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Abstract

Two-phase sampling is a procedure in which sampling and data collection is conducted
in two phases, aiming at achieving increased precision in estimation at reduced cost. The
first phase typically involves sampling a large number of elements and collecting data on
variables that are easy to measure. In the second phase, a subset is sampled for which
all variables of interest are observed. Utilization of the information provided by the data
observed in the first phase may increase precision in estimation by optimal selection of
sampling design the second phase.

This thesis deals with two-phase sampling when a random sample following some gen-
eral parametric statistical model is drawn in the first phase, followed by subsampling with
unequal probabilities in the second phase. The method of maximum pseudo-likelihood
estimation, yielding consistent estimators under general two-phase sampling procedures,
is presented. The design influence on the variance of the maximum pseudo-likelihood
estimator is studied. Optimal subsampling designs under various optimality criteria are
derived analytically and numerically using auxiliary variables observed in the first sam-
pling phase.

Keywords: Anticipated variance; Auxiliary information in design; Maximum pseudo-
likelihood estimation; Optimal designs; Poisson sampling; Two-phase sampling.
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1
Introduction

In many areas of research, data collection and statistical analysis play a central role in
the acquisition of new knowledge. However, collection of data is often associated with
some cost, and in studies involving human subjects possibly also with discomfort and
potential harm. There are often also statistical demands on the analysis, namely that
the characteristics or parameters of interest should be estimated with sufficient precision.
Efficient use of data is thus tractable for economical, ethical and statistical reasons. The
precision in estimation depend on the number of observations available for analysis as
well as on the study design, i.e. the conditions under which the study is conducted in
combination with the methods used for sample selection.

A special situation arise when some information about the elements or subjects avail-
able for study is accessible prior to sampling. Incorporation of such information in design
and analysis of a study can improve the precision in estimation substantially. In practice,
such information is seldom available prior to study but rather obtained through a first
sampling phase, collecting data of variables that are easily measured for a large number
of subjects. A sampling procedure in which sampling and data collection is performed
in two phases is called two-phase sampling, and could be used to meet the statistical
and economical demands encountered in empirical research.

While two-phase sampling provides an opportunity to select elements that are be-
lieved to contribute with much information to the analysis, it also introduces a number
of challenges. It is important to use methods of estimation that properly account for
the sampling procedure, and to understand how the selection of elements influence the
precision in estimation of the parameters of interest. The former is necessary in order
to obtain valid inferences, the latter in order to be able to use the data available in an
efficient way.
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1.1. BACKGROUND

1.1 Background

Two-phase sampling as a tool to achieve increased precision in estimation in studies
with economical limitations was proposed by Neyman [34] within the context of survey
sampling. It is a procedure in which sampling is conducted in two phases, the first
involving a large sample and collection of information that is easily obtained, the second
involving a smaller sample in which the variables of interest are observed. The idea is
that use of easy accessible data could aid in the collection of data from more expensive
sources.

The variables observed in the first phase that are called auxiliary variables. These are
not necessarily of particular interest themselves, but can be used in design and analysis
of a study to increase precision in estimation. It is assumed that the variables of interest
are associated with a high cost, making it unfeasible to observe these for all elements in
the first phase and profitable to collect other information for a large number of elements
in the first phase. The high cost could for example be due to need for interviews be
carried out or measurements to be made by trained staff in order to assess or measure
the variables of interest. It is also assumed that the auxiliary variables are related to
the variables of interest.

The use of auxiliary variables in design, estimation and analysis is well studied within
the field of survey sampling, see for example Särndal et al. [45]. It is however less fre-
quently encountered among practitioners in other statistical disciplines. The use of two-
phase sampling in case-control studies has been suggested by Walker [47] and White [48],
and in clinical trials by Frangakis and Baker [15]. Another possible area of application
is to naturalistic driving studies, such as the recently conducted European Field Oper-
ational Test (EuroFOT) study [1]. This study combines data from different sources, in-
cluding video sequences continuously filmed in the drivers cabin as well as automatically
measured data, such as speed, acceleration, steering wheel actions and GPS coordinates.
The access to automatically generated data could possibly be used for efficient selection
of video sequences for annotation and analysis.

Optimal subsampling designs using auxiliary information have previously been stud-
ied in the literature, see for example Jinn et al. [27], Reilly and Pepe [38,39] and Frangakis
and Baker [15]. Much of the previous work in the area is however limited in the classes
of estimators and models considered.

1.2 Purpose

The aim of this thesis is to derive optimal subsampling designs for a general class of esti-
mators and statistical models, using auxiliary information obtained in the first sampling
phase to optimize the sampling design in the second phase.
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1.3. SCOPE

1.3 Scope

The work is restricted to the use of auxiliary information in the design stage, using the
method of maximum pseudo-likelihood for estimation. The pseudo-likelihood is closely
related to the classical likelihood, with some modifications for use under general sampling
designs. In its classical form, it does not incorporate auxiliary information in estimation.

This thesis deals with two-phase sampling when a random sample following some
general parametric model is drawn in the first phase, followed by Poisson sampling in
the second phase. Poisson sampling is a sampling design in which elements are sampled
independently of each other, possibly with unequal probabilities. Total independence
in sampling of elements leads to important simplifications of the optimization problem,
while the use of unequal probabilities allows for construction of flexible designs.

Some minor excursions from the above delimitation are made, introducing other
designs or auxiliary information in estimation post hoc. Adjusted conditional Poisson
designs and stratified sampling, as well as the use of auxiliary information in estimation
by sampling weight adjustment, are mentioned.

1.4 Outline

This thesis is divided into five chapters, including the current one. Chapter 2 gives a
general formulation of the two-phase sampling procedure and presents the framework for
the situations considered in the thesis. The essentials in maximum likelihood estimation
and survey sampling are described, and the method of maximum pseudo-likelihood esti-
mation is presented. Some topics in optimal design theory are also covered. The aim is
to present the most important topics and results in some generality without being too
technical. Focus is thus on ideas and results rather than on proofs. References to some
specific results are given in the text as presented, while references covering broader topics
are given at the end of each paragraph under the section Perspective and Sources. This
section also contains some historical remarks and comments on the material. Examples
illustrating the theory and techniques presented is the thesis are given under the section
Illustrative Examples. Many of these concern the normal distribution. It is chosen due
to its familiar form and well known properties, which enables for focus to be on the new
topics. Many of the examples are also related and it might be necessary to return to
previous examples for details left out.

The main results of this thesis is presented are Chapter 3, investigating the use of
auxiliary information for selection of subsampling design. This chapter is restricted to
certain classes of sampling designs, for which optimal sampling schemes are derived with
respect to various optimality criteria. Some post hoc adjustments of design and methods
for estimation are discussed.

The performance of the subsampling designs derived in Chapter 3 are illustrated
by a number of examples in Chapter 4. These include estimation of parameters of the
normal distribution and in logistic regression models, with various amount of information
available in the design stage. Rather simple models are considered in order to ease
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1.4. OUTLINE

interpretation and understanding.
In the last chapter, limitations and practical implications of the work is discussed.

Some of the theoretical material is presented in Appendix.
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2
Theoretical Background

The main ideas about two-phase sampling are presented and the framework for the situ-
ations considered in the thesis is described. The main principles of maximum likelihood
estimation and survey sampling are described. Estimation under two-phase sampling,
using the method of maximum pseudo-likelihood, is presented. Some topics in optimal
design theory needed for comparison, evaluation and optimization of two-phase sampling
design are discussed.

2.1 A General Two-Phase Sampling Framework

Consider a situation in which sampling from an infinite population P is conducted in
two phases. In the first phase, a random sample S1 = {e1,e2, e3, . . . , eN} of N elements
is drawn from the target population. To simplify notation, let k represent element ek in
S1. Associated with each element is a number or random variables, namely an outcome
or response variable Yk, explanatory variables Xk and auxiliary variables Zk. Statistical
independence of the triplets (Yk,Xk,Zk) between elements is assumed. Let Y be the
vector with elements Yk and denote by X and Z the matrices with rows Xk and Zk
respectively. The role of the explanatory variables are to describe the outcome through
some statistical model on which inference about the target population is based. The
role of the auxiliary variables are to provide information about the response and/or the
explanatory variables before these are observed, which can be used in the planning of
design. It is not required that Z is disjoint from (Y ,X).

Conditional on the explanatory variables, Yk are assumed to be independent and
follow some distribution law with density f(yk|xk;θ), where θ = (θ1, . . . , θp) is the
parameter of interest. The aim is to estimate θ, or possibly a subset or specific linear
combination of its elements. As an example one may think of logistic regression, in
which f(yk|xk;θ) is the probability mass function of a Bernoulli(pk) distributed random

variable with pk = 1/(1 + e−x
T
k β). The parameter of interest is the vector of regression
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2.1. A GENERAL TWO-PHASE SAMPLING FRAMEWORK

coefficients θ = β = (β0, β1, . . . , βp) or possibly a subset or linear combination of those.
One might also be interested in the simpler situation without explanatory variables. It is
then assumed that all Yk are independent and identically distributed with some density
f(y;θ).

The realizations of (Y ,X,Z), generated from the underlying population when draw-
ing S1, are denoted by y, X̃ and Z̃, respectively. The k-th element of y is denoted by
yk, which is the realized value of the response variable for element k in S1. Similarly,
the rows in the matrices X̃ and Z̃ corresponding to element k are denoted by xk and
zk, respectively. If measurement of some components in (y, X̃) is associated with a high
cost, the need for a second sampling phase is introduced by infeasibility of observing
all of (y, X̃) for all elements in S1. It is thus not possible to estimate θ from the first
sample, since the outcome or some of the explanatory variables are unknown. A second
sampling phase is thus conducted.

The second phase sample, with sample size or expected sample size n, is denoted
by S2. The method of sampling can be such that elements are sampled with unequal
probabilities. It turns out that the precision in estimation depend on the method of
sampling, and it is desirable to find a sampling design that yields a high precision. This
can be achieved by use of the auxiliary variables in the planning of design, since these
introduce knowledge about (y, X̃) between the two phases of sampling. This requires
some prior knowledge about the relationship between auxiliary variables and outcome
and explanatory variables.

It is assumed in this thesis that a model for (Yk,Xk) conditional on Zk, described by
some density function f(yk,xk|zk;φ) with parameter vector φ, is known to some extent
prior to study. This model will be referred to as the design model and its parameter as
the design parameter, and the use of this model will be restricted to determination of
the sampling procedure in the second phase. The design model need not be completely
known and must in practice often be guessed. However, a good agreement between
guessed and true model is desirable for the methods described in this thesis to be used
successfully. In the case of a continuous variable Yk and no explanatory variables, the
design model for Yk conditional on Zk could for example be a linear regression model, so
that Yk|Zk ∼ N (ZT

k β, σε). If the parameter φ = (β1, . . . , βr, σε) is known to some extent
prior to study and Zk explains some of the variation in Yk, knowledge about zk gives
information about the distribution of Yk. Such information can be of great importance
in the choice of subsampling design in the second phase.

Once the subsample S2 is drawn, the realizations (yk,xk) are observed for the sampled
elements. Estimation of θ can then be carried out from the sampled elements in the
second phase sample. However, the distribution of Yk given Xk in the sample might
differ from the underlying population distribution, since S2 is not necessarily a simple
random sample. The sampling procedure must be properly taken into account in the
analyses in order to obtain valid inference about θ. One alternative is to use the method
of maximum pseudo-likelihood, which is introduced in Section 2.3.

A flowchart presenting the two-phase sampling procedure is presented in Figure 2.1.
The key feature in two-phase sampling is that some information about the elements in

6



2.2. TWO APPROACHES TO STATISTICAL INFERENCE

S1 is available between the two sampling phases by observation of the auxiliary variables.
Efficient use of the auxiliary information in the planning of subsampling design might
improve precision in estimation.

Population P

First phase sample S1

Second phase sample S2

Random sample from P.

Subsampling elements in S1 using information provided by Z̃.

Random variables Y , X, Z.

Model of interest is conditional distribution f(y|x;θ).

Z̃ observed but not all of (y, X̃).

yk and xk observed for subsampled elements.

θ estimated.

Figure 2.1: Flowchart describing the two-phase sampling procedure.

2.2 Two Approaches to Statistical Inference

Two random processes are involved in the two-phase sampling procedure considered in
this thesis. In the first phase, randomness is introduced by the distribution of (Y ,X)
in the underlying population, which is described by some statistical model. In the
second phase, randomness is introduced by subsampling of elements in S1. This random
process is fully described by the sample selection procedure. An inference procedure that
properly accounts for both sources of randomness is required and will be introduced in
Chapter 2.3. Before that, two different types of inference procedures, dealing with the
two random processes separately, will be discussed.

2.2.1 Maximum Likelihood

Consider a random sample S1 of N elements from an infinite population P. Associated
with each sampled element is some variables (yk,xk), generated from some population
model for which inference is to be made. Conditional on the explanatory variables, the
response variables Yk are assumed to be independent and to have density f(yk|xk;θ),
where θ is the parameter of interest. Estimation of θ is often carried out using the
method of maximum likelihood, which now will be described.

The Maximum Likelihood Estimator

The maximum likelihood estimator (MLE) of θ, denoted by θ̂ML, is defined by

θ̂ML := argmax
θ

L(θ;y,X̃) ,

7



2.2. TWO APPROACHES TO STATISTICAL INFERENCE

where the likelihood L(θ;y,X̃) is the joint density of Y given X seen as a function of
θ. Due to independence, the likelihood function can be written as

L(θ;y,X̃) =
∏
k∈S1

f(yk|xk;θ) .

In place of the likelihood, it is often more convenient to work with the log-likelihood

`(θ;y,X̃) := logL(θ;y,X̃) =
∑
k∈S1

log f(yk|xk;θ) , (2.2.1)

which has the same argmax as the likelihood. The argument k ∈ S1 under the sum will
be omitted from now on, simply writing sum over k.

The solution to (2.2.1) is found by solving the estimating equation

∇θ`(θ;y, X̃) = 0,

where

∇θ`(θ;y, X̃) =

(
∂`(θ;y, X̃)

∂θ1
, . . . ,

∂`(θ;y, X̃)

∂θp

)
is the gradient of the log-likelihood. It is often also called the score and will be denoted
by S(θ) to simplify notation. Strictly speaking, finding the global maximum of (2.2.1)
requires all critical points of the log-likelihood to be considered and the boundary of
the parameter space to be investigated, following standard procedures in multivariate
calculus. The examples presented in this thesis will however only be concerned with
finding the solutions to the estimating equation (2.2.1), leaving the additional steps to
the reader for verification that a global maximum is found.

Asymptotic Properties of the MLE

The asymptotic distribution of a maximum likelihood estimator is multivariate normal
with √

N(θ̂ML − θ) ∼
a
N (0,Γ) ,

using the notation ”∼
a

” for the asymptotic distribution of a random variable. The

variance-covariance matrix Γ called the asymptotic variance of the normalized MLE.
The MLE is asymptotically unbiased, which we write

E(θ̂ML) =
a
θ ⇔ E(θ̂ML)→ θ as N →∞ ,

using the notation ”=
a

” for equalities that hold in the limit. Furthermore, the bias of

the MLE is relatively small compared to the standard error. This implies that the
MLE is approximately unbiased for large samples and the bias can be neglected. Also,
the MLE converge in distribution to the constant θ as N tends to infinity, and we say
that the MLE is consistent. That is, the distribution of θ̂ML is tightly concentrated

8



2.2. TWO APPROACHES TO STATISTICAL INFERENCE

around θ for large samples, so that the MLE with high certainty will be within an
arbitrary small neighborhood of the true parameter if N is large enough. The MLE is
also asymptotically efficient, which roughly speaking is to say that the MLE has minimal
asymptotic variance.

Note that unbiasedness and normality of MLE is guaranteed only in the limit as
the sample size tend to infinity. However, for finite samples it is reasonable to think of
asymptotic equalities as large sample approximations and of to use asymptotic distribu-
tions as large sample approximations of the sample distribution of an estimator.

The Fisher Information and the Variance of the MLE

The asymptotic distribution of the MLE can also be written as

θ̂ML ∼
a
N
(
θ,Σθ̂

)
.

The variance-covariance matrix Σθ̂ of the MLE is the inverse of the so called Fisher
information I(θ):

I(θ) = EY |X

[∑
k

∇θ log f(Yk|xk;θ)∇Tθ log f(Yk|xk;θ)

]
= EY |X [−∂θS(θ)] ,

(2.2.2)

where ∂θS(θ) = ∇θ∇Tθ `(θ;y, X̃) is the Hessian of the log-likelihood. The Fisher infor-
mation will also be referred to as the information matrix. The elements of (2.2.2) are
given by

I(θ)(i,j) =
∑
k

EYk|Xk

[
∂ log f(Yk|xk;θ)

∂θi

∂ log f(θ;Yk,xk)

∂θj

]
=
∑
k

EYk|Xk

[
−∂

2 log f(Yk|xk;θ)

∂θi∂θj

]
.

Typically, the Fisher information depends on the values of the explanatory variables X̃
as well as on the parameter θ. However, if Yk are independent and identically distributed
and there are no explanatory variables, the information matrix simplifies to

I(θ)(i,j) = N EY

[
∂ log f(Y ;θ)

∂θi

∂ log f(Y ;θ)

∂θj

]
= N EY

[
−∂

2 log f(Y ;θ)

∂θi∂θj

]
.

(2.2.3)

The variance-covariance matrix can be estimated by the inverse of the estimated
information matrix, which provides a simple connection between the score of and the
variance of the MLE. Since θ is unknown, the information matrix must be estimated. One
possibility is simply to plug in the estimate θ̂ML instead of θ in the Fisher information

9



2.2. TWO APPROACHES TO STATISTICAL INFERENCE

I(θ). This estimator is referred to as the expected information. Another commonly used
estimator is

Î(θ̂ML) = −∂θS(θ̂ML) ,

which is called the observed information. It has elements

Î(θ̂ML)(i,j) = −
∑
k

∂2 log f(yk|xk; θ̂ML)

∂θi∂θj
.

Ignoring the randomness of θ̂ML, the first estimator I(θ̂ML) is the expectation of the
observed information. In practice, the observed information is often preferred before the
expected information [14].

Perspective and Sources

Much of the early contributions to the development of the theory of maximum likelihood
estimation is due to R. A. Fisher. The main topics in maximum likelihood theory are
covered by most standard textbooks in statistics, see for example Casella and Berger [9].
The asymptotic results presented in this section are quite general and holds for most
standard distributions. Necessary conditions for these to hold essentially has to do with
the support and differentiability of f(y|x;θ), see Casella and Berger [9] or Serfling [42]
for more details on these technical conditions.

Illustrative Examples

Example 2.2.1 (The Likelihood Function) Suppose that Yk are independent and
identically distributed with Yk ∼ N (µ, σ), k = 1, . . . , N , where σ is known. Given
the observed data y = (y1, . . . , yN ) the likelihood is a function of µ:

L(µ;y) =
∏
k

f(yk;µ) =
∏
k

1√
2πσ2

e−
1
2

(yk−µ)
2

σ2 =
1

(2πσ2)N/2
e−

1
2

∑
k(yk−µ)

2

σ2 ,

which is illustrated in Figure 2.2. The maximum likelihood estimator µ̂ML of µ is cho-
sen so that L(µ;y) is maximized, i.e., µ̂ML is the point along the x-axis for which the
maximum along the y-axis is reached.

10



2.2. TWO APPROACHES TO STATISTICAL INFERENCE

µ

Li
ke

lih
oo

d

Figure 2.2: The likelihood as function of µ for a sample from a N (µ, σ)-distribution, where
σ is known. The MLE is the point along the x-axis for which the maximum along the y-axis
is reached, indicated by the grey line in the figure.

Example 2.2.2 (Estimating Parameters of the Normal Distribution) Suppose that
Yk are independent and identically distributed with Yk ∼ N (µ, σ), k = 1, . . . , N , where
both µ and σ are unknown. The maximum of L(µ, σ;y) is found by maximizing the
log-likelihood

`(µ, σ; y) = −N
2

log(2πσ2)− 1

2

∑
k(yk − µ)2

σ2
.

The partial derivatives of the log-likelihood are

∂`(µ, σ; y)

∂µ
=
∑
k

yk − µ
σ2

,

∂`(µ, σ; y)

∂σ
= −N

σ
+
∑
k

(yk − µ)2

σ3
.

Solving S(µ, σ) = 0 gives the maximum likelihood estimators for µ and σ as

µ̂ML =

∑
k yk
N

,

σ̂ML =

√∑
k(yk − µ̂ML)2

N
.

The second order partial derivatives of log f(Y ;µ, σ) are given by

∂2 log f(Y ;µ, σ)

∂µ2
= − 1

σ2
,

11
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∂2 log f(Y ;µ, σ)

∂σ2
= −3

(Y − µ)2

σ4
+

1

σ2
,

∂2 log f(Y ;µ, σ)

∂µ∂σ
= −2

Y − µ
σ3

.

According to (2.2.3), the Fisher information is thus

I(θ) = NEY

(
1
σ2 2Y−µ

σ3

2Y−µ
σ3 3 (Y−µ)2

σ4 − 1
σ2

)
=

(
N
σ2 0

0 2N
σ2

)
.

The information matrix has inverse

Σθ =

(
σ2

N 0

0 σ2

2N

)
,

which is the asymptotic or approximate variance-covariance matrix of (µ̂ML,σ̂ML). Note
that the asymptotic distribution of the sample mean is µ̂ML ∼

a
N (µ, σ2/N), which coin-

cide with the sample distribution of µ̂ML for finite samples. Note also that (µ̂ML,σ̂ML)
are asymptotically independent, which also holds for finite samples. Finally, the variance-
covariance matrix of (µ̂ML,σ̂ML) can be estimated by

Σ̂θ̂ =

(
σ̂2
ML
N 0

0
σ̂2
ML
2N

)
.

Example 2.2.3 (The Fisher Information) A simple example illustrating the con-
nection between the second order derivatives of the log-likelihood and the variance of
an estimator is now given.

Consider two simple random samples from a normal population with known vari-
ance, the first sample being of size 25 and the second of size 100. The corresponding
log-likelihoods are shown in Figure 2.3. The smaller sample has a blunt peak around
the estimated value. There are thus many points that are almost equally likely given the
observed data. If another sample is drawn, another value close to the current peak will
probably be the most likely value. A blunt peak thus corresponds to a large variance. In
terms of derivatives of the log-likelihood, this is the same as to have a small negative sec-
ond derivative at θ̂ML. The larger sample has peaked log-likelihood around the estimated
value and a large second derivative of the log-likelihood at θ̂ML, corresponding to a small
set of estimates which are likely under the observed data and thus small variance of the
estimator.

The information the sample contains about µ is summarized by the Fisher informa-
tion number, which is

I(µ) = N EY

(
∂2 log f(Y ;µ)

∂µ2

)
=
N

σ2
.

12



2.2. TWO APPROACHES TO STATISTICAL INFERENCE

The second sample has four times larger sample size and thus contain four times as much
information about µ as the first sample, resulting in a variance reduction in µ̂ML by a
factor 4. This example shows that increasing the sample size is one way to achieve larger
information and smaller variance. It will later be shown how increased information and
reduced variance can be achieved also by choice of design.
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Figure 2.3: The log-likelihood as function of µ for a sample from a N (µ, σ)-distribution,
where σ is known. To the left: N = 25. The log-likelihood has a blunt peak around the
maximum, corresponding to low information and high variance. To the right: N = 100. The
log-likelihood has a tight peak around the maximum, corresponding to high information and
low variance.

2.2.2 Survey Sampling

Suppose now that S1 is a fixed finite population of N elements. Associated with each
element is a non-random but unknown quantity yk. In this setting, interest could be in
estimation of some characteristic of the finite population, such as the total or mean of
yk, or a ratio of two variables. By complete enumeration of all elements in S1, the actual
value of the population characteristic could be obtained. This is however often infeasible
for practical and economical reasons, so a sample S2 has to be selected from which the
characteristic of interest can be estimated. Let us consider the total t of the variable yk
in S1, given by

t =
∑
k∈S1

yk . (2.2.4)

In this section, various designs for sampling from a finite population will first be dis-
cussed and estimation of the total (2.2.4) will then be addressed. Even though other
characteristics could be of interest, estimation of totals will be of particular interest in
this thesis and other finite population characteristics will not be considered.
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2.2. TWO APPROACHES TO STATISTICAL INFERENCE

Sampling Designs

When drawing a sample from S1, each element in the finite population can either be
included in S2 or not, and we introduce the indicator functions

Ik =

1, if k ∈ S2

0, if k /∈ S2

for the random inclusion of an element in the sample S2. Let πk = P (k ∈ S2) = P (Ik =
1) be the probability that element k is included in S2, and πkl = P (k,l ∈ S2) = P (Ik =
1, Il = 1) be the probability that element k and l are both included in S2. πk and πkl are
referred to as the first order and second order inclusion probabilities, respectively. The
inclusion probabilities are typically determined using information about the elements in
the population provided by auxiliary variables known for all elements in S1.

Let I = (I1, . . . , IN ) be the random vector of sample inclusion indicator functions
and π = (π1, . . . , πN ) be the vector of inclusion probabilities corresponding to I. Note
that the indicator variables are Bernoulli(πk)-distributed random variables, possibly
dependent, with

E(Ik) = πk, Var(Ik) = πk(1− πk), Cov(Ik, Il) = πkl − πkπl .

The sample selection procedure is called sampling design or sampling scheme. Of par-
ticular importance are probability sampling designs. These are designs in which each
element has a known and strictly positive probability of inclusion, i.e. πk > 0 for all
k ∈ S1.

Many different probability sampling designs are available for sampling of elements
from finite populations, of which only a few will be mentioned and considered in this
thesis. Broadly speaking, sampling designs can be classified as sampling with replace-
ment in contrast to sampling without replacement, as fixed size sampling in contrast to
random size sampling, and as sampling with equal probabilities in contrast to sampling
with unequal probabilities. Sampling without replacement is in general more efficient
than sampling with replacement. Fixed size sampling designs are in general more effi-
cient than sampling designs with random size. Sampling with unequal probabilities is in
general more efficient that sampling with equal probabilities, if additional information
is available for selection of inclusion probabilities.

Perhaps the most well known sampling design is simple random sampling, in which
n elements are selected at random with equal probabilities. A closely related sampling
procedure is Bernoulli sampling, in which all Ik are independent and identically dis-
tributed with πk = π. In contrast to simple random sampling, the sample size under
Bernoulli sampling is random and follows a Binomial(N, π) distribution, and has expec-
tation equal to Nπ. Independent inclusion of elements makes sampling from a Bernoulli
design easy. It can be thought of as flipping of a biased coin N times, including element
k or not in S2 depending on the outcome of the k-th coin flip.

14
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A generalization of Bernoulli sampling is Poisson sampling, in which Ik are inde-
pendent but not necessarily identically distributed, so that Ik ∼ Bernoulli(πk) with πk
possible unequal. In this case the sample size is also random with expectation

E

(∑
k

Ik

)
=
∑
k

πk .

The random sample size follow a Poisson-Binomial distribution, which for small πk and
large N can be approximated by a Poisson distribution, according to the Poisson limit
theorem. Thinking of this in the coin flipping setting, each element has its own biased
coin. Such a design is useful if one believe that some elements provide ’more information’
about the characteristic of interest than others. Another sampling procedure that makes
use of this fact is stratified sampling. With this procedure, elements are grouped into
disjoint groups, called strata, according to a covariate that explains some of the variability
in y. A simple random sample is then selected from each strata. Since the covariate
explains some of the variability in the variable of interest, variation will be smaller
within strata than in the entire population, so that the characteristic of interest can
be estimated with high precision within strata. By pooling the estimates across strata,
increased precision in estimation of t can be achieved. In particular, a large gain can be
achieved by choosing sampling fractions within strata so that more elements are sampled
from strata with high variability in y.

The Horvitz-Thompson Estimator

Let us now consider estimation of the total (2.2.4) from a probability sample S2. A
commonly used estimator of the population total (2.2.4) is the so called π-expanded
estimator, or Horvitz-Thompson estimator [24], which is

t̂π =
∑
k∈S1

Ik
πk
yk =

∑
k∈S2

yk
πk

.

The distribution of t̂π over iterated sampling from S1, i.e under the distribution law of
I = (I1, . . . , IN ), is called the sampling distribution of t̂π. Note that the expectation of
t̂π under the sampling distribution is

E(t̂π) =
∑
k

E(Ik)

πk
yk =

∑
k

yk = t ,

provided that πk > 0 for all k ∈ S1, and we say that t̂π is design unbiased for t. The
variance of the π-estimator is

Var(t̂π) =
∑
k,l

Cov

(
Ik
πk
yk,

Il
πl
yl

)
=
∑
k

1− πk
πk

y2k +
∑
k 6=l

πkl − πkπl
πkπl

ykyl .

(2.2.5)
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In similarity with estimation of t, the variance of t̂π can be estimated by π-expansion as

V̂ar(t̂π) =
∑
k

Ik
πk

1− πk
πk

y2k +
∑
k 6=l

IkIl
πkπl

πkl − πkπl
πkπl

ykyl .

The above variance estimator is design unbiased provided that πkl > 0 for all k,l ∈ S1.
The intuition behind π-expanded estimators is the following. Since fewer elements

are included in S2 than in S1, expansion is needed in order to reach the total of yk
in S1. As an easy example one can think of Bernoulli sampling with πk = 1/10. Since
approximately 10% of the population is sampled, the total in S1 will be approximately ten
times the total in the sample, and an expansion with a factor 1/πk = 10 is appropriate.
In a general sampling scheme with unequal inclusion probabilities, the factor 1/πk can
be thought of as the number of elements in S1 represented by element k. An element
with a high inclusion probability thus represents a small number of elements, while an
element with a small inclusion probability represents a large number of elements, and
the contribution of each element to the estimated total is inflated accordingly.

The use of a probability sampling design is crucial for design unbiasedness and it is
easy to come up with examples with π-estimators being biased when πk = 0 for some
k. For example, think of a situation where every element with yk below the mean of yk
in S1 is sampled with zero probability - this will always lead to overestimation the true
total of t in S1.

Note that inference about finite population characteristics is free of model assump-
tions on the study variables, and that the statistical properties of an estimator is com-
pletely determined by the design. Inference about finite population characteristics is
consequently called design based, in contrast to the model based inference discussed in
the previous section.

Perspective and Sources

Sample estimators for finite population characteristics rarely are unique, and optimal
estimators in terms of efficiency does in general not exist [18]. It is often possible
to apply more efficient estimators than the Horvitz-Thompson estimator, in particular
when auxiliary information about the population is available. By incorporation of such
information in estimation, substantial gain in precision can be achieved. See Särndal et
al. [45] for a presentation of such methods, as well as for more details on the material
presented in this section.

Even for inference about finite populations, the asymptotic properties of estimators
could be of interest. Design based central limit theorems have been established, showing
asymptotic normality and consistency of tπ and similar estimators. Important contribu-
tions to the study of asymptotic properties of design based estimators have been made
by Hájek and Rosén, among others, and the main results are covered by Fuller [17]
Chapter 1.3. Since the target population is finite, any statement about the limiting be-
havior of an estimator involves sequences of simultaneously increasing populations and
samples, and the asymptotic properties depend on the construction of these sequences.
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The requirements for convergence of sample estimators are quite technical, involving the
existence of moments of the study variables and conditions on the limiting behavior of
the inclusion probabilities.

Having introduced the survey sampling viewpoint on statistics, a word of clarification
regarding the two-phase sampling procedure considered in this thesis might be in place.
Two-phase sampling is most commonly encountered in the context of survey sampling,
where the target population is a finite population. This is however quite different from
the situations considered in this thesis, where the first sample is a random sample form
an infinite population. The survey sampling viewpoint is to think of the study variables
as fixed constants through both phases of sampling, while the viewpoint in this thesis is
to think of the study variables as generated by some random process in the first phase
and as constants in the second phase.

2.3 Maximum Pseudo-Likelihood

Let us now return to the two-phase sampling situation described Chapter 2.1, considering
random sampling from some population model in the first phase followed by subsampling
with unequal probabilities in the second phase. In contrast to the situation considered
in Section 2.2.1, the conditional distribution of Yk given Xk in S2 might differ from the
underlying population distribution, since S2 is not necessarily a simple random sample.
Classical maximum likelihood methods can thus not be applied. However, if the log-
likelihood in S1 were known, maximum likelihood could have been used to estimate θ.
Now, thinking of the first phase sample S1 as a finite population, the log-likelihood (2.2.1)
can be thought of as a finite population characteristic. Inspired the methods presented
in section 2.2.2, a two-step procedure for estimation of θ can be proposed as follows. In
the first step, the log-likelihood in S1 is estimated from the observed data in S2 using
π-expansion. The second step uses classical maximum-likelihood methods to estimate θ
from the estimated log-likelihood, rather than from the log-likelihood as it appears in
S2. Doing so, the possible non-representativeness of S2 as a sample from P is adjusted
for in the estimation procedure. This is the idea behind maximum pseudo-likelihood
estimation.

The Maximum Pseudo-Likelihood Estimator

Given the observed data (yk,xk), k ∈ S2, obtained by any probability sampling design,
we introduce the π-expanded log-likelihood or pseudo log-likelihood as

`π(θ;y,X̃) :=
∑
k∈S1

Ik
πk

log f(θ; yk,xk) =
∑
k∈S2

log f(θ; yk,xk)

πk
.

With maximum pseudo-likelihood estimation, the maximum pseudo-likelihood estimator
(PLE) θ̂π chosen to be the point satisfying

θ̂π := argmax
θ

`π(θ;y,X̃) .
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Denote by Sπ(θ) the π-expanded score, that is the gradient of the pseudo log-likelihood.
The PLE can be found by solving the estimating equation

Sπ(θ) = 0 .

As for the classical MLE, a more thorough investigation of the critical points of the
log-likelihood and the boundary of the parameter space than indicated above might be
needed, following standard procedures in multivariate calculus.

Asymptotic Properties of the PLE

If S2 is a probability sample, we have that

EI(θ̂π|Y ,X) =
a
θ̂ML(Y ,X) , (2.3.1)

which means that the PLE is asymptotically design unbiased for the MLE conditional
on the first phase sample. As the subscript indicates, expectation is taken with respect
to the distribution law of I. The limiting procedure is such that |S1| = N → ∞,
|S2| = n → ∞ and n/N → h ∈ [0,1), implying also that (N − n) → ∞. That is, the
sample sizes in both phases tend to infinity, the S1 grows faster than S2 but the sampling
fraction might be non-negligible.

The interpretation of (2.3.1) is as follows. θ̂ML = θ̂ML(Y ,X) is a random function
of (Y ,X), but once the first phase sample is drawn it is determined by the realizations
(y, X̃) and is no longer random. One can thus think of θ̂ML as a population parameter
in S1, which is unknown since (y, X̃) are not fully observed. A subsample S2 is drawn
and θ̂ML(y, X̃) is estimated by θ̂π = θ̂π(y, X̃, I), which conditional on S1 is a random
function solely of I. The asymptotic equality (2.3.1) states that the mean of the PLE
under iterated subsampling is approximately equal to the MLE in S1 for large samples.
One can thus think of the PLE as an estimator of the MLE, which in turn is an estimator
of the population parameter. As a consequence, we have that

E(θ̂π) = EY |X

[
EI(θ̂π)|Y ,X

]
=
a

EY |X(θ̂ML) =
a
θ ,

using the law of iterated expectation. This is to say that the PLE is an asymptotically
unbiased estimator of the parameter of interest. The expectation is taken with respect
to the joint distribution of (Y ,X, I).

Another way to present this result is through the expression

θ̂π − θ = (θ̂π − θ̂ML) + (θ̂ML − θ) , (2.3.2)

where the expectation of both terms on the right hand side are null in the limit. This
follows from asymptotic unbiasedness of the PLE as an estimator of the MLE conditional
on S1, and by asymptotic unbiasedness of the MLE for the population parameter. Under
some technical conditions, the bias is relatively small compared to the standard error of
the estimator, and can thus be neglected for large samples. It also holds that θ̂π is a
consistent estimator of θ under the distribution of I and Y |X jointly, and that the two
terms in (2.3.2) are asymptotically independent [41].
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Asymptotic Normality and Variance of the PLE

Under general assumptions, the asymptotic distribution of the PLE is multivariate nor-
mal with

θ̂π ∼
a
N
(
θ, Σ̃θ̂

)
.

The variance-covariance matrix Σ̃θ̂ can be found using the law of total variance:

Var(θ̂π) = VarY |X

[
EI(θ̂π|Y ,X)

]
+ EY |X

[
VarI(θ̂π|Y ,X)

]
=
a

VarY |X [θ̂ML(Y ,X)] + EY |X

[
VarI(θ̂π|Y ,X)

]
.

(2.3.3)

Using the asymptotic independence of the two terms in (2.3.2), the same result can be
found directly as

Var(θ̂π − θ) =
a

Var(θ̂π − θ̂ML) + Var(θ̂ML − θ) . (2.3.4)

Formulas (2.3.4) and (2.3.3) show that the variance of the PLE can be decomposed into
two parts, which one can think of as the variance in the first phase plus the variance in

the second phase. Var(θ̂ML − θ) = VarY |X

[
θ̂ML(Y ,X)

]
= I(θ)−1 is the variance of

the MLE between first phase samples and Var(θ̂π − θ̂ML) = EY |X

[
VarI(θ̂π|Y ,X)

]
is

the expectation of the conditional variance of the PLE within first phase samples. These
components will be referred to as the first phase variance and the second phase variance.

Conditional on S1, the variance of the PLE around the MLE can be written as

VarI [θ̂π|Y ,X] =
a
I(θ)−1 VarI (Sπ(θ)) I(θ)−1 , (2.3.5)

which is called the conditional variance. Is is obtained by a first order Taylor approxima-
tion of the score [7]. A derivation of the formula is given in Appendix A.1 and a simple
illustration of the linearization technique is given in Example 2.3.2. The second phase
variance is the expectation of the conditional variance. Putting the variance formulas
together, the total variance of the PLE can be written as

Var(θ̂π) =
a
I(θ)−1 + I(θ)−1 EY |X (VarI [Sπ(θ)]) I(θ)−1 (2.3.6)

The Design Influence on the Variance of the PLE

Let us now turn our attention to the middle term of the conditional variance (2.3.5),
that is VarI (Sπ(θ)). First, we introduce the notation

s
(i)
k =

∂ log f(yk|xk;θ)

∂θi
,

sk = ∇θ log f(yk|xk;θ) = (s
(1)
k , . . . , s

(p)
k ) .
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The π-expanded score can then be written as

Sπ(θ) =
∑
k

Ik
πk
sk .

Similar to the variance of the Horvitz-Thompson estimator (2.2.5), the design variance
of Sπ(θ) has elements

VarI [Sπ(θ)](i,j) =
∑
k,l

CovIk,Il

(
Ik
πk
s
(i)
k ,

Il
πl
s
(j)
l

)
=
∑
k

1− πk
πk

s
(i)
k s

(j)
k +

∑
k 6=l

πkl − πkπl
πkπl

s
(i)
k s

(j)
l ,

in which the influence of the design on the variance of the PLE is made evident. The
entire matrix can be written as

VarI [Sπ(θ)] =
∑
k

1− πk
πk

sks
T
k +

∑
k 6=l

πkl − πkπl
πkπl

sks
T
l . (2.3.7)

Variance Estimation

In order to estimate the variance of the PLE, both terms in (2.3.6) must be estimated.
This can be done by π-expansion of their observed analogues evaluated at θ̂π, that is

V̂ar(θ̂ML − θ) = Îπ(θ̂π)−1 = −∂Sπ(θ̂π)−1 , (2.3.8)

and

V̂ar(θ̂π − θ̂ML) = Îπ(θ̂π)−1

∑
k

Ik
πk

1− πk
πk

ŝkŝ
T
k +

∑
k 6=l

IkIl
πkπl

πkl − πkπl
πkπl

ŝkŝ
T
l

 Îπ(θ̂π)−1 ,

(2.3.9)
where ŝk = ∇θ log f(yk|xk; θ̂π). The estimator (2.3.8) is a π-expanded estimator of the
observed Fisher information, and has elements

Îπ(θ̂π)(i,j) = −
∑
k

Ik
πk

∂2 log f(yk|xk; θ̂π)

∂θi∂θj
.

The sum of the estimators (2.3.8) and (2.3.9) yield a consistent estimator of Σ̃θ̂ provided
that πkl > 0 for all k,l ∈ S1, under some additional technical conditions. It is also possible
to estimate the variance of the PLE with resampling methods, such as the jackknife and
bootstrap [17,43].
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Perspective and Sources

Among sampling statisticians, model based inference using pseudo-likelihood and simi-
lar methods is often referred to as superpopulation modeling [21], in contrast to design
based finite population modeling. Dealing with finite populations, the superpopulation
viewpoint is to think of the finite population as generated from a hypothetical infinite
population through some random process, and the aim of analysis is to describe the
underlying random process rather than the finite population itself. The modeling con-
sidered in this thesis is however not really the same as superpopulation modeling in its
classical meaning, since S1 truly is a random sample.

The notion of maximum pseudo-likelihood in the context of survey sampling was
introduced by Skinner [44], but the method was already present in the literature by then.
Conditions under which the PLE is is consistent and asymptotically normal has been
established for regression models by Fuller [16], for generalized linear models by Binder
[7], for logistic regression models and proportional hazards models by Chambless and
Boyle [12], and for estimators defined as solutions to estimating functions by Godambe
and Thompson [19]. The subject has been treated in some more generality by Rubin
and Bleuer-Kratina [41], showing consistency and asymptotic normality of estimators
defined as solutions to estimating equations, such as the PLE. The asymptotic results
rely on convergence of the sample estimators under the design law and of the model
statistics under the model law, both converging in distribution to a normally distributed
random variable. In brief, these conditions concern the existence of moments of the study
variables, the continuity and differentiability of the function defining the estimating
equation and some conditions pertaining to the design. In particular, the design should
be such that a design based central limit theorem holds, for which the use of probability
sampling is a minimum requirement.

Procedures for pseudo-likelihood estimation are available in the R package ’sur-
vey’ [2, 32] and in the SAS survey procedures [25]. These software provide procedures
for parameter estimation and variance estimation for most standard parametric distri-
butions and models, including generalized linear models. Other software often allow
for specification of element weights as an additional argument to classical maximum
likelihood estimation procedures, and the PLE can then be obtained by supplying the
inverse sampling probabilities 1/πk as element weights. Most such procedures are how-
ever not developed for the survey sampling or two-phase sampling setting, and uses
variance formulas that do not take the design and sampling procedure into account. As
a consequence, the variances tend to be underestimated [5].

Much of the material presented in this section is covered by Fuller [17], Chapters 1.3,
3.3, 4 and 6. An overview of the topic is also given by Chambers and Skinner [10].

Illustrative Examples

Example 2.3.1 (The Normal Distribution) Consider a simple random sample S1
of Yk ∼ N(µ, σ) with unobserved realizations yk, k = 1, . . . , N . A subsample S2 for which
yk is observed is drawn using probability sampling. In analogy with Example 2.2.2, the
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π-expanded log-likelihood is

`π(µ, σ; y) =
∑
k

Ik
πk

(
− log(2π)

2
− log σ2

2
− 1

2

(yk − µ)2

σ2

)
,

with partial derivatives
∂`π(µ, σ; y)

∂µ
=
∑
k

Ik
πk

yk − µ
σ2

,

∂`π(µ, σ; y)

∂σ
=
∑
k

Ik
πk

(
(yk − µ)2

σ3
− 1

σ

)
.

The pseudo log-likelihood attains its maximum at

µ̂π =

∑
k
Ik
πk
yk∑

k
Ik
πk

,

σ̂π =

√√√√∑k
Ik
πk

(yk − µ̂π)2∑
k
Ik
πk

.

The asymptotic variance-covariance matrix of θ̂π = (µ̂π, σ̂π) is given by

Var(θ̂π) =
a
I(θ)−1 + I(θ)−1 EY

∑
k

1− πk
πk

sks
T
k +

∑
k 6=l

πkl − πkπl
πkπl

sks
T
l

 I(θ)−1 ,

where I(θ)−1 is given in Example 2.2.2, and

sk =

(
Yk − µ
σ2

,
(Yk − µ)2

σ3
− 1

σ

)
.

Estimation of Var(θ̂π) can be carried out as described by (2.3.8) and (2.3.9).
Note that the maximum pseudo-likelihood estimators in the example above are of the

same form as the classical maximum likelihood estimators, but with π-expansions of the
term in the numerator and with the ’pseudo-sample size’

∑
k
Ik
πk

in the denominator.
Note in particular that (µ̂π, σ̂π) = (µ̂ML, σ̂ML) if S2 is a Bernoulli sample.

Example 2.3.2 (Variance by Linearization) A common method for deriving approx-
imate variance formulas for non-linear functions of random variables is by linearization,
sometimes called the δ-method. This is also the method used to derive the formula for
the conditional variance (2.3.5). We illustrate this method by a simple example.

Figure 2.4 illustrates the π-expanded score as a function of µ (left) and σ (right) for
a sample from a normal distribution with one known parameter. Consider first the figure
to the left where the score is a function of µ and σ is assumed to be known. The thick
red line is the score as function of µ in S1. If the study variable was observed for all
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elements in S1, the MLE of µ would have been the point along the x-axis where the line
intersects the y-axis, in this case µ̂ML = 0. The grey lines are the π-expanded scores for
as function of µ for 50 random subsamples from S1. For each subsample, the PLE is
the point at which the corresponding grey line intersect the y-axis. Note that the PLE
varies around the MLE. The variance of the PLE around the MLE is the variance of
the intersections of the grey lines with the y-axis. This is the unknown variance that we
want to approximate and estimate. Note that the score is a linear function of µ, so we
can write

Score(µ̂π) = Score(µ̂ML) + b(µ̂π − µ̂ML)⇔ Score(µ̂ML) = −b(µ̂π − µ̂ML) ,

since the PLE is defined to satisfy Score(µ̂π) = 0. Taking variances on both sides, we
obtain

Var [Score(µ̂ML)] = b2 Var(µ̂π − µ̂ML)⇔ Var(µ̂π − µ̂ML) = Var[Score(µ̂ML)]/b2 .

If we evaluate this formula at µ instead of µ̂ML and insert b = I(µ), we obtain the
formula for the conditional variance given in (2.3.5).

A similar argument can also be used for the variance of σ̂π. However, the score is
not a linear function of σ so the equalities must be replaced by approximations. For
samples large enough it holds that σ̂π will be close to σ, where a linear approximation is
reasonable.

µ
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σ

S
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1

0

Figure 2.4: The score as function of µ (left) and σ (right) for a sample from a N (µ, σ)-
distribution illustrated a thick red line. The grey lines represent the π-expanded scores in
50 random subsamples.

Example 2.3.3 (The Total Variance) Consider Yk ∼ (µ, σ) where σ is known. The
decomposition of Var(µ̂π) into variance between plus variance within first phase samples
is illustrated in Figure 2.5. In this instance we have N = 1000 and n varying from 50
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2.3. MAXIMUM PSEUDO-LIKELIHOOD

to N using simple random sampling in the second phase. When a small fraction of S1 is
subsampled almost all variance is due to sampling of elements. This variance component
decreases as the sampling fraction increases and vanishes as n→ N .
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Variance Between S1
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Figure 2.5: Simulated variance of µ̂π decomposed as variance within and variance between
first phase samples based on 104 simulations. N = 103 observations were generated from a
N (µ,σ)-distribution in the first phase, followed by subsampling of n elements in the second
phase. The two variance components and the total variance are plotted against the ratio
n/N .

2.3.1 Topics in Related Research

The crucial step in maximum pseudo-likelihood estimation is to obtain an unbiased
estimator of the total of an estimating equation as it would have appeared in the first
phase sample. This is obtained by π-expansion of the log-likelihood. This is however
not the unique nor necessarily the optimal option for unbiased estimation of the log-
likelihood, according to the discussion following Section 2.2.2. The PLE is in that sense
not unique, and no best estimator of pseudo-likelihood type exists. Also, approximately
unbiased and consistent estimators can be obtained by π-expansion of other estimating
equations than the likelihood equations [44].

Criticism has been directed towards the method of maximum pseudo-likelihood for for
two reasons. First, it discards the data observed in the first phase, which if incorporated
in the inference procedure could lead to more efficient estimators. Second, inclusion of
the sample weights 1/πk in the estimating equation often lead to large variability of the
estimator. Some alternative methods for estimation and methods for improvement of
the PLE have been proposed, of which a few now will be discussed.

Even though being quite similar to the MLE, the PLE does not possess all the
desirable properties of maximum likelihood estimators, such as efficiency. The PLE is
in general less efficient than the MLE, when the latter is valid. It is thus important to
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address the question of when and why classical maximum likelihood methods cannot be
applied in two-phase sampling. The notion informative and non-informative sampling
designs are central concepts when dealing with this question. A sampling design is
said to be non-informative if the conditional distribution of the response variable given
the explanatory variables does not depend on the sampling mechanism. That is, the
distribution of Y given X should be the same in S2 as in the underlying population.
Non-informative sampling implies that the sampling design is ignorable conditional on
X, and maximum likelihood inference can be carried out based on f(y|x) using the data
observed in the second phase. This is related to the missing data principles of Rubin [40]
and Little and Rubin [31]. If the sampling mechanism is determined by some known
auxiliary variables Z, non-informative sampling can be achieved by including these as
explanatory variables. However, the following three situations have been mentioned in
the literature when this is not possible or suitable; when the variables used for selection
of design are unavailable, when there are a large number of variables involved in the
selection of design or when inclusion of these variables as explanatory variables lead
to complex models, and in outcome-based designs. The latter two are relevant for the
situations considered in this thesis. See Pfefferman [36,37] for a more thorough discussion
about these topics.

Two main alternatives to the pseudo-likelihood under informative sampling have been
proposed in the literature. Breckling et al. [8] propose a full maximum likelihood ap-
proach, formulating the estimation problem as a problem of estimation under incomplete
data. It is closely related to the EM-algorithm, both being based on the same missing
information principle of Orchard and Woodbury [35]. In two-phase sampling, complete
data is available for all elements in S2, while only the auxiliary variables are observed for
the other elements in S1. The full maximum likelihood approach makes more efficient
use of data than the pseudo-likelihood by incorporation of the auxiliary variables in es-
timation. However, the full likelihood can be very complicated and might be sensitive to
the model specification, involving the relations between outcome, explanatory variables
and auxiliary variables.

The other proposed method is called sample likelihood and is due to Krieger and
Pfeffermann et al. [30, 37]. They introduce the sample likelihood as the conditional
distribution of the observed study variables given the auxiliary variables for all elements
in S1. A connection between the sample likelihood and the likelihood in S1 is then
found using Bayes rule. In similarity with the full maximum likelihood, it is a model
based approach to analysis and uses the first phase data more efficient than the pseudo-
likelihood. It can also be extended to a Bayesian setting with prior distributions on
the parameters. An overview of the methods of full maximum likelihood and sample
likelihood are given by Chambers and Skinner [10] and Chambers et al. [11]. Some other
methods are also discussed by Pfefferman [36].

Some improvements of pseudo-likelihood have also been proposed, addressing the
variability of the PLE by modification of the sampling weights in the estimating equation.
The simplest modification is to replace the sampling weights 1/πk in the estimating
equation with another set of weights wk, such that known totals in S1 are estimated
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correctly. This is called calibration weighting, and is well studied in the literature for
sample estimators, see e.g. Särndal et al. [45]. Modifications of the sampling weights
in the pseudo-likelihood by functions of the auxiliary variables has been proposed by
Magee [33] and Kim and Skinner [28], among others.

Given the discussion above, argumentation for the use of PLE is in place. One of
the major drawbacks of this method is the inefficient use of data, incorporating no in-
formation about about auxiliary variables in estimation. This is however also one of
the major advantages of the PLE, since the validity of the inference procedure does not
rely on certain assumptions made on the auxiliary variables. The inclusion of the sam-
pling weights in the estimating equation thus simultaneously protects against informative
sampling and against misspecification of the often rather complex models including Z.
In addition, it can quite easily be adopted to almost any kind of model and inference
problem. The pseudo-likelihood might therefore be preferred due to its simplicity and
general validity.

While most of the work reviewed above deals with improvement of estimators through
the use of auxiliary variables in estimation, increased efficiency can also be achieved
by incorporation of such information in the design. This has not been given much
attention in this thesis so far, but is in fact a common feature in sampling statistics.
Optimal subsampling designs in two-phase sampling has previously been addressed in
the literature [15,17,27,38,39]. Much of the previous work in the area is however limited
in the classes of estimators and models considered, and there is a need to address this
issue in more generality. This issue will be the topic of Chapter 3.

2.4 Optimal Designs

The possibility to achieve increased precision in estimation by efficient subsampling of
elements was mentioned in the previous section. In order to address this issue, a general
framework for comparison of designs is needed. If estimation of a single parameter is
of interest and a number of suitable designs are possible, the design giving the most
precise estimate, i.e that yielding smallest variance, is often preferred. However, the
notion of having ’smallest variance’ does not really have a meaning for multidimensional
parameters, since the variance is not a scalar but given by a variance-covariance matrix.
Still, one would like to summarize the size of the variances and covariances of all or a
subset of the parameters jointly in a single number. Trying to measure the size of the
variance-covariance matrix, a number of optimality criteria have been proposed. A few
of these will now be presented and motivated geometrically.

Confidence Regions

Consider an approximately unbiased and asymptotically normal estimator θ̂ of the p-
dimensional parameter θ, such as the MLE or PLE. The random variable W , defined
by

W = (θ − θ̂)TΣ−1
θ̂

(θ − θ̂) ,
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is approximately distributed according to a χ2
p-distribution. Let χ2

p(α) denote the 1−α-
percentile of the χ2

p distribution. Consider the set of points x satisfying

(x− θ̂)TΣ−1
θ̂

(x− θ̂) ≤ χ2
p(1− α) . (2.4.1)

The set of points satisfying the above inequality defines an ellipsoid in p-dimensional
space, which is called the 1− α confidence ellipsoid or 1− α confidence region for θ. It
is a multivariate extension of the one-dimensional confidence interval. The confidence
level or coverage probability 1 − α is the approximate probability that the confidence
region cover the true parameter θ. For α sufficiently small, the confidence ellipsoid of θ̂
will cover θ with large probability. If, in addition, the size of the confidence ellipsoid is
small, θ̂ will be within a small neighborhood of θ with high probability. The precision
of θ̂ is thus related to the size and shape of the confidence ellipsoid, which is what the
different optimality criteria that soon will be described try to address.

To illustrate this, the 1 − α confidence regions for a two-dimensional parameter
θ = (θ1, θ2) in four different designs are shown in Figure 2.6. Ellipses with axes parallel
to the coordinate axes correspond to designs in which θ̂1 and θ̂2 independent. A tilted
ellipse correspond to a design in which the estimators are correlated. The projection
of an ellipse on one the coordinate axis gives us the 1 − α confidence interval for the
corresponding parameter. If θ1 is to be estimated with high precision, design b) is
optimal, while a) and c) are optimal with respect to the precision in θ2. The confidence
ellipsoid with minimal area is obtained with design d), but this design has the largest
marginal variances along both axes. The average variance, which is proportional to
the average length of the projections of the ellipses to the coordinate axes, is equal for
designs a)-c) and twice as large with d). The design that minimizes the variance along
the direction with maximal variance, seen as the maximal distance from the border to
the center of an ellipse, is a), while the worst design in this aspect is d).
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Figure 2.6: 1 − α-confidence ellipses for a two-dimensional parameter θ = (θ1, θ2). The
ellipses have different shape, orientation and area.

Optimality Criteria

As the above discussion indicate, one design is seldom optimal in all aspects. The volume,
shape and axis length of the confidence ellipsoid are all important features to consider.
Formula (2.4.1) shows that these properties somehow depend on Σθ̂. In fact, the volume
of the confidence ellipsoid is proportional to the square root of the determinant of Σθ̂,
denoted by det

(
Σθ̂

)
. The design that minimizes the determinant of Σθ̂, and so minimizes

the volume of the confidence ellipsoid, is called D-optimal. The design that minimizes the
average axis length, which is the same as minimizing the average variance or trace(Σθ̂),
is called A-optimal. The design that minimizes the longest axis length, which is to say
that minimizes the variance in the most extreme direction, is called E-optimal. This is
the same as minimizing max

|a|=1
Var(aT θ̂) = max

|a|=1
aTΣθ̂a. Comparing again the designs
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in Figure 2.6, design d) is the best in terms of D-optimality while a)-c) are the best in
terms of A-optimality and design a) is the best in terms of E-optimality.

These three optimality criteria can also be defined in terms of the eigenvalues of Σθ̂.
A variance-covariance matrix is symmetric and has thus an eigendecomposition into
real orthonormal eigenvectors. The eigenvectors are orthogonal and thus correspond
to independent directions and the eigenvalues are the variances along these directions,
since the eigenvectors are normalized. This means that the eigenvectors are parallel to
the ellipsoid axes and the eigenvalues are proportional to the length of the axes. The
volume of the ellipsoid is proportional to the product of the axes lengths, and thus
proportional to the product of the eigenvalues. Minimizing the volume of the ellipsoid is
thus equivalent to minimizing the product of the eigenvalues of the variance-covariance
matrix. Minimizing the average variance is equivalent to minimizing the average of the
eigenvalues, and minimizing the variance along the direction with largest variance is
equivalent to minimizing the largest eigenvalue. A summary of A, D and E-optimality
criteria formulated in terms of Σθ̂ and its eigenvalues λi is given below.

• A-optimality: min trace(Σθ̂)⇔ min
∑p

i=1 λi

• D-optimality: min det
(
Σθ̂

)
⇔ min

∏p
i=1 λi

• E-optimality: min max
|a|=1

aTΣθ̂a⇔ min max
i=1,...,p

λi

It is also possible to consider a subset of the parameters rather than the entire
parameter vector θ. This is useful when some components of θ are nuisance parameters
or if a specific subset of the parameters are of particular interest. A, D and E-optimality
are then defined in a similar fashion on the specified subset.

Another class of optimality criteria that will be of interest in this work is linear op-
timality criteria. These address the average or sum of a linear combination of elements
of the variance-covariance matrix. Examples of such linear combinations are linear com-
binations of variances and variances of linear combinations of parameters. The former
include minimizing the sum of variances, which is the same as A-optimality. L-optimality
is a generalization of A-optimality in that not only variances but also covariances be-
tween parameters are taken into account. A design that is optimal with respect to some
linear optimality criteria is called L-optimal. Even though minimization of any linear
combination of parameters of Σθ̂ is possible, it is often of interest to consider those linear
combinations that arise from variances of linear combinations of parameters. These lin-
ear combinations are of the form Var(aT θ̂) = aTΣθ̂a. Furthermore, L-optimality allows
not only for a single such linear combination to be minimized but for the average variance
over a set of linear combinations of parameters. The objective function for minimization
of the average variance over m different linear combinations aTi θ̂ of estimators can be
written as

min
m∑
i=1

Var(aTi θ̂)⇔ min
m∑
i=1

aTi Σθ̂ai .

The objective function in A-optimality in recovered by having a1 = (1, 0, . . . , 0),a2 =
(0,1,0, . . . , 0), . . . ,ap = (0, . . . , 0,1) in the above formulation.
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One property that makes D-optimality preferable before A, E and L-optimality is
scale invariance. Optimal designs under A, E and L-optimality are scale dependent, and
hence depend on the unit of measurement, while D-optimality is scale invariant. For this
reason, D-optimality is probably the most popular optimality criteria.

Finally, it shall also be mentioned that the optimal design does also depend on the
true parameter, so that different designs are optimal for different values of the true
parameter.

Perspective and Sources

The methods presented in this section have a natural place in controlled experiments
where the experimental settings can be chosen by the experimenter, which gives an
opportunity to determine the structure variance-covariance matrix of an estimator to
a large extent. The theory of optimal designs is however of importance in many other
areas of application, and gives the foundation for planning of studies and experiments
involving multidimensional parameters. For references regarding the material presented
in this section, see Atkinson and Donev [6].
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3
Optimal Sampling Schemes under

Poisson Sampling

The variance of the PLE under Poisson sampling is considered and the impact of the
design on the variance is investigated. The anticipated variance is introduced and the
role of auxiliary information in the planning of design is discussed. Optimal sampling
schemes under L, D and E-optimality are derived based on the anticipated variance.
Some post hoc modifications in design and estimation are presented.

The theoretical foundation needed for selection of optimal subsampling designs in
two-phase sampling has been presented in the previous chapter. The impact of the de-
sign on the variance-covariance matrix of the PLE is given Formula (2.3.7) and various
optimality criteria were presented in Chapter 2.4, stating the problem of finding an opti-
mal design as a problem of minimizing some function of the variance-covariance matrix
of an estimator. However, the variance of the PLE is in general a quite complicated
function of the design, or more specifically of πk and πkl. Without restrictions on the
designs considered it might not be possible to find an optimal design. This chapter is
therefore restricted to Poisson sampling, which was introduced in section 2.2.2. Poisson
sampling allows for quite general and flexible designs to be constructed, while achiev-
ing simplification in variance formulas by independence of sample inclusion indicator
variables.
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3.1 The Variance of the PLE under Poisson Sampling

Recall from section 2.3 that the variance of the PLE could be decomposed into

Var(θ̂π − θ) =
a

Var(θ̂ML − θ) + Var(θ̂π − θ̂ML)

=
a

VarY |X [θ̂ML(Y ,X)] + EY |X(VarI [θ̂π|Y ,X])

=
a
I(θ)−1 + EY |X

(
I(θ)−1 VarI [Sπ(θ)] I(θ)−1

)
,

(3.1.1)

which is the variance between plus the variance within first phase samples. It was also
shown that

VarI [Sπ(θ)] =
∑
k

1− πk
πk

sks
T
k +

∑
k 6=l

πkl − πkπl
πkπl

sks
T
l , (3.1.2)

where
sk = ∇θ log f(yk|xk;θ) .

These formulas will now be studied in some more detail. Some simplifications of the total
variance formula (3.1.1) will first be made. The use of auxiliary information for guessing
the total variance will then be discussed, and the anticipated variance introduced.

3.1.1 The Total Variance

Under Poisson sampling, Formula (3.1.2) simplifies to

VarI [Sπ(θ)] =
∑
k

1− πk
πk

sks
T
k ,

following from the fact that Cov(Ik, Il) = 0 and πkl = πkπl for k 6= l. Letting

Wk = I(θ)−1sks
T
k I(θ)−1 , (3.1.3)

we can write

VarI [θ̂π|Y ,X] =
a
I(θ)−1

(∑
k

1− πk
πk

sks
T
k

)
I(θ)−1

=
∑
k

1− πk
πk

Wk .

From this formula we see that an element which is certainly included in S2, i.e. having
πk = 1, has no contribution to the second phase variance. Note now that

EY |X

(
1− πk
πk

Wk

)
= EY |X

(∑
k

Wk

πk

)
− EY |X

(∑
k

Wk

)

= EY |X

(∑
k

Wk

πk

)
− I(θ)−1

∑
k

EYk|Xk
(
sks

T
k

)
I(θ)−1

= EY |X

(∑
k

Wk

πk

)
− I(θ)−1 .
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From this we see that total variance matrix (3.1.1) simplifies to

Var(θ̂π − θ) =
a
I(θ)−1 + EY |X

(
VarI [θ̂π|Y ,X]

)
= I(θ)−1 + EY |X

(∑
k

Wk

πk

)
− I(θ)−1

= EY |X

(∑
k

Wk

πk

)
. (3.1.4)

The total variance is thus the expectation of
∑

k
Wk
πk

with respect to the conditional
distribution of Y given X, where Wk is given by (3.1.3).

Bernoulli Sampling

An interesting result is found when S2 is a Bernoulli sample, i.e. πk = π. Let π = n/N ,
so that the expected sample size in S2 is n. The total variance becomes

EY |X

(∑
k

1

n/N
Wk

)
=
N

n
EY |X

(∑
k

Wk

)
=
N

n
I(θ)−1 .

Note that this is the same as the approximate variance of the MLE in a simple random
sample of size n. Also, the MLE and PLE coincide under Bernoulli sampling, since
the weights in the pseudo log-likelihood are the same for all elements. The PLE under
Bernoulli sampling is therefore essentially equivalent to the MLE under simple random
sampling. There is however a difference between the two designs, namely that the sam-
ple size is random with Bernoulli sampling and fixed with simple random sampling. An
additional source of randomness is introduced by the random sample size, which increase
the variance under Bernoulli sampling compared to simple random sampling. This ad-
ditional variance vanishes as n increase, so the the variance of the MLE under simple
random sampling is essentially the same as the variance of the PLE under Bernoulli
sampling for large samples.

The Realized Variance

An additional simplification of the variance of the PLE can be made, writing (3.1.4) as

Var(θ̂π − θ) =
a

EY |X

(∑
k

Wk

πk

)
=
∑
k

EYk|Xk (Wk)

πk

=
a

∑
k

E(Yk,Xk) (Wk)

πk
=
a

∑
k

Wk

πk
,

using the law of large numbers twice. The formula∑
k

Wk

πk
=
∑
k

I(θ)−1sks
T
k I(θ)−1

πk
(3.1.5)
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will be referred to as the asymptotic realized variance of the PLE. This is similar to the
observed Fisher information, which is in some sense is the inverse of the realized variance
of the MLE.

Formula (3.1.5) shows that each element contributes a term Wk/πk to the realized
variance of the PLE. The variance contribution contribution thus depends both on the
inclusion probability and on the matrix I(θ)−1sks

T
k I(θ)−1. This matrix in turn combines

the precision in the first phase, as described by I(θ)−1, with the influence of element k
on the estimates in the second phase, as described by sks

T
k . We will have a closer look

at this fact in Appendix A.2.

3.1.2 The Anticipated Variance

Given the matrices Wk, the realized variance (3.1.5) is a function of the inclusion prob-
abilities πk, which can be optimized with respect to some optimality criteria. However,
the matrices Wk are random and therefore unknown in the design stage, making it im-
possible to use the realized variance for construction of efficient subsampling designs.
One might instead consider the expected variance (3.1.4), but even this might be un-
known, unless all of X̃ is observed in S1. We thus need a formula for the variance of
the PLE that does not require full knowledge about X̃, but still can work as substitute
of the true variance and ideally agree with (3.1.4) and (3.1.5) when these are evaluable.
Due to the lack of information available, it is evident that any such variance formula
must be guessed and to some extent is subject to personal belief.

Derivation

As described in Section 2.1, we consider a situation where some auxiliary variables Z
are observed for all elements in the first phase. Conditional on Z, (Y ,X) follow some
distribution law with density function f(yk,xk|zk;φ), called the design model. We want
to utilize the information about (Y ,X) provided by Z to guess the variance of the PLE.
In place of the unknown realized variance, we introduce the anticipated variance

Vara(θ̂π) := E(Y ,X)|Z

(∑
k

Wk

πk

)
= E(Y ,X)|Z

(∑
k

I(θ)−1sks
T
k I(θ)−1

πk

)
, (3.1.6)

which is the expectation or prediction of the realized variance under the design model.
Note that the anticipated variance depend on the design model for (Y ,X) given Z and
its parameter φ as well as on θ, which all must be guessed or known for evaluation of
the anticipated variance.

Note that two different models are involved in (3.1.6), the terms Wk/πk involving
the model of interest, and the expectation being taken with respect to the design model.
Ideally, these two models should be consistent, so that both could simultaneously be true.
This is easily achieved when Y given X or X given Y is conditionally independent of
Z. In more complicated situations, specification of the design model so that consistency
is obtained might be a difficult task. However, even though consistency between models
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and a correctly specified design model is desirable, it is not needed for the validity of
the inference procedure using the pseudo-likelihood approach. The design model is used
only in the planning of design, as indicated by the name, and the inference procedure
with pseudo-likelihood estimation is free of assumptions made about the study variables
in the design stage.

Simplification

In the simple case with no explanatory variables and Yk assumed to be independent and
identically distributed, or if Z = X, we have that I(θ) is a constant matrix conditionally
on Z. In the more complicated situation with explanatory variables that are not all
observed in S1, let Ia(θ) be the anticipated information under the design model, given
by

Ia(θ) = E(Y ,X)|Z (−∂S(θ)) , (3.1.7)

with elements

Ia(θ)(i,j) = −
∑
k

E(Yk,Xk)|Zk

(
∂2 log f(Yk,Xk;θ)

∂θi∂θj

)
.

The anticipated information is a sum of N random variables under the model for (Y ,X)
given Z, and so is approximately constant for large N , due to the law of large numbers.
We can thus move the information matrix outside the expectation in (3.1.6), and that
anticipated variance simplifies to

Vara(θ̂π) = Ia(θ)−1

(∑
k

E(Yk,Xk)|Zk(sks
T
k )

πk

)
Ia(θ)−1 . (3.1.8)

To simplify notation further, let

W̃k = Ia(θ)−1 E(Yk,Xk)|Zk
(
sks

T
k

)
Ia(θ)−1 . (3.1.9)

The anticipated variance can then be written as

Vara(θ̂π) =
∑
k

W̃k

πk
,

showing that each element contributes a term W̃k/πk to the anticipated variance of
the PLE. This is similar to the realized variance (3.1.5), replacing the matrices Wk by

their anticipated counterparts W̃k. These matrices can be interpreted accordingly as a
combination of the anticipated precision in the first phase and the anticiapted influence
in estimation, see also Appendix A.2.

Note that the anticipated information (3.1.7) coincide with the usual Fisher informa-
tion in case Z = X or in case there are no explanatory variables in the model of interest.
Also, the anticipated variance (3.1.6) coincide with the expected variance (3.1.4) in case
Z = X, and with the realized variance (3.1.5) in case Z = (Y ,X). The latter is of course
a trivial case, where two-phase sampling is not really needed. In general, anticipated
variance will differ from the variance actually realized.
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Computation

According to (3.1.8), evaluation of the anticipated variance amounts to computing the
expectation

E(Yk,Xk)|Zk(sks
T
k ) = E(Yk,Xk)|Zk

[
∇θ log f(Yk|Xk;θ)∇Tθ log f(Yk|Xk;θ)

]
,

for all elements in S1, and the anticipated information

Ia(θ) = E(Y ,X)|Z (−∂S(θ)) ,

which has elements

Ia(θ)(i,j) = −
∑
k

E(Yk,Xk)|Zk

(
∂2 log f(Yk,Xk;θ)

∂θi∂θj

)
.

Explicit formulas for the anticipated information matrix Ia(θ) and for E(Yk,Xk)|Zk(sks
T
k )

might not exist. Numerical integration, e.g. Monte Carlo simulation, can then be used
to approximate these quantities with a desired degree of accuracy.

The Design Model

As indicated in the derivation of the anticipated variance, the specification of the design
model is an important planning task. If the design model describes the unknown study
variables in a precise way, the anticipated variance will agree well with the true variance
of the PLE and an optimal sampling scheme derived based on the anticipated variance
will be close to the true optimal sampling scheme. Even though not crucial for the
validity of the inference procedure, a proper specification of the design model is thus
important in order to achieve as high precision in estimation as possible.

In a situation where a single study variable is unobserved in the first phase, it is
often reasonable to assume some kind of regression relationship between the unobserved
study variable and the observed auxiliary variables. However, if more than one variable
is unobserved in the first phase, a multivariate design model must be specified. A proper
specification of a multivariate model is often difficult, especially if (Y ,X) contains both
continuous and discrete random variables. Simplification of the design model is often
needed in order for the model construction to become a feasible task. Two possible
simplifications are proposed.

One option is to assume a simple multivariate model for (Y ,X) given Z, e.g. multi-
variate normal (MVN). Even though a MVN model in a strict sense is meaningful only
for continuous variables, it can be useful even for discrete variables. It makes modeling
of dependent variables easy, so that correlations between variables can be taken into
account in a proper way. One could also discretize continuous variables generated from
a MVN distribution in order to obtain discrete variables. This will however change the
dependence structure between variables, leading to a covariance structure different from
the one originally used in the MVN model.
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Another alternative is to use Bayes law rewrite f(yk,xk|zk;φ) by a sequence of
conditional distributions. It is then possible to specify each conditional distribution
according to any suitable model, allowing for discrete variables to be modeled correctly.
A simple special case of this approach is to assume conditional independence between
all unobserved study variables given the auxiliary variables, so that each unobserved
variable can be modeled separately.

Perspective and Sources

The material presented in this section has not been encountered in the literature during
the writing of this thesis. Similar work has however been done in the context of survey
sampling, considering sample estimators of finite population characteristics, but not in
the generality considered in this thesis. The nomenclature has been adopted to that of
Isaki and Fuller [26]. They introduced the notion of anticipated variance as the variance
of a sample estimator under an assisting parametric model, which they called the design
model. With this notion it is emphasized that the anticipated variance is a prediction
or expectation of the true unknown variance. Isaki and Fuller also pointed out that the
anticipated variance in general is different from the realized sampling variance. Even for
design based inference, the use of the model based anticipated variance in the planning
of design has been proved fruitful, see for example Godfrey et al. [20] and Kott [29]. See
also Fuller [17] Chapter 3 for a presentation of the use of the anticipated variance in
selection of design for sampling from finite populations.

Some complications were encountered in the derivation of the anticipated variance.
Essentially, this has to do with the joint consideration of two different models, the
model of interest and the design model, which might not simultaneously be true. This
problem is not present when considering simple finite population characteristics, since
the estimator of interest is free of model assumptions.

3.2 Optimal Two-Phase Sampling Designs

Optimal subsampling designs based on the anticipated variance will now be presented.
In the following sections, optimal sampling schemes under Poisson sampling are derived
analytically for L-optimality, and methods for finding D and E-optimal sampling schemes
numerically are discussed.

3.2.1 L-Optimal Sampling Schemes

Let us first consider L-optimality with respect to linear combinations of elements of
the variance-covariance matrix of θ̂π that appear as variances of linear combinations of
parameters. The results will then be extended to sets of such linear combinations and
to any linear combination of elements of the variance-covariance matrix.
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A Single Linear Combination

Consider a linear combination aTθ = a1θ1 + . . .+ apθp of parameters. According to the

discussion in the previous section, we consider the anticipated variance of aT θ̂π in place
of the true unknown variance, i.e.

Vara(a
T θ̂π) = aT Vara(θ̂π)a =

∑
k

aTW̃ka

πk
, (3.2.1)

where W̃k is given by (3.1.9). Given Z = Z̃, the matrices W̃k are constant and (3.2.1)
a known function of π. We want to find sampling scheme, i.e. a set of inclusion proba-
bilities π, so that (3.2.1) is minimized. In order to control the sample size, we add the
constraint that the expected sample size should be equal to n ≤ N . We also require that
πk ≤ 1 so that valid probabilities are obtained and πk > 0 ensuring consistency of θ̂π.
Let ck = aTW̃ka. The objective function can then be written as

min
π
g(π) =

∑
k

ck
πk

(3.2.2)

subject to
πk ∈ (0,1]∑
k πk = n

. (3.2.3)

Relaxing the constraint πk ≤ 1, the optimal solution to this problem is given by

π∗k =
n∑
i

√
ci

√
ck . (3.2.4)

For simplicity we also write
π∗k = κ

√
ck , (3.2.5)

where it is understood that κ = n∑
i

√
ci

is a constant chosen so that the expected sample

size equals to n.
Choosing π∗k according to (3.2.4) one might end up with πk > 1 for some k, which is

an infeasible solution. This is solved by letting πk = 1 for all such elements and solve
(3.2.2) subject to (3.2.3) with all elements having πk > 1 removed in the previous step
and the expected sample size reduced accordingly. Again, this might result in πk > 1 for
some k, and the same procedure must be repeated until a feasible solution is found. The
procedure will stop in a finite number of iterations since n ≤ N and S1 contains a finite
number of elements. The solution found by this procedure is L-optimal for the linear
combination of interest. A proof of the optimality of (3.2.4) and the iterative procedure
described above is given in Appendix B. The resulting design is a probability sampling
design provided that ck > 0 for all k. In practice, having ck = 0 is to say that element
k is believed not to influence any of the parameters that are considered in the objective
function. Dealing with continuous data and/or continuous parameters and having any
uncertainty about the study variables and the true parameter in the design model does
in general ensure that ck > 0. In case elements with ck = 0 are encountered in practice,
one can set ck = ε for some small positive ε.
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General L-Optimal Sampling Schemes

As mentioned in section 2.4, more than a single linear combination of parameters can
be considered with L-optimality. If the aim is to minimize the average variance over a
set of m estimated linear combinations of parameters aTi θ̂π, we replace ck with

c′k =
m∑
i=1

aTi W̃kai

in the objective function (3.2.2) and consequently arrive at the same optimal solution as
before, but with ck replaced by c′k. Even for arbitrary linear combinations of elements
in the anticipated variance-covariance matrix, the objective function can be written in
the form (3.2.2).

3.2.2 D and E-optimal Sampling Schemes

Let us turn our attention to D and E-optimality. Based on the anticipated variance, we
can formulate the objective functions under these optimality criteria as

D-optimality: min
π

det
(

Vara(θ̂π)
)
⇔ min

π
det

(∑
k

W̃k

πk

)
,

E-optimality: min
π

max
|a|=1

Vara(a
T θ̂π)⇔ min

π
max
|a|=1

∑
k

aTW̃ka

πk

⇔ min
π

max
i=1,...,p

λi(π), λi eigenvalues of
∑
k

W̃k

πk
.

The non-linearity of these objective functions above have a few consequences of im-
portance. Explicit formulas for the D and E-optimal designs do rarely exist, and nu-
merical optimization must be used. As for L-optimality, methods based on Lagrangian
multipliers are suitable. This becomes quite computer intensive for large samples, since
the dimension of the problem equals the number of elements in S1.

Comments

Note for L-optimality that the optimal design compensate large values of ck by large
values of πk. Even though less explicit, a similar statement can be made about D and E-
optimality. In general, the optimal designs compensate ’large’ W̃k by large values of πk,
where the meaning of ’large’ is determined by the optimality criteria used. Recall from
(3.1.9) and the discussion that followed that W̃k = Ia(θ)−1 E(Yk,Xk)|Zk

(
sks

T
k

)
Ia(θ)−1,

which could be interpreted as the anticipated precision in the first phase weighted by the
anticipated influence of element k in estimation. The precision in the first phase is thus
taken into account in the selection of subsampling design, and the sampling schemes
compensate low precision in the first phase by high precision in the second phase.
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Perspective and Sources

As mentioned in Chapters 1.1 and 2.3, precision optimization by design in the context
of two-phase sampling has previously been addressed in the literature [15, 27, 38, 39].
Much of the previous work in the area is however limited in the classes of estimators and
models considered. Some of the previous work in the topic is summarized by Fuller [17]
Chapter 3, including optimal Poisson sampling schemes. Fuller also address optimization
with respect multiple finite population characteristics, each characteristic with a certain
required degree of accuracy, and a cost function associated with sampling of elements. His
presentation is however limited to one-dimensional parameters in the finite population
setting. Optimal two-phase sampling designs for multidimensional pseudo-likelihood
estimators have not been encountered in the literature during the writing of this thesis.

3.3 Some Modifications

As mentioned in Chapter 2.3, criticism had been directed towards the pseudo-likelihood
approach to estimation. The PLE might be inefficient, due to the lack of incorporation of
auxiliary information in estimation and due the use of the sampling weights 1/πk in the
pseudo log-likelihood. Additional variance in estimation is also introduced when using
random size designs, such as Poisson sampling. Some post hoc modifications of design
and estimation procedure are therefore proposed, aiming at reducing the variance of the
PLE.

3.3.1 Adjusted Conditional Poisson Sampling

As already mentioned, a drawback with Poisson sampling is the random sample size. This
is undesirable for a number of different reasons. First, it is often practical and convenient
to have a fixed sample size. One might otherwise by chance end up with a sample size
larger or smaller than desired. A too large sample increase the cost of conducting a study.
If the study involves human subjects, it is for ethical reasons not appreciated to recruit
more participants than necessary. Ending up with a too small sample on the other hand,
the desired precision in estimation might not be reached. Also, the random sample size
increase variance in estimation, since an additional random element is introduced.

Rather than considering Poisson sampling, one might ask if there is an optimal
sampling design with unequal probabilities and fixed size. However, the requirement
of fixed sample size introduces dependencies between the indicator variables Ik, so that
variance-covariance matrix of the PLE becomes a function of both first and second order
inclusion probabilities. Finding an optimal sampling scheme for such a design might
not be possible. On the other hand, the second order inclusion probabilities and their
influence on the design variance are probably of relatively little importance compared to
the first order inclusion probabilities. Ignoring the second order inclusion probabilities,
we are back in the same optimization problem as for Poisson sampling. It might thus be
possible to use the optimal Poisson sampling design as basis for a design with fixed size.
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The simplest way to obtain a fixed size design from a Poisson sampling design is
to draw repeated Poisson samples until the desired sample size is obtained, discarding
all samples of the wrong size. Such a design is called conditional Poisson sampling,
abbreviated CP-sampling. However, the inclusion probabilities under CP-sampling differ
from the ones in the underlying Poisson sampling design, but is possible to adjust the CP-
design so that the desired inclusion probabilities are obtained, called adjusted conditional
Poisson sampling. A proposal of a fixed size design with unequal probabilities is to use an
adjusted CP-design with inclusion probabilities that are optimal under Poisson sampling.
Even though such a design might not be optimal, it will probably have a performance
similar to that of Poisson sampling, with the attractive additional property of having
fixed size.

3.3.2 Stratified Sampling

Another proposal for obtaining fixed size designs is by use of stratified sampling. So
far, sampling probabilities have been assigned on element level. Suppose instead that
elements are grouped into H disjoint subgroups or strata Gh, each consisting of Nh

elements. Suppose also that we assign sampling probabilities πk = fh to all elements
k ∈ Gh, so that elements are sampled with equal probabilities within groups but possibly
different probabilities between groups. The anticipated variance then becomes

Vara(θ̂π) =

H∑
h=1

∑
k∈Gh W̃k

fh
.

For elements in k ∈ Gh, let

W k =
1

Nh

∑
l∈Gh

W̃l .

The anticipated variance can then be written as

Vara(θ̂π) =
∑
k

W k

πk
,

from which we see that optimization can carried out as before. However, the optimal
solution now satisfies π∗k = f∗h for all elements in k ∈ Gh. Since elements in the same
subgroup have equal probabilities of being sampled, f∗h can be interpreted as a the
optimal sampling fraction in group Gh. It is then easy to fix the sample size by using
simple random sampling within strata, sampling nh = Nhf

∗
h elements from group Gh.

By this procedure, we arrive at stratified sampling.
The above approach restricts the inclusion probabilities to be equal within strata,

so the set of feasible vectors π is restricted. The optimal design with this restriction
is thus never better than the optimal solution without this restriction. Also, it might
be necessary to round nh = Nhf

∗
h to obtain integer sample sizes, so that the actual

inclusion probabilities used differ from those found to be optimal. A fixed size design is
finally applied to a set of sampling fraction optimized for a random size design, and the
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implications of this step on the performance of the design is not evident. Even though
the resulting design might not be optimal, the proposed approach have some advantages
over the optimal Poisson design. First, a fixed size design is obtained. Also, when
assigning inclusion probabilities on element level, it is important that the influence of
each specific element on the variance of the PLE can be guessed with high certainty. If
this is not the case, it might be more reasonable to assign equal probabilities to groups
of similar elements, guarding against errors made on element level. It can also be more
convenient to assign probabilities on groups of elements than using different inclusion
probabilities for all elements.

3.3.3 Post-Stratification

Some methods for weight adjustment, such as calibration weighting, weight optimization
and smoothing, were discussed in Section 2.3.1. These methods have been proposed as
improvements to classical the PLE by adjusting the sampling weights in the pseudo log-
likelihood. One simple such method will now be presented, called post-stratification. In
contrast to the modifications proposed in the previous sections, post-stratification is a
method for sample size correction applied in the estimation procedure rather than in
design. The idea is the following. Suppose that S1 consists of a number of subgroups of
known sizes which could serve as strata, but the group membership is unknown before
sampling, so that stratified sampling can not be conducted. After sampling, the group
membership is observed, and it might be that the representation of the subgroups in
the sample is different from what would have been obtained if groups were known and
stratified sampling used. By post-stratification, this issue is addressed after sampling by
adjustment of the sampling weights in the Horvitz-Thompson estimator.

As in Section 3.3.2, suppose that S1 consists of H disjoint subgroups Gh, each with
Nh elements, but that the subsampling design is not stratified sampling. Based on the
selected sample, the Horvitz-Thompson estimator Nh,π of the size of group Gh is

N̂h,π =
∑
k∈Gh

Ik
πk

,

which is constant and equal to Nh for a fixed size design, such as stratified sampling,
but has non-zero variance for random size designs. Since the sampling weights 1/πk
enter any Horvitz-Thompson estimator of a population characteristic, having N̂h,π > Nh

leads to over representation of group Gh in estimation, and the opposite when having
N̂h,π < Nh. The contribution of the H subgroups to estimation is thus not balanced
in random size designs. However, by adjusting the sampling weights in group Gh by a
factor

gh =
Nh

N̂h,π

,

we see that

Ñh,π =
∑
k∈Gh

Ikgh
πk

=
Nh

N̂h,π

N̂h,π = Nh .
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Knowing the group sizes Nh and replacing the sampling weights 1/πk by gh/πk, k ∈ Gh,
balance can be achieved even for random size designs. Note that this method actually
incorporates the auxiliary information about group sizes in estimation.

The role of such weight adjustment in the context of maximum pseudo-likelihood
can be understood intuitively in the same way. The number of elements in group Gh is
known to be Nh. Having N̂h,π > Nh means that the size of this group is overestimated,
resulting in too large influence of the elements in this group on the pseudo log-likelihood.
Since we know the true size of Gh, we can reduce the influence of the elements in Gh
by a factor Nh/N̂h,π. In the same way, N̂h,π < Nh correspond to underestimation of the
contribution of elements in Gh to the pseudo log-likelihood, and the same adjustment
applies. Estimation of the PLE using post-stratification is easily carried out by adjusting
the sampling weights 1/πk by a factor gh = Nh/N̂h,π, k ∈ Gh. After sampling is
conducted with to the optimal inclusion probabilities found for the classical PLE, the
use of post-stratification in the estimation procedure can be proposed as an additional
step for variance reduction.

Perspective and Sources

Poisson sampling and adjusted CP-sampling were both introduced by and thoroughly
studied by Hájek [22, 23]. Sampling from an adjusted CP-design can be quite compli-
cated, but efficient methods for samples of moderate size have been developed by Chen et
al. [13] and Tillé [46]. Implementations are available in the R function ’UPmaxentropy’
in the ’sampling’ package [3].

The procedure for stratification presented in this chapter have not been encountered
in the literature during the writing of this thesis. However, the use of stratified sampling
based on the anticipated variance has proved fruitful for estimation of finite population
characteristics, see for example Godfrey et al. [20] and Kott [29].

Post-stratification is one of the simplest methods for weight adjustment, and more
involved methods are commonly applied in survey sampling, see Särndal et al. [45] for
an overview. More complicated procedures for weight adjustment might also be used,
such the weight optimization and weight smoothing [28, 33], but is is unclear if more
complicated weight adjustments lead to any improvements when the design is optimized
for the standard sampling weights.

It shall be noted that all the methods proposed in this section changes the variance
of the estimator compared to the classical PLE under Poisson sampling. It is therefore
unclear how application of these methods influence the performance and optimality of
the sampling scheme derived for the classical pseudo-likelihood under Poisson sampling.
None of the methods are claimed to be optimal among the class of adjusted CP-designs,
stratified sampling designs and sampling weight adjusted pseudo-likelihood methods, but
they could possible lead to some improvement of the optimal sampling scheme derived
for the classical PLE under Poisson sampling.
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4
Examples

A number of examples are presented, illustrating the methods for optimal subsampling
designs derived in Chapter 3. Optimal designs are derived and discussed for estimation
of parameters of the normal distribution in various situations with auxiliary data. Some
somewhat realistic scenarios using logistic regression are studied by means of simulations.

Methods for finding L, D and E-optimal designs based on the anticipated variance
were presented in Chapter 3.2. We have seen that L-optimal designs can be found
explicitly, while D and E-optimality require numerical approximations. This in turn
leads to computer intensive optimization problems. For computational reasons, most
of this chapter will thus be concerned with optimization with respect to some linear
optimality criteria.

4.1 The Normal Distribution

In this section we consider a situation without explanatory variables. Let Yk ∼ N (µ, σ)
and S2 be a Poisson sample from S1 with E(|S2|) = n.

4.1.1 L-Optimal Designs for (µ, σ)

Consider first the degenerate case where Z = Y and θ is known, so that complete
information about the study variable and even of the population parameter is available
in the selection of subsampling design. Even though this eliminates the need for a
second sampling phase to be conducted and is thus of no use in practice, it is suitable
for illustration and discussion of optimal sampling schemes.
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Optimality Criteria

Optimal sampling schemes will be derived for a variety of linear optimality criteria,
namely:

1.min Var(µ̂π)

2.min Var(σ̂π)

3.min trace Var[(µ̂π, σ̂π)]⇔ min Var(µ̂π) + Var(σ̂π)

4.min Var(µ̂π + zσ̂π)⇔ min Var(µ̂π) + 2zCov(µ̂π, σ̂π) + z2 Var(σ̂π)

(4.1.1)

Criterion 3 is the same as the A-optimality criterion. The last criterion aims at mini-
mizing the variance in estimation a percentile of the distribution.

Since Y = Z and θ is known, the anticipated variance (3.1.6) coincide with the real-
ized variance (3.1.5), and the matrices Wk = I(θ)−1sks

T
k I(θ)−1 are known. Depending

on the optimality criteria, the optimal choice of π should be such that a particular linear
combination of the elements of the matrix

Vara(θ̂π) =
∑
k

W̃k

πk
=
∑
k

Wk

πk
=
∑
k

I(θ)−1sks
T
k I(θ)−1

πk

is minimized. Using the formulas for I(θ)−1 and sk derived in Examples 2.2.2 and 2.3.1,
we have that

W̃k = Wk =
σ2

N2


(yk−µ

σ

)2 1
2

((
(yk−µ
σ

)3
− yk−µ

σ

)
1
2

((
(yk−µ
σ

)3
− yk−µ

σ

)
1
4

((
(yk−µ
σ

)2
− 1

)2

 . (4.1.2)

Optimal Sampling Schemes

The objective functions and the optimal sampling schemes for the four optimality criteria
(4.1.1) are given in Table 4.1, where the optimal sampling schemes are given by (3.2.5).
The optimal inclusion probabilities as function of the standardized distance from yk to
the mean, (yk − µ)/σ, is presented in Figure 4.1. The optimal designs with respect to
the four optimality criteria (4.1.1) will be referred to as Design 1, Design 2, etc.

Design 1 is optimized for precision in estimation of µ. Each element contributes with
a term σ2

N2
1
πk

(yk−µσ )2 to the realized variance. Assuming for a moment that all elements
are sampled with equal probabilities πk = π, we see that elements with yk relatively close
to µ will have little influence on the variance while elements with yk relatively far away
from µ will have large influence on the variance. One might thus guess that elements
with yk in the tail of the distribution should be sampled with large probabilities, while
elements close to the mean should be sampled with lower probabilities. In this way,
large variance contributions due to large (yk − µ)2/σ2 are compensated by small 1/πk
and vice versa. This does also agree with he idea that the term 1/πk can be thought of
as the number of elements being represented by element k. Tail observations in a normal
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distribution represent a small proportion of the population, and should have πk large.
Observations in the center of the distribution could be represented by a single element,
and such elements should have πk small. This is also seen in Table 4.1 and in the top
left of Figure 4.1, presenting the optimal design for µ.

Design 2 has optimal inclusion probabilities quite different from Design 1. Elements
that have yk close to one standard deviation from µ have little impact on the objective
function and are thus sampled with small probability. Elements in the tails are sampled
with even higher probability than with Design 1.

By adding the variances of µ̂π and σ̂π and completing the square, the objective
function for the third criterion in (4.1.1) can be written as in Table 4.1. The resulting
optimal inclusion probabilities is a second order function of the standardized deviation of
yk from the mean. Note that the two objectives of minimizing Var(µ̂π) and minimizing
Var(σ̂π) somehow work against each other. Those elements that barely contribute to one
of the variances contribute to the other, so no element is sampled with as low probability
as in Design 1 or 2.

Design 4 is optimized for estimation of a percentile of the distribution, and the
optimal design depend on which percentile to estimate. Optimal sampling schemes
for precision in estimation of the 5-th and 97.5-th percentile are presented Figure 4.1,
corresponding to z = −1.65 and z = 1.96 in criterion 4 in (4.1.1), respectively. Design
4 reminds of Design 2 for these percentiles, but is slightly shifted. In general, elements
in the left tail will be sampled with high probability if interest is in estimation of a
percentile to the left of the distribution, and similarly for percentiles to the right. Note
also that the first criterion is a special case the fourth, namely estimation of the 50-th
percentile.

Table 4.1: Objective functions and optimal sampling schemes for estimation of parameters
of the normal distribution with respect to various linear optimality criteria, namely; mini-
mization of the variance of µ̂π (Criterion 1), the variance of σ̂π (Criterion 2), the average

variance (Criterion 3) and the variance in estimation of a percentile (Criterion 4). w
(i,j)
k

stands for the (i,j)-th element of the matrix W̃k in (4.1.2). The constant κ is chosen so that
the expected sample size is n.

Criterion Objective Function Optimal Sampling Scheme

1. min
π

σ2

N2

∑
k

1
πk

(yk−µ
σ

)2
π∗k = κ|yk − µ|

2. min
π

σ2

4N2

∑
k

1
πk

((yk−µ
σ

)2 − 1
)2

π∗k = κ|
(yk−µ

σ

)2 − 1|

3. min
π

σ2

4N2

∑
k

1
πk

((yk−µ
σ

)2
+ 1
)2

π∗k = κ
((yk−µ

σ

)2
+ 1
)

4. min
π

σ2

N2

∑
k

1
πk

(
w

(1,1)
k + 2zw

(1,2)
k + z2w

(2,2)
k

)
π∗k = κ

√
w

(1,1)
k + 2zw

(1,2)
k + z2w

(2,2)
k
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Figure 4.1: Optimal sampling schemes for estimation of parameters of the normal distribu-
tion with respect to various linear optimality criteria, namely; minimization of the variance
of µ̂π (top left), the variance of σ̂π (top right), the average variance (bottom left) and the
variance in estimation of a percentile (bottom right). The optimal inclusion probabilities are
presented as functions of the standardized distance from yk to the mean. Sampling schemes
are presented for N = 500 and n = 50.

Confidence Regions

The 95% confidence ellipses for the optimal designs under the four optimality criteria
(4.1.1) are presented in Figure 4.2. The confidence ellipse using Bernoulli sampling is
presented with dashed red lines for reference. The center of the confidence ellipses if the
estimated value of θ. The projection of the confidence ellipse of the MLE on the x-axis
gives us the classical 95% confidence interval for µ.

Compared to Bernoulli sampling, Designs 1 and 2 yield reduced variance in estimation
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Figure 4.2: 95% confidence regions for the parameters (µ, σ) of a normal distribution under
optimal designs with respect to various linear optimality criteria, namely; minimization of
the variance of µ̂π (top left), the variance of σ̂π (top right), the average variance (bottom left)
and the variance in estimation of a percentile (bottom right). 95% confidence ellipses for the
optimal designs are presented as black ellipses, the red dashed ellipses are 95% confidence
ellipses using Bernoulli sampling and are presented for reference. The confidence ellipses are
presented for a specific first phase sample with N = 500 and n = 50.

of the parameter for which the design was optimized, but the variance of the other
estimator is increased. Note that the estimators are independent under these designs.
The estimators are independent also in Design 3, which is the A-optimal design. It
is evidently also better than Bernoulli sampling in terms of D-optimality, the entire
confidence ellipse being contained within the confidence ellipse pertaining to Bernoulli
sampling. It gives almost the same precision in estimation of µ as Design 1 and almost
the same precision in estimation of σ as Design 2.
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4.1. THE NORMAL DISTRIBUTION

Design 4 is optimized for estimation of the 95-th and 5-th percentile separately,
which is the same percentiles as in as in Figure 4.1. In (4.1.1), this correspond to
z = 1.96 and z = −1.65 in Criterion 4. In order to estimate the 95-th percentile with
high precision, the design compensates for underestimation of µ by overestimation of σ.
This introduces a negative correlation between the two estimators. The same applies
for designs optimized for precision in estimation of any percentile in the right tail of
the distribution. Similarly, a positive correlation is seen when Design 4 is optimized
estimation of the 5-th percentile, or any percentile in the left tail. Note that the variances
of both estimators are larger for Design 4 with z = −1.65 and z = 1.96 compared to
Bernoulli sampling, but increased precision along the direction µ+ zσ is achieved.

4.1.2 D and E-Optimal Designs for (µ, σ)

In the same setting as in the previous section, i.e. with full knowledge of Y and θ in
the design stage, D and E-optimal sampling schemes will now be found numerically and
illustrated graphically. The objective functions are

D-optimality: min
π

det

(∑
k

W̃k

πk

)
, (4.1.3)

E-optimality: min
π

max
i=1,...,p

λi, λi eigenvalues of
∑
k

W̃k

πk
, (4.1.4)

where Wk is given in (4.1.2).
The optimal inclusion probabilities as function of the standardized distance from yk

to the mean, (yk−µ)/σ, are presented in Figure 4.3. Optimization of (4.1.3) and (4.1.4)
was carried out using an augmented Lagrangian minimization algorithm implemented in
the function ’auglag’ in the R package ’alabama’ [4]. The A-optimal design for (µ, σ), i.e.
Design 3 in (4.1.1), was used as initial guess of π∗. 95% confidence ellipses corresponding
to these designs are presented in Figure 4.4. The D-optimal design is similar to the A-
optimal design in Section 4.1.1, both in terms of inclusion probabilities and confidence
region. The E-optimal design remind about Design 1 in Section 4.1.1, but with much
better control of the variance in σ̂π.
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Figure 4.3: D-optimal (left) and E-optimal (right) sampling schemes for estimation of
parameters of the normal distribution. The optimal inclusion probabilities are presented as
functions of the standardized distance from yk to the mean. Sampling schemes are presented
for N = 500 and n = 50.

µ̂
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µ̂

σ̂

Figure 4.4: 95% confidence regions for the parameters (µ, σ) of a normal distribution under
D-optimal (left) and E-optimal (right) designs presented as black ellipses. The red dashed
ellipses are 95% confidence ellipses using Bernoulli sampling and are presented for reference.
The confidence ellipses are presented for the same first phase sample as in Figure 4.2, with
N = 500 and n = 50.

4.1.3 Optimal Sampling Schemes for µ Revisited

Even though the examples in Sections 4.1.1 and 4.1.2 are interesting and illustrative for
the theory presented, they are unlikely useful in practice. Evaluation of the objective
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functions and calculation of optimal inclusion probabilities require knowledge of yk as
well as of µ and σ. If such information were available there would have been no need for
a second sampling phase to be carried out. Let us now consider a situation where less
information is available in the design stage.

The Design Model and the Anticipated Variance

Suppose that (Yk, Zk) follow a bivariate normal distribution, i.e.

(Yk, Zk) ∼ N (µ,Σ) , µ = (µY , µZ), Σ =

(
σ2Y ρσY σZ

ρσY σZ σ2Z

)
.

Conditional on Zk, this implies that

Yk|Zk ∼ N
(
µY + ρ

σY
σZ

(Zk − µZ),
√

(1− ρ2)σY
)
. (4.1.5)

Suppose now that zk is observed in the first phase, and that the aim of the study is to
estimate and draw inference about θ = µY . Under the model (4.1.5), the anticipated
variance (3.1.8) becomes

Vara(θ) =
∑
k

1

πk
Ia(µY )−1 EYk|zk

(
sks

T
k

)
Ia(µY )−1

=
σ2Y
N2

∑
k

1

πk
EYk|zk

[(
Yk − µY
σY

)2
]

=
σ2Y
N2

∑
k

1

πk

(zk − µZ)2ρ2
σ2
Y

σ2
Z

+ (1− ρ2)σ2Y
σ2Y

=
σ2Y
N2

∑
k

1

πk

(
1− ρ2 +

(
zk − µZ
σZ

)2

ρ2

)
,

using the fact that Ia(µY ) = I(µY ) = N/σ2Y .

Optimal Sampling Schemes

Since a one-dimensional parameter is of interest, all optimality criteria are equivalent
and the optimal solution can be found explicitly using the methods for L-optimality.

Note that
σ2
Y
N2 is just a constant and can be neglected in the optimization. Plugging in

ck =

(
1− ρ2 +

(
zk−µZ
σZ

)2
ρ2
)

in (3.2.5), we obtain the optimal sampling scheme as

πk = κ

√
1− ρ2 +

(
zk − µZ
σZ

)2

ρ2 , (4.1.6)
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where, as usual, κ chosen so that the expected sample size is n. It is interesting that
neither of µY and σY need to be known, it suffices to know the standardized difference
from zk to the mean µZ and the correlation between Z and Y . The design parameter
is thus φ = (µZ , σZ ,ρ). The parameters µZ and σZ can be estimated from S1, while ρ
must be guessed based on previous knowledge.

It was shown in Section 4.1.1 that elements with extreme value of yk, i.e. with
|yk−µY | large, should be sampled with high probability. Since yk is unknown, the value
of |yk − µY | must be guessed based on zk. If the correlation between Y and Z is small,
knowing zk does not tell much about yk, and we are not sure whether yk is extreme or
not. Elements are thus sampled with almost equal probabilities. On the other hand,
knowing zk makes it possible to guess yk with high certainty if the correlation is large.
In particular, elements that have extreme values of zk are likely also to have extreme
values of yk, and should thus be sampled with high probability, while elements with
zk close to the mean should be sampled with low probability. In agreement with this
discussion, Formula (4.1.6) shows that πk → κ = π for all k as ρ → 0. In particular,
this means that Bernoulli sampling is optimal if Y and Z are uncorrelated. We also see
that πk → κ′|zk − µZ | as ρ→ ±1. Note that this is the same as πk = κ′′|yk − µY | in the
limit, so for ρ = ±1 we arrive at the same optimal solution as when minimizing Var(µ̂π)
in Section 4.1.1, presented in Table 4.1.

For large correlations, the optimal inclusion probabilities are essentially proportional
to |zk−µZ |. It is a standard method in survey sampling to have probability of inclusion
proportional to the size of an auxiliary variable correlated to the variable of interest.
This is called sampling with probability proportional to size, abbreviated πps-sampling.
In this setting, we see that the proportionality should be with respect to the absolute
deviation from zk to its mean, rather than directly proportional to zk.

Simulated Performance

We investigate the performance of the sampling scheme (4.1.6) by use of simulations.
The variance of µ̂Y,π under optimal designs for different guessed values of ρ is compared
to Bernoulli sampling. The relative variance of the estimator is presented as a function
of the true correlation in [0,1], using the variance under Bernoulli sampling as reference.
The results are presented in Figure 4.5. Guessing that ρ = 0.1 is essentially the same
as to use Bernoulli sampling. Guessing that ρ = 0.5 gives variances close to Bernoulli
sampling when the true correlation is small, but leads to some improvement when the
true correlation is large. Assuming that ρ = 0.9 gives a large variance reduction when
the true correlation is large, but might actually result in increased variance when the true
correlation is small. The reason is that the design model disagree with the true model,
so that optimization is carried out with respect to the wrong objective function. In
conclusion, the sampling scheme (4.1.6) is optimal when the guessed correlation and the
true correlation agree, but requires quite large correlations for substantial improvements
to be made. The performance is reasonably good even if the correlation is not guessed
correctly, as long as the guess is not too far from the truth.
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Figure 4.5: Simulated relative variance of µ̂Y,π under various designs compared to Bernoulli
sampling, as function of ρ(Y ,Z). The designs are optimized for estimation of µY by use
of auxiliary information for various guessed values of ρ(Y ,Z). Simulations were performed
with N = 500, n = 50 and (Yk, Zk) following a bivariate normal distribution with standard
normal marginal distributions.

4.2 Logistic Regression

Let us now consider a situation models including explanatory variables. Logistic regres-
sion models are considered in this section, but the methods can be applied to other types
of models in the class of generalized linear models in a similar fashion.

We start by briefly describing the logistic regression model. A binary response vari-
able Y is explained by a set of explanatory variables as follows. First, the probability
mass function of Y ∼ Bernoulli(p) can be written as

f(y; p) = py(1− p)1−y = e
y log p

1−p+log(1−p), y ∈ {0,1}, p ∈ [0,1] .

With logistic regression, it is assumed that the log-odds of Yk, log
(

pk
1−pk

)
, is a linear

function of some explanatory variables xk = (1, xk,1, . . . , xk,p), so that

log

(
pk

1− pk

)
= β0 + β1xk,1 + . . .+ βpxk,p = xTβ ⇔ pk =

1

1 + e−x
T
k β

,

where β = (β0, . . . , βp) are regression coefficients. The parameter of interest is θ = β.
Note that we include a column of ones in X, corresponding to β0 in the logistic model.

The Pseudo-Likelihood

For an observed sample (yk,xk), k ∈ S1, the likelihood function takes the form

L(β;y, X̃) =
∏
k

f(yk|xk;β) =
∏
k

eykx
T
k β−log(1+e

xTk β) ,
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and the corresponding log-likelihood is

`(β;y, X̃) =
∑
k

ykx
T
k β − log(1 + ex

T
k β) .

The pseudo log-likelihood is thus

`π(β;y, X̃) =
∑
k

Ik
πk

(
ykx

T
k β − log(1 + ex

T
k β)
)
,

which we use for estimation under two-phase sampling. The partial derivatives of the
pseudo log-likelihood are

∂`π(β;y, X̃)

∂βi
=
∑
k

Ik
πk

(
ykxk,i −

ex
T
k β

1 + ex
T
k β
xk,i

)
=
∑
k

Ik
πk
xk,i(yk − pk) .

The PLE β̂π is defined as the solution to the estimating equation

∇β`π(β;y, X̃) = 0 .

Explicit solutions to the above equation does in general not exist and β must be estimated
numerically. Estimation procedures for the PLE in generalized linear models are available
in the ’svyglm’ function in the R package ’survey’ [2, 32].

The Anticipated Variance

The elements of the Fisher information of β are given by

I(β)(i,j) = EY |X

(∑
k

xk,ixk,j(Yk − pk)2
)

=
∑
k

xk,ixk,j Var(Yk) =
∑
k

xk,ixk,jpk(1−pk) ,

so the information matrix can be written as

I(β) =
∑
k

pk(1− pk)xkxTk =
∑
k

Var(Yk)xkx
T
k .

According to (3.1.4), the asymptotic variance of β̂π is thus

Var(β̂π) =
a

EY |X

(∑
k

Wk

πk

)

= I(β)−1

(∑
k

EYk|Xk(sks
T
k )

πk

)
I(β)−1 ,

where
sk = ∇β log f(yk|xk;β) = (yk − pk)xk .
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Similarly, the anticipated variance is given by

Vara(β̂π) = Ia(β)−1

(∑
k

E(Yk,Xk)|Zk
(
sks

T
k

)
πk

)
Ia(β)−1 ,

where
Ia(β) =

∑
k

EXk|Zk
(
pk(1− pk)XkX

T
k

)
, (4.2.1)

and
E(Yk,Xk)|Zk

(
sks

T
k

)
= E(Yk,Xk)|Zk

(
(Yk − pk)2XkX

T
k

)
. (4.2.2)

Note that (4.2.1) and (4.2.2) depend on the unknown regression coefficients β through
pk = 1/(1 + exp(−xTk β)).

4.2.1 A Single Continuous Explanatory Variable

The examples following in this chapter deals with subsampling when the outcome is
known, as in case-control studies. Models with a single continuous explanatory variable
are considered, assuming a regression like relationship between the unobserved explana-
tory variable a known auxiliary variable. Of particular interest in this chapter is esti-
mation of β1. This is the regression coefficient corresponding to X, which describes the
relation between X and Y . We consider the simple logistic regression model

log

(
pk

1− pk

)
= β0 + β1xk ,

where x is a continuous variable. Let (β0, β1) = (0,1). The model is illustrated in Figure
4.6, showing the probabilities that Yk = 1 a function of xk.
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Figure 4.6: A logistic regression model with a single continuous explanatory variable X,
showing the probability that Y = 1 as function of X.

Minimizing the Realized Variance

Assume that, in addition to the outcome yk, also pk, xk and I(β)−1 are known in
the planning of subsampling design. The anticipated variance(3.1.6) coincide with the
realized variance (3.1.5), which can be found by plugging in the values of yk, pk, xk and
I(β)−1 in Formulas (4.2.1) and (4.2.2). More realistic situations with less information
available in the design stage will be considered later on. The sampling scheme optimized
for maximal precision in estimation of β1 is illustrated in Figure 4.7 with inclusion
probabilities both as function of xk and pk. Note that observations with pk = P (Yk =
1) < 0.5 but with yk = 1 are sampled with high probability, and similarly for observations
with yk = 0 and pk > 0.5. That is, observations that deviate from the model are sampled
with high probability. For β0 6= 0 non-symmetric sampling schemes are obtained, in
contrast to this example where the sampling scheme is symmetric around P (Y = 1) =
0.5. However, it holds in general that the inclusion probabilities increase as the deviation
between observed data and model increase. In particular, if yk = 1, yl = 0 and pk = pl <
0.5 it holds that πk > πl, and vice versa.

An interesting remark can be made about optimal sampling schemes in the study of
rare events, such as the outcomes studied in case-control studies. Subjects with the con-
dition of interest, i.e with Yk = 1, are often called cases and the rest are called controls.
Case-control studies are typically applied for rare diseases, having pk is relatively small
for all elements since the outcome Y = 1 is rare. This implies that sk = (yk−πk)xk ≈ 0
for controls and sk = (yk − πk)xk ≈ xk for cases. Cases should thus be sampled with
high probability since they deviate from the underlying population model and have a
relatively large contribution to the variance of the estimator. This is in agreement with
standard methodology in case-control sampling.
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Figure 4.7: Optimal sampling schemes for estimation of β1 in a simple logistic regression
model with a single continuous explanatory variable, where β1 is the regression coefficient
pertaining to the explanatory variable. The inclusion probabilities are presented as function
of the standardized distance of xk from the mean (left) and as function of pk = P (Yk = 1)
(right). In this instance, we have X ∼ N (0,1), N = 500, n = 50 and β = (0, 1).

Minimizing the Anticipated Variance

Suppose now that the explanatory variable is unknown and that some auxiliary variable
is observed in the first phase. Consider the case were (Xk, Yk) follow a bivariate normal
distribution, so that

(Xk, Zk) ∼ N

((
µX

µZ

)
,

(
σ2X ρσXσZ

ρσXσZ σ2Z

))
.

This implies that

Xk|Zk ∼ N
(
µX + ρ

σX
σZ

(Zk − µZ),
√

(1− ρ2)σX
)
, (4.2.3)

which also can be expressed as

Xk = α0 + α1zk + εk, εk ∼ N (0, σε) ⇔ Xk|Zk ∼ N (α0 + α1Zk, σε) . (4.2.4)

Since y and z are known for all elements in S1, we can approximate

pk =
1

1 + e−xTβ

by

p̂k =
1

1 + e−xT γ̂ML
, (4.2.5)
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where γ̂ML is the MLE of the regression coefficients when modeling Y as function of Z
with logistic regression using the data available in S1. We need to compute (4.2.1) and
(4.2.2) under the design model (4.2.3) in order to find the anticipated variance. Consider
first (4.2.1), which can be written as

E(Yk,Xk)|Zk
(
(Yk − pk)2XkX

T
k

)
= (yk − p̂k)2 EXk|Zk

(
XkX

T
k

)
= (yk − p̂k)2 EXk|Zk

(
1 Xk

Xk X2
k

)

= (yk − p̂k)2
(

1 EXk|Zk(Xk)

EXk|Zk(Xk) VarXk|Zk(Xk) + EXk|Zk(Xk)
2

)
,

(4.2.6)

where EXk|Zk(Xk) or VarXk|Zk(Xk) can be computed under the design model (4.2.3)
and (4.2.4). The above matrix can be evaluated if the parameters in the model for Xk

given Zk is known or could be guessed. We have here used the fact yk is known and pk
estimated from the data available in the first phase. The anticipated information matrix
can be found similarly to the calculation in (4.2.6).

Sampling schemes optimized for precision in estimation of β1 are illustrated for var-
ious correlations between X and Z in Figure 4.8. When ρ = 0, the auxiliary variable
contains no information about the explanatory variable and the optimal sampling scheme
is a function of the outcome alone. To be more specific, the optimal inclusion probabil-
ities are given by

π∗k = κ|yk − ȳ| .

In this instance we have ȳ = 0.5, and Bernoulli sampling is optimal . As ρ → ±1, the
sampling schemes converge to the optimal sampling scheme found when x was known,
compare to Figure 4.7.

In more complicated situations, it might be necessary to guess the value of θ. In this
case this was not needed since θ only enter the anticipated variance through pk, which
could be estimated directly using the auxiliary variable. Note that p̂k will be close to ȳ for
all k when ρ(X,Z) ≈ 0, where ȳ is the mean of y in S1. For strong correlations between
X and Z, p̂k will be close to pk, but the estimated probabilities will in general be pulled
from the true probabilities towards ȳ. It is so since Z essentially is as a disturbed version
of X, and adding noise to an explanatory variable does in general pull the corresponding
regression coefficient towards zero, thus pulling the predicted probabilities towards the
mean.
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Figure 4.8: Optimal sampling schemes for estimation of β1 in a simple logistic regression
model with a single continuous explanatory variable, where β1 is the regression coefficient
pertaining to the explanatory variable. The inclusion probabilities are presented as function
of the standardized distance of zk from the mean. The designs are optimized for estimation
of β1 by use of auxiliary information under the design model (4.2.3). In this instance, we
have N = 500, n = 50, β = (0, 1) and (Xk, Zk) following a bivariate normal distribution with
standard normal marginal distributions and correlation ρ(X,Z) = 0 (top left), ρ(X,Z) = 0.5
(top right) and ρ(X,Z) = 0.95 (bottom).

4.2.2 Auxiliary Information with Proper Design Model

Let us now consider a somewhat more realistic situation, trying to mimic the possible
use of optimal subsampling designs in practice. We continue the example in the previous
section and consider logistic regression with a single continuous explanatory variable.

The outcome and an auxiliary variable are observed in the first phase, while the
explanatory variable is unobserved. Since it is believed that the explanatory variable is
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related both to the outcome and to the auxiliary variable, it is reasonable to assume some
kind of indirect relation between the auxiliary variable and the outcome. This motivates
the use of estimated probabilities from a model for Y given Z as approximations of pk,
as given by (4.2.5) in the previous section. A regression like relationship between X and
Z is assumed, i.e. a model of the form

Xk = α0 + α1zk + εk, εk ∼ N (0, σε) (4.2.7)

is used to describe the relationship between auxiliary and explanatory variable. Assume
that some knowledge about the design model parameter φ = (α0, α1, σε) is available
from a previous study.

Simulations were used to investigate the performance of the optimal two-phase de-
sign optimized for estimation of β1 under these settings. A bivariate normal model for
(Xk, Zk) with standard normal marginal distributions was used. A random sample of
size N = 500 was generated from the joint distribution of (X,Z), followed by simula-
tion of Y according to a logistic model with explanatory variable X and parameters
(β0, β) = (0,1). A separate sample of 50 observations from the joint distribution of
(X,Z) was generated and used to estimate (α0,α1) and σε in (4.2.7), mimicking exist-
ing knowledge of the distribution of X given Z from a previous study. Optimal sampling
schemes were found under the estimated design model for X given Z as in the previous
section. The variance of the PLE was then estimated using simulations of 5000 subsam-
ples S2 of size n = 50, estimating the total variance as the average over the simulated
variances plus the variance of the MLE in the first phase.

Varying Correlation

Simulations were conducted for various correlations ρ(X,Z) between 0 and 1. Four
different designs were considered, namely Poisson sampling and adjusted CP-sampling,
both with optimal Poisson sampling inclusion probabilities, stratified sampling with
optimal sampling fractions and simple random sampling. Bernoulli sampling was also
considered for reference. Strata where defined by grouping elements with yk = 1 into two
almost equal size groups by a split at the median of zk for such elements, and similarly
for elements with Yk = 0. Stratified sampling was achieved by restricting the inclusion
probabilities to be equal within strata and using the optimal inclusion probabilities as
sampling fractions within strata. By the construction of strata, the relation between X
and Z and the structure of true model for Y given X, the four strata essentially consist
of elements with pk < 0.5 and yk = 0, pk < 0.5 and yk = 1, pk > 0.5 and yk = 0, and
pk > 0.5 and yk = 1.

The results of the simulations are shown in Figure 4.9, presenting the ratio of vari-
ance of the estimators under the four designs compared to the variance under Bernoulli
sampling. Neither of simple random sampling and Bernoulli sampling use the auxiliary
information obtained between the two sampling phases, and the variances under these
designs do not depend on ρ. Note that Poisson sampling gives the same precision as
Bernoulli sampling and stratified sampling the sample precision as simple random sam-
pling when ρ(X,Z) = 0. In fact the two random size designs are essentially equivalent
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4.2. LOGISTIC REGRESSION

in this instance, since Z contains no information about X and ȳ = 0.5, and similarly
for the two fixed size designs. If the outcome groups are not equally large, the knowing
yk would in general lead to improvement of the stratified sampling over simple random
sampling and of Poisson sampling over Bernoulli sampling. In addition, as the corre-
lation increase, the auxiliary variable provides more information about the unknown
explanatory variable. Utilizing this information in the design stage leads to a variance
reduction of 25-50% for moderate to large correlations.

While the variances under simple random sampling and adjusted CP-sampling are
quite similar to the variances under their random size counterparts, giving a variance im-
provement of no more than a few percentages, a large gain in precision is seen when using
stratified sampling. Even in the extreme case where ρ(X,Z) = 1, stratified sampling
is superior to Poisson sampling. By construction of homogeneous strata in combination
with fixed size sampling, balance between the outcome and covariate groups in the sub-
samples is ensured, resulting in small variance. With more heterogeneous strata or by
use of random size sampling from each strata, less variance reduction is expected.
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Figure 4.9: Relative variance of β̂1,π under various designs optimized for estimation of
β1 compared to Bernoulli sampling, where β1 is the regression coefficient pertaining to the
explanatory variable in a logistic regression model with a single continuous explanatory
variable. The simulated variance ratio is shown as function of the true correlation between
the explanatory variable X and the auxiliary variable Z. In this instance, we have N = 500,
n = 50, β = (0, 1) and (Xk, Zk) following a bivariate normal distribution with standard
normal marginal distributions. The design model was estimated from a previous study of
50 observations.

Varying other Parameters

Only a single parameter is varied in Figure 4.9, namely ρ(X,Z). Preliminary simulations
were also conducted for a fixed correlation ρ(X,Z) = 0.5, varying other parameters.
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4.2. LOGISTIC REGRESSION

Figures presenting these results are omitted, but the results are discussed and motivated
intuitively.

Consider first the impact on the sample sizes in the two phases of sampling on the
possible gain in precision. Thinking of a situation with N = n, we realize that all
elements in S1 are certainly included in S2, so that all designs are equivalent. Keeping
this in mind, the results presented in Figure 4.9 shows that the variance of the PLE
can be reduced when N is enlarged even though n is held fixed, since the designs are
equivalent when N = n = 50 but Poisson sampling is superior to Bernoulli sampling
when N = 500 and n = 50. This is motivated by the fact that more information becomes
available when the size of S1 increases, so that more efficient designs can be found.
The sizes of both S1 and S2 thus influence the possible gain in precision in two-phase
sampling. However, it turns out that the gain by using Poisson sampling is much larger
for n = 50 and N = 500 than for n = 500 and N = 5000, even though n/N = 0.1 in both
cases. For small and moderate sample size, the variability between samples will be high
with Bernoulli sampling and the extreme observations will influence the variance of the
estimators substantially. Sampling with unequal probabilities allows for the influence of
extreme elements to be reduced by sampling these with high probability. However, if
n and N are both sufficiently large, Bernoulli sampling will essentially always produce
balanced samples that well represent the underlying population. As a consequence, the
variability between samples will be small, resulting in estimators with small variances.
The gain in more complex designs is thus maximal for small to moderate n and quite
large N .

The strength of association between outcome and explanatory variables is also of
importance for the performance of the subsampling designs. A strong relation here
correspond to a large β1 is large relatively to the variability in the explanatory variable.
This gives a better separation between observations with Yk = 1 from observations with
Yk = 0, so that the variability of Y is reduced. In particular, this enlarges the influence
of the term (yk − pk)2 on the anticipated variance for elements that deviate from the
model, so that high sampling probabilities could be assigned to such elements. This in
turn leads to reduced variance in estimation compared to equal probability sampling
designs. Putting this slightly different, a strong association between the response and
the explanatory variable implies a strong association between variables in the design
model, which if utilized in the design stage could lead to high gain in precision.

As a final remark on this example, we also comment on the importance of the prior
information available about the model for X given Z. There are two sources of un-
certainty in this model as estimated from previous studies, namely uncertainty of the
estimated parameters and variability of observations around the model. The former is
small if the sample size of the previous study is sufficiently large, but the latter has to do
with the randomness in underlying population model and can only be reduced by finding
good auxiliary variables. For construction of efficient subsampling designs, the precision
in the estimated design model parameters is of secondary importance. Of main impor-
tance is the knowledge about the variability of the unknown variable in the underlying
population, and to find auxiliary variables that explain a large proportion of the vari-
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4.2. LOGISTIC REGRESSION

ance in the unobserved variables. Even though a previous study of sufficient size to be
able specify the design model correctly and estimate its parameters with high precision
is desirable, it is not necessary. Similar results to those presented in Figure 4.9 where
obtained even if the previous study had only 20 observations. Despite the fact that this
resulted in quite poor precision in estimation of φ, it gave sufficient information about
the strength of association between X and Z in order for the auxiliary information to
be used efficiently in selection of subsampling design.

4.2.3 Auxiliary Information with Improper Design Model

The previous example used knowledge about the design model from a hypothetical pre-
vious study. This allowed for specification of a reasonable structure of the design model,
using the estimated parameters as a guess of the design model parameter φ. Consider
now a situation where such knowledge is not available, but where data is available for
an auxiliary variable that is believed to be strongly correlated with the explanatory
variables.

Let us continue the previous example, only modifying the information available about
X given Z. A regression like relationship is assumed, but the parameters of the regres-
sion model are unknown. Assuming that X and Z are highly correlated, it is tempting
to plug in Z direct in the anticipated variance in place of X. Plugging in X = Z and
p̂k as estimated in (4.2.5) into (4.2.2) gives

EXk|Zk
(
sks

T
k

)
= (yk − p̂k)2 EXk|Zk(XkX

T
k )

= (yk − p̂k)2
(

1 EXk|Zk(Xk)

EXk|Zk(Xk) VarXk|Zk(Xk) + EXk|Zk(Xk)
2

)

= (yk − p̂k)2
(

1 Zk

Zk Z2
k

)
.

(4.2.8)

Note that Formula (4.2.8) is the same as (4.2.6) under the assumption that the
correlation between X and Z is 1. Plugging in Z̃ in place of X is thus to assume that
the two variables are strongly related. In addition, it also has implications on the prior
belief in β, namely that β = γ, where γ is the regression coefficient for the logistic
model for Y given Z. Suppose for example that the true correlation between X and Z
is 0. Two major mistakes will then be made when plugging in X = Z̃ in the anticipated
variance. First, this is the same as to assume that the correlation between X and Z
is 1. Second, it will be assumed that β1 = γ1,ML ≈ 0 since Z is only associated with
Y indirectly through the common association with X. Simply plugging in the value of
a proxy variable in the anticipated variance makes strong assumptions of the relation
between X and Z, and is reasonable only when X and Z are strongly correlated.
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4.2. LOGISTIC REGRESSION

Simulated Performance

The above approach was investigated by means of simulations for various designs opti-
mized for estimation of β1, as in the previous example. The true correlation between
X and Z was varied between 0 and 1. Three different sampling strategies were consid-
ered, namely Poisson sampling, Poisson sampling with post-stratification and stratified
sampling. Bernoulli sampling was also considered for reference. Strata and post-strata
where defined by grouping elements with yk = 1 into two almost equal size groups by
a split at the median of zk for such elements, and similarly for elements with Yk = 0.
The Poisson design with post-stratification had the same inclusion probabilities as the
standard Poisson design, applying sample size adjustment of the sampling weights in
estimation. Stratified sampling was achieved by restricting the inclusion probabilities to
be equal within strata and using the optimal inclusion probabilities as sampling fractions
within strata.

The results are presented in Figure 4.10, showing the relative variance of the PLE of
β̂1 under the three designs compared to Bernoulli sampling. Note that the variance under
Poisson sampling is almost twice as large as for Bernoulli sampling when the correlation
between X and Z is small. This is due to the strong assumptions implied by plugging
in Z̃ in place of X in the anticipated variance, actually assuming perfect correlation.
Optimization is thus conducted with respect to the wrong objective function, resulting
in large variance. As the true correlation increases, the assumption of perfect correlation
becomes more plausible and eventually leads to reduced variance compared to Bernoulli
sampling. As ρ(X,Z) tend to 1, the same degree of variance reduction as in Figure
4.9 in the previous example is obtained. The variance of the PLE is reduced by use of
post-stratification for small to moderate correlations. Still, the variance is much higher
than under Bernoulli sampling. The gain is using post-stratification is reduced when
the correlation is large, since the true optimal inclusion probabilities are then found and
modification of these result in increased variance.

As in the previous example, the stratified sampling design performs remarkably well.
The key to success with stratified sampling is that the strata consist of groups of el-
ements that truly are similar in terms of the combination of outcome and covariate
values. Assigning equal probabilities within strata can be seen as averaging the vari-
ance contribution over elements within strata. Even though large errors are made on
element level, the construction of strata has the effect that errors are canceled out by
averaging the variance contribution over elements within strata. As claimed in Section
3.3, this example confirms that assigning probabilities on cluster level could be a sen-
sible approach when large errors are believed to made on element level and when the
information available on element level is restricted.
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Figure 4.10: Relative variance of β̂1,π with Poisson sampling, Poisson sampling with post-
stratification and stratified sampling compared to Bernoulli sampling, as function of ρ(X,Z).
β1 is the regression coefficient pertaining to the explanatory variable in a logistic regression
model with a single continuous explanatory variable. The sampling schemes were optimized
for precision in estimation of β1 using Z as substitute for X in the anticipated variance.

4.2.4 When the Outcome is Unknown

The examples presented in the previous sections have all been concerned with situations
where the outcome is known for all elements in S1. This allowed for simplification of the
anticipated variance, and made it possible to find and sample elements with outcome
deviating from the model with high probability. However, if the outcome is unknown,
it becomes more difficult to say which elements that deviate from the model. In such
situations, it is important to have access to good auxiliary information for the outcome.
If such information is unavailable, the best one can do is to assume that the outcome
follow the underlying model. The sampling schemes will then essentially be based on the
anticipated extremeness of elements in X-space. So called leverage points, i.e. points
that are extreme in X-space and therefore have a large influence in estimation, should
then be sampled with high probabilities.
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5
Conclusion

Estimation and precision optimization under general two-phase sampling procedures
have been studied. The use of auxiliary information obtained between the two phases
of sampling in construction of efficient subsampling designs has been investigated. Op-
timal Poisson sampling designs for the PLE has been derived and presented analytically
for L-optimality, and methods for numerical optimization with respect to D and E-
optimality has been discussed. It was shown that elements that are believed to deviate
from the population model should be sampled with high probability, which agrees with
the interpretation of the inverse of the inclusion probabilities as the number of elements
represented by each element in the sample.

It was shown that the variance of the PLE under the special case of Poisson sampling
with πk = π, i.e. Bernoulli sampling, yielded approximately the same variance as the
MLE under of a simple random sampling for sufficiently large samples. The optimal
Poisson design is thus expected to yield more efficient estimators than simple random
sampling, provided that enough auxiliary information is available in the design stage.
This motivates the use of two-phase sampling when feasible.

A large gain in terms of precision can be achieved when good auxiliary variables
are available in the design stage, i.e. variables that describe a large proportion of the
variability in the unobserved study variables. The gain is also expected to be large when
a relatively small proportion of elements are to be sampled in the second phase. By
optimal selection of design, smaller sample sizes might be needed than if simple random
sampling was used, as otherwise is common practice. There could thus be an economic
gain in the use of two-phase sampling and optimal subsampling designs.

In the formulation of the objective function, the anticipated variance was introduced
as a substitute to the unknown realized variance of the PLE based on a heuristic argu-
ment. This requires further investigation and a more rigorous treatment. Also, since the
actual variance and the anticipated variance are evaluated with respect to different mod-
els, caution is needed in the specification of design model so that inconsistency between
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the two models is avoided, if possible. Inconsistencies inevitably leads to discrepancies
between the anticipated and the realized variance. Still, the anticipated variance as
introduced in the context of survey sampling has been proven useful, and is believed
to be so even in the more complex situation with model based inference considered in
this thesis. Empirical studies of this claim are requested for future study. In particular,
studies of the robustness of performance of subsampling designs found under moderate
inconsistencies between models is requested.

A proper specification of the design model is of great importance. Errors made in the
design stage will lead to optimization of the wrong objective function, and potentially
a large loss of efficiency. It is in general worse to put strong belief in the wrong model
than to put weak belief in the correct model. While a design model that assumes small
variation in (Y ,X) given Z yields optimal or close to optimal sampling schemes at the
true model and true parameter, it is also sensitive to errors in the model. A design model
with high uncertainty in (Y ,X) given Z yields less efficient designs than the former at
the true model, but is in general less sensitive to errors made in the specification of
the model. Ideally, the sampling schemes derived should be optimal or near optimal at
the true model, while giving high precision in estimation even for moderate deviations
from the true model. Further improvements of the robustness of performance of the
subsampling designs could possibly be made.

Three methods were proposed for further improvement of the estimation procedure
and designs, namely adjusted CP-sampling, stratified sampling and post-stratification.
The first two address the variability by fixing the sample size, which also might have
some practical benefits, and the last by adjusting the sampling weights in the pseudo
log-likelihood. While adjusted CP-sampling and post-stratification might successfully
by used to reduce variance, stratified sampling could also be a guard against design
model misspecification. A large potential gain in precision was seen when using strati-
fied sampling, while the results with post-stratification and adjusted CP-sampling were
less promising. The implications of modified designs and estimation procedures on the
precision in estimation is not evident and the use of these methods requires further
attention.

Two other topics require more attention than given in this thesis. The first is variance
estimation, which was just briefly was mentioned. Ideally, a sampling design should not
only provide good estimates of the parameters of interest, but also for the variances of
these parameters. Variance estimation does also require consideration in the planning
and might add additional requirements on the design. The use of efficient methods
for variance estimation is also a topic in itself. The second issue that requires further
consideration has to do with the asymptotic properties of the PLE when the design is
determined by the variables observed between the phases. In order to ensure consistency
and asymptotic normality of the PLE, some conditions on the auxiliary variables and
the design model are needed. Assuming that the first phase samples in the limiting
procedure are independent, convergence of statistics of the study variables are ensured
under general conditions, and asymptotic results and ought to hold under quite general
conditions on the auxiliary variables. What is needed is essentially some conditions on
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the limiting behavior of the inclusion probabilities as random functions of the auxiliary
variables.

A rather strong assumption of independence between triplets (Yk,Xk,Zk) has been
assumed in this thesis. However, the weaker assumption that Yk are conditionally in-
dependent given Xk is enough for the inference procedure to be valid. The additional
requirements on (Yk,Xk,Zk) makes important simplifications in the optimization stage.
In reality, the relation between elements might be such that this does not hold. By
assuming independence anyway, the methods presented in this thesis could be applied,
relying on the robustness of validity of the PLE. The optimal design derived under these
conditions might however be far from optimal under the true conditions. This final com-
ment actually applies to any additional assumptions made in the design stage, and the
benefit here in using the pseudo-likelihood approach for estimation shall be stressed. It
allows for quite general situations and models to be considered and generous assump-
tions to be in the design stage, since the validity of the inference procedure is does not
depend on the assumptions made in the design stage.

It shall be pointed out that the anticipated variance is computed for a specific design
model with a fixed parameter φ, and also for a specific model of interest with a specific
value of θ. Optimization is then conducted with respect to some optimality criteria, so
that the subsampling design is optimized for a specific purpose. Still, inference from the
obtained sample is not limited to the models considered in the design and optimization
stage, and other models can be studied than the one for which the design was optimized.

As a final comment and suggestion, it would be interesting to study the possibility to
conduct the second sampling phase in two steps, the first step using Bernoulli sampling
or simple random sampling and the second using Poisson sampling. The design model
and its parameters could be specified and estimated based on the sample obtained in
the first step. In the second step, the so obtained design model could be used for
efficient subsampling. This can be useful when too little prior information is available
in the design stage for specification of the design model. Questions to be addressed are
how to allocate the sampling fractions between the two steps and how to combine the
information gained in each step into a single inference procedure.
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A
The Variance of the Maximum
Pseudo-Likelihood Estimator

The variance of the PLE will now be investigated in some more detail. First, the formula
for the asymptotic variance of the PLE conditional on S1 is derived. The influence on
elements on the variance of the PLE is then studied.

A.1 Derivation of the Asymptotic Conditional Variance

The formula for the variance of θ̂π around θ̂ML conditional on the first phase sample will
now be derived. This variance is referred to as the conditional variance and is according
to (2.3.5) claimed to be

VarI(θ̂π|Y ,X) =
a
I(θ)−1 VarI [Sπ(θ)] I(θ)−1 .

A derivation of this formula is given as follows. Using Taylor linearization of the
π-expanded score in a neighborhood of θ̂ML, we get

0 = Sπ(θ̂π) =
a
Sπ(θ̂ML) + ∂θSπ(θ̂ML)(θ̂π − θ̂ML) , (A.1.1)

where the leftmost equality follows from that θ̂π is chosen to satisfy Sπ(θ̂π) = 0. The
approximation (A.1.1) is justified by the fact that θ̂π is a consistent estimator of θ̂ML, so
θ̂π will be in an arbitrary small neighborhood of θ̂ML with high certainty for large enough
samples. Note that ∂θSπ(θ̂ML) approximates −I(θ) and is approximately constant for
large samples, due to the law of large numbers. Rearranging and taking variances with
respect to I on both sides of (A.1.1), one can write

VarI

(
Sπ(θ̂ML)

)
=
a

VarI

(
∂θSπ(θ̂ML)(θ̂π − θ̂ML)

)
=
a
I(θ) VarI

(
θ̂π − θ̂ML

)
I(θ) .

(A.1.2)
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A final rearrangement shows that

VarI(θ̂π|Y ,X) = VarI(θ̂π − θ̂ML) =
a
I(θ)−1 VarI

(
Sπ(θ̂ML)

)
I(θ)−1 , (A.1.3)

which concludes the derivation. See Binder [7] for a rigorous proof, dealing with the
technical details.

A.2 On the Contributions to the Realized Variance

As shown in section 3.1.1, the realized variance of the PLE under Poisson sampling can
be written as ∑

k

Wk

πk
=
∑
k

I(θ)−1sks
T
k I(θ)−1

πk
,

The variance contribution thus depends both on the inclusion probability and on the
matrix Wk = I(θ)−1sks

T
k I(θ)−1. Let us have a closer look at the latter.

Note that

Wk = I(θ)−1sks
T
k I(θ)−1 =

(
I(θ)−1sk

) (
I(θ)−1sk

)T
,

which is the outer product of the vector I(θ)−1sk with itself. The (i,j)-th element of Wk

is thus the product of the i-th and j-th coordinates of I(θ)−1sk.
Since I−1(θ) is a real symmetric matrix, it has p orthonormal eigenvectors, where p is

the number of parameters in θ, provided that I−1(θ) is of full rank. Let the eigenvectors
of I−1(θ) be denoted by v1, . . . ,vp with corresponding eigenvalues λ1, . . . , λp. One can
write

sk =

p∑
l=1

alvl , (A.2.1)

where (a1, . . . , ap) are the coordinates of sk in the eigenspace. Writing the j-th coordinate
of vl as vl,j , the vector sk can be written as

sk,j =

p∑
l=1

alvl,j ,

and the j-th coordinate of I(θ)−1sk as

p∑
l=1

alλlvl,j . (A.2.2)

From this it follows that the (i,j)-th element of the matrix Wk is of the form(
p∑
l=1

alλlvl,i

) p∑
j=1

akλkvl,j

 , (A.2.3)
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which is the product of the i-th and the j-th coordinate of ∇θ log f(yk|xk;θ), weighted
by the eigenvalues of I(θ)−1. Recall now that the eigenvectors are the orthogonal di-
rections in Rp and the corresponding eigenvalues represent the magnitude of variance
along these directions. Recall also that the gradient of a function shows the direction of
steepest change and its magnitude is the rate of change at that point. One can think
of sk as the direction of influence of element k on estimation, and of the size of sk as
the magnitude of influence. In words formula (A.2.3) tells us that elements with high
magnitude of influence with direction of influence along directions with high uncertainty
will contribute substantially to the variance in estimation. It has been shown that opti-
mal sampling schemes compensate a large contribution to the variance due to Wk by a
small contribution due to 1/πk. This means that observations that with high potential
influence on the model through extreme values in unstable directions should be sampled
with high probability.
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B
Derivation of L-Optimal Sampling
Schemes under Poisson Sampling

The optimal sampling scheme under linear optimality criteria presented in Formula
(3.2.4) will now be derived. We start by presenting the solution to the relaxed problem
requiring only that πk > 0 and then solve for πk ∈ (0,1].

Result B.1 Let ck > 0, k = 1, . . . , N . The solution to the constrained optimization
problem

min
π
g(π) =

∑
k

ck
πk

,

subject to
πk > 0∑
k πk = n

,

where n ≤ N , is given by

π∗k =
n∑
i

√
ci

√
ck .

Proof of Result B.1 Using Lagrangian multipliers, we introduce the auxiliary function

Λ(π, λ) = g(π) + λh(π) ,

where

g(π) =
∑
k

ck
πk
, h(π) =

(∑
k

πk

)
− n .

Critical points to the Lagrangian are found by solving the equation system

∇Λ(π, λ) = 0⇔

h(π) = 0

−∇g(π) = λ∇h(π)
, (B.1)
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implying that 
∑

k πk = n

−∂g(π)
∂πk

= ck
π2
k

= λ = ∂h(π)
∂πk

.

This in turn gives
ck
π2k

=
cl
π2l
, k,l ∈ S1 .

In particular, all πk in the solution of (B.1) can be expressed in terms of π1 as

πk = π1

√
ck
c1

, (B.2)

π1 =
n∑
k

√
ck
c1

, (B.3)

which by insertion of (B.3) in (B.2) gives the solution

π∗k =
n∑
i

√
ci

√
ck . (B.4)

Furthermore, the Hessian of g(π) is positive definite in (0,1], showing that π∗ = (π∗1, . . . , π
∗
N )

given by (B.4) is a local minimum for g(π) in the domain specified by the constraints.
The domain and the objective function are both convex, and it follows that π∗ is a global
minimum, which proves the claim. Having ck > 0 ensures that the calculations above
are valid, and also that the solution is unique and that probability sampling design is
obtained.

Remark B.1 Note that the expected number of elements sampled from a specific subset
J of S1 is given by

nj = EI

(∑
k∈J

πk

)
.

Suppose that π∗ is a solution to the optimization problem in Result B.1, and that we
want to change the expected number of sampled elements in J from nj to n′j, keeping
πk fixed for elements not contained in J . A simple calculation shows that the optimal
solution to the new problem is given by

π̃∗k =

 π∗k
n′j
nj
, k ∈ J

π∗k, k /∈ J
.

Result B.2 If all π∗k ≤ 1, where π∗k are defined as in Result B.1, then π∗ = (π∗1, . . . , π
∗
N )

is also the solution to the constrained optimization problem

min
π
g(π) =

∑
k

ck
πk

,

subject to
πk ∈ (0,1]∑
k πk = n

,

(B.5)
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If π∗k > 1 for some elements, let I be the index set consisting of all m elements with
π∗k > 1. Update the inclusion probabilities according toπ̃

∗
k = 1 k ∈ I

π̃∗k = n−m∑
i/∈I
√
ci

√
ck k /∈ I

. (B.6)

If this again result in some π̃∗k > 1, add those to the index set I, increase m accordingly
and update the inclusion probabilities as in (B.6). This procedure is iterated until a
feasible solution is found with π̃∗k ∈ (0,1] for all k ∈ S1. The procedure will stop in a
finite number of iterations since n ≤ N and S1 contains a finite number of elements.
The solution obtained in the final iteration is the solution to the constrained optimization
problem (B.5).

Proof of Result B.2 The claim is trivially true if all π∗k ∈ (0,1] according to Result
B.1. Suppose that π∗k > 1 for some k and that π̃∗k ∈ (0,1] are found according to the
procedure described in Result B.2. Consider a partition of π̃∗ = (π̃∗1, . . . , π̃

∗
N ) into two

components π̃∗(1) and π̃∗(2), where the first component contains all π̃∗k < 1 and the sec-
ond component contains all π̃∗k = 1. In other words, the first component correspond
to elements k /∈ I and the second component to elements in k ∈ I. We show that all
points π in an arbitrary small neighborhood of π̃∗ within the feasible region has a larger
value of the objective function than π̃∗. In particular, we show that any valid change in
the second component followed by optimal selection of inclusion probabilities in the first
component results in larger value of the objective function than when evaluated at π̃∗.
This means that π̃∗ is a local minimum and by convexity also a global minimum.

We consider first changes in a single coordinate of π̃∗(2) keeping the others fixed. Say
that the i-th coordinate of π̃∗(2) is decreased by some ε > 0, i.e. let π̃∗(2),i = 1− ε. Let ε be

so small that
n(1)+ε

n(1)
π̃∗k < 1 for all k /∈ I, where n(1) =

∑
k/∈I π̃

∗
k is the expected number of

sampled elements from the first component. We then think of π̃∗(2) as fixed and minimize
the objective function as a function of π(1), keeping the total expected sample size fixed
to be n. According to Remark B.1, this correspond to increasing all π̃∗(1),j in the first

component of π̃∗ by a factor
n(1)+ε

n(1)
. Denote the new point by π̇∗.

The difference in the objective function evaluated at π̇∗ and π̃∗ is

g(π̇∗)− g(π̃∗) =
∑
k

ck
π̇∗k
−
∑
k

ck
π̃∗k

=
∑

k:π̇∗k<1

ck
π̇∗k

+
∑

k:π̇∗k=1

ck −
∑

k:π̃∗k<1

ck
π̃∗k
−
∑

k:π̃∗k=1

ck

=
∑
k/∈I

ck
π̇∗k

+
ε

1− ε
c(2),i −

∑
k/∈I

ck
π̃∗k

, (B.7)

since the two sums over elements with π̇∗k = 1 and π̃∗k = 1 cancel out expect for the term
ε

1−εc(2),i.
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The difference between the two sums over elements k /∈ I in (B.7) can be written as∑
k/∈I

ck

(
1

π̇∗k
− 1

π̃∗k

)
=
∑
k/∈I

ck

(
n(1)

π̃∗k(n(1) + ε)
− 1

π̃∗k

)
= −

∑
k/∈I

ck
π̃∗k

ε

n(1) + ε
.

Note that ck
π̃∗2k

=
cj
π̃∗2j

for all j,k /∈ I according to Formula (B.4). It follows that

∑
k/∈I

ck
π̃∗k

ε

n(1) + ε
=

cj
π̃∗2j

ε

n(1) + ε

∑
k/∈I

π̃∗k =
cj
π̃∗2j

n(1)ε

n(1) + ε
, (B.8)

where j is any element not in I.
Note that we initially had ck

π∗2k
= cl

π∗2l
for all k,l ∈ S1 in the first optimization step,

according to Result B.1. Then, by increasing π∗k for k /∈ I and decreasing π∗l for l ∈ I
when calculating π̃∗, we get ck

π̃∗2k
< cl

π̃∗2l
≤ cl for all k /∈ I, l ∈ I. This in turn implies that

ck < c(2),iπ̃
∗2
k for all k /∈ I. Combining this with (B.7) and (B.8), we now we have that

g(π̇∗)− g(π̃∗) =
ε

1− ε
c(2),i −

cj
π̃∗2j

n(1)ε

n(1) + ε

=
c(2),iε(n(1) + ε)π̃∗2j − cjn(1)ε(1− ε)

positive constant
> εn(1)

c(2),iπ̃
∗2
j − cj

positive constant
> 0 .

This shows that an arbitrary small decrease in π̃∗(2) along a single coordinate result in
larger values of the objective function.

It remains to show that the same holds when decreasing π̃(2) along any direction
ε = (ε1, . . . , εm). Doing so, the expected sample size in the second component is reduced
by
∑m

k=1 εk and the expected sample size in the first component consequently increased

by the same amount. Let ε be so small that
n(1)+

∑m
k=1 εk

n(1)
π̃∗k < 1 for all k /∈ I. According

to Remark B.1, the optimal allocation of the probability mass
∑m

k=1 εk added to the first

component is to increase all π̃∗(1),j in the first component by a factor
n(1)+

∑m
k=1 εk

n(1)
. We

write the new point as

π̇∗(1),j = π̃∗(1),j
n(1) +

∑m
k=1 εk

n(1)

= π̃∗(1),j
n(1) + ε1

n(1)

n(1) + ε1 + ε2

n(1) + ε1
. . .

n(1) + ε1 + ε2 + . . .+ εm

n(1) + ε1 + ε2 + . . .+ εm−1
.

π̇∗(1),j can thus be found sequentially by first increasing π̃∗(1),j by a factor
n(1)+ε1
n(1)

and then

by a factor
n(1)+ε1+ε2
n(1)+ε1

and so on. This sequential update of π̇∗(1),j is the same as when

decreasing π̃∗(2) along one coordinate at a time, and we have already shown that such
changes result in increased values of the objective function. This proves the claim.
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