

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2016

Radiosity for Real-Time Simulations
of Highly Tessellated Models

Master’s thesis in Computer Science

HENRIK EDSTRÖM

The Author grants to Chalmers University of Technology and University of Gothenburg the

non-exclusive right to publish the Work electronically and in a non-commercial purpose make

it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does

not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author has

signed a copyright agreement with a third party regarding the Work, the Author warrants

hereby that he/she has obtained any necessary permission from this third party to let Chalmers

University of Technology and University of Gothenburg store the Work electronically and

make it accessible on the Internet.

Radiosity for Real-Time Simulations of Highly Tessellated Models

HENRIK EDSTRÖM

© HENRIK EDSTRÖM, 2016

Supervisors: TOMAS AKENINE-MÖLLER, JOHNNY WIDERLUND

Examiner: ULF ASSARSSON

Chalmers University of Technology and University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone +46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden 2016

 i

Abstract

Radiosity for Real-Time Simulations of Highly Tessellated Models

HENRIK EDSTRÖM

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

The accurate simulation of light is one of the most important aspects of computer graphics.

Radiosity is a physically-based method that can generate view-independent solutions of the

light scattering in a scene. This thesis describes a radiosity system capable of generating high-

quality global illumination solutions suitable for real-time simulations. State-of-the-art

algorithms in hierarchical radiosity, such as face clustering and vector-based radiosity, are

combined to efficiently handle scenes containing highly tessellated models. A new patch

refinement method suitable for meshes with badly shaped triangles is also presented.

A radiosity representation method is proposed, that combines vertex lighting and light

mapping to allow real-time simulations of the radiosity solutions. The light map generation is

based on the texture atlas approach, using a new segmentation scheme. To allow realistic

rendering of materials that are not completely diffuse, the radiosity lighting is combined with

specular lighting using OpenGL.

The presented system supports quick visual feedback on how the radiosity calculation

progresses. The preprocessing needed before the calculations can begin is very quick and the

initial results can be displayed very fast. Even for large models, it is possible get a good idea

of how the final result will look like in under a minute.

Keywords: radiosity, hierarchical radiosity global illumination, light mapping, face cluster

radiosity, volume cluster radiosity, texture atlas.

ii

Preface
This Master’s thesis is part of the Master of Science program in computer science at Chalmers

University of Technology and University of Gothenburg. The project was conducted in

collaboration with Opticore AB, a software company located in Gothenburg, Sweden.

It should be noted that most of the work presented in this thesis was conducted in the fall of

2001 and early 2002, and for some parts of the discussion, especially those related to

computer hardware, the time perspective should be taken into account. However, the

algorithms presented in this thesis are not tied to any particular hardware architecture.

The reader is expected to have a basic knowledge of computer graphics and university-level

mathematics.

 iii

Acknowledgements
First, I would like to thank my thesis supervisor at Chalmers University of Technology,

Tomas Akenine-Möller, for his encouragement and helpful discussions during this project. He

also pointed me to important papers and publications, especially the face cluster radiosity

work of Andrew J. Willmott.

Huge thanks to Johnny Widerlund, my supervisor at Opticore AB, for his invaluable

encouragement and support, his proofreading, and for his many insightful comments along the

way. Johnny also provided an implementation of the LSCM algorithm used in this thesis.

Thanks to Erik Gustafsson for suggesting the topic for this thesis, and for providing the

opportunity to conduct this work in collaboration with Opticore. I would also like to thank all

the friendly people at Opticore. Thanks to Fredrik Sandbecker, Markus Jandér, and Johan

Stenlund for helpful discussions and comments.

Finally, thanks to Nina for her love and support.

Göteborg, February 2004

Henrik Edström

iv

 v

Contents

1 Introduction .. 9

1.1 Background .. 9

1.2 Problem Formulation .. 9
1.3 Project Goals .. 9
1.4 Contributions .. 10
1.5 Thesis Overview ... 10

2 Radiosity and Global Illumination ... 11

2.1 Illumination Models ... 11
2.1.1 Local Illumination .. 11
2.1.2 Global Illumination .. 11

2.2 Terminology and Radiometric Quantities .. 12
2.2.1 Radiometry and Photometry ... 12

2.2.2 Solid Angle ... 12
2.2.3 Radiance ... 13
2.2.4 Irradiance .. 13

2.2.5 Radiosity ... 14

2.2.6 Reflectance Functions .. 15
2.3 Solving the Global Illumination Problem .. 16

2.3.1 Historical Perspective ... 16

2.3.2 The Rendering Equation ... 16
2.3.3 Monte Carlo Methods ... 17

2.3.4 Finite Element Methods ... 17
2.4 The Radiosity Method .. 18

2.4.1 Simulating Diffuse Surfaces ... 18

2.4.2 The Radiosity Equation .. 18

2.4.3 Algorithm Overview .. 19
2.4.4 Meshing .. 20
2.4.5 Form Factor Calculation ... 21

2.4.6 Solving the Radiosity Equation .. 25
2.4.7 Reconstruction and Rendering ... 25

3 Previous Work .. 27

3.1 Early Radiosity Methods .. 27

3.1.1 Matrix Radiosity ... 27
3.1.2 Progressive Refinement .. 27

3.2 Hierarchical Radiosity .. 27
3.2.1 Overview .. 27
3.2.2 Link Refinement ... 28

3.2.3 Solving the Radiosity System .. 29

3.2.4 Interleaving Refinement and Solution .. 29

3.3 Clustering Methods for Hierarchical Radiosity ... 29
3.3.1 Volume Clustering ... 29
3.3.2 Face Clustering ... 30

3.4 Visibility and Meshing ... 31
3.4.1 Visibility Calculation ... 31
3.4.2 Regular Refinement and Discontinuity Meshing ... 32

3.5 Output Representations .. 32

vi

3.5.1 Gouraud-Shaded Polygons ... 32

3.5.2 Textures .. 33

4 An Efficient Hierarchical Radiosity Algorithm ... 37

4.1 Overview .. 37

4.2 Face Cluster Hierarchy ... 37
4.2.1 Motivation .. 37
4.2.2 Hierarchy Construction .. 38
4.2.3 Vector-based Radiosity .. 40

4.3 Volume Cluster Hierarchy ... 44

4.3.1 Motivation .. 44
4.3.2 Hierarchy Construction .. 45

4.4 Patch Hierarchy .. 46
4.4.1 Motivation .. 46
4.4.2 Splitting Strategy .. 46

4.4.3 Eliminating T-vertices .. 47
4.5 Algorithm ... 48

4.5.1 Preprocess ... 48
4.5.2 Solver ... 49
4.5.3 Transfer and Error Estimation .. 49
4.5.4 Visibility ... 49

4.5.5 Reconstruction .. 50

5 Radiosity Representation ... 51

5.1 Overview .. 51
5.2 Texture Atlas .. 52

5.2.1 Motivation and Overview ... 52

5.2.2 Parameterization ... 52
5.2.3 Segmentation .. 53

5.2.4 Packing ... 53
5.2.5 Light Map Creation .. 54

5.2.6 Avoiding Mip-Mapping Artifacts .. 54
5.3 Selecting Representation .. 55

6 Implementation Notes .. 56

6.1 Overview .. 56
6.2 Creating the Element Hierarchy ... 56

6.2.1 Clustering ... 56
6.2.2 Hierarchical Elements .. 57
6.2.3 Leaf Mesh Data Structure .. 58

6.3 Radiosity Calculation ... 58
6.3.1 Hierarchical Solver ... 58

6.3.2 Visibility ... 58

6.4 Scene Graph Updates ... 59

6.4.1 Calculating Vertex Colors .. 59
6.4.2 Light Maps ... 59

6.5 Rendering ... 60
6.5.1 Adding Specular Lighting .. 60
6.5.2 Textures and Environment Mapping .. 60

7 Results ... 62

 vii

7.1 Overview .. 62

7.2 Test System .. 62
7.3 Test Scenes ... 62
7.4 Preprocessing ... 63

7.5 Radiosity Calculation ... 64
7.6 Rendering ... 65

8 Conclusions ... 66

9 Future Work ... 67

9.1 Overview .. 67

9.2 Improving the Accuracy of the Algorithm ... 67
9.2.1 Discontinuity Meshing ... 67
9.2.2 Improved Refinement Oracle ... 67
9.2.3 Volume Hierarchy Construction .. 67

9.3 Improving Visualization ... 67

9.3.1 Parameterization ... 67
9.3.2 Programmable Graphics Hardware .. 68

9.3.3 Simplification and Level-of-Detail .. 68

10 Bibliography ... 69

viii

Chapter 1. Introduction

 9

1 Introduction

1.1 Background

Over the last three decades the field of computer graphics has evolved at a tremendous rate. In

the 1970s, computers capable of displaying digital images were rare and expensive; today,

realistic computer-generated images and video sequences can be found everywhere. In recent

years, real-time computer graphics has made a huge leap forward and it is now possible to

render realistic images at interactive frame rates. This has opened the door for many new

applications in fields such as product visualization, virtual reality, and 3D computer games.

The accurate simulation of light is one of the most important aspects in the synthesis of

photorealistic images. The physically-based simulation of all light scattering in a synthetic

model is called global illumination. This process is quite complex and computationally

expensive and most methods are not suitable for real-time applications. The computation

times often range from minutes to several hours for large scenes. Ray tracing and its

derivatives are inherently view-dependent, meaning that the solution has to be recalculated as

soon as the view changes. This makes real-time simulations based on such algorithms

difficult. Other methods, such as radiosity, calculate a view-independent solution that can be

reused for multiple views. In this thesis we investigate the application of radiosity for real-

time simulations of complex scenes.

1.2 Problem Formulation

This work has been conducted in collaboration with Opticore AB, a company that develops

real-time visualization software. The task, proposed by Opticore, was to find a radiosity-based

algorithm that generates global illumination solutions for scenes with highly tessellated

models that can be used in real-time simulations. The lighting calculation is allowed to take

some time, but when it is completed the simulation should have about the same real-time

performance as before.

1.3 Project Goals

The goal of this thesis is to investigate what methods that can be used to achieve the results

mentioned in the previous section. The problem can be divided into two sub-problems. The

first one is to generate a global illumination solution for a given scene. The second one is to

find a way to display this solution in real time without too much performance impact.

Additional goals, based on Opticore’s requirements, are that the proposed solution is as

automatic as possible and that it runs on a wide range of hardware. It is also important that it

works well for highly tessellated CAD data, since that is the primary focus area of Opticore’s

products.

When the investigation is completed, the algorithms should be implemented and integrated

in the Opticore Opus Studio application [Opti01]. The implementation should be based on the

OpenGL Optimizer/Cosmo 3D API [Open98, Ecke98].

Chapter 1. Introduction

10

1.4 Contributions

Our main contribution is the development of a radiosity system capable of generating high-

quality global illumination solutions suitable for real-time simulations. We have combined

some of the state-of-the-art algorithms in hierarchical radiosity, e.g., face clustering and

vector-based radiosity, to be able to efficiently handle highly tessellated models.

Previous work on face cluster radiosity has focused primarily on scenes with a small

number of very complex surfaces. Our system combines face cluster radiosity with an

efficient volume cluster hierarchy to manage larger sets of disconnected surfaces.

A new patch refinement method is presented, that works well for badly shaped triangles

often found in highly tessellated CAD data.

We propose a radiosity representation method that combines vertex lighting and light

mapping to allow real-time simulations of the radiosity solutions. This includes a new

segmentation scheme for texture atlas creation and a rendering approach to combine radiosity

with specular lighting on older graphics hardware.

One advantage of our system is that the user quickly gets visual feedback on how the

calculation progresses. The preprocessing needed before the calculations can begin is very

quick and the initial results can be displayed very fast. Even for large models, it is possible

get a good idea of how the final result will look like in under a minute. This allows the user to

quickly determine if some parameters need to be changed, and if so, restart the calculation.

1.5 Thesis Overview

This thesis consists of ten chapters. After this introduction chapter, a brief overview of

radiosity and global illumination is given in Chapter 2. Chapter 3 presents the most important

previous work on the subject.

Chapters 4-5 describe our proposed solution, i.e., the algorithms that our radiosity system is

based on. In Chapter 6, some implementation details are given.

Results and conclusions are presented in Chapters 7-8, and suggestions for future work in

Chapter 9. A bibliography can be found in Chapter 10.

Chapter 2. Radiosity and Global Illumination

 11

2 Radiosity and Global Illumination

2.1 Illumination Models

Simulation of lighting begins with the specification of material properties for the surfaces in

the scene and the positions and characteristics of the light sources. The illumination can then

be simulated by using a local or a global illumination model.

2.1.1 Local Illumination

A local illumination model considers only the light sources and the surfaces illuminated

directly. This means that it does not capture shadows or indirect illumination from other

surfaces. Local illumination models are not physically based, and cannot produce accurate

simulations of reality. However, because of their simplicity they are commonly used in real-

time computer graphics.

2.1.2 Global Illumination

In reality, every surface receives light both directly from the light sources and indirectly from

neighboring surfaces. In order to simulate the effects of interreflection, all objects must be

considered as potential sources of illumination for all other objects in a scene. This is called a

global illumination model. Global illumination methods are generally physically-based and

try to capture both indirect illumination and shadows, but all possible light interactions are not

necessarily considered. Because of their high complexity, the global illumination methods are

often not possible to use in real-time graphics. Figure 2.1 demonstrates the difference between

global and local illumination.

(a) (b)

Figure 2.1. Illumination models. (a) Local illumination. (b) Global illumination.

Chapter 2. Radiosity and Global Illumination

12

2.2 Terminology and Radiometric Quantities

2.2.1 Radiometry and Photometry

Light is a form of electromagnetic radiation. Electromagnetic radiation can exist at any

wavelength, and what we see as visible light is only a tiny fraction of the electromagnetic

spectrum. Light is studied primarily in the fields of radiometry and photometry. Radiometry is

the science of measuring light in any portion of the electromagnetic spectrum. The amount of

light at each wavelength can be measured by a spectroradiometer. Photometry, on the other

hand, is the psychophysical measurement of the visual sensation produced by the

electromagnetic spectrum. The radiometric quantities are measured with respect to a specific

wavelength and thus independent of the human visual system, whereas the photometrical

quantities are integrated over all possible wavelengths weighted by the response of the human

visual system. Our eye is for instance more sensitive to green light than to red or blue light.

Radiometry is more fundamental than photometry, in that photometric quantities may be

computed from spectroradiometric measurements. For this reason, it is usually best to use

radiometric quantities for computer graphics and image synthesis [Cohe93].

2.2.2 Solid Angle

In order to discuss the radiometric quantities, the concept of solid angle must be introduced.

The solid angle describes the area of space occupied by a surface as seen from a point. It is

measured by calculating the area of the surface projected onto a unit hemisphere centered at

the point. Solid angle is measured in steradians (sr), and the solid angle subtended by the

entire hemisphere is 2 sr.

Because solid angles are measured with respect to the unit hemisphere, it is often

convenient to represent them using spherical coordinates. A position on a sphere can be

represented by two angles; the number of degrees from the North Pole or zenith,  , and the

number of degrees about the equator or azimuth,  .

Figure 2.2. Solid angle.





n

Chapter 2. Radiosity and Global Illumination

 13

When considering the solid angle subtended by a differential area dA , an approximate

value can be obtained by taking the projection of dA onto a plane perpendicular to the

direction from the origin of the hemisphere to the differential area. The projection onto the

plane has a surface area of cosdA  , and the solid angle is obtained by dividing this area by

the square of the distance to the origin, to account for the projection onto the unit hemisphere:

2

cosdA
d

r


  (2.1)

2.2.3 Radiance

The most important quantity in the physical simulation of light is radiance. Radiance is the

amount of power radiated from a surface in a particular direction, more precisely defined as

the power per unit projected area perpendicular to the ray per unit solid angle in the direction

of the ray. The radiance from a point x in direction  is:

 (,) (, ,)
hc

L p d   


 x x (2.2)

where

 (, ,)p  x represents the density of light photons at point x travelling in the direction

 with a wavelength  .

 /hc  gives the energy of a single photon (h is Planck’s constant and c is the speed of

light).

Radiance is measured in Watts per unit area per unit solid angle (W/m
2
sr) and it is denoted by

L. The corresponding photometric quantity is luminance.

2.2.4 Irradiance

Another important quantity is irradiance (illuminance in photometry), which is the radiant

energy per unit area falling on a surface. It is denoted E and it is measured in Watts per unit

area (W/m
2
). The irradiance can be related to the incident, or incoming, radiance (iL) by

integrating over a hemisphere ():

 cosid L d dA 


  
  (2.3)

to produce the total radiant energy incident on a surface, d . Since irradiance is energy per

unit area, it is computed as:

Chapter 2. Radiosity and Global Illumination

14

d

E
dA


 (2.4)

or equivalently:

 cosiE L d 


  (2.5)

The quantity cos d  is often referred to as the projected solid angle. It can be thought of as

the projection of a differential area onto a hemisphere projected onto the base of the

hemisphere, as shown in Figure 2.3.

Figure 2.3. Projection of differential area.

2.2.5 Radiosity

Radiosity (denoted B) is very similar to irradiance. It is the total energy per unit area that

leaves a surface. It is computed in a similar fashion by integrating the outgoing radiance over

the unit hemisphere and dividing by the area:

 cosoB L d 


  (2.6)

where oL is the outgoing radiance.

When considering diffusely reflecting surfaces, the outgoing radiance becomes independent

of direction and can therefore be brought outside the integral:



n

Chapter 2. Radiosity and Global Illumination

 15

2

0 0

cos

cos sin

o

o

o

B L d

L d d

L

 

 

   












  (2.7)

The official term for radiosity is radiant exitance, but the term radiosity is commonly used

in computer graphics literature. Radiosity is measured in Watts per unit area (W/m
2
) and the

photometric equivalent is luminosity.

2.2.6 Reflectance Functions

The reflecting properties of a material are described by the concept of reflectance. The most

general expression of the reflectance is the bidirectional reflectance distribution function, or

BRDF. The BRDF is defined as the ratio of the reflected radiance in the outgoing direction, to

the differential irradiance from the incident direction [Cohe93]:

()

()
()cos

r r
i r

i i i i

L

L d


  

  
  (2.8)

where

 ()r rL 

is the reflected radiance rL in the outgoing (reflected) direction r .

 ()cosi i i iL d   is the irradiance iL coming from the differential solid angle id around

the incident direction i with polar angle i .

The directions are often expressed as four polar angles by writing the BRDF as
1
.

The BRDF notation is widely used in computer graphics, but cannot model all physical

light interactions. In this presentation all surfaces are assumed to be opaque, the reflected light

is assumed to have the same frequency as the incoming light and light is assumed to reflect

instantaneously off a surface. We also ignore participating media like smoke, dust etc.

 A BRDF is often divided into three components, a diffuse, a glossy, and a specular

component. The type of reflection depends mostly on the material and the roughness of the

surface. Rough, irregular surfaces scatters light in many different directions and such

reflections are called diffuse. An ideal diffuse reflector scatters light uniformly in every

direction and is hence characterized by a uniform BRDF that does not depend on the outgoing

direction. The reflected radiance is therefore the same in all directions, and the appearance of

the surface is independent of the viewing angle. Ideal diffuse surfaces are also called

Lambertian reflectors.

1
 The standard notation is to specify the reflected direction first in the arguments of the BRDF.

(, , ,)r r i i    

Chapter 2. Radiosity and Global Illumination

16

Perfectly smooth surfaces on the other hand, often act as ideal specular surfaces that reflect

light only in the mirror direction. The outgoing direction is contained in the plane of

incidence, and the outgoing polar angle is equal to the incident polar angle. Ideal specular

reflections are also known as mirror reflections.

Real materials are not perfectly diffuse or perfectly specular. To capture the reflectance of

real surfaces the BRDF contains an intermediate component for reflections that fall

somewhere between a diffuse and a specular reflection. This component is called glossy,

semi-specular, rough specular, or directional diffuse. In contrast to the other two components,

glossy reflections have a complicated directional dependence.

Figure 2.4. Diffuse, glossy and specular reflection.

2.3 Solving the Global Illumination Problem

2.3.1 Historical Perspective

The first global illumination algorithm was introduced in 1980 by Whitted [Whit80]. Whitted

applied a ray tracing algorithm recursively to achieve a simple global illumination model that

accounted for mirror reflection, refraction, and shadows. The ray tracing approaches were

later extended to include glossy reflections and soft shadows using stochastic ray tracing and

cone tracing. The rendered images continued to improve, but the models used were not based

on physical principles and quantities. There was also no practical way to capture diffuse

interreflection with these methods.

Radiosity methods, originally from the field of radiative heat transfer, where applied to the

problem of global illumination in 1984 by researchers at Fukuyama and Hiroshima

Universities in Japan [Nish85] and at the Program of Computer Graphics at Cornell

University in the United States [Gora84]. These methods begin with an energy balance

equation to describe the interreflection of light in the scene. This equation is then

approximated and solved numerically.

2.3.2 The Rendering Equation

If we ignore participating media, the global illumination problem can be summarized by the

following integral equation:

n n n

Chapter 2. Radiosity and Global Illumination

 17

 (2.9)

where

 is the total radiance leaving surface point in the direction .



is the radiance directly emitted from in the direction .



is the BRDF describing the fraction of radiance incident from direction

 that is reradiated in direction .



is the radiance incident on from the direction

.

 is the angle between the surface normal at and

.

 is the hemisphere lying above the tangent plane of the surface at .

This equation was first formulated by Kajiya [Kaji86], who named it the rendering equation.

It basically states that the radiance emitted from a surface point x in the direction is equal

to the radiance the surface itself emits in that direction, plus the integral over the hemisphere

of the incoming radiance that is reflected in that direction.

The rendering equation forms the basis for the global illumination algorithms, as it

expresses the outgoing radiance for any given point on any surface. A solution to the equation

is thus a solution to the global illumination, and all global illumination methods try to solve

the rendering equation more or less accurately. The global illumination algorithms can

roughly be divided into two groups: Monte Carlo methods and finite element methods

[Heck93].

2.3.3 Monte Carlo Methods

The solution of the rendering equation requires numerical evaluation of high-dimensional

integrals. Classical, deterministic, integration methods do not capture discontinuities well, and

they suffer from dimensional explosion, which means that the computational complexity is

exponential with regard to the dimension of the domain. The dimensional explosion can be

avoided by using Monte Carlo integration methods. Instead of choosing sample points at

regular intervals, the Monte Carlo methods pick them at random. The computational

complexity of these methods is independent of the dimension of the integral. Many global

illumination methods are based on Monte Carlo integration, such as stochastic ray tracing

[Cook86], path tracing [Kaji86], and photon mapping [Jens01]. Since the focus of this thesis

is on radiosity, these approaches will not be discussed in more depth.

2.3.4 Finite Element Methods

Heckbert and Winget [Heck91] have shown that radiosity is essentially a finite element

method. The finite element methods approximate an unknown function by subdividing the

domain of the function into smaller pieces called elements, across which the function can be

approximated using simple functions like polynomials. The unknown function is thus

(,) (,) (,) (,)cose i i i iL L L d       


   xx x x x

(,)L x x 

(,)eL x x 

(,)i  x

i 

(,)i iL x x
i

 x
x

i

 x




Chapter 2. Radiosity and Global Illumination

18

projected into a finite function space, and the resulting system can then be solved numerically.

Although the radiosity problem is often viewed as a finite element problem, many different

approaches have been taken to solve the transfer of radiosity in an environment, from purely

finite element methods to purely stateless Monte Carlo methods.

Finite element methods are typically more suitable to scenes containing diffuse surfaces,

whereas the Monte Carlo based methods are better at simulating highly specular surfaces. The

Monte Carlo approaches capture discontinuities like shadow boundaries better than the finite

element methods. This is because the error in their approximation results in noise, which on

the other hand can be highly distracting in areas where the result is expected to be smooth and

continuous. Finite element methods often produce the best results for low to medium

complexity scenes, whereas the Monte Carlo methods are faster for more complex

environments. However, recent hierarchical finite element based radiosity algorithms have

shown promising results for very complex scenes, as we shall see later.

2.4 The Radiosity Method

2.4.1 Simulating Diffuse Surfaces

The basic radiosity algorithm is limited to simulating the illumination for scenes with diffuse

(Lambertian) surfaces. This limitation also has the advantage that the solution is view

independent, which means that once the radiosity calculations are completed the scene can be

rendered quickly from any viewpoint without recalculating the illumination. Interactive

walkthroughs of the scene can therefore easily be performed.

Specular reflection and other effects can be added to the radiosity solution in a second ray

tracing pass which overcomes the diffuse-only limitation to some degree. It is, however, not

possible to mix specular and diffuse light bounces [Will00].

2.4.2 The Radiosity Equation

The rendering equation (Equation (2.9)) can be simplified if we assume that all surfaces

reflect light diffusely. The outgoing radiance is then the same in all directions, i.e.,

. The BRDF is also independent of the incoming and outgoing directions and

can therefore be taken out from under the integral. This gives us the following equation:

 (2.10)

which, given 2(cos) /d dA r  (Equation (2.1)), and () ()B Lx x (Equation (2.7)), can be

rewritten as the radiosity equation:

 (2.11)

where

 x and are points on surfaces S in the scene.

)(),(xx LL 


() () () (,)cose i i iL L L d   


   xx x x x

() () () () (,) (,)
S

B E B G V dA      x x x x x x x x

x

Chapter 2. Radiosity and Global Illumination

 19

 is the total radiosity leaving point x.

 is the emission function describing the energy per unit area emitted at point x.

 is the reflectance function.

 is the geometry kernel between point x and point , defined as

 (2.12)

 is the binary visibility between point x and point .

This is the equation that must be solved to find the global illumination for an environment

containing only Lambertian diffuse surfaces.

Discretizing Equation (2.11) as a finite element problem gives the classical radiosity

equation [Cohe93]:

 (2.13)

where , called the form factor, is given by

1

(,) (,)
i j

ij j i
A A

i

F G V dA dA
A

    x x x x (2.14)

The form factor represents the fraction of energy that leaves element i and arrives directly at

element j. Each element has a radiosity equation of the form of Equation (2.13) and the

system of equations can be expanded into matrix form:

 (2.15)

This matrix is known as the radiosity matrix. By solving this linear equation system we obtain

a radiosity solution which describes the distribution of light between the elements in a scene.

2.4.3 Algorithm Overview

The process of initializing, calculating, and presenting a radiosity solution is sometimes called

the radiosity pipeline [Yeap97, Niel00]. Figure 2.5 shows this process divided into five

different stages.

)(xB

)(xE

)(xρ

)(x x, G x

2

cos cos
(,)G

 



 


x xx x
x x

)(x x, V x

1

n

i i i j ij

j

B E B F


  

ijF

1 11 1 12 1 1 1 1

2 21 2 22 2 2 2 2

1 2

1

1

1

n

n

n n n n n nn n n

F F F B E

F F F B E

F F F B E

  

  

  

       
     
  

     
     
     
       

Chapter 2. Radiosity and Global Illumination

20

Figure 2.5. The radiosity pipeline.

Stage one defines the input scene geometry. The second stage subdivides the surfaces into

elements to be used in the calculation. Stage three calculates the form factors and stage four

solves the system of linear equations. The last stage displays the results.

It is important to note that if some parameters are changed it is not necessary to restart at

stage one. Only if the geometry of the input scene is changed must the entire process be

repeated. If the surface reflectance properties or the lighting parameters are changed, we can

restart at stage four. Most importantly, if the viewing parameters are changed we only have to

repeat parts of stage five.

2.4.4 Meshing

The meshing stage subdivides the input polygons into elements. It is a very important part of

the radiosity process, since both the accuracy and the complexity of the radiosity calculations

depend very much on the underlying mesh. The goal is to create a mesh which for a desired

accuracy uses as few elements as possible, and distributes the error evenly among those

elements.

A simple meshing strategy is uniform subdivision. It performs reasonably well where the

radiosity function is smooth but fails where the function changes more rapidly. Increasing the

mesh density will improve the accuracy at the cost of higher memory consumption and

execution time. The error will however still be unevenly distributed. A better approach is to

use a non-uniform subdivision strategy that subdivides to a fine level only where it improves

the accuracy. This will distribute the error evenly among the elements. Figure 2.6 illustrates

the different meshing strategies for a one-dimensional radiosity function.

1. Input Geometry

2. Meshing

3. Form Factor Calculation

4. Solve Radiosity System

5. Reconstruction and Rendering

Chapter 2. Radiosity and Global Illumination

 21

(a)

(b)

(c)

Figure 2.6. Meshing strategies. The shaded area represents the error in the

approximation. (a) Uniform subdivision. (b) High density uniform subdivision. (c)

Non-uniform subdivision.

2.4.5 Form Factor Calculation

Calculating the form factors is usually the most expensive part of the radiosity method. It can

consume up to 90 percent of the execution time of a radiosity program [Piet93]. The form

factors represent the geometric relationship between elements, and do not depend on the

reflective or emissive characteristics of the surfaces. A form factor between two elements

depends solely on the orientation and size of the elements and the distance and visibility

between them.

Figure 2.7. Element Ej receiving light energy from element Ei.

Rewriting Equation (2.14) by expanding the geometrical term gives us:

R
a
d
io

si
ty

R
a
d
io

si
ty

R
a
d
io

si
ty

Ei

nj

ni

θi

θj

r

Ej

Chapter 2. Radiosity and Global Illumination

22

2

cos cos1

i j

i j

ij ij j i
A A

i

F V dA dA
A r

 


   (2.16)

This equation cannot be solved directly, except for the most trivial cases. For general

situations, numerical methods must be used to approximate the form factor.

Equation (2.16) can be simplified by considering the form factor from a differential area

element to a finite area element. The emitter is thus treated like a point source, and the

equation becomes:

2

cos cos

i j
j

i j

ij dE E ij j
A

F F V dA
r

 


   (2.17)

This approximation is only justifiable if the distance between the elements is large, since the

inner integral then does not change much over the outer integral in Equation (2.16). Ashdown

[Ashd94] mentions the five-times rule that says that a finite area emitter should be modeled as

a point source only when the distance to the receiving surface is greater than five times the

maximum projected area of the emitter. If the five-times rule does not hold for any two

elements, we can always subdivide the emitter until the rule is satisfied for each subdivided

area. However, this fails if the elements share a common edge since the distance between

them will then be zero along the edge. In those cases we have to stop the subdivision at an

appropriate level.

The visibility between the elements also affects the validity of the above approximation.

This problem can be avoided by subdividing the elements until each element is either

completely visible or not visible at all.

One way to solve Equation (2.17) is to use hemisphere sampling. This method places an

imaginary unit hemisphere centered on the differential area, and projects the element radially

onto the hemisphere and then orthogonally down onto the base of the hemisphere. The

fraction of the base area covered by this projection is equal to the form factor. See Figure 2.8.

Figure 2.8. Hemisphere sampling.

dAi Aj’’

Aj’

Aj
ni

Chapter 2. Radiosity and Global Illumination

 23

The differential area-to-element form factor can now be written as:

 (2.18)

This geometric solution is known as Nusselt’s analogy. The area of the projection of the

element on the unit hemisphere is, by definition of the solid angle, equal to the solid angle

subtended by the element and accounts for the factor cos θj /r
2
 in Equation (2.17). The

projection onto the base accounts for the cos θi term, and the π in the denominator is the area

of a unit circle, i.e., the base of the hemisphere.

Cohen and Greenberg proposed the hemicube form factor algorithm in 1985 [Cohe85]. This

method replaces the hemisphere with a hemicube. The faces of the hemicube are divided into

a grid of cells, each defining a direction and a solid angle. A delta form factor, ΔF, is

computed for each cell based on its size and orientation. The delta form factors are pre-

computed and stored in a lookup table. The form factor for an element is approximated by

projecting the element onto the faces of the hemicube and summing the delta form factors

covered by the projection. To determine the visibility of the element the Z-buffer algorithm is

used. This simple and efficient approach also has the advantage of wide hardware rendering

support. A fast, hardware accelerated hemicube algorithm is described in [Wide99].

Several variations of the hemicube approach have been developed, such as the cubic

tetrahedral method [Bera91] and the single plane method [Sill89].

Figure 2.9. The hemicube method.

The hemicube method has several limitations. The resolution is limited which can cause

uneven and inadequate sampling. Equally sized elements may be sampled differently, as

illustrated in Figure 2.10. Elements may also be missed completely if their projection on the

hemicube is small enough to fall between the centers of the hemicube cells. The tetrahedral

and single plane methods also suffer from these limitations.

i j

j

dE E

A
F






ni

Aj

dAi

Chapter 2. Radiosity and Global Illumination

24

(a)

(b)

(c)

(d)

Figure 2.10. Hemicube sampling limitations. Four identical

triangles projected onto one of the hemicube sides, each covering a

different number of cell centers. This results in a wide variance in

the associated form factors.

There are also several ray casting approaches to calculate the form factors. Ray casting

offers a flexible way to determine visibility. Any distribution of points on the elements or

directions on the hemisphere can be chosen independently and adaptive sampling can be used

to distribute the computational effort evenly. Rays can also be distributed stochastically,

which can make inadequate sampling less noticeable by converting aliasing to noise

[Cohe93].

The ray casting methods also provide an excellent basis for Monte Carlo integration of the

form factor equation over the hemisphere. Importance sampling can be used by selecting

directions over the hemisphere with a sample density proportional to the cosine. In this way,

more effort will be expended where the form factor is largest.

Ray casting is generally more expensive than scan conversion algorithms for form factor

calculation, especially when calculating the form factors between one element and all other

elements in a scene. Ray casting methods are however often preferred in situations where

only a few form factors are needed for a single element. This is often the case with

hierarchical radiosity algorithms. The possibility to use importance sampling and the

increased flexibility can also lead to better overall performance. There are also many

acceleration schemes for ray casting, see [Glas89]. Another advantage is that it can be applied

to both planar and curved surfaces.

Chapter 2. Radiosity and Global Illumination

 25

2.4.6 Solving the Radiosity Equation

When the form factors are known, the linear system in Equation (2.15) can be solved. There

are a number of numerical algorithms available to solve linear systems. Direct methods, such

as Gaussian elimination, can be applied to the radiosity problem, but they have a

computational complexity related to the cube of the number of equations, O(n
3
) [Cohe93].

This is far too expensive for large, non-sparse systems like the radiosity system and it is

therefore necessary to use iterative solution methods.

Iterative methods begin with a guess for the solution and proceed by repeatedly performing

operations that move the guess closer to the actual solution. Gauss-Seidel iteration, also

referred to as gathering [Cohe93], is one of the more common methods. It traverses all

elements and for each element energy is gathered from all other elements. This procedure is

repeated until the system converges.

(a) Gathering

(b) Shooting

Figure 2.11. Gathering vs. shooting.

Another method is called progressive refinement. It performs Southwell and Jacobi iteration

on the radiosity system [Cohe93]. In contrast to the gathering method, the element with the

most energy is selected and its energy is “shot” to all other elements. Hence, this method is

often referred to as shooting. The shooting and gathering behavior is shown in Figure 2.11.

Both gathering and progressive refinement has a time complexity of O(n
2
), but progressive

refinement usually converges much faster.

2.4.7 Reconstruction and Rendering

When the radiosity solution has been calculated, the illuminated scene can be rendered.

During rendering, the color of each pixel is derived from the radiance of the surface location

visible at the pixel. The radiance can be directly determined from the calculated

approximation of the radiosity function.

A common way to render the radiosity solution is to calculate the colors at the vertices of

the mesh by averaging the colors of the neighboring elements. The mesh can then be rendered

using the standard graphics pipeline and linearly interpolated by hardware using Gouraud

shading. However, the human visual system is highly sensitive to discontinuities and higher

order reconstructions of the radiosity solution may be necessary before rendering.

Chapter 2. Radiosity and Global Illumination

26

The mapping
2
 from radiance to pixel colors is not trivial. Typically, the display device

allows 8-bit integer pixel values for each of the red, green, and blue color channels. In the real

world, luminance values can range from 10
-5

 cd/m
2
 to 10

5
 cd/m

2
 [Cohe93]. It is therefore

necessary to map the values calculated by the radiosity simulation to the range available on

the display device. Another problem is the non-linear relationship between pixel colors and

the resulting display device radiance. The adjustments for this non-linear relationship are

called gamma correction. In the end, the goal of the mapping process from radiosities to pixel

colors is to produce a subjective impression of brightness in the image that is equivalent to the

perceived brightness in the real environment.

2
 This mapping is often referred to as tone mapping, or tone reproduction.

 Chapter 3. Previous Work

 27

3 Previous Work

3.1 Early Radiosity Methods

3.1.1 Matrix Radiosity

Early radiosity approaches calculated the form factor matrix explicitly [Gora84, Nish85,

Cohe85], and are thus often referred to as matrix radiosity. The matrix radiosity method uses

a fixed mesh of elements and computes the form factors between every possible pair of

elements. The resulting linear system is then typically solved using an iterative method. This

results in time and memory requirements that are quadratic in the number of elements in the

mesh, which makes the method useful only for simple scenes.

3.1.2 Progressive Refinement

Progressive refinement, briefly mentioned in the previous chapter, was the first major

improvement over matrix radiosity [Cohe88]. The algorithm solves the radiosity matrix

iteratively and the goal is to display the results after each iteration. Each element has a

radiosity value, which is the radiosity calculated so far for the element, and an unshot

radiosity value, which is the portion of that element’s radiosity that has yet to be “shot”. In the

beginning of the process, only the light sources have an unshot radiosity value greater than

zero.

During each iteration, the element with the greatest unshot radiosity is chosen and its

radiosity is shot through the environment. The other elements may receive some radiosity,

which is then added to both their unshot and received radiosity. After the shooting, the unshot

radiosity of the shooting element is set to zero. The elements can thereafter be rendered using

their received radiosity. The algorithm is usually terminated when the total unshot radiosity

falls below a given threshold.

One of the greatest advantages with the progressive refinement method is that the

illumination that will have the most impact on the final image is calculated first. The overall

time complexity is still O(n
2
), but it usually converges very fast. The form factors can also be

calculated on-the-fly during the solution stage, which reduces the form factor storage to O(n).

Progressive radiosity is often used in conjunction with substructuring [Cohe86], which

introduces a two-level hierarchy; a coarser level of patches that shoot light to a finer set of

receiving elements. This way, the elements can capture fine illumination details without

increasing the number of shooting patches.

3.2 Hierarchical Radiosity

3.2.1 Overview

Hierarchical radiosity [Hanr91] is the most significant theoretical modification of the original

radiosity algorithm. By using techniques similar to those used in the n-body algorithm for

gravitational simulations [Appe85], the hierarchical radiosity algorithm reduces the

complexity from quadratic to linear in the number of elements used.

The two-level substructuring hierarchy is extended by removing the separation of patches

and elements, replacing them with a continuum of hierarchical elements. Radiosity exchange

Chapter 3. Previous Work

28

can then be computed between arbitrary levels of the hierarchy. For any pair of surfaces, an

appropriate subdivision level for each side is determined and then used to compute the energy

exchange. This will in effect divide the form factor matrix into blocks, each of which

represents an interaction between groups of elements. The advantage is that the number of

blocks in the matrix is O(n) (where n is the total number of elements) compared to O(n
2
)

entries in the regular form factor matrix [Hanr91].

(a)

(b)

Figure 3.1. Hierarchical radiosity. Direct lighting (a) is calculated at

a finer subdivision level than indirect lighting (b). The shaded areas

represent pairs of elements exchanging energy and the arrows

represent the links between the elements.

For every input polygon in the scene a hierarchical element representation is created. The

root node of the hierarchy represents the entire polygon, and deeper nodes represent partitions

of it. The interaction of hierarchical elements exchanging energy is represented in the form of

links, which contain information of the form factor and some estimate of the error in the

approximated radiosity transfer. Initially, one link for every pair of input polygons has to be

created. Each link is then refined until the estimated error for the link falls below a preset

threshold. When a link is refined, either the source element or the receiver element is

subdivided. The refined link is replaced by new links pointing to the children of the

subdivided element.

Because of the initial linking, the cost is quadratic in the number of input polygons, k, but

linear in the number of solution elements, n. The cost is thus actually O(k
2
 + n), and the

overall linear complexity only holds if k << n.

3.2.2 Link Refinement

Link refinement is the first step in the hierarchical radiosity algorithm. All pairs of polygons

in the scene are initially connected by a link. Each link is then recursively refined until the

energy transfer representation reaches the desired accuracy. The goal is to predict whether a

group of form factors can be represented by a single link. Such a prediction method is referred

to as a refinement oracle.

The refinement oracle is a central part of hierarchical radiosity because it affects both the

computation time and the accuracy of the radiosity computation. Early methods used a simple

criterion based on the magnitude of the form factor to drive refinement [Hanr91]. More recent

work has focused on perceptually-based measures [Gibs97, Prik99, Stam00] or visibility-

based measures [Dura99].

 Chapter 3. Previous Work

 29

When a link between two elements is refined it must also be decided if the source element

and/or the destination element should be refined. Typically this decision is made by

comparing the relative contribution of the two elements to the total error in the link. This can

be done by comparing the projected areas of the elements along the direction of the transport.

3.2.3 Solving the Radiosity System

The link refinement stage results in a hierarchical representation of the form factor matrix

which is now used to compute the actual energy transfers. For a given element in the

hierarchy, energy is “gathered” through all incoming links at that node. This is done by

multiplying the form factor stored in the link by the radiosity value for the element at the

other end of the link. Since links can be established at all levels in the hierarchy, the radiosity

of an element also depends on the links of its ancestors as well as the links of its descendents

in the hierarchy. In order to obtain a complete view of the energy transfers in the hierarchy a

push-pull process is needed. Starting from the root element in each tree, each element’s

reflected radiosity is added to each of its children’s radiosity. This in effect pushes radiosity to

the leaves of the hierarchy. Since radiosity is defined per unit area, the correct radiosity value

for an element is the area average of its children radiosities. Radiosity is therefore pulled from

the leaves to the root, averaging the radiosity values at each level.

The solution process consists of repeatedly executing the gather and push-pull operations

until the system converges.

3.2.4 Interleaving Refinement and Solution

In the original two-stage solution, we first refine the links, and then solve for the radiosities.

The refinement oracle can thus only make decisions based on the geometry of the form factor

estimates and not on the actual energy transfers in the scene
3
. This is a simple approach, but it

ignores the fact that the optimal link refinement is dependent on the final radiosity solution.

An interleaved solution algorithm can make better decisions about link refinement. We then

repeatedly execute the refine, gather, and push-pull operations. The refinement oracle can

then take the estimated energy transfer across each link into account, leading to a more

efficient solution.

A third solution method is to run refinement until all links meet some error criterion, then

iterate the gather and push/pull stages until the system converges, and then repeat the whole

process for a lower error criterion. This is called a scheduled solution and generally provides

the best and most stable results of the various hierarchical radiosity solvers [Will00].

3.3 Clustering Methods for Hierarchical Radiosity

3.3.1 Volume Clustering

We have seen that hierarchical radiosity is linear in the number of solution elements but also

quadratic in the number of input polygons. The classical hierarchical radiosity algorithms

therefore work well on scenes with a small number of large polygons, but become impractical

in time and memory consumption for more complex scenes.

3
 The initial light sources can possibly be accounted for.

Chapter 3. Previous Work

30

To avoid the initial linking of the input polygons in a scene, clustering methods for

hierarchical radiosity were developed [Smit94, Sill95a, Sill95b, Gibs96]. These methods

create a new volume cluster hierarchy above the input polygons with a single root cluster for

the entire scene. The volume clusters contain groups of potentially disconnected polygons

with varying orientation and reflection properties. With the use of volume clusters, only a

single initial link is required and the k
2

term in the complexity is eliminated.

(a)

(b)

Figure 3.2. Volume Clustering. Groups of polygons, such as the

chair above, can both send (a) and receive (b) energy as a whole.

Calculating the light incident on a cluster is not trivial. The simplest approach is to assume

the clusters are isotropic, and sum the incoming light from all directions. This method is fast,

but often too inaccurate. A more successful alternative is to push the light down to the input

polygons when it is gathered across a link, but this can be costly for complex scenes. The

clustering methods are still significantly faster than classical hierarchical radiosity.

Another problem with volume clustering is that it is difficult to interpolate the irradiance

between clusters. This often leads to blocky results as can be seen in Figure 3.3. One solution

is to refine the clusters down to the input polygon level and interpolate over each polygon, but

this negates many of the benefits of using clustering. Generally, volume clustering methods

are more suitable to handling unorganized sets of polygons than highly tessellated models.

3.3.2 Face Clustering

For groups of polygons that represent connected surfaces, the volume clusters can be replaced

by multiresolution models. Such models often provide a much better fit to the original

surfaces than volume clusters, and the need to push light to the leaves during iterations can be

avoided. Early multiresolution approaches used manually constructed simplified models

[Rush93], or applied illumination from a simple scene to a more detailed version of it

[Greg98]. A more promising approach, where the simplification is driven by the radiosity

algorithm, is called face cluster radiosity [Will99, Will00]. The face cluster hierarchy groups

together faces that have similar normals, and thus approximates largely planar surfaces well.

The rationale for using multiresolution models is that for highly tessellated models, the

geometric detail is often much higher than the illumination detail.

Since both face clusters and refined polygons yield a contiguous piece of surface with a

normal, they can be treated similarly by the hierarchical radiosity algorithm. The algorithm

can thus operate efficiently at any level of detail in the hierarchy. For scenes with highly

 Chapter 3. Previous Work

 31

tessellated surfaces, face cluster radiosity yields sub-linear performance in the number of

input polygons [Will99].

Concurrent and independent of our work, the application of face cluster radiosity to highly

tessellated models has been explored by Gobbetti et al. [Gobb02, Span02, Gobb03].

Figure 3.3. Volume clustering artifacts. (From Hasenfratz et al.

[Hase99]).

3.4 Visibility and Meshing

3.4.1 Visibility Calculation

Evaluating visibility between elements tends to be by far the most expensive part of the form

factor calculation. Early radiosity methods, such as the hemicube method, sometimes use scan

conversion algorithms to determine visibility, but most methods are based on ray casting. This

is especially true for the hierarchical radiosity methods. Ray casting is a common algorithm in

computer graphics and most acceleration methods apply to radiosity as well. Overviews of ray

casting acceleration techniques can be found in [Glas89] and [Smit98].

To limit the number of visibility queries between elements, methods to determine

guaranteed full occlusion and full visibility can be used [Lebl00]. Such methods can improve

performance considerably in scenes with large planar polygons. They are however hard to

apply to scenes with concave objects and curved surfaces.

Chapter 3. Previous Work

32

3.4.2 Regular Refinement and Discontinuity Meshing

The standard mesh refinement technique used in radiosity is regular refinement. For

quadrilateral or triangular elements, each edge is split at its midpoint forming four new

elements (see Figure 3.4 a). This results in a quadtree hierarchy. Regular refinement has the

advantage of simplicity and robustness. Each element can also be refined independently. The

disadvantage is that, if an element is poorly shaped or not well aligned to the discontinuities

in the illumination, the same will hold true for its subelements.

To combat the problem of capturing discontinuities in the illumination, discontinuity

meshing algorithms were developed. The early algorithms were based on shadow volumes

and tried to determine the boundaries of the umbra and penumbra [Nish85, Camp91]. The

polygon mesh was split against these boundaries, thus effectively inserting discontinuity

edges in the mesh (see Figure 3.4 b). More recent work on discontinuity meshing has focused

on critical surfaces and visibility events [Heck92, Lisc92, Dura99].

Discontinuity meshing can create impressive results, especially for relatively sharp

shadows. It can however be hard to implement robustly and the number of discontinuities can

be overwhelming for complex scenes. It is therefore more suitable for scenes that consist of a

small number of large polygons than for scenes with highly tessellated, curved surfaces.

(a)

(b)

Figure 3.4. Mesh refinement. (a) Regular refinement. (b) Discontinuity meshing.

(From Lischinski et al. [Lisc93]).

3.5 Output Representations

3.5.1 Gouraud-Shaded Polygons

Gouraud-shaded polygons are the most commonly used output representation for radiosity

calculations. The radiosity for each vertex is calculated, and the renderer linearly interpolates

these samples over the polygons. This method is also known as vertex lighting.

Since radiosity calculations often result in meshes containing a large number of elements,

the number of triangles may be too high for real-time rendering. Various mesh simplification

 Chapter 3. Previous Work

 33

schemes can be applied as a post process to the calculation to reduce the polygon count.

Hoppe has shown that radiosity meshes are excellent candidates for polygon simplification

[Hopp96].

3.5.2 Textures

Rendering radiosity meshes using vertex lighting can lead to poor performance. An

alternative solution is to represent the radiosity using textures. Arvo proposed illumination

maps to store diffuse illumination [Arvo86], and Heckbert introduced radiosity textures

[Heck90]. These techniques were suitable for generation of still images but did not exploit

hardware accelerated texture mapping
4
.

Myszkowski and Kunii [Mysz94] developed a solution where mesh elements are replaced

by textures as a post-processing step to the lighting simulation. A combination of vertex lit

mesh elements and texture mapping is then used during interactive walkthroughs. A similar

approach is used in [Bast96]. Möller [Möll96] describes a method to replace radiosity

solutions with textures for NURBS models. This allows the same illumination map to be

reused for multiple levels-of-detail.

As texture mapping became available on commodity graphics hardware, computer games

started using textures to represent lighting detail. Commodity graphics cards are often heavily

optimized for multi-texturing, and the illumination textures can quickly be blended with

standard textures to produce the final result, see Figure 3.5. Texture maps used to represent

illumination are often called light maps. Light mapping for use in games and real-time

applications is described in [Zhuk97, Zhuk98].

Storing the illumination using light maps can increase the performance in real-time

applications substantially. However, finding a parameterization, or uv-mapping, for arbitrary

polygonal surfaces is not straight-forward. Most light map solutions presented so far either

map each polygon individually, or a group of adjacent polygons that can be projected onto a

single plane without overlapping [Zhuk97], using a simple projection.

The parameterization problem for light maps is more or less identical to the mapping of

textures used for 3D painting [Low01]. In our case, we want to paint illumination to the

textures. Low identifies three criteria for surface parameterization used in 3D painting:

 Unique-region criterion. Each point on the 3D surface must be assigned a unique point

in texture space.

 Adjacency criterion. Adjacent surface primitives in 3D space should preferably be

mapped to adjacent regions in texture space. If this criterion is not met, the texture

filtering used during rendering will yield incorrect results near the boundaries of the

primitives. Another advantage of meeting this criterion is that texture memory can be

used more efficiently.

 Minimal distortion criterion. The texture mapping distortion should be minimized to

yield a uniform resolution in 3D space and also avoid stretch artifacts during rendering.

These are criteria that a parameterization used for light mapping should try to meet as well.

The unique-region criterion must always be upheld, just as for 3D painting, while the others

can be more or less relaxed.

4
 Hardware accelerated texture mapping became available in late 1992, the first example being the Silicon

Graphics RealityEngine [Baum98].

Chapter 3. Previous Work

34

(a)

(b)

(c)

(d)

(e)

Figure 3.5. Light mapping example from the computer game Quake II, released by id

Software in 1997. (a) The original textured scene. (b) Wireframe image showing the

low polygon count. (c) Unfiltered light maps calculated with radiosity. Note that the

light map textures have relatively low resolution compared to the base textures, but

still allow for a much higher light sample density than a vertex lit mesh would have.

(d) Filtered version of (c), showing a smooth lighting solution. (e) The base textures

from (a) combined with the light maps from (d) results in the final image. Both the

filtering step and texture blending step is hardware accelerated on commodity

graphics cards.

 Chapter 3. Previous Work

 35

Most algorithms for parameterization of general polygonal models are based on the texture

atlas approach [Mail93, Sand01]. The model to be textured is partitioned into charts

homeomorphic to discs that can be parameterized independently. Various optimization

techniques can then be used to minimize the texture distortion for each chart before the charts

are finally packed in texture space. Texture atlas construction for trimmed NURBS models is

described in [Guth03].

Lévy et al. introduced the least squares conformal maps (LSCMs) method for chart

parameterization [Lévy02]. This robust method has been used to create texture atlases for

radiosity purposes in [Ray03a]. Ray and Lévy have also created a hierarchical version of the

LSCM method [Ray03b].

Chapter 3. Previous Work

36

 Chapter 4. An Efficient Hierarchical Radiosity Algorithm

 37

4 An Efficient Hierarchical Radiosity Algorithm

4.1 Overview

In this chapter we present a radiosity algorithm that efficiently handles highly tessellated

models. The core of the algorithm is based on the face cluster radiosity approach [Will99],

which has shown very promising results for such models. Above surface level, we use a

volume clustering algorithm based on [Müll99]. Polygon refinement is represented by a BSP

tree, using a new splitting approach.

The algorithm consists of a preprocessing phase and a solution phase. During the

preprocessing, a hierarchical representation of the scene is constructed. For each group of

connected polygons a face cluster hierarchy is built. The face cluster hierarchies are then

volume clustered to form a single rooted hierarchy for the entire scene. An initial self-link is

created for the root cluster before the solution phase begins. An interleaved solver is used,

that repeatedly executes the refine, gather, and push-pull steps described in the previous

chapter.

4.2 Face Cluster Hierarchy

4.2.1 Motivation

The face cluster radiosity algorithm has a complexity that is sub-linear in the number of input

polygons. When used on scenes with highly tessellated surfaces, it shows a huge performance

increase over previous volume clustering algorithms [Will99]. This makes the algorithm

perfectly suitable for the kind of data we are trying to handle (see Figure 4.1).

Figure 4.1. Typical input model. This is the kind of data that we are

trying to find a suitable algorithm for.

A face cluster hierarchy is basically a multiresolution model. When used in a radiosity

calculation it allows some regions to be heavily simplified while other regions are represented

in greater detail. The level of detail used is driven by the radiosity calculation; in areas where

Chapter 4. An Efficient Hierarchical Radiosity Algorithm

38

the illumination varies more, a higher level of detail is used. Often, the input polygons need

not to be touched at all. In such cases the complexity of the algorithm is independent of

tessellation level and if the number of input polygons in the model is increased by tessellating

it further, it will not affect the solution time.

Unlike previous clustering algorithms for hierarchical radiosity, face cluster radiosity does

not require the illumination to be pushed down to the input polygons during the solution

phase. This is possible because of a combination of face clustering and the use of vector-

based radiosity. The following sections describe how the face cluster hierarchy is constructed

and how vector-based radiosity can be used for representing energy transfers between

clusters. Much of the material is summarized from Willmott’s and Garland’s work on face

cluster radiosity and face cluster hierarchies respectively. Further details can be found in

[Will00] and [Garl99].

4.2.2 Hierarchy Construction

To build a face cluster hierarchy, we first form the dual graph of the model. The dual graph is

defined by mapping each face of the model to a node in the dual graph and connecting two

dual nodes if the corresponding faces on the model are adjacent. In this thesis we will only

consider triangular faces, since our input data is always triangulated.

In the dual graph, each node corresponds to a face cluster; a connected set of triangles that

have been grouped together. Initially, each cluster contains only one triangle from the input

model. To create the hierarchy, adjacent clusters are merged by collapsing the corresponding

dual edges in the graph. This is done by assigning a cost to each dual edge and iteratively

collapsing the dual edge with the least cost. After each collapse, the costs of the dual edges

pointing to the merged clusters are updated. When the process is complete, each root cluster

in the hierarchy will correspond to a connected part of the input model. It is important to note

that the algorithm does not change the original geometry in any way; it merely groups

triangles into progressively larger clusters. Figure 4.2 shows three levels of a simple cluster

hierarchy.

Figure 4.2. Building a face cluster hierarchy. (From

Willmott [Will00]).

 Chapter 4. An Efficient Hierarchical Radiosity Algorithm

 39

The cost metric will determine the qualities of the hierarchy. Different applications may

need different criteria and for radiosity purposes, planarity is the most important criterion

[Will00]. The planarity criterion can be expressed using a dual form of Garland’s quadric

error metric [Garl99]. Every cluster has an associated set of faces {f1,…,fn} and a set of points

{v1,…,vn} determined by the vertices of these faces. We first need to find the least squares

best fit plane to this set of points. For a plane specified by a unit normal n and a scalar offset

d, the distance of a point v to the plane is d n v . The fit error of a plane 0d  n v is the

average squared distance of all the points to the plane:

 2

1

1
()

n

fit i

i

E d
n 

   n v (4.1)

The least squares best fit plane is the plane which minimizes this error. Using Garland’s

quadric error metric, we can compactly represent this sum as:

 2

1 1

1 1
() (,)

n n

fit i i

i i

E d P d
n n 

 
     

 
 n v n (4.2)

where

 T(, ,) (, ,1)i i i i i i iP c A b v v v (4.3)

and

 T T 2(,) 2 ()P d d cd  n n An b n (4.4)

Each dual node has an associated fit quadric P which requires ten coefficients to represent the

symmetric 3x3 matrix A, the 3-vector b, and the scalar c.

The standard technique used to find the optimal plane which minimizes P(n, d) is based on

principal component analysis (PCA) (see e.g., [Joll86]). We construct the covariance matrix:

 T

1

()()
n

i i

i

  Z v v v v (4.5)

where v is the mean of the vertices:

1

1 n

i

in 

 v v (4.6)

The three eigenvectors of the matrix Z determine the local frame with v as the origin. The

eigenvector corresponding to the smallest eigenvalue is the normal of the least squares best fit

Chapter 4. An Efficient Hierarchical Radiosity Algorithm

40

plane through the set of points {v1,…,vn}. The covariance matrix can be directly extracted

from the fit quadric P:

T

c
 

bb
Z A (4.7)

We also use the covariance matrix to calculate an oriented bounding box for each cluster. The

bounding box will later be used for visibility calculations.

Minimizing the planarity term Efit will tend to merge clusters which are collectively nearly

planar. To ensure that the clusters have compact shape, i.e., are as nearly circular as possible,

and that the normals of the triangles in the clusters are consistently oriented, the error metric

also has to take other measures into account. Willmott [Will00] has developed a simple and

robust error metric for face clustering aimed at radiosity calculations:

2

()fit

p
E E k A  

S
 (4.8)

where

 Efit is the previously described planarity term.

 k controls the importance of balancing the hierarchy at the cost of relaxing the planarity

term. A small value will make the clusters more planar, whereas a larger value will

create a more balanced hierarchy.

 A is the area of the merged face cluster.

 p is the perimeter of the merged face cluster.

 S is the sum of the area weighted normals of the triangles in the merged face cluster:

1

n

i i

i

A


S n (4.9)

Figure 4.3 shows an example of a hierarchy created using the error metric from Equation

(4.8).

4.2.3 Vector-based Radiosity

Classical hierarchical radiosity uses scalar values to represent radiosity. The irradiance Ei of

an element can be approximated using the point-to-point form factor approximation

[Cohe93]:

T T

2

() ()i ij ji j

i ij j j

j ij

E v A b
r

 


n r r n
 (4.10)

 Chapter 4. An Efficient Hierarchical Radiosity Algorithm

 41

where

 Each element i has normal in , area iA , and unknown radiosity ib


ijr is the distance between elements i and j.


ijr is the unit vector between elements i and j.


ijv is the average visibility between two points on elements i and j: 1 for no occlusion,

and 0 for full occlusion.

 ()x  means that x is clipped to zero, i.e., () max(0,)x x  .

 a
T
b is the dot product in matrix notation. The associative property of matrix

multiplication will be exploited later to rewrite the above formula.

(a)

(b)

(c)

(d)

Figure 4.3. A face cluster hierarchy. (a) shows the leaf clusters, i.e., the input

polygons, of the model. (b), (c), and (d) show clusters higher up in the hierarchy.

Chapter 4. An Efficient Hierarchical Radiosity Algorithm

42

When used in a cluster-based algorithm, a scalar radiosity representation leads to a faceted

appearance that hides the geometric detail for clusters containing curved or bumpy surfaces.

Willmott et al. have adapted the original radiosity method to face clustered models by using a

vector-based representation [Will99]. Consider the light interaction between two clusters in

Figure 4.4.

Figure 4.4. Radiosity transfer between two face clusters. Element j in the source

cluster S radiates energy towards element i in the receiver cluster R. (From Willmott

[Will00]).

Let j be an element in the source cluster and i be an element in the receiver cluster. If we

assume that all (i, j) pairs of elements are inter-visible and that the source elements are close

together and far from the receiver, then rij, rji, rij, and ijv become independent of j, and we can

approximate the irradiance from a single cluster as [Will99]:

T

T

2i i j j j i

j

E A b v
r



  
    

  


rr
n n (4.11)

The transfer can be rewritten in terms of two vector quantities as:

 T

i iE  n E (4.12)

where E is referred to as the irradiance vector, defined as:

 T

2

δ(,)
()Rv

r





S r
E r P (4.13)

P

E

r
nj ni

Aj

Ai

S R

 Chapter 4. An Efficient Hierarchical Radiosity Algorithm

 43

where

 RS is the sum area normal of the receiving cluster R.

 δ clipps against the sum area normal:

 if 0

δ(,)
0 otherwise

 
 


x x S
S x (4.14)

 P is the power vector, defined as:

j j j j j

j j

A b b  P n S (4.15)

The irradiance vector is a 3-vector whose components represent the irradiances on the

planes normal to the x, y, and z axes at the receiver. Using this representation, rather than a

scalar irradiance, allows coarse variations in the irradiance as a function of orientation to be

modeled. This eliminates most of the faceting effects that usually appear when using only a

single scalar value. An irradiance vector approach has also been employed by Arvo and

Glassner [Arvo94].

The power vector, also a 3-vector, allows the outgoing power to have a directional

dependency. The magnitude of the vector approximates the total power leaving the cluster,

and the direction of the vector indicates the hemisphere toward which most of the energy is

directed.

These vector quantities can be substituted for the irradiance and radiosity in a standard

hierarchical radiosity algorithm by modifying the push-pull and gather operations (see Section

3.2.3). During the push phase, the following equation is used:

 δ(,)child child parent child E S E R (4.16)

where Rchild is the sum of the irradiance vectors incident directly on the child. During the pull

operation, the radiosity of the parent is calculated:

child child

parent

parent

b A
b

A



 (4.17)

and the power vector reconstructed with:

 bP S (4.18)

When modeling the transfer of radiosity, the standard form factor coefficient is replaced by

a transfer vector:

Chapter 4. An Efficient Hierarchical Radiosity Algorithm

44

T

2

δ(,)()R Sv

r



S r r S

m (4.19)

which allows us to rewrite Equation (4.13) simply as:

 bE m (4.20)

At the leaves of the hierarchy, the accumulated irradiance is transformed into radiosity using

the following equation:

T

b e
A


 

S E
 (4.21)

where

  is the reflectance of the leaf element.

 e is the emittance of the leaf element.

The power vector of the leaf can then be reconstructed using Equation (4.18).

In all of the above equations, a monochromatic world is assumed in order to simplify the

presentation. In practice we extend them to the familiar RGB color model by storing b and E

for each color channel and operate on them independently. The transfer vector, m, is still

wavelength independent.

4.3 Volume Cluster Hierarchy

4.3.1 Motivation

Above surface level we use a volume clustering algorithm based on the work of Müller et al.

[Müll99]. The hierarchy is essentially a binary bounding volume hierarchy of axis-aligned

bounding boxes, suitable for both radiosity transfers and visibility queries. This fits in well

with the face cluster hierarchy and the radiosity algorithm can operate on both hierarchies in a

uniform way.

Based on the results of the analysis of clustering algorithms done by Hasenfratz et al.

[Hase99], this type of volume hierarchy seems to be the best for our purposes. It has the most

predictable behavior of the tested hierarchy types and creates “intuitive” hierarchies for

scenes with very different object sizes. The main disadvantages with a bounding volume

hierarchy are construction time and cluster overlaps. Both these problem areas are efficiently

handled by the algorithm described in [Müll99], resulting in a very promising radiosity

clustering algorithm suitable for a wide range of scenes.

 Chapter 4. An Efficient Hierarchical Radiosity Algorithm

 45

4.3.2 Hierarchy Construction

The hierarchy construction algorithm uses a top-down approach to recursively partition the set

of root nodes from the face cluster hierarchies. No entities need to be split, and no empty

clusters are created. Starting with the entire set of face cluster root nodes, we sort the clusters

along the three major coordinate axes, using the center of each cluster as sort key. Based on

these sorted lists, we evaluate the potential partitioning positions along each axis by splitting

the sorted list of objects in a left and right part. In contrast to the commonly used median cut

scheme, a cost function is used to determine the subdivision position. By minimizing this cost

function over all partitioning positions, an optimal subdivision is obtained which generates

two new subsets containing the left clusters and the right clusters. The process is recursively

applied on these two sets and is terminated when a set contains only one cluster. A small

partitioning example is shown in Figure 4.5.

Figure 4.5. Volume cluster hierarchy creation. Four possible

partitions along a single axis are shown. The filled rectangles

represent the oriented bounding boxes of the root face clusters.

We use the same cost function as in [Müll99], which is similar to the surface area heuristic

(SAH) introduced by MacDonald and Booth [MacD89]. The cost of a partitioning H, with

children Hleft and Hright, is given by:

() ()

()
() ()

left right

H left right

S H S H
C axis H H

S H S H
  (4.22)

where

 H is the number of clusters in the set H .

 ()S H is the surface area of the axis aligned bounding box around H .

  , ,axis X Y Z .

Chapter 4. An Efficient Hierarchical Radiosity Algorithm

46

This creation algorithm is fast, O(n log n), while guaranteeing hierarchies of very high quality

comparable to much more costly bottom-up methods. In particular, it is efficient for ray

acceleration in visibility computations, it minimizes overlaps of bounding volumes, and it

adapts well to the distribution of the objects in the scene [Müll99].

4.4 Patch Hierarchy

4.4.1 Motivation

Below the input triangle level, a patch hierarchy is used to represent refinement. The

commonly used regular refinement method (see Section 3.4.2) does not work well for highly

tessellated geometry. Generally, the tessellation is optimized to represent the curvature of the

surfaces, and hence poorly shaped triangles are very common (see Figure 4.6). To overcome

this problem, we have developed a novel, more flexible, BSP-based
5
 patch hierarchy. Each

time a leaf patch is refined, an arbitrary splitting line can be chosen to subdivide the patch into

two sub-patches.

(a)

(b)

Figure 4.6. Regular refinement for tessellated geometry. (a) The

original mesh. (b) Regularly refined mesh. The long, thin triangles

make it very hard to capture the shadow from the door mirror.

4.4.2 Splitting Strategy

When a leaf patch needs to be refined, a suitable splitting line has to be selected. As discussed

in Chapter 3, such a line can be chosen based on discontinuities in the illumination. This is an

interesting area of research, but outside the scope of this thesis. Instead, we try to create

patches with regular shape. First, the minimum-area enclosing rectangle (MER) of the patch

is calculated. The line perpendicular to the longest side of this rectangle, splitting it at its

midpoint, is selected as a candidate splitting line (see Figure 4.7a). To minimize the number

of introduced t-vertices we then try to snap the line to the nearest vertex on each side. If a

5
 A binary space partitioning (BSP) tree represents a recursive, hierarchical partitioning of space. In two

dimensions, nodes are created by splitting larger regions along an arbitrary line.

 Chapter 4. An Efficient Hierarchical Radiosity Algorithm

 47

vertex is within a predefined snap tolerance, the line is moved to intersect the vertex (see

Figure 4.7b).

(a)

(b)

Figure 4.7. Calculating the splitting line for a patch. (a) The line

cutting the minimum-area enclosing rectangle of the patch in the

middle is chosen as a candidate line. (b) If a vertex is within a

predefined snap tolerance, the line is moved to intersect the vertex.

The snapping procedure significantly decreases the number of t-vertices, which leads to fewer

triangles when the mesh is later triangulated (see Section 4.4.3). The triangles in the final

mesh will therefore generally be more well-shaped, as evident in Figure 4.8.

(a)

(b)

Figure 4.8. (a) A mesh refined without vertex snapping. (b) With

vertex snapping.

This splitting scheme has worked well in our experience; creating well-shaped patches even

if the original mesh consists of very long and thin triangles (see Figure 4.9).

4.4.3 Eliminating T-vertices

T-vertices are inevitably introduced during patch refinement. If t-vertices are not shared

between patches, discontinuities will be visible during rendering since the calculated radiosity

at a t-vertex will generally be different from the interpolated value at the same point. To

eliminate t-vertices, we use a Delaunay triangulation pass for each patch before rendering.

Chapter 4. An Efficient Hierarchical Radiosity Algorithm

48

(a)

(b)

(c)

(d)

Figure 4.9. Comparison of regular refinement (a) and our novel

refinement approach (b). Corresponding wireframe versions are

shown in (c) and (d), although most of the triangles in (c) are too

thin to be visible in this image. Note that the number of triangles is

the same for both methods.

4.5 Algorithm

4.5.1 Preprocess

The preprocess phase first creates a face cluster hierarchy for each object in the scene. This is

typically done only once and if the geometry of an object remains unchanged, its hierarchy

can be reused for several radiosity calculations. Other model properties like position,

orientation, and material attributes can be modified without the need to perform the face

clustering again. After the face clustering, a hierarchical radiosity element for each face

cluster root node is created. Usually much of each face cluster hierarchy remains unused

during the radiosity calculation. We therefore begin with just the root nodes and create new

elements on demand during refinement. The elements add information such as irradiance

vectors, radiosity, radiosity links, and an oriented bounding box for each face cluster. This

information is not stored in the original face cluster hierarchies in order to save memory.

 Chapter 4. An Efficient Hierarchical Radiosity Algorithm

 49

The initial face cluster elements are then volume clustered and elements are created for

these clusters as well. An initial self-link is finally created for the root node of the entire

hierarchy. Non-reflective light sources are volume clustered independently and linked to the

root node of the main hierarchy. This speeds up the initial light transfers substantially and also

reduces the number of links.

4.5.2 Solver

A standard interleaved solver is used as described in [Cohe93]. The gather, push-pull, and

refine stages are repeated until the system converges (see Figure 4.10). When gathering

energy for an element, we apply Equation (4.20) for all incoming links and sum the result.

During the push-pull phase, we use Equations (4.16) and (4.17). The refine procedure follows

that outlined in [Cohe93], using the error estimation described in the next section.

solve()

 while (not converged)

 gather(root)

 pushpull(root)

 refine(root, ε)

Figure 4.10. Solver pseudo-code. The refinement

epsilon, ε, is gradually lowered during the solution.

Links with an error larger than ε are refined.

4.5.3 Transfer and Error Estimation

To estimate the transfer vector, m, we generate a fixed number of sample points on both the

source and the receiver and apply Equation (4.19):

T

2
1 1

δ(,)()1 1n n
i R i i S

i

i i i

v

n n r


 


  

S r r S
m m (4.23)

where vi, ri, and ri is the visibility, direction, and distance between sample point i of n on the

source S and the sample point i on the receiver R.

We use the L1 norm to measure error as described in [Will00]. This corresponds to the

BFA-weighted refinement commonly used in hierarchical radiosity.

4.5.4 Visibility

The visibility term in Equation (4.23) is evaluated by ray casting, and a natural choice for

acceleration data structure is to reuse the volume cluster and face cluster hierarchies. BV-

Chapter 4. An Efficient Hierarchical Radiosity Algorithm

50

hierarchies are also generally more efficient for visibility testing than grid-based data

structures according to [Smith98].

Our volume cluster hierarchy stores an axis aligned bounding box for each cluster, and has

already been proven efficient for visibility testing [Müll99]. When the ray caster reaches a

leaf in the volume hierarchy, it continues down the corresponding face cluster hierarchy.

Since the face clustering algorithm ensures that the face clusters are both planar and well-

shaped, the oriented bounding box for each cluster provides a very tight fit to the geometry.

To further increase the ray casting performance we use the depth-first order array traversal

technique described in [Smith98].

4.5.5 Reconstruction

To reconstruct the irradiance for each vertex before rendering, we typically use the irradiance-

interpolation-everywhere approach suggested by [Will00]. All links pointing to volume

clusters are temporarily pushed down to the root face cluster level. Thereafter we reevaluate

the irradiance vectors for each element at the corners of the element and interpolate the result

over the element. The irradiance vectors at any given element are calculated by interpolating

the irradiance vectors of its parent and adding in the resampled irradiance for the links

pointing directly to the element.

This procedure is reasonably fast and can be used for progressive updates of the solution

during the radiosity calculation. When the calculation is completed, we provide the user with

the option to do a more costly reconstruction where the links are pushed all the way to the

vertices of the leaf elements. This is often referred to as a final gather. Depending on the

complexity of the model, this can be a time consuming process, but it also generates a very

smooth solution and depending on the use case, it might be worth the cost. For a further

discussion on reconstruction methods, see [Gibs95] and [Will00].

 Chapter 5. Radiosity Representation

 51

5 Radiosity Representation

5.1 Overview

A radiosity calculation using the algorithm described in the previous chapter results in a mesh

that can be rendered directly. However, if the mesh is highly subdivided, e.g., around sharp

shadow boundaries, rendering performance can slow down considerably. Preferably, we

would like the radiosity mesh to have about the same rendering performance as the original

mesh had.

To achieve higher rendering performance, we use textures to represent the illumination in

highly subdivided areas to avoid drawing the extra geometry introduced by the radiosity

calculation. However, since we work with highly tessellated models, the hierarchical radiosity

solution has often not reached the input polygon level. These areas can therefore be

represented using vertex colors without affecting performance. It is often preferable to use

vertex coloring over textures in such cases in order to save texture memory. Also, when the

mesh is highly tessellated, high resolution textures are often needed to represent the shading

due to the curvature of the mesh. In areas where the resolution of the texture is lower than the

resolution of the mesh, a texture based representation will generally decrease the visual

quality.

Our solution is to use vertex lighting for surfaces that are not refined below the input

polygon level (see Figure 5.1 b). For surfaces that are more refined, light map textures are

used (see Figure 5.1 a). This approach is similar to the one used in [Mysz94].

(a)

(b)

Figure 5.1. Radiosity representation. Light maps are used in highly subdivided areas,

such as the shadowed areas of the seat in (a). For small details not refined below the

input triangles, such as the buttons on the radio panel in (b), vertex lighting is often

preferred.

We have chosen to avoid the use of recent programmable graphics hardware in our solution,

mainly because we want wide hardware support
6
. However, this is a very interesting area of

6
 When this work was conducted, the latest graphics chip was the NVIDIA NV25 (GeForce4/Quadro4). Systems

based on the Silicon Graphics Onyx2 and Onyx 3000 series were still commonly used for high-end, large-scale

presentations. Our aim was to find a solution that also worked well on these systems.

Chapter 5. Radiosity Representation

52

research and it makes new radiosity rendering approaches possible. In [Gobb02], a face

cluster radiosity solution is rendered directly from the irradiance vectors using extensions to

OpenGL. In [Gobb03], this work is extended to include glossy reflections by exploiting more

advanced programmable hardware. Investigating such solutions is outside the scope of this

thesis.

5.2 Texture Atlas

5.2.1 Motivation and Overview

A texture atlas is an efficient texture representation for general models that allows large

connected pieces of geometry to be adjacent in texture space [Lévy02]. More simple methods,

like the “polypack” approach proposed by Zhukov et al. [Zhuk97], work quite well for

architectural scenes but usually generate too many discontinuities in the parameterization of

curved geometry. We have therefore chosen a texture atlas approach for our light maps.

The generation of a texture atlas consists of three steps:

 Segmentation. The model is partitioned into a set of charts, homeomorphic to discs.

 Parameterization. Each chart is “unfolded”, i.e., flattened from R
3
 to R

2
.

 Packing. The parameterized charts are packed in texture space.

We use the texture atlas generation pipeline shown in Figure 5.1 for each surface that we want

to create an atlas for. A similar approach has been used by [Ray03a].

Figure 5.1. Texture atlas generation pipeline.

This means that we first try to parameterize the entire surface. If the resulting

parameterization is invalid, e.g., contains overlaps or high area distortions (see [Lévy02]), we

subdivide the surface and recursively apply the same procedure on these parts until a valid

parameterization is found. The remainder of this section describes the most important steps of

our approach.

5.2.2 Parameterization

To parameterize the charts we use the least squares conformal maps (LSCMs) approach by

Lévy et al. [Lévy02]. The LSCM method is both robust and efficient for large, complex

models. It uses a conformal energy criterion to minimize angle deformations and non-uniform

Parameterization

Segmentation

Packing
OK Texture

Atlas
Surface

Fail

Validation

 Chapter 5. Radiosity Representation

 53

scalings. Ray et al. have successfully applied this parameterization method to generate

radiosity texture atlases for industrial CAD models [Ray03a].

5.2.3 Segmentation

Since each surface corresponds to a root face cluster, we can directly use our face cluster

hierarchy during the segmentation step. If the parameterization of a root face cluster fails, we

recursively try to parameterize its children clusters until a valid parameterization is found.

The cost function used during the hierarchy creation (see Section 4.2.2) strives to create

clusters that are both planar and topologically as close to discs as possible. These are also

properties we want the charts to have to make them easy to parameterize.

The segmentation approach based on differential geometry and Morse theory used in the

original LSCMs paper did not work well with industrial models [Ray03a]. Ray et al. used a

simple brute force algorithm to overcome this problem. Our new segmentation method

instead uses knowledge of the geometric properties of the mesh, acquired during the face

clustering step, to ensure that the charts are well shaped and easy to parameterize.

(a)

(b)

Figure 5.2. Texture atlas. (a) Charts on the model. (b) Corresponding texture atlas.

This example contains 18 disconnected surfaces, i.e., face cluster root nodes, and only

the surface representing the headrest requires more than one chart.

5.2.4 Packing

Once all charts have been parameterized, they are packed in texture space (see Figure 5.2). It

is desirable to minimize the unused texture space in order to save texture memory. Another

advantage of packing many charts into a single texture is that it decreases the number of

texture switches during rendering.

The packing problem
7
 is known to be NP-complete [Mile99]. We want to find a non-

overlapping placement of the charts in such a way that the enclosing rectangle is minimized.

Approaches based on computational geometry are usually not efficient enough for complex

data sets. Instead, several heuristics have been proposed [Zhuk98, Sand01, Lévy02]. We have

7
 The general problem is often referred to as the bin packing or pants packing problem.

Chapter 5. Radiosity Representation

54

chosen a similar approach to [Sand01] based on packing the bounding rectangles of the

charts. More efficient packing of charts with complex borders can be achieved by using the

method proposed by [Lévy02]. However, our charts are usually more regularly shaped

because of the face cluster construction metric
8
.

5.2.5 Light Map Creation

When the texture atlas has been created, we fill the textures with radiosity information. This is

done by rendering the radiosity mesh using its uv-coordinates as vertex coordinates to an

offscreen buffer. The rasterized pixels are then read back and stored in the texture. Note that

the original input triangles of the model are used during parameterization and the refined

element mesh during the radiosity texture generation. The uv-coordinates for the vertices

introduced by the radiosity calculation are linearly interpolated from the parameterized input

triangles.

5.2.6 Avoiding Mip-Mapping Artifacts

In order to avoid aliasing effects when rendering high resolution textures, mip-mapping is

used
9
 (see e.g., [Möll99]). Schemes that pack multiple charts into a single texture image may

give rise to mip-mapping artifacts since coarser mip-map levels will average together spatially

disjoint charts. To overcome this problem, we first extrapolate the boundaries of the charts

one or a few texels depending on the texture resolution, and then apply a pull-push algorithm

[Gort96] to fill in the empty space in the texture (see Figure 5.3).

(a)

(b)

Figure 5.3. Pull-push procedure to fill in the empty space in the texture atlas. (a) A

texture atlas before applying the pull-push. (b) After pull-push.

8
 The chart merging method used by Sander et al. [Sand01] is also based on [Garl01] and is similar to the face

cluster hierarchy creation.
9
 For low resolution light maps, like those in Figure 3.5 or in [Zhuk97], mip-mapping is usually not necessary.

 Chapter 5. Radiosity Representation

 55

5.3 Selecting Representation

A single representation method is chosen for each surface. This avoids discontinuities

between Gouraud-shaded regions and textured regions. Alternatively, both methods could be

used for a single surface by using a border for the textured regions and alpha blend it with the

underlying Gouraud-shaded mesh to make the transition seamless. We have not implemented

this approach yet.

For visual updates during the radiosity calculation it is usually preferable to use a vertex

representation to show the full resolution result. When the calculation is completed, highly

subdivided surfaces can be replaced by texture representations. However, light maps can

decrease the visual quality and sometimes vertex lighting is desirable even if it leads to worse

rendering performance. Also, if not enough texture units are available on the particular

platform, a light mapped surface might need an extra rendering pass. This will in some cases

defeat the performance gain of using light maps. We therefore first use a simple heuristic to

select an initial representation for each surface and then allow the user to change it if

necessary. A uniform resolution is used, distributing the available texture memory evenly

among the light mapped surfaces.

To select an initial representation, we sort the surfaces by the number of introduced

triangles during the radiosity calculation in decreasing order. We then traverse the surfaces,

converting them to textures, until the total number of introduced triangles falls below a user

defined threshold.

Chapter 6. Implementation Notes

56

6 Implementation Notes

6.1 Overview

The algorithms described in the previous chapters have been implemented in a radiosity

module that can be easily integrated with existing applications. Both the Opticore Opus

Studio and Opus Realizer software have successfully used this module for global illumination

calculations.

All the code is written in C++ and designed in a modular fashion to be portable and

reusable. Since Opticore’s applications are based on the OpenGL Optimzier/Cosmo3D

framework from Silicon Graphics [Open98, Ecke98], we use Cosmo3D for scene graph

management and rendering.

An overview of our system is shown in Figure 6.1. The application communicates with a

radiosity engine that manages all the radiosity functionality. The most important parts are:

 The preprocessor. Takes a scene graph as input and creates a hierarchical element

representation of the scene.

 The hierarchical solver. Iteratively solves for the radiosity in the element hierarchy.

 The visualization manager. Updates the scene graph with radiosity information from the

element hierarchy.

Figure 6.1. System architecture overview.

This chapter briefly discusses how we have implemented various parts of this system.

6.2 Creating the Element Hierarchy

6.2.1 Clustering

First we build a face cluster hierarchy for each object in the scene graph. Some

implementation details worth pointing out during the hierarchy creation are:

Preprocessor
Hierarchical

Solver

Visualization
Manager

Updated
Scene
Graph

Scene
Graph

Radiosity
Engine

Application

Calculate Update

Continue

 Chapter 6. Implementation Notes

 57

 For the dual edge collapses (see Section 4.2.2), we use a heap-based priority queue

extended to support O(n log n) updates of sort keys and deletion of elements.

 When calculating the oriented bounding box for relatively planar clusters, the PCA

approach becomes somewhat unstable. For those clusters we use the sum area normal as

the principle axis, project all vertices onto the plane defined by this axis, and then

calculate the minimum-area enclosing rectangle (MER) in this plane to fix the other two

axes. We calculate the MER by constructing the convex hull using Graham’s scan

[ORou98] (O (n log n)) and then finding the rectangle using a rotating calipers

algorithm [Tous83] (O (n)).

When the hierarchy creation is complete we spilt each hierarchy that contains more than

one root, and create a surface structure for each root. This surface structure is central in our

implementation. Each surface has a single rooted face cluster hierarchy representing a

connected group of triangles that also share material properties. It has its own patch data

structure representing refined triangles. The output representation method is also selected on a

per-surface basis. The surfaces are volume clustered using the algorithm described in section

4.3.2 to form a single rooted hierarchy of the entire scene.

6.2.2 Hierarchical Elements

Hierarchical elements are initially created for all volume clusters and for the root face

clusters. We let the elements inherit from an abstract base class that provides the basic

algorithm interface (see Figure 6.2.). Many methods are common for all elements and thus

implemented in the base class. Generic versions of the refine, gather, and push-pull operations

are also provided by the base class.

Figure 6.2. UML class diagram for the hierarchical elements. HRElement is the

common abstract base class for hierarchical elements. VCElement and FCElement

represent volume clusters and face clusters respectively. LightElement is an abstract

base class for custom light sources not defined by geometry, e.g., point lights, spot

lights, directional lights, or sky light.

LightElement PatchElement FCElement VCElement

refine()
gather()
pushpull()
…

HRElement

Chapter 6. Implementation Notes

58

This framework can easily be extended to include new types of elements. The radiosity

solver works only on abstract HRElements and needs no knowledge of the implementation of

the different element types. Traversal of the hierarchy is handled by the elements themselves;

each element type knows how to traverse its children.

6.2.3 Leaf Mesh Data Structure

When patches are refined, the minimum-area enclosing rectangle is calculated to help

determine the splitting line (see Section 4.4.2). Again, we use a rotating caliper method for

this as described in Section 6.2.1. In order to maintain connectivity information during patch

refinement, a half-edge data structure is used for the leaves of the hierarchy. Each time a leaf

patch element is refined, the half-edge mesh is updated. This also allows us to quickly remove

t-vertices and render a triangulated mesh representing the radiosity solution at any time during

the calculation. Initially we used the classic winged-edge data structure for this purpose (see

e.g., [Glas91]), but later found the half-edge data structure easier to work with [Mänt88].

We have implemented a general half-edge based data structure similar to those used in

OpenMesh [Bots02] and CGAL [Fabr00]. This allows us to easily reuse it for other purposes,

e.g., in the parameterization step. We also had in mind the possibility of using a post-process

simplification step of the mesh when choosing this representation.

6.3 Radiosity Calculation

6.3.1 Hierarchical Solver

The solver simply calls the refine, gather, and push-pull methods of the root element node,

and each element recursively calls its children. The solver can be temporarily halted by the

radiosity engine to allow updates of the scene graph in order to display the current state of the

solution.

6.3.2 Visibility

Since the visibility sampling is the most costly step of the algorithm, we try to avoid some

unnecessary calculations. If a light transfer between two planar, or nearly planar, elements has

a sampled visibility of 1.0, we try to accurately determine if it is completely visible. This is

done by forming a shaft between the two elements [Hain00]. If no geometry intersects the

shaft, we can flag the transfer as completely visible. Further refinements between the elements

can then skip the visibility sampling step.

This approach can only be used for planar elements, otherwise important self-shadows can

be missed. Patch elements are inherently planar, but we also use it for face cluster elements

that are nearly planar using a small epsilon value. In order to avoid counting the elements

themselves or geometry behind the elements as occluders, we cap the shaft with the planes of

the elements (see Figure 6.3).

Applying a similar scheme to determine if two elements are fully occluded from each other

is usually much more complicated, especially for scenes with concave surfaces. Generally,

convex occluders are required to conservatively determine full occlusion (see [Lebl00]). We

have used the method presented in [Lebl00], but since our geometry often is highly tessellated

only very few transfers can benefit from this approach.

 Chapter 6. Implementation Notes

 59

Figure 6.3. Shaft culling to accurately determine complete

visibility. This figure shows a simplified 2D-version of the shaft to

illustrate the principle. In practice the shaft has a volume that

encloses the axis-aligned bounding boxes of the elements (see

[Hain00] for further details).

For all shaft intersection tests, we use the same bounding volume hierarchy as we do for ray

casting to quickly process the entire scene.

6.4 Scene Graph Updates

6.4.1 Calculating Vertex Colors

At any time during the solution phase the scene graph can be updated to show the current

state of the solution. This task is handled by the visualization manager that first pushes

irradiance down to the vertices of the mesh. For leaf elements at face cluster level, the

irradiance is interpolated from the corners of the clusters. The irradiance is then converted to

radiosity yielding the final radiosity mesh.

Before we can render the results of the calculation, the radiosity values stored at the vertices

have to be mapped to displayable colors. To achieve this, we use a tone mapper similar to the

one described in [Rein02]. This gives us a standard RGB color for each vertex. For surfaces

using vertex lighting the vertices are simply copied to the geometry nodes in the scene graph.

6.4.2 Light Maps

For surfaces using light maps, we first generate a parameterization using the input triangles.

This parameterization is stored in the surface to avoid recalculating it for future updates. We

then render the radiosity mesh to a texture as described in Section 5.2.5. The scene graph is

finally updated to use the generated radiosity light map and to draw the original vertices.

Sender

Receiver

Shaft

Chapter 6. Implementation Notes

60

6.5 Rendering

6.5.1 Adding Specular Lighting

Since the radiosity calculation only generates diffuse lighting, it is often desirable to add

specular lighting. We do this using the standard specular lighting in OpenGL. This will

obviously not result in a physically correct solution, but it usually gives a much more realistic

result than excluding specular lighting completely.

To render the radiosity solution plus specular lighting in a single rendering pass using only

standard OpenGL 1.1
10

 we use the following setup:

 Diffuse and ambient material is set to black color. Thus, the colors calculated in the

lighting equation only represent specular lighting.

 Emissive lighting is set to the color values stored per vertex
11

. This way our diffuse

radiosity lighting is automatically added to the specular color calculated by OpenGL.

 For surfaces using light maps, the emissive material is set to black and the texture

blending mode to ADD. This gives us identical lighting equations for both vertex

lighting and light maps.

 When combining vertex lighting and light maps, we use a black 1 x 1 light map for the

surfaces using vertex lighting and black vertex colors for the light-mapped surfaces.

We have chosen this approach to avoid changing the structure of our Cosmo3D scene graph.

Cosmo3D sets the rendering state on a per-shape level (see [Ecke98]) and we might have

several surfaces using different representations under a shape node. By using black textures

for vertex lit surfaces, black color for light mapped surfaces, and additive texture blending we

can use the same OpenGL state for multiple surfaces using different representations.

Otherwise, we would have to restructure the scene graph to have one shape node for the

vertex lit surfaces and one for the texture mapped surfaces.

Much more sophisticated solutions are possible using more recent programmable hardware

extensions.

6.5.2 Textures and Environment Mapping

The procedure described above can be seen as a replacement for the standard OpenGL

lighting. Other effects, such as regular textures or environment maps, can be added as usual.

Depending on the number of available texture units on the particular hardware, an extra

rendering pass may be necessary for those surfaces that use light maps.

Figure 6.4 shows an example OpenGL setup for a light-mapped surface using both a base

texture and an environment map. If three texture units are available, this can be rendered in a

single pass. Otherwise, multiple passes and frame buffer blending is necessary.

10

 We use the texture environment mode ADD, which is not part of the OpenGL 1.1 specification. However, it is

commonly available and since it is used in the Cosmo3D API it is supported on all our target platforms.
11

 This is achieved using the call glColorMaterial(GL_FRONT, GL_EMISSION).

 Chapter 6. Implementation Notes

 61

Figure 6.4. Example OpenGL rendering setup. The specular lighting calculated by

OpenGL is first added with our radiosity light map. A base texture is then modulated

with the result and finally an environment map is added using the decal texture mode.

Spec. Lighting

Diff. Light Map

Base Texture

Env. Texture

MODULATE

ADD

DECAL Result

Chapter 7. Results

62

7 Results

7.1 Overview

In this chapter we present some results of our work. First, the performance of the algorithm is

analyzed in terms of time and memory consumption. Then, some examples of the visual

quality will be shown.

7.2 Test System

All performance tests were performed on an AMD Athlon 1.4 GHz, running Windows 2000.

The computer was equipped with 1 GB of RAM and an Nvidia GeForce3 graphics card.

7.3 Test Scenes

Two scenes have been selected to test our radiosity system (see Figure 7.1). The models are

from the automotive industry and representative for the type of data used in Opticore’s

applications. This will demonstrate how the algorithms perform under the circumstances they

were designed for.

(a) Car exterior

(b) Car interior

Figure 7.1. Test scenes.

 Chapter 7. Results

 63

7.4 Preprocessing

The first step in our algorithm is the preprocessing that prepares the scene for radiosity

calculations. The main parts of the preprocessing are the face clustering, the volume

clustering, and the creation of the mesh data structure. Table 7.1 shows the total preprocessing

time and memory consumption for the test scenes.

Scene Polygons Time Memory

Car exterior 242 764 15.23 s 110.7 MB

Car interior 521 699 24.66 s 190.5 MB

Table 7.1. Preprocessing time and memory consumptions for the test

scenes.

To show the contribution of the different stages to the total preprocessing time, we have

profiled the face clustering, volume clustering, and mesh creation stages. These are the most

interesting algorithmic parts of the preprocessing. Table 7.2 shows the results.

Scene Stage Time %

Car exterior Face clustering 10.40 s 68.3 %

 Volume clustering 0.05 s 0.3 %

 Mesh creation 3.18 s 20.9 %

 Other 1.60 s 10.5 %

 Total 15.23 s 100 %

Car interior Face clustering 16.71 s 67.8 %

 Volume clustering 0.21 s 0.9 %

 Mesh creation 5.83 s 23.6 %

 Other 1.91 s 7.7 %

 Total 24.66 s 100 %

Table 7.2. Breakdown of preprocessing time for the two test scenes.

Chapter 7. Results

64

7.5 Radiosity Calculation

Since the algorithm is based on a progressive hierarchical approach, the calculation time is

determined by the desired accuracy and visual quality. The following figures illustrate the

time and memory required in order to achieve a level of visual quality sufficient for typical

use cases.

Figure 7.2. Car exterior example (calculated in 25 minutes using 411 MB of peak

memory).

Figure 7.3. The same scene as in Figure 7.2 from different angles. Notice how the

shadow gets darker under the car, because less indirect lighting reaches those areas.

 Chapter 7. Results

 65

Figure 7.4. Car interior example (calculated in 4 hours 30 minutes using 762 MB of

peak memory).

Figure 7.5. The same scene as in Figure 7.4 from different angles.

7.6 Rendering

Rendering performance is related to the number of extra triangles introduced during the

calculation. As long as no extra triangles are created, the performance will generally not be

affected. Often, light maps can be used for most surfaces refined below the input triangle

level and hence the rendering performance will be nearly the same as before the radiosity

calculation. Sometimes it might be desirable to use vertex lighting for some refined surfaces,

e.g., when the light map resolution is inadequate. In those cases a tradeoff between visual

quality and rendering performance has to be made. In the examples shown in this chapter, the

car exterior has a rendering overhead of about 10 % compared to the input model, whereas the

interior uses more vertices and has an overhead of about 35 %.

Chapter 8. Conclusions

66

8 Conclusions
In this thesis we have presented a radiosity system for global illumination simulations of

highly tessellated models like those found in computer aided design (CAD). To manage the

complexity of such models we use a hierarchical algorithm based on the face cluster radiosity

approach developed by Willmott et al. We have shown that the face clustering approach is

very suitable for this type of data.

Previous work on face cluster radiosity has focused on scenes with a small number of very

complex surfaces [Will00, Gobb03]. In our case we have to deal with a far larger number of

disconnected surfaces, increasing the need for a good hierarchy above surface level. We use a

relatively simple bounding volume hierarchy for this purpose. It performs reasonably well in

our experience, especially for ray casting acceleration. However, it does not exploit the

orientation of the clustered elements like the face cluster hierarchy do. This makes the

approximation of light transfers between volume clusters worse than between face clusters. In

most cases, this is not a problem since the most important light transfers are refined below the

volume clusters.

When dealing with poorly shaped triangles, our novel patch refinement scheme can yield

significant improvements over the regular refinement method commonly used in hierarchical

radiosity. We have also experimented with a few grid-based refinement approaches, but

unsatisfied with the results we developed our own method instead.

We have shown that our radiosity system can handle scenes with several hundred thousand

polygons relatively well. The radiosity solution is often a huge improvement in visual quality

and realism compared to the standard local lighting models commonly used in real-time

computer graphics.

In order to display the radiosity solutions in real-time, we use a light map representation for

highly subdivided areas. This makes it possible to eliminate most of the extra geometry

generated during the calculations. The parameterization scheme has shown good results and

light mapped areas are often indistinguishable from highly subdivided vertex lit meshes.

One of the main advantages with our system is its user-friendliness. The preprocessing

needed before the calculations can begin is very quick and the initial results can be displayed

very fast. Even for large models, the user can often get a good idea of how the final result will

look like in under a minute. This allows the user to quickly determine if the setup is correct or

if the light settings or other properties need to be changed. Also, during the calculation, the

user can quickly get feedback on how the solution progresses.

Many improvements of the algorithms are possible and some of these will be discussed in

the next chapter.

 Chapter 9. Future Work

 67

9 Future Work

9.1 Overview

In this chapter we discuss some future improvements of our work. We have selected a few

areas that we find particularly interesting and important to investigate further.

9.2 Improving the Accuracy of the Algorithm

9.2.1 Discontinuity Meshing

Our current patch refinement approach tries to create regularly shaped elements. This

generally works well, but hard shadow boundaries can still be difficult to capture with

sufficient accuracy. Choosing the splitting lines based on discontinuities in the illumination

could lead to improvements in both efficiency and quality in areas where sharp shadow

boundaries are present. As several authors have pointed out though, discontinuity meshing

can be difficult to apply to highly complex scenes, both in terms of robustness and efficiency.

9.2.2 Improved Refinement Oracle

For refinement decisions, we have chosen the commonly used BFA approach that measures

the error using area-weighted irradiance. This error does not always correspond to the visual

error in the final solution though, when irradiance has been mapped to display color. In

particular, the importance of relatively weak indirect lighting is often underestimated. A

perceptually-based refinement method could lead to more efficient refinement decisions.

Another problem is the difficulty to estimate the error due to visibility variation. When

using sampling for visibility determination, it is always possible to miss partially occluded

transfers. This has to be taken into account by the error criteria. For transfers that are

guaranteed to be completely visible, a higher refinement threshold could be used. Likewise,

transfers that are guaranteed to be occluded could be eliminated completely. Thus, more

efficient ways of determining exact visibility could greatly improve the refinement process.

9.2.3 Volume Hierarchy Construction

We would like to improve the cost function for the volume hierarchy creation and take the

orientation of the clustered elements into account. This would allow us to more accurately

approximate the transfers between volume clusters. Also, since the number of clustered

elements is relatively low in this case, we can afford a slightly more costly construction

approach.

9.3 Improving Visualization

9.3.1 Parameterization

The hierarchical extension to the LSCM method could be used to speed up the

parameterization [Ray03b]. Also, as noted in [Ray03a], the stability of the parameterization

could be improved by removing badly shaped triangles from the conformal energy. This

Chapter 9. Future Work

68

would reduce the number of necessary charts and also lessen distortion. Several other

improvements are also possible, e.g., selecting the light map resolution based on the variation

in the illumination.

9.3.2 Programmable Graphics Hardware

It would be interesting to take advantage of recent programmable graphics hardware, as in

[Gobb03]. This would also allow us to incorporate specular lighting and other effects in a

more correct way.

9.3.3 Simplification and Level-of-Detail

When texture memory is limited or vertex lighting is preferred for other reasons, it would be

beneficial to include some kind of simplification post-process or level-of-detail scheme. As

mentioned in Chapter 3, radiosity meshes have been shown to be excellent candidates for

simplification algorithms [Hopp96].

 Chapter 10. Bibliography

 69

10 Bibliography

[Appe85] Andrew W. Appel. An Efficient Program for Many-body Simulation. In

SIAM Journal on Scientific and Statistical Computing, 6(1):85-103. January

1985.

[Ashd94] Ian Ashdown. Radiosity: A Programmers Perspective. John Wiley & Sons,

New York, NY, 1994.

[Arvo86] James Arvo. Backward Ray Tracing. In Developments in Ray Tracing, ACM

SIGGRAPH '86 Course Notes, Volume 12, August 1986.

[Arvo94] James Arvo and Andrew Glassner. The Irradiance Jacobian for Partially

Occluded Polyhedral Sources. In Proceedings of SIGGRAPH '94, pages 343-

350, July 1994.

[Bast96] Rui Bastos, Michael Goslin, and Hansong Zhang. Efficient Radiosity

Rendering using Textures and Bicubic Reconstruction. Technical Report

TR96-025, Department of Computer Science, University of North Carolina at

Chapel Hill, Chapel Hill, NC, May 1996.

[Baum98] Dan Baum. 3D Graphics Hardware: Where We Have Been, Where We Are

Now, and Where We Are Going. In SIGGRAPH Computer Graphics

Newsletter, Vol. 32 No. 1, February 1998.

[Bera91] Jeffrey C. Beran-Koehn and Mark J. Pavicic. A Cubic Tetrahedral Adaptation

of the Hemi-Cube Algorithm. In Graphics Gems II, pages 299-302, Academic

Press Professional, Boston, MA, 1991.

[Bots02] Mario Botsch, Stephan Steinberg, Stephan Bischoff, and Leif Kobbelt.

OpenMesh – A Generic and Efficient Polygon Mesh Data Structure. In

OpenSG Symposium 2002, 2002.

[Camp91] Alvin T. Campbell, III. Modeling Global Diffuse Illumination for Image

Synthesis. PhD thesis, Dept. of Computer Sciences, University of Texas at

Austin, December 1991.

[Cohe85] Michael F. Cohen and Donald P. Greenberg. The Hemi-cube: A Radiosity

Solution for Complex Environments. In Computer Graphics (SIGGRAPH '85

Proceedings), 19:3, pages 31-40, July 1985.

[Cohe86] Michael Cohen, Donald P. Greenberg, Dave S. Immel, and Philip J. Brock.

An Efficient Radiosity Approach for Realistic Image Synthesis. In IEEE

Computer Graphics and Applications, 6(3):26-35, March 1986.

[Cohe88] Michael F. Cohen, Shenchang Eric Chen, John R. Wallace, and Donald P.

Greenberg. A Progressive Refinement Approach to Fast Radiosity Image

Generation. In Computer Graphics (SIGGRAPH '88 Proceedings), 22:4,

Chapter 10. Bibliography

70

pages 75-84, August 1988.

[Cohe93] Michael F. Cohen and John R. Wallace. Radiosity and Realistic Image

Synthesis. Academic Press International, Boston, MA, 1993.

[Cook86] Robert L. Cook. Stochastic Sampling in Computer Graphics. In ACM

Transactions on Graphics, Vol. 5, No. 1, January 1986.

[Dura99] Frédo Durand, George Drettakis, and Claude Puech. Fast and Accurate

Hierarchical Radiosity Using Global Visibility. In ACM Transactions on

Graphics, April 1999.

[Ecke98] George Eckel. Cosmo 3D Programmer’s Guide. Document Number 007-

3445-002. Silicon Graphics, Inc., 1998.

[Fabr00] Andreas Fabri, Geert-Jan Giezeman, Lutz Kettner, Stefan Schirra, and Sven

Schönherr. On the Design of CGAL, the Computational Geometry

Algorithms Library. In Software - Practice and Experience 30, pages 1167-

1202, 2000.

[Fole96] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.

Computer Graphics: Principles and Practice, 2nd Edition in C. Addison-

Wesley, Reading, Massachusetts, 1996.

[Garl97] Michael Garland and Paul S. Heckbert. Surface Simplification Using Quadric

Error Metrics. In Proceedings of SIGGRAPH '97, pages 209-216, August

1997.

[Garl99] Michael Garland. Quadric-Based Polygonal Surface Simplification. PhD

thesis, Carnegie Mellon University, 1999.

[Garl01] Michael Garland, Andrew Willmott, and Paul S. Heckbert. Hierarchical Face

Clustering on Polygonal Surfaces. In ACM Symposium on Interactive 3D

Graphics, March 2001.

[Gers94] Reid Gershbein, Peter Schröder, and Pat Hanrahan. Textures and Radiosity:

Controlling Emission and Reflection from Texture Maps. Technical Report

CS-TR-449-94, Department of Computer Science, Princeton University,

Princeton, NJ, March 1994.

[Gibs95] Simon Gibson. Efficient Radiosity for Complex Environments. Master’s

thesis, Manchester, UK, 1995.

[Gibs96] Simon Gibson and Roger Hubbold. Efficient Refinement and Clustering for

Radiosity in Complex Environments. In Computer Graphics Forum,

15(5):297-310, December 1996.

[Gibs97] S. Gibson and R. J. Hubbold. Perceptually-Driven Radiosity. In Computer

Graphics Forum, 16(2):129-140, 1997.

 Chapter 10. Bibliography

 71

[Glas89] Andrew S. Glassner, editor. An Introduction to Ray Tracing. Academic Press

Limited. 1989.

[Glas91] Andrew S. Glassner. Maintaining Winged-Edge Models. In Graphics Gems

II, pages 191-201, Academic Press Professional, Boston, MA, 1991.

[Gobb02] Enrico Gobbetti, Leonardo Spanò, and Marco Agus. Hierarchical Higher

Order Face Cluster Radiosity. Technical Report CRS4 TR/. CRS4, Center for

Advanced Studies, Research, and Development in Sardinia. Cagliari, Italy,

March 2002.

[Gobb03] Enrico Gobbetti, Leonardo Spanò, and Marco Agus. Hierarchical Higher

Order Face Cluster Radiosity for Global Illumination Walkthroughs of

Complex Non-Diffuse Environments. In Computer Graphics Forum, 22(3),

September 2003.

[Gora84] Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett

Battaile. Modeling the Interaction of Light Between Diffuse Surfaces. In

Computer Graphics (SIGGRAPH '84 Proceedings), 18:3, pages 212-222, July

1984.

[Gort96] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F.

Cohen. The Lumigraph. In Proceedings of SIGGRAPH '96, August 1996.

[Gott96] S. Gottschalk, M. C. Lin, and D. Manocha. OBB-tree: A Hierarchical

Structure for Rapid Interference Detection. In Proceedings of SIGGRAPH '96,

pages 171-180, August 1996.

[Gott00] Stefan Gottschalk. Collision Queries using Oriented Bounding Boxes. PhD

thesis. Department of Computer Science, UNC Chapel Hill, 2000.

[Greg98] Gene Greger, Peter Shirley, Philip M. Hubbard, and Donald P. Greenberg.

The irradiance volume. In IEEE Computer Graphics & Applications, (2):32–

43, March-April 1998.

[Guth03] Michael Guthe and Reinhard Klein. Automatic Texture Atlas Generation

from Trimmed NURBS Models. In Proceedings of Eurographics 2003,

September 2003.

[Hain00] Eric Haines. A Shaft Culling Tool. In Journal of Graphics Tools, 5(1):23-26,

2000.

[Hanr91] Pat Hanrahan, David Salzman, and Larry Aupperle. A rapid hierarchical

radiosity algorithm. In Computer Graphics (SIGGRAPH '91 Proceedings),

25:4, pages 197-206, July 1991.

[Hase99] Jean-Marc Hasenfratz, Cyrille Damez, François Sillion, and George Drettakis.

A Practical Analysis of Clustering Strategies for Hierarchical Radiosity. In

Computer Graphics Forum, 18(3):221-232, September 1999.

Chapter 10. Bibliography

72

[Heck90] Paul S. Heckbert. Adaptive Radiosity Textures for Bidirectional Ray Tracing.

In Computer Graphics (SIGGRAPH '90 Proceedings), 24:4, pages 145-154,

August 1990.

[Heck91] Paul S. Heckbert and James M. Winget. Finite Element Methods for Global

Illumination. Tech. Rep. UCP/CSD, Computer Science Division (EECS),

University of California, Berkeley, July 1991.

[Heck92] Paul S. Heckbert. Discontinuity Meshing for Radiosity. In Third

Eurographics Workshop on Rendering. Bristol, UK, May 1992.

[Heck93] Paul S. Heckbert. Finite Element Methods for Radiosity. In Global

Illumination Course Notes (SIGGRAPH '93), Anaheim, August 1993.

[Hink98] André Hinkenjann and Georg Pietrek. Reconstructing Radiosity by Scattered

Data Interpolation. In Proceedings of WSCG'98 - Central European

Conference on Computer Graphics and Visualization '98, pages 133-140.

Plzen, Czech Republic, 1998.

[Hopp96] Hugues Hoppe. Progressive Meshes. In Proceedings of SIGGRAPH '96, 30:4,

pages 99-108, August 1996.

[Jens01] Henrik Wann Jensen. Realistic Image Synthesis Using Photon Mapping. A K

Peters, Natick, Massachusetts, 2001.

[Joll86] Ian T. Jolliffe. Principal Component Analysis. Springer Verlag, New York,

1986.

[Kaji86] James T. Kajiya. The Rendering Equation. In Computer Graphics

(SIGGRAPH '86 Proceedings), 20:4, pages 143-150, August 1986.

[Lebl00] Luc Leblanc and Pierre Poulin. Guaranteed Occlusion and Visibility in

Cluster Hierarchical Radiosity. In Eurographics Workshop on Rendering

2000, pages 89-100, June 2000.

[Lévy02] Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. Least

Squares Conformal Maps for Automatic Texture Atlas Generation. In ACM

Transactions on Graphics (Proceedings of ACM SIGGRAPH 2002), pages

362-371, July 2002.

[Lisc92] Dani Lischinski, Filippo Tampieri, and Donald P. Greenberg, Discontinuity

Meshing for Accurate Radiosity. In IEEE Computer Graphics and

Applications, 12(6): 25-39, Nov. 1992.

[Lisc93] Dani Lischinski, Filippo Tampieri, and Donald P. Greenberg, Combining

Hierarchical Radiosity and Discontinuity Meshing. In Computer Graphics

(SIGGRAPH '93 Proceedings), pages 199-209, August 1993.

[Low01] Kok-Lim Low. Simulated 3D Painting. Technical report, Department of

 Chapter 10. Bibliography

 73

Computer Science, University of North Carolina at Chapel Hill, 2001.

[MacD89] J. David MacDonald and Kellogg S. Booth. Heuristics for Ray Tracing using

Space Subdivision. In Proceedings of Graphics Interface ’89, pages 152-63,

Toronto, Ontario, June 1989. Canadian Information Processing Society.

[Mail93] Jerôme Maillot, Hussein Yahia, and Anne Verroust. Interactive Texture

Mapping. In Computer Graphics (SIGGRAPH '93 Proceedings), pages 27-34,

August 1993.

[Mile99] Victor J. Milenkovic. Rotational Polygon Containment and Minimum

Enclosure Using Only Robust 2D Constructions. In Computational Geometry,

13(1):3-19, 1999.

[Müll99] Gordon Müller, Stephan Schäfer, and Dieter Fellner. Automatic Creation of

Object Hierarchies for Radiosity Clustering. In Proceedings of Pacific

Graphics '99 (Seventh Pacific Conference on Computer Graphics and

Applications), pages 21-29, IEEE Computer Society Press, Los Alamitos, CA,

October 1999.

[Mysz94] Karol Myszkowski and Tosiyasu L. Kunii. Texture Mapping as an Alternative

for Meshing During Walkthrough Animation. In Proceedings of the Fifth

Eurographics Workshop on Rendering, pages 375-388, Germany, June 1994.

[Mänt88] Martti Mäntylä. An Introduction to Solid Modeling. Computer Science Press,

Rockville, MD, 1988.

[Möll96] Tomas Möller. Radiosity Techniques for Virtual Reality – Faster

Reconstruction and Support for Levels Of Detail. In WSCS ’96, Plzen, Czech

Republic, 1996.

[Möll98] Tomas Möller. Real-Time Algorithms and Intersection Test Methods for

Computer Graphics. PhD thesis. Department of Computer Engineering,

Chalmers University of Technology, Sweden, 1998.

[Möll99] Tomas Möller and Eric Haines. Real-Time Rendering. A K Peters, Natick,

Massachusetts, 1999.

[Niel00] Kasper Høj Nielsen. Real-Time Hardware-Based Photorealistic Rendering.

Master's thesis, Department of Mathematical Modelling, IMM, The Technical

University of Denmark, Lyngby, Denmark, 2000.

[Nish85] T. Nishita and E. Nakamae. Continuous Tone Representation of Three-

Dimensional Objects Taking Account of Shadows and Interreflection. In

Computer Graphics (SIGGRAPH '85 Proceedings), 19:3, pages 23-30, July

1985.

[Open98] OpenGL Optimizer Programmer’s Guide: An Open API for Large-Model

Visualization. Document Number 007-2852-002. Silicon Graphics, Inc.,

Chapter 10. Bibliography

74

1998.

[Opti01] Opticore Opus Studio Users Guide. Opticore AB, Sweden, 2001.

[ORou98] Joseph O'Rourke. Computational Geometry in C (Second Edition).

Cambridge University Press, 1998.

[Piet93] Georg Pietrek. Fast Calculation of Accurate Formfactors. Technical Report

No. 483, University of Dortmund, Germany, May 1993.

[Prik99] Jan Prikryl and Werner Purgathofer. Overview of Perceptually-Driven

Radiosity Methods. Technical Report TR-186-2-99-26, 1999.

[Ray03a] Nicolas Ray, Jean-Christophe Ulysse, Bruno Lévy, and Xavier Cavin.

Generation of Radiosity Texture Atlas for Realistic Real-Time Rendering. In

Proceedings of Eurographics 2003, September 2003.

[Ray03b] Nicolas Ray and Bruno Lévy. Hierarchical Least Squares Conformal Map. In

11th Pacific Conference on Computer Graphics and Applications (PG'03),

October 2003.

[Rein02] Erik Reinhard, Mike Stark, Peter Shirley, and Jim Ferwerda. Photographic

Tone Reproduction for Digital Images. In ACM Transactions on Graphics

(Proceedings of ACM SIGGRAPH 2002), pages 267-276, July 2002.

[Roge98] David F. Rogers. Procedural Elements for Computer Graphics, 2nd Edition.

McGraw-Hill, Boston, MA, 1998.

[Rush93] Holly Rushmeier, Charles Patterson, and Aravindan Veerasamy. Geometric

simplification for indirect illumination calculations. In Graphics Interface

’93, pages 227–236, May 1993.

[Sand01] Pedro V. Sander, John Snyder, Steven J. Gortler, and Hugues Hoppe. Texture

Mapping Progressive Meshes. In Proceedings of SIGGRAPH 2001, pages

409-416, August 2001.

[Sill89] François X. Sillion and Claude Puech. A General Two-Pass Method

Integrating Specular and Diffuse Reflection. In Computer Graphics

(SIGGRAPH '89 Proceedings), 23:3, pages 335-344, August 1989.

[Sill91] François X. Sillion. Detection of Shadow Boundaries for Adaptive Meshing

in Radiosity. In Graphics Gems II, pages 311-315, Academic Press

Professional, Boston, MA, 1991.

[Sill94] François X. Sillion and Claude Puech. Radiosity and Global Illumination.

Morgan Kaufman, San Mateo, CA, 1994.

[Sill95a] François X. Sillion, George Drettakis, and Cyril Soler. A Clustering

Algorithm for Radiance Calculation in General Environments. In Rendering

 Chapter 10. Bibliography

 75

Techniques '95, pages 196-205, Eurographics, June 1995.

[Sill95b] François X. Sillion. A Unified Hierarchical Algorithm for Global Illumination

with Scattering Volumes and Object Clusters. In IEEE Transactions on

Visualization and Computer Graphics, 1(3):240–254, September 1995.

[Smit94] Brian Smiths, James Arvo, and Donald Greenberg. A Clustering Algorithm

for Radiosity in Complex Environments. In Proceedings of SIGGRAPH '94,

pages 435-442, July 1994.

[Smith98] Brian Smiths. Efficiency Issues for Ray Tracing. In Journal of Graphics

Tools, 3(2):1-14, February 1998.

[Span02] Leonardo Spanò and Enrico Gobbetti. Radiosity for Highly Tessellated

Models. In SIMAI 2002 Symposium on Adaptive Techniques in Numerical

Simulation and Data Processing, May 2002.

[Stam00] Mark Stamminger, Annette Scheel, and Hans-Peter Seidel. Hierarchical

Radiosity with Global Refinement. In Vision, Modeling, and Visualization

2000 (Conference Proceedings), pp. 263-271, 2000.

[Tous83] Godfried Toussaint. Solving Geometric Problems with the Rotating Calipers.

In Proceedings of IEEE MELECON’83, Athens, Greece, May 1983.

[Whit80] Turner Whitted. An Improved Illumination Model for Shaded Display. In

Communications of the ACM, 23:6, pages 343-349, 1980.

[Wide99] Johnny Widerlund. Increasing Realism in Real-Time Visual Simulations

Using Hardware Accelerated Progressive Radiosity. Master's thesis,

Chalmers University of Technology, Sweden, 1999.

[Will99] Andrew J. Willmott, Paul S. Heckbert, and Michael Garland. Face Cluster

Radiosity. In D. Lischinski and G. W. Larson, editors, Rendering Techniques

'99 (Proceedings of the Tenth Eurographics Workshop on Rendering), pages

293-304. Springer-Verlag/Wien, 1999.

[Will00] Andrew J. Willmott. Hierarchical Radiosity with Multiresolution Meshes.

PhD thesis, Carnegie Mellon University, 2000.

[Woo99] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner. OpenGL

Programming Guide, Third Edition. Addison-Wesley, Reading,

Massachusetts, 1999.

[Yeap97] Tralvex Yeap. Radiosity for Virtual Reality Systems. Master’s thesis,

University of Leeds, Leeds, United Kingdom, August 1997.

[Zhuk97] S. Zhukov, A. Iones, G. Kronin. On a Practical Use of Light Maps in Real-

Time Applications. In Proceedings of SCCG'97 vol. 2, pages 7-14. Slovakia,

Bratislava, 1997.

Chapter 10. Bibliography

76

[Zhuk98] S. Zhukov, A. Iones, G. Kronin. Using Light Maps to Create Realistic

Lighting in Real-Time Applications. In Proceedings of WSCG'98 - Central

European Conference on Computer Graphics and Visualization '98, pages

464-471. Plzen, Czech Republic, 1998.

