

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

Göteborg, Sweden, June 2016

On The Significance of Relationship Directions in

Clustering Algorithms for Reverse Engineering

Bachelor of Science Thesis in the Software Engineering and Management

Programme

David Jensen

Andreas Lundkvist

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

On The Significance of Relationship Directions in Clustering Algorithms for Reverse

Engineering

David Jensen

Andreas Lundkvist

© David Jensen, June 2016.

© Andreas Lundkvist, June 2016.

Examiner: Regina Hebig

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden June 20

On The Significance of Relationship Directions in

Clustering Algorithms for Reverse Engineering

David Jensen and Andreas Lundkvist

Department of Computer Science and Engineering

University of Gothenburg

Gothenburg, Sweden

david jensen3@hotmail.com, gu@galdiuz.com

Abstract—Software clustering is a common technique applied
to simplify reverse engineered software models. These algorithms
commonly classify similarity between nodes based on their
relationships. However little research exists that discusses the
importance of the direction of these relationships.

In this paper we provide empirical data for how treating
direction in entity relationships affect the recovery accuracy of
hierarchical clustering algorithms. We test variations of a hier-
archical clustering algorithm on several open-source systems and
compare their results, and conclude that relationship direction
does not have an significant impact on recovery accuracy. As
such, researchers may opt to implement hierarchical clustering
algorithms using only one direction of relations instead of both,
and still get similar results for less computational cost.

I. INTRODUCTION

Hierarchical clustering algorithms in reverse engineering

commonly define features of nodes as their relationships

to other nodes. This idea originates from Schwanke and

Platoff’s paper ”Cross references are features” [1]. Schwanke

and Platoff also propose distinguishing between user-names

(features representing other entities that use the entity) from

names-used (features representing what the entity is using).

Neither whether both of these two variants of relationship

features are taken into account, nor whether they are distin-

guished, is something later researches are explicit about, and

no rationale is given for why they are or are not. Likewise,

Schwanke and Platoff’s proposal contains no justification to

why this separation should be done. More specifically, they

do not provide any empirical data comparing the differences

between including or not including both features as well as

separating or combining them.

Hence we will examine the different outcomes of including

user-names and names-used relationships, as well as classify-

ing them differently versus ignoring their direction. We present

the following hypotheses:

• H1
0 - Including user-names in addition to names-used

does not increase the recovery accuracy of hierarchical

clustering algorithms

• H1
1 - Including user-names in addition to names-used

increases the recovery accuracy of hierarchical clustering

algorithms.

• H2
0 - Distinguishing between names-used and user-names

when calculating cluster similarity does not increase the

recovery accuracy of hierarchical clustering algorithms.

• H2
1 - Distinguishing between names-used and user-names

when calculating cluster similarity increases the recovery

accuracy of hierarchical clustering algorithms.

We will test these hypotheses by implementing variations of

a hierarchical clustering algorithm where relationship direction

is handled differently and compare their results. The tests will

be done on several open-source systems of various domains

and size. This data can then be used to find how directions

should be treated in order to get the highest accuracy in

hierarchical clustering algorithms.

The rest of the paper is structured as follows. Section II

contains definitions of concepts used in the paper. Section

III contains motivation behind the research, while section

IV contains background information and related research.

Section V explains our methodology, section VI contains the

results of the tests, and in section VII we discuss the results.

In section VIII we discuss the limits of our research and

recommendations for further research, and finally, we give our

conclusion in section IX.

II. DEFINITIONS

The following list contains definitions of concepts used in

this paper.

• Reverse engineering - Recreating or extracting informa-

tion from a system, e.g. the software architecture [2].

In this paper we use reverse engineering and recovery

interchangeably.

• Cluster - A grouping of entities, in our case classes.

• Hierarchical clustering - A method of building binary

trees of clusters, paired together based on cluster sim-

ilarity. Hierarchical clustering algorithms are generally

divided into two types; agglomerative, where clusters are

paired bottom up, and divisive, where one large cluster

is split top down [3].

• Feature vector - A vector defining the features of an entity

(e.g. class) that are used when comparing the entity to

others [4].

• Dependency - A dependency occurs from component A to

component B when component A depends on component

B by for example calling one of component B’s methods.

Denoted in graphs by an arrow from A to B (A→B, cf.

fig 1). During data extraction we regard a class X as being

1 2

3 4

Fig. 1. A relation graph for four classes (1, 2, 3, and 4). Arrows denotes
dependencies, e.g. 3 is dependent on 1.

dependent on Y if the typename for Y occurs anywhere

inside the declaration or definition of X.

• Names-used - The entities an entity is using, i.e. which

entities it has a dependency to [1].

• User-names - The entities that are using an entity, i.e.

which entities that have a dependency to it [1].

• Weighted Combined Algorithm (WCA) - A hierarchical

clustering algorithm created by Maqbool and Babri [4]

which is the most successful hierarchical algorithm. We

will use this algorithm for our tests.

• MojoFM - An algorithm that measures how similar two

sets of clusters are, expressed as a percentage [5]. We will

use MojoFM to compare our algorithm implementations.

III. MOTIVATION

Schwanke and Platoff’s paper gives no motivation for why

both feature kinds should be including, nor why they should

be distinguished between [1]. We will in the following section

try to provide motivation for doing so.

A. Including user-names in the feature vector

Many cluster algorithms in information retrieval use the

concept of feature vectors. A feature vector denotes the

properties of an object that can then be used to classify an

object and its similarity towards other objects. In the context of

clustering software components with the sibling link approach,

the feature vector denotes the relations a component have in

a dependency graph. For example, when two components X

and Y both depend on component Z, they are seen as sharing

the feature Z. Using the words of Schwanke and Platoff, X

and Y can be referred to as users or ”user-names” and Z as

”names-used” [1]. Although they give no rationale to why one

should include the names of users in the feature vector, it is

simple to present a case where the final result is improved

by doing so. The rationale we give for our first hypothesis

is that including user-names features causes components to be

similar even when there is an absence of a shared dependency,

if there exists a shared context from which they are used.

For example, figure 1 denotes a graph of four components.

In this graph, 3 and 4 would be deemed similar if ”names-

used” are included in the usage vector because of their shared

dependency 1, whereas 1 and 2 would only be deemed similar

if ”user-names” are included because they are both used by 4.

B. Separating names-used and user-names in the feature vec-

tor

Schwanke and Platoff make a clear distinction between the

relationships components have to each other and they distin-

guish ”user-names” features from ”names-used” by tagging

user-names features with # and names-used with & [1]. Yet

they do not provide the rationale for this separation (we will

attempt to in the next paragraph) and it is often very unclear

whether researchers follow this idea of distinguishing names-

used and user-names. For example, in their paper Maqbool

and Babri mention only that ”edges represent the features

of the nodes they connect, and similarity is measured by

looking at features that two nodes have in common” [4, p.2],

while they further down in their paper mention what kinds of

dependencies they count as features (routines, global variables,

and user types) [4].

We will now discuss the impact of not distinguishing be-

tween names-used and user-names features and give rationale

for distinguishing them. One can ignore the directions of

component relationships by looking only at them as connectors

between entities that either exists or not. However, this means

components that use a component Z will be deemed similar

to components being used by component Z. We would argue

that classifying relationships differently depending on whether

they imply using or being used copes more accurately with

the way we naturally layer components. For example, fig. 2

depicts a system of three layers, A, B, and C, where every

class in A are used by classes in B, which in turn are used

by classes in C. This follows a common philosophical idea in

layered design which is that there exists a constant direction

(either up or down) through which dependency flows [6], [7].

Following this philosophy, it does not make sense to ignore

the direction of the relationships classes in A and C has to

those in B. This would merge A and C’s classes creating only

two distinct clusters. Furthermore these two clusters B and

AC would then indirectly create a circular reference on the

subsystem level, something which is usually avoided within

software design [8].

IV. BACKGROUND

Documentation covering system designs often fall behind

the present state of systems and may sometimes be lacking

in detail or not exist at all. A fast way to recover missing

documentation is to rely on reverse engineering [9]. However,

reverse engineered models have a tendency to become overly

complex since they do not contain the abstraction mecha-

nisms usually applied manually by architects [10]. Some of

these abstractions can be achieved by methods of filtering

software entities. Another important simplification mechanism

is reorganizing software into subsystems. Using clustering

algorithms, reverse engineered software models can be re-

modularized into new subsystems. These new subsystems can

be used as models to help understand a legacy system or

be used as proposals for re-factoring and criticize current

architectures.

Fig. 2. Relationships between 3 subsystems

A. Clustering algorithms

The most successful clustering algorithms can be character-

ized as those relying on developing similarity functions [11]

or those using structural discovery together with a quality

metric. Examples of the latter are Bunch [12], ”Architectural

Recovery using Concerns” (ARC) [13], and ”Algorithm for

Comprehension-Driven Clustering” (ACDC) [14], three clus-

tering algorithms that do not use similarity functions. However,

as shown by Garcia et al. [15] even the most promising

methods based on similarity functions, such as Maqbool and

Babri’s Weighted Combined Algorithm [4], are outperformed

by both ACDC and ARC. Out of the 8 systems tested by

Garcia et al., ARC and ACDC produced an average accuracy

of 58.76% and 55.94% respectively, whereas WCA attained

an average of 43.58% accuracy.

B. Hierarchical agglomerative clustering

When it comes to clustering algorithms using similarity

functions, they are most commonly based on a hierarchical

agglomerative clustering algorithm which in turn is the most

popular algorithms used in design recovery [16]. The most

successful hierarchical agglomerative algorithms are the Scal-

able Information Bottleneck (LIMBO) [17] and WCA [18].

Hierarchical agglomerative clustering algorithms creates

clusters bottom up by continuously merging the two most

similar clusters. In software clustering similarity is defined as

a function over two clusters’ feature vectors where the feature

vectors describe the clusters’ relationships to other clusters.

C. Linkage methods

When a non-singleton cluster is formed it should be able to

be contained in another cluster. For this to happen one needs

to compare the similarity between non-singleton clusters and

other clusters. A linking method is therefore used to transfer

similarity measures from child clusters into the newly formed

parent cluster.

Maqbool and Babri proposed a new algorithm for finding

the similarity of a newly formed cluster with another cluster,

or rather how to define the feature vector of a non-singleton

cluster [4]. Previous methods simply used the union or inter-

section of the two feature vectors. The combined weighted

linkage however, keeps track of how many nodes out of the

total nodes in a cluster has said feature. When calculating

association coefficients the sum of the intersection of features

appearing in both clusters is then weighted by the number of

nodes in each cluster that share a certain feature in relation to

the cluster’s size.

Because the cluster size is taken into account the features

become non-binary instead of binary, i.e. instead of a compo-

nent having a feature or not there is a degree to how important

the feature is. Furthermore, Maqbool and Babri propose a new

similarity metric for non-binary features called the unbiased-

Ellenberg:

Eu =
1/2 ∗Ma

1/2 ∗Ma+ b+ c

”Here Ma represents the sum of features that are common

in both entities, and b and c represent the count of features that

are present in one entity and not in the other” [4, p.6]. Their

unbiased-Ellenberg is based on the Ellenberg metric, which in

turn is the non-binary counterpart of the Jaccard coefficient

that has been proven to produce good results [19].

D. Accuracy versus comprehension

We believe that most subsystems that exist in as-is archi-

tectures to some extent serve a purpose for comprehensibility

(although it may not be their main purpose). Likewise, most

efforts that have been done to increase comprehension has

proven efficient in recovery accuracy comparisons [15].

There is also the fact that what defines a meaningful

or comprehensible subsystem is vague and varies between

domains and among different people, which is partly a reason

for the low accuracy rating of the current state-of-the-art

clustering algorithms. This is not an argument for not applying

comprehension research, but just a mention that it requires

consulting with domain experts, something that was out of

scope for our research. Finally, there is also the fact that

there seem to exist a lot of academic interest in clustering

for recovery accuracy [4], [5], [15], [13], [16] as well as

a big body of knowledge for which we want to increase

understanding, investigate methods, and increase replicate-

ability.

V. METHODOLOGY

In order to test our hypotheses we will run four sets

of benchmarks with different variants of WCA on the data

sources. We compare the different variants capability of recre-

ating projects by clustering classes.

The first set will be using both user-names and names-

used combined, the second classifies user-names separately

TABLE I
CHOSEN REPOSITORIES

Repository Domain Lines of Code Stars ★

AutoMapper/AutoMapper Data/Cloning 35170 3494
MiniProfiler/dotnet Profiling api 19812 625
DotNetOpenAuth/DotNetOpenAuth Authorization api 182114 1153
aspnet/EntityFramework Object relational mapper 257452 3285
schambers/fluentmigrator Database migration 61075 1190
JeremySkinner/FluentValidation Business objects validator 21075 1368
Mono/MonoGame Game development kit 187784 3478
NancyFX/Nancy Web framework 87145 4071
octokit/octokit.net Github client library 76813 942
OpenRA/OpenRA Game engine 105664 3018
ShareX/ShareX Screenshot application 142486 3620
SignalR/SignalR Web framework 49904 5713
hbons/SparkleShare File server 13836 3616
Wox-launcher/Wox Application launcher 12978 2854

★ As of 2016/05/24

from names-used, the third set uses only names-used, while

the fourth uses only user-names. These benchmarks will be

compared to the ground-truth data using a cluster recovery

accuracy metric. We will be using the unbiased Ellenberg

measure for cluster similarity, since it has been proven to

provide the best results [4], [15]. The results of the first and

second benchmark will be compared to the third and fourth to

answer our first hypothesis, while the second hypothesis will

be answered by comparing the results of the first and second

benchmark.

The implementation of our algorithms, the data extractor

and the benchmark tests can be found at: https://github.com/

davidkron/Clustering.

A. Data sources

The algorithm was tested on open-source systems from

GitHub. The repositories were chosen by sorting all reposi-

tories with language C# on stars (a popularity measurement)

using GitHub’s advanced search. From the top 50 we extracted

15 repositories, with the goal to maximize the diversity of

domains and sizes of the sample.

After the original set of repositories was selected we re-

moved all those not fulfilling our inclusion criteria, which

were that they needed to 1) be primarily a C# system and 2)

include at least two projects in the solution. This resulted in us

having to remove shadowsocks/shadowsocks-windows (since

it contained only one project) from our data set, resulting

in the list of repositories you can find in table I. We have

published the extracted data at https://github.com/davidkron/

parsed-csharp-repos.

B. Data extraction

We used the .NET compiler platform Roslyn to extract an

abstract syntax tree and class dependencies from the projects.

The projects represent the ground truth data. From the ground

truth data we extract all classes and their dependencies,

discarding other information such as which project they belong

to. These classes and their dependencies are used as input to

the clustering algorithm.

C. Validation

We use MojoFM, a clustering recovery metric, to com-

pare the results from the different algorithm variants with

the ground truth data [5]. MojoFM has been presented as

preferable over the precision-recall metric commonly used in

information retrieval and pattern recognition because it is less

influenced by the size of the clusters [20]. MojoFM compares

two sets of clusters and tells how similar they are to each

other by calculating the amount of move and join operations

that would be required to turn one into the other. The similarity

is presented in a value between 1 and 0, with a value of 1 (or

100%) being identical and a value of 0 being no similarities at

all. This allows us to assess the effectiveness of the algorithms

by comparing the architecture generated by the algorithm to

the original architecture.

For every benchmark, the result of the cluster algorithm is

cut using a static cutting algorithm to gain flat clusters (clus-

ters not containing other clusters). This is because MojoFM

requires flat clusters, and since WCA outputs hierarchical

clusters the results need to be flattened before it can be

measured. These flat clusters are then compared to the ground-

truth clusters using MojoFM. As mentioned above, this will

gives numbers on how accurate the different benchmarks are,

and allows us to compare them to each other. We will test

whether the results are statistically significant using a paired

t-test, a test that assesses how statistically different the means

of two groups are. We use a paired t-test because the samples

(i.e. the variants) are dependent, since they are tested on the

same systems. The significance level (α-level) we will use is

the commonly used level 0.05.

Unfortunately, the weighted combined algorithm is non-

deterministic. In order to mitigate this and get more results

that are more reliable we ran the algorithms repeatedly and per

repository calculating new averages until new runs produced

only difference in the decimals.

D. Validity threats

We deployed the validity threat model by Runeson and Höst

where we classify validity threats into the categories construct,

https://github.com/davidkron/Clustering
https://github.com/davidkron/Clustering
https://github.com/davidkron/parsed-csharp-repos
https://github.com/davidkron/parsed-csharp-repos

TABLE II
SUBSYSTEM RECOVERY ACCURACY OF WCA-VARIANTS

System Combined Separated Names-used Only User-names Only

AutoMapper 47.0% 49.3% 46.9% 43.9%
dotnet 30.3% 29.0% 29.0% 34.5%
DotNetOpenAuth 22.1% 22.6% 22.1% 22.9%
EntityFramework 44.5% 45.0% 43.0% 38.5%
fluentmigrator 43.8% 41.6% 39.9% 36.9%
FluentValidation 40.1% 39.8% 37.0% 38.8%
MonoGame 40.8% 44.2% 48.5% 49.7%
Nancy 42.1% 41.4% 41.7% 38.5%
octokit.net 46.0% 41.7% 52.5% 48.2%
OpenRA 43.5% 43.9% 47.6% 43.1%
ShareX 26.6% 24.7% 26.9% 25.7%
SignalR 23.2% 21.6% 20.4% 22.7%
SparkleShare 46.6% 42.7% 47.1% 43.9%
Wox 23.0% 23.3% 16.1% 18.9%

Average 37.1% 36.5% 37.1% 36.2%

internal, and external validity [21].

1) Construct validity: To our knowledge, neither WCA nor

MojoFM had been implemented in C# before, and thus we had

to implement them ourselves.

Unfortunately, since we were not able to benchmark our

WCA implementations against the same dataset as Maqbool

and Babri [4], we did run tests on their examples to ensure

correctness of our implementation. Furthermore, we used a

declarative code style tightly following set theory notation

to make it easier to validate code against formulas found in

papers.

MojoFM was implemented in Java by its creators, Wen and

Tzerpos [5], and to ensure that our implementation of it was

done correctly we translated their implementation to C#.

2) Internal Validity: One factor that could affect the results

of our tests is the cutting algorithm used to flatten the hierar-

chical tree so that it can be used with MojoFM for comparison.

Depending on where the tree is cut the resulting clusters vary

both in size and amount. Researchers use different approaches

when it comes to finding where to cut, and research has been

done to find the best cutting point [22]. Garcia et al. chose to

use the ground truth to find the optimal cut, which, while valid

for their comparison, we find counterproductive, since usually

the ground truth is unavailable when reverse-engineering a

system [15]. Maqbool and Babri chose to use three different

cuts at 65%, 75%, and 85% of all entities [18] and compared

the different cuts.

We chose to cut at the middle of the tree. While this

certainly results in less accuracy than using a more optimal

cut, we would like to argue that it does not matter for our

results since we are not looking for high recovery accuracy.

Instead, we are comparing different variants of WCA, and as

long as we cut the trees in the same way we can compare the

results to find the most accurate variant.

3) External Validity: While we implemented our tests in

C#, the algorithm is language independent and should provide

equal results should it be implemented in another language.

In regards to the systems used for testing, we tried to make a

selection with as many different types and sizes of systems to

maximize the diversity of the selection. Additionally, we are

not related to the systems being tested on in any way, which

should reduce bias in the results.

VI. RESULTS

The results of the tests can be found in table II. The

first columns is the system tested on, the second column

contains the results when user-names and names-used are

combined, while the third column contains the results when

they are separated. The fourth column contains the results

when matching only by names-used, and finally the fifth

column is the results when matching only by user-names.

A. The effect on accuracy when including user-names

Comparing the second and third columns of table II to

the fourth and fifth, we can see that in some cases including

both names-used and user-names results in a better accuracy,

while in others including only one of the two nets the better

result. The largest difference can be found in octokit.net, where

the difference between the separated variant and the variant

using only names-used is as much as 10.8%. Despite that,

the average results of the variations show that the variants are

mostly equal, with the largest difference in average accuracy

being 0.9%.

Results of paired t-tests:

• Combined and Names-used: t(13) = 0.046534, p = 0.9636

• Combined and User-names: t(13) = 0.85666, p = 0.4071

• Separated and Names-used: t(13) = -0.49975, p = 0.6256

• Separated and User-names: t(13) = 0.28957, p = 0.7767

The paired t-tests proves that while the variant used can

have a impact on the results, it is not a significant factor in the

results. Therefore, we cannot reject our first null hypothesis.

OBSERVATION #1: Including user-names in addition

to names-used does not increase the accuracy of hierar-

chical clustering algorithms.

TABLE III
EFFECTS OF DATA LOSS

System 100% Dependencies 50% Dependencies 25% Dependencies

AutoMapper 46.9% 35.2% 34.8%
dotnet 29.0% 5.9% 5.0%
DotNetOpenAuth 22.1% 11.5% 11.2%
EntityFramework 43.0% 32.4% 32.7%
fluentmigrator 39.9% 50.0% 52.2%
FluentValidation 37.0% 34.3% 25.0%
MonoGame 48.5% 41.0% 35.9%
Nancy 41.7% 49.5% 50.6%
octokit.net 52.5% 25.7% 26.1%
OpenRA 47.6% 19.1% 21.2%
ShareX 26.9% 35.7% 24.9%
SignalR 20.4% 13.1% 11.3%
SparkleShare 47.1% 55.4% 48.5%
Wox 16.1% 16.7% 18.2%

Average 37.1% 30.4% 28.4%

B. The effect of separating names-used and user-names

Looking at the second and third columns of table II we can

see that the difference between the algorithm when names-

used and user-names are combined and when they are sepa-

rated is minor. For some systems the generated architecture

has a higher accuracy when names-used and user-names are

combined, and for others it is higher when they are separated.

The greatest difference can once again be found in octokit.net,

where the combined algorithm gave a 46.0% accuracy versus

41.7% from the separated, a difference of 4.3%, but on

average the algorithm has only a 0.6% higher accuracy when

combined, a negligible difference. The results of a paired t-

test proves this: t(13) = 1.0926, p = 0.2944. Thus, we cannot

reject our second null hypothesis either.

OBSERVATION #2: Separating names-used and user-

names when calculating cluster similarity does not in-

crease the recovery accuracy of hierarchical clustering

algorithms.

VII. DISCUSSION

From our test results we can see that, contrary to our

hypotheses, separating names-used and user-names in the

weighted combined algorithm does not have a significant

impact on the accuracy of the algorithm. We can also see

that the variants including both feature types does not give

improved results over the names-used only variant. This could

possibly be the reason why modern papers like [4] and [15]

are not explicit about what kinds of features they include.

Our first assumption was that shared user-names is not a

criteria people seem to use when grouping software com-

ponents. However, when we tested the opposite (i.e. relying

only on user-names and ignoring names-used) and also got

similar results, we realized this assumption was incorrect. We

believe it is rather a case of having a surplus of information

in the relation graph. Although one may want to argue that

taking more information into account during clustering should

increase recovery accuracy, that does not seem to be the case,

at least when it comes to adding names-used in addition to

user-names features.

A. Effects of data loss

Because the algorithm exhibited this nature of ”stability”

where it returns the same result when given less informa-

tion, we decided to test how the algorithm is affected when

removing a percentage of the features. We ran tests on the

names-used only variant where we removed 50% and 75% of

the features. The removed features were chosen randomly for

each iteration, and we ran it for 100 iterations and averaged

the results. The results are presented in table III. As can be

seen from the results, the algorithm does not provide the same

amount of stability when removing features within the variants

as when ignoring one feature kind. While in most cases the

accuracy drops significantly as expected, it increases in a few,

with an increase of over 10% in one case. This is probably

related to the phenomenon that too many features can be

detrimental to accuracy [23].

B. Similarity of decompositions

It is important to note that whenever we say the ”same

result” we mean the same recovery accuracy. This does not

necessarily mean the actual recreated clusters are the same, but

that the clusters recovered are equal in accuracy towards the

ground truth data. For example in the case of DotNetOpenAuth

where both variants get around 22% recovery accuracy, it

does not necessarily mean that they those 22% represent the

same samples of the ground truth data. We therefore ran tests

measuring the MojoFM similarity between the decompositions

retrieved from the names-used only variant and the user-names

only variant.

As can be seen in the results in table IV, the two variants

(user-names only and names-used only) produce a similarity

above 50% for all systems, which means that for each system

the architectures retrieved by the two variants are similar. In

other words, we can conclude that most classes that share

TABLE IV
SIMILARITY BETWEEN THE RESULTING ARCHITECTURES OF NAMES-USED

ONLY AND USER-NAMES ONLY VARIANTS

System Similarity

AutoMapper 80.2%
dotnet 82.4%
DotNetOpenAuth 74.6%
EntityFramework 78.8%
fluentmigrator 69.1%
FluentValidation 75.9%
MonoGame 84.7%
Nancy 71.2%
octokit.net 87.6%
OpenRA 56.3%
ShareX 72.5%
SignalR 92.2%
SparkleShare 53.7%
Wox 54.5%

Average 73.8%

names-used also share user-names; hence ignoring one of them

gives the same result.

C. Transitivity of agglomerative algorithms

Fig. 3. The steps involved when merging clusters

One possible explanation for the similarity of the architec-

tures generated by the names-used only and the user-names

only variants is the transitive nature of how agglomerative

algorithms resolve clusters. For example, in fig. 3, step 1

depicts a graph where the upper pair of nodes would be

seen similar when only looking at their shared names-used

features, whereas the lower pair would only be deemed similar

when comparing their user-names features. However, after the

algorithm has merged the upper pair into a cluster (step 2),

both entities in the lower pair will reference the newly created

cluster and share the same names-used feature. Hence the

lower pair will actually be turned into a cluster in the last

iteration of the algorithm (step 3) even when only names-used

feature types are taken into consideration.

Because of this transitive nature of the algorithms, many

graphs that may seem like they contain clusters that cannot

be found can often be resolved if the sub-graph is part of a

bigger more complex graph that is resolved first.

D. Computational cost

Maqbool and Babri and Duda et al. states that more features

increases the computational cost of the algorithm, something

we have also seen during our tests [18], [23]. Since the

combined variant puts weaker requirements for a possible

feature to be present (i.e. it can be either user-name or a

name-used), the combined variant should make a bigger ratio

of the possible features present than the rest of the variants,

which should have some impact on performance. However,

the separated algorithm should produce a much larger set

of possible features, which should by far have the biggest

performance impact. The best performing variants should thus

be the used-names only and user-names only variants. This

means the one direction-only variants can be used with roughly

the same accuracy for less computational cost.

VIII. RESEARCH LIMITATIONS AND FUTURE RESEARCH

Our tests has only been done on systems written in C#, and

as such we can only conclude that our results hold true for

C# systems. While the algorithm itself does not functionally

change between different programming languages, different

languages have practices and standards that affect the archi-

tecture of systems. It is also common that development tools

and frameworks impose certain architectural styles or patterns

[24].

We personally think that the results would be similar, if not

the same, for systems written in other programming languages.

One argument that supports this is that the type of subsystem

we target to recover has been projects. We would argue that

projects is the type of system decomposition that most closely

resembles layers in layered architecture [7]. It hence exhibits

the behavior for which the phenomenon, as explained in

section III, is most likely to occur. Because we have tested

in the scenario optimal for our phenomenon to occur but still

do not see the phenomenon occurring, it is highly unlikely that

it would occur in other scenarios.

Another subject where future research is needed is how

names-used and user-names have an effect on hierarchical

divisive clustering algorithms. We did not do any tests on

divisive algorithm since it was out of scope for our research,

but the results might be similar since both agglomerative and

divisive algorithms are hierarchical.

Finally, further research should be done on what it is that

causes some systems to have higher accuracy when using both

names-used and user-names, and others when using only one

of them. As seen in our results (table II), for some of the

systems the difference in accuracy between the variants is not

minor. Finding the cause of these differences could lead to

improved clustering algorithms in the future.

IX. CONCLUSION

In the discussion we concluded that classifying features

differently depending on relationship direction does not have

a significant effect on cluster recovery accuracy. We also

concluded that this is not an effect caused by clusters more

commonly being grouped based on names-used instead of

user-names, but rather an effect of having a surplus of infor-

mation in the relation graphs, and that there is a similarity

between the decompositions retrieved when including only

names-used or only user-names features.

We have provided empirical data that, contrary to our own

hypotheses and Schwanke and Platoff’s original proposal,

shows that one of the feature variants of names-used and user-

names can be safely ignored. This gives the same results in

recovery accuracy with less computational cost.

ACKNOWLEDGMENT

The authors would like to thank Imed Hammouda for the

advice he has given them throughout their research.

REFERENCES

[1] R. W. Schwanke and M. A. Platoff, “Cross references are features,” in
ACM SIGSOFT Software Engineering Notes, vol. 14, pp. 86–95, ACM,
1989. I, II, III, III-A, III-B

[2] E. Eilam, Reversing: secrets of reverse engineering. John Wiley & Sons,
2011. II

[3] L. Rokach and O. Maimon, “Clustering methods,” in Data mining and

knowledge discovery handbook, pp. 321–352, Springer, 2005. II
[4] O. Maqbool and H. A. Babri, “The weighted combined algorithm: A

linkage algorithm for software clustering,” in Software Maintenance

and Reengineering, 2004. CSMR 2004. Proceedings. Eighth European

Conference on, pp. 15–24, IEEE, 2004. II, III-B, IV-A, IV-C, IV-D, V,
V-D1, VII

[5] Z. Wen and V. Tzerpos, “An effectiveness measure for software cluster-
ing algorithms,” in Program Comprehension, 2004. Proceedings. 12th

IEEE International Workshop on, pp. 194–203, IEEE, 2004. II, IV-D,
V-C, V-D1

[6] E. Evans, Domain-driven design: tackling complexity in the heart of

software. Addison-Wesley Professional, 2004. III-B
[7] F. Buschmann, K. Henney, and D. Schimdt, Pattern-oriented Software

Architecture: On Patterns and Pattern Language, vol. 5. John wiley &
sons, 2007. III-B, VIII

[8] J. Lakos, Large-scale C++ software design. Addison-Wesley Reading,
1996. III-B

[9] K. H. Bennett and V. T. Rajlich, “Software maintenance and evolution:
a roadmap,” in Proceedings of the Conference on the Future of Software

Engineering, pp. 73–87, ACM, 2000. IV
[10] M. H. B. Osman et al., Interactive scalable condensation of reverse

engineered UML class diagrams for software comprehension. PhD
thesis, Leiden Institute of Advanced Computer Science (LIACS), Faculty
of Science, Leiden University, 2015. IV

[11] M. Shtern and V. Tzerpos, “Clustering methodologies for software
engineering,” Advances in Software Engineering, vol. 2012, p. 1, 2012.
IV-A

[12] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner, “Bunch: A
clustering tool for the recovery and maintenance of software system
structures,” in Software Maintenance, 1999.(ICSM’99) Proceedings.

IEEE International Conference on, pp. 50–59, IEEE, 1999. IV-A

[13] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, and Y. Cai,
“Enhancing architectural recovery using concerns,” in Proceedings of the

2011 26th IEEE/ACM International Conference on Automated Software

Engineering, pp. 552–555, IEEE Computer Society, 2011. IV-A, IV-D

[14] V. Tzerpos and R. C. Holt, “Acdc: An algorithm for comprehension-
driven clustering,” in wcre, p. 258, IEEE, 2000. IV-A

[15] J. Garcia, I. Ivkovic, and N. Medvidovic, “A comparative analysis
of software architecture recovery techniques,” in Automated Software

Engineering (ASE), 2013 IEEE/ACM 28th International Conference on,
pp. 486–496, IEEE, 2013. IV-A, IV-D, V, V-D2, VII

[16] T. A. Wiggerts, “Using clustering algorithms in legacy systems remod-
ularization,” in Reverse Engineering, 1997. Proceedings of the Fourth

Working Conference on, pp. 33–43, IEEE, 1997. IV-B, IV-D

[17] P. Andritsos, P. Tsaparas, R. J. Miller, and K. C. Sevcik, “Limbo:
Scalable clustering of categorical data,” in EDBT, pp. 123–146, Springer,
2004. IV-B

[18] O. Maqbool and H. A. Babri, “Hierarchical clustering for software
architecture recovery,” Software Engineering, IEEE Transactions on,
vol. 33, no. 11, pp. 759–780, 2007. IV-B, V-D2, VII-D

[19] N. Anquetil and T. C. Lethbridge, “Experiments with clustering as
a software remodularization method,” in Reverse Engineering, 1999.

Proceedings. Sixth Working Conference on, pp. 235–255, IEEE, 1999.
IV-C

[20] B. S. Mitchell and S. Mancoridis, “Craft: a framework for evaluating
software clustering results in the absence of benchmark decompositions
[clustering results analysis framework and tools],” in Reverse Engineer-

ing, 2001. Proceedings. Eighth Working Conference on, pp. 93–102,
IEEE, 2001. V-C

[21] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical software engineering,
vol. 14, no. 2, pp. 131–164, 2009. V-D

[22] C. Y. Chong, S. P. Lee, and T. C. Ling, “Efficient software cluster-
ing technique using an adaptive and preventive dendrogram cutting
approach,” Information and Software Technology, vol. 55, no. 11,
pp. 1994–2012, 2013. V-D2

[23] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John
Wiley & Sons, 2nd ed., 2000. VII-A, VII-D

[24] A. Albani, S. Overhage, and D. Birkmeier, “Towards a systematic
method for identifying business components,” in Component-Based

Software Engineering, pp. 262–277, Springer, 2008. VIII

	Introduction
	Definitions
	Motivation
	Including user-names in the feature vector
	Separating names-used and user-names in the feature vector

	Background
	Clustering algorithms
	Hierarchical agglomerative clustering
	Linkage methods
	Accuracy versus comprehension

	Methodology
	Data sources
	Data extraction
	Validation
	Validity threats
	Construct validity
	Internal Validity
	External Validity

	Results
	The effect on accuracy when including user-names
	The effect of separating names-used and user-names

	Discussion
	Effects of data loss
	Similarity of decompositions
	Transitivity of agglomerative algorithms
	Computational cost

	Research limitations and future research
	Conclusion
	Acknowledgment
	References

