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Abstract

In this paper we study unobserved heterogeneity in logistic regression, which occurs as a result
of omitted variables. Unlike linear regression, logistic regression estimates are affected by model
misspecification even if omitted variables are not correlated to the explanatory variables in the
model. As a result, interpretation of log-odds ratios and odds ratios is not straight forward and
similar models with different independent variables can not be compared. We study average
marginal effect as a possible measure of overcoming the unobserved heterogeneity problem.

1 Introduction

Throughout various fields in research one might be interested in studying qualitative (or
categorical) outcome that is represented by binary variables. Such practice may often arise in
medical research (for example the presence or absence of a particular disease), economics (being
classified as unemployed, or within some credit-risky group), demographic research (married -
divorced) or political research (voting preferences). Logistic regression has become one of the
most commonly-used statistical methods for modeling such dichotomous outcome (Harrel and
Frank, 2001). Popularity aside, a care should be taken when using logistic regression since
recent research shows that our usual way of interpreting results from logistic regression might
lead to several issues that arise from the fact that we are often not able to include all relevant
variables in our model. However, unobserved variables still affect the outcome. Variations in the
outcome, or the dependent variable, due to omitted variables is called unobserved heterogeneity
(Mood, 2009). In this paper we investigate the effect of unobserved heterogeneity on logistic
regression coefficients. Further, we study one of several methods designed to address the problem
of unobserved heterogeneity.

As noted above, some researchers have shed light on the problem caused by unobserved het-
erogeneity in logistic regression. Cramer (2006) writes about logit and probit models, having
omitted variables in focus. He refers to Wooldridge’s analysis of downward bias on probit coef-
ficients that occurs when omitting relevant variable from the model and widens the discussion
on logistic regression. Using Wooldridge’s average partial effect estimator (APE) as a starting
point, Cramer defines a similar estimator, average sample effect (ASE), and investigates the
effects of unobserved heterogeneity on it. ASE is tested in a simulation using a latent variable
framework. He studies the effect of omitted independent variable, even as a result of using dif-
ferent distributions. The simulation shows no bias in ASE when a relevant independent variable
is omitted.

Mood (2009) studies the unobserved heterogeneity from the aspect of our usual interpretation
of logistic regression results. She shows how omitted variables can lead to misleading interpre-
tation even when they are not related to the independent variables in the model. Her article
describes several estimators that are used to overcome this issue. Marginal effect at mean is
obtained by taking the value of logistic probability density function and plugging in the pre-
dicted logit of all independent variables being set to their means. This value is multiplied by the
estimated coefficient for the independent variable of interest. Average marginal effect is obtained
by taking average of logistic probability density function of the predicted logit, evaluated for all
values of independent variables in the sample. Resulting value is multiplied by logistic regression
coefficient. Average partial effects is calculated in the same way as average marginal effect, but
within a specific range of values on the independent variable related to the aforementioned coef-
ficient. In addition, she also investigates linear probability models (LPM) as a possible solution
in a certain contexts, and compares the LPM estimators to average marginal effects from logistic
regression.
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Karlson,Holm and Breen (2010) compare regression coefficients between logit and probit
models. They suggest that comparison of coefficients of a certain variable across different probit
and logit models should be avoided, since the change in the coefficient of interest cannot be
directly attributed to the inclusion of confounding variables. Using the latent variable framework
they show that average partial effect estimator, as defined by Wooldridge, can be sensitive to
rescaling. They claim to take even a step further and develop another estimation method that
allows unbiased comparisons of logit or probit coefficients of the same variable (x) across nested
models successively including control variables (z). According to them, the method extends all
the decomposition features of linear models to logit and probit models.

Wooldridge (2009) writes about interpretation of logit and probit models. Although the
unobserved heterogeneity is not analysed in depth, he does note the rescaling problem and
inability to directly compare magnitudes of the coefficients estimates across models. For this
purpose he derives two types of rescaling factors - partial effect at the average (PEA) and
average partial effect (APE). They are calculated in the same way as Mood (2009) describes
(marginal effects and average partial effects). Wooldridge shows that one can make a consistent
comparison across logit, probit and LPM models coefficients using these estimates.

In this paper we focus on one of the solutions defined by Wooldridge - average marginal effect
(AME). Since this estimator is already well studied in the literature in terms of bias we will
simulate and study both it’s bias and variance. However, while this estimator is often studied
in an asymptotical manner, our main focus is on empirically relevant sample sizes. After intro-
duction we give a short overview of logistic regression, explaining the latent variable model and
how omitted variable can affect the outcome. After that we will describe three types of estimates
relevant for our discussion. These include logistic regression coefficients, average marginal effects
and mean squared error for the average marginal effect, as a variance estimator. Next part is
empirical analysis where we conduct our simulation experiment and test behaviour of average
marginal effect. In addition to the simulation study, we illustrate the effect of unobserved het-
erogeneity on a model built on MROZ dataset. After that we present and discuss the results.
The final remarks and thoughts are given in conclusion.

Since equations appear in the text quite often, it is good to describe how they are organized.
Throughout this paper we will use the following notation unless otherwise stated:

n the number of observed cases
p the number of parameters
y n× 1 vector with ith element yi
X n× p design matrix where the first column is always a vector of 1’s, and the other columns

represent variables
Xi ith row of the matrix X, that contains all of it’s columns: x0, x1, ...xp. As noted above,

the first column x0 has value 1 through all the rows
xj jth column of the matrix X. In equations for the ith case (yi) we avoid writing explicitly

the first column of X (since it’s value is 1). As a result, the intercept is simply β0 and xij
represents the ith observation in the variable j

β p× 1 vector with element βj , the coefficient for the jth parameter
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2 Background

2.1 Logistic regression

Binary outcome is often modeled with logistic regression, but it can also be modeled with linear
probability models that are based on OLS. Due to importance of OLS, we will compare these
two methods in few words. Logistic regression belongs to the family of generalized linear models,
and linearity in parameters can make it similar to OLS. Further, since probability is measured
in a range from 0 to 1 we need a model with a response variable that falls within this interval.In
OLS solution to this problem is achieved with linear probability model (LPM), where the linear
regression is adjusted so that we focus specifically on the binary outcome of response variable.
In practice this has at least two shortcomings - for certain values of predictor variable it is still
possible to get predictions less than 0 or larger than 1. Another problem is linearity itself,
which does not hold in many contexts. In logistic regression these problems are addressed by
introducing a link function that is more appropriate for modelling probabilities (since it returns
output between 0 and 1). Unlike linear regression where we model the response E[y] directly,
in logistic regression we estimate probability that the response variable falls in a particular class
by modeling the link function - logit(E[y]).

Let us briefly motivate the use of link function in logistic regression. When dealing with
binary dependent variable it is reasonable to assume that it follows a Bernoulli distribution
where E[y] = P (y = 1) and the mean must be bounded between zero and one. In order to
satisfy this boundary we model E[y] using logistic cumulative distribution function. Assume
that the ith response of the variable y is a linear function of predictors Xi such as

yi = β0 + β1xi1 + ...+ βpxip, (1)

then we can model the ith outcome of the variable y with a cumulative logistic distribution as

E[yi] = P (yi = 1|Xi) =
eβ0+β1xi1+...+βpxip

1 + eβ0+β1xi1+...+βpxip
. (2)

After re-arranging terms we can write the expression above as

p(Xi)

1− p(Xi)
= eβ0+β1xi1+...+βpxip , (3)

where the left side of the equation denotes odd-ratio (McCulloh and Searle, 2001). In order to
have the model linear in parameters we take a natural logarithm of both sides

ln
[ p(Xi)

1− p(Xi)

]
= β0 + β1xi1 + ...+ βpxip. (4)

The right side of the equation above is our linear model, and the left side is logit(E[yi]) or
log-odds ratio. Figure 1 shows the graph of the realization of the empirical logistic distribution
function, with characteristic ”S”- shaped (sigmoid) curve that ranges between zero and one.

2.2 Latent variable model

In this paper we study logistic regression model that is derived from an underlying latent variable.
Latent variable model represents an underlying process that we can not observe or quantify, but
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Figure 1: Realization of the empirical logistic distribution function

we may still be able to model it’s eventual presence or absence with logistic regression. Let us
think of y∗ as an unobserved latent process and define it’s ith outcome as

y∗i = β0 + β1xi1 + β2xi2 + ei, (5)

where β0,β1,β2 are parameters, xi1, xi2 are independent variables for the ith case and ei is
corresponding error, unobserved but assumed independent of xi1 and xi2 (Karlson,Holm & Breen,
2010). The number of explanatory variables can be larger, we use two for simplicity. Since the
process y∗ is not observed, we can not model it directly. Instead, let us assume that we can
observe a binary variable y that takes values.

yi =

{
1 for y∗i >0
0 for y∗i ≤ 0.

(6)

We can further explain the latent variable framework through some practical examples. For
instance, we can’t observe a customer’s utility of buying a car - all we can see is whether a
customer has bought a car or not. Similarly, it would probably be hard to observe a feeling of
safety of a personal property. What we can observe is whether a person buys an extra insurance
or not. So, although y∗ is not possible to estimate directly, we can model the binary variable y
that reflects behaviour of y∗.

In further discussion we are interested in how changes in the latent, unobserved model affect
it’s variance and therefore the estimated, logistic regression model. In Equation 5 denote standard
deviation of the error term sd(e) = σ∗. The total variance in the latent variable y∗ consists of
the explained variance, V ar(β0 + β1x1 + β2x2), and residual variance V ar(e).

If we estimated this model with OLS, adding new variables would not change the total
variance; explained variance would increase and unexplained variance would decrease. However,
since we use logistic regression to analyze binary outcome y of the latent process y∗, we assume
that the error ei from Equation 5 is independent of xij and has the standard logistic distribution.
As a result of this assumption we can rewrite the latent variable for the ith case as

y∗i = β0 + β1xi1 + β2xi2 + σ∗ui, (7)
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where σ∗ is a scaling parameter defined as a ratio of the true and assumed standard deviation
for e, and ui is random variable that follows standard logistic distribution with the mean µ = 0

and variance σ2 = π2

3 (which we round to 3.29). In other words, σ∗ = sd(e)/sd(u).
Next, we define the response probability for yi as

P (yi = 1|Xi) = P (y∗i > 0|Xi)

= P [ei > −(β0 + β1xi1 + β2xi2)|Xi]

= P

[
ui <

β0 + β1xi1 + β2xi2
σ∗

|Xi

] (8)

which we write in terms of the equation (3) as

P

[
ui <

β0 + β1xi1 + β2xi2
σ∗

|Xi

]
=

exp(β0+β1xi1+β2xi2

σ∗ )

1 + exp(β0+β1xi1+β2xi2

σ∗ )
. (9)

In other words, after estimating the latent variable y∗ with logistic regression the result is

logit[P (yi = 1|Xi)] = βL0 + βL1 xi1 + βL2 xi2, (10)

where

βL0 + βL1 xi1 + βL2 xi2 =
β0
σ∗

+
β1
σ∗
xi1 +

β2
σ∗
xi2. (11)

Equations 7,8 and 9 reveal the mechanism of logistic regression. Since we assume that the vari-
ance for ei in Equation 5 follows logistic distribution (meaning that it becomes fixed to 3.29),
and can not observe σ∗ from the re-written latent model in Equation 7, using logistic regression
we standardize the coefficients β0, β1 and β2 from Equation 7. In equations 10 and 11 we see
this standardization, where the estimated coefficients are ratio of the coefficients in the latent
model and the scaling parameter σ∗ (Karlson, Holm & Breen, 2010). We write the estimated
standardized coefficients using notation βL in order to avoid confusion with non-standardized
coefficients further in the text.

2.3 The effect of omitted variable in the latent model

Let us further investigate what happens in case of omitting a variable that is relevant and present
in the latent model. In Equation 5, the total variance in in y∗ can be decomposed to explained
and unexplained, or residual variance. By fixing the residual variance from Equation 5 to the
variance of standard logistic random variable, any change in amount of the explained variance
leads to change in amount of the total variance in y∗ (and hence it’s scale), since the variance
in e is fixed to 3.29 (Cramer,2007) . With next example we show what happens if we omit a
variable from a latent model. Let us assume that the full equation of the latent model is

y∗i = β0 + β1xi1 + β2xi2 + ei (12)

where ei, with zero mean and variance σ2
F , is uncorrelated with both predictor variables and the

relationship between x2 and x1 for the ith case can be described as

6



xi2 = δ0 + δ1xi1 + vi, (13)

where δ0 and δ1 are parameters and vi is the error term, uncorrelated to the error ei from
Equation 12. Omitting the variable x2 affects our analysis in two ways. First, it leads to
confounding results in a reduced model where the effect of x1 is confounded with the effect of
x2. We show it by substituting Equation 13 into Equation 12

y∗i = β0 + β1xi1 + β2xi2 + ei

= β0 + β1xi1 + (δ0 + δ1xi1 + vi)β2 + ei

= β0 + δ0β2 + (β1 + β2δ1)xi1 + β2vi + ei.

(14)

From the Equation 14 we see that the effect that xi1 has on the response variable is now β1+β2δ1.
On the other hand, the error of the latent model increased to β2vi + ei.

As we saw in the Equation 11 from the previous section, estimating y∗ in Equation 14 with
a logistic regression will result in ratio of it’s coefficients and the scale parameter. Since we
defined the scale parameter as a ratio of the true and assumed residual standard deviation, after
omitting the column x2 the residual variance is V ar(β2v + e) = β2

2V ar(v) + 3.29 (Mood,2010).
This means that the scale parameter becomes

σ∗ =
sd(β2v + e)

sd(u)
=

√
V ar(β2v + e)

V ar(u)
=

√
β2
2V ar(v) + 3.29

3.29
. (15)

Using notation from Equation 10, the estimated coefficient βL1 for the model y∗ in Equation 14
is

βL1 = (β1 + β2δ1)

√
3.29√

β2
2V ar(v) + 3.29

. (16)

In Equation 13 we defined the relationship between x1 and x2. Assuming that they are uncor-
related means that the parameter δ1 equals zero, and the Equation 16 above becomes

βL1 = β1

√
3.29√

β2
2V ar(x2) + 3.29

, (17)

which shows that the size of unobserved heterogeneity will depend on the variance of the omitted
variable. In other words, even when dealing with uncorrelated variables, omission of one of them
will cause the logit estimate βLj to vary inversely with the extent of unobserved heterogeneity
(Cramer,2007). This is different from OLS where an omitted and uncorrelated variable does not
lead to bias.

3 Method and theoretical framework

3.1 Estimating coefficients in logistic regression

In this section we derive the estimators for parameters in a logit model. Logistic regression
belongs to the family of generalized linear models so parameter estimation differs a lot in com-
parison to simple (and multiple) linear regression, where OLS is sufficient. Instead, a maximum
likelihood estimation (MLE) is applied. Since it does not lead to a closed-form solutions for
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the estimators, another procedures have to be applied after MLE. In this paper we describe the
Newton-Raphson method which in this case is the same as Iterative Re-weighted Least Squares
framework (James, Witten, Hastie and Tibshirani, 2013).

In logistic regression response variable can take on two values, 0 or 1, which we denote as
”success” and ”failure”. This means that we can relate the maximum likelihood estimation to
the Bernoulli distribution. Assume that Yi are Bernoulli(pi) independent distributed random
variables where a probability of observing success yi is given by pi. Then we describe this
relationship with probability mass function of Bernoulli distribution (McCulloh and Searle, 2001)

P (Yi = yi|pi) = pyii (1− pi)1−yi . (18)

For the maximum likelihood estimation we need the joint probability distribution of variables
Y1, Y2, ..., Yn, which for Bernoulli distribution is

P (Yi = yi|pi) =

n∏
i=1

pyii (1− pi)1−yi (19)

and we formulate the log-likelihood equation as

L(β) = log
( n∏
i=1

pyii (1− pi)1−yi
)

=

n∑
i=1

(
log(1− pi) + yilog

( pi
1− pi

)) (20)

The terms from the equation above are already defined in equations (2), (3) and (4). We can
express them in the matrix notation

pi =
exp(XT

i β)

1 + exp(XT
i β)

1− pi =
1

1 + exp(XT
i β)

log(
pi

1− pi
) = XT

i β

and rewrite the log-likelihood equation as

L(β) =

n∑
i=1

(
yi(X

T
i β)− log(1 + exp(XT

i β)
)

(21)

In order to maximize the equation above we compute the score function which we will denote as
U(β)

U(β) =


∂L(β)/∂β0
∂L(β)/∂β1

...
∂L(β)/∂βj


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and proceed solving the equations by setting

U(β) = 0.

There is no closed-form solution to this system which means that we apply another technique in
order to estimate coefficients β. MLE estimators are found through an iterative procedure such
as Newton-Raphson algorithm, which we describe in the APPENDIX (8.2).

3.2 Estimation of average marginal effects

We have already showed that a logistic regression estimator is affected by omitted variable from
the latent model and unobserved variance (heterogeneity). The fact that the variance is fixed in
the latent variable causes a problem in interpretation of logit coefficients across different samples,
or groups within samples, without making assumption of constant unobserved heterogeneity.
Further, given the non-linear nature of logistic regression, the estimated coefficients can not
be interpreted as marginal effects as it is the case in OLS. For various analytical purposes we
would like to be able to find a way around these problems. In literature we find several kinds of
approach to this problem, some of them considering probability changes (Mood, 2010).

We focus on the latter approach, that is, measure of probability changes per unit-change in a
predictor variable. As noted before, logistic regression yields coefficients that are more complex
in comparison to OLS, due to non-linear nature of logistic distribution. Figure 2 illustrates this
difference in a very simple manner. Panel (a) shows straight line coming from a simple regression
model and panel (b) shows sigmoid line which is result of a logistic regression.

Figure 2: Difference between simple and logistic regression lines

(a) Simple regression (b) Logistic regression

While the line of in the panel (a) has a constant slope, which allows us to interpret coefficients
from a linear regression as a marginal (and partial) effects, slope of the line in the panel (b) is
changing along the x-axis.Similarity with OLS is that we have to rely on calculus in order to find
partial effects. We find partial effect of continuous variables in logistic regression by taking the
partial derivative (Wooldridge, 2009)

∂p(Xi)

∂xj
= f(XT

i β)βj , where f(z) =
dF

dz
(z). (22)

9



Since we defined p(X) in Equation 2 as a logistic cumulative distribution F (X), Equation 22
shows that we can obtain partial derivative of a continuous variable in the logistic regression by
multiplying it’s coefficient with a probability density function derived from our model equation.
Figure 2 (b) shows graph of F (X) and as we see it is strictly increasing. Difference in comparison
to OLS coefficient estimates is that the partial effect of xj on p(Xi) depends on Xi throughout
calculated F (X) (but always has the same sign as βj). In other words, since the calculation
of the derivative (partial effect) results in different value for each Xi, logit coefficients do not
represent marginal effects. According to Wooldridge (2009), for continuous variable xj it can be
shown that

∆P̂ (y = 1|X) ≈ [f(Xβ̂)β̂j ]∆xj , (23)

for small changes in xj . If ∆xj = 1, the change in estimated probability will be approximately

f(Xβ̂)β̂j . In literature we find several operations that can be done on logit coefficients in order to
obtain marginal effects. In this paper we focus on average marginal effect (AME) of continuous
variables. If xj is a continuous variable, it’s average marginal effect is defined as (Wooldridge,
2009)

AMEj =
1

n

n∑
i=1

[f(XT
i β̂)β̂j ] =

[ 1

n

n∑
i=1

f(XT
i β̂)

]
β̂j , (24)

where f(XT
i β̂) is i:th evaluation of logistic probability density function of our model,

f(XT
i β̂) =

exp(XT
i β̂))

(1 + exp(XT
i β̂))2

. (25)

Simply, Equation 25 shows that we obtain the average marginal effect by plugging our model
equation into logistic probability density function and evaluating it across the sample. The out-
come is then divided by the sample size n and multiplied by a coefficient βj . The final result
is a single value (for the coefficient j of interest) and represents the average marginal change in
probability p(X) for a small unit change in xj .

3.3 Variance of average marginal effect

In this paper we investigate variance of the average marginal effects for the full and the curtailed
models, throughout different sample sizes. For that purpose we estimate the mean squared error
for average marginal effect, which we call MSEAME . Our estimate is derived from Cramer’s
(2007) average sample effect, ASE, defined as

ASEj =
1

n

n∑
i=1

P̂i(1− P̂i)β̂j , (26)

which represents the partial derivative of the expected sample frequency with respect to explana-
tory variable xj . P̂i denotes the probability of observing some value of yi given predictors Xi and

xj refers to the variable whose coefficient β̂j is plugged into Equation 26). This probability is
obtained using logistic regression with the latent variable as a response. Equation 26 is actually
another way of writing Equation 28, therefore ASEj = AMEj .
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In order to calculate variance for AME we need to find a reference value for comparison. We use
Equation 26 to derive what we call AMET , the true value for average marginal effect. AMET
is obtained by plugging in the theoretical true values for P̂i and β̂j . Instead of β̂j we simply use

the coefficient β that we defined as true, while P̂i values are replaced by the expectation of P ,
which is P̄ = 0.5. In other words, we calculate the AMET as follows

AMET = 0.5(1− 0.5)β = 0.25β. (27)

Finally, we estimate MSEAME by calculating deviation of the obtained AME estimates from
their true value

MSEAME =
1

R

R∑
k=1

( ˆAMEk −AMET )2, (28)

where R denotes number of replications in the simulation, ˆAMEk is an estimate obtained using
the Equation 24 and AMET is obtained using Equation 27.

4 Empirical analysis

4.1 Design of the experiment

In this section we give a brief description of our simulation of the latent variable model. In order
to make explanations as clear as possible, we divide the simulation into four main parts and
describe them in the following steps.

Step 1:

We generate random data and specify the latent variable as

y∗ = β0 + β1x1 + β2x2 + ε, (29)

where we set β0 = 0, β1 = 1 and for β2 we choose values 0.5, 1, 2 throughout simulations.
Predictors x1, x2 are random variables normally distributed with mean µ = 0 and variance
σ2 = 1, while the error term ε is a vector of random variables that follow logistic distribution

with mean µ = 0 and variance σ2 = π2

3 .

Step 2:

Using Equation 6 we create binary [0,1] vector from the latent variable model in Equation 29.
Next, we set this binary vector as a response variable in two logistic regression models, full and
curtailed, that we use to estimate the latent variable. The full model is

yF = βF0 + βF1 x1 + βF2 x2 + ε, (30)

where we estimate all parameters from the latent variable so there is no miss-specification. The
curtailed model is

yC = βC0 + βC1 x1 + ε. (31)
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where we omit the second predictor, x2, from Equation 30. This simulates miss-specification and
enables us to study heterogeneity.

Step 3:

We extract coefficients from the models in Equations 30 and 31 and by plugging them into Equa-
tion 24 we obtain AME estimators, both for the full and the curtailed model. Steps 1,2, and 3
are repeated in R = 1000 replicates, resulting in 1000 estimates of extracted β1 and AME for
the full and the curtailed model. In addition, we calculate the theoretically expected value of
the β̂1 from the curtailed model, as defined in Equation 17.

Step 4:

Having obtained 1000 estimates ˆAMEj we can calculate MSEAME as we described in Equation
25, both for the full and the curtailed model.

The four steps above describe how our simulation works for given sample size and value of β2
in Equation 29. As noted in the Step 1, for this paper we investigate three values of the true
coefficient β2; 0.5,1,2. For each of these values we run six simulations (Steps 1 to 4), using sample
sizes n = 100, 200, 500, 1000, 1500, 3000. The simulation is written in the statistical software R
and the description above is closely related to our algorithm. The complete code is in the
APPENDIX.

4.2 Application on dataset

Besides simulation study described in the previous section, we study the effect of unobserved
heterogeneity on MROZ dataset. Wooldridge (2014) uses this dataset for the purpose of studying
logit models. We take the model studied by Wooldridge as a hypothetical true underlying model,
and consider it’s coefficients as true ones. Using this model as an unobserved latent process with
it’s true coefficients, we obtain the outcome as described in Equation 5. Using Equation 6 we
transform this outcome into binary response variable which we later use as the dependent variable
in the logistic regression, with purpose of estimating the initial outcome and coefficients of the
model that we described as true. The result is presented in the section 5.2.

5 Results and discussion

5.1 Experiment results

Here we describe the result of the experiment. Table 1 shows the result from simulation of the
Model 1 where the true coefficients in the latent variable are β0 = 0, β1 = 1, β2 = 0.5.

We notice a slightly decreased β̂1 coefficient (on average) in the reduced model. Section in the

table where we measure difference among estimates tells us that on average β̂1 in the curtailed
model decreased by approximately 0.05 (from ca 1.01 to ca 0.96). This is quite close to the

theoretically predicted value of β̂L1 (0.964) calculated using Equation 17. On the other hand the
AME estimators don’t show a substantial change. In the both models they are around 0.199
regardless of a sample size. While there is no change in MSEAME between the full and the
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Table 1: Model with true coefficients β0 = 0, β1 = 1, β2 = 0.5

Sample size 100 200 500 1000 1500 3000

Full model

β̂1 1.0593 1.0161 1.0092 1.0099 1.0000 1.0013
AMEβ1 0.2002 0.1983 0.1992 0.1999 0.1986 0.1992
MSEAME 0.0040 0.0034 0.0028 0.0026 0.0027 0.0026

Reduced model

β̂1 0.9936 0.9623 0.9566 0.9584 0.9487 0.9504
AMEβ1

0.1998 0.1984 0.1992 0.1999 0.1986 0.1991
MSEAME 0.0040 0.0034 0.0028 0.0026 0.0027 0.0026

Difference among estimates

∆β̂1 -0.0657 -0.0538 -0.0526 -0.0515 -0.0513 -0.0508
∆AMEβ1

-0.0004 0.0001 0.0000 0.0000 0.0000 0.0001
∆MSEAME 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Theoretical unbiased estimator

β̂L1 0.9641 0.9641 0.9641 0.9640 0.9640 0.9640
Presented result is the mean value after 1000 replications

curtailed model, we see that the variance tends to decrease with larger sample size. Scale of this
decrease is largest between sample size of n = 100 and n = 500.

In the Table 2 we analyze the Model 2, the true coefficients in the latent variable are β0 =
0, β1 = 1, β2 = 1. We notice that the change in the magnitude of β̂1 in the curtailed model has
increased. On average β̂1 in the curtailed model is now around 0.84, which is quite smaller in
comparison to the Table 1. This difference reduces with a larger sample size, most obvious from

n = 100 to n = 500. Value of the theoretical estimator β̂L1 is now about 0.87 for all sample
sizes. AME ad MSEAME show no change between the full and the curtailed model, however
MSEAME decreases with larger sample size.

Table 3 shows result from the third simulation, where we analyze Model 3. The true coeffi-
cients in the latent variable are β0 = 0, β1 = 1, β2 = 2. On average β̂1 is much smaller in the
curtailed model, with the value of 0.64 when the sample size is n = 100 and around 0.62 for

larger sample sizes. It is somewhat lower than it’s calculated theoretical value, β̂L1 = 0.671, but
it follows decreasing pattern. On the other hand AME estimators don’t show substantial change
between the models, with estimated value of about 0.141. Just as in previous tables, there is
no change in MSEAME between the full and the curtailed model, but it decreases with a larger
sample size.

Comparing these estimators across the tables reveals some interesting facts. First, the most
obvious is the change in estimated β̂1 which in the curtailed models decreases from roughly 0.95
to 0.62. This clearly shows that the omitted variable in the latent model causes bias which
increases with larger magnitude of the omitted variable coefficient. Second, although the AME
estimators do not seem to be affected by omitted variable, since we do not see any substantial
difference between the full and the curtailed equation within a particular model, they do change
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Table 2: Model with true coefficients β0 = 0, β1 = 1, β2 = 1

Sample size 100 200 500 1000 1500 3000

Full model

β̂1 1.0511 1.0279 1.0123 1.0012 1.0052 1.0003
AMEβ1 0.1809 0.1806 0.1816 0.1811 0.1818 0.1813
MSEAME 0.0063 0.0055 0.0049 0.0048 0.0047 0.0047

Reduced model

β̂1 0.8661 0.8536 0.8450 0.8381 0.8423 0.8367
AMEβ1

0.1804 0.1813 0.1817 0.1810 0.1819 0.1812
MSEAME 0.0065 0.0055 0.0050 0.0049 0.0047 0.0047

Difference among estimates

∆β̂1 -0.1850 -0.1742 -0.1673 -0.1631 -0.1629 -0.1635
∆AMEβ1

-0.0005 0.0007 0.0001 -0.0001 0.0000 -0.0001
∆MSEAME 0.0002 0.0000 0.0001 0.0000 0.0000 0.0000

Theoretical unbiased estimator

β̂L1 0.8758 0.8763 0.8757 0.8759 0.8756 0.8757
Presented result is the mean value after 1000 replications

as the magnitude of the omitted variable coefficient changes. In the first model we have a true
β2 = 0.5 and AME = 0.19, in the second model the β2 = 1 and AME decreases to 0.18,
while in the third model the true β2 = 2 and AME is around 0.14. However, this difference
is much smaller than the one that we observe for β̂1. Third, variance of the average marginal
effect,MSEAME , also does not appear to be effect by omitted variable within a particular and
it decreases with a larger sample. However, just as AME - it generally increases with larger
magnitude of the omitted variable, being substantially higher in the third model, presented in
Table 3.

In order to have better understanding of changes in MSEAME , we run more simulations
with additional magnitudes of the true β2 in the latent variable. We set the true β2 to 0.5 and
with each new simulation we increase it by 0.1 until we reach β2 = 3. Result is the same type
of data that we presented in Tables that covers larger range of magnitudes of β2. This should
further clarify certain relationships among estimators presented in the tables. We display the
result graphically in Figure 3 and 4. Panel (a) in the Figure 3 shows estimated β1 coefficients as
a function of the true β2 in the latent variable. The red dashed line shows the logit coefficient
in the full model, which is constantly around 1. The blue line displays behaviour of the β1 in
the reduced model. As we saw in the Tables, there is a downward bias on this coefficient as
the magnitude of the true β2 in the latent variable increases. Panel (b) shows that there is no
difference in AME for the full and reduced (AMEred) model. It also decreases with increased
magnitude of the true latent β2. While it is no surprise that AMEred decreases (since we see
decrease in the estimated β1 for the reduced model) - it could seem counter intuitive that the
AME for the full model decreases despite the practically constant β1 ifor the full model. This
means that the averaged logistic density function (evaluated for all observations in the sample)
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Table 3: Model with true coefficients β0 = 0, β1 = 1, β2 = 2

Sample size 100 200 500 1000 1500 3000

Full model

β̂1 1.0625 1.0302 1.0126 1.008 1.0027 1.0002
AMEβ1 0.1399 0.1416 0.1415 0.1414 0.1412 0.1409
MSEAME 0.0135 0.0124 0.0120 0.0119 0.0119 0.0119

Reduced model

β̂1 0.6456 0.6288 0.6180 0.6197 0.6135 0.6137
AMEβ1

0.1424 0.1415 0.1411 0.1418 0.1407 0.1410
MSEAME 0.0136 0.0127 0.0121 0.0119 0.0120 0.0119

Difference among estimates

∆β̂1 -0.4168 -0.4014 -0.3946 -0.3886 -0.3891 -0.3865
∆AMEβ1

0.0024 -0.0001 -0.0003 0.0004 -0.0004 0.0001
∆MSEAME 0.0001 0.0003 0.0001 0.0000 0.0001 0.0000

Theoretical unbiased estimator

β̂L1 0.6723 0.6728 0.6722 0.6717 0.6715 0.6719
Presented result is the mean value after 1000 replications

Figure 3: estimated logit coefficients and AME as a function of the true β2

(a) estimated β1 for the full and reduced model (b) AME for the full and reduced model

has to differ between full and reduced model. This is shown in the Figure 4.
In the panel (a) we see mean of evaluated logistic function, denoted as m.PDF where

m.PDFred stands for the curtailed model. The red dashed line represents behaviour of the
m.PDF for the full model, and we see that it decreases, as opposed to increasing m.PDFred,
along the different magnitudes of the true latent β2. Since the AME consists of both m.PDF
and logit coefficient β1, as defined in the Equation 24, downward bias in the β1 for the reduced
model is affected by increased m.PDFred while the constant β1 for the reduced model is affected
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Figure 4: Mean PDF and MSE as a function of the true β2

(a) mean PDF for the full and the curtailed model (b) MSE for the full and the curtailed model

by decreasing m.PDF . It occurs at the same rate, which results in the practically same value
of AME for the full and the curtailed model. This also explains their practically identical vari-
ance, MSEAME , shown in the panel (b). Red dashed line denotes MSEAME for the full model,
and blue line is MSEAMEred for the curtailed model. We see that there is no change between
MSEAME and MSEAMEred, and they seem to increase along increasing true latent β2.

5.2 Real data study

As noted in the section 4.2., for this experiment we use the MROZ dataset which is collected
with purpose of investigating women’s participation in labor force. We take the model studied
by Wooldridge and use it as a true underlying model. Wooldridge uses logistic regression to
predict the outcome of binary variable inlf, where 1 denotes woman’s participation in the labor
force. In Table 4 we show explanatory variables with corresponding coefficients, obtained from
the Wooldridge’s logit model. Using them we build a linear model, as in Equation 5, and obtain
an outcome which is transformed into binary variable as described in Equation 6. Knowing the
hypothetical true model, we introduce different levels of misspecification and study the effect of
introduced unobserved heterogeneity. The purpose of this modeling is just to give an illustration
of how the unobserved heterogeneity affects logit coefficients, not to investigate or replicate the
original study on women’s participation in labor force.

Table 4: Hypothetical true model

Variables nwifeinc educ exper expersq age kidslt6 kidsge6
Coefficients -0.021 0.221 0.206 -0.0031 -0.088 -1.443 0.06

As we saw earlier, unobserved heterogeneity affects the misclassified model even when the omitted
variable is uncorrelated with the ones that are present in a model. It is therefore good to examine
correlation among the variables in the hypothetical true model. Table 5 displays correlation
coefficients for all the variables. We see that there is no strong correlation among any pair of
variables (with exception of exper and expersq, since the latter variable is a square of the former).
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Table 5: Hypothetical true model: correlation table

Variables nwifeinc educ exper expersq age kidslt6 kidsge6
nwifeinc 1.000 0.278 -0.172 -0.165 0.059 0.038 0.025
educ 0.278 1.000 0.066 0.024 -0.120 0.109 -0.059
exper -0.172 0.066 1.000 0.938 0.334 -0.194 -0.300
expersq -0.165 0.024 0.938 1.000 0.380 -0.184 -0.300
age 0.059 -0.120 0.334 0.380 1.000 -0.434 -0.385
kidslt6 0.038 0.109 -0.194 -0.184 -0.434 1.000 0.084
kidsge6 0.025 -0.059 -0.300 -0.300 -0.385 0.084 1.000

Let us assume that we know all the relevant variables and we are able to model logistic regression
without misspecification. Table 6 shows the result of such model and we see that the coefficients
are quite similar to the ”true” ones. In addition, under the coefficients we show average marginal
effect, calculated as described in Equation 24. We will use these coefficients and AME estimates
as a reference and compare them to misspecified models.

Table 6: Estimation of the true model, no misspecification

Variables nwifeinc educ exper expersq age kidslt6 kidsge6
Coefficients -0.023 0.221 0.214 -0.003 -0.089 -1.363 0.118
AME -0.004 0.038 0.037 0.00 -0.015 -0.237 0.021

Table 7 shows coefficients and AME estimates for our first misspecified model, where we exclude
variables kidslt6 and kidsge6. While the coefficient estimates for the variables nwifeinc, exper
and expersq do not change much, we see more noticable change for variables educ and age. On
the other hand, just as we saw in the simulation study, AME estimates do not show substantial
change.

Table 7: Misspecified model 1: kidslt6 and kidsge6 excluded

Variables nwifeinc educ exper expersq age
Coefficients -0.02 0.177 0.21 -0.0029 -0.053
∆ Coefficients 0.003 -0.044 -0.004 0.000 0.036
AME -0.004 0.034 0.04 -0.001 -0.01
∆AME 0.000 -0.004 0.003 -0.001 0.005
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We try another misspecified model, this time excluding variables exper and expersq. Table 8
displays the estimated coefficients and we see noticable change in all other estimates, the largest
being for the variable kidsge6 whose coefficient even changed a sign. On the other hand, change
in the AME estimates is not so large.

Table 8: Misspecified model 2: exper and expersq excluded

Variables nwifeinc educ age kidslt6 kidsge6
Coefficients -0.038 0.257 -0.051 -1.393 -0.036
∆ Coefficients -0.015 0.036 0.038 -0.030 -0.154
AME -0.008 0.054 -0.011 -0.294 -0.008
∆AME -0.004 0.016 0.004 -0.057 -0.029

In our last misspecified model we omit all the variables except for nwifeinc, educ and age. Table
9 shows coefficient and AME estimates. While there is not much change in the coefficients for
nwifeinc and educ, the one for age deviates much more from the true coefficient. Again, AME
estimates do not show any substantial change from the true ones.

Table 9: Misspecified model 3: kidslt6, kidsge6,exper and expersq excluded

Variables nwifeinc educ age
Coefficients -0.037 0.225 -0.010
∆ Coefficients -0.014 0.004 0.079
AME -0.008 0.052 -0.002
∆AME -0.004 0.014 0.013
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6 Conclusion

Logistic regression, although robust in terms of assumptions, is a complex method that should
be used with a care. If the omitted variable effect is ignored, it is easy to misunderstand and
misreport logistic regression estimates. In Equation 17 we see that logit coefficients depend both
on effect size and the magnitude of unobserved heterogeneity, meaning that we can not interpret
and compare them as we usually do in linear regression. There is no unique solution to the
unobserved heterogeneity problem in logistic regression. It is therefore important to be aware of
these problems and already at data collection stage find enough information on variables that
could affect the outcome - even if they are weakly related to the existing independent variables in
our model (Mood,2009). Our simulation shows that the AME estimates in the curtailed model,
although to some extent affected by the magnitude of the omitted variable, are not biased and
within the same models their variance is not much affected. They provide good estimator of
average marginal effect of continuous variables, and can be used in addition to logistic regression
coefficients especially if a researcher is mainly interested in the sign instead of size of an effect.
Our experiment with the MROZ dataset closely follows conclusions derived from the simulation
- estimated logit coefficients among misspecified models differ enough to be incomparable across
the different models. AME estimates mostly change by substantially lower magnitude and their
comparison is therefore more consistent.
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8 Appendix

8.1 Simulation on different sample sizes

Figures 4 and 5 from the section 4 show the result of repeated simulation, where we plot logistic
regression β1 coefficients, APE, MSEAPE and estimated logistic PDF as a function of the
omitted true β2 latent coefficient, for both full and reduced model. In this section we repeat the
simulation using different sample sizes and investigate changes in these estimates. We perform
four additional experiments, using sample sizes n = 100,200,500 and 1000.

Figure 5: Estimated logit coefficients and AME as a function of the omitted true latent β2,
sample size is n = 100

(a) Estimated β1 for the full and reduced model (b) AME for the full and reduced model

Figure 6: Logistic PDF and estimated MSE as a function of the omitted true latent β2, sample
size is n = 100

(a) Logistic PDF for the full and reduced model (b) MSE for the full and reduced model

Figures 5 and 6 look very similar to the first test where we generated a sample size n = 3000.
We proceed with the sample size n = 200.
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Figure 7: Estimated logit coefficients and AME as a function of the omitted true latent β2,
sample size is n = 200

(a) Estimated β1 for the full and reduced model (b) AME for the full and reduced model

Figure 8: Logistic PDF and estimated MSE as a function of the omitted true latent β2, sample
size is n = 200

(a) Logistic PDF for the full and reduced model (b) MSE for the full and reduced model

We can say that the result in the Figures 7 and 8 is the same, so far we haven’t seen a change
in the estimators’ behaviour given a larger sample size.

22



Figure 9: Estimated logit coefficients and AME as a function of the omitted true latent β2,
sample size is n = 500

(a) Estimated β1 for the full and reduced model (b) AME for the full and reduced model

Figure 10: Logistic PDF and estimated MSE as a function of the omitted true latent β2, sample
size is n = 500

(a) Logistic PDF for the full and reduced model (b) MSE for the full and reduced model

As we see, there is no essential change in the estimators of our interest, they seem to keep the
same behaviour no matter what sample size we choose.
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8.2 Newton-Raphson algorithm

In this section we explain the Newton-Raphson algorithm in greater detail. One way of illustrat-
ing the idea behind this algorithm is Taylor expansions. We assume that a function f is smooth
with an interior minimum w∗ ( derivative at w∗ is zero and the second derivative is positive).
Further, we can assume a start point w0 near the minimum and take a second order Taylor
expansion around w0 :

f(w) ≈ f(w0) + (w − w0)
df

dw

∣∣∣∣
w=w0

+
1

2
(w − w0)2

d2f

dw2

∣∣∣∣
w=w0

(32)

The Newton-Rhapson method is relying on minimization of the equation above, by taking
the derivative with respect to w and setting it equal to zero at a point w1

0 = f ′(w0) +
1

2
f ′′(w0)2(w1 − w0) (33)

w1 = w0 −
f ′(w0)

f ′′(w0)
(34)

where the point w1 should be a better approximation of the minimum w∗ than the initial
point w0. By iterating this procedure each minimized approximation is used to get a new
approximation until the true minimum is reached.

Let us see how the Newton-Rhapson method is applied to our problem. If we take a look at
the equation (21) we can see that L(β) depends on the elements of β only through the values of
X which is linear, so each of the partial derivatives in the U(β) will have the same form.

First we define all terms needed for performing the Newton-Raphson iterative algorithm:

∂L(β)/∂βj =

n∑
i=1

(
yi

∂

∂βj
(XT

i β)− ∂

∂βj
log(1 + exp(XT

i β)
)

(35)

where

∂

∂βj
(XT

i β) = xij

and

∂

∂βj
log(1 + exp(XT

i β)) =
exp(XT

i β)

1 + exp(XT
i β)

∂

∂βj
XT
i β = pixij

so that

∂L(β)

∂βj
=

n∑
i=1

(
xij(yi − pi)

)
.

For Newton-Raphson method we will also need the second partial derivatives

∂2l

∂βj∂βk
=

n∑
i=1

[
xij(yi −

∂pi(β)

∂βk
)
]
.
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Since

∂pi(β)

∂βk
) = xikpi(β)(1− pi(β)).

the second derivative is

∂2L

∂βj∂βk
= −

n∑
i=1

[
xijxikpi(1− pi)

]
.

In Bernoulli distribution variance is defined as V ar(y) = p(y)(1 − p(y)) so we write the
expresion above as

∂2L

∂βj∂βk
= −

n∑
i=1

[
xijxikvi(β)

]
,

which means that in matrix notation we can write the second derivative of the log-likelihood
function with respect to coefficients as

∂2L

∂βj∂βk
= −XTV (β)X,

where V (β) denotes a diagonal matrix with coefficient variances. The term above is also
called the information matrix.

Following our discussion where we explained principles of the Newton-Raphson method using
Taylor expansions, the ith iteration will be

β̂i+1 = βi − (XTV (β)X)−1XT (y − p),

until it converges to MLE(β̂).
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8.3 R-code

Note: the R-codes listed here are complete and can reproduce all simulations described in the paper. However,
care should be taken in case of copy - pasting the code due to different font formats. If you use the code, make
sure that it is carefully re-written (or copied) to a text format that is readable in R.

Function used to perform the first set of simulations

The ”mySim” function generates the first set of simulations. The data in the Tables is obtained using it.

mySim <− f unc t i on ( Betas , samples i ze , r e p l i c a t e s , xout ){

#−−−−−−− re−d e f i n e parameters −−−−−
R <− r e p l i c a t e s
n<− sample s i z e
p<−l ength ( Betas)−1 #number o f v a r i a b l e s without i n t e r c e p t
B<−Betas
Bout<−B[−( xout ) ]

#−−−−−−− c r e a t e s to rage f o r loop

Bhat <− matrix (NA,R, l ength (B) )
Bhat . red <− matrix (NA,R, l ength ( Bout ) )

APE <− matrix (NA,R, l ength (B) )
APEred <− matrix (NA,R, l ength ( Bout ) )

deltaSE <− matrix (NA,R, l ength (B) )
deltaSEred <− matrix (NA,R, l ength ( Bout ) )

ASE <− matrix (NA,R, l ength (B) )
ASEred <− matrix (NA,R, l ength ( Bout ) )

b . L <− matrix (NA,R, l ength ( Bout ) )
#−−−−−−−− begin loop −−−−−−−−−

f o r ( t in 1 :R){

#−−−−−−− generate data −−−−−

M<−r e p l i c a t e (p , rnorm (n , mean=0, sd =1)) #matrix with explanatory v a r i a b l e s
l . err<−r l o g i s (n) #Logit e r r o r
X <− cbind (1 ,M) #data matrix , column with z e ro s & M
Xout <− X[ ,−( xout ) ]

#−−−− s t o r e var iance−−−−−
v <− apply (X, 2 , var )
b . L [ t , ] <− Bout ∗( s q r t ( 3 . 2 9 ) / ( s q r t ( 3 . 2 9 + (B[ xout ] ˆ 2 )∗ v [ xout ] ) ) )
#−−−−−−− c o n f i g u r e l a t e n t v a r i a b l e −−−−−

Ylog <− X %∗% B+l . e r r #true l a t e n t v a r i a b l e

#−−−−−−− trans form the l a t e n t v a r i a b l e i n to [ 0 , 1 ] vec to r −−−−−

LogLat <− rep (NA, n)
f o r ( j in 1 : n){

i f ( Ylog [ j ] > 0){ LogLat [ j ] = 1
} e l s e { #condi t ion , l a t e n t v a r i a b l e

LogLat [ j ] = 0}
}

#−−− use the [ 0 , 1 ] vec to r as a response v a r i a b l e in the l o g i s t i c r e g r e s s i o n −

26



YHATlog <− glm ( LogLat˜X[ , −1 ] , f ami ly=binomial ( l i n k=” l o g i t ” ) )
YHATlogOut <− glm ( LogLat˜Xout [ , −1 ] , f ami ly=binomial ( l i n k=” l o g i t ” ) )

#−−−−−−− use l o g i t−c o e f f i c i e n t s and obta in APE: s

logPDF <− d l o g i s ( p r e d i c t (YHATlog , type = ” l i n k ”) )
co f <− c o e f (YHATlog)
APEall <− mean( logPDF)∗ co f # Wooldridge ’ s average p a r t i a l ( marginal ) e f f e c t ( s )

#−−−−s t o r e in to storage−−−−
Bhat [ t , ] <− co f
APE[ t , ] <− APEall
#−−−−−−−−−−−−−

logPDFout <− d l o g i s ( p r e d i c t (YHATlogOut , type = ” l i n k ”) )
cofOut <− c o e f (YHATlogOut)
APEout <− mean( logPDFout )∗ cofOut

#−−−−s t o r e in to storage−−−−
Bhat . red [ t , ] <− cofOut
APEred [ t , ] <− APEout
#−−−−−−−−−−−−−−−

#−−−−− obta in Cramer ’ s ASE
prob <− p r e d i c t (YHATlog , type = ” response ”)
probOut <− p r e d i c t (YHATlogOut , type = ” response ”)

ASE[ t , ] <− mean( prob∗(1−prob ) )∗ co f #vecto r
ASEred [ t , ] <− mean( probOut∗(1−probOut ) )∗ cofOut
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#−−−−−−− es t imate standard e r r o r s us ing
#−−−−−−−− d e l t a method , f u l l model
z<−co f
pz <− l ength ( z )

dAMEdB<−matrix (NA, pz , pz ) #t h i s loop c r e a t e s matrix dAMEdB where c o l=b , row = AME
f o r ( i in 1 : pz ){

dAMEdBi<−rep (NA, pz )
f o r ( j in 1 : pz ){

c1<− z [ i ] # = co f1 [ i ] #value o f c o e f f i c i e n t ( i n t e r c e p t = B 1 , B 2 , . . . B n )
m1<−p r e d i c t (YHATlog , type = ” l i n k ”)
H1 <− (−(2∗ c1∗X[ , j ]∗ exp (2∗m1))/((1+ exp (m1))ˆ3)+( c1∗X[ , j ]∗ exp (m1))/((1+ exp (m1) ) ˆ 2 ) )
dAMEdBi [ j ] <− mean(H1)

}
dAMEdB[ i ,]<−dAMEdBi

}

dAMEdBij <− matrix (NA, pz , pz )
f o r ( i in 1 : pz ){

m2<−p r e d i c t (YHATlog , type = ” l i n k ”)
H2 <− exp (m2)/((1+ exp (m2) ) ˆ2 )
dAMEdBij [ i , i ] <− dAMEdB[ i , i ] + mean(H2)
dAMEdBij[− i , i ] <− dAMEdB[− i , i ]

}

d e l t a S E a l l <− s q r t ( d iag (dAMEdBij %∗% vcov (YHATlog) %∗% t (dAMEdBij ) ) )

#−−−−s t o r e in to storage−−−−
deltaSE [ t , ] <− d e l t a S E a l l
#−−−−−−−−−−−−−−−−−−−−−−−−−

#−−−−−−− es t imate deltaSE , reduced model
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zOut<−cofOut
pOut <− l ength ( zOut )

#−−−−− standard e r ro r s , c u r t a i l e d model

dAMEdBOut<−matrix (NA, pOut , pOut) #t h i s loop c r e a t e s matrix dAMEdB where c o l=b , row = AME
f o r ( i in 1 : pOut){

dAMEdBiOut<−rep (NA, pOut)
f o r ( j in 1 : pOut){

c1Out<− zOut [ i ] # = co f1 [ i ] #value o f c o e f f i c i e n t ( i n t e r c e p t = B 1 , B 2 , . . . B n )
m1Out<−p r e d i c t (YHATlogOut , type = ” l i n k ”)
H1Out <− (−(2∗c1Out∗Xout [ , j ]∗ exp (2∗m1Out))/((1+ exp (m1Out) ) ˆ3 )

+ ( c1Out∗Xout [ , j ]∗ exp (m1Out))/((1+ exp (m1Out ) ) ˆ 2 ) )
dAMEdBiOut [ j ] <− mean(H1Out)

}
dAMEdBOut[ i ,]<−dAMEdBiOut

}

dAMEdBijOut <− matrix (NA, pOut , pOut)
f o r ( i in 1 : pOut){

m2Out<−p r e d i c t (YHATlogOut , type = ” l i n k ”)
H2Out <− exp (m2Out)/((1+ exp (m2Out) ) ˆ2 )

dAMEdBijOut [ i , i ] <− dAMEdBOut[ i , i ] + mean(H2Out)
dAMEdBijOut[− i , i ] <− dAMEdBOut[− i , i ]

}

deltaSEout <− s q r t ( d iag (dAMEdBijOut %∗% vcov (YHATlogOut) %∗% t (dAMEdBijOut ) ) )

#−−−−s t o r e in to storage−−−−
deltaSEred [ t , ] <− deltaSEout
#−−−−−−−−−−−−−−−−−−−−−−−−−−

}

#−−−−−−−− end loop −−−−−−−−−
ASEtrue <− 0 .25∗B
ASEtrue . red <− 0 .25∗Bout

RSSase <− matrix (NA, dim (ASE) [ 1 ] , dim (ASE ) [ 2 ] )
f o r ( r in 1 : dim(ASE) [ 2 ] ) {

RSSase [ , r ] <− (ASE[ , r ] − ASEtrue [ r ] ) ˆ 2 }

RSSase . red <−matrix (NA, dim (ASEred ) [ 1 ] , dim (ASEred ) [ 2 ] )
f o r ( r r in 1 : dim (ASEred ) [ 2 ] ) {

RSSase . red [ , r r ] <− (ASEred [ , r r ] − ASEtrue . red [ r r ] ) ˆ2}

MSEase <− apply ( RSSase , 2 , sum)/R
MSEase . red <− apply ( RSSase . red , 2 , sum)/R

#−−−−−−−− d e f i n e f i n a l r e s u l t −−−−−−−−−

mean . co f <− apply ( Bhat , 2 , mean)
mean . cofOut <− apply ( Bhat . red , 2 , mean)

mean .APE <− apply (APE, 2 , mean)
mean . APEred <− apply (APEred , 2 , mean)

mean . deltaSE <− apply ( deltaSE , 2 , mean)
mean . deltaSEred <− apply ( deltaSEred , 2 , mean)

mean .ASE <− apply (ASE, 2 , mean)
mean . ASEred <− apply (ASEred , 2 , mean)
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B. ch <− mean . cofOut − mean . co f [−( xout ) ]
APE. ch <− mean . APEred − mean .APE[−( xout ) ]
deltaSE . ch <− mean . deltaSEred − mean . deltaSE [−( xout ) ]
ASE. ch <− mean . ASEred − mean .ASE[−( xout ) ]
MSE. ch <− MSEase . red − MSEase[−( xout ) ]

beta . L <− apply (b . L , 2 , mean)

r e s u l t 1 <−matrix ( cbind ( t (mean . co f ) , t (mean .APE) , t (mean . deltaSE ) , t (mean .ASE) , t (MSEase ) ) , nco l =5)
r e s u l t 2 <−matrix ( cbind ( t (mean . cofOut ) , t (mean . APEred ) , t (mean . deltaSEred ) , t (mean . ASEred ) , t (MSEase . red ) ) , nco l =5)
r e s u l t 3 <−matrix ( cbind ( t (B. ch ) , t (APE. ch ) , t ( deltaSE . ch ) , t (ASE. ch ) , t (MSE. ch ) ) , nco l = 5)
r e s u l t 4 <− matrix ( beta . L[−1] , nco l = 1)

colnames ( r e s u l t 1 )<−c (”mean . c o e f ” ,”mean .APE” ,”mean . SE” ,”mean .ASE” ,”MSEase”)
colnames ( r e s u l t 2 )<−c (”mean . c o e f . red ” ,”mean . APEred” ,”mean . SEred ” ,”mean . ASEred” ,”MSEase . red ”)
colnames ( r e s u l t 3 )<−c (” c o e f . d i f ” ,”APE. d i f ” ,” deltaSE . d i f ” ,”ASE. d i f ” ,”MSE. d i f ”)
colnames ( r e s u l t 4 ) <− c (” beta . L”)
re turn ( l i s t ( r e su l t 1 , r e su l t 2 , r e s u l t 3 , r e s u l t 4 ) )

#−−−−−−−− end func t i on −−−−−−−−−

}

Function used to generate the second set of simulations

The ”mySimPlot” function generates the second set of simulations. The Figures 3 and 4 in section 4 are constructed
using this function, including Figures 5 - 12 in the Appendix.

mySimPlot <− f unc t i on ( samples i ze , r e p l i c a t e s ,K){

t rue . b . 2 <− K

t e s t .ASE <− matrix (NA, l ength (K) , 3 )
t e s t . ASEred <− matrix (NA, l ength (K) , 2 )

t e s t . MSEase <− matrix (NA, l ength (K) , 3 )
t e s t . MSEase . red <− matrix (NA, l ength (K) , 2 )

t e s t . Pr <− rep (NA, l ength (K) )
t e s t . PrOut <− rep (NA, l ength (K) )

t e s t . densty <− rep (NA, l ength (K) )
t e s t . denstyR <− rep (NA, l ength (K) )

t e s t . Bhat <− matrix (NA, l ength (K) , 3 )
t e s t . Bhat . out <− matrix (NA, l ength (K) , 2 )

f o r (u in 1 : l ength (K)){

Betas <− c (0 , 1 ,K[ u ] )
xout <− 3

#−−−−−−− re−d e f i n e parameters −−−−−
R <− r e p l i c a t e s
n<− sample s i z e
p<−l ength ( Betas)−1 #number o f v a r i a b l e s without i n t e r c e p t
B<−Betas
Bout<−B[−( xout ) ]

#−−−−−−− c r e a t e s to rage f o r loop
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ASE <− matrix (NA,R, l ength (B) )
ASEred <− matrix (NA,R, l ength ( Bout ) )

Bhat <− matrix (NA,R, l ength (B) )
Bhat . out <− matrix (NA,R, l ength ( Bout ) )

Pr <− rep (NA,R)
PrOut <− rep (NA,R)

m. densty <− rep (NA,R)
m. denstyR <− rep (NA,R)
#−−−−−−−− begin loop −−−−−−−−−

f o r ( t in 1 :R){

#−−−−−−− generate data −−−−−

M<−r e p l i c a t e (p , rnorm (n , mean=0, sd =1)) #matrix with explanatory v a r i a b l e s
l . err<−r l o g i s (n) #Logit e r r o r
X <− cbind (1 ,M) #data matrix , column with z e ro s & M
Xout <− X[ ,−( xout ) ]

#−−−−−−− c o n f i g u r e l a t e n t v a r i a b l e −−−−−

Ylog <− X %∗% B+l . e r r #true l a t e n t v a r i a b l e

#−−−−−−− trans form the l a t e n t v a r i a b l e in to [ 0 , 1 ] vec to r −−−−−

LogLat <− rep (NA, n)
f o r ( j in 1 : n){

i f ( Ylog [ j ] > 0){ LogLat [ j ] = 1
} e l s e { #condi t ion , l a t e n t v a r i a b l e

LogLat [ j ] = 0}
}

#−−−−−−− use the [ 0 , 1 ] vec to r as a response v a r i a b l e in the l o g i s t i c r e g r e s s i o n −−−−−

YHATlog <− glm ( LogLat˜X[ , −1 ] , f ami ly=binomial ( l i n k=” l o g i t ” ) , x = TRUE)
YHATlogOut <− glm ( LogLat˜Xout [ , −1 ] , f ami ly=binomial ( l i n k=” l o g i t ” ) , x = TRUE)

co f <− c o e f (YHATlog)
cofOut <− c o e f (YHATlogOut)

#−−−−− obta in Cramer ’ s ASE
prob <− p r e d i c t (YHATlog , type = ” response ”) #g i v e s p robab i l i t y , l o g i s t i c CDF
probOut <− p r e d i c t (YHATlogOut , type = ” response ”)

m. densty [ t ] <− mean( d l o g i s ( p r e d i c t (YHATlog , type = ” l i n k ” ) ) )
m. denstyR [ t ] <− mean( d l o g i s ( p r e d i c t (YHATlogOut , type = ” l i n k ” ) ) )

ASE[ t , ] <− mean( prob∗(1−prob ) )∗ co f #vecto r
ASEred [ t , ] <− mean( probOut∗(1−probOut ) )∗ cofOut
Pr [ t ] <− mean( prob )
PrOut [ t ] <− mean( probOut )
Bhat [ t , ] <− co f
Bhat . out [ t , ] <− cofOut

#−−−−−−−− end 1 s t loop −−−−−−−−−
ASEtrue <− 0 .25∗B #c a l c u l a t e MSE
ASEtrue . red <− 0 .25∗Bout

RSSase <− matrix (NA, dim (ASE) [ 1 ] , dim (ASE ) [ 2 ] )
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f o r ( i in 1 : dim (ASE) [ 2 ] ) {
RSSase [ , i ] <− (ASE[ , i ] − ASEtrue [ i ] ) ˆ 2 }

RSSase . red <− matrix (NA, dim (ASEred ) [ 1 ] , dim(ASEred ) [ 2 ] )
f o r ( i in 1 : dim (ASEred ) [ 2 ] ) {

RSSase . red [ , i ] <− (ASEred [ , i ] − ASEtrue . red [ i ] ) ˆ 2 }

MSEase <− apply ( RSSase , 2 , sum)/R
MSEase . red <− apply ( RSSase . red , 2 , sum)/R

#−−−−−−−− d e f i n e r e s u l t from the 1 s t loop−−−−−−−−−

mean .ASE <− apply (ASE, 2 , mean)
mean . ASEred <− apply (ASEred , 2 , mean)

mean . Bhat <− apply ( Bhat , 2 , mean)
mean . Bhat . out <− apply ( Bhat . out , 2 , mean)

#−−−−−−−− s t o r e from te 2nd loop −−−−−−−−−

t e s t .ASE[ u , ] <− mean .ASE
t e s t . ASEred [ u , ] <− mean . ASEred

t e s t . MSEase [ u , ] <− MSEase
t e s t . MSEase . red [ u , ] <− MSEase . red

t e s t . Pr [ u ] <− mean( Pr )
t e s t . PrOut [ u ] <− mean( PrOut )

t e s t . densty [ u ] <−mean(m. densty )
t e s t . denstyR [ u ] <− mean(m. denstyR )

t e s t . Bhat [ u , ] <− mean . Bhat
t e s t . Bhat . out [ u , ] <− mean . Bhat . out

}

}
ape <− cbind ( t e s t .ASE[ , 2 ] , t e s t . ASEred [ , 2 ] )
colnames ( ape ) <− c (”APE” ,”APEred”)

MSEape <− cbind ( t e s t . MSEase [ , 2 ] , t e s t . MSEase . red [ , 2 ] )
colnames (MSEape) <− c (”MSEape” ,”MSEape . red ”)

L . cd f <− cbind ( t e s t . Pr , t e s t . PrOut )
colnames (L . cd f ) <− c (”L . cd f ” ,”L . cd f . red ”)

L . pdf <− cbind ( t e s t . densty , t e s t . denstyR )
colnames (L . pdf ) <− c (”L . pdf ” ,”L . pdf . red ”)

beta . 1 <− cbind ( t e s t . Bhat [ , 2 ] , t e s t . Bhat . out [ , 2 ] )
colnames ( beta . 1 ) <− c (” beta . 1” , ” beta . 1 r ”)

re turn ( l i s t ( ape , MSEape , L . cdf , L . pdf , beta . 1 ) )
}

Note that the parameter K in the function is vector of the true beta.2 coefficients in the latent variable, that are to
be omitted.
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The following code generates figures:

#p lo t beta . 1 f u l l / reduced model , as func t i on o f omitted true beta . 2
p l o t (K, a [ [ 5 ] ] [ , 1 ] , type = ” l ” , c o l=”red ” , l t y =2, lwd = 2 , ylab = expr e s s i on ( beta ) ,

x lab = expr e s s i on ( beta [ t rue ] ) , cex . lab = 1 . 2 , yl im = c ( 0 . 4 5 , 1 . 2 ) , xl im = c ( 0 . 4 , 3 . 2 ) )
l i n e s (K, a [ [ 5 ] ] [ , 2 ] , type = ” l ” , c o l=”blue ” , l t y =1, lwd=2)
legend ( ” bot tomle f t ” , c ( exp r e s s i on ( beta ) , exp r e s s i on ( beta [ red ] ) ) ,

c o l = c (” red ” ,” blue ”) , l t y = c (2 , 1 ) , lwd = 2 , cex = 1 . 2 , bty = ”n”)
################################################################################################

##### APE f u l l / reduced model , as func t i on o f omitted true beta . 2

p l o t (K, a [ [ 1 ] ] [ , 1 ] , type = ” l ” , c o l=”red ” , l t y =2, lwd = 2 , ylab = ”APE” , xlab = expr e s s i on ( beta [ t rue ] ) ,
xl im = c ( 0 . 4 , 3 . 2 ) , cex . lab = 1 . 2 , yl im = c ( 0 . 1 , 0 . 2 2 ) )

l i n e s (K, a [ [ 1 ] ] [ , 2 ] , type = ” l ” , c o l=”blue ” , l t y =2, lwd=2)
legend ( ” top r i gh t ” , c ( exp r e s s i on (APE) , exp r e s s i on (APE[ red ] ) ) , c o l = c (” red ” ,” blue ”) , l t y = c (2 , 1 ) ,

lwd = 2 , cex = 1 . 2 , bty = ”n”)

################################################################################################

#plo t MSE f u l l / reduced model , as func t i on o f omitted true beta . 2
p l o t (K, a [ [ 2 ] ] [ , 1 ] , type = ” l ” , c o l=”red ” , ylab = ”MSE” , xlab = expr e s s i on ( beta [ t rue ] ) , l t y =2, lwd=2,

ylim = c ( 0 , 0 . 0 8 ) , xl im = c ( 0 . 4 , 3 . 2 ) )
l i n e s (K, a [ [ 2 ] ] [ , 2 ] , type = ” l ” , c o l=”blue ” , l t y =1, lwd=2)
legend ( ” top r i gh t ” , c ( exp r e s s i on (MSE) , exp r e s s i on (MSE[ red ] ) ) , c o l = c (” red ” ,” blue ”) ,

l t y = c (2 , 1 ) , lwd = 2 , cex = 1 . 2 , bty = ”n”)

################################################################################################

# L . pdf f u l l / reduced model , as func t i on o f omitted true beta . 2
p l o t (K, a [ [ 4 ] ] [ , 1 ] , type = ” l ” , c o l=”red ” , l t y =2, lwd=2, ylab = ”L . pdf ” , xlab = expr e s s i on ( beta [ t rue ] ) ,

yl im = c ( 0 . 1 , 0 . 2 5 ) , xl im = c ( 0 . 4 , 3 . 2 ) )
l i n e s (K, a [ [ 4 ] ] [ , 2 ] , type = ” l ” , c o l=”blue ” , l t y =1, lwd=2)
legend ( ” bot tomle f t ” , c ( exp r e s s i on (L . pdf ) , e xp r e s s i on (L . pdf [ red ] ) ) , c o l = c (” red ” ,” blue ”) ,

l t y = c (2 , 1 ) , lwd = 2 , cex = 1 . 2 , bty = ”n”)

################################################################################################

Standalone function for estimating AME

ame <− f unc t i on ( o , d ig = 3 , bootSE=F, nboot ){

# ”o” i s a glm ob j e c t
# ” dig ” i s number o f d i g i t s in the output ( d e f a u l t = 3)

logPDF1 <− d l o g i s ( p r e d i c t ( o , type = ” l i n k ”) )
co f1 <− c o e f ( o )
APE1 <− round (mean( logPDF1 )∗ cof1 , d ig )

z<−co f1
p <− l ength ( z )
X <− o$x # glm ob j e c t ”o” should re turn des ign matrix ( s e t ”x=TRUE”)

# deltaSE
dAMEdB<−matrix (NA, p , p) #t h i s loop c r e a t e s matrix dAMEdB where c o l = b , row = AME
f o r ( i in 1 : p){

dAMEdBi<−rep (NA, p)
f o r ( j in 1 : p){

c1<− z [ i ] # = co f1 [ i ] #value o f c o e f f i c i e n t
m1<−p r e d i c t ( o , type = ” l i n k ”)
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H1 <− (−(2∗ c1∗X[ , j ]∗ exp (2∗m1))/((1+ exp (m1))ˆ3)+( c1∗X[ , j ]∗ exp (m1))/((1+ exp (m1) ) ˆ 2 ) )
dAMEdBi [ j ] <− mean(H1)

}
dAMEdB[ i ,]<−dAMEdBi

}

dAMEdBij <− matrix (NA, p , p)
f o r ( i in 1 : p){

m2<−p r e d i c t ( o , type = ” l i n k ”)
H2 <− exp (m2)/((1+ exp (m2) ) ˆ2 )

dAMEdBij [ i , i ] <− dAMEdB[ i , i ] + mean(H2)
dAMEdBij[− i , i ] <− dAMEdB[− i , i ]

}

deltaSE <− round ( s q r t ( d iag (dAMEdBij %∗% vcov ( o ) %∗% t (dAMEdBij ) ) ) , d ig )

# −−−−−− boots t rap standard e r r o r s

i f ( bootSE == T){

R <− nboot
bSE <− matrix (NA,R, l ength ( co f1 ) )
f o r ( i in 1 :R){

X1<−apply (X, 2 , sample )
h<−dim (X1 ) [ 1 ]
Y1 <− rbinom (h , 1 , 0 . 5 )
oB <− glm (Y1˜X1[ , −1 ] , f ami ly=binomial ( l i n k=” l o g i t ” ) )

logPDFB <− d l o g i s ( p r e d i c t (oB , type = ” l i n k ”) )
cofB <− c o e f (oB)
APEB <− mean( logPDFB)∗ cofB # Wooldridge ’ s average p a r t i a l ( marginal ) e f f e c t ( s )
bSE [ i ,]<− APEB

}

bootSE <− round ( apply (bSE , 2 , sd ) , d ig )
bootSE

re s1 <− matrix ( cbind ( t (APE1) , t ( deltaSE ) , t ( bootSE ) ) , nco l =3)
colnames ( r e s1)<−c (”AME” ,” deltaSE ” , ”bootSE ”)
rownames ( r e s1)<− names ( c o e f f i c i e n t s ( o ) )
re turn ( r e s1 )
}

r e s2 <− matrix ( cbind ( t (APE1) , t ( deltaSE ) ) , nco l =2)
colnames ( r e s2)<−c (”AME” ,” deltaSE ”)
rownames ( r e s2)<− names ( c o e f f i c i e n t s ( o ) )
re turn ( r e s2 )

}
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