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Abstract 
 

Radiosity for Real-Time Simulations of Highly Tessellated Models 

HENRIK EDSTRÖM 

Department of Computer Science and Engineering 

Chalmers University of Technology and University of Gothenburg 

 

 

The accurate simulation of light is one of the most important aspects of computer graphics. 

Radiosity is a physically-based method that can generate view-independent solutions of the 

light scattering in a scene. This thesis describes a radiosity system capable of generating high-

quality global illumination solutions suitable for real-time simulations. State-of-the-art 

algorithms in hierarchical radiosity, such as face clustering and vector-based radiosity, are 

combined to efficiently handle scenes containing highly tessellated models. A new patch 

refinement method suitable for meshes with badly shaped triangles is also presented. 

A radiosity representation method is proposed, that combines vertex lighting and light 

mapping to allow real-time simulations of the radiosity solutions. The light map generation is 

based on the texture atlas approach, using a new segmentation scheme. To allow realistic 

rendering of materials that are not completely diffuse, the radiosity lighting is combined with 

specular lighting using OpenGL.  

The presented system supports quick visual feedback on how the radiosity calculation 

progresses. The preprocessing needed before the calculations can begin is very quick and the 

initial results can be displayed very fast. Even for large models, it is possible get a good idea 

of how the final result will look like in under a minute.  

 

Keywords: radiosity, hierarchical radiosity global illumination, light mapping, face cluster 

radiosity, volume cluster radiosity, texture atlas. 
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Preface 
This Master’s thesis is part of the Master of Science program in computer science at Chalmers 

University of Technology and University of Gothenburg. The project was conducted in 

collaboration with Opticore AB, a software company located in Gothenburg, Sweden.  

It should be noted that most of the work presented in this thesis was conducted in the fall of 

2001 and early 2002, and for some parts of the discussion, especially those related to 

computer hardware, the time perspective should be taken into account. However, the 

algorithms presented in this thesis are not tied to any particular hardware architecture. 

The reader is expected to have a basic knowledge of computer graphics and university-level 

mathematics. 
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1 Introduction 

1.1 Background 

Over the last three decades the field of computer graphics has evolved at a tremendous rate. In 

the 1970s, computers capable of displaying digital images were rare and expensive; today, 

realistic computer-generated images and video sequences can be found everywhere. In recent 

years, real-time computer graphics has made a huge leap forward and it is now possible to 

render realistic images at interactive frame rates. This has opened the door for many new 

applications in fields such as product visualization, virtual reality, and 3D computer games. 

The accurate simulation of light is one of the most important aspects in the synthesis of 

photorealistic images. The physically-based simulation of all light scattering in a synthetic 

model is called global illumination. This process is quite complex and computationally 

expensive and most methods are not suitable for real-time applications. The computation 

times often range from minutes to several hours for large scenes. Ray tracing and its 

derivatives are inherently view-dependent, meaning that the solution has to be recalculated as 

soon as the view changes. This makes real-time simulations based on such algorithms 

difficult. Other methods, such as radiosity, calculate a view-independent solution that can be 

reused for multiple views. In this thesis we investigate the application of radiosity for real-

time simulations of complex scenes. 

 

1.2 Problem Formulation 

This work has been conducted in collaboration with Opticore AB, a company that develops 

real-time visualization software. The task, proposed by Opticore, was to find a radiosity-based 

algorithm that generates global illumination solutions for scenes with highly tessellated 

models that can be used in real-time simulations. The lighting calculation is allowed to take 

some time, but when it is completed the simulation should have about the same real-time 

performance as before. 

 

1.3 Project Goals 

The goal of this thesis is to investigate what methods that can be used to achieve the results 

mentioned in the previous section. The problem can be divided into two sub-problems. The 

first one is to generate a global illumination solution for a given scene. The second one is to 

find a way to display this solution in real time without too much performance impact.  

Additional goals, based on Opticore’s requirements, are that the proposed solution is as 

automatic as possible and that it runs on a wide range of hardware. It is also important that it 

works well for highly tessellated CAD data, since that is the primary focus area of Opticore’s 

products. 

When the investigation is completed, the algorithms should be implemented and integrated 

in the Opticore Opus Studio application [Opti01]. The implementation should be based on the 

OpenGL Optimizer/Cosmo 3D API [Open98, Ecke98]. 
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1.4 Contributions 

Our main contribution is the development of a radiosity system capable of generating high-

quality global illumination solutions suitable for real-time simulations. We have combined 

some of the state-of-the-art algorithms in hierarchical radiosity, e.g., face clustering and 

vector-based radiosity, to be able to efficiently handle highly tessellated models.  

Previous work on face cluster radiosity has focused primarily on scenes with a small 

number of very complex surfaces. Our system combines face cluster radiosity with an 

efficient volume cluster hierarchy to manage larger sets of disconnected surfaces. 

A new patch refinement method is presented, that works well for badly shaped triangles 

often found in highly tessellated CAD data.  

We propose a radiosity representation method that combines vertex lighting and light 

mapping to allow real-time simulations of the radiosity solutions. This includes a new 

segmentation scheme for texture atlas creation and a rendering approach to combine radiosity 

with specular lighting on older graphics hardware. 

One advantage of our system is that the user quickly gets visual feedback on how the 

calculation progresses. The preprocessing needed before the calculations can begin is very 

quick and the initial results can be displayed very fast. Even for large models, it is possible 

get a good idea of how the final result will look like in under a minute. This allows the user to 

quickly determine if some parameters need to be changed, and if so, restart the calculation.  

 

1.5 Thesis Overview 

This thesis consists of ten chapters. After this introduction chapter, a brief overview of 

radiosity and global illumination is given in Chapter 2. Chapter 3 presents the most important 

previous work on the subject. 

Chapters 4-5 describe our proposed solution, i.e., the algorithms that our radiosity system is 

based on. In Chapter 6, some implementation details are given. 

Results and conclusions are presented in Chapters 7-8, and suggestions for future work in 

Chapter 9. A bibliography can be found in Chapter 10. 
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2 Radiosity and Global Illumination 

2.1 Illumination Models 

Simulation of lighting begins with the specification of material properties for the surfaces in 

the scene and the positions and characteristics of the light sources. The illumination can then 

be simulated by using a local or a global illumination model. 

 

2.1.1 Local Illumination 

A local illumination model considers only the light sources and the surfaces illuminated 

directly. This means that it does not capture shadows or indirect illumination from other 

surfaces. Local illumination models are not physically based, and cannot produce accurate 

simulations of reality. However, because of their simplicity they are commonly used in real-

time computer graphics. 

 

2.1.2 Global Illumination 

In reality, every surface receives light both directly from the light sources and indirectly from 

neighboring surfaces. In order to simulate the effects of interreflection, all objects must be 

considered as potential sources of illumination for all other objects in a scene. This is called a 

global illumination model. Global illumination methods are generally physically-based and 

try to capture both indirect illumination and shadows, but all possible light interactions are not 

necessarily considered. Because of their high complexity, the global illumination methods are 

often not possible to use in real-time graphics. Figure 2.1 demonstrates the difference between 

global and local illumination.  

 

  

(a) (b) 
 

Figure 2.1. Illumination models. (a) Local illumination. (b) Global illumination. 
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2.2 Terminology and Radiometric Quantities 

2.2.1 Radiometry and Photometry 

Light is a form of electromagnetic radiation. Electromagnetic radiation can exist at any 

wavelength, and what we see as visible light is only a tiny fraction of the electromagnetic 

spectrum. Light is studied primarily in the fields of radiometry and photometry. Radiometry is 

the science of measuring light in any portion of the electromagnetic spectrum. The amount of 

light at each wavelength can be measured by a spectroradiometer. Photometry, on the other 

hand, is the psychophysical measurement of the visual sensation produced by the 

electromagnetic spectrum. The radiometric quantities are measured with respect to a specific 

wavelength and thus independent of the human visual system, whereas the photometrical 

quantities are integrated over all possible wavelengths weighted by the response of the human 

visual system. Our eye is for instance more sensitive to green light than to red or blue light. 

Radiometry is more fundamental than photometry, in that photometric quantities may be 

computed from spectroradiometric measurements. For this reason, it is usually best to use 

radiometric quantities for computer graphics and image synthesis [Cohe93].  

 

2.2.2 Solid Angle 

In order to discuss the radiometric quantities, the concept of solid angle must be introduced. 

The solid angle describes the area of space occupied by a surface as seen from a point. It is 

measured by calculating the area of the surface projected onto a unit hemisphere centered at 

the point. Solid angle is measured in steradians (sr), and the solid angle subtended by the 

entire hemisphere is 2  sr.  

Because solid angles are measured with respect to the unit hemisphere, it is often 

convenient to represent them using spherical coordinates. A position on a sphere can be 

represented by two angles; the number of degrees from the North Pole or zenith,  , and the 

number of degrees about the equator or azimuth,  .  

 

 

Figure 2.2. Solid angle. 

 

 

n 
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When considering the solid angle subtended by a differential area dA , an approximate 

value can be obtained by taking the projection of dA  onto a plane perpendicular to the 

direction from the origin of the hemisphere to the differential area. The projection onto the 

plane has a surface area of cosdA  , and the solid angle is obtained by dividing this area by 

the square of the distance to the origin, to account for the projection onto the unit hemisphere: 

 
2

cosdA
d

r


    (2.1) 

 

2.2.3 Radiance 

The most important quantity in the physical simulation of light is radiance. Radiance is the 

amount of power radiated from a surface in a particular direction, more precisely defined as 

the power per unit projected area perpendicular to the ray per unit solid angle in the direction 

of the ray. The radiance from a point x  in direction   is: 

 ( , ) ( , , )
hc

L p d   


 x x  (2.2) 

where 

 ( , , )p  x  represents the density of light photons at point x  travelling in the direction 

  with a wavelength  . 

 /hc   gives the energy of a single photon ( h  is Planck’s constant and c  is the speed of 

light). 

 

Radiance is measured in Watts per unit area per unit solid angle (W/m
2
sr) and it is denoted by 

L. The corresponding photometric quantity is luminance. 

 

2.2.4 Irradiance 

Another important quantity is irradiance (illuminance in photometry), which is the radiant 

energy per unit area falling on a surface. It is denoted E and it is measured in Watts per unit 

area (W/m
2
). The irradiance can be related to the incident, or incoming, radiance ( iL ) by 

integrating over a hemisphere ( ): 

 cosid L d dA 


  
   (2.3) 

to produce the total radiant energy incident on a surface, d . Since irradiance is energy per 

unit area, it is computed as: 
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d

E
dA


  (2.4) 

or equivalently: 

 cosiE L d 


   (2.5) 

The quantity cos d   is often referred to as the projected solid angle. It can be thought of as 

the projection of a differential area onto a hemisphere projected onto the base of the 

hemisphere, as shown in Figure 2.3. 

 

 

Figure 2.3. Projection of differential area. 

 

 

2.2.5 Radiosity 

Radiosity (denoted B) is very similar to irradiance. It is the total energy per unit area that 

leaves a surface. It is computed in a similar fashion by integrating the outgoing radiance over 

the unit hemisphere and dividing by the area: 

 cosoB L d 


   (2.6) 

where oL  is the outgoing radiance. 

When considering diffusely reflecting surfaces, the outgoing radiance becomes independent 

of direction and can therefore be brought outside the integral: 

 

n 
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2

0 0

cos

cos sin

o

o

o

B L d

L d d

L

 

 

   












   (2.7) 

 

The official term for radiosity is radiant exitance, but the term radiosity is commonly used 

in computer graphics literature. Radiosity is measured in Watts per unit area (W/m
2
) and the 

photometric equivalent is luminosity.  

 

2.2.6 Reflectance Functions 

The reflecting properties of a material are described by the concept of reflectance. The most 

general expression of the reflectance is the bidirectional reflectance distribution function, or 

BRDF. The BRDF is defined as the ratio of the reflected radiance in the outgoing direction, to 

the differential irradiance from the incident direction [Cohe93]: 

 
( )

( )
( )cos

r r
i r

i i i i

L

L d


  

  
    (2.8) 

where 

 ( )r rL 
 
is the reflected radiance rL  in the outgoing (reflected) direction r . 

 ( )cosi i i iL d   is the irradiance iL  coming from the differential solid angle id  around 

the incident direction i  with polar angle i . 

 

The directions are often expressed as four polar angles by writing the BRDF as 
1
.  

The BRDF notation is widely used in computer graphics, but cannot model all physical 

light interactions. In this presentation all surfaces are assumed to be opaque, the reflected light 

is assumed to have the same frequency as the incoming light and light is assumed to reflect 

instantaneously off a surface. We also ignore participating media like smoke, dust etc. 

 A BRDF is often divided into three components, a diffuse, a glossy, and a specular 

component. The type of reflection depends mostly on the material and the roughness of the 

surface. Rough, irregular surfaces scatters light in many different directions and such 

reflections are called diffuse. An ideal diffuse reflector scatters light uniformly in every 

direction and is hence characterized by a uniform BRDF that does not depend on the outgoing 

direction. The reflected radiance is therefore the same in all directions, and the appearance of 

the surface is independent of the viewing angle. Ideal diffuse surfaces are also called 

Lambertian reflectors. 

                                                 
1
 The standard notation is to specify the reflected direction first in the arguments of the BRDF. 

( , , , )r r i i    
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Perfectly smooth surfaces on the other hand, often act as ideal specular surfaces that reflect 

light only in the mirror direction. The outgoing direction is contained in the plane of 

incidence, and the outgoing polar angle is equal to the incident polar angle. Ideal specular 

reflections are also known as mirror reflections. 

Real materials are not perfectly diffuse or perfectly specular. To capture the reflectance of 

real surfaces the BRDF contains an intermediate component for reflections that fall 

somewhere between a diffuse and a specular reflection. This component is called glossy, 

semi-specular, rough specular, or directional diffuse. In contrast to the other two components, 

glossy reflections have a complicated directional dependence.  

 

 

Figure 2.4. Diffuse, glossy and specular reflection. 

 

 

2.3 Solving the Global Illumination Problem 

2.3.1 Historical Perspective 

The first global illumination algorithm was introduced in 1980 by Whitted [Whit80]. Whitted 

applied a ray tracing algorithm recursively to achieve a simple global illumination model that 

accounted for mirror reflection, refraction, and shadows. The ray tracing approaches were 

later extended to include glossy reflections and soft shadows using stochastic ray tracing and 

cone tracing. The rendered images continued to improve, but the models used were not based 

on physical principles and quantities. There was also no practical way to capture diffuse 

interreflection with these methods. 

Radiosity methods, originally from the field of radiative heat transfer, where applied to the 

problem of global illumination in 1984 by researchers at Fukuyama and Hiroshima 

Universities in Japan [Nish85] and at the Program of Computer Graphics at Cornell 

University in the United States [Gora84]. These methods begin with an energy balance 

equation to describe the interreflection of light in the scene. This equation is then 

approximated and solved numerically.  

 

2.3.2 The Rendering Equation 

If we ignore participating media, the global illumination problem can be summarized by the 

following integral equation: 

n n n 
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  (2.9) 

where 

  is the total radiance leaving surface point  in the direction . 

 
 
is the radiance directly emitted from  in the direction . 

 
 
is the BRDF describing the fraction of radiance incident from direction 

 that is reradiated in direction . 

 
 
is the radiance incident on  from the direction

 
. 

  is the angle between the surface normal at  and
 

. 

  is the hemisphere lying above the tangent plane of the surface at . 

 

This equation was first formulated by Kajiya [Kaji86], who named it the rendering equation. 

It basically states that the radiance emitted from a surface point x in the direction  is equal 

to the radiance the surface itself emits in that direction, plus the integral over the hemisphere 

of the incoming radiance that is reflected in that direction. 

The rendering equation forms the basis for the global illumination algorithms, as it 

expresses the outgoing radiance for any given point on any surface. A solution to the equation 

is thus a solution to the global illumination, and all global illumination methods try to solve 

the rendering equation more or less accurately. The global illumination algorithms can 

roughly be divided into two groups: Monte Carlo methods and finite element methods 

[Heck93]. 

 

2.3.3 Monte Carlo Methods 

The solution of the rendering equation requires numerical evaluation of high-dimensional 

integrals. Classical, deterministic, integration methods do not capture discontinuities well, and 

they suffer from dimensional explosion, which means that the computational complexity is 

exponential with regard to the dimension of the domain. The dimensional explosion can be 

avoided by using Monte Carlo integration methods. Instead of choosing sample points at 

regular intervals, the Monte Carlo methods pick them at random. The computational 

complexity of these methods is independent of the dimension of the integral. Many global 

illumination methods are based on Monte Carlo integration, such as stochastic ray tracing 

[Cook86], path tracing [Kaji86], and photon mapping [Jens01]. Since the focus of this thesis 

is on radiosity, these approaches will not be discussed in more depth. 

 

2.3.4 Finite Element Methods 

Heckbert and Winget [Heck91] have shown that radiosity is essentially a finite element 

method. The finite element methods approximate an unknown function by subdividing the 

domain of the function into smaller pieces called elements, across which the function can be 

approximated using simple functions like polynomials. The unknown function is thus 

( , ) ( , ) ( , ) ( , )cose i i i iL L L d       


   xx x x x

( , )L x x 

( , )eL x x 

( , )i  x

i 

( , )i iL x x
i

 x
x

i

 x



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projected into a finite function space, and the resulting system can then be solved numerically. 

Although the radiosity problem is often viewed as a finite element problem, many different 

approaches have been taken to solve the transfer of radiosity in an environment, from purely 

finite element methods to purely stateless Monte Carlo methods.  

Finite element methods are typically more suitable to scenes containing diffuse surfaces, 

whereas the Monte Carlo based methods are better at simulating highly specular surfaces. The 

Monte Carlo approaches capture discontinuities like shadow boundaries better than the finite 

element methods. This is because the error in their approximation results in noise, which on 

the other hand can be highly distracting in areas where the result is expected to be smooth and 

continuous. Finite element methods often produce the best results for low to medium 

complexity scenes, whereas the Monte Carlo methods are faster for more complex 

environments. However, recent hierarchical finite element based radiosity algorithms have 

shown promising results for very complex scenes, as we shall see later.  

 

2.4 The Radiosity Method 

2.4.1 Simulating Diffuse Surfaces 

The basic radiosity algorithm is limited to simulating the illumination for scenes with diffuse 

(Lambertian) surfaces. This limitation also has the advantage that the solution is view 

independent, which means that once the radiosity calculations are completed the scene can be 

rendered quickly from any viewpoint without recalculating the illumination. Interactive 

walkthroughs of the scene can therefore easily be performed. 

Specular reflection and other effects can be added to the radiosity solution in a second ray 

tracing pass which overcomes the diffuse-only limitation to some degree. It is, however, not 

possible to mix specular and diffuse light bounces [Will00].  

 

2.4.2 The Radiosity Equation 

The rendering equation (Equation (2.9)) can be simplified if we assume that all surfaces 

reflect light diffusely. The outgoing radiance is then the same in all directions, i.e.,

. The BRDF is also independent of the incoming and outgoing directions and 

can therefore be taken out from under the integral. This gives us the following equation: 

  (2.10) 

which, given 2(cos ) /d dA r   (Equation (2.1)), and ( ) ( )B Lx x  (Equation (2.7)), can be 

rewritten as the radiosity equation: 

  (2.11) 

where 

 x and  are points on surfaces S in the scene. 
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  is the total radiosity leaving point x. 

 is the emission function describing the energy per unit area emitted at point x. 

  is the reflectance function. 

  is the geometry kernel between point x and point , defined as 

  (2.12) 

  is the binary visibility between point x and point . 

This is the equation that must be solved to find the global illumination for an environment 

containing only Lambertian diffuse surfaces. 

Discretizing Equation (2.11) as a finite element problem gives the classical radiosity 

equation [Cohe93]: 

  (2.13) 

where , called the form factor, is given by 

 
1
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i j

ij j i
A A

i

F G V dA dA
A

    x x x x  (2.14) 

The form factor represents the fraction of energy that leaves element i and arrives directly at 

element j. Each element has a radiosity equation of the form of Equation (2.13) and the 

system of equations can be expanded into matrix form: 

  (2.15) 

This matrix is known as the radiosity matrix. By solving this linear equation system we obtain 

a radiosity solution which describes the distribution of light between the elements in a scene. 

 

2.4.3 Algorithm Overview 

The process of initializing, calculating, and presenting a radiosity solution is sometimes called 

the radiosity pipeline [Yeap97, Niel00]. Figure 2.5 shows this process divided into five 

different stages.  
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Figure 2.5. The radiosity pipeline. 

 

Stage one defines the input scene geometry. The second stage subdivides the surfaces into 

elements to be used in the calculation. Stage three calculates the form factors and stage four 

solves the system of linear equations. The last stage displays the results. 

It is important to note that if some parameters are changed it is not necessary to restart at 

stage one. Only if the geometry of the input scene is changed must the entire process be 

repeated. If the surface reflectance properties or the lighting parameters are changed, we can 

restart at stage four. Most importantly, if the viewing parameters are changed we only have to 

repeat parts of stage five. 

 

2.4.4 Meshing 

The meshing stage subdivides the input polygons into elements. It is a very important part of 

the radiosity process, since both the accuracy and the complexity of the radiosity calculations 

depend very much on the underlying mesh. The goal is to create a mesh which for a desired 

accuracy uses as few elements as possible, and distributes the error evenly among those 

elements.  

A simple meshing strategy is uniform subdivision. It performs reasonably well where the 

radiosity function is smooth but fails where the function changes more rapidly. Increasing the 

mesh density will improve the accuracy at the cost of higher memory consumption and 

execution time. The error will however still be unevenly distributed. A better approach is to 

use a non-uniform subdivision strategy that subdivides to a fine level only where it improves 

the accuracy. This will distribute the error evenly among the elements. Figure 2.6 illustrates 

the different meshing strategies for a one-dimensional radiosity function. 

 

1. Input Geometry 

2. Meshing 

3. Form Factor Calculation 

4. Solve Radiosity System 

5. Reconstruction and Rendering 
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(a) 

 

(b) 

 

(c) 
 

Figure 2.6. Meshing strategies. The shaded area represents the error in the 

approximation. (a) Uniform subdivision. (b) High density uniform subdivision. (c) 

Non-uniform subdivision. 

 

2.4.5 Form Factor Calculation 

Calculating the form factors is usually the most expensive part of the radiosity method. It can 

consume up to 90 percent of the execution time of a radiosity program [Piet93]. The form 

factors represent the geometric relationship between elements, and do not depend on the 

reflective or emissive characteristics of the surfaces. A form factor between two elements 

depends solely on the orientation and size of the elements and the distance and visibility 

between them.  

 

 

 

Figure 2.7. Element Ej receiving light energy from element Ei. 

 

Rewriting Equation (2.14) by expanding the geometrical term gives us: 
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2

cos cos1

i j

i j

ij ij j i
A A

i

F V dA dA
A r

 


    (2.16) 

This equation cannot be solved directly, except for the most trivial cases. For general 

situations, numerical methods must be used to approximate the form factor. 

Equation (2.16) can be simplified by considering the form factor from a differential area 

element to a finite area element. The emitter is thus treated like a point source, and the 

equation becomes:  

 
2

cos cos

i j
j

i j

ij dE E ij j
A

F F V dA
r

 


    (2.17) 

This approximation is only justifiable if the distance between the elements is large, since the 

inner integral then does not change much over the outer integral in Equation (2.16). Ashdown 

[Ashd94] mentions the five-times rule that says that a finite area emitter should be modeled as 

a point source only when the distance to the receiving surface is greater than five times the 

maximum projected area of the emitter. If the five-times rule does not hold for any two 

elements, we can always subdivide the emitter until the rule is satisfied for each subdivided 

area. However, this fails if the elements share a common edge since the distance between 

them will then be zero along the edge. In those cases we have to stop the subdivision at an 

appropriate level.  

The visibility between the elements also affects the validity of the above approximation. 

This problem can be avoided by subdividing the elements until each element is either 

completely visible or not visible at all. 

One way to solve Equation (2.17) is to use hemisphere sampling. This method places an 

imaginary unit hemisphere centered on the differential area, and projects the element radially 

onto the hemisphere and then orthogonally down onto the base of the hemisphere. The 

fraction of the base area covered by this projection is equal to the form factor. See Figure 2.8. 

 

 

Figure 2.8. Hemisphere sampling. 
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The differential area-to-element form factor can now be written as: 

  (2.18) 

This geometric solution is known as Nusselt’s analogy. The area of the projection of the 

element on the unit hemisphere is, by definition of the solid angle, equal to the solid angle 

subtended by the element and accounts for the factor cos θj /r
2
 in Equation (2.17). The 

projection onto the base accounts for the cos θi term, and the π in the denominator is the area 

of a unit circle, i.e., the base of the hemisphere.  

Cohen and Greenberg proposed the hemicube form factor algorithm in 1985 [Cohe85]. This 

method replaces the hemisphere with a hemicube. The faces of the hemicube are divided into 

a grid of cells, each defining a direction and a solid angle. A delta form factor, ΔF, is 

computed for each cell based on its size and orientation. The delta form factors are pre-

computed and stored in a lookup table. The form factor for an element is approximated by 

projecting the element onto the faces of the hemicube and summing the delta form factors 

covered by the projection. To determine the visibility of the element the Z-buffer algorithm is 

used. This simple and efficient approach also has the advantage of wide hardware rendering 

support. A fast, hardware accelerated hemicube algorithm is described in [Wide99].  

Several variations of the hemicube approach have been developed, such as the cubic 

tetrahedral method [Bera91] and the single plane method [Sill89]. 

 

 

Figure 2.9. The hemicube method. 

 

The hemicube method has several limitations. The resolution is limited which can cause 

uneven and inadequate sampling. Equally sized elements may be sampled differently, as 

illustrated in Figure 2.10. Elements may also be missed completely if their projection on the 

hemicube is small enough to fall between the centers of the hemicube cells. The tetrahedral 

and single plane methods also suffer from these limitations. 
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(a) 

 

(b) 

 

(c) 

 

(d) 
 

Figure 2.10. Hemicube sampling limitations. Four identical 

triangles projected onto one of the hemicube sides, each covering a 

different number of cell centers. This results in a wide variance in 

the associated form factors. 

 

There are also several ray casting approaches to calculate the form factors. Ray casting 

offers a flexible way to determine visibility. Any distribution of points on the elements or 

directions on the hemisphere can be chosen independently and adaptive sampling can be used 

to distribute the computational effort evenly. Rays can also be distributed stochastically, 

which can make inadequate sampling less noticeable by converting aliasing to noise 

[Cohe93]. 

The ray casting methods also provide an excellent basis for Monte Carlo integration of the 

form factor equation over the hemisphere. Importance sampling can be used by selecting 

directions over the hemisphere with a sample density proportional to the cosine. In this way, 

more effort will be expended where the form factor is largest. 

Ray casting is generally more expensive than scan conversion algorithms for form factor 

calculation, especially when calculating the form factors between one element and all other 

elements in a scene. Ray casting methods are however often preferred in situations where 

only a few form factors are needed for a single element. This is often the case with 

hierarchical radiosity algorithms. The possibility to use importance sampling and the 

increased flexibility can also lead to better overall performance. There are also many 

acceleration schemes for ray casting, see [Glas89]. Another advantage is that it can be applied 

to both planar and curved surfaces.  
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2.4.6 Solving the Radiosity Equation 

When the form factors are known, the linear system in Equation (2.15) can be solved. There 

are a number of numerical algorithms available to solve linear systems. Direct methods, such 

as Gaussian elimination, can be applied to the radiosity problem, but they have a 

computational complexity related to the cube of the number of equations, O(n
3
) [Cohe93]. 

This is far too expensive for large, non-sparse systems like the radiosity system and it is 

therefore necessary to use iterative solution methods.  

Iterative methods begin with a guess for the solution and proceed by repeatedly performing 

operations that move the guess closer to the actual solution. Gauss-Seidel iteration, also 

referred to as gathering [Cohe93], is one of the more common methods. It traverses all 

elements and for each element energy is gathered from all other elements. This procedure is 

repeated until the system converges. 

 

 

(a) Gathering 

 

(b) Shooting 
 

Figure 2.11. Gathering vs. shooting.  

 

Another method is called progressive refinement. It performs Southwell and Jacobi iteration 

on the radiosity system [Cohe93]. In contrast to the gathering method, the element with the 

most energy is selected and its energy is “shot” to all other elements. Hence, this method is 

often referred to as shooting. The shooting and gathering behavior is shown in Figure 2.11. 

Both gathering and progressive refinement has a time complexity of O(n
2
), but progressive 

refinement usually converges much faster. 

 

2.4.7 Reconstruction and Rendering 

When the radiosity solution has been calculated, the illuminated scene can be rendered. 

During rendering, the color of each pixel is derived from the radiance of the surface location 

visible at the pixel. The radiance can be directly determined from the calculated 

approximation of the radiosity function.  

A common way to render the radiosity solution is to calculate the colors at the vertices of 

the mesh by averaging the colors of the neighboring elements. The mesh can then be rendered 

using the standard graphics pipeline and linearly interpolated by hardware using Gouraud 

shading. However, the human visual system is highly sensitive to discontinuities and higher 

order reconstructions of the radiosity solution may be necessary before rendering. 
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The mapping
2
 from radiance to pixel colors is not trivial. Typically, the display device 

allows 8-bit integer pixel values for each of the red, green, and blue color channels. In the real 

world, luminance values can range from 10
-5

 cd/m
2
 to 10

5
 cd/m

2
 [Cohe93]. It is therefore 

necessary to map the values calculated by the radiosity simulation to the range available on 

the display device. Another problem is the non-linear relationship between pixel colors and 

the resulting display device radiance. The adjustments for this non-linear relationship are 

called gamma correction. In the end, the goal of the mapping process from radiosities to pixel 

colors is to produce a subjective impression of brightness in the image that is equivalent to the 

perceived brightness in the real environment. 

 

                                                 
2
 This mapping is often referred to as tone mapping, or tone reproduction. 
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3 Previous Work 

3.1 Early Radiosity Methods 

3.1.1 Matrix Radiosity 

Early radiosity approaches calculated the form factor matrix explicitly [Gora84, Nish85, 

Cohe85], and are thus often referred to as matrix radiosity. The matrix radiosity method uses 

a fixed mesh of elements and computes the form factors between every possible pair of 

elements. The resulting linear system is then typically solved using an iterative method. This 

results in time and memory requirements that are quadratic in the number of elements in the 

mesh, which makes the method useful only for simple scenes.  

 

3.1.2 Progressive Refinement 

Progressive refinement, briefly mentioned in the previous chapter, was the first major 

improvement over matrix radiosity [Cohe88]. The algorithm solves the radiosity matrix 

iteratively and the goal is to display the results after each iteration. Each element has a 

radiosity value, which is the radiosity calculated so far for the element, and an unshot 

radiosity value, which is the portion of that element’s radiosity that has yet to be “shot”. In the 

beginning of the process, only the light sources have an unshot radiosity value greater than 

zero.  

During each iteration, the element with the greatest unshot radiosity is chosen and its 

radiosity is shot through the environment. The other elements may receive some radiosity, 

which is then added to both their unshot and received radiosity. After the shooting, the unshot 

radiosity of the shooting element is set to zero. The elements can thereafter be rendered using 

their received radiosity. The algorithm is usually terminated when the total unshot radiosity 

falls below a given threshold. 

One of the greatest advantages with the progressive refinement method is that the 

illumination that will have the most impact on the final image is calculated first. The overall 

time complexity is still O(n
2
), but it usually converges very fast. The form factors can also be 

calculated on-the-fly during the solution stage, which reduces the form factor storage to O(n).  

Progressive radiosity is often used in conjunction with substructuring [Cohe86], which 

introduces a two-level hierarchy; a coarser level of patches that shoot light to a finer set of 

receiving elements. This way, the elements can capture fine illumination details without 

increasing the number of shooting patches. 

 

3.2 Hierarchical Radiosity 

3.2.1 Overview 

Hierarchical radiosity [Hanr91] is the most significant theoretical modification of the original 

radiosity algorithm. By using techniques similar to those used in the n-body algorithm for 

gravitational simulations [Appe85], the hierarchical radiosity algorithm reduces the 

complexity from quadratic to linear in the number of elements used. 

The two-level substructuring hierarchy is extended by removing the separation of patches 

and elements, replacing them with a continuum of hierarchical elements. Radiosity exchange 
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can then be computed between arbitrary levels of the hierarchy. For any pair of surfaces, an 

appropriate subdivision level for each side is determined and then used to compute the energy 

exchange. This will in effect divide the form factor matrix into blocks, each of which 

represents an interaction between groups of elements. The advantage is that the number of 

blocks in the matrix is O(n) (where n is the total number of elements) compared to O(n
2
) 

entries in the regular form factor matrix [Hanr91].  

 

 

(a) 

 

(b) 
 

Figure 3.1. Hierarchical radiosity. Direct lighting (a) is calculated at 

a finer subdivision level than indirect lighting (b). The shaded areas 

represent pairs of elements exchanging energy and the arrows 

represent the links between the elements. 

 

For every input polygon in the scene a hierarchical element representation is created. The 

root node of the hierarchy represents the entire polygon, and deeper nodes represent partitions 

of it. The interaction of hierarchical elements exchanging energy is represented in the form of 

links, which contain information of the form factor and some estimate of the error in the 

approximated radiosity transfer. Initially, one link for every pair of input polygons has to be 

created. Each link is then refined until the estimated error for the link falls below a preset 

threshold. When a link is refined, either the source element or the receiver element is 

subdivided. The refined link is replaced by new links pointing to the children of the 

subdivided element.  

Because of the initial linking, the cost is quadratic in the number of input polygons, k, but 

linear in the number of solution elements, n. The cost is thus actually O(k
2
 + n), and the 

overall linear complexity only holds if k << n. 

 

3.2.2 Link Refinement 

Link refinement is the first step in the hierarchical radiosity algorithm. All pairs of polygons 

in the scene are initially connected by a link. Each link is then recursively refined until the 

energy transfer representation reaches the desired accuracy. The goal is to predict whether a 

group of form factors can be represented by a single link. Such a prediction method is referred 

to as a refinement oracle.  

The refinement oracle is a central part of hierarchical radiosity because it affects both the 

computation time and the accuracy of the radiosity computation. Early methods used a simple 

criterion based on the magnitude of the form factor to drive refinement [Hanr91]. More recent 

work has focused on perceptually-based measures [Gibs97, Prik99, Stam00] or visibility-

based measures [Dura99]. 
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When a link between two elements is refined it must also be decided if the source element 

and/or the destination element should be refined. Typically this decision is made by 

comparing the relative contribution of the two elements to the total error in the link. This can 

be done by comparing the projected areas of the elements along the direction of the transport. 

 

3.2.3 Solving the Radiosity System 

The link refinement stage results in a hierarchical representation of the form factor matrix 

which is now used to compute the actual energy transfers. For a given element in the 

hierarchy, energy is “gathered” through all incoming links at that node. This is done by 

multiplying the form factor stored in the link by the radiosity value for the element at the 

other end of the link. Since links can be established at all levels in the hierarchy, the radiosity 

of an element also depends on the links of its ancestors as well as the links of its descendents 

in the hierarchy. In order to obtain a complete view of the energy transfers in the hierarchy a 

push-pull process is needed. Starting from the root element in each tree, each element’s 

reflected radiosity is added to each of its children’s radiosity. This in effect pushes radiosity to 

the leaves of the hierarchy. Since radiosity is defined per unit area, the correct radiosity value 

for an element is the area average of its children radiosities. Radiosity is therefore pulled from 

the leaves to the root, averaging the radiosity values at each level. 

The solution process consists of repeatedly executing the gather and push-pull operations 

until the system converges. 

 

3.2.4 Interleaving Refinement and Solution 

In the original two-stage solution, we first refine the links, and then solve for the radiosities. 

The refinement oracle can thus only make decisions based on the geometry of the form factor 

estimates and not on the actual energy transfers in the scene
3
. This is a simple approach, but it 

ignores the fact that the optimal link refinement is dependent on the final radiosity solution. 

An interleaved solution algorithm can make better decisions about link refinement. We then 

repeatedly execute the refine, gather, and push-pull operations. The refinement oracle can 

then take the estimated energy transfer across each link into account, leading to a more 

efficient solution.  

A third solution method is to run refinement until all links meet some error criterion, then 

iterate the gather and push/pull stages until the system converges, and then repeat the whole 

process for a lower error criterion. This is called a scheduled solution and generally provides 

the best and most stable results of the various hierarchical radiosity solvers [Will00]. 

 

3.3 Clustering Methods for Hierarchical Radiosity 

3.3.1 Volume Clustering 

We have seen that hierarchical radiosity is linear in the number of solution elements but also 

quadratic in the number of input polygons. The classical hierarchical radiosity algorithms 

therefore work well on scenes with a small number of large polygons, but become impractical 

in time and memory consumption for more complex scenes. 

                                                 
3
 The initial light sources can possibly be accounted for. 
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To avoid the initial linking of the input polygons in a scene, clustering methods for 

hierarchical radiosity were developed [Smit94, Sill95a, Sill95b, Gibs96]. These methods 

create a new volume cluster hierarchy above the input polygons with a single root cluster for 

the entire scene. The volume clusters contain groups of potentially disconnected polygons 

with varying orientation and reflection properties. With the use of volume clusters, only a 

single initial link is required and the k
2 

term in the complexity is eliminated. 

 

 

(a) 

 

(b) 
 

Figure 3.2. Volume Clustering. Groups of polygons, such as the 

chair above, can both send (a) and receive (b) energy as a whole. 

 

Calculating the light incident on a cluster is not trivial. The simplest approach is to assume 

the clusters are isotropic, and sum the incoming light from all directions. This method is fast, 

but often too inaccurate. A more successful alternative is to push the light down to the input 

polygons when it is gathered across a link, but this can be costly for complex scenes. The 

clustering methods are still significantly faster than classical hierarchical radiosity. 

Another problem with volume clustering is that it is difficult to interpolate the irradiance 

between clusters. This often leads to blocky results as can be seen in Figure 3.3. One solution 

is to refine the clusters down to the input polygon level and interpolate over each polygon, but 

this negates many of the benefits of using clustering. Generally, volume clustering methods 

are more suitable to handling unorganized sets of polygons than highly tessellated models. 

 

3.3.2 Face Clustering 

For groups of polygons that represent connected surfaces, the volume clusters can be replaced 

by multiresolution models. Such models often provide a much better fit to the original 

surfaces than volume clusters, and the need to push light to the leaves during iterations can be 

avoided. Early multiresolution approaches used manually constructed simplified models 

[Rush93], or applied illumination from a simple scene to a more detailed version of it 

[Greg98]. A more promising approach, where the simplification is driven by the radiosity 

algorithm, is called face cluster radiosity [Will99, Will00]. The face cluster hierarchy groups 

together faces that have similar normals, and thus approximates largely planar surfaces well. 

The rationale for using multiresolution models is that for highly tessellated models, the 

geometric detail is often much higher than the illumination detail.  

Since both face clusters and refined polygons yield a contiguous piece of surface with a 

normal, they can be treated similarly by the hierarchical radiosity algorithm. The algorithm 

can thus operate efficiently at any level of detail in the hierarchy. For scenes with highly 
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tessellated surfaces, face cluster radiosity yields sub-linear performance in the number of 

input polygons [Will99]. 

Concurrent and independent of our work, the application of face cluster radiosity to highly 

tessellated models has been explored by Gobbetti et al. [Gobb02, Span02, Gobb03]. 

 

 

Figure 3.3. Volume clustering artifacts. (From Hasenfratz et al. 

[Hase99]). 

 

 

3.4 Visibility and Meshing 

3.4.1 Visibility Calculation 

Evaluating visibility between elements tends to be by far the most expensive part of the form 

factor calculation. Early radiosity methods, such as the hemicube method, sometimes use scan 

conversion algorithms to determine visibility, but most methods are based on ray casting. This 

is especially true for the hierarchical radiosity methods. Ray casting is a common algorithm in 

computer graphics and most acceleration methods apply to radiosity as well. Overviews of ray 

casting acceleration techniques can be found in [Glas89] and [Smit98]. 

To limit the number of visibility queries between elements, methods to determine 

guaranteed full occlusion and full visibility can be used [Lebl00]. Such methods can improve 

performance considerably in scenes with large planar polygons. They are however hard to 

apply to scenes with concave objects and curved surfaces. 
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3.4.2 Regular Refinement and Discontinuity Meshing 

The standard mesh refinement technique used in radiosity is regular refinement. For 

quadrilateral or triangular elements, each edge is split at its midpoint forming four new 

elements (see Figure 3.4 a). This results in a quadtree hierarchy. Regular refinement has the 

advantage of simplicity and robustness. Each element can also be refined independently. The 

disadvantage is that, if an element is poorly shaped or not well aligned to the discontinuities 

in the illumination, the same will hold true for its subelements.  

To combat the problem of capturing discontinuities in the illumination, discontinuity 

meshing algorithms were developed. The early algorithms were based on shadow volumes 

and tried to determine the boundaries of the umbra and penumbra [Nish85, Camp91]. The 

polygon mesh was split against these boundaries, thus effectively inserting discontinuity 

edges in the mesh (see Figure 3.4 b). More recent work on discontinuity meshing has focused 

on critical surfaces and visibility events [Heck92, Lisc92, Dura99].   

Discontinuity meshing can create impressive results, especially for relatively sharp 

shadows. It can however be hard to implement robustly and the number of discontinuities can 

be overwhelming for complex scenes. It is therefore more suitable for scenes that consist of a 

small number of large polygons than for scenes with highly tessellated, curved surfaces. 

 

(a) 

 

(b) 

 
 

Figure 3.4. Mesh refinement. (a) Regular refinement. (b) Discontinuity meshing. 

(From Lischinski et al. [Lisc93]). 

 

 

3.5 Output Representations 

3.5.1 Gouraud-Shaded Polygons 

Gouraud-shaded polygons are the most commonly used output representation for radiosity 

calculations. The radiosity for each vertex is calculated, and the renderer linearly interpolates 

these samples over the polygons. This method is also known as vertex lighting. 

Since radiosity calculations often result in meshes containing a large number of elements, 

the number of triangles may be too high for real-time rendering. Various mesh simplification 
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schemes can be applied as a post process to the calculation to reduce the polygon count. 

Hoppe has shown that radiosity meshes are excellent candidates for polygon simplification 

[Hopp96]. 

 

3.5.2 Textures 

Rendering radiosity meshes using vertex lighting can lead to poor performance. An 

alternative solution is to represent the radiosity using textures. Arvo proposed illumination 

maps to store diffuse illumination [Arvo86], and Heckbert introduced radiosity textures 

[Heck90]. These techniques were suitable for generation of still images but did not exploit 

hardware accelerated texture mapping
4
.  

Myszkowski and Kunii [Mysz94] developed a solution where mesh elements are replaced 

by textures as a post-processing step to the lighting simulation. A combination of vertex lit 

mesh elements and texture mapping is then used during interactive walkthroughs. A similar 

approach is used in [Bast96]. Möller [Möll96] describes a method to replace radiosity 

solutions with textures for NURBS models. This allows the same illumination map to be 

reused for multiple levels-of-detail.  

As texture mapping became available on commodity graphics hardware, computer games 

started using textures to represent lighting detail. Commodity graphics cards are often heavily 

optimized for multi-texturing, and the illumination textures can quickly be blended with 

standard textures to produce the final result, see Figure 3.5. Texture maps used to represent 

illumination are often called light maps. Light mapping for use in games and real-time 

applications is described in [Zhuk97, Zhuk98]. 

Storing the illumination using light maps can increase the performance in real-time 

applications substantially. However, finding a parameterization, or uv-mapping, for arbitrary 

polygonal surfaces is not straight-forward. Most light map solutions presented so far either 

map each polygon individually, or a group of adjacent polygons that can be projected onto a 

single plane without overlapping [Zhuk97], using a simple projection.  

The parameterization problem for light maps is more or less identical to the mapping of 

textures used for 3D painting [Low01]. In our case, we want to paint illumination to the 

textures. Low identifies three criteria for surface parameterization used in 3D painting: 

 Unique-region criterion. Each point on the 3D surface must be assigned a unique point 

in texture space. 

 Adjacency criterion. Adjacent surface primitives in 3D space should preferably be 

mapped to adjacent regions in texture space. If this criterion is not met, the texture 

filtering used during rendering will yield incorrect results near the boundaries of the 

primitives. Another advantage of meeting this criterion is that texture memory can be 

used more efficiently.  

 Minimal distortion criterion. The texture mapping distortion should be minimized to 

yield a uniform resolution in 3D space and also avoid stretch artifacts during rendering. 

These are criteria that a parameterization used for light mapping should try to meet as well. 

The unique-region criterion must always be upheld, just as for 3D painting, while the others 

can be more or less relaxed.  

                                                 
4
 Hardware accelerated texture mapping became available in late 1992, the first example being the Silicon 

Graphics RealityEngine [Baum98]. 
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(a) 

 

(b) 

 

 

(c) 

 

(d) 

 

 

(e) 

  

Figure 3.5. Light mapping example from the computer game Quake II, released by id 

Software in 1997. (a) The original textured scene. (b) Wireframe image showing the 

low polygon count. (c) Unfiltered light maps calculated with radiosity. Note that the 

light map textures have relatively low resolution compared to the base textures, but 

still allow for a much higher light sample density than a vertex lit mesh would have. 

(d) Filtered version of (c), showing a smooth lighting solution. (e) The base textures 

from (a) combined with the light maps from (d) results in the final image. Both the 

filtering step and texture blending step is hardware accelerated on commodity 

graphics cards.  
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Most algorithms for parameterization of general polygonal models are based on the texture 

atlas approach [Mail93, Sand01]. The model to be textured is partitioned into charts 

homeomorphic to discs that can be parameterized independently. Various optimization 

techniques can then be used to minimize the texture distortion for each chart before the charts 

are finally packed in texture space. Texture atlas construction for trimmed NURBS models is 

described in [Guth03]. 

Lévy et al. introduced the least squares conformal maps (LSCMs) method for chart 

parameterization [Lévy02]. This robust method has been used to create texture atlases for 

radiosity purposes in [Ray03a]. Ray and Lévy have also created a hierarchical version of the 

LSCM method [Ray03b]. 
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4 An Efficient Hierarchical Radiosity Algorithm 

4.1 Overview 

In this chapter we present a radiosity algorithm that efficiently handles highly tessellated 

models. The core of the algorithm is based on the face cluster radiosity approach [Will99], 

which has shown very promising results for such models. Above surface level, we use a 

volume clustering algorithm based on [Müll99]. Polygon refinement is represented by a BSP 

tree, using a new splitting approach. 

The algorithm consists of a preprocessing phase and a solution phase. During the 

preprocessing, a hierarchical representation of the scene is constructed. For each group of 

connected polygons a face cluster hierarchy is built. The face cluster hierarchies are then 

volume clustered to form a single rooted hierarchy for the entire scene. An initial self-link is 

created for the root cluster before the solution phase begins. An interleaved solver is used, 

that repeatedly executes the refine, gather, and push-pull steps described in the previous 

chapter. 

 

4.2 Face Cluster Hierarchy 

4.2.1 Motivation 

The face cluster radiosity algorithm has a complexity that is sub-linear in the number of input 

polygons. When used on scenes with highly tessellated surfaces, it shows a huge performance 

increase over previous volume clustering algorithms [Will99]. This makes the algorithm 

perfectly suitable for the kind of data we are trying to handle (see Figure 4.1). 

 

 

Figure 4.1. Typical input model. This is the kind of data that we are 

trying to find a suitable algorithm for. 

 

A face cluster hierarchy is basically a multiresolution model. When used in a radiosity 

calculation it allows some regions to be heavily simplified while other regions are represented 

in greater detail. The level of detail used is driven by the radiosity calculation; in areas where 
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the illumination varies more, a higher level of detail is used. Often, the input polygons need 

not to be touched at all. In such cases the complexity of the algorithm is independent of 

tessellation level and if the number of input polygons in the model is increased by tessellating 

it further, it will not affect the solution time. 

Unlike previous clustering algorithms for hierarchical radiosity, face cluster radiosity does 

not require the illumination to be pushed down to the input polygons during the solution 

phase. This is possible because of a combination of face clustering and the use of vector-

based radiosity. The following sections describe how the face cluster hierarchy is constructed 

and how vector-based radiosity can be used for representing energy transfers between 

clusters. Much of the material is summarized from Willmott’s and Garland’s work on face 

cluster radiosity and face cluster hierarchies respectively. Further details can be found in 

[Will00] and [Garl99]. 

 

4.2.2 Hierarchy Construction 

To build a face cluster hierarchy, we first form the dual graph of the model. The dual graph is 

defined by mapping each face of the model to a node in the dual graph and connecting two 

dual nodes if the corresponding faces on the model are adjacent. In this thesis we will only 

consider triangular faces, since our input data is always triangulated.  

In the dual graph, each node corresponds to a face cluster; a connected set of triangles that 

have been grouped together. Initially, each cluster contains only one triangle from the input 

model. To create the hierarchy, adjacent clusters are merged by collapsing the corresponding 

dual edges in the graph. This is done by assigning a cost to each dual edge and iteratively 

collapsing the dual edge with the least cost. After each collapse, the costs of the dual edges 

pointing to the merged clusters are updated. When the process is complete, each root cluster 

in the hierarchy will correspond to a connected part of the input model. It is important to note 

that the algorithm does not change the original geometry in any way; it merely groups 

triangles into progressively larger clusters. Figure 4.2 shows three levels of a simple cluster 

hierarchy. 

 

 

Figure 4.2. Building a face cluster hierarchy. (From 

Willmott [Will00]). 
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The cost metric will determine the qualities of the hierarchy. Different applications may 

need different criteria and for radiosity purposes, planarity is the most important criterion 

[Will00]. The planarity criterion can be expressed using a dual form of Garland’s quadric 

error metric [Garl99]. Every cluster has an associated set of faces {f1,…,fn} and a set of points 

{v1,…,vn} determined by the vertices of these faces. We first need to find the least squares 

best fit plane to this set of points. For a plane specified by a unit normal n and a scalar offset 

d, the distance of a point v to the plane is d n v . The fit error of a plane 0d  n v  is the 

average squared distance of all the points to the plane: 

 2

1

1
( )

n

fit i

i

E d
n 

   n v  (4.1) 

The least squares best fit plane is the plane which minimizes this error. Using Garland’s 

quadric error metric, we can compactly represent this sum as: 
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where 

 T( , , ) ( , ,1)i i i i i i iP c A b v v v  (4.3) 

and 

 T T 2( , ) 2 ( )P d d cd  n n An b n  (4.4) 

Each dual node has an associated fit quadric P which requires ten coefficients to represent the 

symmetric 3x3 matrix A, the 3-vector b, and the scalar c.  

The standard technique used to find the optimal plane which minimizes P(n, d) is based on 

principal component analysis (PCA) (see e.g., [Joll86]). We construct the covariance matrix: 

 T

1

( )( )
n

i i
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  Z v v v v  (4.5) 

where v  is the mean of the vertices: 

 
1

1 n

i

in 

 v v  (4.6) 

The three eigenvectors of the matrix Z determine the local frame with v  as the origin. The 

eigenvector corresponding to the smallest eigenvalue is the normal of the least squares best fit 
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plane through the set of points {v1,…,vn}. The covariance matrix can be directly extracted 

from the fit quadric P: 

 
T

c
 

bb
Z A  (4.7) 

We also use the covariance matrix to calculate an oriented bounding box for each cluster. The 

bounding box will later be used for visibility calculations. 

Minimizing the planarity term Efit will tend to merge clusters which are collectively nearly 

planar. To ensure that the clusters have compact shape, i.e., are as nearly circular as possible, 

and that the normals of the triangles in the clusters are consistently oriented, the error metric 

also has to take other measures into account. Willmott [Will00] has developed a simple and 

robust error metric for face clustering aimed at radiosity calculations:  

 
2

( )fit

p
E E k A  

S
 (4.8) 

where 

 Efit is the previously described planarity term. 

 k  controls the importance of balancing the hierarchy at the cost of relaxing the planarity 

term. A small value will make the clusters more planar, whereas a larger value will 

create a more balanced hierarchy. 

 A  is the area of the merged face cluster. 

 p  is the perimeter of the merged face cluster. 

 S  is the sum of the area weighted normals of the triangles in the merged face cluster: 
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A
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Figure 4.3 shows an example of a hierarchy created using the error metric from Equation 

(4.8). 

 

4.2.3 Vector-based Radiosity  

Classical hierarchical radiosity uses scalar values to represent radiosity. The irradiance Ei of 

an element can be approximated using the point-to-point form factor approximation 

[Cohe93]: 
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where 

 Each element i has normal in , area iA , and unknown radiosity ib  

 
ijr  is the distance between elements i and j. 

 
ijr  is the unit vector between elements i and j. 

 
ijv  is the average visibility between two points on elements i and j: 1 for no occlusion, 

and 0 for full occlusion. 

 ( )x   means that x is clipped to zero, i.e., ( ) max(0, )x x  . 

 a
T
b is the dot product in matrix notation. The associative property of matrix 

multiplication will be exploited later to rewrite the above formula. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
 

Figure 4.3. A face cluster hierarchy. (a) shows the leaf clusters, i.e., the input 

polygons, of the model. (b), (c), and (d) show clusters higher up in the hierarchy. 
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When used in a cluster-based algorithm, a scalar radiosity representation leads to a faceted 

appearance that hides the geometric detail for clusters containing curved or bumpy surfaces. 

Willmott et al. have adapted the original radiosity method to face clustered models by using a 

vector-based representation [Will99]. Consider the light interaction between two clusters in 

Figure 4.4. 

 

 

Figure 4.4. Radiosity transfer between two face clusters. Element j in the source 

cluster S radiates energy towards element i in the receiver cluster R. (From Willmott 

[Will00]). 

 

Let j be an element in the source cluster and i be an element in the receiver cluster. If we 

assume that all (i, j) pairs of elements are inter-visible and that the source elements are close 

together and far from the receiver, then rij, rji, rij, and ijv  become independent of j, and we can 

approximate the irradiance from a single cluster as [Will99]: 
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The transfer can be rewritten in terms of two vector quantities as: 

 T

i iE  n E  (4.12) 

where E is referred to as the irradiance vector, defined as: 
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where 

 RS  is the sum area normal of the receiving cluster R.  

 δ  clipps against the sum area normal: 

 
      if 0

δ( , )
0      otherwise

 
 


x x S
S x  (4.14) 

 P is the power vector, defined as: 

 
j j j j j

j j

A b b  P n S  (4.15) 

The irradiance vector is a 3-vector whose components represent the irradiances on the 

planes normal to the x, y, and z axes at the receiver. Using this representation, rather than a 

scalar irradiance, allows coarse variations in the irradiance as a function of orientation to be 

modeled. This eliminates most of the faceting effects that usually appear when using only a 

single scalar value. An irradiance vector approach has also been employed by Arvo and 

Glassner [Arvo94]. 

The power vector, also a 3-vector, allows the outgoing power to have a directional 

dependency. The magnitude of the vector approximates the total power leaving the cluster, 

and the direction of the vector indicates the hemisphere toward which most of the energy is 

directed. 

These vector quantities can be substituted for the irradiance and radiosity in a standard 

hierarchical radiosity algorithm by modifying the push-pull and gather operations (see Section 

3.2.3). During the push phase, the following equation is used: 

 δ( , )child child parent child E S E R  (4.16) 

where Rchild is the sum of the irradiance vectors incident directly on the child. During the pull 

operation, the radiosity of the parent is calculated: 

 
child child

parent

parent

b A
b

A



 (4.17) 

and the power vector reconstructed with: 

 bP S  (4.18) 

When modeling the transfer of radiosity, the standard form factor coefficient is replaced by 

a transfer vector: 
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which allows us to rewrite Equation (4.13) simply as: 

 bE m  (4.20) 

At the leaves of the hierarchy, the accumulated irradiance is transformed into radiosity using 

the following equation: 
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
 
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where 

   is the reflectance of the leaf element. 

 e  is the emittance of the leaf element. 

 

The power vector of the leaf can then be reconstructed using Equation (4.18). 

In all of the above equations, a monochromatic world is assumed in order to simplify the 

presentation. In practice we extend them to the familiar RGB color model by storing b and E 

for each color channel and operate on them independently. The transfer vector, m, is still 

wavelength independent. 

 

4.3 Volume Cluster Hierarchy 

4.3.1 Motivation 

Above surface level we use a volume clustering algorithm based on the work of Müller et al. 

[Müll99]. The hierarchy is essentially a binary bounding volume hierarchy of axis-aligned 

bounding boxes, suitable for both radiosity transfers and visibility queries. This fits in well 

with the face cluster hierarchy and the radiosity algorithm can operate on both hierarchies in a 

uniform way.  

Based on the results of the analysis of clustering algorithms done by Hasenfratz et al. 

[Hase99], this type of volume hierarchy seems to be the best for our purposes. It has the most 

predictable behavior of the tested hierarchy types and creates “intuitive” hierarchies for 

scenes with very different object sizes. The main disadvantages with a bounding volume 

hierarchy are construction time and cluster overlaps. Both these problem areas are efficiently 

handled by the algorithm described in [Müll99], resulting in a very promising radiosity 

clustering algorithm suitable for a wide range of scenes. 
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4.3.2 Hierarchy Construction 

The hierarchy construction algorithm uses a top-down approach to recursively partition the set 

of root nodes from the face cluster hierarchies. No entities need to be split, and no empty 

clusters are created. Starting with the entire set of face cluster root nodes, we sort the clusters 

along the three major coordinate axes, using the center of each cluster as sort key. Based on 

these sorted lists, we evaluate the potential partitioning positions along each axis by splitting 

the sorted list of objects in a left and right part. In contrast to the commonly used median cut 

scheme, a cost function is used to determine the subdivision position. By minimizing this cost 

function over all partitioning positions, an optimal subdivision is obtained which generates 

two new subsets containing the left clusters and the right clusters. The process is recursively 

applied on these two sets and is terminated when a set contains only one cluster. A small 

partitioning example is shown in Figure 4.5. 

 

 

Figure 4.5. Volume cluster hierarchy creation. Four possible 

partitions along a single axis are shown. The filled rectangles 

represent the oriented bounding boxes of the root face clusters. 

 

We use the same cost function as in [Müll99], which is similar to the surface area heuristic 

(SAH) introduced by MacDonald and Booth [MacD89]. The cost of a partitioning H, with 

children Hleft and Hright, is given by: 

 
( ) ( )
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( ) ( )

left right

H left right

S H S H
C axis H H

S H S H
   (4.22) 

where 

 H  is the number of clusters in the set H . 

 ( )S H   is the surface area of the axis aligned bounding box around H . 

  , ,axis X Y Z . 
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This creation algorithm is fast, O(n log n), while guaranteeing hierarchies of very high quality 

comparable to much more costly bottom-up methods. In particular, it is efficient for ray 

acceleration in visibility computations, it minimizes overlaps of bounding volumes, and it 

adapts well to the distribution of the objects in the scene [Müll99]. 

 

4.4 Patch Hierarchy 

4.4.1 Motivation 

Below the input triangle level, a patch hierarchy is used to represent refinement. The 

commonly used regular refinement method (see Section 3.4.2) does not work well for highly 

tessellated geometry. Generally, the tessellation is optimized to represent the curvature of the 

surfaces, and hence poorly shaped triangles are very common (see Figure 4.6). To overcome 

this problem, we have developed a novel, more flexible, BSP-based
5
 patch hierarchy. Each 

time a leaf patch is refined, an arbitrary splitting line can be chosen to subdivide the patch into 

two sub-patches.  

 

 

(a) 

 

(b) 

  

Figure 4.6. Regular refinement for tessellated geometry. (a) The 

original mesh. (b) Regularly refined mesh. The long, thin triangles 

make it very hard to capture the shadow from the door mirror. 

 

 

4.4.2 Splitting Strategy 

When a leaf patch needs to be refined, a suitable splitting line has to be selected. As discussed 

in Chapter 3, such a line can be chosen based on discontinuities in the illumination. This is an 

interesting area of research, but outside the scope of this thesis. Instead, we try to create 

patches with regular shape. First, the minimum-area enclosing rectangle (MER) of the patch 

is calculated. The line perpendicular to the longest side of this rectangle, splitting it at its 

midpoint, is selected as a candidate splitting line (see Figure 4.7a). To minimize the number 

of introduced t-vertices we then try to snap the line to the nearest vertex on each side. If a 

                                                 
5
 A binary space partitioning (BSP) tree represents a recursive, hierarchical partitioning of space. In two 

dimensions, nodes are created by splitting larger regions along an arbitrary line. 
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vertex is within a predefined snap tolerance, the line is moved to intersect the vertex (see 

Figure 4.7b). 

 

(a) 

 

(b) 

 

Figure 4.7. Calculating the splitting line for a patch. (a) The line 

cutting the minimum-area enclosing rectangle of the patch in the 

middle is chosen as a candidate line. (b) If a vertex is within a 

predefined snap tolerance, the line is moved to intersect the vertex. 

 

The snapping procedure significantly decreases the number of t-vertices, which leads to fewer 

triangles when the mesh is later triangulated (see Section 4.4.3). The triangles in the final 

mesh will therefore generally be more well-shaped, as evident in Figure 4.8.   

 

 

(a) 

 

(b) 

 

Figure 4.8. (a) A mesh refined without vertex snapping. (b) With 

vertex snapping. 

 

This splitting scheme has worked well in our experience; creating well-shaped patches even 

if the original mesh consists of very long and thin triangles (see Figure 4.9).  

 

4.4.3 Eliminating T-vertices 

T-vertices are inevitably introduced during patch refinement. If t-vertices are not shared 

between patches, discontinuities will be visible during rendering since the calculated radiosity 

at a t-vertex will generally be different from the interpolated value at the same point. To 

eliminate t-vertices, we use a Delaunay triangulation pass for each patch before rendering.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4.9. Comparison of regular refinement (a) and our novel 

refinement approach (b). Corresponding wireframe versions are 

shown in (c) and (d), although most of the triangles in (c) are too 

thin to be visible in this image. Note that the number of triangles is 

the same for both methods. 

 

 

4.5 Algorithm 

4.5.1 Preprocess 

The preprocess phase first creates a face cluster hierarchy for each object in the scene. This is 

typically done only once and if the geometry of an object remains unchanged, its hierarchy 

can be reused for several radiosity calculations. Other model properties like position, 

orientation, and material attributes can be modified without the need to perform the face 

clustering again. After the face clustering, a hierarchical radiosity element for each face 

cluster root node is created. Usually much of each face cluster hierarchy remains unused 

during the radiosity calculation. We therefore begin with just the root nodes and create new 

elements on demand during refinement. The elements add information such as irradiance 

vectors, radiosity, radiosity links, and an oriented bounding box for each face cluster. This 

information is not stored in the original face cluster hierarchies in order to save memory.  
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The initial face cluster elements are then volume clustered and elements are created for 

these clusters as well. An initial self-link is finally created for the root node of the entire 

hierarchy. Non-reflective light sources are volume clustered independently and linked to the 

root node of the main hierarchy. This speeds up the initial light transfers substantially and also 

reduces the number of links. 

 

4.5.2 Solver  

A standard interleaved solver is used as described in [Cohe93]. The gather, push-pull, and 

refine stages are repeated until the system converges (see Figure 4.10). When gathering 

energy for an element, we apply Equation (4.20) for all incoming links and sum the result. 

During the push-pull phase, we use Equations (4.16) and (4.17). The refine procedure follows 

that outlined in [Cohe93], using the error estimation described in the next section. 

 

solve() 

   while (not converged) 

      gather(root) 

      pushpull(root) 

      refine(root, ε) 

 

Figure 4.10. Solver pseudo-code. The refinement 

epsilon, ε, is gradually lowered during the solution. 

Links with an error larger than ε are refined. 

 

 

4.5.3 Transfer and Error Estimation 

To estimate the transfer vector, m, we generate a fixed number of sample points on both the 

source and the receiver and apply Equation (4.19): 
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where vi, ri, and ri is the visibility, direction, and distance between sample point i of n on the 

source S and the sample point i on the receiver R. 

We use the L1 norm to measure error as described in [Will00]. This corresponds to the 

BFA-weighted refinement commonly used in hierarchical radiosity.  

 

4.5.4 Visibility 

The visibility term in Equation (4.23) is evaluated by ray casting, and a natural choice for 

acceleration data structure is to reuse the volume cluster and face cluster hierarchies. BV-
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hierarchies are also generally more efficient for visibility testing than grid-based data 

structures according to [Smith98]. 

Our volume cluster hierarchy stores an axis aligned bounding box for each cluster, and has 

already been proven efficient for visibility testing [Müll99]. When the ray caster reaches a 

leaf in the volume hierarchy, it continues down the corresponding face cluster hierarchy. 

Since the face clustering algorithm ensures that the face clusters are both planar and well-

shaped, the oriented bounding box for each cluster provides a very tight fit to the geometry.  

To further increase the ray casting performance we use the depth-first order array traversal 

technique described in [Smith98]. 

 

4.5.5 Reconstruction 

To reconstruct the irradiance for each vertex before rendering, we typically use the irradiance-

interpolation-everywhere approach suggested by [Will00]. All links pointing to volume 

clusters are temporarily pushed down to the root face cluster level. Thereafter we reevaluate 

the irradiance vectors for each element at the corners of the element and interpolate the result 

over the element. The irradiance vectors at any given element are calculated by interpolating 

the irradiance vectors of its parent and adding in the resampled irradiance for the links 

pointing directly to the element. 

This procedure is reasonably fast and can be used for progressive updates of the solution 

during the radiosity calculation. When the calculation is completed, we provide the user with 

the option to do a more costly reconstruction where the links are pushed all the way to the 

vertices of the leaf elements. This is often referred to as a final gather. Depending on the 

complexity of the model, this can be a time consuming process, but it also generates a very 

smooth solution and depending on the use case, it might be worth the cost. For a further 

discussion on reconstruction methods, see [Gibs95] and [Will00]. 
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5 Radiosity Representation 

5.1 Overview 

A radiosity calculation using the algorithm described in the previous chapter results in a mesh 

that can be rendered directly. However, if the mesh is highly subdivided, e.g., around sharp 

shadow boundaries, rendering performance can slow down considerably. Preferably, we 

would like the radiosity mesh to have about the same rendering performance as the original 

mesh had.  

To achieve higher rendering performance, we use textures to represent the illumination in 

highly subdivided areas to avoid drawing the extra geometry introduced by the radiosity 

calculation. However, since we work with highly tessellated models, the hierarchical radiosity 

solution has often not reached the input polygon level. These areas can therefore be 

represented using vertex colors without affecting performance. It is often preferable to use 

vertex coloring over textures in such cases in order to save texture memory. Also, when the 

mesh is highly tessellated, high resolution textures are often needed to represent the shading 

due to the curvature of the mesh. In areas where the resolution of the texture is lower than the 

resolution of the mesh, a texture based representation will generally decrease the visual 

quality. 

Our solution is to use vertex lighting for surfaces that are not refined below the input 

polygon level (see Figure 5.1 b). For surfaces that are more refined, light map textures are 

used (see Figure 5.1 a). This approach is similar to the one used in [Mysz94].  

 

 

(a) 

 

(b) 

  

Figure 5.1. Radiosity representation. Light maps are used in highly subdivided areas, 

such as the shadowed areas of the seat in (a). For small details not refined below the 

input triangles, such as the buttons on the radio panel in (b), vertex lighting is often 

preferred. 

 

We have chosen to avoid the use of recent programmable graphics hardware in our solution, 

mainly because we want wide hardware support
6
. However, this is a very interesting area of 

                                                 
6
 When this work was conducted, the latest graphics chip was the NVIDIA NV25 (GeForce4/Quadro4). Systems 

based on the Silicon Graphics Onyx2 and Onyx 3000 series were still commonly used for high-end, large-scale 

presentations. Our aim was to find a solution that also worked well on these systems. 
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research and it makes new radiosity rendering approaches possible. In [Gobb02], a face 

cluster radiosity solution is rendered directly from the irradiance vectors using extensions to 

OpenGL. In [Gobb03], this work is extended to include glossy reflections by exploiting more 

advanced programmable hardware. Investigating such solutions is outside the scope of this 

thesis. 

 

5.2 Texture Atlas 

5.2.1 Motivation and Overview 

A texture atlas is an efficient texture representation for general models that allows large 

connected pieces of geometry to be adjacent in texture space [Lévy02]. More simple methods, 

like the “polypack” approach proposed by Zhukov et al. [Zhuk97], work quite well for 

architectural scenes but usually generate too many discontinuities in the parameterization of 

curved geometry. We have therefore chosen a texture atlas approach for our light maps. 

The generation of a texture atlas consists of three steps: 

 Segmentation. The model is partitioned into a set of charts, homeomorphic to discs. 

 Parameterization. Each chart is “unfolded”, i.e., flattened from R
3
 to R

2
.  

 Packing. The parameterized charts are packed in texture space. 

We use the texture atlas generation pipeline shown in Figure 5.1 for each surface that we want 

to create an atlas for. A similar approach has been used by [Ray03a]. 

 

 

Figure 5.1. Texture atlas generation pipeline. 

 

This means that we first try to parameterize the entire surface. If the resulting 

parameterization is invalid, e.g., contains overlaps or high area distortions (see [Lévy02]), we 

subdivide the surface and recursively apply the same procedure on these parts until a valid 

parameterization is found. The remainder of this section describes the most important steps of 

our approach. 

 

5.2.2 Parameterization 

To parameterize the charts we use the least squares conformal maps (LSCMs) approach by 

Lévy et al. [Lévy02]. The LSCM method is both robust and efficient for large, complex 

models. It uses a conformal energy criterion to minimize angle deformations and non-uniform 
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scalings. Ray et al. have successfully applied this parameterization method to generate 

radiosity texture atlases for industrial CAD models [Ray03a]. 

 

5.2.3 Segmentation 

Since each surface corresponds to a root face cluster, we can directly use our face cluster 

hierarchy during the segmentation step. If the parameterization of a root face cluster fails, we 

recursively try to parameterize its children clusters until a valid parameterization is found. 

The cost function used during the hierarchy creation (see Section 4.2.2) strives to create 

clusters that are both planar and topologically as close to discs as possible. These are also 

properties we want the charts to have to make them easy to parameterize.  

The segmentation approach based on differential geometry and Morse theory used in the 

original LSCMs paper did not work well with industrial models [Ray03a]. Ray et al. used a 

simple brute force algorithm to overcome this problem. Our new segmentation method 

instead uses knowledge of the geometric properties of the mesh, acquired during the face 

clustering step, to ensure that the charts are well shaped and easy to parameterize. 

 

 

(a) 

 

(b) 

  

Figure 5.2. Texture atlas. (a) Charts on the model. (b) Corresponding texture atlas. 

This example contains 18 disconnected surfaces, i.e., face cluster root nodes, and only 

the surface representing the headrest requires more than one chart. 

 

 

5.2.4 Packing 

Once all charts have been parameterized, they are packed in texture space (see Figure 5.2). It 

is desirable to minimize the unused texture space in order to save texture memory. Another 

advantage of packing many charts into a single texture is that it decreases the number of 

texture switches during rendering. 

The packing problem
7
 is known to be NP-complete [Mile99]. We want to find a non-

overlapping placement of the charts in such a way that the enclosing rectangle is minimized. 

Approaches based on computational geometry are usually not efficient enough for complex 

data sets. Instead, several heuristics have been proposed [Zhuk98, Sand01, Lévy02]. We have 

                                                 
7
 The general problem is often referred to as the bin packing or pants packing problem. 
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chosen a similar approach to [Sand01] based on packing the bounding rectangles of the 

charts. More efficient packing of charts with complex borders can be achieved by using the 

method proposed by [Lévy02]. However, our charts are usually more regularly shaped 

because of the face cluster construction metric
8
. 

 

5.2.5 Light Map Creation 

When the texture atlas has been created, we fill the textures with radiosity information. This is 

done by rendering the radiosity mesh using its uv-coordinates as vertex coordinates to an 

offscreen buffer. The rasterized pixels are then read back and stored in the texture. Note that 

the original input triangles of the model are used during parameterization and the refined 

element mesh during the radiosity texture generation. The uv-coordinates for the vertices 

introduced by the radiosity calculation are linearly interpolated from the parameterized input 

triangles. 

 

5.2.6 Avoiding Mip-Mapping Artifacts 

In order to avoid aliasing effects when rendering high resolution textures, mip-mapping is 

used
9
 (see e.g., [Möll99]). Schemes that pack multiple charts into a single texture image may 

give rise to mip-mapping artifacts since coarser mip-map levels will average together spatially 

disjoint charts. To overcome this problem, we first extrapolate the boundaries of the charts 

one or a few texels depending on the texture resolution, and then apply a pull-push algorithm 

[Gort96] to fill in the empty space in the texture (see Figure 5.3). 

 

 

(a) 

 

(b) 

  

Figure 5.3. Pull-push procedure to fill in the empty space in the texture atlas. (a) A 

texture atlas before applying the pull-push. (b) After pull-push. 

 

 

                                                 
8
 The chart merging method used by Sander et al. [Sand01] is also based on [Garl01] and is similar to the face 

cluster hierarchy creation. 
9
 For low resolution light maps, like those in Figure 3.5 or in [Zhuk97], mip-mapping is usually not necessary. 
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5.3 Selecting Representation  

A single representation method is chosen for each surface. This avoids discontinuities 

between Gouraud-shaded regions and textured regions. Alternatively, both methods could be 

used for a single surface by using a border for the textured regions and alpha blend it with the 

underlying Gouraud-shaded mesh to make the transition seamless. We have not implemented 

this approach yet. 

For visual updates during the radiosity calculation it is usually preferable to use a vertex 

representation to show the full resolution result. When the calculation is completed, highly 

subdivided surfaces can be replaced by texture representations. However, light maps can 

decrease the visual quality and sometimes vertex lighting is desirable even if it leads to worse 

rendering performance. Also, if not enough texture units are available on the particular 

platform, a light mapped surface might need an extra rendering pass. This will in some cases 

defeat the performance gain of using light maps. We therefore first use a simple heuristic to 

select an initial representation for each surface and then allow the user to change it if 

necessary. A uniform resolution is used, distributing the available texture memory evenly 

among the light mapped surfaces. 

To select an initial representation, we sort the surfaces by the number of introduced 

triangles during the radiosity calculation in decreasing order. We then traverse the surfaces, 

converting them to textures, until the total number of introduced triangles falls below a user 

defined threshold. 

 

  



Chapter 6. Implementation Notes 

 

56 

6 Implementation Notes 

6.1 Overview 

The algorithms described in the previous chapters have been implemented in a radiosity 

module that can be easily integrated with existing applications. Both the Opticore Opus 

Studio and Opus Realizer software have successfully used this module for global illumination 

calculations. 

All the code is written in C++ and designed in a modular fashion to be portable and 

reusable. Since Opticore’s applications are based on the OpenGL Optimzier/Cosmo3D 

framework from Silicon Graphics [Open98, Ecke98], we use Cosmo3D for scene graph 

management and rendering. 

An overview of our system is shown in Figure 6.1. The application communicates with a 

radiosity engine that manages all the radiosity functionality. The most important parts are: 

 The preprocessor. Takes a scene graph as input and creates a hierarchical element 

representation of the scene. 

 The hierarchical solver. Iteratively solves for the radiosity in the element hierarchy.  

 The visualization manager. Updates the scene graph with radiosity information from the 

element hierarchy. 

 

 

Figure 6.1. System architecture overview. 

 

This chapter briefly discusses how we have implemented various parts of this system. 

 

6.2 Creating the Element Hierarchy 

6.2.1 Clustering 

First we build a face cluster hierarchy for each object in the scene graph. Some 

implementation details worth pointing out during the hierarchy creation are: 
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 For the dual edge collapses (see Section 4.2.2), we use a heap-based priority queue 

extended to support O(n log n) updates of sort keys and deletion of elements. 

 When calculating the oriented bounding box for relatively planar clusters, the PCA 

approach becomes somewhat unstable. For those clusters we use the sum area normal as 

the principle axis, project all vertices onto the plane defined by this axis, and then 

calculate the minimum-area enclosing rectangle (MER) in this plane to fix the other two 

axes. We calculate the MER by constructing the convex hull using Graham’s scan 

[ORou98] (O (n log n)) and then finding the rectangle using a rotating calipers 

algorithm [Tous83] (O (n)). 

 

When the hierarchy creation is complete we spilt each hierarchy that contains more than 

one root, and create a surface structure for each root. This surface structure is central in our 

implementation. Each surface has a single rooted face cluster hierarchy representing a 

connected group of triangles that also share material properties. It has its own patch data 

structure representing refined triangles. The output representation method is also selected on a 

per-surface basis. The surfaces are volume clustered using the algorithm described in section 

4.3.2 to form a single rooted hierarchy of the entire scene.  

 

6.2.2 Hierarchical Elements 

Hierarchical elements are initially created for all volume clusters and for the root face 

clusters. We let the elements inherit from an abstract base class that provides the basic 

algorithm interface (see Figure 6.2.). Many methods are common for all elements and thus 

implemented in the base class. Generic versions of the refine, gather, and push-pull operations 

are also provided by the base class. 

 

 

Figure 6.2. UML class diagram for the hierarchical elements. HRElement is the 

common abstract base class for hierarchical elements. VCElement and FCElement 

represent volume clusters and face clusters respectively. LightElement is an abstract 

base class for custom light sources not defined by geometry, e.g., point lights, spot 

lights, directional lights, or sky light. 

LightElement PatchElement FCElement VCElement 

refine() 
gather() 
pushpull() 
… 

HRElement 
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This framework can easily be extended to include new types of elements. The radiosity 

solver works only on abstract HRElements and needs no knowledge of the implementation of 

the different element types. Traversal of the hierarchy is handled by the elements themselves; 

each element type knows how to traverse its children. 

 

6.2.3 Leaf Mesh Data Structure 

When patches are refined, the minimum-area enclosing rectangle is calculated to help 

determine the splitting line (see Section 4.4.2). Again, we use a rotating caliper method for 

this as described in Section 6.2.1. In order to maintain connectivity information during patch 

refinement, a half-edge data structure is used for the leaves of the hierarchy. Each time a leaf 

patch element is refined, the half-edge mesh is updated. This also allows us to quickly remove 

t-vertices and render a triangulated mesh representing the radiosity solution at any time during 

the calculation. Initially we used the classic winged-edge data structure for this purpose (see 

e.g., [Glas91]), but later found the half-edge data structure easier to work with [Mänt88]. 

We have implemented a general half-edge based data structure similar to those used in 

OpenMesh [Bots02] and CGAL [Fabr00]. This allows us to easily reuse it for other purposes, 

e.g., in the parameterization step. We also had in mind the possibility of using a post-process 

simplification step of the mesh when choosing this representation.  

 

6.3 Radiosity Calculation 

6.3.1 Hierarchical Solver 

The solver simply calls the refine, gather, and push-pull methods of the root element node, 

and each element recursively calls its children. The solver can be temporarily halted by the 

radiosity engine to allow updates of the scene graph in order to display the current state of the 

solution.  

 

6.3.2 Visibility 

Since the visibility sampling is the most costly step of the algorithm, we try to avoid some 

unnecessary calculations. If a light transfer between two planar, or nearly planar, elements has 

a sampled visibility of 1.0, we try to accurately determine if it is completely visible. This is 

done by forming a shaft between the two elements [Hain00]. If no geometry intersects the 

shaft, we can flag the transfer as completely visible. Further refinements between the elements 

can then skip the visibility sampling step. 

This approach can only be used for planar elements, otherwise important self-shadows can 

be missed. Patch elements are inherently planar, but we also use it for face cluster elements 

that are nearly planar using a small epsilon value. In order to avoid counting the elements 

themselves or geometry behind the elements as occluders, we cap the shaft with the planes of 

the elements (see Figure 6.3). 

Applying a similar scheme to determine if two elements are fully occluded from each other 

is usually much more complicated, especially for scenes with concave surfaces. Generally, 

convex occluders are required to conservatively determine full occlusion (see [Lebl00]). We 

have used the method presented in [Lebl00], but since our geometry often is highly tessellated 

only very few transfers can benefit from this approach.  
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Figure 6.3. Shaft culling to accurately determine complete 

visibility. This figure shows a simplified 2D-version of the shaft to 

illustrate the principle. In practice the shaft has a volume that 

encloses the axis-aligned bounding boxes of the elements (see 

[Hain00] for further details). 

 

For all shaft intersection tests, we use the same bounding volume hierarchy as we do for ray 

casting to quickly process the entire scene. 

 

6.4 Scene Graph Updates 

6.4.1 Calculating Vertex Colors 

At any time during the solution phase the scene graph can be updated to show the current 

state of the solution. This task is handled by the visualization manager that first pushes 

irradiance down to the vertices of the mesh. For leaf elements at face cluster level, the 

irradiance is interpolated from the corners of the clusters. The irradiance is then converted to 

radiosity yielding the final radiosity mesh. 

Before we can render the results of the calculation, the radiosity values stored at the vertices 

have to be mapped to displayable colors. To achieve this, we use a tone mapper similar to the 

one described in [Rein02]. This gives us a standard RGB color for each vertex. For surfaces 

using vertex lighting the vertices are simply copied to the geometry nodes in the scene graph. 

 

6.4.2 Light Maps 

For surfaces using light maps, we first generate a parameterization using the input triangles. 

This parameterization is stored in the surface to avoid recalculating it for future updates. We 

then render the radiosity mesh to a texture as described in Section 5.2.5. The scene graph is 

finally updated to use the generated radiosity light map and to draw the original vertices. 

 

Sender 

 

Receiver 

 

Shaft 
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6.5 Rendering 

6.5.1 Adding Specular Lighting 

Since the radiosity calculation only generates diffuse lighting, it is often desirable to add 

specular lighting. We do this using the standard specular lighting in OpenGL. This will 

obviously not result in a physically correct solution, but it usually gives a much more realistic 

result than excluding specular lighting completely. 

To render the radiosity solution plus specular lighting in a single rendering pass using only 

standard OpenGL 1.1
10

 we use the following setup: 

 Diffuse and ambient material is set to black color. Thus, the colors calculated in the 

lighting equation only represent specular lighting. 

 Emissive lighting is set to the color values stored per vertex
11

. This way our diffuse 

radiosity lighting is automatically added to the specular color calculated by OpenGL.  

 For surfaces using light maps, the emissive material is set to black and the texture 

blending mode to ADD. This gives us identical lighting equations for both vertex 

lighting and light maps.  

 When combining vertex lighting and light maps, we use a black 1 x 1 light map for the 

surfaces using vertex lighting and black vertex colors for the light-mapped surfaces.  

We have chosen this approach to avoid changing the structure of our Cosmo3D scene graph. 

Cosmo3D sets the rendering state on a per-shape level (see [Ecke98]) and we might have 

several surfaces using different representations under a shape node. By using black textures 

for vertex lit surfaces, black color for light mapped surfaces, and additive texture blending we 

can use the same OpenGL state for multiple surfaces using different representations. 

Otherwise, we would have to restructure the scene graph to have one shape node for the 

vertex lit surfaces and one for the texture mapped surfaces.  

Much more sophisticated solutions are possible using more recent programmable hardware 

extensions. 

 

6.5.2 Textures and Environment Mapping 

The procedure described above can be seen as a replacement for the standard OpenGL 

lighting. Other effects, such as regular textures or environment maps, can be added as usual. 

Depending on the number of available texture units on the particular hardware, an extra 

rendering pass may be necessary for those surfaces that use light maps. 

Figure 6.4 shows an example OpenGL setup for a light-mapped surface using both a base 

texture and an environment map. If three texture units are available, this can be rendered in a 

single pass. Otherwise, multiple passes and frame buffer blending is necessary. 

                                                 
10

 We use the texture environment mode ADD, which is not part of the OpenGL 1.1 specification. However, it is 

commonly available and since it is used in the Cosmo3D API it is supported on all our target platforms. 
11

 This is achieved using the call glColorMaterial(GL_FRONT, GL_EMISSION). 
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Figure 6.4. Example OpenGL rendering setup. The specular lighting calculated by 

OpenGL is first added with our radiosity light map. A base texture is then modulated 

with the result and finally an environment map is added using the decal texture mode.  
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7 Results 

7.1 Overview 

In this chapter we present some results of our work. First, the performance of the algorithm is 

analyzed in terms of time and memory consumption. Then, some examples of the visual 

quality will be shown. 

 

7.2 Test System 

All performance tests were performed on an AMD Athlon 1.4 GHz, running Windows 2000. 

The computer was equipped with 1 GB of RAM and an Nvidia GeForce3 graphics card. 

 

7.3 Test Scenes 

Two scenes have been selected to test our radiosity system (see Figure 7.1). The models are 

from the automotive industry and representative for the type of data used in Opticore’s 

applications. This will demonstrate how the algorithms perform under the circumstances they 

were designed for. 

 

 

(a) Car exterior 

 

(b) Car interior   

 

Figure 7.1. Test scenes. 
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7.4 Preprocessing 

The first step in our algorithm is the preprocessing that prepares the scene for radiosity 

calculations. The main parts of the preprocessing are the face clustering, the volume 

clustering, and the creation of the mesh data structure. Table 7.1 shows the total preprocessing 

time and memory consumption for the test scenes. 

 

Scene Polygons Time Memory  

Car exterior 242 764 15.23 s 110.7 MB 

Car interior 521 699 24.66 s 190.5 MB 
 

Table 7.1. Preprocessing time and memory consumptions for the test 

scenes. 

 

To show the contribution of the different stages to the total preprocessing time, we have 

profiled the face clustering, volume clustering, and mesh creation stages. These are the most 

interesting algorithmic parts of the preprocessing. Table 7.2 shows the results. 

 

Scene Stage Time % 

Car exterior Face clustering 10.40 s 68.3 % 

 Volume clustering      0.05 s 0.3 % 

 Mesh creation      3.18 s 20.9 % 

 Other      1.60 s 10.5 % 

 Total 15.23 s 100 % 

Car interior Face clustering 16.71 s 67.8 % 

 Volume clustering      0.21 s 0.9 % 

 Mesh creation      5.83 s 23.6 % 

 Other      1.91 s 7.7 % 

 Total 24.66 s 100 % 
 

Table 7.2. Breakdown of preprocessing time for the two test scenes. 
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7.5 Radiosity Calculation 

Since the algorithm is based on a progressive hierarchical approach, the calculation time is 

determined by the desired accuracy and visual quality. The following figures illustrate the 

time and memory required in order to achieve a level of visual quality sufficient for typical 

use cases. 

 

 

Figure 7.2. Car exterior example (calculated in 25 minutes using 411 MB of peak 

memory).  

 

  
 

Figure 7.3. The same scene as in Figure 7.2 from different angles. Notice how the 

shadow gets darker under the car, because less indirect lighting reaches those areas. 
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Figure 7.4. Car interior example (calculated in 4 hours 30 minutes using 762 MB of 

peak memory).  

 

  
 

Figure 7.5. The same scene as in Figure 7.4 from different angles. 

 

7.6 Rendering 

Rendering performance is related to the number of extra triangles introduced during the 

calculation. As long as no extra triangles are created, the performance will generally not be 

affected. Often, light maps can be used for most surfaces refined below the input triangle 

level and hence the rendering performance will be nearly the same as before the radiosity 

calculation. Sometimes it might be desirable to use vertex lighting for some refined surfaces, 

e.g., when the light map resolution is inadequate. In those cases a tradeoff between visual 

quality and rendering performance has to be made. In the examples shown in this chapter, the 

car exterior has a rendering overhead of about 10 % compared to the input model, whereas the 

interior uses more vertices and has an overhead of about 35 %. 
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8 Conclusions 
In this thesis we have presented a radiosity system for global illumination simulations of 

highly tessellated models like those found in computer aided design (CAD). To manage the 

complexity of such models we use a hierarchical algorithm based on the face cluster radiosity 

approach developed by Willmott et al. We have shown that the face clustering approach is 

very suitable for this type of data. 

Previous work on face cluster radiosity has focused on scenes with a small number of very 

complex surfaces [Will00, Gobb03]. In our case we have to deal with a far larger number of 

disconnected surfaces, increasing the need for a good hierarchy above surface level. We use a 

relatively simple bounding volume hierarchy for this purpose. It performs reasonably well in 

our experience, especially for ray casting acceleration. However, it does not exploit the 

orientation of the clustered elements like the face cluster hierarchy do. This makes the 

approximation of light transfers between volume clusters worse than between face clusters. In 

most cases, this is not a problem since the most important light transfers are refined below the 

volume clusters.  

When dealing with poorly shaped triangles, our novel patch refinement scheme can yield 

significant improvements over the regular refinement method commonly used in hierarchical 

radiosity. We have also experimented with a few grid-based refinement approaches, but 

unsatisfied with the results we developed our own method instead. 

We have shown that our radiosity system can handle scenes with several hundred thousand 

polygons relatively well. The radiosity solution is often a huge improvement in visual quality 

and realism compared to the standard local lighting models commonly used in real-time 

computer graphics.  

In order to display the radiosity solutions in real-time, we use a light map representation for 

highly subdivided areas. This makes it possible to eliminate most of the extra geometry 

generated during the calculations. The parameterization scheme has shown good results and 

light mapped areas are often indistinguishable from highly subdivided vertex lit meshes. 

One of the main advantages with our system is its user-friendliness. The preprocessing 

needed before the calculations can begin is very quick and the initial results can be displayed 

very fast. Even for large models, the user can often get a good idea of how the final result will 

look like in under a minute. This allows the user to quickly determine if the setup is correct or 

if the light settings or other properties need to be changed. Also, during the calculation, the 

user can quickly get feedback on how the solution progresses. 

Many improvements of the algorithms are possible and some of these will be discussed in 

the next chapter. 
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9 Future Work 

9.1 Overview 

In this chapter we discuss some future improvements of our work. We have selected a few 

areas that we find particularly interesting and important to investigate further.  

 

9.2 Improving the Accuracy of the Algorithm 

9.2.1 Discontinuity Meshing 

Our current patch refinement approach tries to create regularly shaped elements. This 

generally works well, but hard shadow boundaries can still be difficult to capture with 

sufficient accuracy. Choosing the splitting lines based on discontinuities in the illumination 

could lead to improvements in both efficiency and quality in areas where sharp shadow 

boundaries are present. As several authors have pointed out though, discontinuity meshing 

can be difficult to apply to highly complex scenes, both in terms of robustness and efficiency. 

 

9.2.2 Improved Refinement Oracle 

For refinement decisions, we have chosen the commonly used BFA approach that measures 

the error using area-weighted irradiance. This error does not always correspond to the visual 

error in the final solution though, when irradiance has been mapped to display color. In 

particular, the importance of relatively weak indirect lighting is often underestimated. A 

perceptually-based refinement method could lead to more efficient refinement decisions. 

Another problem is the difficulty to estimate the error due to visibility variation. When 

using sampling for visibility determination, it is always possible to miss partially occluded 

transfers. This has to be taken into account by the error criteria. For transfers that are 

guaranteed to be completely visible, a higher refinement threshold could be used. Likewise, 

transfers that are guaranteed to be occluded could be eliminated completely. Thus, more 

efficient ways of determining exact visibility could greatly improve the refinement process. 

 

9.2.3 Volume Hierarchy Construction 

We would like to improve the cost function for the volume hierarchy creation and take the 

orientation of the clustered elements into account. This would allow us to more accurately 

approximate the transfers between volume clusters. Also, since the number of clustered 

elements is relatively low in this case, we can afford a slightly more costly construction 

approach. 

 

9.3 Improving Visualization 

9.3.1 Parameterization 

The hierarchical extension to the LSCM method could be used to speed up the 

parameterization [Ray03b]. Also, as noted in [Ray03a], the stability of the parameterization 

could be improved by removing badly shaped triangles from the conformal energy. This 
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would reduce the number of necessary charts and also lessen distortion. Several other 

improvements are also possible, e.g., selecting the light map resolution based on the variation 

in the illumination. 

 

9.3.2 Programmable Graphics Hardware 

It would be interesting to take advantage of recent programmable graphics hardware, as in 

[Gobb03]. This would also allow us to incorporate specular lighting and other effects in a 

more correct way. 

 

9.3.3 Simplification and Level-of-Detail 

When texture memory is limited or vertex lighting is preferred for other reasons, it would be 

beneficial to include some kind of simplification post-process or level-of-detail scheme. As 

mentioned in Chapter 3, radiosity meshes have been shown to be excellent candidates for 

simplification algorithms [Hopp96]. 
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