
!  

Entity extraction for people profile 
matching 

Master’s Thesis 

ALEXANDRU-DAN TOMESCU

Department of Computer Science 
CHALMERS UNIVERSITY OF TECHNOLOGY 
UNIVERSITY OF GOTHENBURG 
Gothenburg, Sweden 2016



The Authors grant to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish theWork electronically and in a non-commercial
purpose make it accessible on the Internet. The Authors warrant that they are the
authors to the Work, and warrant that the Work does not contain text, pictures or
other material that violates copyright law.

The Authors shall, when transferring the rights of the Work to a third party (for ex-
ample a publisher or a company), acknowledge the third party about this agreement.
If the Authors has signed a copyright agreement with a third party regarding the
Work, the Authors warrant hereby that they have obtained any necessary permis-
sion from this third party to let Chalmers University of Technology and University
of Gothenburg store the Work electronically and make it accessible on the Internet.

Entity Extraction for People Profile Matching
ALEXANDRU-DAN TOMESCU

©ALEXANDRU-DAN TOMESCU, June 2016.

Examiner: GRAHAM KEMP
Supervisor: FREDRIK JOHANSSON
Advisor: TRAIAN REBEDEA

Chalmers University of Technology and University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Goteborg
Sweden
Telephone: + 46 (0)31-772 1000

Department of Computer Science and Engineering Gothenburg, Sweden, June 2016.



Abstract

With the rise in social media platform usage, the average number of people profiles
has increased as well. The fact that people have social media profiles on multiple
platforms reveals the interesting problem of matching them in order to aggregate all
the profiles in one. As a significant part of these profiles are made of unstructured
text, extracting labeled data using an entity extraction system can lead to an increase
in precision and recall.
This thesis documents the effects a bootstrapped pattern learning approach can
have on a profile matching system. The entity extraction system is trained in a
distributed manner on a big amount of data, in order to generate as many quality
patterns as possible.
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1
Introduction

1.1 Introduction to People Profile Matching

There is an increasing amount of semi-structured data (a form of data that does not
have rigorous formal structure but does contain labels or tags) with an important
portion consisting of social media or professional profiles. Most people have a num-
ber of public online profiles on different platforms containing personal information
such as name, address, education, employment history etc. Because all this informa-
tion is scattered on different products, the task of searching for people is sometimes
tedious and doesn’t yield the best results.

Another problem is the fact that searching for a specific person just by name can
result in erred results: using Google Search to look for the name of the author of
this project, Alex Tomescu, yields others as well (most notably one other person
with the same name that has achieved some amount of fame). Because our online
identities are scattered on multiple platforms, the task of identifying all the public
data about a specific person can be time consuming.

One solution for the people search task is to gather all the profiles in one place and
perform the search on that index.

Having only an index with all the data would not be of much help when looking for
someone. For this problem, a solution seems to be creating an identity out of all
the public data for each person. This involves matching a Facebook profile with a
LinkedIn profile, and/or a Google+ profile and so on.

Even though the information is usually quite similar between the platforms, match-
ing just by name and structured data sometimes is not enough. Some of the entities
which help disambiguate the relationship between two profiles are not in the struc-
tured data, but in the unstructured part of the profiles.
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1. Introduction

1.2 Introduction to Entity Extraction

Entity extraction (also known as Named Entity Recognition - NER, or entity iden-
tification) is the task of extracting words from an input text and also classifying
them in a predefined set of categories. Entity extraction is a part of the Information
Extraction (IE) task and has drawn attention in 1995 and 1996 in the Message Un-
derstanding Conferences editions 6 and 7 (MUC-61 and MUC-72). The study of this
problem first started with the extraction of names [1] and with time was expanded
to other categories of entities. Named entity recognition is one of the first steps to
extracting information and meaning from text.

One of the possible applications can be the use in the context of the matching task
presented in the previous section. By normalizing the profiles and then using entity
extraction to extract the entities from the unstructured text fields, matching accu-
racy should be improved.

Entity extraction is an important topic which can also be used in other contexts than
profile matching. Having metadata for the words in a corpus can lead to structured
search (commercial search engines are making a big effort in this direction). Entity
extraction can also help with automatic report creation and other such tasks where
the meaning of words within a text would be vital.

1.3 Terminology

The extracted entities from profile data are words and expressions which contain
information about a certain profile: the company a given person is working in/with
(Google, Microsoft, The Coca Cola Company), a role within it (software engineer,
chef, manager), a location (Sweden, Romania, United States), a hobby (swimming,
playing football), or a school attended (Chalmers University, Gothenburg Univer-
sity).

The entity extraction is trained on a data set of social network profiles. A social
network profile is created by each user when joining the respective platform, and
populates it with information, depending on the goal of the platform. The data in
each profile is kept in fields, which differ from one platform to another. Examples
of profiles are provided in the Chapter 3.

An identity is composed of multiple social profiles belonging to the same person.
Ideally, the identity contains all the social profiles of a given person, but due to lack
of data or ambiguities, it can also lack some or contain some wrong ones. The data
set is a collection of documents containing text (in this case social media people

1http://www.cs.nyu.edu/cs/faculty/grishman/muc6.html
2http://www.itl.nist.gov/iaui/894.02/related_projects/muc/proceedings/muc_7_toc.html
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1. Introduction

profiles) which is used when training or evaluating a system. Subsets of this are the
training set and the control set (for which we already know the wanted output of
the system applied, which we can compare against).

1.4 Scope

In this thesis we concentrate on entity extraction from social media people profiles,
using a data set of profiles both for training and for evaluation. Even though the
case analyzed here is narrow, the entity extraction system can be trained on any
semi-structured data that has labeled fields containing examples of entities that we
are looking for. After training, the entity extraction system can be used on any type
of text.

1.5 Approach and Goal

There are two main goals we wish to achieve with this thesis: to see how a semi-
supervised entity extraction algorithm works on social media profiles and to see
what improvements the entity extraction can bring if plugged in a profile matching
system.

The project started by evaluating the existing entity extraction algorithms and by
selecting the data. Next, after researching the available literature on the subject,
given the nature of the data, the algorithm was chosen, and implemented in a
distributed manner. The algorithm was evaluated on a data set and when the best
results were achieved, it was integrated into an already developed matching system.

1.6 Thesis Outline

In Chapter 2 the context in which the entity extraction and matching are performed
is presented. An overview of the recent state of social networks (overlapping between
social networks, the use of social networks by the average person) and the efforts
of PeopleGraph, the company in collaboration with which this project was realised,
are given.In Chapter 3, the data set used in entity extraction and in the matching
phases are described in detail.
Next, in Chapter 4, the entity extraction system is described in detail (both infras-
tructure, algorithm and steps). In this chapter there is also an overview of how it was
used in the profile matching system. The entity extraction system is then evaluated
in Chapter 5, as well as how matching is improved. The related literature is then
presented, both in terms of entity extraction and profile matching, and approaches
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1. Introduction

are compared in Chapter 6. In Chapter 7, the ethics of entity extraction and social
profile matching are discussed, and in Chapter 8, conclusions are presented.
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2
Context

This project is executed in collaboration with the startup PeopleGraph located in
London/Bucharest, under the supervision of Dr. Traian Rebedea.

PeopleGraph’s mission is to “help the right people find each other”, which ma-
terializes in people search products (the task of finding people online), such as
Closeround1. To enable high quality people search, an index containing more than
2bn profiles has been created for platforms such as Google+, LinkedIn, Facebook,
AngelList, Crunchbase, Instagram, about.me and others.

One of the concepts that stands at the core of people search products is a way of
aggregating multiple public profiles belonging to the same person into one identity
representing the real person. The project described in this document aims to solve
the problem of extracting entities from the unstructured text of a profile, with the
final aim of using those entities as additional information when matching to form
an entity.

While using entity extraction for improving the results of a profile matching sys-
tem is an interesting problem, it is not the only one. There is an ongoing effort
to structure the big amount of online data, and entity extraction is one of the ba-
sic sub-tasks involved. One possible application for entity extraction is the use in
search products[2]. Even though entity extraction would be harder in this context,
as queries are quite small and lack context, disambiguating by identifying entities
and their classes could provide improvements in search results.Another possible ap-
plication can be the extraction of events, as they are identified by a few entities:
start and end date, name and location as seen in [3].

With the rise in number of social media users, a big amount of data is generated
containing information on topics of interest for the general public. As this is an im-
portant indicator of commercial success in many industries (e.g. technology, music,
cinema), trend analysis on social media has become an important market. Extract-
ing company names from tweets or Facebook posts and analyzing the number of oc-
currences can quantify the interest generated by news articles or product launches.
This is similar for music and cinema and many other markets and industries which
rely on the "buzz" generated around them. The subject of extracting entities from

1https://closeround.com
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2. Context

Twitter has been discussed by Ritter et. al. in [4].

Figure 2.1: % of internet users who use Facebook, LinkedIn, Twitter, Instagram
and Pinterest, 2013 vs 2014 2

Research made by the Pew Research Center [5] in 2014 illustrates the fact that a
big chunk of Internet users have accounts on multiple social networks: 52% of users
have more than one. From the table in Fig, 2.1, it is also obvious that the numbers
shift towards having social profiles on more platforms. Going into more detail, the
overlap in platforms in 2014 is analyzed, Facebook being the most used, and having
most users in common with other platforms (especially as Instagram is owned by
Facebook).

According to an article on GlobalWebIndex[6], monitoring of the usage of close to
50 regional and global social networks revealed that the average number of social
media accounts for an Internet user was 5.54 in 2015 (and has likely increased during
the year, as studies show that the number of social media users continues to grow3).

As seen in Fig.2.2 and Fig.2.3, the number of LinkedIn and Twitter users has in-
creased over time (for Twitter it seems to be stagnating in the last few quarters).

2http://www.pewinternet.org/2015/01/09/frequency-of-social-media-use-2/
3http://www.smartinsights.com/social-media-marketing/social-media-strategy/new-global-

social-media-research/
4http://www.statista.com/statistics/274050/quarterly-numbers-of-linkedin-members/
5http://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/
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2. Context

Figure 2.2: Number of LinkedIn users over time according to statista.com 4

Figure 2.3: Number of Twitter users over time according to statista.com 5

This trend is also obvious on other very popular social networks.

All these facts further strengthen the use of building public data identities in order
to achieve an important part of structuring the web. Another important aspect of
the social media usage is the fact that people are only active on an average of 2.82
profiles6. This leads to out of date profiles which might contains important infor-
mation which will be hard to locate. There are numerous applications for social
profile matching and information aggregation about people, depending on the goal
and the domain. Applications range from recruitment products which aggregate all

6http://www.globalwebindex.net/blog/internet-users-have-average-of-5-social-media-accounts
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2. Context

the online data about a certain candidate such as skills, previous work experience
and projects.

Aggregating identities can also prove useful in the case of public figures such as
politicians in order to give their electorate a more thorough and adequate idea
about them, or in the case of celebrities so that people can follow multiple accounts
of people they admire. The idea of building a platform where politician profiles
can be aggregated with the goal of informing the public for elections has generated
interest such that PeopleGraph has been awarded a grant for building one by the
Open Data Incubator for Europe (ODINE)7.

7http://www.theguardian.com/odine-partner-zone/2016/may/19/winners-of-the-fifth-odine-
call-announced
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3
Dataset

In this chapter the dataset used for training and evaluating the entity extractor and
the effect it has on the matching results is presented. Details such as the structure of
the data, the particularities of some of the profiles available and examples, provide
a clearer picture of the data used in this thesis.

The corpus used for training this system consists of more than 2 billion profiles
stored on the Amazon S3 platform1. The profiles are normalized and contain in-
formation from platforms such as LinkedIn, Google+, Facebook etc. Through the
nature of social profiles, they contain both structured and unstructured data. Struc-
tured data is represented by name, work history, location, education (in most social
profiles), but also some free form of content (descriptions and headlines in LinkedIn).
The structure of a LinkedIn and a Twitter profile are presented in the table in Fig.3.1

Table 3.1: Normalized LinkedIn and Twitter profiles

The data contains mostly profiles written in English, but there are also other lan-
guages present: Spanish, Italian, Japanese, French and others. Initially, the profiles
which contained words not written in English were discarded, but that proved to be
unnecessary: most languages contain patterns which predict entities like companies
or schools. The algorithm extracted multiple patterns which appeared frequently

1https://aws.amazon.com/s3/
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3. Dataset

enough that they could be considered confident patterns: etudiante en , trabajar en .

Table 3.2: Normalized about.me profile

The most valuable type of profile for this task is the LinkedIn profile because the
platform is oriented toward work relationships. It contains work history and ed-
ucation history, and the fields can be used for extracting seed entities. Also, the
description and headline fields are usually populated with relevant information that
may contain work and education history. The fact that well written and complete
LinkedIn profiles represent a plus in the recruitment world, the data is sometimes
more relevant and complete compared to other platforms.

Other profiles have more unstructured data which makes them harder to match to
others (Twitter). In Twitter, other than the name, the location, and some follower
count information, there are not many structured fields that can be used in match-
ing, but in the headline(bio) field, people sometimes give enough information about
themselves, the company they work in, or where they study. This is where the entity
extraction algorithm comes in: by extracting entities from the unstructured parts
of the text, there is more information to decide on in the matching process.

In the dataset there is also a portion of profiles which cannot be properly used be-
cause they do not have much information. Some Google+ profiles do not contain
either structured information about work history or education history, or unstruc-
tured description or headline fields. These kinds of profiles are not taken into ac-
count.

Profile from photo sharing social networks such as Flickr are hard to match because
of the lack of information, as people create an identity mostly through media content

10



3. Dataset

they created or redistributed. Instagram profiles contain a headline which could be
used for entity extraction, but the content is usually more non-conformist and does
not provide information about work history or education. The about.me platform
contains identities voluntarily created by people by providing basic information and
links to their profiles on social network platforms (Fig.3.2). This comes in useful
when creating the control set for evaluating the impact the entity extraction has on
the matching profiles. The control set contains about.me profiles and the profiles
the identity contains.

For the purpose of training the entity extractor, a dataset of approx. 200 million
profiles are used. The entity extractor is then evaluated using a variable number
profiles ranging from 30 million to 150 million profiles. The evaluation set contains
different profiles from the training set.

11



4
Procedure

4.1 Entity Extraction

Entity extraction has been implemented in a number of ways. For this project, we
have started from a semi-supervised entity extraction method presented in [7] and
it is based on bootstrapping the process. In this section the implementation of the
system is presented: in subsection 1 the infrastructure particularities are detailed
and in subsection 2 the needed details about the Spark framework[8] are given. In
the next subsections the main steps of the entity extraction training and running
are presented: in subsection 3 the notion of seed entities is given and placed in the
context of the system, in subsection 4 the pattern generation step is presented, and
then in the final subsection, the new entity extraction process is detailed.

Bootstrapping in this context refers to the use of a predefined list of entities – known
as seed entities – in order to be able to generate patterns, which are then used to
generate new entities. The seed entities bootstrap the cycle.

The central abstractions and notions in the entity extraction method chosen in this
project are (i) relations, (ii) seed entities and (iii) patterns.

Relations describe the type of an entity and how they relate to the context. The
relations considered in this project are particular to the structure of the social net-
work profiles and the task of matching the profiles: the company relation, the school
relation, the role relation and the location relation. They are chosen based on the
amount of information they can provide about a profile and on the availability of
structured fields in profiles containing entities which we are sure belong to a certain
relation.

The entities extracted from the structured fields (company, school, role and location
fields) are considered seed entities for their respective relations. Seed entities are
used for identifying patterns, which in turn identify new entities.

Patterns are composed of a sequence of words that are usually used together with an
entity. When a pattern is identified, there is a high chance that the words after or
before it (depending on their type) form an entity.There are two types of patterns:

12



4. Procedure

• LEFT – e.g. work at __company__, study at __school__

• RIGHT – e.g. __company__ is a startup, __role__ at a company

For company and school relations, LEFT patterns are predominant, while for the
role relation, RIGHT patterns are important.

The seed entities are identified in the input text, and based on the words next to it,
patterns are generated. The patterns are evaluated to extract the confident ones,
which are in turn used to identify new entities. This cycle can be repeated multiple
times until no new entities are extracted (in the implementation described here, only
one cycle is applied).

In order to take advantage of the big amount of data available, a distributed imple-
mentation is created. Because of the nature of the task (a lot of data processing in
steps which are not entirely dependent on each other), the MapReduce[9] program-
ming model seems like a good fit. For this the Spark framework [8] was used which
offers a high level Java abstraction for MapReduce. This model applies well to the
algorithm at hand, being translated to a number of map and reduce (or aggregate)
steps, described in Fig.4.1

Figure 4.1: Proposed implementation for the entity/relation extraction algorithm

In this implementation companies and schools are represented by the Relation class
which they extend: CompanyRelation, SchoolRelation, RoleRelation and Location-
Relation. Relation classes contain relation specific information such as a list of seed
entities, minimum thresholds for patterns and entities. Patterns belong to one of
the relations and the entities extracted by them are tied to the same relation.

13



4. Procedure

4.1.1 Infrastructure

The project is deployed on a cluster of memory intensive nodes in the Amazon Elas-
tic Compute Cloud (Amazon EC2). There is one master node (the driver) and a
number of slave nodes. The driver is not memory or CPU intensive, as it only or-
chestrates the computation, starting different jobs on the slave nodes. The outputs
of map steps are kept in JavaRDD classes which are a high level abstraction of dis-
tributed data kept in Hadoop HDFS.

The cluster on Amazon EC2 was created and managed (Spark installation, Hadoop
installation and other needed plugins) using the spark-ec2 script provided with the
Spark library.

For testing during development and for evaluation, Amazon spot instances were
used. Because the implemented entity extraction algorithm is very memory inten-
sive, r3 instances were used. Not only are they memory oriented, but they also have
SSD storage, which is useful because Spark has the option of storing overhead data
to storage and bringing it into memory only when needed. When running the sys-
tem with an input lower than 50 million profiles, xlarge instances (4 cores, 30.5 GIB
memory and 1 x 80 GIB SSD storage) were used. For bigger input sizes, 2xlarge
machines (8 cores, 61 GIB memory and 1 x 160 GIB SSD storage) were used.

The deployment was done using the spark-submit script also available with the
Spark library.

During runtime, Spark exposes detailed information about the steps taken (default
on port 8080 of the driver). As seen in Fig. 4.2, information on the progress on each
action and transformation is provided. Each transformation is divided into tasks
which are then distributed on all the machines, and the Spark UI also provides infor-
mation on them (duration, the machine on which they are processed, status). The
stdout and stderr logs can also be accessed for each of the machines, and a history
of the Spark applications is kept.

Figure 4.2: Spark UI

To monitor the load on the cluster, the Ganglia plugin was used. Detailed infor-
mation on the usage of each machine in the cluster is available. In Fig. 4.3 the
load_one metric is presented (the load average over one minute - the number of
threads that are runnable and queued while waiting for CPU resources) as well as

14



4. Procedure

overall memory, CPU and network used in the last hour. Monitoring the cluster
information gives a good starting point when something goes wrong with the Spark
application (many problems are caused by the use of all the available memory).

Figure 4.3: Cluster monitoring with Ganglia

4.1.2 Cluster Computing using Spark

Once the Spark application is deployed and initialized, a SparkContext is created
which sets up the cluster application by granting the driver access to the workers
through a resource manager (Apache YARN1, or in this case, Spark’s own manager).
The program’s resources are distributed to the workers and the abstraction of re-
silient distributed data set (RDD) is used to control the resources from the driver
(JavaRDD in this case).

To process the data distributed on the cluster, the Spark framework provides two
types of operations which can be performed on RDDs: transformations and actions.
Transformations are operations which compute a new RDD from the old one, so
the data is kept distributed on all the workers. Transformations include operations
such as map (apply the provided function on each of the elements of the RDD),
flatMap (a variation of map which can return a list of results for each element of
the data set) or filter (the resulting data set contains only the elements for which
the provided function return true). Actions are operations which give the data to
the driver: reduce (aggregates the data set to the driver using a provided function),
collect (aggregates all the data from the workers to the driver) or count (counts all

1http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
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4. Procedure

the elements in an RDD). In order to create the first RDD, data can be paralel-
lized using the parallelize Spark operation. The effects of Spark operations are also
illustrated in Fig.4.4.

Figure 4.4: Spark operations

When working with Spark for processing a big amount of data it is always good to use
transformations as often as possible, and just aggregate data when it’s necessary.
Aggregating the data is a costly operation which involves I/O and it can cause
problems by filling all the memory of the driver.

4.1.3 Seed Entities

Seed entities are used to bootstrap the process by identifying patterns. A list of
seed entities can be created either by extraction from a dictionary or by extraction
from structured data. The latter has the potential of creating a bigger list of entities
which increases the quality of the extracted patterns.

Due to the structure of the project’s input corpus, the seed entities were extracted
from the profiles which had populated fields containing work history and education
history. Most of the data was extracted from LinkedIn and AngelList profiles.

The description and headline fields are used as input for pattern generation.

Fig. 4.5 gives a clear example of how a profile is used in training. The seed entity
from the education field is extracted, and when it is identified in the description,
the LEFT pattern "study at __school__" is extracted.

In the training phase the data is loaded from Amazon S3 and mapped from JSON
to Profile objects using the Google GSON library. By applying a map action to the
loaded profiles a JavaRDD is created and distributed along the nodes.

Based on the generated Profile objects, company and school names are extracted.

16



4. Procedure

Figure 4.5: JSON profile with pattern and seed entity

4.1.4 Pattern Generation

In a preprocessing step, all the entities found in the structured part of the profile are
replaced in the description and headline properties. In this step, Stanford CoreNLP
[3] is also used in order to tokenize and lemmatize each word. This results in
Token objects which contain the initial form of the word, the lemma and a boolean
specifying whether or not the word was an entity.

As the tokenized input set is quite big and the most expensive to compute, it is
kept in cache, using the Spark Framework persist method, configured to use both
memory and storage (MEMORY_AND_STORAGE is set as caching method). By
doing this, the tokenized input is only computed once (not every time it is needed)
which yields a significant time improvement. If the data handled is bigger than the
memory capacity of the machine it will be saved in the storage until needed.

Pattern generation is done in a PairFlatMap stage, in which the program iterates
through all the tokens from the headline and description of a profile. When an
entity token is identified, patterns are created by taking into account the words to
the left and to the right of the identity: the ngrams to the left of the seed entity
are considered as LEFT patterns, and the ngrams to the right of the seed entity
are considered RIGHT patterns. The output of this transformation step is an RDD
containing a list of tuples containing the pattern and the 1 integer.

The output of the FlatMap transformation returns the Tuple containing the Integer
instead of just a pattern so that when reducing the results, the Integers are added
up, resulting in the count for each of the patterns. The reduction is done through
a reduceByKey transformation which shuffles the elements on the RDD so that all
the elements with the same keys are on the same machines, and then reduces them.
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At this step, a big number of patterns is considered, but most of them are going
to be discarded because they appeared before or after a seed entity by coincidence,
and do not introduce entities of that certain relation in general.

Table 4.1: Example of extracted patterns for each relation

4.1.5 Pattern Evaluation

The output of the pattern extraction phase is too big and too diluted. Many pat-
terns were not identified more than once and do not produce valuable output, so an
evaluation is needed. In this implementation, the evaluation is done based on two
metrics: confidence, and support.

The support of a pattern is the number of times a pattern was extracted and it
can be found in the output of the pattern generation (the values for each entry in
the output of the previous reduceByKey transformation). Only the support did
not prove to be enough, as there are many expressions which are very common in
descriptions and headline without introducing entities most of the time (e.g. the
patterns "is a" or "as a").

The confidence is based on the report between the number of times a pattern was
identified (the support) and the total number of its appearances.

To compute the total number of a patterns appearances proved not to be very
straight-forward because the whole list of patterns was needed when iterating through
the input. This was not feasible because there were too many patterns to pass be-
tween machines (for an input of 172 million profiles, there were 18 million patterns
generated). To solve this, an RDD containing the ngrams (size between 2 and 4)
from the input was computed. This step takes longer to compute, and takes up a
lot of memory, but it contains the total number of times each of the patterns was
encountered. By joining the ngram RDD with the pattern RDD, another RDD is
created containing both the support and the number of times it appeared. Based
on these numbers, the confidence can be computed.

After support and confidence are computed, all the patterns are aggregated from
all the nodes and filtered to a set of high confidence patterns using a Spark filter
action. All patterns that are above the set thresholds for confidence and support
(for each respective relation) are considered confident.

An overview of how Spark operations are used to extract confident patters from the
text is provided in the diagram in Fig.4.6.
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4. Procedure

Figure 4.6: Diagram of the pattern generation process

4.1.6 New Entity Extraction

The newly extracted confident patterns are applied to descriptions, headlines and
other unstructured texts in order to extract new entities.

The input text of the entity extraction is tokenized in order to have the lemmatized
versions of each word. The next step consist of iterating over the list of tokens.
Whenever one of the patterns (from the generated hashtable of confident patterns)
matches the sequence of tokens, the tokens to the left or to the right (depending
on the pattern type) are evaluated as entities. It doesn’t always happen that a
sequence of words which forms a confident pattern is actually also introducing an
entity. Sometimes the word before the RIGHT pattern or after the LEFT pattern
can give no information or context related to the relation considered. This calls for
a method to evaluate the words in the context of the relation. The factor which
seems to be the most relevant is the frequency of the certain word in the seed entities
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4. Procedure

found when training.

RF (w, r) = wordInRelation(w, r)
dictionary(w)

where wordInRelation(w, r) is the number of times word w has appeared in an entity
from relation r, and dictionary(w) is the number of appearances of word w in the
whole training corpus. The two values are computed in the implementation during
the training phase and loaded when the extraction of new entities is performed,
together with the confident patterns.

There is also the issue of entities formed by multiple words (University of Gothen-
burg, Abercrombie and Fitch). By only considering the first word, many entities are
incomplete and do not provide any extra information (e.g. the "University" entity
does not provide enough context). To solve this, Multi Word Entities (MWE) are
also considered: after computing the score of the first word, the next words are also
considered and the score of the MWE is computed as the average of the scores. If
the score of the MWE is bigger than the score of the simple entity formed by the
first word, the MWE is kept, and the other is discarded.

Result: new Entity
for i=0,input.size do

for j=MIN_PATTERN_SIZE,MAX_PATTERN_SIZE do
for k=0,j do

str += input.get(i+k);
for Pattern p : patterns do

if str == p.text then
if p.type == LEFT then

possibleEntityText = input.get(i+k+1);
else

possibleEntityText = input.get(i-1);
end
entity = getEntity(possibleEntityText);
MWE = getMWE(input, p);
if entity.score > MWE.score then

return entity;
else

return MWE;
end

end
end

end
end

end
Algorithm 1: The extraction of new entities

In the case of company, school and location entities, capitalized words are more
frequent, so the score can be boosted whenever a capitalized word is evaluated as
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4. Procedure

an entity. In the case of words that do not appear in the dictionary (there is no way
of evaluating them based on the training), the score given is fixed. In the case of
companies, the score given is higher than in the case of any of the other relations
considered because there is a higher probability of the name of company not showing
up at all in the training data.

4.2 Matching Algorithm Integration

The social network people profile matching system takes as input a dataset of pro-
files and determines which subsets create an identity, or digital persona of a real
person. The output of the system is a list of identities, each containing references
to profiles from different social networks.

The entity extraction algorithm described in the first parts of this project can be
used in order to improve the precision and recall of the matching system by extract-
ing new features from unstructured text. Having more features for some profiles
means there is more data the matching algorithm can use when clustering or com-
paring profiles (profile resolution).

In the training phase of the entity extraction algorithm, patterns are extracted from

Figure 4.7: Steps of the profile matching algorithm

the training dataset. The patterns, together with the dictionary and relation fre-
quencies are stored in files in an Amazon S3 bucket.

As seen in Fig.4.7, the matching implementation contains multiple stages, which
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4. Procedure

are distributed over a cluster of machines using the Spark framework. After data
normalization, features are extracted from all the structured fields of the profiles.
Instead of transitioning to the next step, a static method exposed by the pattern
algorithm is called.

The static method for extracting new entities from unstructured text loads all the
necessary data only once per workers and outputs the new entities. Based on the
type of the entity (the relation it belongs to), the entities are added to the list of
entities from structured fields. The extracted entities are then used as features when
clustering the profiles and when comparing profiles to determine if they belong to
the same person.
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5
Evaluation

5.1 Entity Extraction

In this section the entity extraction system is evaluated by first introducing the
training and evaluation sets, presenting the effects of varying the algorithm param-
eters and finally documenting the results in terms of precision and recall.

Training and evaluation are performed on subsets of the whole dataset of profiles.
While the dataset contains many profiles that are not very useful as they do not con-
tain much information (work history, education history or location or unstructured
field texts), the training and control sets contain mostly profiles from platforms rele-
vant to the task of extracting entities. The training set contains the data from which
patterns are extracted (a total of 50 million profiles), while the control set contains
semi-labeled entities which can be used to evaluate how well the algorithm works
(a total of 30 million profiles). In Fig.5.1 and Fig.5.2 the distribution of profiles is
available and in the table 5.1, the number of fields relevant to this task.

Figure 5.1: Entity Extraction
training set

Figure 5.2: Entity Extraction
control set
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5. Evaluation

Table 5.1: Profile fields

The output of the training phase of the algorithm is a set of confident patterns that
can be applied to an input text in order to find entities. The control set is not
labeled explicitly for this task, however the structured metadata can be considered
labeled data. Two main ways of measuring the results of both the entity extraction
algorithm and the matching improvements are used: recall and precision. In the
context of evaluating the entity extraction system, recall is defined as the percent-
age of labeled entities which are identified. Precision on the other hand will only be
an approximation because there is no way of identifying false positives in the output
of the system.

This step is also done in a distributed manner using a Map transformation which
takes the control set profiles as input. If the profile contains structured data such
as work or education history, the entities are extracted and confirmed if also found
in the headline or description. The input is tokenized and the new entity extraction
steps are applied to it. After the entities are identified, they are matched with the
confirmed entities, which translated to four possibilities: (1) the confirmed entity
was not extracted by the algorithm, (2) the exact entity was extracted by the algo-
rithm, (3) the entity extracted by the algorithm contains the confirmed entity and
(4) the extracted entity is contained by the confirmed entity. Partial similarity is
considered in the case of extracted entities that are bigger or smaller than the actual
labeled identity by using the Longest Common Subsequence (LCS) algorithm. This
has the advantage of contributing to a clearer recall and precision.

Multiple tests were conducted by varying the training set, the control set and param-
eters such as the minimum threshold confidence and the minimum support. Also,
results are divided by relation, which creates a clearer image of how well the algo-
rithm is doing. The role of the confidence score is to filter out patterns which are
very common throughout the purpose, but very seldom appear in the context of a
relation, introducing an identity. Their support is high, but their confidence is low.
The support of a pattern is used to filter out sequences of words that appear just
a few times, not qualifying them to be patterns. Out of the whole generated set of
patterns, before filtering, a significant percentage of them has only appeared once
or twice.
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Table 5.2: Number of patterns generated depending on the minimum confidence

Figure 5.3: Chart of generated patterns depending on minimum confidence

As seen in Table 5.2 and Fig.5.3, the results of varying the minimum confidence
used when filtering confident patterns. The same training set, evaluation set and
minimum support threshold are used for all three tests. This leads to the same
patterns being generated, but as the confidence threshold decreases, the number of
confident patterns increases (but not by much). Varying the confidence threshold
does not produce important variations in the number of generated results. Lowering
the threshold to 0 leads to an explosion of confident patterns, which means that the
number of true positives increases, but so does the number of false positives.

The evaluation was performed using the patterns generated in the above discussion
(in Table 5.2). The setup with most generated patterns proved to be the best, and
the results are detailed in Table 5.3.
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5. Evaluation

Table 5.3: Number of patterns generated depending on the minimum confidence

5.2 Effects of entity extraction on matching

In order to evaluate the effects the entity extraction system has on the matching
precision and recall, a control set must be created. Considering the big number
of profiles needed, manually matching the profiles is not feasible, so the control set
was created based on profiles gathered from the about.me social platform (about.me
profiles contain structured data and also links to profiles on other social networks –
all provided by the user who creates the profile as illustrated in Fig.5.4).

This control set contains both the about.me profiles and the profiles that are linked,
and based on the about.me profiles the precision and recall can be computed.

Figure 5.4: about.me relation to
other social platforms

Figure 5.5: The distribution of
the profiles in the control set

The control set is stored in a bucket on S3 and is composed of a total number of
355864 profiles with the distribution in Fig.5.5

Out of all the profiles, 101108 of them have some unstructured text in the form of
a headline or description, 116429 have information about work history and 107578
have information about education history.
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Table 5.4: Recall and precision improvements using the entity extraction

In table 5.4 the results of plugging the entity extractor into the matching system
can be observed. When a small confidence threshold is used, more patterns are
extracted which leads to more entities being extracted. When more entities are
extracted, there is a bigger chance of extracting false positives, which causes the
precision to decrease and the recall to increase.

It can be obvserved that the number of extracted entities decreases a lot when the
number of patterns also decreases. This can be caused by some patterns with low
confidence that introduce a lot of false entities.

Depending on the goal of the matching system, someone can opt for more recall or
more precision. Using more patterns might be more helpful in the sense that the
chances of matching badly depending on extracted entities are slimmer.

27



6
Related Work

The entity extraction task is part of the effort to structure the big amount of data
available on the web. A number of papers have been written on this subject, and
there are academic (Stanford CoreNLP[10]1) and commercial (AlchemyAPI2, Ba-
sistech3 and Lexalitics4) software, libraries and APIs available for this task. The
research done on this topic seems to revolve around three main methods: the use
of statistic models, machine learning techniques (such as neural networks) and pat-
tern recognition algorithms. The focus of this implementation has been the pattern
recognition algorithms, as they seem to fit quite well with the data provided as in-
put.

The structure of the bootstrapped algorithm was presented in [7]. As the authors
of this paper point out, machine learning techniques for named entity recognition
are widely used in academia, but rule-based methods (such as pattern algorithms)
are more commonly found in commercial software. This is because running a su-
pervised machine learning algorithm on a big corpus means labeling a big amount
of data, which sometimes is not feasible. Another reason is the fact that patterns
can outperform the machine learning methods in certain specialized fields, as it is
shown in the paper.

Gupta et al. developed their algorithm to work on drug and treatment entities from
forums on the Medhelp platform5 and have used a set of predetermined entities
as seeds. Based on the seed entities, the algorithm can be started by looking for
the patterns that are created around them. The same approach was chosen in this
project, using the structured field of a profile to extract seed entities.

The patterns they used were between 2 and 4 words long, ignored very common
words like “a”, “an”, and “the” and were made up of objects containing the lemma-
tization of the initial words and the part-of-speech tags (generated using the Stan-
ford POS tagger6). Lemmatization proved to be very valuable in extracting general

1http://stanfordnlp.github.io/CoreNLP/
2http://www.alchemyapi.com/
3http://www.basistech.com/
4https://www.lexalytics.com/
5www.medhelp.org
6http://nlp.stanford.edu/software/tagger.shtml
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patterns, but with a quite big cost in efficiency (lemmatizing so much data is ex-
pensive). Also applying a POS tagger proved infeasible with the big amount of data
used when training.

A lot of patterns can be generated by considering the window of 2-4 words next to
a pre-labeled entity. As a big number of patterns can generate many false-positives,
they are further scored based on the number of positive entities they identify, but
also based on the number of expect negative entities. In this paper the top k confi-
dent patterns are kept, while in our implementation a threshold was used.

The score of an entity belonging to a class C, which is identified by a pattern, and
computed based on the average of five features: the edit distance from positive en-
tities, the edit distance from negative entities, the semantic odds ratio (based on
the ratio between it’s frequency in the positive and negative entities using Laplace
smoothing), Google Ngram7 occurrence statistics (the more common an entity is,
the less score it receives) and the distributional similarity score (computed based
on how close the identified entity is to other positive entities in a distributional
similarity cluster – Stanford CoreNLP Distsim tagger8). As the implementation in
this project is distributed, getting the entities to the workers proved infeasible, so
similarity scores were not computed. Occurrence statistics were the decision factor
on keeping an entity.

Using the confident patterns to extract new entities and scoring them based on their
frequency and similarity to positive and negative entities, yields a new set of entities
that can be used as seeds for a new iteration.

RAPIER (Robust Automate Production of Information Extraction Rules) is doc-
umented in [11] and it provides a method of rule extraction based on syntactical
information (using a POS tagger) and semantic classes. This is a bottom up (specific
to general) approach to finding patterns using an ILP (Inductive Logic Program-
ming) algorithm.

Trained on a corpus composed of newsgroup job postings and a set of pre-filled tem-
plates, RAPIER generates rules which are then applied to other job postings. An
extraction rule is composed of the pre-filler (optional), the filler, and the post-filler
(optional), each containing a list of pattern items (constraints which can be lists of
words, POS tags and/or semantic classes). Part of a document matches a rule when
at least one in all the constraints is satisfied. As it is a bottom-up approach, the
most specific rule is considered, matching all the words in the pattern items, but as
this proves too specific, two rules are paired up and the LGG (least general gener-
alization) is computed. Furthermore, if the constraints are disjunct, the rule might
prove too specific, so another rule is generated, dropping the constraints altogether.

Because the complexity for generating rules by considering all the words in a corpus
is too big, the algorithm iterates starting from the filler, and extending the pre and
post fillers. At the point when the best rule (scored based on the length) no longer

7http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
8http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/tagger/maxent/Distsim.html
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produces negative examples, the generalization is stopped. This approach generates
a small number of very general patterns/rules, which is different from the quantita-
tive approach taken in the pattern algorithm described in this thesis.

When trained on 100 documents paired with their templates, this method was eval-
uated to a 83.7% precision and a 53.1% recall.

One other relevant task to the extraction of entities is the extraction of relations as it
can add more information and context to tuples of entities. The relation extraction
task is usually based on fixed predefined patterns (working at, studied at) which
can be extracted from text corpora or from knowledge databases such as Freebase9.
One downside of this is the fact that the equivalences between relations are not used
(such as X physicist at Y and X professor at Y).[12]

To improve the number of extracted and predicted relations, the authors of the
work introduce asymmetric equivalence between the relations. A matrix is built
with rows consisting of tuples of entities, and columns consisting of the relations.
The matrix (θr,t) contains the probabilities that entity e1 in the tuple of entities is
in relation with entity e2 from the tuple, where t is the tuple and r is the relation.
θr,t is computed based on the Latent Feature Model. Furthermore it is interpolated
based on other relations for the same tuple using the Neighborhood Model.

In [13] the authors explore the use of Deep Neural Networks (DNN) which are a
very popular tool in machine learning at the moment. Daniele Bonadiman et al.
describes a DNN model for NER in Italian, which requires few modifications to work
for other languages. The method described introduces a way through which, using
recurrent feedback, output tag dependencies are considered and also a pre-training
technique.

The Context Window Network (CWN, described in Collobert et al. (2011) [14])
takes as input the context (a window of neighboring words) for a sequence s = [w1,
w2, .. , wn]. Each words is then mapped to it’s word embedding vector (language
features) and concatenated into a single vector, which is used by the hidden layer.
Next, a linear function M1 x r + b1, M1 being the weights and b1 being the bias,
is applied and passed through a HardTanh activation function. The output of the
hidden layer is sent to the output layer which applies the softmax function on the
M2 x r2 + b2 linear function.

The authors build on the CWN by proposing the Recurrent Context Window Net-
work (RCWN) because of the main drawbacks of the CWN: the fact that there are
not dependencies between output tags, and overtraining. In the RCWN the embed-
ding vectors for the output tags [i-m, . . . , i-1], where m is k/2, are used as additional
input. The tags j > i are not yet computed, so they are considered as unknown,
using the UNK tag.

To prevent overfitting, three methods are combined: weight decay (a regularization
term used to decrease the magnitude of the weights), early stopping (a method used

9https://www.freebase.com/
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for stopping before overfitting) and Dropout (drop units randomly during training
to prevent co-adaptation).

The matching of profiles between social networks has been studied in a number of
papers. Because collecting the data from multiple social networks is not a trivial
task, the problem of matching has been approached in different angles: using a con-
trol set of profiles generated with a random word generator or using a small control
set of gathered profiles.

In [15], the authors propose a 4 component system which matches a control set of
profiles which were generated with a random word generator (part of the profiles
generated have a high degree of similarity, simulating the fact that they belong to
the same person). The first component is a FOAF (Friend-of-a-friend [16]) Mid-
dleware, which converts the different profile types to FOAF profiles (basically a
normalization step, which is also done in our implementation). The second compo-
nent assigns similarity functions to each profile field: (i) Syntactic-based similarity
approaches (approximate matching techniques such as Jaro-Winkler distance for
names [17]) and (ii) Semantic-based similarity approaches (Explicit Semantic Anal-
ysis [18] which uses Wikipedia to compute relatedness). As the fields in a profile
vary in importance when matching two profiles, weights are attributed, both man-
ually and automatically. Automatic weight assignment is done by extracting the
profiles with the same email address and computing the similarity between their
fields. Each field is then assigned a weight computed by averaging or using Fuzzy
Decision Trees on the obtained similarities. The final component makes the decision
if two profiles are a match by comparing their similarity with a threshold.
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Ethics

The entity extraction system developed in this thesis is used to improve the recall
and precision of a profile matching system. While entity extraction does not raise
any ethical questions on its own as it does not directly affect people, a discussion of
the ethics of matching people social profiles is in order. The question raised is: "Is
it okay to create entities containing all the publicly available profiles of a person, or
is it a violation of their privacy ?"

One of the fundamental rights (which has been adopted in over 150 national consti-
tutions) is the right to privacy. This inalienable right has been the focus of a lot of
discussions, with an increased attention in the last few years, as a trade-off between
privacy and security has been promoted by government agencies (CIA, NSA etc.).

In the case of this project, all the data used is publicly available on the different
social platforms, and the task of matching them can be done manually. Doing this
automatically can give people a clearer idea of what data is publicly available on
them. Considering the average Internet user has 5.54 social profiles but engages
with an average of 2.82, it can be speculated that in many cases social profiles can
be forgotten by their owners.

Another right that has been debated and put into practice by the European Union
and Argentina in 2006 is the "Right to be forgotten" 1. This right grants individuals
more power over their data spread on second party platforms (databases or paper
records) by giving them the ability to ask for their information to be deleted. This
right is respected by platforms such as Google which takes right-to-be-forgotten re-
quests and delete the data they have on the person requesting it.

Having all the profiles of a person in a centralized manner can be useful in the con-
text of the right to be forgotten as an individual would have a better view of the
information publicly available and then would be able to act on it.

One problem that might arise is that some people might not want their profile on
one social media platform to be linked to one on another platform. For instance
someone having a LinkedIn profile might not want people to also have their Face-
book or Twitter accounts where activity is less work-oriented. If the profiles contain

1http://ec.europa.eu/justice/data-protection/files/factsheets/factsheet_data_protection_en.pdf
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the same name and other specific information such as location, work or education
history, they might get matched into an identity which someone can easily access.
Considering all the data used for creating identities is publicly available data, and
the fact that social networks sites have high quality search functions, the matching
system does not have any significant side effects on privacy. The task of manually
matching two profiles is not very hard for people when the data is available, which
means that a person who wants to track down someone’s profiles can easily do it
anyway.
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8
Conclusion and future work

There are two parts to this project from which conclusions can be drawn: the entity
extraction algorithm and the effects it has on the matching accuracy.

The algorithm used for entity extraction was chosen as to benefit from the struc-
ture of the dataset of social network profiles. In order to extract as many accurate
patterns as possible, the data was distributed on a cluster of computers using the
MapReduce paradigm. This allowed the processing of a lot of data, but it had its
own drawback as it limited the evaluation methods. In a few cases during the imple-
mentation a few workarounds were needed (such as using ngrams in order to compute
the number of times a pattern has appeared in the whole corpus). The workarounds
were usually computationally expensive, so part of the benefit of distributing the
data was lost. Another important fact is that most entities are extracted using the
most frequently used patterns which can be identified with a relatively small train-
ing set. Extracting patterns from a big amount of data yielded small improvements
in the number of correct entities extracted.

Another aspect which can be considered important is the fact that when working
with millions of profiles, the most obvious solutions proved to have the most impact.
Extracting co-occurrence between words or conjunctions added a lot of complexity,
but did not improve the results by too much.

The fact that patterns were extracted from profiles is helpful as the entity extractor
is to be used in the context of profile matching, but the algorithm is general enough
that it can be applied to any corpus.

Even though the entity extractor seems to have good results, the impact it has on
matching is not very big. Intuitively when starting this project we believed that
extracting information from the unstructured fields of a profile would significantly
improve matching recall and precision. Evaluating the impact shows that even
though a big number of entities is extracted, mostly with companies and schools,
precision and recall have a limited increase. A closer analysis of the data shows
that most profiles which contain unstructured text also contain detailed informa-
tion which would have been matched anyway, and the number of profiles that benefit
from the entity extraction is relatively small.
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As future work, the new entity extraction step of the system described in this the-
sis can be developed further by implementing statistical methods. The generated
patterns are used to give an indication that a word or collection of words might
be an entity, but more methods can be used to determine that with a degree of
certainty. Also part-of-speech tags can be added using the Stanford POS tagger1,
which might prove useful in generating good patterns and extracting new entities.
Another analysis can then be done on the effect entity extraction has on matching.

1http://nlp.stanford.edu/software/tagger.shtml
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A
Appendix 1

{
" p ro f i l eType " : " l i n k ed i n " ,
" username " : " " ,
" u r l " : " " ,
"name " : " " ,
" head l ine " : "AC/DC Superv i so r at E l e c t r i x " ,
" d e s c r i p t i o n " : " " ,
" p o s i t i o n s " : [

{
" company " : " E l e c t r i x " ,
" r o l e " : "AC/DC Superv i so r "

} ,
{

" company " : "PBA Ltd " ,
" r o l e " : " Technica l s p e c i a l i s t "

}
] ,
" companies " : [

"PBA Ltd " ,
" T ran s f i e l d S e r v i c e s "

] ,
" educat ion " : [

{
" s choo l " : " Waitaki boys high "

}
] ,
" l o c a t i o n s " : [

{
" raw " : " Canterbury & West Coast , New Zealand "

}
]

}
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