android application.

We would like to thank Krasimir Angelov for his explanation of the GF algorithms.

92

Figure 2.8: Screen capture of the Android app-store from Google (Google Play) where the
PhraseDroid application was released and made available at no cost.

2011-07

2011-08

2011-09

2011-10

2011-11

2011-12

2012-01

0

50

100

Figure 2.9: Evolution of the number of PhraseDroid installations according to the data
colleted by Google Play.

93

Chapter 3

A GF Mailing list

Communication is essential in community. It is the metaphorical highway that
connects the many towns and people in your world. Effective communication brings
together your community members in a manner that is free-flowing, productive, and
accessible.

Bacon, The Art of Community

This chapter describe the usage, implementation and evaluation of the GF user and
developer mailing list1. Before the GF mailing list was created, there were two ways to
contact members of the community: contacting them directly using their personal email
address or using the GF Resource Grammar Summer School 2009 mailing list2. While
the later solution is very similar to the one described here, as the name indicates it has a
different scope: it was used to conduct an on-line course in resource grammar development
prior to the summer school event of 2009 and for practical questions concerning the event
itself (travel, accommodation, sharing pictures…). In addition, its name didn’t make
it clear that this was a place where one could receive help about GF in general. The
earlier solution, contacting community members directly, suffers from different problems,
in particular scalability and the lack of a public archive (see § 3.1).

In § 3.1 we first describe what a mailing is and what advantages it brings to an
free-software community; in § 3.2 we describe the technical choices made to implement
the GF mailing list; in § 3.3 we rapidly go through how one can subscribe to the mailing
list and contribute to discussions; in § 3.4 we report some usage statistics and finally, in
§ 3.5 we conclude with some recommendations on creating such a list.

3.1 What’s a mailing list
In Fogel 2014, a mailing list is described as “the bread and butter of project communi-
cations”. The principle of a mailing list is very simple and probably familiar to most
Internet users today: a new email address is created and is associated with a list of

1https://groups.google.com/forum/#!forum/gf-dev
2https://groups.google.com/forum/#!forum/gf-resource-school-2009

94

https://groups.google.com/forum/#!forum/gf-dev
https://groups.google.com/forum/#!forum/gf-resource-school-2009

subscribers (also by their email addresses). When a message is sent to the list’s address,
it is forwarded to all the subscribers addresses. Most list management softwares offer
extra functionalities like automatic email and/or web based subscription, digest-mode
(the subscriber receive only one mail per day, with all the day’s list activity), moderation
features (more or less automatized, those are there to reduce Spam and abuse), header
manipulation (the answer to a message should go to the whole list and not just the original
poster) and archiving.

The list archives are, in our view, one of the main benefits that a proper mailing list
brings to a free-software community. But first and foremost, the list provides a public
forum to share information and ask and answer questions. As a project grows and the
number of questions, support and feature requests and information queries grows, it is
important to avoid the unsustainable situation where only one or two people, usually the
same who are also maintaining the software, are in the position to answer.

The list archives play an central role in this by making available a public and searchable
record of those discussions. This allows a community member to search in previous
conversations if their particular question has already been answered. The mailing list
archive also serves as a repository of decisions taken by the community and the discussions
that led to these decisions (e.g. conflict resolution, direction of the development, etc.)
acting as a sort of “commons law” for the community (Fogel 2014).

3.2 Implementation
As described above, most list management softwares provide the same basic set of
functionalities. For the GF mailing list implementation, Google Groups, a hosted solution
provided by Google, was chosen instead of hosting a list management software on a local
server3 Not only the user interface makes it easy to create a list, but more importantly it
was already used by the GF community for the GF Resource Grammar Summer School
2009 mailing list.

We have nonetheless stumbled upon two drawbacks to using Google Groups instead of
hosting the mailing list ourselves:

• The lack of control over the future of the mailing list: both in term of features,
which are sometimes added or removed by Google without any choice offered to the
list users, but also in term of existence, as Google has become known for terminating
services they do not consider profitable enough.

• the impossibility of downloading the lists archives for off-line use (e.g. metrics
computation, see § 3.4). Most free-software mailing list management systems offer
the possibility to download the list archives, for instance in the common mbox format
but to our knowledge this feature is absent from Google group.

The list was configured to be public with limited moderation. In particular:
3It has come to our knowledge that both Chalmers University of Technology and University of

Gothenburg, our home universities, offer mailing-list hosting (resp. https://lists.chalmers.se/ and
https://listserv.gu.se/). There weren’t considered at this time as we were unaware of their existence.

95

https://lists.chalmers.se/
https://listserv.gu.se/

Figure 3.1: Screen capture of the mailing-list join form. In addition to providing the
email address to subscribe to the list, one must also fill-in a test designed to prevent
spamming software from subscribing automatically.

• everyone can see the list’s messages and archives

• everyone can subscribe to the list

• messages from non-members and recent members are moderated (to prevent spam
and other abuse of the list).

3.3 Usage

3.3.1 Subscribing

On the web: Navigate to https://groups.google.com/forum/#!forum/gf-dev/join
and enter your email address. You might also need to pass a test designed to prevent
spammers from automatically subscribing to lists (see figure 3.1).

Via email: Send a message to gf-dev+subscribe@googlegroups.com. Neither the
subject nor the content of the message have an importance for this to work. The system
assumes that the provenance address (from) is the one that should be subscribed to the
mailing list. Because emails from most addresses are easy to forge, a mail is sent to the
address to be subscribed asking to confirm the suscription request. Confirmation can be
given either by clicking on a link included in the confirmation email or by responding.

96

https://groups.google.com/forum/#!forum/gf-dev/join
mailto:gf-dev+subscribe@googlegroups.com

Figure 3.2: Screen capture of the mailing-list posting interface. This allows subscribers
to the mailing list who do not want to get the list messages in their email in-box to use
the mailing list as a web forum.

3.3.2 Posting

On the web: Once you are subscribed to the list and authenticated on Google Groups,
go to https://groups.google.com/forum/#!newtopic/gf-dev to start a new discus-
sion thread (see figure 3.2). Answering existing threads is done in a similar interface after
clicking the “post reply” button.

Via email: Send a new message to gf-dev@googlegroups.com. Answering to an
existing post is similarly done by answering the corresponding email, assuming that you
have set your list preference to receive each post as an individual email. Note that,
answering to a list message can be ambiguous: the answer can go to the whole list, to
the original poster only or to both (for instance if the original poster is not a member of
the list). The default action implemented by the “reply” button depends on the software
used to read and write emails.

3.4 Statistics

We collected list statistics for the first six years of existence (October 2010 to August
2015). To gather the statistics, the mailing list archives have been downloaded using a

97

https://groups.google.com/forum/#!newtopic/gf-dev
mailto:gf-dev@googlegroups.com

2010
2011

2012
2013

2014
2015

0

100

200

Subscribers

2010
2011

2012
2013

2014
2015

0

50

100

Messages/month

2010
2011

2012
2013

2014
2015

0

10

20

Posters/month

Figure 3.3: GF mailing list metrics. Top: the evolution of the number of subscribers.
Middle: the number of messages per month. Bottom: the number of unique posters per
month (i.e., the number of people that have posted at least one message to the mailing list
during a given month).

custom build web crawler4 and the mlstats5 tool was used to index the messages.6
Figure 3.3 shows the evolution of three different metrics: on top, the evolution of the

total number of subscriber is plotted and one can see that the number have been steadily
growing to reach 182 members at the time of this writing. In the middle, the number of
messages to the list per months with an average of 29 messages/month and a peak at 118
messages/month in October 2010. Finally, on the bottom the number of posters (people
posting to the list) per month with an average of 12 posters/month.

3.5 Conclusion
We have seen how and why the GF mailing list was created and how much it was used. As
shown in Section 3.4, the list has been growing continuously with constant activity since
its creation. We conclude that it has been a very useful tool to grow the GF community

In 2013 members of the community started an IRC channel for instant discussion7,
thus completing the “minimum, standard set of tools for managing information [in an

4as mentioned in Section 3.2, Google Groups does not provide archive downloads to the contrary to
many free/libre and open source alternative

5https://github.com/MetricsGrimoire/MailingListStats
6 The analysis of the data was conducted using the python programming language and is available as

a Jupyter Notebook
https://nbviewer.jupyter.org/gist/gdetrez/463ee4cd129448fa9e7d405a9873a044

7the #gf channel on Freenode

98

https://github.com/MetricsGrimoire/MailingListStats
https://nbviewer.jupyter.org/gist/gdetrez/463ee4cd129448fa9e7d405a9873a044

open source project]” (Fogel 2014): website, mailing list, version control, bug tracking
and real-time chat.

We would recommend someone else thinking about setting up a mailing list for a
community to consider hosting it under their project’s domain to keep a better control
over the list future and the list management software features.

99

Chapter 4

A Build Server

4.1 Introduction
When writing software together, a problem quickly appears: once a developer have added
a feature to the software, they need to integrate those changes to the main code repository,
a process known as system integration. If they are the only active developer, or if no one
else has made changes to the code since they started working on their feature, integration
is easy. If, on the other hand, other developers have also added features or modified the
code base in parallel, it may become really complicated as the changes from one developer
may break the code written by an other. In the developer community, this problem is
known as integration hell.

This problem is not specific to open-source software but it grows with the number of
developers involved and it can become a bottleneck to growing a contributor community.

Several solutions have been proposed to counter this problem. One of them is module
ownership, where the software is split into “modules” which are arbitrary divisions in
the source code (e.g., a network module, server module, etc.) and one person is assigned
to be the owner of each module. The owner of a module is the only one who can make
significant changes (or, in some cases, any changes) to the corresponding source code.
This has been reported to work in software-development companies but is ill adapted in
free software communities. Nowadays it is increasingly becoming an obsolete practice in
industry as well as more and more companies move to more agile methods to developing
software.

An other method, which is the one advocated by agile proponents is continuous
integration. The idea between continuous integration is really simple: every developer
should integrate their code frequently, usually at least once a day, so that integration
problems are detected early. To get an intuition on how this might solve the problem we
can look at real-time collaborative editors, such as Google Docs: by decreasing the time
between integrations to (almost) 0, conflicts also appear in real time and can be located
and resolved immediately, or avoided altogether.

This method introduces a new problem though. When everyone was working on their
own branch of the code any change that would break an important feature or prevents

100

the code from being compiled at all would only affect this single developer on their own
machine. In a continuous integration setting on the other hand, if a developer breaks the
code base this affects all the developers who have integrated their changes since the faulty
commit. Not only it might prevent them from continuing their work but they also might
think that they are the one responsible from the problem.

A common recommendation to solve this problem is to have an automated build server
checking the code automatically: as soon as a developer pushes a change to the shared
repository, the automated build system checks out the new version and runs a series
of predefined tests. If the tests detect an issue with the code, the automated build
system notifies the developers. Then the one who made the changes can investigate to
fix the problem while the other developers known that they should wait for the issue
to be resolved before integrating their own changes. In this chapter, we describe the
implementation of such a server for the Grammatical Framework community.

§ 4.2 describes the implementation of the continuous build server using Jenkins; § 4.3
explains how the GF GitHub mirror is updated; § 4.4 shows how the same automation
architecture has been used to collect and update metrics and status reports about GF;
§ 4.5 presents future work; and finally § 4.6 concludes this chapter.

4.2 Implementation
An automated build server is not a complicated piece of software: some event (the trigger),
which may be a new commit push, an email or a timer, causes the server to download the
latest version of the source code and to execute a predefined set of commands (the build
script); finally, a report is produced from the commands’ output.

Although one could create a simple automated build server in a few hours using
standard Unix tools (such as cron, bash, sendmail, etc.), it is preferable to use a
specialized tool as they include useful additional features like:

• Master/slave architecture: one process, the master, is responsible for starting build
tasks on slave processes that can either run on the same machine or be distributed
to other computers. This can be used to parallelize long build tasks but also to
run jobs in different contexts (different architecture, operating systems, compiler
versions, etc.) The master collects the results from the slaves and generates the
report.

• Archiving of build reports and artifacts

• Advanced built-in reporting tools that can publish reports via email, IRC or web
pages and provides the ability to collect and visualize metrics from the commands’
output (e.g. test results trends, warnings, build times, etc. see figure 4.1 for an
example).

Jenkins Several tools were considered to implement the GF build server. The first
criterion was that we needed a solution that integrates with the existing tools used by

101

Figure 4.1: Example of graph produced by the reporting tools included in Jenkins. This
represents the number of automated tests executed for each build, where the red areas are
failing tests and the blue areas are successful tests. (Note: this particular graph is shown
as an example but it is not related to GF.)

GF developers (for instance, not all continuous build server are compatible with Darcs,
the version control system used to develop GF). We also wanted to use free software as
much as possible, which led to two final candidates: Jenkins1 and buildbot2, among which
Jenkins was chosen as it was easier to install and provided greater flexibility thought the
wealth of available plugins.

Jenkins was originally created at Sun Microsystems by Kohsuke Kawaguchi as the
Hudson project. In 2010, after Sun had been acquired by Oracle, the community split
following a dispute over licensing issues and the creator, together with many contributors
renamed the project Jenkins. (Oracle also continued the development independently
under the trademarked Hudson name.)

At the time of this writing, the latest version of Jenkins is 1.627 and 1076 plugins are
available.

Trigger: For the GF automated build we are using the repository as the source of the
trigger: each time someone pushes new changes to the main repository, Jenkins is notified.
Listing 4 shows the command which is executed as a hook3in the main Darcs repository.

apply posthook curl --max-time 4 --insecure --silent \
https://ci.zjyto.net/job/GF/job/trigger/build?token=<secret-token>

Listing 4: The trigger for the GF automated build system. We use the tool curl
to notify the build server via the HTTPS protocol. The URL is determined by our
Jenkins installation where ci.zjyto.net is the host name of the Jenkins server and
<secret-token> is a placeholder for a randomly generated token.

Build script: The build script used in Jenkins for GF is given in Listing 5 The first
line creates a new cabal sandbox, which is an isolated environment in which dependencies
can be installed. The second lines installs the necessary dependencies. The third line

1http://jenkins-ci.org/
2http://buildbot.net/
3Hooks are a way to trigger the execution of user-written scripts when certain events occur and are

available in many version control systems

102

http://jenkins-ci.org/
http://buildbot.net/

Figure 4.2: Example of trend graphs generated by Jenkins after a GF build. Top: the
number of warnings printed during compilation. Bottom: the number of task codetags
(TODO and FIXME) found by scanning the source code.

builds GF itself using the standard cabal build command. The last line creates a source
distribution, which is a compressed archive of the sources that can be distributed to users.

cabal sandbox init
cabal install --only-dependencies \
--build-log=install-dependencies.log

cabal build
make sdist

Listing 5: GF continuous build script

Report and artifacts Once the build script has terminated, Jenkins collects informa-
tions and artifacts to archives. By default, only output printed during the build script is
archived; for the GF build, we have extended this behavior in the following ways:

• archive and fingerprint the source distribution as an artifact,

• collect warnings printed during compilation,

• scan the source files for codetags: TODO and FIXME, indicating respectively missing
or broken features.

From the collected data Jenkins automatically produces “trend graphs”, see Figure 4.2
for an example.

When the build terminates without problems, the report is only produced as an HTML
page, otherwise (if any steps of build script fails) an email is sent to the developer who
pushed the last commits, which caused the build to fail.

103

In the next two sections, we present other tools and services that were possible to
implement by taking advantage of the automated build server.

4.3 Github code mirror
As mentioned in the previous section, the GF developers use Darcs as the version control
system to maintain the source code. This choice has sometimes been criticized by member
of the community4. While the criticism sometimes targets Darcs itself—mostly for its (lack
of) speed—most are caused by external factors, related to the relative obscurity of Darcs
compared to more popular tools such as Git5. One problem of using a less popular tool is
the lack of familiarity of most potential community members. And although distributed
version control systems, of which both Darcs and Git are examples, share a basic model
and set of commands, there is enough differences in the underlying assumptions and the
effects of the commands to make it less than trivial to move from one tool to an other
without difficulties. Another common criticism is the lack of tooling. While there is
a wealth of tools that have been built around git both for collaboration (code-sharing
services such as Gitlab offering an online interface to browse the source code and many
associated tools such as issue trackers, wikis, etc.) and for personal use, such as the many
different graphical and command line tools available to work on git repositories as well as
integration in IDEs. The choice of tools available for Darcs repositories is much more
limited. For instance, Darcs support was a limiting factor in the possible choices for a
build server software for GF and although Jenkins does support Darcs, the integration is
much less extensive than with Git.

To provide a partial solution to those complains, we decided to create a mirror of the
GF Darcs repository using Git. This mirror should not only include the latest version of
the source code but also the commit history with all the associated meta-data.

The implementation is done as a new Jenkins job: the tool darcs-fast-export is used
to export the Darcs repository in the fast-import stream format which is then imported
by git using the fast-import command.67

This approach has some limitations thought: as the conversion mechanism can only
handle a one-way synchronization automatically, the git repository can only be used as a
read-only mirror of the Darcs repository. So while it makes it easier for users familiar
with git to get the latest version of the code it does not lower the barriers for them to
contribute. In addition it makes it impossible to accept contribution through the Github

4 See https://groups.google.com/d/topic/gf-dev/zSU0lqboRy8/discussion for a recent discussion
about this on the mailing list.

5 According to data collected by the Debian distribution, the number of people who regularly use
Darcs is more than two orders of magnitude higher than regular Darcs users. Source: Debian Popularity
Contest.

6 darcs-fast-export is available at https://github.com/warner/darcs-fast-export. Note that
more recent version of Darcs include a new command darcs convert export that directly export the
repository in the fast-import protocol. This should allow us to update the mirror without the need for an
external tool but at the time of this writing, this new version is not yet available on the system that runs
the build server.

7 See https://git-scm.com/docs/git-fast-import for both a description of the git fast-import
command and of the data format.

104

https://groups.google.com/d/topic/gf-dev/zSU0lqboRy8/discussion
http://popcon.debian.org/
http://popcon.debian.org/
https://github.com/warner/darcs-fast-export
https://git-scm.com/docs/git-fast-import

platform (so called “Pull requests”).

4.4 Continuous Evaluation
It is common for build servers to be tasked with keeping track of measurements. By
measurement, we mean “the process by which numbers or symbols are assigned to
attributes of entities in the real world in such a way so as to describe them according to
clearly defined rules.“ (Fenton and Bieman 2014).

This is a rather broad definition of measurement. Indeed, according to this definition,
the simple status of a build job (whether it succeed or not) is a measurement with a
nominal scale that can take one of the two values pass or fail8.

As argued above, even the build status can be seen as a measurement. Other measures
commonly tracked by build servers are: build time, number of tests executed, number
of tests that succeeded/failed, disk space used, artifact fingerprints; etc.. We gave two
example of measurements that are used in GF in the previous Section: the number of
warnings produced by the compiler and the numeber of open tasks indicated in the source
code (see Figure 4.2).

While some of those measurements are tracked by Jenkins itself, most are available
as plugins that either track one or more specific measurements (e.g., the Disk Usage or
the Static Code Analysis Plug-ins) or provide the ability to track custom measurements
(e.g., the Plot Plugin that tracks and plot numerical measures). It is also possible to
integrate the build server with specialized tools that provide more advanced functionalities
to collect, aggregate, analyze and visualize measurements (one such tool is SonarQube).

While those tools mainly implement software engineering metrics, which measure
either the code and artifact themselves (static analysis) or some runtime parameters
(memory used, benchmark, etc.), researchers have proposed many specific metrics for the
evaluation of natural-language processing systems. However those measurements are only
done very occasionally when needed to present new research findings that are deemed
worthy of publication.

Instead we would like to suggest that those evaluations should be used in the day-to-day
work of maintaining software systems and that, if properly automated, they can yield
greats benefits. By analogy to continuous integration and continuous delivery, we propose
to call with practice continuous evaluation.

For developers, the repeated evaluation can be seen as a form of regression testing: if
the system is found to perform worse than it did in a previously published evaluation,
it probably indicates that a unwanted change has been made or that a change has had
unwanted side-effects. As such, the same arguments that are commonly put forward to
support tho integration of automated regression tests in a continuous integration pipeline
are valid here as well. By running the evaluation often (ideally on each commit separately)
the exact change or changes in the code that caused a change in the measurements,
thus facilitating the ‘debugging” process. On the other hand, it provides a safety net

8 This is a bit of a simplification, at least in the case of Jenkins in which builds can have a few more
possible results such as UNSTABLE (somewhere between PASS and fail, can be used for example to
indicate that the compilation succeeded but some automated tests failed), aborted for manually aborted
builds or not_built if the build was skipped for some reason.

105

https://wiki.jenkins-ci.org/display/JENKINS/Disk+Usage+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Static+Code+Analysis+Plug-ins
https://wiki.jenkins-ci.org/display/JENKINS/Plot+Plugin
http://www.sonarqube.org/

to maintainers and developers who, knowing that changes in the performances of the
evaluated functionality would be caught by the automated build server, might be more
confident in making large changes to the code.

But continuous evaluation is also, we believe, beneficial to the research community in
general. Of course, it is nice to be able to check that ones own results published some
time ago are still valid in the latest version of the evaluated system by checking the
build server’s report page, but this becomes a more capital question when it comes to
building upon ones or someone else’s results. Without the use of continuous evaluation,
the researcher who wishes to build upon previously published results is left with three
choices: 1. using the exact same version as the original study. While easier for the authors
of the original study, this presents multiple difficulties. First, papers not always give
enough details to be able to get the exact same version with confidence. Then, the version
might not be available anymore. This is less a problem with free software where there
is a public version control repository that contains the whole history of the code, but it
is common for nonfree software where the publisher only offer the latest version. The
original author might have made some modifications to the code or the configuration that
weren’t published. Then, even when available this version might not work anymore on
recent operating systems or newer hardware (or the published results somehow depends on
those, such as benchmarking results) which leads to the never-ending quest of reproducing
the exact environment in which the original results were obtained. Finally, using an
old version prevents the researcher from beneficing from bug fixes and using the latest
features of the system and if the new research depends on those added features, it make
this option impossible.

2. Reproducing the original evaluation with the newer version. This can be very easy
or very hard depending on the level of details given in the publication and whether the
original researcher shared their analysis and data in a reproducible format. This might
thus lead to substantial albeit avoidable work duplication.

3. if none of the above are possible, the last option is to use the latest version with the
hope that previously published results still hold.

On the contrary, the use of continuous evaluation makes it possible and easy to check
that published studies are still reproducible on the new version and see if ary of the results
have evolved.

Another benefit is that it encourages a culture of publishing more reproducible results
through automation and code sharing.

As an first example, we have automated the evaluation of GF smart paradigms
from the study published at EACL 2012 (Détrez and Ranta 2012). Since this is more
computationally intensive it is only ran once a week on the latest version of GF from the
code repository but the results (smart paradigm predictability) are archived and can be
tracked over time. Figure 4.3 shows an example of the generated predictability report.

As a second example, we have created an automatically updated version of the GF
status page. One of the big contribution of GF is the development of the Resource
Grammar Library (Ranta 2009). While at the time of this writing, there are officially
37 languages available in the resource grammar library, they greatly vary in their level
of completeness. For instance, some modules may be partially implemented in some
language, or not at all in others, and existing monolingual dictionaries vary a lot in size

106

Figure 4.3: Example of the predictability report generated by the Jenkins job.

107

Figure 4.4: Example of the status page automatically generated by the Jenkins job.

and coverage.

To give a better overview of the status of different languages, a web-page exists that
gives qualitative information about the languages of the RGL, such as the existence of
different modules, whether the grammar has been tested in an application and whether it
is associated with a existing publication.

This page is helpful but we have identified the following two potentials problems with
it: it has to be kept up-to-date manually and it lacks in precision.

We created a tool that generates a similar page based on information available in the
GF source repository. While some of the information is missing (such as the publication
in which the grammar was presented) it has the advantage that the present information
is automatically updated and with an increased precision (percentage of completeness for
standard modules and number of entries for dictionaries). Figure 4.4 shows an example
of the generated status page.

108

4.5 Future Work
Although the amount of automation is modest, the build server has already been useful in
maintaining the quality of the code by catching mistakes such as missing files or syntax
errors. The checks should progressively be extended to cover more and more quality
aspects of the code.

The first possible direction is to improve the guarantee offered by the automated build
server by adding a robust automated test suite. This would guarantee not only that the
code can be compiled but that the basic functionalities work as expected. As automated
tests also become code that also has to be maintained, there is a trade-of between the
stronger guarantees that a more extensive test suite offers and the work required to create
and maintain it. On way to find a good balance is to first conduct a risk analysis to
determine which part of the code would benefit most of automated testing and what level
of testing is appropriate (unit, integration or system testing, see ISO/IEC TR 19759:2015
for a standard definition of test levels).

Continuous delivery offers a second direction for future work. As popularized by Humble
2010, continuous delivery is a software engineering practice where the delivery pipeline,
the different steps leading from the source code to software that can be delivered to end
users, is entirely automated and is run on every source change. This often begins with the
same tasks as continuous integration (building the software and running automated tests)
but also requires extended system/acceptance testing that are run in different contexts
(different operating systems, architectures, etc.) and a fully automated packaging process.

Finally, we would like to extend the work started here with continuous evaluation and
automate more research evaluations. For example we could be measuring BLEU score
(Papineni et al. 2002) or other relevant translation metrics between pairs of language, or
compute grammar coverage on existing corpus, etc.. We believe that this can brings two
benefits: first it helps maintaining the hight quality of GF as a tool upon which to build
further research. Second, the automation of research evaluations makes the research more
reproducible and guarantees that the published results are still valid in ulterior versions
of GF.

4.6 Conclusion
In this chapter, we reviewed the benefits of a build server in a collaborative software-
engineering project and presented the implementation of one for GF. We have also
outlined other uses of the build server beyond just building and testing software.

We conclude that a build server is a beneficial tool in a collaborative software-
engineering effort and that the existing tools are mature enough to make its deployment
well worth the effort. In addition, in the particular case of software produced as part of a
research project, the build server can be used to implement continuous evaluation and to
encourage reproducible results.

109

Chapter 5

A GF document translator

While GF can translate plain text, translating an existing document often requires, in
addition to translating the textual content itself, to preserve the structure of the document
(titles, paragraphs, lists, etc.) and transfer in-line annotations such as emphases, links or
colors.

In this section, we present gfdt, a tool that automates the translation of fully formatted
documents using GF to translate the textual content and pandoc to parse the document
structure and inline formatting. In §5.1 we present the idea and related work, in §5.2 we
give a short introduction to the tool usage and in §5.3 we describe how gfdt works.

5.1 Idea and related work

The Apertium machine translation toolkit (Forcada et al. 2011), supports the process
of translating formated documents, which in the documentation is referred to as format
handling. For each supported format, Apertium provides a pair of utilities apertium-
desFORMAT and apertium-resFORMAT, for instance respectively apertium-deshtml and
apertium-reshtml for HTML formated documents. The first utility encapsulates for-
matting information in so called “superblanks” which are then seen as spaces by the
translation pipeline, and thus ignored. The second utiliy restores the formatting from the
superblanks.

One limitation with this approach is that in-line formatting (e.g. a single word in
italics inside a sentence) is not correctly restored in case of reordering. It happens for
instance that some adjectives have to be moved after the noun when translating from
English to French, in which case the rendered formatting on the translated string may
be incorrect. For instance the English “a pointy hat” when translated to French with
Apertium using format handling produces “un chapeau pointu” instead of the expected
“un chapeau pointu”.

In the implementation of gfdt, we solved this problem by using the alignment provided
by GF to transfer the formatting from the source document to the correct place in the
target document (see §5.3 for more details).

110

http://wiki.apertium.org/wiki/Format_handling
http://wiki.apertium.org/wiki/Format_handling

5.2 Usage
Installation: To build this project, a fairly recent version of the haskell platform is
required.

At the time of this writing, gfdt depends on a patched version of GF, so a simple
cabal install in the root of the repository does not work. You can use the included
scripts/bootstrap script to install the dependencies:

$./scripts/bootstrap
$ cabal build

Usage: gfdt does not know how to parse formatted document by itself. Instead it is
meant to be used in conjunction with the excellent tool pandoc1.

The following pipeline demonstrate how to parse a document formatted using Mark-
down2 (as indicated by the .md file extension), translate it using the GF grammars in
Foods.pgf using FoodsEng as the grammar for the source language and FoodsFre as the
grammar for the target language (that is, translating from English to French). Finally,
the document is saved, still in the Markdown format, in a new file mondocument.md.

$ cat mydocument.md
this **warm** cheese is *very* boring
$ pandoc mydocument.md -t json \
| gfdt --pgf=Foods.pgf --from FoodsEng --to FoodsFre \
| pandoc -f json -o mondocument.md

$ cat mondocument.md
ce fromage **chaud** est *très* ennuyeux

5.3 Implementation
The result of pandoc parsing the formatted document is a syntax tree representing the
structure of the document (not to be confused with GF abstract syntax trees that model
the syntactic structure of sentences). Nodes in the tree represent either structural elements
(titles, paragraphs, list items, etc.) or formatting elements (bold, italics, links, etc.).

This distinction between structural elements and formatting elements is important as
gfdt treats them differently: The content of each structural element is translated as a
separate unit of text and the translated text is inserted at the same place in the output
document tree whereas formatting elements are extracted from the text in which they
appear, which is then translated as a whole and then the formatting is re-applied to
the translated text using the translation alignment to adjust their position. Figure 5.1
summarize this process.

This last part (extracting and re-applying formatting elements) is the most complex
operation and probably deserves a bit more explanation. Considering the example above:

1http://pandoc.org/
2http://commonmark.org/

111

http://pandoc.org/
http://commonmark.org/

Figure 5.1: Diagram depicting the way gfdt transfers formatting instruction. Alignments
are computed between different steps of the translation process (the colored wavy lines on
the right) and then, combined, they are used to transfer the text formatting (the multi-color
lines on the left).

112

th i s␣w a r m␣ch e e s e ␣ i s␣very␣bo r i ng

c e ␣ f r o ma g e␣ c haud␣es t ␣ t r è s ␣ ennuyeux

Figure 5.2: Final character-level alignment between the source and target strings.

(4) this warm cheese is very boring

The extraction process produces on one hand a version of the text without any an-
notation: this␣warm␣cheese␣is␣very␣boring␣ and on the other hand a data structure
with the formatting annotations and their original position in the input:

<5,9,bold>, <20,14,italics>

Then, the GF API is used to parse the sentence and obtain an abstract-syntax tree.
From this, we can generate a token-level alignment between the tree’s linearization in
both the source and the target language:

[this,warm,theese,is,very,boring]
[ce,fromage,chaud,est,très,ennuyeux]
[<0,0>,<1,2>,<2,1>,<3,3>,<4,4>,<5,5>]

Because the linearization of the parse tree in the source language might differ from
the original string, we use the Smith–Waterman algorithm to align them together on the
character level.

By combining this alignment with the token-level alignment returned by gf, we obtain
a character-level alignment between the source string and the translated string. Note
that because the alignment returned by GF is at the token level, the final alignment align
each character of one input token too every character of the corresponding target token,
see example in Figure 5.2.

We can now use this character level alignment to translate the ranges to which the
formatting extracted elements apply:

(5) ce fromage chaud est ennuyeux

Finally, the formatting elements are applied to the string and the now formatted
translated text is inserted in the formatted document at the same position as the source
text.

An additional difficulty appears when tokens formated together in the source string
appear separated in the translation. Say our example was formatted like this;

(6) this warm cheese is boring

113

The formatting extraction produces <0,9,bold> but as shown in Figure 5.2, the
formatted sub-string this␣warm is now aligned with a discontinuous sub-string in the
translation: ce…chaud. In this case the formatting transfer needs to create two bold
formatting elements: one for each part of the now discontinuous sub-string: <0,2,bold>,
<11,16,bold>.

114

Chapter 6

A GF notebook kernel

6.1 Introduction
In this chapter, we present the implementation of a new feature in Grammatical Framework
(hereafter GF) that allows one to use the GF shell in a Jupyter notebook. The primary
motivations for integrating GF with Jupyter are on one hand to make GF more accessible
by providing an alternative, more user-friendly interface to the GF shell, and on the other
hand to improve the reproducibility of research using GF by providing an easy way to
publish tutorials and work sessions in an easily reproducible way using the open notebook
format offered by Jupyter.

In addition, it allows the GF community to benefit from the ecosystem of tools that
have been built around Jupyter and its notebook format allowing for example to publish
them on the web or to typeset a notebook as a LATEX document.

6.2 A short overview of Jupyter
The Jupyter Notebook (previously known as iPython Notebook) is an web interface to
many programming languages with some features that makes it well suited for reproducible
data analysis tasks.

6.2.1 Presentation
Jupyter is an example of a very common class of applications known as read-eval-print
loop (REPL), also informally known as shell. The basic principle is that the application
reads the user input, evaluates it according to the rules of the languages and prints the
result of the evaluation. And it does that in a loop, meaning that after printing the result,
the application is ready to accept the next input from the user. What distinguishes those
applications from interpreters is that an interpreter does not usually print the result of
an expression unless explicitly told to do so, read all the input at once (typically from a
file called a script) and exit after evaluating the user input.

115

User Web Browser Jupyter
Process

Language
kernel

Language
kernel

Language
kernel

Figure 6.1: This figure shows a simplified representation of the Jupyter architecture.
The user interacts with the web browser which in turn communicates with Jupyter (using
websockets). Finally, when code needs to be evaluated, Jupyter communicates with a
language-specific kernel. By using multiple language kernels, Jupyter is able to maintain
multiple sessions simultaneously and to have notebooks in different languages.

Traditional REPLs are implemented as command-line applications, where the only
mean of interaction with the user is through text. This is to say, they are meant to be
invoked from a terminal emulator and text is the only medium available for both the user
input and the program output. Jupyter differs from this by implementing the REPL as
a web application. This allow the use of all media supported by modern web browser
in the interaction with the user. For instance, a Jupyter notebook can include images,
animations and even interactive visualizations.

An second particularity of Jupyter is the possibility to interleave commands with richly
formated text. This is akin to comments in many programming language but just as the
command output can include richly formated text and media, the user can include their
own formated text, images etc. in the text.

Finally, not only Jupyter notebook sessions are saved and can easily be re-run and
modified, thus preserving one’s work to be continued later and facilitation reproducing
results, but they are saved in an open document format, allowing for easy sharing of
analysis details or even publishing the Jupyter notebook directly thanks for tools like
nbviewer that render notebook on the web without the need to install Jupyter itself.
Because the format used is open and documented, other application can make use of
notebooks. One example is GitHub that directly renders them as HTML pages.

6.2.2 Architecture
The Jupyter architecture is separated in to three components as depicted in Figure 6.1

The interaction with the user and rendering of the notebook is done directly in a web
browser. This makes it possible to use Jupyter from any device that has a web browser
(which nowadays means almost any device which has a screen).

The web browser communicates with Jupyter using websockets. This is handled by
the Jupyter process which also takes care of managing notebooks (saving, creating and
deleting them) and allow access to local files. Jupyter is an open source application
written in the python programming language.

116

Finally, the evaluation of the code itself is delegated to a language kernel. This is a very
important architectural choice as it allow Jupyter to support many different programming
languages. Adding a new language requires only the implementation of a new language
kernel, thus skipping many tedious details such a network communication, generating
the user interface and managing notebook files. At the time of this writing, over forty
languages can be used in Jupyter notebooks.

The next section describe the implementation of a new kernel for Jupyter that allow
the use of the GF REPL form Jupyter Notebooks.

6.3 iGF implementation
The GF kernel has been written as an extension to the GF compiler. In order to do that,
it was most convenient to use the Haskell programming language as it is the language in
which the current compiler is written.

We took advantage of the existing library IHaskell, created by Andrew Gibiansky and
which offers facility for creating Jupyter kernels in Haskell. It was originally written to
implement a Haskell kernel based on GHC. The name is a reference to iPython, which is
the old name of Jupyter but now only references the python language kernel.

We reused as much code as possible from the existing GF shell, as this ensures that the
functionalities differ as little as possible between the two interfaces. While all commands
in the GF shell are returning string values, as the only available modality is text, we
wanted to have the option to display different types of results in different way.

For instance, GF can generate different kind of diagrams (parse tree, word alignments,
etc.) which are generated in the dot language. The dot language is a plain text graph
description language that provides a simple way to describe graphs. There exist many
tools that can produce or consume dot scripts, the most well known being probably the
Graphviz suite of tools. In Jupyter, we didn’t want to output the DOT code but instead,
we wanted to automatically generate the graphical representation of the diagram and
embed it in the notebook. So whenever a command or a chain of commands (GF shell
commands can be chained together using pipes, just like in Bash) is returning dot code,
we pass it to the dot executable (which is part of the Graphviz suite) to generate a PNG
image with is then sent as part of the command output. See Figure 6.4 for an example.

To facilitate those distinctions, we replaced the String return type of the GF shell
commands by the type shown bellow. This allows distinguishing between five different
types of outputs:

NoOutput For command that have no real output and might only have side effects such
as printing information of the screen. Example: the help command.

TextOutput For commands that return natural language text. Example: linearize

ForestOutput For commands that return trees. Example: parse

GraphOutput For commands that returns diagrams. Example: align_words or aw

TableOutput For commands that return a table.

117

data CommandOutput = NoOutput
| TextOutput [String]
| ForestOutput [Expr]
| GraphOutput [String]
| TableOutput [(String, String)]

deriving (Show, Eq)

6.4 Usage

6.4.1 Installation
This requires Jupyter to be installed. For more information about Jupyter installation,
see the official documentation.

Install GF : If you have not yet installed GF, or if the installed version does not
include the Jupyter Kernel, you need to install it from source. Download a copy of GF
with the Jupyter kernel support and unpack it in a working directory (subsequently
$HOME/src/gf). Then, you can install GF using the standard command cabal install.
Although, if your cabal version supports it, we recommend that you use a sandbox for
experimenting:

$ cd $HOME/src/gf
$ cabal sandbox init
$ cabal install

Make Jupyter aware of the GF kernel. The next step is to make sure that Jupyter
knows how to use the GF kernel. To make this step easier, we have included a kernel spec-
ification in src/tools/kernelspec/. You can install it using the jupyter kernelspec
install command in one of the following ways:
for all users

$ jupyter kernelspec install src/tools/kerneslpec/gf

for the current user

$ jupyter kernelspec install --user src/tools/kerneslpec/gf

in a virtualenv

$ jupyter kernelspec install --prefix=$VIRTUAL_ENV \
src/tools/kerneslpec/gf

Starting Jupyter. You may now start the Jupyter notebook as usual by entering the
command jupyter notebook. If, as recommended above, you installed GF in a Cabal
sandbox and Jupyter cannot find the GF executable, you can use the following command
to start Jupyter from the GF source directory ($HOME/src/gf in our example):

$ cabal exec -- jupyter notebook

118

http://jupyter.readthedocs.org/en/latest/install.html

Figure 6.2: The Jupyter notebook homepage, which should open automatically when
starting Jupyter with the command jupyter notebook.

Figure 6.3: To create a new GF notebook, click “New” and then select “Grammatical
Framework”.

6.4.2 Quick start
If Jupyter and GF have been installed correctly, you should now have a browser window
open that looks similar to the one in Figure 6.2. You can now create a new GF notebook
by clicking on “New” in the top-right corner of the page and selecting “Grammatical
Framework” (Figure 6.3).

You should now have a new browser tab with an empty notebook. Any command
available in the regular GF shell can be used here (type help for the list of available
commands). The main difference is that graphs printed as DOT code in the GF Shell are
be automatically rendered as images, see Figure 6.4 for an example.

At any point you can save your work in Jupyter directly (in addition, Jupyter au-

Figure 6.4: Diagrams are automatically rendered as images in the GF notebook.

119

tomatically saves regular “Checkpoints” in case something bad happens) or export it
in various format, including HTML and PDF for publication. Annex B reproduces a
notebook exported in LATEX with examples of different commands.

6.5 Related work
As mention previously, many other language kernels have been implemented for Jupyter.
We do not intend to give a list but we should mention the one written for the Haskell
language. Not only there are existing connections between GF and Haskell—the GF
language has many similarity with Haskell, and the GF compiler itself is written in Haskell.
But more importantly, the implementation of the GF kernel benefited directly from the
Haskell kernel implementation by re-using the IHaskell library.

Hallgren, Enache, and Ranta 2015 describe “A Cloud-Based Editor for Multilingual
Grammars”, a grammar engineering tool based on GF and offered as software as a service.
Although much larger in scope, it shares many feature with the work presented here, in
particular the use of HTML to build a richer and more user-friendly interface. It includes
more features than just an interface to the GF shell such as an editor for writing grammar
in the browser, interactive tools for testing grammars (the Minibar and Quiz widgets) and
the possibility of sharing grammars with other users. As a Jupyter kernel, our work on the
other hand focuses more on writing documents (in natural language) with reproducible
example. And, as Jupyter is meant to be installed and ran locally, it alleviates concerns of
security (for the host) and privacy (for the user) associated with “cloud” services. (Both
concerns are nicely summarized by this campaign slogan from the FSFE: There is no
cloud, just other people’s computers.1)

Finally Camilleri 2012 describes a plug-in to use the Eclipse IDE to write GF grammars.
Here the focus is mainly on providing grammar writing support and although the plug-in
gives a convenient way to start a GF REPL directly from the Eclipse interface, it provides
the same interaction as is available in a terminal.

6.6 Conclusion and future work
This new kernel functionality allows one to use the GF shell inside of a Jupyter notebook
kernel, providing a potentially more accessible user interface and making it easy to publish
reproducible documents.

We plan to extend it by allowing the user to include grammars in the notebook directly,
instead of relying on external files as it is the case right now. We also would like to
explore the possibility of adding new commands to the GF notebook kernel that take
advantage of the possible interaction offered by the web browser. Such command could
for example display a “fridge-magnet” widget directly in the notebook, or show foldable
parse-tree diagram by taking advantage of the ability of GF to generate JavaScript code
from grammars.

1Free Software Foundation Europe is a charity that empowers users to control technology. For more
information visit https://fsfe.org

120

https://fsfe.org

Appendix A

Code for Tokenizer.hs

This is the complete code of the tokenizer presented in Chapter 1

{-
GF Tokenizer.

In this module are implemented function that build a fst-based
tokenizer from a Concrete grammar.
-}

module PGF.Tokenizer
(mkTokenizer
) where

--import Data.List (intercalate)
--import Test.QuickCheck
import FST.TransducerInterface
import PGF.Morphology (fullFormLexicon, buildMorpho)
import PGF.Data (PGF, Language)

data LexSymbol = Tok String
deriving (Show, Read)

type Lexicon = [LexSymbol]

-- | This is the construction function. Given a PGF and
-- a Language, it extract the lexicon for this language and
-- build a tokenization fst from it.
mkTokenizer :: PGF -> Language -> (String -> Maybe [String])
mkTokenizer pgf lang = mkTrans lexicon

121

where lexicon = map (Tok . fst) lexicon'
lexicon' = fullFormLexicon $ buildMorpho pgf lang

mkTrans :: Lexicon -> (String -> Maybe [String])
mkTrans = applyDown . lexiconTrans

lexiconTrans :: Lexicon -> Transducer Char
lexiconTrans lexicon =

compile (words |> star ((spaces <|> glue) |> words))
"abcdefghijklmnopqrstuvwxyz "

where words = foldr (<|>) (empty) $ map tokToRR lexicon
glue = eps <*> stringReg " &+ "

stringReg :: String -> Reg Char
stringReg str = foldr (\x y -> s x |> y) eps str

tokToRR:: LexSymbol -> RReg Char
tokToRR (Tok str) = foldr ((|>) . idR . s) (idR eps) str

spaces :: RReg Char
spaces = idR $ s ' '

-- TESTING

-- verry small test lexicon
-- testLexicon :: Lexicon
-- testLexicon
-- = [Tok "car"
-- , Tok "elf"
--]

-- myTrans :: String -> Maybe [String]
-- myTrans = mkTrans testLexicon

-- data TestCase = TestCase String String
-- deriving (Show, Read)

-- instance Arbitrary TestCase where
-- arbitrary = arbitraryTestCase
-- --coarbitrary c = variant (ord c `rem` 4)

-- arbitraryTestCase:: Gen TestCase
-- arbitraryTestCase = do

122

-- words <- listOf1 $ elements [t | Tok t <- testLexicon]
-- tokens <- intercalateSometime "+&+" words
-- return $ TestCase (linearize tokens) (intercalate " " tokens)
-- where intercalateSometime :: a -> [a] -> Gen [a]
-- intercalateSometime x (x1:x2:xs) = do
-- b <- arbitrary
-- let pre = case b of
-- True -> x1:x:[]
-- False -> x1:[]
-- suf <- intercalateSometime x (x2:xs)
-- return (pre++suf)
-- intercalateSometime _ xs = return xs

-- linearize :: [String] -> String
-- linearize = linearize' False
-- where linearize' :: Bool [String] --^ boolean indicates if
-- -- the last token was a
-- -- real word and not +&+
-- where linearize' _ [] = ""
-- linearize' _ ("+&+":ss) = linearize' False ss
-- linearize' True (s:ss) = ' ':s ++ linearize' True ss
-- linearize' False (s:ss) = s ++ linearize' True ss

-- testTrans :: (String -> Maybe [String]) -> TestCase -> Bool
-- testTrans t (TestCase s1 s2) =
-- case t s1 of
-- Nothing -> False
-- Just l -> elem s2 l

-- main :: IO ()
-- main = do
-- putStrLn "\n=== Transducer ==="
-- print $ lexiconTrans lexicon
-- putStrLn "\n=== example output ==="
-- putStrLn $ "Input: " ++ show "car elfcar elf"
-- putStrLn $ "Output: " ++ show (mkTrans lexicon "car elfcar elf")
-- putStrLn "\n=== QuickCheck tests ==="
-- quickCheck (testTrans myTrans)
-- putStrLn "\n=== Examples of test cases ==="
-- sample (arbitrary :: Gen TestCase)

123

Appendix B

iGF notebook demo

This is a short demonstration of the GF kernel for iPython. It works just like the regular
GF shell but a bit more fancy. It allows you to use the gf shell in your browser, annotate
you session with titles and rich text formatting, and share it on nbviewer.
You can even include images:

B.1 Examples
First, let’s import some grammars from the GF tutorial:

In [1]: i HelloEng.gf HelloIta.gf HelloFin.gf

Languages: HelloEng HelloFin HelloIta

We can do anything here we could do in the GF shell, like generating trees:

In [2]: gt

Hello Friends
Hello Mum
Hello World

Linearizing them

In [3]: gt | l

hello friends
terve ystävät
ciao amici
hello mum
terve äiti
ciao mamma
hello world

124

https://en.wikipedia.org/wiki/Markdown
http://nbviewer.ipython.org/
http://www.grammaticalframework.org/doc/tutorial/gf-tutorial.html

terve maailma
ciao mondo

Or parsing a string

In [4]: p "hello world"

The parser failed at token "hello"

Hello World

B.1.1 Graphs
But what’s really cool is that we can also vizualize graph directly in the session:

In [5]: pt Hello World | vt

In [6]: pt Hello World | vp

In [7]: pt Hello World | aw

125

Appendix C

References

References
Angelov, K. (2009). “Incremental parsing with parallel multiple context-free grammars”.

In: Proceedings of the 12th Conference of the European Chapter of the Association for
Computational Linguistics. Association for Computational Linguistics. doi:
10.3115/1609067.1609074.

— (2015). “Orthography Engineering in Grammatical Framework”. In: ACL-IJCNLP
2015, p. 33. doi: 10.18653/v1/w15-3305.

Angelov, K., B. Bringert, and A. Ranta (2010). “PGF: A Portable Run-time Format for
Type-theoretical Grammars”. In: J. of Logic, Lang. and Inf. 19.2, pp. 201–228. issn:
0925-8531. doi: 10.1007/s10849-009-9112-y.

Angelov, K. and A. Ranta (2010). Loosely Coupled Synchronous Parallel Multiple
Context-Free Grammars for Machine Translation.

Bacon, J. (2012). The Art of Community. 2nd ed. O’Reilly Media. url:
http://www.artofcommunityonline.org/.

ISO/IEC TR 19759:2015 (2015). Software Engineering – Guide to the software
engineering body of knowledge (SWEBOK). ISO/IEC 19759.

Bringert, B. (2005). “Embedded Grammars”. MA thesis. Göteborg, Sweden: Chalmers
University of Technology.

Bringert, B., K. Angelov, and T. Hallgren. GF Developers Guide. url:
http://www.grammaticalframework.org/doc/gf-developers.html (visited on
03/29/2016).

Camilleri, J. J. (2012). “An IDE for the Grammatical Framework”. In: Free/Open-Source
Rule-Based Machine Translation 14, p. 1.

Détrez, G. and A. Ranta (2012). “Smart Paradigms and the Predictability and
Complexity of Inflectional Morphology”. In: Proceedings of the 13th Conference of the
European Chapter of the Association for Computational Linguistics. Association for
Computational Linguistics, pp. 645–653.

Fenton, N. and J. Bieman (2014). Software metrics: a rigorous and practical approach.
CRC Press.

126

http://dx.doi.org/10.3115/1609067.1609074
http://dx.doi.org/10.18653/v1/w15-3305
http://dx.doi.org/10.1007/s10849-009-9112-y
http://www.artofcommunityonline.org/
http://www.grammaticalframework.org/doc/gf-developers.html

Fogel, K. (2014). Producing Open Source Software: How to Run a Successful Free
Software Project. 2nd ed. O’Reilly Media. url: http://www.producingoss.com/.

Forcada, M. L. et al. (2011). “Apertium: a free/open-source platform for rule-based
machine translation”. In: Machine Translation 25.2. Special Issue: Free/Open-Source
Machine Translation, pp. 127–144. doi: 10.1007/s10590-011-9090-0.

Hallgren, T., R. Enache, and A. Ranta (2015). “A Cloud-Based Editor for Multilingual
Grammars”. In: ACL-IJCNLP 2015, p. 41. doi: 10.18653/v1/w15-3306.

He, Y. and M. Kayaalp (2006). “A Comparison of 13 Tokenizers on MEDLINE”. In:
Bethesda, MD: The Lister Hill National Center for Biomedical Communications.

Humble, J. (2010). Continuous Delivery: Reliable Software Releases through Build, Test,
and Deployment Automation. Addison-Wesley Professional. isbn: 0321601912.

Papineni, K. et al. (2002). “BLEU: a Method for Automatic Evaluation of Machine
Translation”. In: ACL ’02: Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational
Linguistics, pp. 311–318. doi: 10.3115/1073083.1073135.

Ranta, A. (2009). “The GF Resource Grammar Library”. In: Linguistic Issues in
Language Technology 2.2.

127

http://www.producingoss.com/
http://dx.doi.org/10.1007/s10590-011-9090-0
http://dx.doi.org/10.18653/v1/w15-3306
http://dx.doi.org/10.3115/1073083.1073135

	Abstract
	Acknowledgements
	Thesis
	Contents
	Introduction
	On the definition and challenges of language engineering
	Language Engineering
	The importance of free software
	Challenges in language engineering

	On lexicons
	Motivation: what are lexicons for?
	What exactly is a lexicon?
	Lexicon creation

	The many ways to improve language engineering
	Future prospects
	References

	Paper A
	Abstract
	Introduction
	Smart paradigms
	Paradigms in GF

	Cost, predictability, and complexity
	Experimental results
	English
	Swedish
	French
	Finnish
	Complexity and data compression

	Smart paradigms in lexicon building
	Related work
	Conclusion
	References

	Paper B
	Abstract
	Introduction
	Integration
	Differences between GF and Apertium
	Augmenting the GF lexicon with Apertium data
	Generating Apertium shallow-transfer rules from GF data

	Evaluation
	Conclusions and future work
	Acknowledgements
	References

	Paper C
	Introduction
	Background
	Morphological lexicon
	Paradigms
	Smart Paradigms

	Experiments
	Lexicons
	Sub-sequences and string kernels
	Experiment 1
	Experiment 2

	Results
	Experiment 1
	Experiment 2

	Related work
	Future work
	Conclusion
	References

	Paper D
	A GF tokenizer
	Introduction
	Description of the algorithm
	Usage
	Current status

	A Java Interpreter for PGF
	Introduction
	JPGF
	Overview
	Implementation
	Source code
	Evaluation

	Tutorial
	Introduction
	Start the android application
	Application interface
	Application code
	Add he JPGF library and the PGF file
	Implement the PGF functions

	PhraseDroid
	Related work
	Conclusion and acknowledgments

	A GF Mailing list
	What's a mailing list
	Implementation
	Usage
	Subscribing
	Posting

	Statistics
	Conclusion

	A Build Server
	Introduction
	Implementation
	Github code mirror
	Continuous Evaluation
	Future Work
	Conclusion

	A GF document translator
	Idea and related work
	Usage
	Implementation

	A GF notebook kernel
	Introduction
	A short overview of Jupyter
	Presentation
	Architecture

	iGF implementation
	Usage
	Installation
	Quick start

	Related work
	Conclusion and future work

	Code for Tokenizer.hs
	iGF notebook demo
	Examples
	Graphs

	References

