

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, June 2016

A Design Science Research Study
Effects of Error Detection and Representation on the Resolution of
Traceability Issues

Bachelor of Science Thesis in Software Engineering and Management

FLUTRA TAHIRAJ
MICHAEL WARNE

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Effects of Error Detection and Representation on the Resolution of Traceability Issues
A Design Science Research Study

Flutra Tahiraj
Michael Warne

© Flutra Tahiraj, June 2016.
© Michael Warne, June 2016.

Examiner: Hang Yin

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden June 2016

Effects of Error Detection and Representation
on the Resolution of Traceability Issues:

A Design Science Research Study

Flutra Tahiraj and Michael Warne
Department of Computer Science and Engineering

University of Gothenburg,
SE-412 96

Gothenburg, Sweden
Email:flutra.tahiraj@gmail.com, michaelgwarne@gmail.com

Abstract—Traceability is extremely important when developing
safety critical software systems. The automotive industry has
strict regulations that require developers to be able to
demonstrate traceability links from requirements to end
products. Keeping traceability links up to date is a very
expensive task; both financially and in terms of man hours.
This paper conducts research into the effects of error detection
and representation when traceability links become inconsistent.
Additionally, we look at the effects of automating some of the
process for fixing inconsistencies. The research is conducted
by performing 2 experiments using a traceability management
tool developed at Gothenburg University. The first investigates
the use of notifications of issues and the second the use of
automation when fixing issues. Our results showed that with
notifications in small projects there is no significant difference
when compared to finding and fixing issues manually. Our
second experiment showed a significant difference in time
when using automation to assist with fixing issues compared to
correcting issues manually.

Keywords—Traceability, requirements, software engineering,
issue resolution.

I. PURPOSE OF STUDY

The IEEE [1] defines traceability as “the degree to which a
relationship can be established between two or more products
of the development process, especially products having a
predecessor-successor or master-subordinate relationship to
one another; for example, the degree to which the requirements
and design of a given software component match”.

Traceability is considered to be a key part of software
development. Not using it can lead to difficult to maintain and
defective software [2]. Some industries, such as automotive,
pharmaceutical and aerospace, have very strict regulations for
safety critical systems that require developers to be able to
demonstrate traceability of thousands of links from require-
ments to end products [3][4]. Keeping requirements up-to-
date when systems evolve is a manual and expensive task
[5]. It has been suggested, from a controlled experiment, that
using traceability increases the speed of task completion and
improves software maintenance quality [6].

This study has two purposes. Firstly, to research how the
representation of traceability inconsistencies and problems

affects their resolution. Secondly, to discover the benefits of
automating fixes for the issues. To achieve this we built and
evaluated, through controlled experiments, 2 extensions of
a prototype traceability management tool called Capra. The
extensions, known as Dash 1 and 2, enabled the detection of
issues in traceability links, and the automated fixes of the said
links.

Section II contains the background to the study, where we
introduce Capra and Dash and explain the more technical
aspects of the tool. We also cover some of the related work to
this study from several systematic literature reviews. Section
III explains the goal of our research, leading to our 2 research
questions. Section IV describes the methodology used to create
Dash, perform the experiments and analyse the data. Section
V gives the results of the study while Section VI discusses
them. Section VII presents our conclusions on the study and
finally, Section VIII reflects on what we have learned from
doing the study.

II. BACKGROUND

This section gives some background information on the
project we contributed to, and discusses some of the existing
work that relate to our study.

A. Capra and Dash

Capra is a prototype traceability management tool being
developed at Gothenburg University. It is a plug-in for the
Eclipse integrated development environment (IDE) and uses
the Eclipse modelling framework1 (EMF). Capra is a tool that
“is configurable, can support traceability between arbitrary
artefacts and exchange of traceability information between
teams and companies” [7]. In other words, the user can create
and visualise traceability links between artefacts. Capra is
being developed in cooperation with rt-labs2, a small software
developer based in Gothenburg and Dash is the name given to
the extended versions of Capra that we created. Throughout
the paper when we refer to Capra we mean the original
unmodified tool, Dash 1 is the version created for both

1https://eclipse.org/modeling/emf/
2http://www.rt-labs.com/

experiments that displays warnings and Dash 2 is the version,
used only in experiment 2, that implements quick fixes. For
more information on the user interface see Appendix C

What follows is a description of the more technical aspects
of the study.

1) Traceability Links: A traceability link has a source and
target artefact; the link being the connection between the 2
artefacts. Each link appears in a trace model in the Eclipse
workspace. The link itself contains references to the source
and target artefacts. Capra is able to visually display the
traceability links as a graph. At the time of writing this
was done with PlantUml3 but midway through the study this
was being updated to a tool with more functionality. The
visualisation of the trace model does not play a part in this
study.

2) Artefacts and Wrappers: Capra models traceability links
between artefacts in one or more projects; an artefact is any
resource such as a Java class or pdf. For EMF to work with the
artefacts it doesn’t recognise, such as Java files, it is necessary
to wrap the artefact first. For this to be possible the file type
must have a corresponding handler class, e.g. Java files have a
Java handler to turn them into objects EMF understands. Each
wrapper is then stored in the artefact wrapper container. This
container is the first of two models generated, the second is
the trace model itself. The trace model contains all the links
that have been created and it references the contents of the
wrapper container. Each wrapper has 3 properties. A name,
a handler type and a Uniform Resource Identifier (URI). In
Capra a URI is similar to the file path of the resource within
the workspace.

3) Issues: There are 3 specific types of issue that could
occur with a traceability link and they all involve a change
in the project that involves the source or targets of a link.
The first is if an artefact in the project has been renamed, the
second is if it has been moved and the last is if it has been
deleted. All 3 make the traceability link inconsistent; the trace
model will no longer match the project.

B. Related Work

There have been several researchers that have conducted
systematic reviews on the subject of traceability. Nair, de la
Vara and Sen [8] analyse and summarise 70 papers from 20
years of literature on the subject of traceability. They consider
traceability visualisation, empirical evaluation and advanced
tool support as areas for further research. Their review of
traceability tools, presented in 35 papers, gives the top 3
features found as:

• Traces life-cycle: features for creating, maintaining, and
updating traces between various artefacts.

• Maintaining traceability between artefacts specific to re-
quirements specification: features for maintaining traces
between requirements and managing them.

• Automated traceability: features for creating and main-
taining traceability information (semi) automatically.

3http://plantuml.com/

Santiago et al. [9] analyse the state of the art of traceability
management in the context of Model-Driven Development
(MDD) and review 157 papers. While their review does cover
traceability management and automation it does not include
how the issues are represented in order to improve issue
resolution; instead focusing on automated traceability link
generation.

Torkar et al. [10] perform a review of papers from 1997
to 2007. They specifically study definitions, challenges, tools
and techniques of requirements traceability. They highlight
the cost of manual construction and maintenance and the
perception that traceability is not financially feasible. They
also discuss the issues of link maintenance from the point of
view of uncoordinated teams; including the belief that trace-
ability costs more than it delivers. While the paper discusses
tools they are primarily requirements engineering tools with
some traceability functionality, rather than tools designed for
traceability support.

The summarised reviews contain a wealth of information on
the subject of traceability and the need for tools to improve the
creation and maintenance of traceability links; automated or
not. There is also discussion on the visualisation of traceability.
However, there is a gap in the knowledge on the benefits of
tools that focus on keeping traceability links consistent; either
through automation or notifications for the user.

III. RESEARCH GOAL

The goal of the research is twofold. First, to investigate, via
a traceability management tool, how issues in traceability links
can be represented in an IDE, and how this affects both the
users and usability of the tool. Secondly, we shall investigate
how using automated fixes affects working with traceability
link issues; again from the perspective of the user and the
usability of the tool. This leads us to the following research
questions:

1) How does explicit representation of traceability consis-
tency issues affect issue resolution?

2) Which benefits do automated fixes provide to resolve
consistency issues in traceability links?

IV. OVERVIEW OF THE RESEARCH METHOD

To answer our questions we performed a design science
research (DSR) study[11]. This type of study consists of the
the following activities:

1. Problem identification and motivation: We identified the
problem and motivation in the Purpose, Section I.

2. Objectives of a solution: The research goal and questions,
Section III, give our objectives.

3. Design and development: This consists of requirement
elicitation and software implementation.

4. Demonstration: Experiment (including pilot).
5. Evaluation: Data analysis.
6. Communication: The findings are communicated via this

thesis.
Our study consisted of two distinct phases. Each phase con-
tained stages 2 to 5 of the DSR list. Additionally, phase 1

2

contained a competence test that allowed us to assess our
participants capabilities with Eclipse prior to the experiment.
The experiments were conducted in a quiet, private room
within the school library to ensure everyone had the same
conditions.

Throughout the test and experiments we made informal
observations on participant behaviour. While we cannot make
any claims based on our opinions we have included them in
the results and discussion sections for completeness.

We recruited 18 students to take part in our experiments.
All the participants were part of the third year of the Software
Engineering and Management (SEM) program at Gothenburg
University and had experience of working with Eclipse. The
program is taught in English and all students are expected to
be competent with the language.

A. Phase 1

This section provides a detailed description of the first phase
of our research. Section IV-A1 describes the requirements
elicitation that was done with rt-labs before any software
development was done. Section IV-A2 discusses the imple-
mentation of Dash 1. Section IV-A3 gives the details of the
test that was designed to assess the skills of the participants
within the Eclipse framework. Section IV-A4 covers the first
experiment, where we investigated the effects of explicitly
representing traceability issues to the user. Section IV-A5
describes the interviews that were done after each experiment.
Section IV-A6 explains how the competence tests were graded
and Section IV-A7 explains how the experiments were anal-
ysed.

1) Requirements Elicitation: The purpose of the elicitation
was to get information from rt-labs with regards to the
requirements for Dash 1. We decided to work with rt-labs
because they were a partner in the creation of Capra and had
experience with the tool. We organised a one hour meeting
with two members of rt-labs and one of our supervisors. The
meeting was held at the rt-labs offices in Gothenburg.

We spent time with Capra prior to the meeting in order
to understand the capabilities and limitations of the software
and to enable the writing of questions that would be relevant.
The main focus of the questions was how to represent the
issues and to define what an issue was; this would help us
answer our first research question. Our secondary focus, for
the second research question, was the definition and use of
automated fixes. Questions were written in advance so that a
semi-structured interview could take place. The order was not
pre-defined but care was taken during the interview to ensure
all the different areas would be covered. The interview was
recorded with the permission of all present; one of the authors
took notes while the other asked the questions. The questions
can be found in appendix A.

2) Dash Version 1 Implementation: In order to gather data
on our first research question we needed to implement version
1 of Dash. The requirements from rt-labs, presented in Section
V-A, were used to motivate the design. Specifically, Dash 1
would notify the user when a traceability link was broken and

would apply a problem marker to the offending resource. The
notification itself would appear in the problem view and gave
the user more information on the resources that caused the
issue. A rename warning would display the original and new
file names, a move issue would give the original and new
locations and a delete would say which file had been deleted
and from where.

3) Eclipse Competence Test: In order to perform our study
we needed a control group and an experimental group to
compare it with. The main purpose of this competence test
was to give us an idea of the ability of each student when
using the Eclipse IDE and EMF. The score each person got on
the test allowed us to create two balanced groups. We wanted
the test to give us a good spread of results; not so hard that the
less skilled users would give up, but not so easy that everyone
got the same high score. We ran two pilot tests for feedback
and sample data as the first prompted us to change the design.

The second objective of the test was to teach the participants
the necessary skills needed for the experiment. We did not
want a lack of basic knowledge to affect our results. For
example, the test involved creating a class, if they failed this
part we would show how it was done after the test. The test
was designed to only include tasks that should have been
familiar to the students. Some actions that were included in
the test were actions that are possible to do in Capra as well,
such as renaming, deleting and moving resources.

The test was split into two parts; the first involved modifying
a UML model of a hockey team, using the Eclipse modelling
plug-in, Papyrus4. The second part used a simple Java project
with two classes and an error of a class declaration when no
class existed. Participants had to understand and be able to
change perspectives (a perspective controls how the interface
looks, which views are open and so on) in Eclipse and locate
and open the Problem view, which was one of the main
features that Dash 1 would utilise for displaying warnings.
It should be noted that opening a model in Papyrus would
cause the IDE to become unresponsive for a short time but
we did not include this as time used by the participant. We
tested one participant at a time and used the same computer
so that even with the Papyrus problem everyone would get a
similar experience.

The specific tasks were as follows:
1. Open the Papyrus perspective
2. Open the model from the root element
3. Add attributes to the person class
4. Create generalisations
5. Delete unnecessary attributes
6. Rename the diagram
7. Save and close the model project
8. Open the Java project
9. Locate the error using the problem view

10. Fix the error using the correct quick fix
11. Rename a class
12. Save the project

4https://eclipse.org/papyrus/

3

A screen recorder was running in the background (which
the participants were informed about before the test began)
that was used for capturing all the actions so that each video
could be discussed and graded accurately afterwards.

4) Experiment One: The purpose of the first experiment
was to assess how the representation of traceability issues
affects their resolution. The control group used the original,
unmodified version of Capra and the experimental group had
Dash 1 with warnings, as described in Section IV-A2.

The experiment workspace consisted of a Java project with
5 packages and 26 classes spread between them. There were 13
traceability links created between the classes and 26 artefact
wrappers in the container. We created 9 issues so that the
artefact wrapper container and the trace model would no
longer match the project. Dash 1 displayed the 9 issues as
warnings in the problem view while Capra gave no indication
that problems existed.

There were 3 different types of issues: rename, move and
delete. The rename issue was caused by changing the name
of a resource in the project, making the artefact wrapper
incorrect. Move issues were caused by a project resource being
relocated and the wrapper URI being incorrect. The delete
issue was created by removing a resource from the project
so that the wrapper would refer to something that no longer
existed.

For the purposes of the experiment a rename was fixed by
editing the name and URI property of the relevant wrapper. A
move was fixed by updating the URI property of wrapper. For
the delete issue the requirement was to recreate the missing
class. Each fix had to be done manually.

Participants were given a handout introducing them to the
Capra workspace, the subject of traceability and terminology
used in the experiment. Additionally, the document contained
a guided practice for the participants to perform on a simple
workspace. The practice taught them how to create traceability
links, how issues were created and how to fix them. They were
allowed to refer to the document during the experiment.

The participants were not made aware that there were two
versions of the tool and the ones with Dash 1 were not given
additional instructions, although the problem view was open
for the experimental group so that the warnings could be seen.

5) Participant Interview: When each experiment was com-
pleted we conducted a short interview to discover how confi-
dent people felt with the different tasks and to get feedback on
the tool. Each participant was interviewed separately to avoid
bias from hearing the other person’s answers. The specific
questions were: On a scale of 1 to 5, with 5 being the highest:

1. How confident are you with fixing rename issues?
2. How confident are you with fixing delete issues?
3. How confident are you with fixing moved issues?
4. How confident are you that you found all the issues?
To get feedback we asked:

1. How would you improve the process of finding issues?
2. How would you improve the process of fixing issues?
To help ensure that the experiment would give us the data

we were looking for we first conducted a pilot test with two of

the participants. Their selection was based on the scores from
the competence test. We wanted people with average to above
average scores as it suggested that they were comfortable with
Eclipse yet still able to make mistakes. This way we could
consider any problems to be related to the task and not the
IDE.

6) Eclipse Test Analysis: Each task that was given could
give the participants a score from 0 to 3 points. A score of
3 points would be given when a task was solved in one step
and within a reasonable time; meaning that the participant
showed awareness of the environment and completed the task
in one take without having to redo anything. Based on the
pilot test we observed that mistakes could occur, for example,
accidentally hovering and selecting the wrong menu option
would not withdraw any points from the participant if they
corrected the mistake immediately. If they would realise the
mistake later on, this would take away a point. The score of
2 was given when participants completed the task correctly
but took more than 1 attempt. For example, understanding
a rename task but not being aware of which menu held the
option. For this step there also was a time limit of 1 minute and
a maximum of 3 tries to complete the task. If the behaviour of
the participant showed that they were lost and looking through
every option and managed to get the task right at more than
3 attempts, then this score went down to 1 point. Lastly, the
score of 0 was given when the tester showed that they did not
know what they were doing at all and taking far too much time
while randomly guessing and clicking; 0 points is also given
when task is incorrect. The exception to these rules would
be if the participant had not done the MDD course and had
no experience with Papyrus. If they were unable to open the
perspective or the model within 1 minute they would receive
help but only get 1 point.

One member of experimental group dropped out at the last
minute. The remaining 17 participants were arranged in groups
according to their scores. The person with top score was the
first one into the control group. Second highest was put in the
experimental group, the third to the control group and so on
until all the participants had a group.

7) Experiment 1 Analysis: To analyse the experiment we
extracted the following data from the recordings:

1. The time of the first fix
2. The total time taken to complete
3. Number of issues found
4. Number of issues fixed correctly

The time for the first fix was recorded and used as the start
point because we expected some participants to struggle to get
started; either through a lack of understanding of the tool, the
task or both. This opinion was based on observations made
during the experiments. We compared the total time (from
first fix) of a participant from the control group with a person
of roughly equal skill (based on their competence test score)
from the experimental group. The next step of the analysis
was to compare the average number of faults found and fixed
between the 2 groups, as well as the average time taken to
complete.

4

For the interviews we tabulated the quantitative data that
described user confidence and took averages of both groups
to compare. For the feedback we coded the responses from
both groups into separate tables and recorded the number of
requests for each improvement.

B. Phase 2

Phase 2 follows the same structure as phase 1. Section IV-B1
explains the requirements for Dash 2. Section IV-B2 describes
how the requirements are interpreted. Section IV-B3 covers
the second experiment where we investigate automated fixes.
Section IV-B4 describes how we obtained data on and control.
Section IV-B5 explains how we analysed the recording of the
second experiments.

1) Requirements from Experiment 1: The results of the
phase 1 interview analysis, presented in Section V-B, were
compared to the original requirements from rt-labs. The most
requested improvements that also appeared on the rt-labs list
were chosen to be implemented.

2) Dash Version 2 Implementation: The feedback from the
interviews done during experiment 1, presented in V-B, as well
as the original requirements, was used to motivate the next
step of the implementation. Quick fixes and automated fixes
were the most requested improvements; while warnings also
scored highly this feature already existed in Dash 1. Therefore,
the purpose of this phase was to add some automation to
issue resolution, via quick fixes, to Dash 2. A quick fix in
Eclipse can be accessed through right clicking on a warning
in the problem view. The purpose of a quick fix is to offer
the user options for correcting the issue, with the fix itself
being automated. For example, a quick fix for the rename issue
would offer to change the properties of the affected wrapper.

3) Experiment 2: The purpose of the second experiment
was to answer the second research question by investigating
the benefits of automated fixes. Additionally, we wanted to
investigate the concepts of trust and control when using the
tool. Control refers to how much a person can determine
the behaviour of the tool or how much they can affect what
happens when fixing issues. Trust is used in terms of the user
and the tool when using manual and quick fixes. For example,
do they trust themselves more or less depending on the version
of Dash. Unfortunately, one of the experimental group had
failed to attend previous experiment. Because of this we were
reduced to 16 participants, the control group was now 9 people
with 7 in the experimental group. In this experiment the control
group would use the first version of Dash, with notifications,
and the experimental group using Dash version 2 that had
quick fixes.

For the second experiment we created a new project for the
participants to work in. This was done to get the experiment
to feel like part of a normal work day for someone using
Dash. The new project consisted of several folders designed
to simulate a requirements engineering project.

• Activity Diagrams - contained 4 png image files, one
being misplaced.

• Class Diagrams - contained 4 png files.

• Sequence Diagrams - contained 5 png files.
• Domain Model - contains 2 png files representing parts

of the projects domain model.
• Source code - a hotel management project with 2 folders,

1 for the source code and 1 for test classes. The source
code folder had 4 sub-folders with numerous classes in
each.

• Requirements - 28 requirements for the project, plus 1
misplaced file.

• Use Cases - had 25 objects where 4 were misplaced.

Unlike the first experiment there were no issues in place
at the start; the trace model and artefact wrapper container
matched the project. We had wanted to use Papyrus again for
the different diagrams but had problems with performance.
Opening a single model during the competence test had proved
troublesome; in some cases it took up to a minute to open and
Eclipse would be unresponsive while waiting. While a clean
installation of Eclipse might have resolved this there was no
guarantee of the performance being the same for each person.
Even though there was no reason for them to open the models
that did not mean they would not do it. Instead we opted for
png image files to represent the diagrams instead. This had no
bearing on the outcome of the experiment as the information
contained in the files was not important.

Traceability links were created between some of the require-
ments and their respective Java class, including all the files
in between. For example, requirement to use case to class
diagram to test case and Java class. Additionally, some files
were placed in the wrong locations for the user to correct
during the experiment. It’s important to note that not all files
were linked and therefore would not cause any issues when
modified. This was done to try and force the participant to
think about what they were doing and react to the tool instead
of assuming that every change would create an issue to be
fixed.

The possible issues were the same as experiment 1: rename,
move or delete. However, the fix for a delete issue was
changed. The previous fix was to recreate the missing resource.
Manual users would instead now have to set all properties of
the relevant wrapper to NULL when deleting a resource from
the project that caused an issue. This new fix would also be
performed automatically by the quick fix.

The participants were required to follow a list of tasks that
would simulate normal activity for someone working with the
tool. The possible tasks were:

• Create a traceability link
• Rename a file
• Delete a file
• Move a file
• Create a folder

If a task created an issue the user was expected to fix it before
moving to the next task. The full list of tasks can be found in
appendix B.

As in the first experiment, a handout was written for each
group. All participants had now experienced Capra so the

5

introduction to the tool was not included. For the same reason
we did not include a compulsory practice session. Instead,
the handout covered the possible tasks and how to perform
them. If they had version 2 of Dash the handout told them
how to use the quick fixes, if they had version 1 they were
told how to perform the new delete fix. The participants had
the opportunity to ask questions about the other fixes if they
needed a reminder. We expected the participants to remember
how to perform rename and move fixes and this opinion was
supported by the feedback from the pilot test.

4) Participant Interviews: We observed during the first
experiment that some users that had the notifications were
hesitant to say that they had finished when they had fixed the
last known issue, the opposite was true for participants that
had to check each wrapper by hand; when they checked the
last wrapper they knew were done. We thought it was possible
that there was a lack of trust. Lack of trust in the tool could
come, for example, from the tool being new or a prototype.
Lack of trust in the people running the experiment could come
from the idea that we would try and catch people out. We also
wanted to investigate whether or not the level of control that
people felt over a tool or operation changed with automated
features. We decided to investigate this further by including it
the interviews.

The interviews were conducted with both participants in the
room where possible. This was done because we wanted the
second part to be more of a discussion. The first question,
on a scale of 1 to 5, with 5 being the highest, was about
the user’s confidence that the model correctly matched the
project, i.e. were all the tasks done correctly and the right
fixes implemented when necessary. The second question, on a
same scale, was about how aware they were of the effects of
the changes they made in the project. For example if an object
was renamed, were they aware of the wrapper container being
out of date. Lastly, on the same scale, how in control did
the participants feel during the experiment, and if that would
change if they had the other version of Dash. The second
part of the interview introduced the concept of trust to the
participants. We wanted to know how their opinion of trust
would change with the different versions of Dash.

A pilot was done to test the methodology of the second
experiment. Due to the quality of feedback from the first pilot
we decided to use the same people for the second pilot test.

5) Experiment 2 Analysis: To analyse the experiment we
recorded the time taken to complete all the tasks and gave a
score for how well the task was done. A participant could
get 1 point for doing the task correctly, half a point for
a small mistake, such as having the source and target of
a traceability link the wrong way round, and 0 for being
incorrect or skipping the task. In addition to this any issue that
was generated would be treated as a new task, with the same
scoring for the user when fixing the problem. The maximum
score available was 38 with the maximum time allowed being
40 minutes.

V. RESULTS

This section presents the results for the study. For the test
and experiment subsections we also give our initial interpre-
tations of the results.

A. rt-lab Requirements

The requirements from rt-labs were, in no particular order,
as follows:

1. Dash should automatically notify the user when a link
becomes invalid through one or more artefacts being
moved, deleted or renamed.

2. The user should approve of fixes before the system
performs them.

3. Markers should be shown on the offending artefact where
possible.

4. Quick fixes should suggest possible resolutions to prob-
lems.

5. It should be possible to fix issues in bulk. E.g. fix all
links with renamed artefacts.

6. Notifications (markers) should appear in the problem
view and project explorer view.

7. It should be possible to filter by issue type in the problem
view.

8. Issues should be checked for when a save is performed.
9. Broken links should be shown in red on the graphical

representation.
10. Problem markers should persist between sessions.
11. User should be able to run the traceability check on

demand.
12. Options should exist to create a rule set that would control

what the tool checks for, how strict the check is (e.g.
should all artefacts have a traceability link), ability to
toggle settings such as warnings to show.

B. Eclipse Test and Experiment 1 Results

1) Pilot Test: The feedback for the pilot test was positive
with only adjustments to the handout needed. The 2 partici-
pants are included in the overall results.

2) Eclipse Test and Experiment 1 Results: Table I shows
the results of the test and the experiment. The score for each
participant is in column 3 and the table is ordered from highest
score to lowest, while alternating between A, control group,
and B, the experimental group. Participants 3 and 10 are
repeated to allow us to compare people of similar test scores.
DNF indicates the participants did not finish within the 10
minute limit. The maximum number of issues that could be
found was 9. The rows are the two participants that are being
compared. We can see from the table that the worst performers
from the competence test are the worst in the experiment. The
same can be suggested for the top scorers but it is not so
conclusive here.

Table II shows a summary of Table I with the averages for
each group for time to complete, fixes found, correct fixes
and the average test score from a maximum of 35 points.
Participants 3 and 8 are not included in the averages for time
as they did not finish. We can see that very little separates

6

TABLE I
TEST AND EXPERIMENT 1 RESULTS

ID Group Test Score Time (sec) Issues Found Issues Fixed
18 A 35 272 9 9
4 B 33 360 9 7
17 A 33 444 9 9
6 B 32 219 9 9
14 A 30 416 9 7
15 B 30 313 9 9
5 A 29 360 9 7
10 B 29 353 9 7
16 A 29 259 9 9
10 B 29 353 9 7
1 A 26 356 8 8
13 B 20 410 9 8
7 A 18 376 9 9
12 B 18 250 9 8
9 A 16 353 9 9
3 B 15 DNF 5 5
8 A 10 DNF 5 0
3 B 15 DNF 5 5

TABLE II
EXPERIMENT 1: GROUP COMPARISON

Control Experimental
Average fixes found 8 8.4
Average correct fixes 7.4 7.6
Average time to complete (sec) 357 295
Average test score (max 35) 25.1 25.3

the 2 groups in terms of finding and fixing issues, although
the control group averages just over a minute slower for
completing the task.

Table III shows how confident the user was in the different
types of task, plus how confident they were that they found all
the issues in the system. The scale is from 1 to 5, with 5 being
the most confident. Table IV compares the averages from both
groups. They show little difference between the groups for
fixing the issues but some individuals have interesting variance
in confidence between the different fixes. What is clear is that

TABLE III
EXPERIMENT 1: USER CONFIDENCE

ID Group Rename Delete Moving Found all
18 A 5 5 5 5
4 B 5 5 4 5

17 A 5 4 3 5
6 B 5 5 5 5

14 A 4 2 2 3
15 B 5 5 5 5
5 A 5 4 4 4

10 B 4 4 4 5
16 A 5 5 5 4
1 A 5 5 5 3

13 B 4 4 4 5
7 A 5 5 5 4

12 B 3 5 3 5
9 A 5 4 4 5
3 B 3 4 2 5
8 A 3 5 5 5

TABLE IV
EXPERIMENT 1: AVERAGE USER CONFIDENCE

Control Experimental
Rename 4.67 4.14
Delete 4.33 4.57
Move 4.22 3.86
Found all issues 4.11 5

the experimental group had complete confidence in the tool to
show all the issues correctly.

Table V shows the interview coding for the control group.
The first row shows the requested improvements from the users
of Capra. What follows describes each code.

• Warnings: This is the functionality that was implemented
in version one of Dash where warnings show in the
problem view.

• Marker on wrapper: Users felt that having a marker on
the wrapper with the issue would aid in fixing the issue.

• Automated fixes: Users wanted the issues to be handled
and fixed automatically with no input from the user.

• Quick fixes: Quick fixes were requested as a way of
being able to select the type of fix to be done with the
fix itself being automated, allowing the user to maintain
some control.

• Sort Wrappers: Being able to sort the wrappers, e.g.
alphabetically, would make it easier to manually traverse
the list when searching.

• Fix multiple issues: It was suggested to have multiple
similar issues fixed with a single command, e.g. fix all
rename issues.

• Improve wrapper UI: Participants wanted an easier way
to work with the wrapper container and changes with the
properties of the wrappers.

• Colour Notifications: We had participants asking for some
kind of colour change when an link is broken and when
it is fixed.

Table VI contains the results of the interviews with partic-
ipants from the experimental group. Some of the requested
features have already been described, the rest are below:

• Separate views: This refers the default layout in Capra
where the problem and properties views occupy the same
space, forcing the user to either change the layout or
switch back and forth between the two views.

• Notify when missing: A specific notification when an
object is missing from the project explorer. Could be a
warning in the problem view, a pop up or a marker on
the parent folder of the missing resource.

• Open wrapper on click: This feature would allow the user
to double click on the warning in the problem view and
have the problem artefact wrapper opened in the main
window.

The most requested improvement is quick fixes (10 requests),
closely followed by automated fixes and warnings (7 requests
respectively). These, and many of the other improvements
asked for, match the original requirements from rt-labs.

7

TABLE V
EXPERIMENT 1: CONTROL GROUP INTERVIEW CODING

ID Warnings Marker on wrapper Automated fixes Quick fixes Sort wrappers Fix multiple
issues

Improve
wrapper UI

Colour
notifications

1 X X X
5 X X
7 X X X
8 X X X
9 X X

14 X X X
16 X X
17 X X X
18 X X X

Total 7 3 3 5 1 2 2 1

TABLE VI
EXPERIMENT1: EXPERIMENTAL GROUP INTERVIEW CODING

ID Separate views Automated fixes Quick fixes Sort warnings Fix multiple
issues

Notify when
missing

Open
wrapper on

click

Marker on
wrapper

3 X X X
4 X X X X
6 X
10 X X X
12 X
13 X X
15 X X

Total 1 4 5 2 1 1 1 1

TABLE VII
EXPERIMENT 2: SCORES AND TIMINGS

ID Version Score Time (Min)
18 A 33.5 20.24
4 A 38 33.21

17 A 31.5 24.59
6 B 36 9.2

14 A 23.5 29.3
15 B 38 15.38
5 A 34 18.46

10 B 34.5 22.56
16 A 26.5 15.15
1 A 24.5 37.09

13 B 32.5 15.57
7 A 33.5 21.53

12 B 35.5 19.17
9 A 32.5 37.47
3 B 24 14.36
8 A 15.5 22.14

C. Experiment 2 Results

1) Pilot Test: The pilot test feedback changed the interview
slightly. The original interview had the question about trust
on a scale of 1 to 5. However, trust was a difficult concept to
communicate and the interview became more of a discussion.
We decided instead to make the final question about trust and
control and just document the comments instead.

2) Experiment 2 Results: Table VII shows the participants
in the order of their competence test scores, their score for
the experiment and the total time it took them to complete the

TABLE VIII
EXPERIMENT 2: SCORES AND TIMINGS COMPARISON

Control Experimental
Average score 29.3 33.4
Average time to complete (min) 25.9 16.04

experiment.
It should be noted that a mistake was made with participant

4 as they were given the wrong handout and were not aware
that quick fixes were enabled. For this reason they have been
switched to the control group. This made it 10 for control and
6 for the experimental group.

Table VIII compares the 2 groups. The scores are close but
there is a significant difference between the times to complete
of almost 9 minutes.

Table IX shows the quantitative results from the interviews,
where the answers were on a scale between 1 and 5, 5 being
the highest. Table X shows the averages of the two tables
together. While the level of confidence is close the control
group had a higher awareness of the effects of their actions.
The control group also believe they would have had more
control with quick fixes. However, the experimental group
thought that they would have more control with manual fixes.

Table XI shows the coded qualitative results from the
interviews about control and trust. The codes are defined as
follows for quick fixes:

• More trust when new: People would trust the tool more
when they were new to it.

8

TABLE IX
EXPERIMENT 2:USER CONFIDENCE AND CONTROL

ID

Confidence
that model

matches
project

Awareness
of effects

Level of
control

with
manual

Level of
control

with quick
fix

Control Group
1 3 2 4 5
4 4 4 4 5
5 4 5 3 4
7 4 5 4 5
8 5 5 5 3
9 4 3 4 5
14 2 5 4 4
16 2 5 3 4
17 3 4 4 5
18 4 4 5 4

Experimental Group
3 1 1 4 3
6 5 4 5 4
10 4 4 4 5
12 3 3 4 5
13 5 5 5 5
15 5 4 5 3

TABLE X
EXPERIMENT 2: USER CONFIDENCE AND CONTROL COMPARISON

Control Experiment
Confidence that model matches project 3.5 3.8
Awareness of effects 4.2 3.5
Level of control with manual 4 4.5
Level of control with quick fix 4.4 4.2

• Less control when experienced: Control would increase
with experience.

• Trust in tool to work: People would trust the tool to
correctly fix issues.

• More control: Control increases when using quick fixes.
• Less control: Control is less due to the automation.
• Trust once tested: The tool would only be trusted once

they had seen that the fix was correct.
For manual fixes we have:
• More trust in self: Trust increases with experience.
• Less control when new: Control increases the more they

use the tool.
• Less trust with user error: They believe they will make

mistakes.
• More control: More control when manually fixing.
• Trusts self: Trusts self to fix correctly.
• Less control: Less control when manually fixing issues.
• Control same for both
• Control increases over time
The most notable results here are that 12 people thought

that quick fixes could be trusted to work correctly. Although
8 thought that it meant less control 6 people thought the
opposite. User error was an expected problem for 9 people but
7 thought they could trust themselves to fix issues correctly.
As with the quick fixes, the amount of control people felt they

have was split with 7 saying more and 4 less.
3) Observations on Participants: During the competence

test we observed that people would select the first option in a
quick fix dialogue, suggesting that they either weren’t reading
the options or didn’t know which option was correct. Some
users would read the task description then perform the task
differently to the way described. For example, when told to
fix an error with a quick fix some users found other ways to
remove the error.

In the experiments we saw a competitive element emerge
that was not present during the competence test. The partici-
pants were generally kept in their thesis pairing and we could
see they wanted to outperform each other. When one finished
the other could become frustrated, people who tried to go too
fast would make mistakes; for example, 2 users managed to
create new warnings when rushing.

Despite the existence of the handout that could be used at
any time, people still made mistakes when correcting issues
during the experiments. Confidence when fixing issues was
also erratic for some, even with precise instructions.

The second experiment had 3 participants who did not
attempt to fix any of the issues that were created. When asked
they told us that they had not read the instructions correctly.
They were not alone in this behaviour; some participants
missed tasks or performed a task in a way that suggested
they had not read the description correctly, such as making
a traceability link between the wrong source and target.

VI. DISCUSSION

This section discusses the results of the 2 phases in terms
of the research questions, participant behaviour, the validity of
the work and the next steps for both the tool and any future
study that could build on this work.

A. Phase 1

The competence test results showed us that the participants
we had chosen had a broad range of ability. This was beneficial
in terms of creating balanced groups but it could also be
said that professionals who use Eclipse daily would not have
struggled and would make better participants for testing a
plug-in.

1) How does explicit representation of traceability consis-
tency issues affect issue resolution?: The results for experi-
ment one are inconclusive for demonstrating the advantages of
the Dash 1 extension. When comparing participants of similar
skill levels (from the results of the competence test) we found
that there was no clear advantage with either Capra or Dash.
Users of Dash had a higher level of confidence that they had
found all the issues although they also made more errors when
fixing issues.

In terms of finding all the issues, 5 members of the control
group showed a lack of confidence that they had found all the
issues. This is despite the fact that only 1, other than those that
did not finish, failed to find all the problems. This suggests
that without any feedback from the tool users are unwilling
to trust themselves completely. This is backed up by the fact

9

TABLE XI
EXPERIMENT 2: INTERVIEW CODING

Quick Fix Manual Fix

ID

More
trust
when
new

Less
control
when

experi-
enced

Trust
in tool

to
work

More
control

Less
control

Trust
once
tested

More
trust

in self

Less
control
when
new

Less
trust
with
user
error

More
control

Trusts
self

Less
control

Con-
trol

same
for

both

Con-
trol
in-

creases
over
time

1 X X X X X X
3 X X
4 X X X X X
5 X X X X
6 X X X X
7 X X X X
8 X X X X
9 X X X X
10 X X X X X
12 X X X X
13 X X X X
14 X X X
15 X X X X
16 X X X X
17 X X X X
18 X X X X
To-
tal 2 1 12 6 8 2 1 3 9 7 7 4 2 1

that 7 of the 9 people wanted warnings added to the tool to
highlight when issues had occurred.

Generally, the users of Capra would check an artefact
wrapper against the project, fix if an issue was found, and then
take the next wrapper. While this approach was competitive in
a small project against Dash we believe that it scales poorly.
Checking for an unknown number issues in 26 wrappers would
clearly take less time than checking through 300 wrappers.
Comparing this to Dash, where the name of the artefact
wrapper and the total number of issues is known, users should
be significantly faster; the only difference being the increase
in time it would take to locate the effected wrapper.

Observations made during the experiments showed that the
UI design was not optimal for Dash users. The properties
and problem views default to occupying the same space in
Eclipse and users were forced to switch between the two; first
to understanding the issue and then to edit the properties. It
is important to note, however, that there was no restriction in
place to prevent them from moving either view. Capra users
had all the information they needed available without needing
to switch views.

B. Phase 2

1) Which benefits do automated fixes provide to resolve
consistency issues in traceability links?: The most obvious
benefit shown is that automated fixes speed up the process of
resolving issues with an average of about 9 minutes separating
the 2 groups. While this appears to be significant we should
note that the experimental group was smaller by 4 people. The
size of the population, at 16, is not big enough to statistically
prove this benefit.

Only participant 8 of the control group had complete
confidence that they had performed the tasks correctly and
the models matched the project. However, they scored low
on the competence test (10 points) and in both experiments
(DNF and 15.5 points). This suggests that the confidence was
in themselves and not related to the tool as they were oblivious
of their poor performances.

In the experimental group 3 out of 6 had full confidence.
Participant 3 was aware after they had finished that the tasks
had not been completed correctly and gave a confidence of
1 out of 5. Number 10 was confident but was not sure they
could trust the tool. Number 12 didn’t trust themselves to do
it right regardless of the performance of the tool.

The observations made during the experiments suggest that
human error can occur very easily, people would misread or
ignore instructions, or not show enough care when fixing an
issue. We believe that while the automated component of quick
fixes would not remove human error it does ensure that the
trace model stays up to date.

2) Trust and Control: The results of the interviews suggest
that quick fixes give a high level of trust in the system to work
correctly. Half the participants felt that control went down as
they were no longer making the changes directly. For manual
fixes it can be said that over half of the participants did not
trust themselves to never make mistakes when fixing issues;
a side effect of having more control with manual fixes is
more actions that can go wrong. While 7 people said that they
trusted themselves to not make mistakes it should be pointed
out that the experiment was only 35 minutes of work at most
and only 2 of the 16 got the maximum score of 38 points.

10

C. Participant Behaviour

This section discusses the observations reported in Section
V-C3. The behaviour with quick fix options could be explained
by a lack of user knowledge or experience with Eclipse. When
they selected the wrong option most people went back and
tried a different solution.

The competitive nature was missing during the competence
test as we performed these with individuals instead of pairs.
It is possible that people were more concerned with ’winning’
against their partner instead of focusing fully on the task they
had.

There are several possible reasons for mistakes being made
even with a handout available. These reasons can also apply
to those that did not attempt to fix anything. First is the
pressure from being part of an experiment and not wanting
to fail. Second is that no one wants to be last to finish; if one
person has finished reading the other might skip to the end to
avoid embarrassment. If they had known that they could have
different versions of the experiment and were not expected to
finish at the same time this could have reduced this pressure.

D. Threats to Validity

Our threats to validity are based on those laid out by
Easterbrook [12].

1) Construct Validity: Our Eclipse competence test was
done to avoid getting only participants with extreme scores.
As table I shows, Section V-B, we had a good range of
abilities. While this does not have validity issues it should
be noted that it was designed to separate students with limited
experience of Eclipse. This design would not work for industry
professionals with much greater experience; we would expect
them to generally have high scores.

2) Internal Validity: We lost 2 participants during the
study. The first had still not done the test shortly before the
experiments were due to start. The second did the test but
missed the experiments due to work commitments. While we
could have tried to recruit a larger number of people we
felt (and were proved correct) that our already tight schedule
would not allow for this. While this does affect our sample
size it does not change our findings as it was never possible
to do statistical analysis with just 18 people.

While we were careful to prevent communication during
the experiments there was nothing we could do to stop people
from the different groups talking afterwards. The handouts and
the tool were not available out of the experiment room.

To prevent the control group from feeling devalued we did
not inform people which group they were in. However, we
did have people from each group doing the experiments at the
same time and the control participant, with what has been
shown to be the slower method, could be affected by the
experimental participant finishing more quickly.

As we knew all the participants it is possible that we
behaved differently depending on who was doing the exper-
iment. We attempted to reduce this threat by using handouts
to instruct the participants instead of us risking giving varying

instructions verbally. It also guaranteed that everyone had ex-
actly the same knowledge of our tool and experiment. Screen
recordings were used to avoid us distracting the participants,
either with our reactions or just our presence.

Rather than avoid people learning how to respond during
the experiments we decided to encourage the learning effect.
Our competence test taught them the skills needed for the
first experiment while also assessing them. We made sure that
everyone had the same information and experience during the
first experiment with regards to fixing issues. In the second
experiment we designed the tasks around everything they had
done with us before.

3) External Validity: Our initial idea was to recruit volun-
teers from the 3 years of the SEM program. This was done
via social media and we only received one valid response.
This forced us to approach students in our own year that we
were familiar with and ask them directly. This produced a
much better response and we were careful to avoid asking
only students with the best grades. The downside here is that
we could be biased to certain people and vice versa. We
believe that the design of the test, experiments and interviews
prevented this from negatively affecting the study; it’s possible
that the participants knowing us made them more willing to be
a productive part of the study. However, the use of students
prevent the findings from being applied to any other group,
for example, people in the software industry.

VII. CONCLUSION AND FUTURE WORK

While there is no clear difference with a small project, it is
reasonable to assume that with a large enough project the users
with notifications will be faster at issue resolution. This is due
to the fact that the amount of work involved when you have
notifications does not scale with project size; fixing 9 issues
in a 300 wrapper project is virtually the same amount of work
as fixing 9 in 100 wrappers for a user with notifications. With
no issue notification the user always has to check the whole
project. It can also be said that users with no notifications
lacked the confidence in themselves to maintain an up to date
model.

Automated fixes have been demonstrated to speed up resolu-
tion of consistency issues. Having both notifications and quick
fixes can reduce human error and help maintain traceability in
large scale projects, while reducing time lost checking and
correcting traceability link consistency. Users trust quick fixes
more than themselves to keep a model correctly up to date
with a project but can feel a loss of control over doing it
manually. It is clear that even when users believe they are
right the majority are still able to make mistakes.

A. Dash 3: The Next Steps

While the warnings worked for representing issues we did
observe people either not noticing or ignoring them. A warning
in Eclipse does not prevent the code from compiling and they
can even be deleted. As Capra is being developed for an
industry with strict rules regarding traceability we recommend

11

that the warnings are upgraded to errors to prevent the user
from continuing to work without fixing the issue.

Implementing the visual representation of the trace model
as a graph is a requirement that rt-labs wanted but never made
it in. If this were added, including showing issues on the
traceability links, it would give users a graphical alternative
to text for working with the trace model.

B. Further Study

The work done in this study could be continued by testing
with industry; starting with rt-labs. As the results of the first
experiment were inconclusive we believe that it could be re-
peated with a group large enough to perform statistical analysis
on. Additionally, the size of the test should be increased to
contain enough wrappers to demonstrate a clear difference
between the control and experimental groups.

If the next steps for Dash 3 were implemented then it would
be worth experimenting on the benefits of graphically repre-
senting issues on a trace model. For example, investigating the
benefits of graphical representation compared to textual.

VIII. REFLECTIONS

As this was the first research study we have carried out we
think it is important to reflect on what we learned and what
we would do differently if we repeated the study. We would
recruit participants who were more proficient with Eclipse.
Low scores from the competence test gave poor results in the
experiments. We would attempt to remove the issues that arose
from having 2 participants do the experiment at the same time.
We could, for example, do them all individually or have only
the people from the same group. Human error when reading
instructions was unexpected. We could improve this by having
both the handout and verbal instructions.

ACKNOWLEDGEMENT

We would like to thank our supervisors, Jan-Philipp
Steghöfer and Salome Maro. rt-labs for making time for us
and helping with the initial tool design. Finally, we would
like to thank the willing participants for their time, patience
and understanding throughout their final term.

REFERENCES

[1] J. Radatz, A. Geraci, and F. Katki, “IEEE standard glossary of software
engineering terminology,” IEEE Std, vol. 610121990, no. 121990, p. 3,
1990.

[2] S. Winkler and J. Pilgrim, “A survey of traceability in requirements
engineering and model-driven development,” Software and Systems
Modeling (SoSyM), vol. 9, no. 4, pp. 529–565, 2010.

[3] H. U. Asuncion, F. François, and R. N. Taylor, “An end-to-end industrial
software traceability tool,” in Proceedings of the the 6th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering. ACM, 2007,
pp. 115–124.

[4] J. Leuser, “Challenges for semi-automatic trace recovery in the automo-
tive domain,” in Proceedings of the 2009 ICSE Workshop on Traceability
in Emerging Forms of Software Engineering. IEEE Computer Society,
2009, pp. 31–35.

[5] E. Ben Charrada, A. Koziolek, and M. Glinz, “Identifying outdated re-
quirements based on source code changes,” in Requirements Engineering
Conference (RE), 2012 20th IEEE International. IEEE, 2012, pp. 61–
70.

[6] P. Mader and A. Egyed, “Assessing the effect of requirements traceabil-
ity for software maintenance,” in Software Maintenance (ICSM), 2012
28th IEEE International Conference on. IEEE, 2012, pp. 171–180.

[7] S. Maro, “Improving software traceability in the development of auto-
motive embedded systems - a research abstract,” http://ceur-ws.org/Vol-
1564/, 2016, [Online; accessed 16-March-2016].

[8] S. Nair, J. L. de la Vara, and S. Sen, “A review of traceability research
at the requirements engineering conference re@ 21,” in Requirements
Engineering Conference (RE), 2013 21st IEEE International. IEEE,
2013, pp. 222–229.

[9] I. Santiago, A. Jiménez, J. M. Vara, V. De Castro, V. A. Bollati,
and E. Marcos, “Model-driven engineering as a new landscape for
traceability management: A systematic literature review,” Information
and Software Technology, vol. 54, no. 12, pp. 1340–1356, 2012.

[10] R. Torkar, T. Gorschek, R. Feldt, M. Svahnberg, U. A. Raja, and K. Kam-
ran, “Requirements traceability: a systematic review and industry case
study,” International Journal of Software Engineering and Knowledge
Engineering, vol. 22, no. 03, pp. 385–433, 2012.

[11] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A
design science research methodology for information systems research,”
Journal of management information systems, vol. 24, no. 3, pp. 45–77,
2007.

[12] F. Shull, J. Singer, and D. I. Sjøberg, Guide to advanced empirical
software engineering. Springer, 2008, vol. 93.

APPENDIX

A. rt-labs Interview Questions

The questions were as follows:
General questions:

1. What issues do you want to be notified of?
• Deletion
• Moved
• Created
• Renamed

2. Contents modified: can it lead to trace problems?
3. What is the order of priority for these issues?
4. What methods do you want to use to notify the user?

E.g. pop ups, problem tab, visually on Plantuml (labels,
colour changes), markers on resources etc.

5. At what point would you consider notifications to be
spam? Think in terms of number of pop ups, clutter on
diagrams.

6. When do you want the issue check to run? E.g. on plug-in
start, on workspace resource change, both. Menu option
to check whole project on demand.

7. What user options would you want? E.g. toggle where
notifications are shown.

8. Colour preferences for Plantuml, e.g. link/objects colours
changing with status.

9. How much detail in a notification, what type of detail -
show more on mouseover, in problem view etc.

10. Should the problem markers be persistent between
Eclipse sessions?

Automated Fixes: Our definition: A background operation that
updates the workspace when changes are made.

1. Which fixes should happen as background operations?
2. Should we notify the user when automated fixes happen?

Include EMF?
Quick Fixes: Our definition: An operation selected by the user
from a list suggested by the workspace.

12

1. What options would you like to see from quick fixes?
E.g. Fix all similar problems.

2. What possible fixes are there for each issue?
Advanced:

1. Should there be an option for identifying artefacts without
a link?

2. When would the notification happen?

B. Experiment Two task List

1. Create a traceability link between R18 and UC1
2. Create a traceability link between UC1 and F17
3. Create a traceability link b/w UC1 and F28
4. Create a traceability link b/w UC1 and F35
5. Create a traceability link b/w F35 and TestBooking.java
6. Create a traceability link b/w TestBooking.java and User-

Booking.java
7. Rename R16 to R16C (C stands for customer)
8. Rename UC2 to UC2 Staff
9. Create a new General Project, call it UseCaseDiagrams

10. Move the three .png files from the UseCases project to
the UseCaseDiagrams project

11. R28 - The customer can pay bills with NOK is no longer
a valid requirement, remove it

12. Traceability links between ClassDiagrams and PetHotel-
Tests have not yet been created, create them. E.g.
F35CDBooking.png with TestBooking.java (this one al-
ready exists)

13. Rename UC1 to UC1 Customer
14. R23, R24 and R25 are non-functional requirements and

will not be in any trace model. Rename them. E.g. R23
to NFR23

15. F2Account.png is not in the right place. Move it to
DomainModel project.

16. Requirement R19 is no longer needed. Delete R19
17. Create traceability links between each java test file and

its corresponding java controller file.
18. The ”ReadMe” files for requirements and use cases have

been placed in the wrong folder, correct this.

C. Capra-Dash User Interface

This section explores the graphical user interface (GUI) used
in Capra and Dash. Figure 1 shows the standard Eclipse project
explorer. The top folder (WorkspaceTraceModels) is generated
by Capra when a traceability link is created. It contains the
artefact wrappers and the trace model itself. The other folders
are the ones used in experiment 2.

Figure 2 shows the trace model. In this case each traceability
link connects 2 artefacts.

Figure 3 shows the properties of the selected traceability
link. All links have a source and target artefact.

Figure 4 shows the artefact wrapper container and to the
left are the properties of a single artefact wrapper. These are
the properties that manual users needed to edit when fixing
inconsistency issues.

Figure 5 shows the problem view. In this case there is a
single warning notification of an issue giving the user all the

Fig. 1. Project Explorer

Fig. 2. Trace Model

Fig. 3. Properties View - Traceability Link

Fig. 4. Properties View - Artefacts and Properties

13

Fig. 5. Problem View

Fig. 6. Selection View

information needed to fix it. For quick fixes the user simply
had to right click on the warning and select quick fix from the
menu.

Figure 6 contains the selection view being used to create
a traceability link between 2 project resources. Users had to
drag and drop the resources into the view.

The final image, Figure 7, shows all the views put together
as they were for the second experiment. For the first ex-
periment the properties view occupied the same area as the
problem view (the Eclipse default setting) and users would
switch between the 2 views.

Fig. 7. Capra-Dash User Interface

14

