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ABSTRACT 

This thesis presents four novel algorithms for processing and analysis of 

nuclear medicine images. In addition, the novel research image platform where 

these four algorithms have been implemented, together with most established 

algorithms for image processing and analysis, are shortly described. The 

majority of the algorithms in the image platform are executed on the graphics 

processing unit (GPU), which enable fast parallel execution of the scripts. 

The four novel algorithms have been constructed for analysis of nuclear 

medicine images of patients with neuroendocrine tumours, who has either been 

diagnosed or treated with the somatostatin analogues 111In-octreotide and 
177Lu-octreotate, respectively. The first algorithm was constructed for analysis 

of two planar image methods for kidney dosimetry. The results of the analysis 

showed that it is most challenging to find a region of interest (ROI) that 

resembles the true activity in the over- and underlying tissue of the kidney. 

Nevertheless, in this paper we propose that a ROI surrounding the kidney 

might be preferable over small ROIs. Furthermore, due to the high influence 

of background activity in the anterior image it seems to be favourable to 

perform the dosimetry on the posterior image instead of using the geometric 

mean value of the anterior and posterior images. The second algorithm was 

constructed for obtaining good estimates of the bone marrow doses from planar 

images. The algorithm generated estimates of the absorbed dose to bone 

marrow that were in agreement with earlier estimates. In addition, the obtained 

absorbed doses correlated to haematological response. The third algorithm was 

constructed for improved diagnosis of liver tumours. The methodology was 

based on a statistical approach for separating livers with tumour involvement 

from livers without tumour involvement. The method showed promising 



 

results in a retrospective study where an increased number of patients with 

liver tumour involvement could be diagnosed. Finally, a new Monte Carlo-

based single photon emission computed tomography reconstruction algorithm 

was constructed. Since the code is executed on the GPU the tremendous 

number of photon emission and scattering is rapidly simulated in parallel. 

Thereby, the simulation time for the reconstruction is only a few minutes. In 

phantom measurement this reconstruction method was superior to the 

conventional and the state-of-the-art methods used for reconstruction of 

clinical images. 
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SAMMANFATTNING PÅ SVENSKA 

Denna avhandling presenterar fyra nya algoritmer för bearbetning och analys 

av nuklearmedicinska bilder. I avhandlingen presenteras också den nya 

bildplattform som är framtagen för att effektivt använda dessa algoritmer 

tillsammans med andra etablerade algoritmer för bildbehandling. Majoriteten 

av algoritmerna i bildplattformen har skrivits för att kunna köras på grafikkort. 

Detta möjliggör parallell körning, vilket innebär att algoritmerna blir väldigt 

snabba. 

De fyra nya algoritmerna har konstruerats för analys av nuklearmedicinska 

bilder av patienter med neuroendokrina tumörer, som antingen har 

diagnostiserats eller behandlats med de radionuklidmärkta 

somatostatinanalogerna 111In-oktreotid och 177Lu-octreotat. 

Den första algoritmen konstruerades för analys av två bildbaserade metoder 

för njurdosimetri. Resultaten av analysen visade att det är svårt att hitta ett 

bakgrundsområde som motsvarar den verkliga aktiviteten i över och under-

liggande vävnad hos njuren. Det som bäst motsvarar detta är området runt hela 

njuren och inte ett enskilt mindre område bredvid njuren som används vid 

kliniska studier. Dessutom tycks den höga signalpåverkan från 

bakgrundsaktiviteten i den främre bilden göra att det är fördelaktigt att utföra 

dosimetri på den bakre bilden istället för att använda det geometriska 

medelvärdet av den främre och bakre bilden. 

Den andra algoritmen konstruerades för att, från planara bilder, erhålla bra 

uppskattning av benmärgsdosen. Algoritmen genererade absorberade 

benmärgsdoser som överensstämde med tidigare uppskattade benmärgsdoser. 

Dessutom korrelerade de erhållna benmärgsdoserna till hematologisk respons, 

vilket sällan har rapporterats. 

Den tredje algoritmen konstruerades för att erhålla förbättrad diagnos av 

levertumörer. Metodiken i arbetet bygger på ett statistiskt tillvägagångssätt för 

att separera levrar med tumörer från levrar utan tumörer. Resultaten visade 

lovande resultat i en retrospektiv studie, där ett ökat antal patienter med 

levertumörer kunde detekteras. 

Slutligen konstruerades en ny Monte Carlo-baserad rekonstruktionsalgoritm 

för att förbättra rekonstruktionen av tredimensionella bilder. Eftersom koden 

kördes på grafikkort kunde simulering av miljardtals fotoner snabbt beräknas. 

Därigenom blev simuleringstiden för rekonstruktionen av tredimensionella 

bilder endast några minuter. Rekonstruktionsmetoden testades genom 



 

fantommätningar där den visade sig vara betydligt bättre än konventionella 

metoder, samt bättre än de allra senaste kommersiella 

rekonstruktionsmetoderna med integrerad upplösningskorrektion. 
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ABBREVIATIONS 

AP Anterior-Posterior 

ARF Angular Response Function 

BTR Background to True background Ratio 

CCL Connected Component Labelling 

ConjV Conjugate View 

CPU Central Processing Unit 

CT Computed Tomography 

CUDA Compute Unified Device Architecture 

CV Coefficient of Variation 

DICOM Digital Imaging and Communications in Medicine 

FBP Filtered Back Projection 

FOV Field Of View 

FWHM Full Width at Half Maximum 

GPGPU General-Purpose computing on Graphics Processing Units 

GPU Graphics Processing Unit 

HB Haemoglobin 

HU Hounsfield Unit 
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LEHR Low Energy High Resolution 

MC Monte Carlo 

MEGP Medium Energy General Purpose 

MLEM Maximum Likelihood Expectation Maximization 

NET Neuroendocrine Tumour 

nNUF normalised Number of Uptake Foci 

nNUFTI normalised Number of Uptake Foci vs Threshold Index 

nThI normalised Threshold Index 

OSEM Ordered Subset Expectation Maximization 

PA Posterior-Anterior 

PET Positron Emission Tomography 

PhONSA The medical Physics, Oncology & Nuclear medicine research 

group at Sahlgrenska Academy 

PhONSAi The medical Physics, Oncology & Nuclear medicine research 

image platform at Sahlgrenska Academy 

PLT Platelet counts 

PM Photo Multiplier 

PostV Posterior View 

radtech Radiological techniques 



Tobias Rydén 

7 

RAM Random Access Memory 

ROI Region Of Interest 

RRC-

OSEM 

OSEM with resolution recovery and attenuation correction 

SARec The Sahlgrenska Academy Reconstruction code (the Monte 

Carlo code in PhONSAi) 

SARec-

OSEM 

The Monte Carlo-based OSEM algorithm in PhONSAi 

SDK Software Development Kit 

SPECT Single Photon Emission Computed Tomography 

ST-OSEM Standard OSEM with CT-based attenuation correction 

ThI Threshold Index 

TNC Tumour to Normal tissue Concentration ratio 

VOI Volume Of Interest 

VTK Visualization Toolkit 

WBC White Blood Cells 
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1 INTRODUCTION 

This project was performed within nuclear medicine physics and had the main 

goal to develop new methods for analysis of kidney and bone marrow 

dosimetry and diagnostics of tumour involvement in the liver, as well as to 

create a novel Monte Carlo-based reconstruction method for single photon 

emission computed tomography (SPECT). For optimal performance in such 

analysis and in quantification in medical images, different algorithms for 

image processing, segmentation and reconstruction are required. Furthermore, 

in many situations several different algorithms may be needed for one specific 

goal. However, in commercial medical image platforms the flexibility is 

restricted to the implemented algorithms, and even if some possibility of 

creating new algorithms exists, e.g. in workstations such as Xeleris (GE 

Healthcare, USA), it is cumbersome to integrate them with existing algorithms 

and to achieve time-effective methods. Therefore, one additional purpose of 

this project was to develop a flexible and robust imaging platform to use in 

medical image research: the medical Physics, Oncology and Nuclear medicine 

research image platform at Sahlgrenska Academy (PhONSAi). 

1.1 Gamma camera images 

A gamma camera is a device used to image photon-emitting radionuclides in 

patients. The basic components in a camera are the collimator, the crystal, the 

photo multiplier (PM) tubes and the associated electronics for collecting and 

analysing the signal from the PM tubes. The most common crystal material is 

NaI(Tl) and the collimator is usually made of lead. When an incoming photon 

interacts with the crystal, visible light is emitted and converted to an electrical 

signal in the PM tubes. The difference in the signal in the different PM tubes 

are used to obtain the spatial information. The total signal is proportional to 

the incoming photon energy (energy departed in the crystal). 

To obtain information of where in the patient the detected photon may have 

originated from, a collimator is used. The most used collimator is the parallel 

hole collimator with hexagonal holes, which discriminates almost all of the 

photons that are not directed perpendicular to the detector. The maximum 

angle of incidence through the collimator is determined by the hole diameter 

and hole length. The camera system sensitivity depends on the collimator 

design. Many deep holes with small diameter provide a high resolution but 

poor sensitivity, since the maximum angle is small in such a case. With larger 

hole diameters the maximum angle will increase and more photons will 

contribute to the image, resulting in a higher sensitivity and lower noise at the 
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cost of resolution. The sensitivity and resolution also depend on the thickness 

of the crystal. A thicker crystal provides increased sensitivity but lower 

resolution. If the collimator walls, septa, are too thin, or if the photon energy 

is too high, photons may penetrate the septa, giving star artefacts in the image 

and reducing the resolution. 

A gamma camera is able, with some uncertainty, to determine the incoming 

photon energy. The full width at half maximum (FWHM) for the energy 

resolution is usually around 10%. Most radionuclides that are imaged with the 

gamma camera are emitting photons with discrete energies. It is therefore 

possible to discriminate scattered photons by using an energy window around 

the photo peak of the source. The energy windows are a software setting that 

decides which detected pulses should be registered and contribute to the image. 

Because of the somewhat poor energy resolution and the low sensitivity, it is 

mandatory to collect photons within quite a broad energy window around the 

energy peak. Therefore, scattered photons will also be included in the image, 

which will decrease the contrast in the image. The low sensitivity of the camera 

and the limited acquisition times in clinical practice will result in noisy images. 

Further image degrading effects are due to variable attenuation and resolution 

for different source locations in the patient. Photons emitted from a volume of 

the patient that is behind bone or other high attenuating materials contribute 

less to the resulting image than photons emitted from a volume with lower 

attenuation tissues (e.g. lungs) between the volume and the camera. Since the 

maximum angle is fixed for a parallel hole collimator, a point source far away 

from the camera will be more blurred than a point source that is close to the 

camera. However, the sensitivity for the point sources will be the same. Due to 

the increased blurring, or partial volume effect, with distance, it is beneficial 

to have the camera as close to the patient as possible. Due to the described 

image degrading effects the resulting gamma camera image is not a perfect 

projection of the activity concentration in the patient. It is an attenuated, 

blurred and noisy projection with scattered photons included. 

1.2 SPECT reconstructions 

In SPECT, gamma camera images, projections, are acquired around the 

patient. The three-dimensional activity concentration distribution in the patient 

is then reconstructed with a reconstruction algorithm. For an infinite number 

of perfect projections around the patient, the collected data would have been 

the Radon transform of the activity concentration distribution. The Radon 

transform has an inverse. The inverse Radon transform is usually called filtered 

back projection (FBP). FBP has been used for a long time, mainly because it 

is very fast and not so computing intensive. One disadvantage of FBP on noisy 
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SPECT raw data is that the noise will be amplified. This can be handled by 

some modification of the filter in the FBP or by using post filters. There are 

methods to correct for scattering and attenuation in FBP-reconstructed images, 

but they are not optimized for non-uniform attenuation. 

A more optimal way to reconstruct SPECT is to use iterative reconstructions. 

The basic principle in iterative reconstructions is to guess a tomographic 

solution (estimate) and project it (a forward projection) for the same angles as 

the projections have been measured around the patient. Often 60 to 120 angles 

are used. The forward projections are then compared with the measured 

projections. The difference between the projections is used for updating the 

estimated image (back projection). This procedure is repeated until the 

difference is minimized or stopped at a predefined number of iterations. The 

most common iterative method in SPECT reconstruction is based on maximum 

likelihood expectation maximization (MLEM). It is a statistical method that 

assumes Poisson distributed detected pulses [1]. In MLEM the following 

calculation is performed for every voxel in the estimate (𝑓𝑗): 

𝑓̅
𝑗
(𝑘+1)

=
𝑓𝑗̅

𝑘

∑ 𝑎𝑖𝑗
𝑛
𝑖=1

∑
𝑔𝑖

∑ 𝑎𝑖𝑗𝑓̅
𝑗
(𝑘)𝑚

𝑗=1

𝑛
𝑖=1 𝑎𝑖𝑗 , 

Eq. 1 

where 𝑎𝑖𝑗 is the probability that the emitted photon from 𝑓𝑗 will be detected in 

bin 𝑖. ∑ 𝑔𝑖

∑ 𝑎𝑖𝑗𝑓̅𝑗
(𝑘)𝑚

𝑗=1

𝑛
𝑖=1  is the quote of the measured (𝑔𝑖) and the current estimated 

counts in bin 𝑖 and ∑
𝑔𝑖

∑ 𝑎𝑖𝑗𝑓̅𝑗
(𝑘)𝑚

𝑗=1

𝑛
𝑖=1 𝑎𝑖𝑗 is the back projection of that quote. 

Since these calculations are done for the whole estimate, matrix sizes of 1283-

5123 (2-134 millions) voxels, it is very computing intensive and time 

consuming for a central processing unit (CPU). However, all these steps can 

be done in parallel and have therefore been included as a graphics processing 

unit (GPU) code in PhONSAi. This speeds up the reconstruction time by a 

factor of up to 1000 compared to a CPU-based algorithm. 

MLEM converges rather slowly (40-100 iterations). To speed up the 

convergence the projections can be divided into subsets. An example of how 

to order 120 projections in subsets follows: 

Subset 1: 1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111 

Subset 2: 2, 12,…                                                      112 

                                          … 
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Subset 10: 10, 20,…                                                  120 

The method is called ordered subset expectation maximization or OSEM. It is 

comparable to MLEM as the number of subsets are moderate, but converges 

the number of subsets times faster [2]. With the MLEM and OSEM algorithms, 

all image degrading effects could theoretically be included and corrected for 

so that the algorithm will converge to the most probable activity concentration 

distribution. The commercial iterative reconstruction algorithms have had CT-

based attenuation correction included for a long time in MLEM and OSEM 

(ST-OSEM), i.e. the calculated projections are attenuated by the CT in the 

same way as the measured projections are presumed to have been by the 

patient. A correction for the depth dependent collimator response (RRC-

OSEM) has been included in the commercial algorithms recently. 

The disadvantages of the iterative algorithms have been that they require much 

more computations. With today's technology this is no longer a major problem. 

The advantage is that it is possible to model the physics so that the validity of 

the reconstruction increases. All reconstruction algorithms in PhONSAi are 

written in Compute Unified Device Architecture, CUDA, and use the GPU, 

making it possible to use full Monte Carlo simulations of the forward 

projections in the Sahlgrenska Academy reconstruction code (SARec), which 

is presented in Paper IV. 

1.3 Nuclear medicine diagnosis and therapy of 
neuroendocrine tumours 

The subjects involved in this study are patients that have undergone nuclear 

medicine diagnostics and therapy of neuroendocrine tumours (NETs). These 

tumours originate from neuroendocrine cells, which are cells that act like an 

interface between the nervous system and the endocrine system [3]. Some 

NETs overexpress somatostatin receptors and could therefore be targeted with 

radiolabelled somatostatin analogues such as 111In-octreotide for diagnostics 

and 177Lu-DOTA-octreotate for therapy [4]. 

1.4 The isotopes used in this thesis 

1.4.1 111In for gamma camera imaging 

The radionuclide 111In, which is labelled to octreotide by the chelat DTPA, is 

used for diagnosis of NETs by planar scintigraphy and SPECT. 111In has two 

gamma emissions that can be used for gamma camera imaging. One has an 
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energy of 171.3 keV with a branching ratio of 90% and the other has an energy 

of 245.4 keV with a branching ratio of 94% [5]. The half-life of 111In is 2.8 

days. In 111In imaging with gamma cameras both gamma emissions can be 

used, and dual energy window settings are often used over the 171.3 and 245.4 

keV photo peaks. The use of both photo peaks increases the signal in the image 

and thereby the noise will be reduced. This is of beneficial value for the image 

quality. However, photons from the 245.4 keV emissions will be scattered into 

the 171.3 keV window, which will decrease contrast and resolution. Different 

methods for reducing the scattering in gamma camera images have been 

proposed and the triple energy window (TEW) method is one method that can 

be used in clinical applications [6]. However, TEW will increase the noise in 

the image and is therefore not always of beneficial value. 

1.4.2 177Lu for gamma camera imaging and dosimetry 
177Lu is a beta emitter with a half-life of 6.7 days and a maximum beta energy 

of 498.3 keV, which can be considered as a medium energy suitable for therapy 

of disseminated tumour disease [7]. Labelled to the somatostatin analogues 

octreotate, by the chelat DOTA, it is today used worldwide for therapy of 

neuroendocrine tumours. 177Lu also emits a low abundance of photons, where 

the 208 and 113 keV gamma photons with branching ratios of 11 and 6.4 %, 

respectively, can be used for gamma camera imaging. However, due to the 

high in-scattering from the 208 keV gamma photons into the 113 keV energy 

window, a single energy window over 208 keV is preferable [8]. The ability to 

achieve rather good image quality with 177Lu enables the possibility to quantify 

the activity uptake and perform post-dosimetric calculations. This is most 

valuable for estimating the number of treatments that can be given to the 

patients. Today, most treatment protocols with 177Lu-DOTATATE are based 

on the patient’s status, regarding e.g. blood values and kidney function, and 

the accumulated mean absorbed dose to the kidneys. The dose limits to the 

kidneys are often restricted to 24-27 Gy [9]. However, kidney toxicity is 

seldom observed at these dose levels and in the ILUMINET study, which is 

performed at Sahlgrenska University Hospital and Skåne University Hospital, 

the maximum biological effective dose is set to 40 Gy for patients with good 

kidney function. The notable radiation toxicity in the patients is bone marrow 

response. Often this response is transient, but in some cases it might be 

irreversible [10]. Therefore, an estimate of the bone marrow dose would be 

beneficial in the treatment planning. However, it is most challenging to 

quantify the low bone marrow uptake in both planar images and SPECT. Only 

one study has in a selected patient group reported a correlation between the 

bone marrow response and absorbed dose [11]. For obtaining further improved 
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absorbed dose and response correlations, new methods for the bone marrow 

dosimetry would by valuable. 

1.5 The conjugate view method for planar 
imaging dosimetry 

The conjugate view (ConjV) method is commonly used in 2D dosimetry for 

estimation of the activity concentration in organs and tumours [12]. An 

advantage of the ConjV method is that it is independent of the depth of the 

source, i.e. the organ or tumour of interest. Most gamma cameras have two 

opposite detectors that simultaneously acquire photons emitted from the 

patient, thereby one anterior-to-posterior (AP) and one posterior-to-anterior 

(PA) image are obtained during a single scan. Whole body scanning is often 

performed within 15 to 30 minutes. 

By using the geometric mean between these two projections, the source depth 

dependence is eliminated [13]. The geometric mean of two opposite 

projections is the square root of the product of the projections. The parameters 

for activity estimation with the conjugate view method are the effective 

attenuation coefficient µe, the sensitivity of the camera system k, the patient 

thickness T and the thickness of the organ to be measured t. The activity is:  

𝐴 =
√𝐶𝐴𝐶𝑃∙𝑒

µ𝑒𝑇
2 ∙µ𝑒𝑡

𝑘(1−𝑒−µ𝑡)∙𝑒
µ𝑒𝑡

2

  

Eq. 2 

where 𝐶𝐴 is the number of net counts in the AP projection and 𝐶𝑃 is the number 

of net counts in the mirrored PA projection. The effective attenuation 

coefficient µ𝑒 and the calibration factor k are measured with a source of known 

activity at known depths in tissue-equivalent material. The calibration source 

should have similar size as the source of interest for obtaining the best estimate 

of the scattering contribution (the build-up factor) in this broad beam 

geometry. When the activity uptake in the source of interest is well above a 

homogenous background in both the AP and PA projections, the conjugate 

view method is a rather robust and straightforward method with good 

precision. However, if the source of interest is close to any AP or PA surface, 

the signal in the opposite projection might be close to the background signal. 

Furthermore, in reality the background activity is heterogeneously distributed 

and it is not obvious how a background region of interest (ROI) should be 

positioned for resembling the true over- and underlying tissue contribution in 

the source ROI. 
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1.6 Renal dosimetry 

In 177Lu treatments with somatostatin analogues, a maximal mean absorbed 

renal dose of 24-27 Gy is used [14, 15]. Determination of the estimated renal 

dose is often done in 2D images with the conjugate view method [12]. 

However, overlapping organs and tumours in the planar image is a major 

problem in the activity estimation with the ConjV method. If a background 

correction is performed, a ROI is placed somewhere around the kidney, which, 

when rescaled, is supposed to resemble the activity ahead of and behind the 

kidney (Figure 1). However, no consensus on the location of the background 

ROI exists and it would be valuable to investigate how different background 

locations influence the estimated absorbed doses. Furthermore, due to the 

posterior location of the kidney the ConjV method might not be the superior 

method, and an alternative is to only use the posterior gamma camera image 

[16]. 

1.7 Bone marrow dosimetry 

In contrast to renal toxicity, which seldom is observed in 177Lu-DOTATATE 

treatments, bone marrow responses are almost always observed [17, 18]. Most 

often the bone marrow response is mild and transient, but in some cases it 

might be manifested and life threatening which limit further treatments. To 

perform accurate bone marrow dose estimations in planar images is most 

challenging, due to the low activity concentration in the bone marrow and high 

activity concentration in overlapping organs. Even in SPECT images the low 

activity concentration in the bone marrow is challenging to determine 

accurately. The factors that make it problematic are noise, scattering and the 

Figure 1. 2D ROIs over the kidneys and the background. 
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pronounced partial volume effect for the small bone marrow cavities. 

Therefore, an indirect estimation of blood-based dosimetry is often performed, 

which assumes a constant ratio between the activity concentration in blood and 

bone marrow [19]. Only in one selected study with limited number of patients 

a dose response correlation has been observed [11]. It is therefore appealing, 

and most challenging, to find new methodology for obtaining bone marrow 

doses from planar imaging that also correlate with haematological response.  

1.8 Detection of liver tumours 

It can sometimes be difficult to determine whether an uptake focus in the liver 

is normal or a sign of malignancy. This is often the case when the tumours are 

small (around a few grams) or the uptake of the radiopharmaceutical is low. 

The standard method used for review of the SPECT images is a subjective 

visual assessment. However, since SPECT images of the liver are noisy and 

the resolution is low, it is most challenging to correctly diagnose small 

tumours, with low uptake to normal tissue ratio, by visual inspection [20]. 

Therefore, it might be valuable to find alternative, automatic, methods to 

analyse the noise distribution in healthy and malignant tissues and investigate 

if any difference between them exists. Furthermore, most importantly, judge if 

this difference can be used as a basis for an automatic analysis method of 

tumour involvement in the liver. One way to characterize the noise in the liver 

in an objective way might be to study the number of segmented uptake foci for 

different thresholds, where the counting could be performed with a connected-

component labelling (CCL) algorithm, which is one of all algorithms that have 

been included in PhONSAi. 

1.9 Monte Carlo based SPECT/CT 
reconstructions 

When the activity distribution in a patient is captured by a gamma camera, 

through the emitted photons, it is not a perfect ray projection. The image has 

been degraded by attenuation and scattering in the patient and blurred by the 

collimator and the crystal, as described in 1.1. In OSEM a perfect ray 

projection or an attenuated perfect ray projection is often used in the forward 

projection, with the result that the algorithm converges to a slightly erroneous 

activity concentration distribution. In commercial algorithms, attenuation 

correction is implemented and, in state-of-the-art algorithms, the collimator 

response is also implemented in the forward projections. This results in 

improved image quality but still these algorithms are approximated solutions 

of the problems. Recently, some research groups have presented MC-based 
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OSEM SPECT/CT reconstructions, which have the potential to correctly 

include degrading effects like scattering, partial volume effects and attenuation 

[21]. The procedure is shown in Figure 2. However, this is very 

computationally intensive for the used CPU- and MC-based reconstructions, 

and the simulation time often is days. This is beyond clinically useful 

reconstruction times. Nevertheless, implementation of the MC reconstruction 

with CUDA programming will enable parallelisation of the code and thereby 

decreased simulation times could be obtained [22]. 

 

Figure 2. Schematic figure of the MLEM reconstruction algorithm. It is the forward 

projection that is based on Monte Carlo simulations. 
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2 AIM 

The aims of this project were to develop novel methods and tools for analysis 

and quantification in nuclear medicine images. An additional aim was to 

collect these methods and tools into a novel, flexible and robust image platform 

for use in medical image research. The specific aims were:  

2.1 Paper I 

To develop a segmentation analysis method for SPECT images and to use it to 

study the impact of the background ROI in two planar kidney dosimetry 

methods. 

2.2 Paper II 

To develop a novel automatic image-based two-compartment model for bone 

marrow dosimetry, and to investigate its correlation to haematological 

response. 

2.3 Paper III 

To develop a novel statistical segmentation analysis algorithm for automatic 

detection of liver tumours in SPECT images, and to study its utility in a 

retrospective clinical study with 111In-DTPA-octreotide for diagnosis of 

neuroendocrine liver tumours.   

2.4 Paper IV 

To develop a novel and fast Monte Carlo-based reconstruction algorithm for 

SPECT, and to compare its performance with clinically established 

reconstruction methods.  
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3 MATERIALS AND METHODS 

The user interface for PhONSAi was written in c++.NET in visual studio. The 

database where the information of all images is stored is an SQLEXPRESS 

database. The Digital Imaging and Communication in Medicine (DICOM) 

server in PhONSAi was written in c# and is based on the mDICOM library. 

Visualization toolkit, VTK, was used for most of the visualization in 

PhONSAi. Most of the heavy algorithms are parallelised and written in CUDA 

and therefore executed on the GPU. CURAND was used for parallel pseudo 

random number generation and CUFFT was used for the parallel fourier 

transforms. All of the CUDA kernels were specifically written for this project. 

The thrust library included in the CUDA SDK is used for optimized parallel 

reduction on the GPU. 

3.1 Paper I 

The purpose of the first paper was to develop a method that could be used to 

investigate the influence of the background ROI on the quantification of the 

activity concentration in the kidneys. For this purpose an automatic image 

analysis method of SPECT images was constructed and implemented into 

PhONSAi. The method started by delineating the whole body and the kidneys 

using a level set segmentation algorithm (3.3.3). Then, the kidneys were 

projected to a 2D posterior projection, this image was named A. To locate the 

background ROIs at different positions around this projected kidney, a dilate 

algorithm was used. This algorithm was first run twice to position the ROIs 

two pixels away from the kidney border in image A. This new image was saved 

as B. For obtaining ROIs with a certain dimension, in this case a four pixel 

wide ROI, the dilate algorithm was executed 4 more times. This dilated area 

was subtracted by image B and saved as image C. Image C was then a 4 pixel 

wide area around the kidney with spacing 2 pixels to the kidney. C was divided 

into 10 parts, each part occupying an angle of 36 degrees from the centre of 

the kidney. These parts were now the 10 background ROIs around the kidney. 

Each of the 10 backgrounds ROIs and the kidney ROI was back projected 

through the SPECT volume to create column VOIs through the SPECT image 

(Figure 3). All voxels that were outside the body and in the kidney was set to 

0. 
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The activity concentrations in the background ROIs were compared to the 

true activity concentration in the background, as measured in the created 

column VOI in the SPECT image. From the SPECT image attenuated AP and 

PA projections were created, which generated the counts in the kidney and in 

the 10 background ROIs. These ROIs were then used to determine the 

activity concentration (Ac) in the kidney by both the posterior view (PostV) 

method (Eq. 3) and conjugate view method (Eq. 4), which was compared 

with the true activity concentration. 

𝐴𝑐𝑃𝑜𝑠𝑡𝑉 =
𝐶𝑃

𝑣𝑜𝑙𝑢𝑚𝑒
∙ 𝑒𝜇∙𝑛𝑑 ∙

𝑛𝑡 ∙ 𝜇

1 − 𝑒−𝜇∙𝑛𝑡
 

Eq. 3 

𝐴𝑐𝐶𝑜𝑛𝑗𝑉 =
𝜇 ∙ 𝑛𝑡 ∙ √𝐶𝐴 ∙ 𝐶𝑃

𝑒−
𝜇∙𝑝𝑡

2 ∙ (𝑒
𝜇∙𝑛𝑡

2 − 𝑒−
𝜇∙𝑛𝑡

2 ) ∙ 𝑣𝑜𝑙𝑢𝑚𝑒
 

Eq. 4 

𝐶𝐴 and 𝐶𝑃 are the net counts in the AP and PA projections respectively and µ 

is the effective attenuation coefficient for 177Lu in water. nd, nt and pt are kidney 

depth (the distance between the patients back and the kidney), kidney thickness 

and the patient thickness respectively and volume is the volume of the kidney. 

  

Figure 3. The backprojected kidney and background VOIs. 
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3.2 Paper II 

In Paper II the aim was to develop a planar image-based method for estimation 

of the bone marrow dose. The basic idea was to assume that the low activity 

concentration in the whole body corresponds to non-physiological uptake in 

organs and that it is linearly related to the activity concentration in bone 

marrow. Thereby we developed an automatic algorithm for dividing the whole 

body into high- and low-uptake areas. In this algorithm a geometric mean 

image is first created from the anterior and posterior 2D images. Then a 

threshold-based whole body segmentation is performed and the number of 

uptake foci (NUF) is counted with a CCL algorithm (3.3.4) for each threshold 

value (named threshold index – ThI). A normalised NUF versus ThI (nNUFTI) 

curve (3.3.5) is acquired in the segmented whole body area, see Figure 4. The 

threshold value corresponding to the ThI at nNUF=0.1 is used to separate tissue 

Figure 4. A region of interest of the whole-body. The number of uptake foci is calculated 

for different threshold values starting at the lowest ThI (A) and moving higher (B, C and 

D). 
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bound activity from activity in the blood. This nNUF value was based on best 

visual separation of the high and low uptake areas. 

The activity concentration in the two compartments was determined by the 

conjugate view method (Eq. 2). The patient thickness was measured in the 

abdomen area in a high resolution CT image and used as the thickness of the 

high-uptake area. The thickness of a general organ, which was assumed to 

accumulate the activity in the high uptake area, was determined to 8 cm by 

measurements in a series of SPECT images. The weight of the high-uptake 

compartment was determined assuming a density of 1 and the volume 

calculated from the high-uptake compartment area and the abdominal 

thickness. The activity was assumed to be uniformly distributed in the low-

activity compartment. The thickness of the low-activity compartment Ptlow was 

determined as: 

𝑃𝑡𝑙𝑜𝑤 =
𝑊𝑝𝑎𝑡𝑖𝑒𝑛𝑡−𝑊ℎ𝑖𝑔ℎ

𝐴𝑙𝑜𝑤
∙

1

𝜌
  

Eq. 5 

Wpatient is the weight of the patient, Whigh is the weight of the high-uptake 

compartment and Alow is the area of the low uptake compartment. The assessed 

cumulated activity in the tissue in the foreground and background in the 2D 

image of the high-uptake compartment was added to the low-uptake 

compartment. For the low-uptake compartment a bi-exponential curve was 

fitted to the data when four data points (i.e. gamma camera measurements 

performed at 2h, 24h, 2 days and 7 days p.i.) were available and a mono-

exponential curve fit was used when we had three data points (Figure 5). The 

curve fit to the data points from the high-uptake compartment was made with 

a linear fit between the first two data points and a mono-exponential function 

Figure 5. A bi-exponential curve fit for the low-uptake compartment (A) and a linear/mono-

exponential curve fit for the high-uptake compartment (B).  
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to the rest. The cumulated activity was calculated by integrating the curves 

from t=0 to infinity. 

The dose to the bone marrow was calculated: 

𝐷𝑏𝑚 = Ã𝑏𝑚 ∙ 𝑆𝑏𝑚←𝑏𝑚 + Ãℎ𝑖𝑔ℎ ∙ 𝑆𝑏𝑚←ℎ𝑖𝑔ℎ ∙ Ã𝑙𝑜𝑤 ∙ 𝑆𝑏𝑚←𝑙𝑜𝑤  

Eq. 6 

Ãbm was derived from Ãlow , see below, and the S values were acquired from the 

RADAR website [23]. 𝑆𝑏𝑚←ℎ𝑖𝑔ℎ was calculated as a weighted mean of the S-

values for liver, spleen and kidneys to the bone marrow and 𝑆𝑏𝑚←𝑙𝑜𝑤 was 

calculated as the mean S-value for muscle and bone. 

The Monte Carlo code SARec, described in 3.4.1, was used to determine the 

recovery correction factor. The ratio of activity concentration between the bone 

marrow and the low uptake compartment was determined by measuring it in 

53 SPECT/CT images of 15 patients. The mean value of these ratios was used 

to adjust Ãbm. 

Haemoglobin (HB), white blood cells (WBC) and platelet (PLT) counts were 

measured in blood samples every other week during treatment and the 

calculated mean absorbed bone marrow dose was correlated to HB, WBC and 

PLT counts. 

3.3 Paper III 

In paper III the aim was to develop an automatic method for detection of liver 

tumours in SPECT images and test the methodology in a retrospective study 

with 111In-DTPA-octreotide for diagnosis of neuroendocrine liver tumours. 

Since the focus was the detection of liver tumours, the liver was outlined by 

semi-automatic segmentation in the SPECT or CT. The tools used for 

segmentation of the liver were a threshold-based segmentation algorithm, a 

region growing algorithm, a level set algorithm and a manual VOI drawing 

tool. Details of these tools are described below and thereafter the automatic 

method for detection of liver tumours is described. 

3.3.1 Threshold-based segmentation 

For the threshold-based segmentation a threshold value is defined. If the voxel 

value is higher than or equal to the threshold value the voxel is included. This 

is easily done in parallel. The labelling of the included voxels is independent 

of order. The volume that is going to be segmented is copied to the GPU 

memory. A CUDA kernel that sets the voxel value to 1 if the current voxel 
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value fulfils the criteria and 0 otherwise is launched. The threshold-segmenting 

CUDA kernel is launched with the same number of threads as the total number 

of voxels. The data is copied back from GPU to RAM. 

3.3.2 Region growing algorithm 

The region growing starts with a number of voxels and iteratively includes 

neighbouring voxels that meet certain criteria until no more voxels are 

included. Input parameters are an initial segmentation, μ and 𝑎, where μ is the 

mean voxel value of the voxels included in the initial segmentation and 𝑎 is a 

tolerance factor. The initial segmentation is often a small sphere of voxels. The 

criterion for a neighbouring voxel to be included in the segmentation is that its 

value belongs to the range [μ-𝑎σ, μ + 𝑎σ], where σ is the standard deviation of 

the initial segmentation. This is a little bit tricky to do in parallel. This is how 

it is done in PhONSAi: 

Memory is allocated on the GPU for input and output. All voxels in the output 

are set to 0 in parallel. The image to be segmented is copied to input data on 

the GPU. A CUDA kernel is launched with the same number of threads as the 

number of voxels, N. Each voxel in the input data is set to 1 if its value is in 

the range [μ-𝑎σ, μ + 𝑎σ], otherwise 0. Memory for a 32-bit integer is allocated 

on the GPU and the pointer to that address is called nUpdate. nUpdate is set to 

1. A while loop with the criterion that nUpdate > 0 sets nUpdate to 0 and 

launches a CUDA kernel with N threads. In the kernel: If output> 0 and input> 

0, input it set to 0 and output is set to output + input of neighbours and nUpdate 

increased by 1. As this occurs simultaneously throughout the voxel matrix, 

multiple threads may add to nUpdate at the same time, which may result in 

wrong value of nUpdate. This is of no significance because nUpdate is only 

used as a binary criterion for the while loop. After the while loop has finished 

the output is thresholded in parallel so that all voxel values > 0 is set to 1 and 

the rest to 0. The output data is then copied to RAM. 

3.3.3 Level set algorithm 

The level set segmentation algorithm starts from an initial segmentation, which 

might be a result from another algorithm, a sphere or a manually drawn VOI. 

The segmentation Γ is viewed as a level set of a function of a higher dimension.  

𝛤(𝒙, 𝑡) = {𝜙(𝒙, 𝑡) = 0} 
Eq. 7 

Γ is manipulated implicitly through the level set function ϕ. The level set 

equation (Eq. 8): 
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𝜕𝜙

𝜕𝑡
= −𝑣|𝛻𝜙| 

Eq. 8 

describes how ϕ changes with t. v is the velocity function and it is a function 

of the data to be segmented. 

𝑣 = (𝑎 ∗ 𝑆(𝐼) + (1 − 𝑎)𝛻
𝛻𝜙

|𝛻𝜙|
) 

Eq. 9 

𝑆(𝐼) = 𝑏 − |𝐼 − 𝑇| 
Eq. 10 

𝜕𝜙

𝜕𝑡
= −|𝛻𝜙| (𝑎 ∗ 𝑆(𝐼) + (1 − 𝑎)𝛻

𝛻𝜙

|𝛻𝜙|
) 

Eq. 11 

𝜙(𝑡 + ∆𝑡) = 𝜙(𝑡) + ∆𝑡 ∙ 𝑣 ∙ |𝛻𝜙| 
Eq. 12 

∆t, 𝑎, b, T, ϕ(0), I and the number of iterations are the input parameters for the 

level set segmentation algorithm in PhONSAi. ∆t is the time step for each 

iteration, 𝑎 is a weight between the curvature and the velocity, b is the width 

of the threshold voxel value interval and T the centre. I is the image to be 

segmented. Memory is allocated for ϕ(x,t) and for S(x). All voxels in S are 

created in parallel from the image I, b and T. In every iteration ϕ is updated in 

parallel according to Eq. 12. After all iterations the segmented closed surface 

is:  

𝛤(𝒙) = {𝜙(𝒙) = 0} 

Eq. 13 

And the voxels that are inside that surface fulfils: 

𝑉(𝒙) = {𝜙(𝒙) ≥ 0} 
Eq. 14 

3.3.4 Parallel Connected Component Labelling 

The parallel counting algorithm, the connected component labelling (CCL), 

sets each voxel value to its index if it is above the threshold value and to zero 

if it is below. A global Boolean variable called notFinished is set to true. A 

while loop with the condition notFinished is started. In the beginning of the 

loop the notFinished variable is set to false. A CUDA kernel called scan is 

launched with as many threads as there are voxels.  
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The scan kernel stores a variable called label from the voxel matrix at the 

current thread index and checks if it has a value above zero. If it has, a 

comparison between its value and all neighbouring voxels’ nonzero values is 

performed. The voxel with the index equal to the variable label gets a new 

value equal to the minimum of its old value and the minimum in the 

comparison described above. The notFinished variable is set to true. 

Another CUDA kernel that finds the root label and replaces the current label 

with the root in each connected region is launched with the same number of 

threads. This is performed as long as notFinished is true. After the while loop 

a parallel sorting algorithm in the thrust library is used to sort the label array 

in ascending order. The number of connected regions is acquired using the 

function thrust::unique on the sorted label array. Thrust::unique is a function 

that counts all the times a value changes from the beginning to the end in an 

array, i.e. the number of uptake foci is counted. The above algorithm is 

performed 125 times to receive the nNUFTI-curve (3.3.5). This number of 

times could be arbitrary set, but should be at least 100 to obtain satisfactory 

resolution. 

3.3.5 nNUFTI 

When the liver is segmented the maximum voxel value is found in the liver. 

125 evenly spaced threshold values between 0 and the maximum value are 

generated and for each threshold value all voxels above the threshold value are 

set to 1 and the others to 0. For each threshold value the GPU-based CCL 

described above is used to count the number of connected foci and to calculate 

their sizes by histogram of the labels. When there is at least one focus of the 

size of at least two voxels the loop is terminated and the threshold value is 

saved as Cmax. Now 125 new numbers are created evenly spaced from the saved 

threshold and 0 and for each of these the number of connected foci is plotted 

against the threshold index, ThI, which is defined as: 

𝑇ℎ𝐼 =
𝐶𝑚𝑎𝑥 − 𝐶

𝐶𝑚𝑎𝑥
  

Eq. 15 

where C is the current threshold value. The curves produced according to the 

above described algorithm is normalised by the maximum number of 

connected uptake foci (nNUF). The nNUF vs ThI (nNUFTI) characteristic is 

used to determine tumour involvement, as described in 3.3.6. 
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3.3.6 Patient study 

The nNUFTI method was tested in a retrospective study with 53 patients that 

were assessed as octreoscan negative and 10 patients that were octreoscan 

positive. The patients were randomly selected from the database. A 3-year 

follow up of the 53 octreoscan-negative patients divided the group into two 

subgroups. The patients who were found to have developed tumours in the liver 

during follow up were placed in one group and the patients who remained 

healthy after three years of follow up in another group. 40 patients ended up in 

the healthy group and 13 in the group with later demonstrated liver tumour 

involvement. To determine where and how the nNUFTI curve should be used 

to distinguish healthy livers from livers with tumour involvement, the curves 

from the 40 healthy patients and the 10 patients with confirmed tumour 

involvement were analysed. It was found that there was a clear correlation 

between ThI and mean voxel value in the liver, consequently the ThI was 

corrected for this effect. This corrected ThI is the nThI, normalised threshold 

index. The analysis read the nNUFTI curve where the difference between the 

healthy and the malignant was most statistically significant (Figure 6).  
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3.4 Paper IV 

3.4.1 GPU-based Monte Carlo 

In the last study, Paper IV, the aim was to develop a fast Monte Carlo method 

and use it in SPECT reconstructions. This Sahlgrenska Academy 

reconstruction (SARec) code was implemented into PhONSAi. SARec is 

written in CUDA for optimal speed and it assumes two 3D voxel matrices. One 

as the source where the voxel values correspond to activity concentration and 

one as the phantom where the voxel values are correlated to the atomic 

composition. The voxel values in the phantom should be in Hounsfield units, 

HU. The voxel sizes, the voxel dimensions and the origins of the matrices are 

passed as parameters. Furthermore, the number of photons per source voxel, 

an arbitrary number of photon energies and the corresponding branching ratios 

are passed as parameters. 

The detector consists of a 2D matrix with arbitrary pixel sizes and a specific 

position in space. The crystal in the detector has specific spatial and energy 

resolutions, described by full width at half maximum (FWHM). The collimator 

is based on an angular response function (ARF) and a scattering kernel, which 

includes the scattering in the detector, i.e. the collimator, crystal, shielding and 

electronics. The ARF in SARec is based on cylindrical shaped collimator holes 

where the holes, due to septal penetration, are increased from their true sizes. 

The size of the collimator holes, and the values for the parameters of the 

scattering kernel were determined by gamma camera measurements of line 

Figure 6. Example of nNUFTI curves of healthy (green) and malignant (red) 

livers with the markers at nNUF=0.25. 
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sources. Cross sections for energies between 10-600 keV in 24 atomic 

compositions are acquired from NIST XCOM [24]. A table that correlates HU 

to atomic composition and HU to density is created [25]. The ARF is calculated 

on the GPU in parallel for the selected collimator parameters and for 1000 

angles between 0 and 𝜃𝑚𝑎𝑥 (Eq. 16-Eq. 18). 

𝜃𝑚𝑎𝑥 = atan (
𝐷𝑒𝑓𝑓

𝐿
) 

Eq. 16 

𝑑 = 𝐿 ∙ tan (𝜃) 
Eq. 17 

𝐴𝑅𝐹(𝜃) =

4 ∙ 𝐷𝑒𝑓𝑓
2 ∙ acos (

𝑑
𝐷𝑒𝑓𝑓

) − 𝑑 ∙ √𝐷𝑒𝑓𝑓
2 − 𝑑2

𝜋 ∙ 𝐷𝑒𝑓𝑓
2  

Eq. 18 

where Deff is the collimator effective hole diameter and L is the hole length. 

The Klein Nishina integral (Eq. 19) over 4π, 𝜎𝑐, is calculated for 590 energies 

between 10 and 600 keV in parallel (Eq. 20). 

𝜎𝑐 = ∫
𝑟𝑒

2

2

1

[1 + 𝛾(1 − 𝑐𝑜𝑠𝜃)]2
(1 + 𝑐𝑜𝑠2𝜃 +

𝛾2(1 − 𝑐𝑜𝑠𝜃)2

1 + 𝛾(1 − 𝑐𝑜𝑠𝜃)
) 𝑑𝛀 

Eq. 19 

𝜎𝑐 = 2𝜋𝑟𝑒
2 {

1 + 𝛾

𝛾2 [
2(1 + 𝛾)

1 + 2𝛾
−

1

𝛾
ln (1 + 2𝛾)] +

1

2𝛾
ln(1 + 2𝛾) −

1 + 3𝛾

(1 + 2𝛾)2} 

Eq. 20 

𝛾 is the energy divided by 511 keV. All tabulated data are stored in the global 

memory on all the GPUs and bound to texture memory for performance issues. 

These tables are from now on read only and hardware linear interpolation is 

used. 

Memory for the phantom, the source, and the resulting image is allocated on 

and copied to all of the GPUs. To avoid unwanted correlations between random 

numbers when generating random numbers in parallel, as many random 

number generators are initialised with unique seeds as the maximum number 

of parallel photons that are created on the GPUs. There are two parallelism 

options in SARec: either all the photons emitted from one voxel are simulated 

in parallel or one photon emitted from each voxel in the matrix are simulated 

in parallel. The former is to prefer when the source contain few voxels, as in 

the case for simulation of tumours into to the raw data set. The latter is to prefer 

for simulation of photon emission from large matrix dimension, as is the case 
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in the simulation of the forward projection in MC-based SPECT 

reconstruction. 

The number of GPUs in the system, NGPU, is acquired from the driver. NGPU 

number of CPU threads are created, where each CPU thread handles one 

projection on one GPU. The main thread is delegating work to the other CPU 

threads until all projections are created.  

The phantom and the source are rotated into the correct angle for the projection. 

The rotation is done in parallel and the time it takes is negligible. A CUDA 

kernel with Nvoxel parallel GPU threads is launched where each thread is 

simulating one photon. This is done Nphoton times. 

The random number generator is copied from global to local memory. The 

photon’s starting position is randomized uniformly in the source voxel. If the 

selected isotope has more than one energy peak, a uniform random number is 

used to determine at which index of the energy array the energy and 

corresponding weight should be read. The photon’s initial direction in 

spherical coordinates φ and θ is sampled according to φ = 2π𝑟0 and θ =
acos (1 − 𝑟1(1 − cos(θ𝑚𝑎𝑥))). θ𝑚𝑎𝑥 = 𝜋. As long as the photon is inside the 

phantom and has an energy above 10 keV, it is given a new step to travel (s) 

by the use of the delta scattering method [26]: 

𝑠 = −
ln (𝑟)

𝜇𝑚𝑎𝑥
 

Eq. 21 

where 𝜇𝑚𝑎𝑥 is acquired from the table of attenuation coefficients at the current 

energy and the atomic composition of the maximum CT value. The total 

relative attenuation coefficients for Compton scattering, photo absorption and 

Rayleigh scattering are acquired at the current energy and atomic composition 

of the CT value where the photon arrives. If a uniform random number is less 

then 
𝜇

𝜇𝑚𝑎𝑥
, an interaction occurs, otherwise a new step is sampled. If interaction 

occurs, another uniform random number determines which kind of interaction. 

If photo absorption, the photon is terminated; if Compton, a new direction and 

energy are sampled according to Kahn’s rejection method [27]. To sample the 

new direction after a Rayleigh scattering, the following method is used: 

𝑑𝜎𝑟𝑎𝑦𝑙𝑒𝑖𝑔ℎ

𝑑𝛀
= 𝐹2(𝑞, 𝑧)

𝑑𝜎𝑡ℎ𝑜𝑚𝑠𝑜𝑛

𝑑𝛀
 

Eq. 22 
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where F is the atomic form factor, which has been calculated and tabulated 

[28]. From the table of normalised integrated squared form factor, the value of 

q is sampled. The scattering angle is then calculated: 

𝜃 = 2 𝑎𝑠𝑖𝑛 (
𝑞ℎ𝑐

𝑒
) 

Eq. 23 

where h is Planck’s constant, c is the speed of light in vacuum and e is the 

energy of the photon. The Thomson cross section is calculated by:  

𝜎𝑡ℎ𝑜𝑚𝑠𝑜𝑛 =
𝑟𝑒

2

2
(1 + 𝑐𝑜𝑠2θ) 

Eq. 24 

where re is the classical electron radius. 

A new uniform random number r between 0 and 1 is compared to the 

normalised 𝜎𝑡ℎ𝑜𝑚𝑠𝑜𝑛. If r is smaller than the normalised 𝜎𝑡ℎ𝑜𝑚𝑠𝑜𝑛, θ is 

selected, otherwise a new q is sampled and the procedure is repeated. 

When the photon arrives at the detector, a uniform random number is compared 

to the ARF at the current incident angle. If the random number is smaller than 

the ARF, the photon is terminated. Two normal random numbers with mean=0 

and FWHM of the crystal are used to adjust the position of the interaction 

point. Another normally distributed random number with the same FWHM as 

the energy resolution of the system is used to adjust the energy of the photon. 

If the photon’s energy is inside any of the selected energy windows, the 

resulting image adds the value one in the point of interaction. 

In pure MC code only around 1 of 10000 photons contributes to the resulting 

image. Such an approach is useful when the simulation of correct noise 

characteristics is of importance. This might be useful for simulation of tumours 

in SPECT raw data from healthy patients and to produce SPECT raw data from 

a digital source and phantom for other studies, but in MC-based SPECT 

reconstruction, where the forward projection is simulated, the noise should be 

as low as possible. In SARec some variance reduction techniques are used for 

reducing the simulation times and the noise level. Above the time-reducing 

methods by the ARF with the associated scattering kernel and the delta 

scattering method have been described. Below the use of scattering order and 

forced detection is described. 

In Figure 7 the implementation of the scattering order technique is 

schematically described. First, a uniform random number between 0 and the 
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maximum number of interactions determines the scattering order of the photon. 

The maximum scattering order used in paper IV was 3, but the number can be 

arbitrarily chosen. Initially, the photon’s weight is the activity concentration in 

the source voxel times the maximum number of interactions + 1. If the 

scattering order is 0, the photon is forced towards the detector with a randomly 

selected angle that is smaller than the maximal angle 𝜃𝑚𝑎𝑥 (Eq. 16) and its 

weight is multiplied with (1 − 𝑐𝑜𝑠𝜃𝑚𝑎𝑥)/2. The photon is travelling towards 

the detector according to the delta scattering method, but at every step (s), 

before the interaction in the crystal, the photon’s weight is multiplied by the 

probability (p) not to interact: 

𝑝 = (1 −
𝜇

𝜇𝑚𝑎𝑥
) 

Eq. 25 

When the photon arrives at the detector, the photon’s weight is multiplied with 

the ARF for the corresponding angle. 

If the scattering order is 1, the photon is launched isotropically and forced to 

interact inside the phantom. The distance dv to the edge of the phantom’s voxel 

matrix is measured along the photon direction, and the sampled path is: 

𝑠 =
−ln (1 − 𝑟 ∙ (1 − 𝑒−𝑑𝑣∙𝜇𝑚𝑎𝑥))

𝜇𝑚𝑎𝑥
 

Eq. 26 

The present photon’s weight (whtp) is multiplied by the probability that 

interaction in the phantom matrix occurs, giving a new weight 

𝑤ℎ𝑡𝑝 = 𝑤ℎ𝑡𝑝 ∙ (1 − 𝑒−𝑑𝑣∙𝜇𝑚𝑎𝑥) ∙
 𝜇

𝜇𝑚𝑎𝑥
 

Eq. 27 

where the last term is applied due to the use of the delta scattering method, μ 

is the attenuation coefficient at the point of interaction and the current energy. 

Thereafter, a Compton interaction is forced and the scattered direction is forced 

towards the detector. The new photon energy is given by Eq. 28.  

ℎ𝜈′ =
ℎ𝜈

1 + 𝛾(1 − cos𝜃)
 

Eq. 28 

With the scattered angle and the new energy, the differential Compton cross 

section is calculated (Eq. 30). The weight of the photon is multiplied with this 

cross section, divided by the integral of Klein Nishina over 4π (the 
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precalculated 𝜎𝑐 for the current energy) and multiplied with the forced solid 

angle. The photon is then travelling towards the detector, as described for 

scattering order 0. 

𝑑𝜎

𝑑𝛀
=  

𝑟𝑒
2

2

1

[1 + 𝛾(1 − 𝑐𝑜𝑠𝜃)]2 (1 + 𝑐𝑜𝑠2𝜃 +
𝛾2(1 − 𝑐𝑜𝑠𝜃)2

1 + 𝛾(1 − 𝑐𝑜𝑠𝜃)
) 

Eq. 29 

𝑑𝜎

𝑑𝛀
=  

𝑟𝑒
2

2
(

𝜈′

𝜈
)

2

(
𝜈

𝜈′ +
𝜈′

𝜈
− 𝑠𝑖𝑛2𝜃) 

Eq. 30 

𝜈 is the frequency of the photon before interaction and 𝜈′ is the frequency after. 

If the scattering order is 2 or higher, the photon is launched isotropically. 

Interaction is forced in the phantom and the photon weight is adjusted as 

described above. A Rayleigh or Compton interaction may occur. The new 

direction and energy are sampled as described above. This is done until there 

is only one interaction left. The last interaction will always be a Compton with 

the scattering angle directed against the detector, as for scattering order 1. 

When the current projection is finished it is copied from GPU memory to 

RAM. 

 

SARec was used as the forward projector in an OSEM algorithm called 

SARec-OSEM. Phantom measurements and patient data were reconstructed 

with SARec-OSEM, ST-OSEM and RRC-OSEM. A comparison between the 

three algorithms was performed. 
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Figure 7. Schematic description of the variance reduction with a maximum 

scattering order of three. The photons originate from the source voxel S. 

Photons with scattering order 0-3 are shown in the figure. Photon 0 is 

emitted towards the detector, Photon 1 is forced to interact 1 time before it 

is forced towards the detector, Photons 2 and 3 are forced to interact 2 and 

3 times, respectively, before they are forced to interact with the detector. 
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4 RESULTS 

During the project time PhONSAi has developed into an advanced workstation 

with similar functionality as commercial workstations such as Xeleris (GE 

Healthcare, USA) and Hermes (Stockholm, Sweden), but with full user 

flexibility and control over the algorithms. PhONSAi has a DICOM server 

written in C# and SQL Server-based patient database. The user interface of 

PhONSAi is written in C ++.NET and the most computationally intensive 

algorithms are written in CUDA [29]. VTK [30], which is an open source 

library, has been used for most of the visualization. PhONSAi supports most 

medical image formats, i.e. most DICOM image formats, interfile, mhd and 

raw voxel values. The user interface has been developed together with the 

members of the research group to an intuitive and flexible user interface. The 

number of display windows, the number of images, the view in the display 

windows, and the size and structure of the display windows on the screen can 

be easily controlled by the user. In PhONSAi several different colour schemes 

are implemented. Additionally, the user can straightforwardly create new 

colour schemes. At present PhONSAi contains around 50 different image 

processing, segmentation and reconstruction algorithms, as well as the newly 

developed analysis methods, described above and used in Papers I-III. 

Furthermore, the Monte Carlo code for photon transport was implemented in 

PhONSAi. SARec can be used to simulate metastases in SPECT raw data and 

to create SPECT raw data from voxel-based sources and phantoms, but, above 

all, in this project SARec was used for iterative reconstruction as described 

above and in Paper IV. 

4.1 Paper I 

The algorithm created for studying the impact of the background ROI in two 

planar kidney dosimetry methods performed well. Once the parameters needed 

for the dosimetry was defined, the algorithm generated the same results for 

repeated executions, i.e. the algorithm was stable and precise. The ratio 

between the background VOIs and the true background varied between 0.36 

and 2.08 for the right kidney and 0.44 to 1.52 for the left kidney. The variance 

between patients showed to be high for most of the background VOIs. The 

coefficient of variation (CV) ranged from 16 to 181% for the right kidney and 

from 16 to 70% for the right. The background with the highest accuracy, 

number 6 (Figure 8), had the mean quote to true background of 1.01, but the 

variance was high.  The CV at number 6 was 47% and the number of negative 

net counts was 15% for the conjugate view method. The background with the 

lowest CV for both the left and right kidney was number 3, with a CV of 16% 
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for the right kidney and 15% for the left. The background-to-true background 

ratio (BTR) for number 3 was 0.36 for the right and 0.50 for the left. 

Calculations of the activity concentration in the kidneys were performed using 

both the ConjV method and the PostV method with all eleven backgrounds. 

The precision and accuracy of the ConjV method was overall poor. The 

background quotes (compared to the real activity concentrations, as 

determined from SPECT) ranged from 1.48 to 2.49 with a CV range from 39 

to 70%. The PostV method generated improvement in accuracy and precision. 

The activity concentration was calculated with a significantly better accuracy 

with the PostV method for six background ROIs in the right kidney and four 

in the left compared to the ConjV method. The surrounding background ROI 

gave a quote to true activity concentration of 1.15 and 1.32 for the right and 

left kidneys respectively. The corresponding CVs were 41 and 58%. 

4.2 Paper II 

The developed image-based method for bone marrow dosimetry could be used 

on all patients and all images. The nNUFTI curve looked similar in all images 

and the selected value of nNUF=0.1 showed to be a good separator of the high 

and low uptake compartments. When the compartments were separated, the 

activity was quantified for both compartments at all time points. Time activity 

curves were created by fitting the low activity compartment with four points to 

a bi-exponential function, the low activity compartment with three points to a 

mono-exponential function and the high activity compartments to a 

combination of a linear and a mono-exponential function. 

Figure 8. The relative activity concentrations in the background ROIs for the right (A) 

and left (B) kidneys. The orange squares are the relative activity concentration estimated 

with the ConjV method and the blue triangles the PostV method (reprinted from Paper I). 
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The median absorbed dose to the bone marrow in the patient group was 

calculated to 0.2 Gy per 7.4 GBq 177Lu. The dominating contributor to the bone 

marrow dose was the self dose (85%). The cross doses from the high and low 

activity compartments contributed with 9 and 6%, respectively. 

The calculated mean and total bone marrow doses were statistically correlated 

with the nadir value of HB, WBC and PLT during the treatment. The p values 

were below 0.01 for all correlations. The variance was high around the linear 

correlation; the r-value was between -0.45 and -0.36.  

4.3 Paper III 

The nNUFTI method performed well on all the patients included in the study. 

The nNUFTI curves showed a similar pattern in all healthy patients and a 

separable pattern in the livers with known metastases. The implementation of 

the algorithm in PhONSAi made it easy to use and gave a good visualization 

of the foci distribution in the liver (Figure 9). 

The group of 53 octreoscan negative patients is called octreotide(-) and the 

group of patients with visible metastases in the liver is called octreotide(+). 

The patients that showed to have tumour involvement in the liver by any 

radiological techniques was placed in radtech(+) and the rest in radtech(-). 

During follow up, 13 of the 53 patients showed metastases in the liver. The 

difference in nThI at nNUF=0.25 at the right side of the curve between these 

13 patients and the other 40 healthy livers was statistically significant (p<0.01). 

5 of the 13 had a ThI higher than the highest ThI in the group of the 40 healthy 

livers, see Figure 10. An error in the data processing was discovered after 

publication of paper III, which after correction increased the nThI for one of 

the patients so the number of detectable tumours increased from four to five. 
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Figure 10. nThI at nNUF=0.25 for healthy patients (blue), patients with metastases in 

follow up (red) and patients with known metastases (green). 

 

Figure 9. The nNUFTI curve in a liver with known metastases and corresponding 

visualization at a certain ThI (red line) (reprinted from Paper III). 
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4.4 Paper IV 

In SARec the number of energies in the source and corresponding branches 

can be arbitrary selected by the user. This means for example that 

bremsstrahlung spectra from 90Y in tissue can be easily incorporated into 

SARec. 177Lu, 99mTc, 111In, 131I, 123I and 90Y are predefined isotopes. However, 

in this project the angular response model of the detector was limited to 177Lu. 

The performance of SARec with a scattering order of 3 is around 2 billion 

photons per second. In the reconstruction algorithm each iteration requires 

around 100 billion photons to generate projections with acceptable noise levels 

for the SPECT reconstruction, which gives an iteration time of around 60s. 

A profile perpendicular to a simulated line source was compared to a profile in 

a corresponding measured image (Figure 11). The agreement was within 5% 

based on comparison between integrals. 

The signal to background ratio (SBR) for the largest sphere in the phantom was 

about 97% of the true SBR with SARec-OSEM, compared to 79% and 65% 

for RRC-OSEM and ST-OSEM reconstructions, respectively. 

The SPECT data reconstructed with SARec-OSEM had a more accurate 

signal-to-background ratio and a higher resolution than RRC-OSEM and ST-

OSEM (Figure 12). Phantom acquisitions showed that SARec-OSEM 

performed better, both quantitatively and visually, than its two competitors and 

SARec-OSEM also reconstructed patient SPECT images with higher image 

quality (Figure 13 and Figure 14). 

 

Figure 11. Simulation of line sources of 177Lu revealed similar profiles as the measured 

line profiles. A) The ARF without scattering kernel agree well with the main intensities 

from the line source (observe the logarithmic scale) but could not capture scattering in 

the detector. B) Adding of the scattering kernel to the ARF also capture the photon 

scattering in the detector at 5 cm, and C) at 10 cm from the collimator surface. 
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Figure 12. Signal to background as a function of the number of iterations for A) ST-OSEM, 

B) RRC-OSEM and C) SARec-OSEM. D shows signal to background as a function of sphere 

diameter for the three reconstruction algorithms with 5 iterations. 
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Figure 14. SPECT images of a liver with metastases. The upper SPECT is reconstructed 

with SARec-OSEM and the lower with ST-OSEM.  

Figure 13. SPECT images of kidneys and spleen in three orthogonal planes. The upper 

SPECT is reconstructed with SARec-OSEM and the lower with ST-OSEM.  
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5 DISCUSSION 

5.1 Paper I 

Activity concentration estimation and dosimetry in 2D images are associated 

with large uncertainties. The results indicate that the anterior projection in most 

cases does not add any useful information to the kidney activity concentration 

estimate. The kidneys are often positioned closer to the patient’s back, which, 

due to attenuation, will result in low signal in the anterior view projection of 

the kidney. The signal is in some cases close to zero after background 

correction. Using the conjugate view method in these cases may cause activity 

concentration estimates to be close to zero or result in a complex number. In 

the posterior view projection, signal originating from the organs and tumours 

that are located more anterior than the kidneys are more attenuated than the 

kidneys, and therefore does not interfere as much in the activity concentration 

estimate as it does in the conjugate view method. The problem with finding a 

background ROI to compensate correctly for the over- and underlying uptake 

can be solved by using SPECT, i.e. finding the most correct background ROI 

position for the individual patient by using the methodology developed in this 

study. One downside with SPECT is that the acquisition time is longer for the 

same statistics and FOV. If activity concentration estimates in the abdomen are 

the objective with the gamma camera acquisition, a better estimate might be 

obtained by acquiring a SPECT with the same acquisition time as the planar 

image. 

If kidney dosimetry is performed by using planar images, this study indicates 

that it would be beneficial to use the posterior view method and place the 

background ROI around the kidney, where the CV was lowest. This will in 

most cases overestimate the activity concentration in the kidney, but this 

overestimate has to be further investigated by refined studies. This study 

assumed that the SPECT resulted in correct activity concentration estimate. 

However, SPECT is reconstructed from gamma camera projections, containing 

gamma camera blurring and scattering effects, which are propagated into the 

SPECT image. This will result in a blurred and scatter-influenced image, which 

in turn might influence the quantitative by some degree. Furthermore, we used 

an approximated method to estimate the attenuation coefficient from the CT, 

which is good enough for this estimate of the attenuation in the tissues above 

and under the kidneys, but would be less valid for regions with the attenuation 

coefficient much different from water such as lung and bone tissue. In this case 

the energy dependence of the attenuation coefficients might yield a less valid 

estimate of the lung and bone attenuation coefficients. Nevertheless, the 
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overall results, as described above, will be valid from our used methodology, 

but improvement can be used to correct for these effects. One way to correct 

for these effects is to integrate MC simulation of the forward projection in the 

reconstruction. Therefore, we initiate the SARec project which might be the 

best way to evaluate the influences of the image degrading effects that are 

present in Paper I. 

5.2 Paper II 

The calculated absorbed doses to bone marrow seem to be in the same order of 

magnitude as previously presented [11, 14, 15, 31-33]. Furthermore, the 

absorbed doses from this non-invasive method correlated with haematological 

toxicity, which is seldom observed with other methods. In the methodology a 

threshold value is used to separate the high activity area from the low activity 

area. That threshold value is obtained from the nNUFTI algorithm. This means 

that the area of the high activity area and the low activity area might vary at 

the different time points, which indicates that the methodology follows the 

redistribution over time. In contrast to thresholding from the whole body 

histogram, the nNUFTI algorithm also follows the spatial distribution of the 

pixel values by grouping them into segmented areas. If this methodology is 

superior to histogram analysis remains to be investigated. Another approach to 

divide the whole body into two compartments would be to use a fixed area 

either by using this methodology at one time point and adjust the resulting 

ROIs so they fit in the other images, or using this method at one time point and 

then iteratively find a threshold value that generates the same areas in the other 

images, or use a predefined individualised area for the high (or low) uptake 

compartment. All these methods might work but need to be developed. 

However, it might be questioned if these variants will have any beneficial value 

since the variance in the nNUFTI methodology is low and it has a correlation 

with haematological response.  

More important is to combine nNUFTI with SPECT-based activity 

concentration determination in the bone cavity. With a Monte Carlo-based 

SPECT reconstruction, the activity concentration in the bone cavity may be 

measured with higher accuracy and precision. This will be studied with 

SARec-OSEM. 

5.3 Paper III 

The performance of the algorithm for detection of liver tumours in SPECT 

images increased significantly, with respect to calculation time, when it was 
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parallelised and run on the GPU. The results showed that the quantitative 

measure ThI read out at nNUF=0.25 at the right side of the curve separated 

healthy and malignant liver groups with the highest statistical significance. A 

tumour with a quite low tumour-to-normal concentration (TNC) located in a 

region of the liver where the normal tissue has high uptake will skew the 

nNUFTI curve towards higher ThI while a tumour with the same TNC located 

in a lower activity region in the liver only affects the ThI read out to the right 

of the peak. This in combination with less variation among the healthy livers 

on the right of the peak is the probable reason for better significance on the 

right side of the peak. 

Simpler models, like quotes between max and mean voxel value, have been 

tested on this clinical material without success. A 100% separation between 

the groups was never expected, since some patients in the follow up group may 

have developed metastases after the SPECT was acquired and some patients 

may have metastases that do not overexpress somatostatin receptors [4]. The 

results of this study are interesting but further studies are needed to verify and 

determine its usefulness in other applications, such as PET imaging of e.g. 
68Ga-DOTATANOC [34]. A combination of nThI and the use of the visual 

nNUFTI tool in PhONSAi may be an interesting future application, which 

might have the potential to improve the success rate in octreoscan diagnosis of 

liver tumours.  

5.4 Paper IV 

The novel SARec methodology with a novel collimator model produced 

SPECT reconstructions with high image quality, i.e. the recovery resolution 

was improved over the state-of-the-art reconstructions with recovery 

resolution corrections. The visual inspection of clinical images also showed 

improvement with SARec-OSEM. 

The collimator model in SARec is based on an ARF and a convolution with a 

scattering kernel. The model is fast and simple and quite accurate for the 

isotopes used in this thesis. The ARF of the collimator model does presently 

not take septal thickness or energy into account, but the hole diameter of the 

collimator is adjusted so that the simulated images match the measured and the 

two parameters of the scattering kernel (fraction and width) are adjusted to 

make the fit as good as possible. The downside with this approach is that 

calibrations against gamma camera images need to be performed for each 

collimator isotope combination. This makes the arbitrary collimator definition 

and arbitrary isotope definition meaningless. Another downside with this 

approach is that the ARF is independent of the azimuthal angle of the incoming 
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photon. This makes all points to be circular symmetric. The real collimators 

have hexagonal holes, which make the point spread function look like a star 

when the energy is high enough to penetrate the thin enough septum.  

SARec is not only used for iterative SPECT reconstructions. SARec can also 

be used to create SPECT raw data from digital voxel-based sources and voxel-

based phantoms (Figure 15) and it can be used to simulate metastases in 

clinical SPECT raw data (Figure 16). Simulating metastases in SPECT raw 

data can be useful when for example evaluating reconstruction algorithms of 

interest. 

Further performance optimisation may increase the performance with respect 

to signal to noise per photon and number of photons per second. All of the 

launched photons will interact in the crystal but many will not contribute to 

the resulting image. If the photon energy is outside the energy window after it 

has been shifted with the FWHM of the crystal, it is terminated. The weight 

of the photon could instead be multiplied with the integral of the Gaussian of 

the photon, describing the energy resolution, over the energy window. Many 

photons interact in the air outside the body (Figure 17). Their weight is 

multiplied with the correct probability, but since the probability is extremely 

low and these photons are located outside the body, they will not contribute 

to the interesting part of the image. 

The Monte Carlo code is run on NVIDIA’s GeForce GPUs (NVIDIA, USA). 

The performance of 32-bit floating numbers is equal for the best GeForce and 

Tesla cards (NVIDIA, USA) but for double float the GeForce has a 

performance drop of 20 compared to a factor of 3 on the Tesla. For Monte 

Carlo applications where double precision is needed, Tesla GPUs should be 

used. Single precision floating point numbers are enough for the applications 

in this thesis [22]. 

The collimator model used in SARec is simple, since it requires a calibration. 

A more complex model that takes the photon energy, septal thickness and the 

azimuthal angle of the photon into account will be developed eventually [35]. 

However, this will require that the energy window is defined for the specific 

radionuclide and that the geometric shape of the collimator is modelled. In 

this way the initial idea that SARec would be a general MC code is lost, and 

it will become a radionuclide specific code for SPECT simulations. With this 

new direction of SARec future optimisation, such as changing the 4 pi 
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emission of the scattering photons to the maximal angle that have a 

probability to be registered in the detector, will be done in upcoming studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 16. 4 metasteses are created in the liver VOI and simulated to the raw data and then 

reconstructed back to a 3D voxel matrix along with the rest of the SPECT data. 

Figure 15. A) The SARec UI in PhONSAi with a label map ready to be filled with activity. B) 

A simulated SPECT from a source with activity in the liver and the skeleton. 
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Figure 17. This is a simulated anterior projection of a lablemap source with activity in the 

skeleton voxels. The source is located in a water filled body phantom surrounded with air. 

It’s the same image on the left and the right but the window and level are set different. The 

scattered photons in the body is visible on the left and all the insignificant scattered photons 

in the air are visible to the right. 
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6 CONCLUSION 

PhONSAi is today a useful image platform for visualization, analysis, 

processing, reconstruction and quantification of medical images. It is used both 

clinically and in research. 

6.1 Paper I 

We conclude that the posterior view method gives higher accuracy than the 

commonly used conjugate view method when it comes to activity 

concentration estimates in the kidneys. The caudal position of the background 

ROI, and the surrounding background ROI, showed to vary least between the 

patients. 

6.2 Paper II 

The absorbed dose to bone marrow calculated with the two compartments 

method correlates well with haematological toxicity and it has about the same 

order of magnitude as blood based bone marrow dosimetry. 

6.3 Paper III 

The nNUFTI methodology for finding liver tumours showed high potential for 

being a useful method in the diagnosis of liver tumours with 111In-octreoscan.  

6.4 Paper IV 

A fast and accurate Monte Carlo-based reconstruction algorithm for SPECT 

was developed. It performs better than the standard OSEM algorithm as well 

as the OSEM with resolution recovery correction. This novel approach of 

SPECT reconstruction might be worth to implement in clinical routine. 
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7 FUTURE PERSPECTIVES 

One popular application of GPU power is CUDA-based deep learning or 

artificial neural network. It would be interesting to try to implement deep 

learning in PhONSAi. PhONSAi could be taught the difference between a 

healthy and a malignant liver. Deep learning has been proven to improve 

diagnosis of myocardial scintigraphy [36] and bone scintigraphy [37]. One 

downside with deep learning is that it requires very large learning data sets. 

It would be valuable to continue the development of the nNUFTI algorithm for 

liver tumour detection. As it is today it is optimized for the clinical 

reconstructions parameters used at Sahlgrenska University Hospital. We could 

study how a combination of the visualization part of nNUFTI in PhONSAi and 

the quantitative measure ThI performs together against the standard method. It 

would be interesting to redo the nNUFTI study on the same material 

reconstructed with SARec. SARec could also be used to simulate metastases 

in the healthy group for studying the detection limits of nNUFTI, with the aim 

to improve the methodology. 

The collimator model in SARec is based on the geometric shape of the 

collimator hole and use a scattering kernel for inclusion of photon scattering in 

the detector. It could be developed into a more sophisticated model, which may 

take septal penetration and scatter into account by simulating the ARF for 

various energies and thereby more correct accurate septal penetration for high 

energy photons can be modelled. We will continue to develop the Monte Carlo 

code and the reconstruction algorithm. 
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