
Comparison of Native, Cross-Platform and Hyper
Mobile Development Tools Approaches for iOS and
Android Mobile Applications
Bachelor of Science Thesis in the Software Engineering and Management

SHAN JIANG

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, June 2016

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Comparison of Native, Cross-Platform and Hyper Mobile Development Tools
Approaches for iOS and Android Mobile Applications

Shan Jiang

© Shan Jiang, June 2016.

Examiner: Boban Vesin

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden June 2016

Comparison of Native, Cross-Platform and Hyper Mobile Development Tools
Approaches for iOS and Android Mobile Applications

Shan Jiang

Department of Computer Science and Engineering
University of Gothenburg

Gothenburg, Sweden
gusjiash@gmail.com

Abstract: To take a position in the competitive mobile ap-
plication market, most of the Information Technology (IT)
companies have to develop the same application for various
mobile operating systems. To solve this issue, Cybercom
provided a thesis topic and a project which decreased de-
velopment time by sharing the same core functions between
Android and iOS applications. To share more code between
platforms and take advantage of cross-platform tools and
hybrid tools, the author has conducted a case study which
includes experimenting on Xcode, Android Studio, Xam-
arin and Cordova to produce certain type of mobile applica-
tions and collect data during implementation processes and
from generated applications. This paper not only compares
the performance of individual process and application but
analyses the data from various mobile development tools.
As a result, it provides reference of choosing the optimal
mobile application development tool for future researchers
and developers.

1. Introduction

As the functionality and popularity of electronics grow,
the demands of related applications are also increasing.
Nowadays, these applications are directly influencing our
daily lives from different perspectives. Android and IOS,
the leaders of smart phone markets, are providing millions
of applications till the middle of 2015 (Figure 1) . As
J.Perchat [14] mentioned, to achieve the demands of these
growing markets, developers need to master various pro-
gramming languages and own more than one devices in or-
der to create different applications. The ultimate goal is to
lighten the load for developers and provide suggestions for
choosing the most suitable tool for different circumstances.

Figure 1: Number of Apps Available in July 2015[1]

Cybercom has realized and experienced this conflict dur-
ing several projects, therefore they decided to solve this
issue by providing a thesis topic to the author. The au-
thor, who is a third year student of Software Engineer and
Management bachelor program and thesis worker in Cyber-
com, conducts a case study on comparison of three cate-
gories development tools, which are Single Platform Devel-
opment Tool (SPDT) , Cross-Platform Development Tool
(CPDT) and Hybrid Mobile Application Development Tool
(HMDT) from development process and quality of the re-
sult point of views. This case study contains four implemen-
tation processes and all the experiments are conducted by
author, the only developer for this study. Due to the unique
relationship between Cybercom and author, no other devel-
opers can join this study.

With the combination of industry practice and literature
review, this work makes several contributions. First of all,
it provides readers a comprehensive overview of these three

categories of IDE, for example the licence, API, support
mobile platform, availability, etc. Secondly, the author con-
ducted four experiments on the outstanding tools from dif-
ferent categories. The process, number of blockers and so
on will be recorded for evaluation and reference for other
researchers. Thirdly, this paper presents a detailed analysis
and evaluation of the products that are delivered from var-
ious tools. These approaches can provide advices for the
industry partner Cybercom Group as well as researchers in
the same domain in future tool selection.

There are three major stages in this research: preparation
of implementation and case study from Section 4, conduc-
tion of case study on four develop tools from Section 5 and
solve research question from Section 6. Preparation sec-
tion states which tools are used in this study, the reason for
choosing them, and functional requirements for final prod-
ucts. In the second stage, data is collected from two as-
pects: implementation process and applications produced
from them. In order to collect both quantitative and qualita-
tive data objectively, certain tools and methods are selected
to assisted this step. After gathered enough data, the last
stage started. To solve research question, author has sepa-
rated data into two concerns: Process and Products. This
stage states analysis results from different aspects. Beside
these, Section 7 illustrates threats to validity. Finally dis-
cussion and conclusion is presenting in section 8.

2. Background

This section starts with describing the three categories
of platforms more in depth and providing a general mobile
development knowledge to the reader. Then it comes up
with description of previous work and how this paper differs
from them.

2.1 Three categories of development plat-

forms

As mentioned before, there are three major categories of
mobile development tools. Xcode and Android Studio are
the typical representatives of the first kind – SPDT, which
can only be used to develop single platform applications for
native environment. This single platform development tools
all have fully integrated functionalities such as user inter-
face builder, debugger, support external libraries, accessi-
bility to hardware. Besides all of these benefits, the limi-
tations include that they can only build application for sin-
gle environment with different programming language and
some of them have restricted installation environment, for
instance Xcode can only used in Mac OS X with its unique
development tool Xcode to develop iOS application, and
developer can only make use for Android application de-
velopment with Android Studio.

On the other hand, development tools from the CPDT
category usually support developers to build mobile appli-
cations for more than two platforms and support installation
on various environment. One of the features from them is
that only one programming language is required, and the
tool will help the programmer to synchronize and generate
platform specific code automatically in order to create more
than one mobile applications suitable for various platforms.

In HMDT category, for example Cordova and Titanium,
also can generate mobile application suitable for differ-
ent environment due to its specificity of a web based ap-
plication. These applications are built with HTML and
JavaScript as a website but can access more hardware fea-
tures than a web browser.

This paper focuses on providing more information of de-
veloping both iOS and Android applications to junior de-
velopers. Therefore, the author as the only developer has
conducted four developments by using development tools
selected from these three categories to create three pairs of
iOS and Android applications.

2.2 Related Work

Most of the papers in this field have separate concerns.
Boushehrinejadmoradi [4], Heitkötter [8], and Palmieri [13]
compared different development frameworks by building
a prototype testing tool to examine the behaviour consis-
tency between them. Appiah [3], Thakare [17], Heitkötter
et al.[8], Dalmasso et al.[5] on the other hand, established a
few sets of criteria to estimate different development tools.
Xanthopoulos et al. [18] focused on overall acknowledge-
ment of single category of CPDT with case study of devel-
opment.

The majority of existing literature focused on one or two
categories of mobile development tools with emphasis on
either criteria analysis or prototype testing such as Angulo
and Ferre [2], Paulo R. M. [6] and J.Masner [10]. This
research, however, is going to focus on a few outstanding
tools from all three categories of mobile development tools
with a pragmatic comparison. Also an evaluation of their
performances will be conducted by building a similar iOS
and Android application with these candidates.

3. Research Question

After observed an uneven usage of SPDT, CPDT and
HMDT in the mobile development fields, a survey has been
conducted in middle March, 2016 to discover ”IOS and An-
droid Mobile Application Development Tool Decision [9]
”. The result shows that 15% of junior developers from the
third year of Gothenburg University Software Engineering
and Management Program were willing to use CPDT and
HMDT for their future project. This number grew to 68%

[9] after these junior developers read the basic information
of CPDT and HMDT. This phenomenon raise up few ques-
tions. Why junior developers are afraid to choose CPDT
and HMDT? Can CPDT and HMDT help junior developers
to increase the overall performance? Does the process of
developing both Android and IOS applications differ from
SPDT to CPDT and HMDT? What are the deployment re-
sult among these three categories?

This research is going to provide the readers a better
understanding of the overall development process from
the three categories of mobile development tools when
creating both Android and IOS application. A deeper
comprehending of the relationship between development
tools and the quality of their products can also be achieved.
Therefore the research question of this study is:

Is there any difference in performance between SPDT,
CPDT and HMDT when junior programmer building
mobile applications for both Android and iOS platform?

On behalf of the overall qualitative and quantitative
data from development processes and final products, their
performance is represented by the value of each project.
The purpose of measure performance in this study is to
evaluate the combination of inputs and outcomes. Many
index such as development time, lines of code, memory
usage, are selected to represent performance in order for
the author to analyse the variation among different tools.
Explanation of these index and how to analyse them are
stated in research method section.

The answer of this research question can help the indus-
try partner Cybercome to select the right tool in the future
mobile application projects. A correct decision can bring
out maximum output with the best quality also it can inspire
employees for future work.

Sub Research Questions:

1. What are the performance differences regarding the
implementation processes?

2. What are the performance differences regarding the fi-
nal products?

4 Preparation

This section explain the plan for the whole study, which
includes how to choose development tools and decide func-
tional requirements for the applications.

4.1 Selection of tools

As mentioned before, Xcode and Android Studio are the
only two officially authorised development tools available,

which have indisputable positions in SPDT area. Therefore
they are the representations for SPDT category.

Combined the knowledge of previous studies, official
documentations and functional requirements of target mo-
bile applications, these assessment criteria are set to help
the author to make the right selection of CPDT and HMDT.

• Licence: It can have multiple licence types, but on the
purpose of research study, there must be at least one
type for free.

• API: It should be easy to learn and use for junior de-
velopers.

• Support Mobile Platform: It must support at least
Android and iOS.

• Availability: It is able to run in Mac OS X, since the
case study is only conducting on this environment.

• Programming Language: To achieve an impartial re-
sult, case study object should have knowledge of re-
lated programming languages

• Feasibility: Code generated by these tools should be
able to run in related SPDT.

• Expandability: It should support the Google Au-
thentication API, encrypted storage and secure chan-
nel communication with server by add external mod-
ules/libraries.

• UI experience: Unify code should be able to generate
native alike user interface.

• Simulator: Must support native simulator for the pur-
pose of development and testing.

At the beginning of this study, more than ten options
were found from CPDT and HMDT categories. Most of
them are eliminated due to the fact that they can not ful-
fil the criteria of this study. However Xamarian and Cor-
dova not only satisfied all the requirements but also pro-
vided well-defined documentations and examples. Hence
these two tools joined the evaluation of case study.

As result, Xcode, Android Studio, Xamarian, and Cor-
dova are chosen for this study. Detailed information of these
tools are presenting in table 1 from all the selection criteria.

4.2 Functional Requirements

Functional requirements play a major role in this study.
They determine the plan for the whole project, selection of
development tools, and what kind of data that can be col-
lected later. All the mobile applications of this study should
apply these functional requirements:

Table 1: Comparison of the representatives from CPDT, HMDT and SPDT.

CPDT HMDT SPDT SPDT
Xamarin Cordova Xcode Android Studio

Licence Community:Free
Professional:45/month

Enterprise :250/month
Integrated with Xamarin
MIT licence (opem
sauce)

Free, Open source Free for MAC user Free, Developed based
on IntelliJ (open source)

API Xamarin.Forms Api
Xamarin.iOS
Xamarin.Android

Battery, Camera Con-
sole, Contact Net-
work information, File
Transfer, etc.

Native support Native support

Support
Mobile
Platform

Android IOS Windows Android, iOS, Windows,
blackberry

IOS Android

Availability Mac OS X ,Windows Mac OS X Windows Mac OS X Windows, Linux, Mac
OS X

Programming
skills

C#
XAML for mark up

HTML5, CSS3,
JavaScript

C, C++, Objective-
C/C++, Swift, Apple-
Script, Python, etc.

Java, XML

Feasibility 1. Provide test on real
device in cloud 2. Sup-
port multiple threads de-
bug at once and in-
spect state across many
threads 3. Hardware de-
bug 4. Monitor applica-
tion performance, such
as the usage of CPU,
GPU and memory us-
age, UI responsiveness
and network utilization
5. UI debug for XAML
6. Updating with mobile
platform

1. Work with Phone
Gap, Ionic ,Monaca ,
App Builder ... 2. Do not
provide native debug op-
tions. Have to use Xcode
or Android Studio

1. Interface Builder 2.
Version Editor to com-
pare difference between
versions 3. Test Nav-
igator 4. Customized
environments 5. Pre-
configured code 6. Cus-
tomized Schemes (builds
and runs) 7. Zombie
Detection can trap hard-
to.find crashes and errors

1. Translation Editor
helps to update string re-
sources 2. Integrated
sample project 3. Inte-
grated with Google App
Engine 4. Separate test
model

Expandability Support library in:
Objective-C, Java,
C/C++

Has 1199 plug-ins to
support different plat-
form

Native libraries, External
library with objective-c,
Swift and C++

Choose from ”Android
Support Library”

UI experi-
ence

1. Support native UI.
2. Xamarin.Form can
transfer the base code
into system specific UI.
3. And user can add plat-
form native code for dif-
ferent UI.

1. With the support of
all kinds of additional
framework: Jquery Mo-
bile, ionic, Ratchet... 2.
Different UI will be cre-
ated for various target
platform

1. Build-in Interface
Builder help user to cre-
ate UI by drag-and-drop.
2. Assistant provide link
between interface com-
ponent with source code.
3. Auto Layout.

1. Layout Editor enable
user to drag and drop el-
ement to create UI. 2.
Theme Editor create UI
for future usage. 3. Use
existed image and gener-
ated customized icon

Distribution Not included Not included Support to App store Market place and users
Simulator 1. Native support iOS

and Android simulator.
2. Remotely support run
project on device

1. Preview in browser
and native simulators. 2.
Support running on de-
vices.

All type of IPhone, IPad
simulator. Remotely
support all iOS devices.

All type of Android sim-
ulator with remotely An-
droid devices

Share code up to 90% None None

1. It must allow the user to login with a Gmail account.

2. It must be able to encrypt and decrypt messages lo-
cally.

3. It must be able to read and write encrypted messages
to the server.

For the purpose of secure communication, development
tools must be able to integrate with the Google authenti-
cation API. Furthermore, messages should be changed to
encrypt content before they are transferred to the server, a
local decryption is ran once the user received it. The step
by step work flow of these applications are presented in Fig-
ure 2 .

Figure 2: Work flow of final product

5. Research Methodology

A case study usually focus on the contemporary phe-
nomena and generate deeper understanding in its context
[16] . Deploying this methodology is beneficial to col-
lect plenty of detailed information during deployment pro-
cess and to established criteria to compare the results gen-
erated from various procedures. In this paper, author has
conducted four experiments on selected development tools.
The result of these experiments is used to evaluate the per-
formance among three categories of tools, and to introduce
an alternative way for develop both iOS and android appli-
cation together to junior developers. The aim of this case
study is to decrease redundant development time and in-
crease productivity for junior developers.

5.1 Data Collection

To comprehensively and objectively gather data, data
collection is emphasize on two sides: implementation pro-
cesses and finalized mobile applications.

Table 2: Observed Parameters

Development
Process

• Implementation hours

• Installation time

• Easy to Use (Duration time from
start project to finish the first task)

• Productivity

• Integrated Simulator

• Powder consumption of develop-
ment

• Memory Usage of development

• User interface builder

Product

• Execution time for every functions

• Security from three aspects:

1. Authentication

2. Encryption & Decryption

3. Communication with Server

• Maintainability

1. Size of project

2. Lines of code

3. Complexity of code (Cyclo-
matic complexity)

4. Coupling

5. Separation of concern: Co-
hesion (LCOM Lack of Co-
hesion of Methods)

5.1.1 Implementation process

Author has conducted three implementation processes in
this study. The first one was a native implementation, where
officially development tool Xcode and Android Studio
were used with native programming language Objective-C
and Java to create one iOS application and one Android
application. The second project was a Cross-platform
development. With its distinguishing features, both IOS
and Android applications were generate by using C# in
Xamarin. Last one was a Hybrid development, which

developed both IOS and Android applications based on
web-development technique in Cordova. All the deploy-
ments were running on the same environment by the same
programmer to avoid unnecessary influence.

To recording more accurate and consistent data, all
the process were sharing a uniform project plan. Here are
the data information related every aspect:

• Usability: Is it easy to use? The term ”easy to use”
summarize the effort for setting up a fully usable de-
velopment environment for a framework and desired
platform [8]. How long time will a junior developer
spend before families with it?

• Accuracy: How many tasks need to extend the time
schedule? How many tasks have been finished be-
fore/within the schedule? How many hours does the
project needs?

• Expandability: Which plug-in/module have been in-
volved for this study? How many plug-in/module have
been tried for this project?

• Integration: Are the provided functionalities com-
pleted?

• Power Assumption: How much battery does the de-
velopment consumed per hour?

• Memory Usage: How much memory does the appli-
cation consumed per hour?

5.1.2 Finalized applications

After the development stage finished, every tool has gener-
ated two mobile applications as showing in table 3. More
data were collected from these applications in these re-
spects:

Table 3: Relationship of development tools and applications

Category Tool Application
SPDT Xcode iOS application
SPDT Android Android application
CPDT Xamarin iOS application
CPDT Xamarin Android application
HMDT Cordova iOS application
HMDT Cordova Android application

• Performance: How long time did the applications
need to be fully function-able since simulator started?
How long time did the applications needed to execute
every function, which included send messages to

server, read messages from server, login, encryption
and decryption?

1. Start up time were measured by calculating the
time difference on simulators log.

2. Execution time for each function can be mea-
sured by using the build-in ”Print” function. This
function can print out current time in console
with accuracy to millisecond. Therefore execu-
tion time for the target function can be calculated
by the time difference of function start up time
and function finish time.

• Security: Authentication, secure storage, communica-
tion with server are the major object for this aspect.
Data were collected from their performance and devel-
opment times.

• Maintainability: Both quantitative and qualitative
data were collected from this field. Lines of code, com-
plexity and coupling represent the quantitative side,
and cohesion represent qualitative side. These data
were measured by following metrics:

1. Size as one of the most important attribute of
software project [11], it not only indicates the
consumption of cost and time but also represents
the quality and maintainability of the project. To
measure the size of each application in this study,
Source Lines of Code (SLOC or LOC) will be
calculated by Count Lines of Code (CLOC) .

2. Complexity as another essential index for com-
paring efficiency beside LOC, it represents the
degree of maintainability for a project. A clean
written code, on the other side can avoid redun-
dant functions. Cyclomatic complexity known as
”a measure of the maximum number of linearly
independent circuits in a program control graph”
[7] is widely used in industry and academia. Cy-
clomatic complexity number (CCN) as the result
of this metric has a stander range from 1 to 10
as presenting desirable complexity, which will
be used as an important index in Result section.
The higher the CCN is, the more complexity the
source code is.

Figure 3: Complexity Metric

3. Coupling as ”one key to several quality fac-
tors of software is the way components are con-
nected” [12] , it can be used to measure numbers
of quality factors, such as reliability, maintain-
ability and complexity. Tightly coupled classes
are highly depend on each others by sharing
types, variables and states. On the opposite side,
loosely coupled classes are much more indepen-
dent. A high coupling value usually refers to
lower readability, reuseability and maintainabil-
ity. Software engineering: a practitioner’s ap-
proach [15] introduced a simple yet efficient way
to calculate coupling as figure 4 showing below:

Figure 4: Coupling metric

This metric brings out a result in the range of
0.67 to 1.0. A higher number represent a highly
coupled system.

4. The relationship among methods within the same
class can be measured by cohesion metric:
Lack of Cohesion of Methods (LCOM) , which
also means the degree of separation of con-
cern. A highly cohesion system usually featured
with reliability, understandability and reusability.
LCOM4 helps users to indicate how many sets of
related methods in a class. When every method in

a class has built link with another other, the met-
ric will brings out a value of one, which means a
high cohesive class. As the level of cohesion gets
lower, the value of LCOM growth higher. Expect
the result of zero indicated there are no method
existed in the class.

• Consumption: How much battery and memory will
the application consummated from beginning to finish
testing all the functions?

In conclusion, this study has gathered both qualitative
and quantitative data from two sides as table 2 presents.
Process side includes four executions cycles and product
side targeted on the six mobile applications.

5.2 Data Analysis

Comparative analysis was used to evaluated data col-
lected from previous section. This method targeted on a set
of characteristics of aforementioned developing processes
and finalized applications to discover the gap among SPDT,
CPDT and HMDT.

There are two degrees of comparative analysis in this
study: horizontal comparison and vertical comparison.
Data collected from the same aspect were stored in the same
row (see figure 6) in order to compare the value of the target
attribute. Results were presented by different background
colours: green for the best performance and red for the
worst performance.

After gained result from horizontal comparison, verti-
cal analysis started. In this degree, author targeted on the
accumulated result of each column (see figure 11). With
the evaluation results from developing process till finalized
product, ultimate results and conclusions are provided in
Section 6.

6 Result

This study was conducted in the month of May 2016
to discover the relationship between development tools and
performance of their usage and products. It involved four
individual projects as the representatives of native tools,
cross-platform tools and hybrid tools. Six individual Mes-
sages Transfer Mobile Applications were completed during
these projects. With the help of research methodology, this
section presents the result of evaluation that adhere to the
principle of consistency, objectivity and all-round way.

6.1 Implementation Result

Due to the fact that Cordova and Xamarin both brought
out two mobile applications while Xcode and Android stu-

Figure 5: Assessment of Development Process(hour) Part 1

dio only produced one. Therefore, to achieve equitable re-
sult, data collected from Xcode and Android Studio were
joined together to represent native tool and compared with
other two categories.

6.1.1 Implementation Hours

To ensure the objectiveness, all four implementations
have followed the same project plan and accomplished
the function requirements from Section 4. The number of
hours spend on each task corresponding to the development
tool is presenting in the figure 5.

From the table we could observe that the total imple-
mentation hours shows significant difference. To produced
both iOS and Android applications, Xamarin provide the
best efficiency which is 19 hours less then SPDT and
Cordova achieved 15 hours faster then HMDT.

6.1.2 Installation

Following the development process, the first task is installa-
tion which presents in figure 6. Android studio and Xcode
both requires half hour to download and install in the OS
X EI Capitan system and other two applications require the
same amount time as the sum of two native tools.

6.1.3 Easy To Use

Beside basic task (ID 2 in figure 5) , the hours spend on
successfully apply the log-in function (ID 3 and ID 4) in
figure 5 are also included in this category. As showing in
second row of figure 6. Xamarin shows the best perfor-
mance of 9,5 hours, which is half hour faster then Cordova
and 2,5 hours faster then native tools.

Figure 6: Assessment of Development Process Part 2

Figure 7: Assessment of Produced Application

6.1.4 Productivity

Each category of development tool has brought out an even
number of products with same functionalities. Therefore
the productivity can be measured from the overall time
spend on each process. As figure 6 shows, native tools spent
almost double amount of time then cross-platform tool to
achieve the same result. Hence Xamarin shows the best pro-
ductivity in this case study.

6.1.5 Integrated Simulator

Both figure 6 and table 1 show that every development tool
from three categories supports simulator, the only differ-
ence is that both cross-platform tool and hybrid tool are de-
pending on the simulator provided by sing-platform tools.
From the integration point of view, Xcode and Android Stu-
dio have a better control on the simulator then others.

6.1.6 Memory and Powder Consumption

Memory usage and powder consumption are the two index
which can directly influence the usability of the tools. The
evaluation results of powder are almost the same for every
project. However when combined the value of Xcode and
Android Studio, it is not surprised that SPDT consumed al-
most doubled amount of memory and battery then CPDT

and HMDT candidates.

6.1.7 User Interface Builder

Because the nature of hybrid tools are web-based develop-
ment, it uses html and css files to construct the user inter-
face. Therefore similar to native and corss-platform tools,
Cordova does not provide a user friendly interface builder.
However, as shows in figure fig:Schedule, Cordova project
did not spend extra time on interface related task then other
projects which have user interface builder.

6.2 Produced Applications

To answer the research question about the performance
of final applications. This section shows the the analyse
result of six products from different angles.

6.2.1 Execution Time

In general, speed means the running time of application
in devices or simulator. This section gives speed a more
intensive evaluation from six aspects: launch application,
successfully authorize, encryption, send messages to server,
decryption, and receive messages from server. They are
presenting in figure 7.

For android applications, Cordova shows the best re-
sults in starting time, send messages and receive messages,
which are 38%, 4,5% and 28% respectively higher then
the worst value. Applications from Android Studio and
Xamarin both have two worst results in different categories.
However Xamarin bring out two top score in send messages
and decryption, while Android studio only gain one top
score in the third category. Accordingly, the android
application from Cordova project has the best performance
and all three applications show diversely result in every
category.

For iOS supplications, it is more difficult to evaluate
which application performs the best. Disregard the en-
cryption time, where all the applications have the similar
results, the applications generated from Xcode and Cordova
have covered all the best and worst records. From figure 7
we can see that single platform application are 73%, 24%
and 11% faster then CPDT application in launch, login and
send messages categories. On the other side, Cordova has
the best performance in decryption and receiving messages
where it spent 50% and 2.1% less time then Xcode. HMDT
application, on the other hand keeps average speed for most
field. Thus the application from Xcode project perform the
best in the speed aspect.

6.2.2 Security

That the major functionality of these applications is to
transfer messages between local devices and on-line server.
Therefore to compare the performance among three cate-
gories of development tools, the result of functionalities on
behalf of security level must be taken more concern. The
results of security can be analysed into three parts: login,
encryption storage and secure channel communication.

With the assist of Google authentication API, every
mobile application from this study can login with a Gmail
account through the same channel support by Google.
Thus, all the result remains at the same level of function-
ality for this part. However applications produced from
SPDT shows the the fastest execution time.

Base on source code and content from figure 6, applications
have conducted different ways of encryption and decryp-
tion, For example, native android application used Crypto,
native iOS application applyed AES256, Cordova project
used CryptoJS and CryptoStream is used for Xamarin
project. These four methods all belongs to symmetric key
algorithms and followed the same principles. A pre-setted
key is required, and it is a necessary component for both
encryption and decryption to finish the process. Analyse

Figure 8: Encryption and Decryption Functions Speed

the principles and process behind this methods are beyond
the scope of this study. A more objective way is compare
the speed of these functions to evaluate their performance.
Figure 8 presenting the accumulated time spend on en-
cryption and decryption for each application. As we can
see, there is a significant difference between Android and
iOS applications. Nevertheless, this phenomenon can be
ignore due to the fact that the values present by second
and fifth bar are sharing the same source files, same as
third bar with sixth bar from Xamarin. The fastest android
application comes from Xamarin, which is 9% higher then
average speed. All the iOS applications shows an even
performance, the one comes from Xcode project is slightly
slower then other two. Further more, this figure presents
that there is a big difference among the applications
generated from various tools. HMDT spent 0,066 minute to
finish encryption and decryption, while SPDT took 0,079
minute and CPDT 0,083 minute.

Figure 9: Connection Speed

The last part of security is the communication between local
device and server. As figure 9 shows iOS applications have
an average faster speed then Android applications. Android
application from Cordova project and iOS application from
Xcode took the shortest time for both way connection. And
the accumulated results for SPDT, CPDT and HMDT are:
330,4ms, 306ms, 304ms. In conclusion, finalized results
from CPDT and HMDT are better then SPDT.

6.2.3 Maintainability

As explained in Section 5, the maintainability of mobile
application come from four parts: size, complexity, cou-
pling and cohesion. It is another index to indicate the per-
formance of development tools. These results with corre-
sponding targets are presenting in figure 10. In this figure,

Figure 10: Lines of Code

CPDT remains the lowest value of CLOC, which is 18%
lower then HMDT and 13% lower then SPDT. However
this metric only calculated the lines of code which are di-
rectly programmed or used in case study. None of the ap-
plications can be built with the support of only these lines.
Therefore, size of the project (figure 7) has added as an-
other critical index. The summarized size of Android Studio
and Xcode projects is 97.8mb which is the 6% lower then
CPDT and 34% lower then HMDT. From this aspect, it is
easier to maintain single function in CPDT project and eas-
ier to maintain the whole project with SPDT project. The
complexity level from figure 7 shows that the individual ap-
plication from Xcode and Android Studio have the lowest
level. Whereas their accumulation result becomes the 6,
which is the highest level among all three categories. Same
situation happens on coupling level. Even though they ob-
tained the second grades individually this time, after sum up
their results, SPDT gained the last position again. Mean-

while, applications from Xamarin project achieve best re-
sult of coupling not only individually but as representative
of HMDT. Cohesion level are generally even for all six ap-
plications expect Android studio, which acquired half grade
then others.

6.3 Summarized Result

Based on the unilateral comparison results from imple-
mentations and produced applications, an overall outcome
presents in figure 11. This figure created by given three
points to every horizontal analyse result in figure 7 and fig-
ure 6, two points for middle grade and one point for the
worst one. Then accumulated these values based on differ-
ent categories of development tools.

Figure 11: Summarized Result

From figure 11 it is clear that CPDT and HMDT show

higher performance than SPDT during implementation.
However the produced applications from SPDT shows the
best result, which is 33% higher then the CPDT applications
and 60% higher then HMDT result.

7 Threats to validity

Although author has used objective metrics to collect
data from all aspects, lack of data and bias data are still
the biggest threat to this research.

7.1 Lack of data

There is no doubt that Android studio and Xcode should
be represent on behalf of SPDT category. However there are
numbers of mobile application development tools from the
other two categories but only Xamarin and Cordova were
selected from them. These two tools are known for their
performances and powerful functionalities, whereas other
tools from CPDT and HMDT categories might have differ-
ent qualities. Therefore by using the data collected from
only Xamarin and Cordova to represent CPDT and HMDT
categories can lead to a narrow answer. A wilder range
of representatives should be choose from both CPDT and
HMDT categories to enrich data to provide more accurate
result. Further more, increase functionalities of application
can help to collect more data. Major data source of this re-
search come from implementation time and execution time
of each function. Adding more functions can help to in-
crease accuracy of the final result.

7.2 Data bias

There are four projects conducted in this study, all of
them were following the same project plan in order to pro-
duce six identical products. Author as the only program-
mer has involved in these projects. As development con-
tinues, programmer usually gain more knowledge and be-
come more familiar with each function. This phenomenon
might affect the data collected during implementation pro-
cess, as in this case study, the first conducted project came
from SPDT, which took the longest implementation time.

On the other hand, different experiences of development
tools and related programming skills can directly affect
product quality and development efficiency. Specially in
this study, each developments tool required different pro-
gramming language. And the only participated programmer
does not have the same control of related language: Java,
HTML, CSS, C#, Objective-C and Java Script. Hence the
quality of produced applications and development times can
be affect.

These issues can be solved by adding more developers
to case study, who have evenly experiences of development

tools and related programming languages. And developer
only need to focus on one project in order to avoid the in-
fluence from other projects.

8. Discussion & Conclusion

The results show (see figure 11) that there is not an ex-
treme difference in terms of development processes and fi-
nalized products by SPDT, CPDT and HMDT, but candidate
from CPDT still obtained better results in these respects
than the others. On the whole, CPDT has provided a bet-
ter performance with the value of 23 points, which is 5%
higher then CPDT and 10% higher then SPDT. The dif-
ference among the results of development processes (see
figure 5 and figure 6) are major cause by the functionali-
ties and principles of the development tools. As a matter of
fact, SPDT can only produce either Android or iOS applica-
tion each time and tools from other categories however can
produce both Android and IOS applications at same time.
Therefore the implementation time of SPDT has double the
value of CPDT and HMDT (see figure 6). Evaluation of
finalized products (see figure 11) shows that SPDT has pro-
duced the best performance applications in general. Appli-
cations from Xcode and Android Studio provided the fastest
execution time and easiest maintainability. Which means
the SPDT can not only server applications with fast speeds
and best functionalities but can also provide the best envi-
ronment for developer to maintain and update products.

Most of the existed literature within the same domain
have provided similar conclusions. When evaluating de-
velopment approach, Heitkötter et al. [8] provided the re-
sult that ”the maturity of crossplatform approaches reveals
that native development is not necessary when implement-
ing mobile applications. Even if only a single platform is to
be supported, a cross-platform approach may prove as the
most efficient.” When evaluating CPTD and SPDT with fo-
cusing on UX and resulting applications, Angulo and Ferre
stated that ”there are more possibilities of getting a better
UX by maintaining the control over interaction issues that
provides the development of an app with native code” [2].

As mentioned in Section 7, the limitations of this study
come from two part: lack of data and data bias. Lim-
ited number of development tools and functionalities of fi-
nalized applications might restricted data source. And the
number of developer participated in case study might cause
data bias. However by collecting data from all aspects with
objective metrics, author tried to minimized the impact of
restrictions.

Due to the limitation of the experiments, the result of this
study can only applies on the project which has a limited
numbers of functional requirements with the range from one
to five. Project for example have more then five functional
requirements or includes senior developer are out of range

of this study, therefore this paper might no longer provide
any reference.

This research aims at helping junior developers under-
stand different performances of SPDT, CPDT and HMDT
when developing applications for both Android and iOS
systems. Also provide reference for contact company
Cybercome when choosing development tools for future
projects. Not same as most of the related work present in
Section 2, comparisons of development tools, implementa-
tion processes and finalized applications of native, cross-
platform and hybrid developments are all included in this
paper. As result shows (see figure 11), utilizations of CPDT
and HMDT can definitely shorten development time and
decrease related cost, but the applications produced from
SPDT provide the best performance. This contrast phe-
nomenon can be analysed in the future studies from num-
bers of aspect. For example, enhance the accessing crite-
ria by adding factors that impact reliability, usability, user
experience etc. Another idea is to increase assessment
of application such as user interface responsiveness, user-
perceived performance, multi task performance and com-
munication failure handling. Moreover, create a credit sys-
tem to present the importance of each category of data col-
lected during case study for the purpose of brings out a more
reliable result.

9 Acknowledgement

This paper has been written in cooperation with Cyber-
com Group, I would like to thank them specially Gabriel
Ibanez who provided this topic and gave us continuously
help as industry partner and technical supervisor. I would
like to thank all the colleges from Gothenburg University
and Cybercom who provided help during implementation
phases. I would like to express our heartfelt gratitude to
Riccardo Scandariato for his constant help and for his guid-
ance and patience. In the end, I would like to thank my
examiner Boban Vesin who provided invaluable feedback
and guidance on this paper.

References

[1] S. 2016. Number of apps available in leading app stores as
of july 2015, 2015.

[2] E. Angulo and X. Ferre. A case study on cross-platform
development frameworks for mobile applications and ux. In
Proceedings of the XV International Conference on Human
Computer Interaction, page 27. ACM, 2014.

[3] F. Appiah, J. Hayfron-Acquah, J. K. Panford, and F. Twum.
A tool selection framework for cross platform mobile app
development. International Journal of Computer Applica-
tions, 123(2), 2015.

[4] N. Boushehrinejadmoradi, V. Ganapathy, S. Nagarakatte,
and L. Iftode. Testing cross-platform mobile app develop-
ment frameworks (t). In Automated Software Engineering
(ASE), 2015 30th IEEE/ACM International Conference on,
pages 441–451. IEEE, 2015.

[5] I. Dalmasso, S. K. Datta, C. Bonnet, and N. Nikaein. Survey,
comparison and evaluation of cross platform mobile appli-
cation development tools. In Wireless Communications and
Mobile Computing Conference (IWCMC), 2013 9th Interna-
tional, pages 323–328. IEEE, 2013.

[6] P. R. de Andrade, A. B. Albuquerque, O. F. Frota, R. V. Sil-
veira, and F. A. da Silva. Cross platform app: a comparative
study. arXiv preprint arXiv:1503.03511, 2015.

[7] G. K. Gill and C. F. Kemerer. Cyclomatic complexity den-
sity and software maintenance productivity. Software Engi-
neering, IEEE Transactions on, 17(12):1284–1288, 1991.

[8] H. Heitkötter, S. Hanschke, and T. A. Majchrzak. Evaluating
cross-platform development approaches for mobile applica-
tions. In Web information systems and technologies, pages
120–138. Springer, 2012.

[9] S. Jiang. Ios and android mobile application development
tool decision, 2015.

[10] J. Masner, P. Simek, J. Jarolı́mek, and I. Hrbek. Mobile
applications for agricultural online portals-cross-platform or
native development. AGRIS on-line Papers in Economics
and Informatics, 7(2):47, 2015.

[11] V. Nguyen, S. Deeds-Rubin, T. Tan, and B. Boehm. A sloc
counting standard. In COCOMO II Forum, volume 2007,
2007.

[12] J. Offutt, A. Abdurazik, and S. R. Schach. Quantita-
tively measuring object-oriented couplings. Software Qual-
ity Journal, 16(4):489–512, 2008.

[13] M. Palmieri, I. Singh, and A. Cicchetti. Comparison of
cross-platform mobile development tools. In Intelligence in
Next Generation Networks (ICIN), 2012 16th International
Conference on, pages 179–186. IEEE, 2012.

[14] J. Perchat, M. Desertot, and S. Lecomte. Common frame-
work: A hybrid approach to integrate cross-platform compo-
nents in mobile application. Journal of Computer Science,
10(11):2165, 2014.

[15] R. S. Pressman. Software engineering: a practitioner’s ap-
proach. Palgrave Macmillan, 2005.

[16] P. Runeson and M. Höst. Guidelines for conducting and
reporting case study research in software engineering. Em-
pirical software engineering, 14(2):131–164, 2009.

[17] B. S. Thakare, N. Parween, and S. Parween. State of art
approaches to build cross platform mobile application. Int.
J. Comput. Sci. Eng, 107:22–23, 2014.

[18] S. Xanthopoulos and S. Xinogalos. A comparative analysis
of cross-platform development approaches for mobile appli-
cations. In Proceedings of the 6th Balkan Conference in
Informatics, pages 213–220. ACM, 2013.

