The Role of Insulin and Insulin-like Peptides in Ischemic Stroke and Cognitive Impairment

Akademisk avhandling

Som för avläggande av medicine doktorsexamen vid Sahlgrenska Akademin, Göteborgs Universitet kommer att offentligen försvaras i hörsal Ivan Ivarsson, Medicinaregatan 3, fredagen den 25 november 2016, klockan 13.00

Av Daniel Åberg, leg läk

Fakultetsopponent: Professor Fred Nyberg, Uppsala Universitet

Avhandlingen baseras på följande delarbeten

- I. Åberg D, Jood K, Blomstrand C, Jern C, Nilsson M, Isgaard J, Aberg ND. Serum IGF-I levels correlate to improvement of functional outcome after ischemic stroke. J Clin Endocrinol Metab. 2011:96:E1055-E1064.
- II. Åberg ND, Olsson S, Åberg D, Jood K, Stanne TM, Nilsson M, Blomstrand C, Svensson J, Isgaard J, Jern C. Genetic variation at the IGF1 locus shows association with post-stroke outcome and to circulating IGF1. Eur J Endocrinol. 2013:169:759-765.
- III. Åberg D, Åberg ND, Jood K, Holmegaard L, Redfors P, Blomstrand C, Isgaard J, Jern C, Svensson J. Insulin resistance and outcome of ischemic stroke. 2016: manuscript.
- IV. Johansson P, Åberg D, Johansson J-O, Mattsson N, Hansson O, Ahrén B, Isgaard J, Åberg ND, Blennow K, Zetterberg H, Wallin A, Svensson J. Serum but not cerebrospinal fluid levels of insulin-like growth factor-I (IGF-I) and IGF-binding protein-3 (IGFBP-3) are increased in Alzheimer's disease. Psychoneuroendocrinology. 2013: 38:1729-1737.
- V. Åberg D, Johansson P, Isgaard J, Wallin A, Johansson J-O, Andreasson U, Blennow K, Zetterberg H, Åberg ND, Svensson J. Increased cerebrospinal fluid level of insulin-like growth factor-II (IGF-II) in male patients with Alzheimer's Disease. J Alzheimers Dis. 2015:48:637-646.

SAHLGRENSKA AKADEMIN INSTUTIONEN FÖR MEDICIN

The Role of Insulin and Insulin-like Peptides in Ischemic Stroke and Cognitive Impairment

Daniel Åberg

Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden.

Abstract

Background and aims: Insulin, insulin-like growth factor-I (IGF-I), and the six high-affinity IGF-binding proteins (IGFBPs) play an important role in growth, metabolism and regeneration throughout the entire life span. In contrast, the role of IGF-II in adult life has been unclear. Animal studies have demonstrated that altered brain activity of the insulin/IGF-system is associated with reduced cognitive function and worse outcome after experimentally induced stroke and this is reversed by IGF-I-treatment. The overall aim of this thesis was to determine whether the insulin/IGF-I system is of importance for outcome of ischemic stroke (IS) also in humans and whether insulin and insulin-like peptides are dysregulated in patients with Alzheimer's disease (AD).

Patients and methods: Two well-characterized clinical cohorts were studied. In SAHLSIS (Sahlgrenska Academy Study on Ischemic Stroke; originally 600 IS patients and 600 population-based controls), characterization of patients after IS included serum samples and stroke scales. Furthermore, serum and cerebrospinal fluid (CSF) levels of insulin, IGF-I, and IGF-II were determined in a cross-sectional study of patients (n=60) with AD and other forms of cognitive impairment, and healthy controls (n=20).

Results: In *Paper I*, high serum IGF-I concentrations were associated with better improvement of functional independence in SAHLSIS. In *Paper II*, analyses of single-nucleotide polymorphisms (SNPs) in the *IGF1 gene* showed that the major allele of rs7136446 was associated with favorable post-stroke outcome after 2 years. In *Paper III*, insulin resistance was associated with functional outcome, especially in patients with cryptogenic stroke. In *Paper IV*, serum but not CSF levels of IGF-I were increased in patients with AD whereas insulin levels were unchanged both in serum and CSF. In *Paper V*, CSF IGF-II level was increased in male but not in female patients with AD.

Conclusions: The IGF-I/insulin system is associated with functional outcome after ischemic stroke. Furthermore, levels of IGF-I and IGF-II are dysregulated in Alzheimer's disease.

Keywords: Ischemic Stroke (IS), Alzheimer's disease (AD), Cognitive Impairment, Dementia, Insulin-like Growth Factor I (IGF-I)

ISBN: 978-91-628-9917-2 (TRYCK) http://hdl.handle.net/2077/44864

ISBN: 978-91-628-9918-9 (PDF)