

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, June 2016

On efficiency and effectiveness of model-based test case

generation techniques by applying the HIS method: An

experimental research

Bachelor of Science Thesis Software Engineering and Management

SALI EL MASRI

MAHSA ABBASIAN

The Author grants to Chalmers University of Technology and University of Gothenburg the non-exclusive

right to publish the Work electronically and in a non-commercial purpose make it accessible on the

Internet. The Author warrants that he/she is the author to the Work, and warrants that the Work does not

contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a

company), acknowledge the third party about this agreement. If the Author has signed a copyright

agreement with a third party regarding the Work, the Author warrants hereby that he/she has obtained any

necessary permission from this third party to let Chalmers University of Technology and University of

Gothenburg store the Work electronically and make it accessible on the Internet.

On efficiency and effectiveness of model-based test case generation techniques by applying the

HIS method: An experimental research

Sali El Masri

Mahsa Abbasian

© Sali El Masri, June 2016.

© Mahsa Abbasian, June 2016.

Examiner: Riccardo Scandariato.

University of Gothenburg

Chalmers University of Technology
Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden June 2016

On efficiency and effectiveness of model -

based test case generation techniques by

applying the HSI method:

An experimental research

Mahsa Abbasian
Dept. of Software Engineering

Gothenburg University

Gothenburg, Sweden

gusabbama@student.gu.se

Abstract—Researchers and practitioners have extensively

studied various testing techniques and their importance on

affecting the cost and the quality of software. One of these

techniques is Model-Based Testing (MBT). MBT

concentrates on test models that are software artifacts

exploited for test automation. The goal of this project is to

evaluate whether we can reduce the number test cases and

time of test case execution in order to detect faults in MBT,

by implementing structured test case generation methods,

such as HSI method. To test our hypothesis, we conducted

an experiment where we compare the efficiency and

effectiveness of fault detection between the HSI method

implemented by us and the random test case generation

method implemented in a model-based testing tool called

ModelJUnit. The experiment is done after investigating the

existing random walk algorithm in ModelJUnit and

implementing the HSI method in the presented tool. Our

results indicate that the traditional technique which

employs mutation, for some mutants, has better fault

detection efficiency than the random walk, regarding the

length of the test cases generated. But, concerning the

effectiveness, measured by the number of mutants killed,

the HSI method only showed better results than the

random method for some cases. In these cases, the FSM

model of the implementation consists of an increasing

number of states, where the random walk cannot reach the

deeply injected faults.

Keywords—Model-based testing, finite state machines,

efficiency, effectiveness, HSI method, ModelJUnit, test case

generation.

Sali El Masri
Dept. of Software Engineering

Gothenburg University

Gothenburg, Sweden

guselmsa@student.gu.se

I. INTRODUCTION

Software testing is an essential part of software
development and an important activity to improve software
quality. However, it is well known that it is costly [16].
Therefore, it should be started as early as possible to make it a
part of a process for deciding requirements, and by that to
improve the product quality.

In recent years, there has been a growing interest in
studying model-based testing (MBT). These studies show how
MBT can positively affect the budget and quality of developed
software [22, 14, 15]. The main aim of model-based testing is
to model the system, in order to show that the expected and
actual behaviors of a system differ from each other, or to gain
confidence that they do not. In other words, MBT targets a
failure detection by finding observable differences between
the actual behavior of the implementation and the intended
behavior of the system under test (SUT) on a conceptual level,
as expressed by its requirements.

1.1. Problem

Systematic testing of software systems is an important and

widely demanded technique, which is used to check the quality of

systems. Manual testing is usually laborious and costly and hence,

automated test techniques have been considered widely in

academia and industry. Therefore, the need for test automation for

reduced costs and higher quality software has been recognized as

a challenging opportunity to researchers to innovate, and propose

new methodologies for maximizing the efficiency of the testing

techniques [12]. Model-Based Testing (MBT) is such a technique,

in which the test cases are generated automatically from a model

of the system behavior. An example

of a formal model is Finite State Machines (FSM) [19,20],
which are widely used models for describing the behavior of
the System Under Test (SUT). There have been several FSM-
based MBT methods proposed so far such as W-method [1],
Wp-method [2], and HSI-method [3,4].

There have been some testing tools developed for application

of different MBT methods and are in use today [12]. ModelJUnit

is an open source Java library extending JUnit, which is designed

to support MBT. This framework allows for FSM models to be

written as Java classes and then tests are generated from those

models and ran similar to other JUnit tests.

1.2. Aims and objectives

The primary purpose of this project is to perform a
comparison between the efficiency and the effectiveness of the
test case generation techniques used by one of the above-
mentioned FSM -based methods, such as HSI method that we
will implement, and the existing random walks algorithm in
ModelJUnit for Java applications. In the first step, the
possibility of applying the desired test case generation
algorithm on top of the ModelJUnit library should be
investigated. In the case of complications with implementing
the test case generation algorithm using the library, we focus
on generating test cases for applications written using our tool
for a small and lightweight subset of Java. As the next step,
the efficiency and the effectiveness can be compared to
ModelJUnit and the algorithm implemented by us for a set of
examples (e.g., by using mutation testing).

1.3. Purpose

The boost in the development of critical applications has
demanded stringent methods that guarantee software
reliability. Software companies have pursued solutions that
have, at the same time, low cost and high effectiveness [20].
Although formal methods and model checking methods have
been used to verify the software development, software testing
still a widely used complement for these methods concerning
executing the SUT and comparing the obtained behavior with
the expected one.

The purpose of this study is to advance the current knowledge

of using model- based automated tests in the testing and

verification of formal specifications, which represent a significant

opportunity for software testing since they precisely describe

what functions the software is supposed to provide.

1.4. Scope and Limitations

This study will be limited to testing on simple Java

program implemented by us and some other SUT models that

are provided by the model-based testing tool ModelJUnit.

1.5. Research Questions

From the research goals we derived the following research

questions:

Q1: Which of the two model-based testing methods is

superior in efficiency?

Q2: Which of the two model-based testing methods is

superior in effectiveness?

This paper is organized as follows. Section II presents the
definition of effectiveness and efficiency, reviews the
background of the various MBT techniques being compared
and reviews the related work to our experiment. Section III
describes the implementation of the traditional algorithm (HSI
method). Section IV depicts the comparison method we
adopted, the data collection and the data analysis. Section V
describes the results of the conducted experiment. Section VI,
discusses the results and their relation to the hypotheses.
Finally, we conclude and suggest future work in Section VI.

FF. BACKGROUND

A. Overview

Efficiency has at times been defined as “doing the job right”;

and effectiveness has sometimes been defined as “doing the right

job” [10]. Therefore, it has been considered to be a major factor

of the software development life cycle. There are many ways to

measure efficiency and effectiveness of test case generation

techniques in model-based testing. One way we will use is

mutation testing, which is known as a test that evaluates the test

generation techniques’ quality. In order to perform the

comparison, we will apply the mutation testing to the random test

case generation algorithm (ModelJUnit), and then on the

traditional test case generation technique (HSI method).

1. Efficiency and effectiveness

Since we are conducting an experiment to compare the

effectiveness and efficiency of model-based testing techniques, it

will be constructive to clarify how these words are used in the

context of software testing. Effectiveness means the number of

faults that are detected by the utilization of an error detection

technique [21]. According to Weyuker [22], measuring the

effectiveness of testing is not possible since the calculation of this

measurement requires information that is not available. However,

the formal comparison of testing criteria regarding expected

number of failures detected is possible.

Moreover, we are using the mutation analysis technique to
inject faults in the original implementation program, these
faults investigate and evaluate the effectiveness of the
methods regarding the number of faults detected by them. On
the other side, the word efficiency will be meaningful if we
consider the meaning of the effort and the time that it takes to
detect the faults in testing criteria. The efficiency of the test
criteria also provides information about their cost-
effectiveness. In our experimental study, we obtain the
measurement for effectiveness and efficiency on a set of test
cases generated by the two different methods, the HSI and
random walk method, by using mutation testing analysis [21].

2. Finite state machine

Finite state machines have been widely used to model
systems in diverse areas, like sequential circuits and most
recently in communication protocols [23], [24]. Testing, with
the help of FSM, increases the system reliability, where the
FSM models the system to ensure its functionality.

A finite state machine (FSM) is a deterministic mealy

machine [20] that produces outputs on their state transitions

after receiving some inputs. It composes a 5-tuple: M = (I, 0,

S, δ, λ) [25], where:

 I: is a finite set of inputs.


 O: is a finite set of outputs.

 S: is a finite set of states with initial state s0.


 δ: δ = S x I -> S is the state transition function.


 λ: λ = S x I -> O is the output function.

When the machine is in a current state and receives an
input, it moves to the next state that is specified by δ and
produces an output defined by λ. An FSM can be represented
as a directed graph, where the vertices perform the states, the
edges carry out the state transitions and each edge is labeled
by the input and output functions. For example, suppose we

have a stack, an empty stack corresponds to the state s0. When

we call “push” function, we move from s0 to s1. The same
occurs for the pop function but in the opposite way, where
calling pop will take us back to the previous state.

Figure 1 shows a simple FSM of a stack with “push”,

“pop” and “peek” functions:

fig 1: Stack FSM.

3. ModelJUnit

Unit testing has become widespread in software quality

assurance [5]. ModelJUnit tool extends JUnit to support Model-

based testing for exploring FSM based tests and generating test

cases. To execute the test cases and model it in a form of an FSM,

it has to contain an initialization method, guards (conditions) and

actions (method calls). A guard indicates the transition which is

enabled and an action indicates the successor state and the

corresponding action of the system under test. By using

ModelJUnit library, a test can start from simple FSM model and

grows to become a more complex model (EFSM), which provides

a collection of traversal algorithms to generate

the tests out of models. The EFSM defines the transitions and

possible states which are likely to test. Also, it works as an

adaptor to connect the model to the system under test (SUT) [7].

ModelJUnit offers several testing strategies, (All Round

Tester, Greedy Tester, Looked Ahead Tester and Random Tester),

and coverage metrics (Action Coverage, State Coverage,

Transition Coverage and Transition Pair Coverage). On average,

the Random tester follows the “Random walk algorithm” that

covers every transition of the model. The Greedy tester follows

the “Greedy Random Walk” algorithm that gives priority to

unexplored paths. The looked ahead tester follows the

“Lookahead Walk” algorithm that does a look ahead of several

transitions to find the unexplored paths. In this experiment, we

focus on the Random tester with Transition Coverage.

Figure 2 shows a simple FSM model of an SUT

implemented in ModelJUnit:

Figure2. ModelJUnit example (GUI example)

4. HSI method

The HSI-method derives a family of harmonized identifiers

[8], also referred to as a separating family of sequences. The HSI-

method is a traditional algorithm that contains two main parts.

The first part (state identification) checks for each state of the

specification whether it also exists in the implementation. The

second part (transition testing) reviews all remaining transitions

of the implementation by monitoring whether the output and the

next state conform to the specification [9]. The HSI-method uses

the separating family to assay the states in both state

identification and transition testing [8]. The separating family can

be obtained from a characterization set W, which in the worst

case, will be the W set itself. A separating family of sequences of

FSM is a collection of sets satisfying the following two

conditions: For every pair of states, there is an input sequence that

separates them [9]. The HSI-method uses appropriate members of

the separating family in both stages of the algorithm. These

members examine if the state in the implementation has the same

behavior as that in the model.

The first part of the algorithm is called prefix-closed state

cover set. This set reaches all the states of the FSM, and it may

be created by constructing a spanning tree (see figure 3.b)

from the state transition graph of the specification machine M.

A spanning tree of FSM M rooted from the initial state s0 is an

acyclic sub graph of the FSM graph and is composed of all the

reachable vertices (states) and some of the edges (transitions)

of M. A state cover set is then generated from the spanning

tree, where all the possible paths from the initial node are

traversed. In the second part of the algorithm, building the

family of separating sequences can be done by generating the

characterizing set (W set) [17] for the FSM model with input

set I and output set O. The characterizing set of M is a set W

of input sequences such that for every pair of distinct states,

there exists an input sequence in W such that each input of

each state is different from the input of the other state.
Figure 3 shows an example of how a spanning tree can be

generated from an FSM (directed graph).

Fig3. b. Generated spanning tree of M

Fig2. a. FSM M

B. Related work

Software Defined Networking (SDN) presented a case
study on model-based testing of SDN firewall programs [10].
They investigated the firewall module of Floodlight, one of
the most popular SDN platforms in Java. The result showed
that the generated model based tests have achieved much
higher mutation coverage than the existing JUnit tests in the
Floodlight firewall program, which indicated that model-based
testing can be a viable option for quality assurance of SDN-
based firewall programs.

K. ElFakih et al. performed some experiments on
incremental test generation methods, based on HSI test
derivation method, that reduces the cost of testing with on a
modified system specification by generating tests that only
check the corresponding modified parts of the implementation
[14]. The experiments were done on an implemented software
tool and it clearly showed significant gains in using
incremental testing as compared to complete testing, when less
than 20 percent of the transitions of the original specifications
were modified.

Furthermore, A. Paradkar, conducted three different case

studies in order to compare various techniques in terms of a

number of generated test cases and their fault detection

effectiveness. The application of the case studies was on

relatively simple applications (e.g. simple ATM application for

withdrawing money) [15]. The results of the case studies showed

that MBTG technique which employs mutation technique for

generating state verification sequences provides better fault

detection effectiveness than those based on boundary values, and

predicate coverage criteria for transitions.

The work we are conducting will also involve mutation

testing [13], where we test the new algorithm of the HSI method.

A similar work was carried out by A. Takeshi Endo and A. Simao

[18] where they compared the recent methods (H, SPY, P) that

generate the test suites from finite state machines with the

traditional ones (HSI, W) in their study. The comparison and

analysis of these methods were in different configuration and

fault detection ratio and were evaluated by applying the mutation

testing to simulate the faults in their experiments. The results of

this study showed that the H, SPY, and P methods produce short

and more test cases while the HSI and W methods product longer

test cases. All methods show a high average of the fault detection

ratio over 92 percentages. Though the shorter test cases are easy

to debug and execute and are suitable to execute by hand.

However, the longer test cases are suitable if the cost is important

and a test should be executed automatically.

CCC. IMPLEMENTATION

In this section, we present the implementation of the HSI
method, (depicted in Section II). HSI implements the
traditional test case generation algorithm. The implementation
of the algorithm is done in Java programming language and
uses Java and ModelJUnit tool libraries. The implementation
of HSI is done under three phases:

1. The state cover set (refer to Section II, 4): To
implement this phase, we first use ModelJUnit
library to build a graph (FSM) that consists of
nodes (states) and edges (transitions). Then, we
apply the Depth First Search (DFS) [3,4,25] to
traverse the graph and build the spanning tree (fig.
3-b). Subsequently, we apply the topological sort,
which gives us a power set of all the edges
(transitions) in the spanning tree. Consequently,
the power set of the edges is put in a set, which is
the state cover set. For example, in figure 3-b a
state cover set is: {ε, acion2(), action2().
action1()}, (where ε is the empty input sequence).

2. The characterizing set (W set): Due to time issues,

we could not implement the complete
characterizing set as in the algorithm description,
but a simplified version of the W set was
implemented. The simplified version of the W set,
consisted of traversing the FSM to get all the
distinct calls in the FSM. Assuming the FSM in
figure 3-a, the characterizing set is computed as
follows: {action2(), actionNone(), action0(),
action1()}.

3. The concatenation of the sets: The last phase was

computed by the concatenation of the state cover set

and the characterizing set. The concatenation of

the two sets is as well the generation of test cases.
The test cases generated by the examples
mentioned above are: {action2(), actionNone(),
action0(),action1(),action2().action2(),
action2().actionNone(), action2().action0, etc.}.

IV. RESEARCH METHOD

The research process consists of an experimental research.
First, we provide the description of how ModelJUnit works in
test-driven development and how we can apply the HSI -
method on ModelJUnit. In the next step, we implement a
simple program module (stack) that is applied to compare the
two methods by mutation testing. Then, we implement the HSI
method in ModelJUnit, using its library. The last step is the
comparison of effectiveness and efficiency through mutation
testing analysis with the modified ModelJUnit. To mitigate the
threats to validity, we applied the methods on another example
(String Set) with an FSM model and its implementation in
Java. Next, we provide a brief explanation of the two
examples on which we have evaluated our approach.

Stack is a simple class with five main functions: push, pop,

peek, isEmpty and clear. When the “push” function is called, an

element is added to an array of integers with a maximum size.

The “pop” function, when called, deletes the last added element

from the stack (array) and the “peek” function shows the last

element added to the stack. The Boolean function “isEmpty”

checks whether the stack is empty or not and “clear” function

empties the stack by reassigning a new empty array.

String Set is a simple set class with six functions: add,

remove, clear, contains, isEmpty and equals. The “add” function

merely adds strings to the set and “remove” function removes

string from the set. “IsEmpty” returns true when the set is empty.

“Contains” and “equals” are Boolean functions, which check

whether the set contains the requested element, respectively

compares a specified object with the set for equality.

The upcoming sub -sections are divided as follows: A-
represents the design of the experimental research, B- states

the data collection procedure and C - outlines the analysis of
the gathered data for the experiment.

A. Experiment design

In this subsection, we present a description of the experiment

in the laboratory environment. In (a) give a small definition of

the experiment, (b) and (c) cover successively the

independent and dependent variables. Additionally, (e)

presents the experiment steps, (f) covers the measurements

instruments we used in the experiment and finally, (g)

describes the measurements’ objects.

a) Experiment definition

Although several studies have been conducted in order to

compare and evaluate different testing methods and strategies,

few of them have been validated experimentally [26].

Theoretically, the structured test case generation algorithms, such

as HSI, are expected to be more effective concerning killing more

mutants than the random algorithm. The efficiency of the two

algorithms is as well expected to produce considerable

differences with respect to the number of test cases generated

before finding the mutants and killing it. The ModelJUnit is

predicted to be ameliorated after applying the HSI. This

amelioration is anticipated due to the strategy that the random

walk follows when it randomly resets after generating some test

cases, which may require longer time and number of test cases

before detecting the fault. In order to design the experiment, we

needed to understand how the test case generation effectiveness

and efficiency could be measured.

b) Independent variables

The independent variables are the variables to manipulate in

the experiment [11]. In this experiment, the independent variables

will be the ModelJUnit algorithm and the HSI-method.

c) Dependent variables

The dependent variables are the outcome of the experiment

that we want to study to see the effect of changes [11]. The

dependent variables will be the measured efficiency and

effectiveness of the tool after the modification.

d) Hypothesis

The general hypothesis of the experiment is that the
ModelJUnit with HSI method is more efficient and effective in
generating test cases and increasing the coverage metric, i.e.
the amended ModelJUnit is assumed to generate more test
cases per time unit, and to find a larger rate test coverage. The
hypotheses of our experiment are presented below:

H0-Effcy: There is no difference in efficiency measured by the

length of the test cases generated before and after the

application of the HSI-method to ModelJUnit.

H1-Effcy: There is a difference in efficiency measured by the

length of the test cases generated before and after the

application of the HSI-method to ModelJUnit.

H0-Effv: There is no difference in effectiveness measured by

the number and type of mutants killed before and after the

application of the HSI-method to ModelJUnit.

H1-Effv: There is a difference in effectiveness measured by the

number and type of mutants killed before and after the

application of the HSI-method to ModelJUnit.

e) Experimental steps

The experiment plan was divided into a two-phases

process. In the first phase, we implement the HSI algorithm
(as described in Section III) in ModelJUnit by referring to its
library. To check the complexity of applying it in ModelJUnit,
we applied some tests on the simple stack class, which was
flexible to convert to an FSM model with a larger number of
states, where each time “push” is called, a new state is added.
In the second phase, we applied the mutation approach (read
more in section C) to the implementation part of the SUT.
Afterward, we extended the tests to apply it to programs with
larger FSM models provided by ModelJUnit, in order to
obtain more comparative insight about the examples.

f) Measurement Instruments (mutation testing)

Measuring efficiency and effectiveness is done by mutation

testing analysis. Mutation testing provides an indication of the

fault detection ability of a test set [13]. Mutation testing analysis

introduces small syntactic changes in the source code of a

program to produce mutants (for instance replacing a plus sign

with a minus sign). The aim of mutation testing is the evaluation

of a test set, and to do that, all the mutants should be killed. In

order to kill the mutants, the test set should reveal a difference

between the original and the mutated program [13]. There are

several tools introduced for automatically create mutants and

evaluate the test sets (e.g. Pitest, MuJava), but for ModelJUnit we

created them manually since the mentioned tools are largely used

for JUnit testing evaluation and do not support MBT tools.

g) Measurement objects

The efficiency is measured by the number of test cases

generated until it detects the fault. The effectiveness is
measured when the faulty implementation (the mutant) is
killed during a test execution. We analyzed the effectiveness
of our mutation operators (defined in C) on their ability to kill
faulty implementations.

B. Data Collection

The information for describing the experiment’s
instruments will be gathered from literature review through
research papers related to ModelJUnit, random walks, HSI-
method, mutation testing. Furthermore, the supervisor
provides the technical specifications of the new algorithm that
we need to implement in ModelJUnit for the experiment.

For the experiment, the type of data to collect will first be
testing the ModelJUnit on a small program implemented by us
in java (e.g. Stack, Queue). ModelJUnit also has some
examples of various sizes with both FSM models and their
implementations applied in these examples as well.

In the next step, we test the same program with the HSI-

method. Then, we check the both techniques using mutation

testing and compare the results of efficiency by measuring the
number steps required to kill a certain mutant.

The effectiveness will be measured by the number of
mutants killed (within a given time bound). For each test
program, the number and type of mutants generated and killed
by the test cases generated are recorded and analyzed. The
data obtained for the tested programs were separately analyzed
to determine the effectiveness and efficiency of the two
distinct methods. The results are compared and analyzed in the
discussion phase.

C. Data Analysis

By following the mutant generation approach, we obtained
a set of mutants when injecting faults in the original program
using a set of mutant operators (refer to Section A-f). We
manually created mutants in the Stack program, implemented
by us and the existing String Set program in ModelJUnit. After
the mutants have been created, we ran the ModelJunit random
tester and then the HSI traditional tester to compare the
number of test cases generated by each of the two methods
before killing the mutant and the number of mutants killed.

Furthermore, according to mutation testing structure, we
tried to change the implementation part of the SUT and inject
manual errors in the code through some changes. Because of
the nature and small size of the programs, the only applicable
mutation operators that we used, and the types of faults
injected by them were the following [21]:

 Literal change operator (LCO): the type of fault

injected was changing increment to decrement and

vice versa, changing and removing statements.


 Control flow disruption (CFD), (or value
mutation): The type of fault injected was
incorrectly placing block markers (curly brackets)
and changing return values.


 Statement swap operator (SSO), (or statement

mutation): the type of fault injected was swapping
the order of statements in the same scope or
removing it.


 Variable replacement operator (VRO): The type

of fault injected was replacing a variable with

another from the same type.


 Missing condition operator (MCO), (or decision
mutation): the type of fault injected was removing
a condition in a conditional statement.


 Relational replacement operator (LRO): the type

of fault injected was replacing true with false, and
replacing greater than, equal to or less than and
vice versa.

We could not produce an exhaustive list of mutants for the

examples. Based on the code size, we determined that 25 mutants

would be adequate for the Stack program application, and 20 for

the String Set program application. The String set program had

fewer mutants than Stack program because it does not have too

many arithmetic operations and literal constants since it uses

functions from the set that is built in Java library.

For the stack example, to provide more focused and

elaborated evidence, we extended the mutation based approach to

include deep faults in the implementation, which target the FSM

states of the SUT model. An example implicates, inserting a

faulty conditional statement that pushes a wrong element to the

stack after certain steps (we increased the number of states of the

SUT from 10 to 199, and we pushed a wrong number at state 99).

We did not consider the bugs that would lead to crash when

running the program. Table 1 shows the distribution of the

different types of mutation operators and faults injected by them.

Table 1

The mutation operators’ distribution on Stack and String Set

 Mutation operator Nr of mutants on Nr of mutants on

 Stack String Set

 LCO 4 2

 CFD 3 3

 SSO 2 1

 VRO 3 4

 MCO 4 3

 LRO 9 7

 Deep Faults 2 0

V. RESULTS

A. Stack Program

We applied the generated test cases from the two methods on

the original and on each of the 25 faulty versions of stack

program. Subsequently, we measured the measurement objects

(Section A-g). The results are shown in Table 2. As can be seen,

most of the faults injected into the stack implementation were

killed at the same time, by the two methods. These mutants, were

mostly of types LCO, where all the increments of the array’s

indexes in “push” method, were altered to decrements instead and

vice versa (for example, stackArray[top++] statement is

converted to stackArray[top--] in push). Another example was the

LRO mutation operator, this operator was distinctly revealed by

the two methods we well (for example, in all the existing

conditional statements in the implementation of stack, we

replaced the cases of = = to <= /! =/>= or </>).

On the other hand, the table 2 also shows that some other

mutants were not revealed forthwith by the two methods (late

killed mutants). These types of mutants (mainly VRO) required

more testing effort from both the random walk method and the

HSI method (i.e. needed to generate more test cases). For

instance, the delayed coverage of some statements was in the part

of the code which assigns the last element added by “push” to the

stackArray, this statement was modified to assign another value

instead. Furthermore, one noticeable issue was that the

ModelJUnit, when generating the random walk tester, could

only kill the late detected mutants after a certain amount of tests,

depending on the length of the FSM states (since the stack FSM is

an increasing number of states, when the length of states was 10,

the number of test cases had to be raised to generate about 50

tests before failing). When the length of tests generated is below

the specified number, the mutants were not covered. However,

since the HSI method follows a more structured strategy than the

random one, the amount of test cases were not changeable. But it

also had to execute a similar number of test cases the ModelJUnit

ones before failing with the same type of mutants. Additionally,

six defects went undiscovered by any of the methods. The defects

were of different types (2 of type SSO, 1 of type VRO, 1 CFD

and 2 of MCO) . As shown, the survived mutants were of various

types, this was surprising since the tests from both methods were

covering all the code. After we checked these mutants, we

discovered that they were largely not of a big matter to failing. An

example is, when we swap a certain order of statements, it does

not need to be an error.

A useful observation of this experiment is that the deep
faults that were later appended to the implementation (see the
example in Section III-C) were not revealed by the random
method. We injected these errors to see if the random walk
will still kill the mutant after generating some test cases. But,
the results out of this test showed that the random walk did not
detect the mutant even when we increased the length of test
cases to 5000. However, the HSI method discovered the
mutant after generating a pretty long sequence of test cases in
order to reach that far state.

Table 2
Results for Stack program

The methods Mutants Mutants Mutants Mutants Mutation

(Stack)
 total early late survived Coverage

 killed killed (%)

ModelJUnit 25 14 4 7 72%
method(random

algorithm)

HSI method 25 16 5 4 84%
(traditional
algorithm)

B. String Set Program

We followed the same process for the String Set example after

injecting the 20 faulty versions in the original program module.

The results are shown in Table 3. As we can see, similar results

were obtained for the String set model, which killed most of the

injected faults, that are from different types of mutant operators,

by both the random method and the traditional method. Various

mutants were applied on this example, where mostly the mutants

that were instantly killed were of type VRO, MCO and LCO.

These faults were mainly removing statements, swapping others

and changing values from the same type, especially when we

check if a string exists in the set. As other examples were when

we change the true to false and vice versa.

No significant differences, concerning effectiveness and

efficiency, were shown between the random and the traditional

methods when they run some test cases before realizing the

mutants and killing them. However, the random method needed to

generate some more test cases than the traditional method before

failing (for the String set, it needed to produce 27 test cases

before the fail, while the traditional test case generation method

fails after 10 test cases). Further, we investigated the survived

mutants, and we observed that these mutants involved some

implementation variables which were not present in the

specification so that the tests could not cover it.

Table 3
Results for Stack program

The methods Mutants Mutants Mutants Mutants Mutation

(String Set)

 total early late survived Coverage

 killed killed (%)

ModelJUnit 20 10 5 5 75%
method(random

algorithm)

HSI method 20 12 4 4 80%
(traditional
algorithm)

VI. DISCUSSION

A. Efficiency and effectiveness

Tis experiment tries to provide a more effective method,

regarding MBT. As mentioned before in the report, the efficiency

of a test case is its ability to find the fault with the least effort, and

the effectiveness is the ability of this test case to find the fault in a

program. The results have shown that there is no significant

difference in efficiency between the random walk in ModelJUnit

and the structured HSI method, that was measured by the number

of the test cases generated before detecting the mutants. Hence,

we could not reject the hypothesis
H0 effcy, which claims the no difference in efficiency between
the the random walk method and the HSI method.

Furthermore, the effectiveness of the methods was dependent

on the type of the implementation. For example, when we ran the

experiment on the String set model, which consisted of limited

states of true and false options, each time we add or remove a

number, the two methods were either detecting the mutants and

killing them at the same time, or at all not recognizing that the

implementation was faulty. Whilst in the stack model, the states

of the FSM are not options, but numbers that increase each time

we push an element in the stack. In this case, when we increased

the number of states to 100 and injected some severe faults in the

original implementation of the stack (e.g. in state 99 when we

pushed a wrong element), the random walk could never reach the

state 99 because of the random reset that the random walk method

calls with a chance of 5% while generating the test cases. But, the

HSI could recognize the fault and fail when reaching the state 99.

However, to reach the state 99 in ModelJUnit, we had to
decrease the chance of calling the reset function to 0.001 %.
This reduction helped us to detect the deep mutant and kill it
but rose another issue. Namely, in models and
implementations with numerous branches this could reduce
the effectiveness, because the random walk may be stuck in a
particular branch without resetting to cover other branches.

Thus, we could conditionally reject the hypothesis H0effv,

which claims the difference in effectiveness between the
random method and the HSI method. According to this
condition, the random walk could compete in effectiveness
with HSI only if we know exactly how the model looks like.

In fact, we did not put a major attention to investigate the
reasons behind all the killed or survived mutants, as our
experiment is to examine whether there is an improvement,
with respect to efficiency and effectiveness, after applying the
HSI method to ModelJUnit not how effective or efficient the
methods are.

B. Threats to validity

No data is perfect and no analysis can be 100 percent

trustable. Specially, in any experimental study, it’s crucial to

identify the threats to validity and carefully assess the likelihood

of such threats and their potential consequences [27]. Some

factors that affect the validity of the results of this experiment can

be classified into two primary types: internal threats and external

threats. The internal threats determine whether the conditions of

the experiment and the evidence offered support what the

experiment claims to provide. Further, the experiment time was

one of the major threats to validity, the entire duration of the

experiment was about three months, which was quite short for

such a study. Due to time constraint, we have not gotten the

opportunity to complete the application of the full HSI method in

ModelJUnit, so an implementation of a simplified W-set of HSI

would not be sufficient to validate the experimental results.

Moreover, the examples we were running the experiment on,

were of a small size, but this experiment may require sufficiently

large test examples in order to covers as many mutants as possible

for the results to be more valid and interpreted correctly. On the

other hand, our basic understanding of the model-based testing,

since we are bachelor students, can be as well treated as a threat

to the validity of the results.

The external validity is related to our ability to generalize
the results of the experiment [27]. Since we did not have
access to automated tool support for the methods we are
comparing, we chose only two modest examples (stack and
string set). Thus, for a broader applicability of the results, it
will be important to repeat these experiments on other
examples where real faults have been introduced and where
the complete HSI method has been implemented. Indeed, we
do not believe the results will be impacted by the simplicity of
the chosen programs, but only on the size.

C. Limitations of the experiment

Lack of proper tool-support for obtaining better results may

be a hindrance in applying this experiment. For example, the

mutation operators of different types were injected manually,

since there are no tools for automatically inserting faults in the

implementation part of the models. On the other hand, time

restricts and lack of experience of the researchers were as well

limitations to provide better conclusion of the conducted work.

VII. CONCLUSION

Testers are usually interested in the fault-finding abilities
of different software techniques and models (effectiveness)
and their effort requirements (efficiency). In this paper, we
review two important model-based test generation methods:
the random walk method modeled by ModelJUnit and the HSI
structured method. Moreover, we report the results of an
experimental study, that compares the two reviewed methods,
regarding their effectiveness and efficiency. We found that the
two methods required a nearly equal effort to detect bugs in
the implementation, while the HSI achieved more effective
fault detection than the ModelJUnit, only when the chance for
random reset was about 5% or more. But if we do not know
what the right random reset percentage is, we are more likely
to either miss a lot of bugs or not cover the all the states. Thus,
we conclude that the random walk could be a competitor with
HSI only when we exactly know how our model consists on
an increasing number of states. However, it is not clear if these
results can be generalized to wider examples of larger
complexity, so we believe that more experiments are needed
in the future for more accurate results and better validity.

ACKNOWLEDGMENT

We would like to express our sincere gratitude to our
supervisor, Mr. Mohammad Mousavi for the continuous
support and for his patience, motivation and immense
knowledge, and for providing us with the necessary
knowledge throughout this thesis period in order to conduct
our experiment properly. We would like to thank him too for
his constant feedback during the entire phase of the research’s
development. We would also like to thank Mr. Imed Hamouda
for his feedback which helped us in constructing the thesis
proposal and final report. Special thanks to Miss. Mahsa
Varshosaz for providing us with all the necessary facilities for
the research, in particular to the implementation of the HSI
method. Last we would like to thank all the volunteers who
have helped in achieving the goals of this research.

REFERENCES

[1] T. S. Chow. Testing software design modeled by finite-state

machines. IEEETrans. Softw. Eng., 4(3):178–187, 1978.J.
[2] S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, and A.

Ghedamsi. Test Selection Based on Finite State Models. IEEE
Trans. Softw. Eng. 17(6), 591-603, 1991.

[3] K. Sabnani and A. Dahbura. A protocol test generation
procedure. Comput. Netw. ISDN Syst., 15(4):285{297, 1988.

[4] N. Yevtushenko & A. Petrenko (1990): Synthesis of test
experiments in some classes of automata . Automatic Control
and Computer Sciences 24(4), pp. 50–55.R.

[5] J. Link and P. Fröhlich. Unit Testing in Java: How Tests Drive
the Code. Morgan Kaufmann Publishers, Inc., 2003.

[6] C. Artho. Separation of Transitions, Actions, and Exceptions in
Model-based Testing,12th International Conference, Las Palmas
de Gran Canaria, Spain, February 15-20, 2009.

[7] M. Utting and B. Legeard. Practical Model-Based Testing: A

Tools Approach, Morgan Kaufmann Publishers, 2007.
[8] A. Petrenko, N. Yevtushenko, A. Lebedev, A. Das.

Nondeterministic state machines in protocol conformance
testing. In: Proceedings of the IFIP TC6/WG6.1 Sixth
InternationalWorkshop on Protocol Test systems, vol. VI, pp.
363–378 (1994).

[9] G. A. Nemeth, Z. Pap, G. Kovacs, M. Subramaniam, FSM-based
Incremental Algorithms for Test Generation and Testing,
Computer Science Department, University of Nebraska at
Omaha, Omaha, NE 68182, USA

[10] I. Alsmadi, M. Munakami, D. Xu, Model-Based Testing of SDN

Firewalls: A Case Study, 978-1-4673- 9581-6/15, 2015, IEEE.
[11] C. Wohlin, and P. Runeson, Experimentation in Software

Engineering: An Introduction. 2000, Boston: Kluwer Academic
Publishers.

[12] M. Ramachandran, And R. Carvalho, (2010). Handbook of
research on software engineering and productivity technologies.
Herhey, PA:Engineering Science Reference.

[13] L. du Bousquet and M. Delaunay, (2008). Towards Mutation
Analysis for Lustre Programs. Electronic Notes in Theoretical
Computer Science, 203(4), pp.35-48.

[14] K. EI-Fakih, N. Yevtushenko and G. Bochmann, (2004). FSM-
based incremental conformance testing methods. IEEE
Transactions on Software Engineering, 30(7), pp.425-436.

[15] A. Paradkar, (2006). A quest for appropriate software fault
models: Case studies on fault detection effectiveness of model-
based test generation techniques. Information and Software
Technology, 48(10), pp.949-959.

[16] P.K. Kapur; G. Singh; N. Sachdeva And A. Tickoo, Measuring
software testing efficiency using two-way assessment technique,
Reliability, Infocom Technologies and Optimization (ICRITO)
(Trends and Future Directions), 2014 3rd International
Conference on, Oct. 2014, IEEE

[17] M. Broy (2005). Model-based testing of reactive systems.
Berlin: Springer. 87-111.

[18] A. T. Endo And A. Simao (2013). Evaluating test suite
characteristics, cost, and effectiveness of FSM-based testing
methods. Information and Software Technology, 55(6), 1045-
1062. doi:10.1016/j.infsof.2013.01.001

[19] A. Takeshi Endo, A. Simao, Evaluating test suite characteristics,

cost, and effectiveness of FSM-based testing methods, June 2013

[20] A. Takeshi Endo and A. Simao. Experimental Comparison of
Test Case Generation Methods for Finite State Machines, Fifth
International Conference on Software Testing, Verification and
Validation, 2012, IEEE.

[21] A.Gupta & P.Jalote, An approach for experimentally evaluating
effectiveness and efficiency of coverage criteria for software
testing, Published online: 8 January 2008.

[22] E. Weyuker: Can we measure software testing effectiveness?In:
Metrics ’93: Proceedings of 1st International Symposium on
Software Metrics,IEEE Computer Society, Washington (1993).

[23] A. D. Friedman and P. R. Menon, Fault Detection in Digital
Englewood Cliffs, NJ: Prentice-Hall, 1971.

[24] Z. K’ohavi, Switching and Finite Automata Theory, 2nd ed.

New York McGraw-Hill, 197:8.
[25] D. Lee and M. Yannakakis, Principles and methods of testing

finite state machines : A survey, Poceedings of the IEEE, Vol.
84, No. 8, August 1996.

[26] N. Juristo, A.M. Moreno, S. Vegas: Reviewing 25 years of
testing technique experiments. Empirical Softw. Engg. 9(1–2),
7–44 (2004).

[27] J. H. Andrews and Y. Labiche: Using Mutation Analysis for
Assessing and Comparing Testing Coverage Criteria. IEEE

Transactions on software engineering, Vol. 32, NO. 8, August

2006.

