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Abstract

The Ribaucour transformation classically relates surfaces via a sphere con-
gruence that preserves lines of curvature. In this report, we generalise the
concept to submanifolds of arbitrary dimension and codimension, and formu-
late a condition for minimality conservation. In addition, the transformation
is carried out on an example surface.
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Chapter 1

Introduction

1.1 Motivation
Minimality conditions is a classical area of interest in mathematics, with
many applications in physics. Of particular popularity is Lagrangians pro-
portional tosubmanifold volume, such as in string and membrane theory ,
whose extreme corresponds to vanishing mean curvature. The main motiva-
tion for this project is to construct more tools to produce minimal subman-
ifolds in higher dimensions.

1.2 Notation and conventions
We will be concerned with Riemannian manifolds and their tangent bundles.
In this setting, it will be convenient to always suppress the point in the
manifold that we are taking the tangent space of, and hence write 𝑇 𝑀 for
the tangent space of the manifold 𝑀 at the current point. Because of this,
we write the bundle of smooth tangent fields of 𝑀 as T𝑀 . Likewise, for
maps defined on 𝑀 , the function name is given to represent its image when
there is no risk of confusion.

The Levi-Civita connection is always denoted ∇, even when the manifold
is flat, and it acts solely on the adjacent object to the right. When no vector
is given as a subscript, the combined object has a covectorial part. When
more than one manifold is present, the context shows which connection is
used.

Our convention is that tensors are vectors to the left and covectors to
the right, and act on the adjacent object when possible. In the rare case of
ambiguous configurations, we adopt a simple notation that indicates what
objects has a non-acting vectorial part with a dot above, respectively cov-
ectorial part, indicated with a dot below. For example, if 𝑉 is a vector and
𝛷 is an operator, the expressions ∇𝑉 𝛷 and 𝛷∇𝑉 are unambiguous, while
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∇𝛷𝑉 has the interpretations

∇
⋅

⋅
𝛷 𝑉 and ∇ ⋅

𝛷
⋅

𝑉 = ∇𝑉 𝛷.

The reader familiar with index notation could view this as an indication of
free indices.

We shall make extensive use of the canonical isomorphism between the
tangent space and cotangent space, defined by the metric; for the metric
𝑔 and 𝑋, 𝑌 ∈ 𝑇 𝑀 , 𝑋♭𝑌 ≐ 𝑔(𝑋, 𝑌 ). Again, the index-oriented reader can
relate to the application of ♭ as lowering of a higher index. While a similar
functionality is obtained with the two-way adjoint, these one-way isomor-
phisms are more useful in a tensor context; on a tensor, ♭ simply acts on the
vectorial part.

For a linear map 𝑓 ∶ 𝑀 → 𝐸 between Riemannian manifolds (𝑀, 𝑔), (𝐸, ⟨⟩),
the push forward 𝑓∗ ∶ 𝑇 𝑀 → 𝑇𝑓𝐸 can have a well-defined adjoint in relation
to the metrics 𝑔, ⟨⟩, which must satisfy:

⟨𝑓∗𝑋, 𝑉 ⟩ ≐ 𝑔(𝑋, 𝑓†
∗ 𝑉 ), ∀𝑋 ∈ 𝑇 𝑀, ∀𝑉 ∈ 𝑇𝑓𝑁.

When 𝑓 is an isometry, one then finds that 𝑓†
∗ = 𝑓−1

∗ , which may be taken
as a definition of isometry.

As we will be working in a real context, we shall take the expression
(totally) symmetric to mean the same as self-adjoint for an operator, and for
a general tensor that when ♭ is applied to all its vectorial parts, the result
linear map is symmetric under interchange of (all) arguments.

In particular, we shall make use of the following:

Definition 1.1. A symmetric tensor 𝑇 is Codazzi if ∇𝑇 is totally symmetric.

We will also make use of the following property of the torsion-free con-
nection: Let d denote the exterior derivative. When acting on a covector 𝑢,
we then have:

d𝑢(𝑋, 𝑌 ) = 𝑋𝑢(𝑌 ) − 𝑌 𝑢(𝑋) − 𝑢([𝑋, 𝑌 ])
= 𝑋𝑢(𝑌 ) − 𝑌 𝑢(𝑋) − 𝑢(∇𝑋𝑌 ) + 𝑢(∇𝑌 𝑋)
= ∇𝑢(𝑋, 𝑌 ) − ∇𝑢(𝑌 , 𝑋),

(1.1)

for vectors 𝑋, 𝑌 and covector 𝑢, so d is the antisymmetrisation of ∇ when
acting on covectors.

1.3 Submanifolds
Let 𝑓 ∶ 𝑀 → 𝐸 be an immersion of an 𝑚-dimensional manifold (𝑀, 𝑔) into
an 𝑚+𝑛-dimensional manifold (𝐸, ⟨⟩). The tangent bundles are then related
by 𝑓∗ ∶ T𝑀 → 𝑓∗T𝐸 ⊂ 𝑀 × T𝐸, for 𝑓∗T𝐸 the pull back bundle of 𝑓 , which
is the points of 𝑀 × T𝐸 where the projection of T𝐸 hits the corresponding
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image of 𝑓 . The pull back bundle hence has base space 𝑀 and fibre (𝑓, 𝑇𝑓𝐸),
and we will abuse notation and identify the latter with 𝑇𝑓𝐸.

We can then write the tangent space 𝑇𝑓𝐸 as the sum 𝑇𝑓𝐸 = 𝑇 ⊤
𝑓 𝐸+𝑇 ⊥

𝑓 𝐸,
where 𝑇 ⊤

𝑓 𝐸 ≐ 𝑓∗(𝑇 𝑀) and 𝑇 ⊥
𝑓 𝐸 ⟂ 𝑇 ⊤

𝑓 𝐸. These will be called the tangential
and normal part of 𝑇𝑓𝐸.

Likewise, we take tangential and normal parts of vectors. In particular,
for the Levi-Civita connection acting on a smooth vector field 𝑉 ∶ 𝑀 → 𝑇𝑓𝐸
(i. e. 𝑉 is a section of 𝑓∗T𝐸), the corresponding parts are

∇𝑉 = ∇⊤𝑉 ⊤ + ∇⊤𝑉 ⊥ + ∇⊥𝑉 ⊤ + ∇⊥𝑉 ⊥

= 𝑓∗∇𝑓−1
∗ 𝑉 ⊤ − 𝑓∗⟨𝐴, 𝑉 ⊥⟩ + 𝑔(𝐴, 𝑓−1

∗ 𝑉 ⊤) + ∇⊥𝑉 ⊥. (1.2)

Here, 𝑓−1
∗ is the inverse of 𝑓∗, which is well-defined on 𝑇 ⊤

𝑓 𝐸 when 𝑓 is an
immersion, and 𝐴 is the shape tensor, which is the smoothly varying linear
map 𝑇 𝑀 → 𝑇 𝑀 ⊗ 𝑇 ⊥

𝑓 𝐸 defined by the above expression. The shape tensor
is therefore related to the second fundamental form 𝛼 as 𝐴♭ = 𝛼, and it is
symmetric as an operator 𝑇 𝑀 → 𝑇 𝑀 .

For a normal vector 𝛯 ∈ 𝑇 ⊥𝐸, the shape operator 𝐴𝛯 ≐ ⟨𝐴, 𝛯⟩ has
as eigenvalues the principal curvatures related to 𝛯. The corresponding
eigenvectors are called principal directions (related to 𝛯). Since each 𝐴𝛯
is symmetric and the eigenvalues necessarily are real, these directions can
always be taken orthogonal.

We will be interested in the mean curvature, which in this general setting
is the vector tr 𝐴, where the trace is taken on the operator part. For each
normal vector 𝛯, the corresponding mean curvature is hence the sum of the
eigenvalues of 𝐴𝛯. A minimal submanifold has everywhere vanishing mean
curvature.

1.4 Flat enveloping space
In the following analysis the enveloping manifold 𝐸 will be Euclidean space
or pseudo-Euclidean space. This makes it so that we can compare vectors of
tangent spaces at different points in a natural way. In effect the point that
the tangent space is attached to is no longer relevant, and we will adopt the
notation 𝑇 𝐸 and T𝑀𝐸 in stead of 𝑇𝑓𝐸 respectively 𝑓∗T𝐸.

The case of indefinite metric shall not in general be treated separately,
because few if any changes are needed to the reasoning. The most crucial
problem in pseudo-Euclidean signature is normalisation of null vectors. In
such situations the vector is implicitly required to not be null.

1.4. flat enveloping space 3
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Chapter 2

Ribaucour transformation

2.1 Classical transformation
The classical Ribaucour transformation, studied extensively in the end of the
19th century by Bianchi [Bia99] and a few decades later more generally by
Eisenhart [Eis23], relates a hypersurface with an orthogonal system of princi-
pal curves with an other such hypersurface. The submanifold is mostly taken
to be a two-dimensional surface, enveloped in three-dimensional Euclidean
space, but the extension to higher dimensional hypersurfaces is also well un-
derstood, although not all of the nice properties from the two-dimensional
case carry over.

Definition 2.1. Let 𝑓, ̃𝑓 ∶ 𝑀 → 𝑹𝑚+1 for 𝑀 as above and 𝑓 an isometry
such that 𝑓(𝑀) is free from umbilic points, we say that 𝑓, ̃𝑓 are related by a
classical Ribaucour transformation if

𝑓 + ℎ𝑁 = ̃𝑓 + ℎ ̃𝑁, ℎ ∈ 𝐶∞(𝑀) (2.1a)
If 𝑓∗𝑋, 𝑋 ∈ 𝑇 𝑀 , is a principal direction, then so is ̃𝑓∗𝑋, (2.1b)

where 𝑁, ̃𝑁 are the normal vector fields corresponding to 𝑓, ̃𝑓 .

The requirement to be free from umbilic points is needed in order for the
principal directions to be uniquely defined; on a umbilic point the eigenspaces
of 𝐴𝑁 are not all one-dimensional.

The first condition on the transform is that the surfaces should be re-
lated by a sphere congruence. Specifically, this means that the surface and
its transform should at all points tangent a common sphere, that varies
smoothly along the surface. Furthermore, the central points of these spheres
should also constitute a surface. The scalar field ℎ hence represent the radius
of the sphere.

Note that while in (pseudo-) Euclidean space we can carry out the ad-
dition in (2.1a) through naturally identifying the tangent space with the
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enveloping space, in a more general setting such as space forms, a similar
condition can be achieved via geodesics.

Away from umbilic points, the second condition ensures that lines of
curvature of the first surface are mapped onto such curves on the second.
The importance of this condition is that it relates principal curvatures of the
surfaces, and hence the mean curvature.

2.2 Generalisation
There are different notions of how to generalise the classic setting to higher
codimension (e. g. [DT02; CFT04]), but the following viewpoint, presented
in [DT03], has the additional benefit of a local correspondence with a simple
geometric object.

Definition 2.2. We say that two immersions 𝑓, ̃𝑓 ∶ 𝑀 → 𝐸 = 𝑹𝑚+𝑛

are related by a Ribaucour transformation if | ̃𝑓 − 𝑓| ≠ 0 everywhere, and
there exists a smoothly varying symmetric operator 𝐷 ∶ 𝑇 𝑀 → 𝑇 𝑀 , an
smooth isometry 𝑃 ∶ 𝑇 𝐸 → 𝑇 𝐸 and a nowhere vanishing smooth vector
field 𝐻 ∶ 𝑀 → 𝑇 𝐸, such that

𝑃𝑉 − 𝑉 = ⟨𝑉 , 𝐻⟩(𝑓 − ̃𝑓), ∀𝑉 ∈ 𝑇 𝐸, (2.2a)
̃𝑓∗ = 𝑃𝑓∗𝐷. (2.2b)

We need a few tools in order to show that this definition generalises the
classical one. In particular the following striking fact:

Any Ribaucour transformation is in local one-to-one correspondence with
a symmetric operator on 𝑇 𝑀 whose image in 𝑇 𝐸 under 𝑓∗ has a derivative
which is symmetric on 𝑇 𝑀 ⊗ 𝑇 𝑀 . Furthermore, this operator is fully de-
scribed by a scalar field and a normal vector field satisfying a simple relation.

To prove this, we firstly deduce from (1.1) that in our setting with flat
enveloping space, the condition for a symmetric operator 𝛷 ∶ 𝑇 𝑀 → 𝑇 𝑀 to
have a derivative symmetric on 𝑇 𝑀 ⊗ 𝑇 𝑀 in 𝑇 𝐸 is

d𝑓∗𝛷 = 0, (2.3)

with 𝑓∗𝛷 regarded as a vector-valued one-form. We can therefore always
locally find a vector field 𝐹 ∶ 𝑀 → 𝑇 𝐸 such that 𝑓∗𝛷 = ∇𝐹 = 𝐹∗. We note
that such a field must necessarily satisfy

∇⊥𝐹 = 0. (2.4)

In particular, from the normal part of (2.3) we have that for arbitrary vectors
𝑋, 𝑌 ∈ 𝑇 𝑀 , 0 = ∇⊥

𝑋𝑓∗𝛷𝑌 − ∇⊥
𝑌 𝑓∗𝛷𝑋 = 𝑋♭𝐴𝛷𝑌 − 𝑋♭𝛷𝐴𝑌 , using the

symmetry of 𝛷 and 𝛢. Hence,

[𝛷, 𝐴] = 0, (2.5)

and this will be very important in the upcoming analysis.

6 chapter 2. ribaucour transformation



Furthermore, we deduce from (1.2) that 𝛷♭ = ∇(𝑓−1
∗ 𝐹 ⊤)♭ −⟨𝐴, 𝐹 ⊥⟩♭, and

both 𝛷 and 𝐴 are symmetric, so antisymmetrisation gives 0 = d(𝑓−1
∗ 𝐹 ⊤)♭.

Hence we can write 𝐹 = 𝑓∗𝜕𝜔 + 𝐵, for some 𝜔 ∈ 𝐶∞(𝑀), 𝐵 ∈ T⊥
𝑓𝐸 and 𝜕

the gradient. Equivalently,

𝛷 = ∇𝜕𝜔 − 𝐴𝐵, (2.6)

where 𝐴𝐵 = ⟨𝐵, 𝐴⟩. Note, however, that while this construction manifestly
makes 𝛷 symmetric, not all (𝜔, 𝐵) fulfil (2.4). We collect those that do in
the set Cmb(𝑓), and we note that this requirement is

d𝜔𝐴 + ∇⊥𝐵 = 0. (2.7)

The name of this collection comes from Combescure transform, which is an
other classical transform.

With these definitions, we are ready to state the theorem

Theorem 2.1 (Dajczer–Tojeiro). Let 𝑓, ̃𝑓 be related by a Ribaucour trans-
formation, as above. Then there exists locally (𝜑, 𝐵) ∈ Cmb(𝑓) such that

̃𝑓 = 𝑓 − 2𝜔𝐹/𝐹 2, (2.8)

where 𝐹 = 𝑓∗𝜕𝜔 + 𝐵 and 𝐹 2 = ⟨𝐹 , 𝐹⟩. Moreover,

𝑃 = 1𝑇𝐸 − 2𝐹𝐹 ♭/𝐹 2, 𝐷 = 1𝑇𝑀 − 2𝜔𝛷/𝐹 2, 𝐻 = −𝐹/𝜔, (2.9)

where 𝑓∗𝛷 = 𝑑𝐹 . Conversely, given (𝜔, 𝐵) ∈ Cmb such that 𝜔 is nonvan-
ishing, (2.8, 2.9) defines a Ribaucour transform of 𝑓 on any open subset of
𝑀 where 𝐷 is invertible.

Proof. Let
𝜇 ̂𝐹 ≐ 𝑓 − ̃𝑓, (2.10)

for 𝜇 ∈ 𝐶∞(𝑀), ̂𝐹 ∈ T𝑀𝐸 with ̂𝐹 2 = 𝑠 = ±1, so that 𝑃𝑉 = 𝑉 +𝜇⟨𝐻, 𝑉 ⟩ ̂𝐹 .
Since 𝑃 is an isometry, we then have 𝜇𝐻♭ = −2𝑠 ̂𝐹 ♭ and

𝑃 = 1𝑇𝐸 − 2𝑠 ̂𝐹 ̂𝐹 ♭, (2.11)

so we see that 𝑃 is a reflection along ̂𝐹 . Moreover, 𝑃 † = 𝑃 −1 = 𝑃 .
Now, 0 = ⟨ ̃𝑓∗, 𝑃𝛯⟩ for all 𝛯 ∈ 𝑇 ⊥

𝑓 𝐸, so (2.10) and (2.11) gives

⟨𝛯, ∇ ̂𝐹 ⟩ = ⟨𝛯, ̂𝐹 ⟩d𝜇 − 2𝑠 ̂𝐹 ♭𝑓∗
𝜇 ≐ ⟨𝛯, ̂𝐹 ⟩𝑢. (2.12)

Hence, a vector field 𝐹 ≐ 𝜌 ̂𝐹 , 𝜌 ∈ 𝐶∞(𝑀), would have a normal derivative
given by

⟨𝛯, ∇𝐹⟩ = 𝜌⟨𝛯, ̂𝐹 ⟩(d log 𝜌 + 𝑢), (2.13)
so in order to fulfil (2.4), we need a 𝜌 that kills the above expression. Locally,
this means that we must show that 𝑢 is closed.

2.2. generalisation 7



While the first term in 𝑢 obviously is closed, for the second part, we look
at the symmetric operator 𝐷. Using (2.11) and (2.2b) we then find

𝐷 = 𝑓−1
∗ 𝑃 ̃𝑓∗ = 𝑓−1

∗ 𝑃(𝑓∗ − 𝜇∇ ̂𝐹 − ̂𝐹d𝜇)
= 1𝑇𝑀 − 2𝑠𝑓−1

∗ ̂𝐹 ̂𝐹 ♭𝑓∗ − 𝜇2𝑓−1
∗ ∇( ̂𝐹/𝜇).

(2.14)

We conclude that the derivative of the second term of 𝑢 is symmetric, and
hence that the form is closed. We can therefore locally find a 𝜌 that makes
the normal derivative of 𝐹 vanish.

Furthermore, letting 𝜔 = 𝑠𝜇𝜌/2 makes 𝐹 ♭𝑓∗ = d𝜔, so that 𝐹 = 𝑓∗𝜕𝜔 +
𝐵, 𝐵 ∈ T⊥

𝑓𝐸. Now the formulas (2.8) and (2.9) follow readily from the
definitions, as does the converse of the theorem.

It should be noted that this relationship was also proved using a different
method in the special case of hypersurfaces in a curvature line-parametrisation.
[CFT99]

In order to find all Ribaucour transformations of a given simply connected
surface, one hence only has to solve (2.4), or (2.7). However, when the
original surface is not simply connected, this correspondence is only true
locally, and hence transformations found this way will not in general conserve
topological quantities.

In what follows we will add a tilde to the object that corresponds to the
transformed surface. Since we are interested in minimality, we shall make
use of this next relation.

Corollary 2.2. The shape operators transform as

̃𝐴𝑃𝛯 = 𝐷−1(𝐴𝛯 + 2⟨𝛯, 𝐵⟩𝛷/𝐹 2), 𝛯 ∈ 𝑇 ⊥
𝑓 𝐸, (2.15)

Proof. Let 𝛯 ∈ T⊥𝐸, and take the differential of 𝑃𝛯. Using (2.9) we then
find

∇⊥̃𝛯 − ̃𝑓∗ ̃𝐴𝑃𝛯 = ∇(𝑃 𝛯) = −𝑃(𝐴𝛯 + 2⟨𝛯, 𝐵⟩𝛷/𝐹 2) + 𝑃 ∇⊥𝛯, (2.16)

so that (2.2b) yields the result.

In the next theorem for hypersurfaces, we will call the single normalised
normal basis field 𝑁 .

Theorem 2.3. The generalised Ribaucour transformation coincides with the
classical Ribaucour transformation under the classical assumptions.

Proof. For condition (2.1a), we look at the restriction of 𝑃 to the normal
bundle. It follows from (2.9) that ⟨𝑁, 𝐻⟩ is non-vanishing, and hence we
can take ℎ ≐ ⟨𝑁, 𝐻⟩−1, to achieve the same equation.

For (2.1b), the principal directions are eigenvectors of the shape operator,
so the statement is equivalent to simultaneous diagonalisability of the old
and the new shape operator, or equivalently that the operators commute.

8 chapter 2. ribaucour transformation



These are defined locally, so we can make use of the theorem 2.1. From
(2.15) and (2.9) we then find that it is enough to show that 𝐴𝑁 commutes
with 𝛷, but this is given in (2.5).

2.2. generalisation 9
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Chapter 3

Minimality preservation

We will now utilise this elevated understanding of the Ribaucour transfor-
mation in order to formulate a simple condition for minimality-preservation.
The following theorem is inspired by the work in [CFT03], although this
setting is more general.

The analysis below will be taken in Euclidean signature. As mentioned
earlier, pseudo-Euclidean signature restricts normalised vectors to not be
null, and the square root below should be real.

Theorem 3.1. A Ribaucour transformation with

𝐷 = 𝜔
𝛽 𝐴𝐵̂, where 𝛽 ≐

√
𝐵2, 𝐵̂ ≐ 1

𝛽 𝐵, (3.1)

transform the shape operators as

̃𝐴𝑃𝐵̂ = 𝛽2

𝜔2 𝐴−1
𝐵̂ , (3.2)

̃𝐴𝑃𝛯𝑗
= 𝛽

𝜔𝐴−1
𝐵̂ 𝐴𝛯𝑗

, 2 ⩽ 𝑗 ⩽ 𝑛, (3.3)

for {𝐵̂, 𝛯2, … 𝛯𝑛} an orthogonal basis of the normal bundle.

Proof. The second result follows readily from (2.15). The formula for 𝐷 in
(2.9) gives

𝛷 = 𝐹 2

2 ( 1
𝜔 − 1

𝛽 𝐴𝐵̂) , (3.4)

yielding the first result.

We note that in order to perform a transformation of this kind, all prin-
cipal curvatures with respect to 𝐵 must be non-vanishing.

The following corollary is immediate from (3.2) applied to a diagonal
basis of principal curvatures:
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Corollary 3.2. For two-dimensional submanifolds, the condition (3.1) im-
plies preservation of minimality.

In higher dimension, we can obtain minimality-conservation from apply-
ing the transformation twice, with an extra condition, as is readily computed:

Corollary 3.3. When applying two subsequent Ribaucour transformations,
both of which individually satisfies (3.1) for the corresponding surface, and
in addition

𝐵2 ∥ 𝑃1𝐵1, (3.5)

the shape operators transform as

̃̃𝐴𝑃2𝑃1𝐵̂ = 𝛽2
2𝜔2

1
𝛽2

1𝜔2
2

𝐴𝐵̂, (3.6)

̃̃𝐴𝑃2𝑃1𝛯𝑙
= 𝛽2𝜔1

𝛽1𝜔2
𝐴𝛯𝑙

(3.7)

and the metric transform as

̃̃𝑔 = 𝛽2
1𝜔2

2
𝛽2

2𝜔2
1

𝑔. (3.8)

This transformation is hence conformal, and in particular minimality-
preserving.

While (3.1) might seem like a strong condition, it simplifies when the
submanifold to be transformed has a flat normal bundle. In particular this
is trivially true in codimension one.

Theorem 3.4. A Ribaucour transformation where the initial submanifold
has flat normal bundle satisfies (3.1) if and only if

𝐹 2 = 2
𝑘𝛽𝜔, 𝑘 ∈ 𝑹. (3.9)

Proof. From (2.5) we know that there is basis of 𝑇 𝑀 that diagonalises 𝐴𝐵̂
and 𝛷. Let this basis be {𝐸𝑖}1⩽𝑖⩽𝑚, so that 𝐴𝐵̂𝐸𝑖 = 𝜆𝑖𝐸𝑖, 𝛷𝐸𝑖 = 𝜑𝑖𝐸𝑖,
𝜆𝑖, 𝜑𝑖 ∈ 𝐶∞(𝑀). Now, we can use that d𝐹 2 = 2⟨𝐹 , ∇𝐹⟩ = 2d𝜔𝛷, so that,
assuming (3.9),

𝜑𝑖 = d𝐹 2(𝐸𝑖)
2d𝜔(𝐸𝑖) = 𝛽d𝜔(𝐸𝑖) + d𝛽(𝐸𝑖)𝜔

𝑘d𝜔(𝐸𝑖) . (3.10)

Now when the normal bundle is flat, there exists an orthogonal basis {𝛯𝑙}1⩽𝑙⩽𝑛
such that ∇⊥𝛯𝑙 = 0, 𝛯2

𝑙 = 1. We can then write (2.7) as

0 = d𝜔𝐴 +
𝑛

∑
𝑙

𝛯𝑙d⟨𝐵, 𝛯𝑙⟩ =
𝑛

∑
𝑙

𝛯𝑙(d𝜔𝐴𝛯𝑙
+ d⟨𝐵, 𝛯𝑙⟩), (3.11)
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so that
d𝛽 = − 1

𝛽
𝑛

∑
𝑙

⟨𝛯𝑙, 𝐵⟩d𝜔𝐴𝛯𝑙
= − 1

𝛽 d𝜔𝐴𝐵 = −d𝜔𝐴𝐵̂, (3.12)

Using this in (3.10) we find 𝜑𝑖 = (𝛽 − 𝜔𝜆𝑖)/𝑘, so that (2.9) and (3.9) gives
𝐷𝐸𝑖 = 𝛽−1𝜔𝜆𝑖𝐸𝑖, and we deduce (3.1). For the converse, act with d𝜔 on
(3.4) and use (3.12), to find

d𝐹 2 = 𝐹 2 (d𝜔
𝜔 + d𝛽

𝛽 ) , (3.13)

giving (3.9) as solutions.

The geometrical meaning of the constant 𝑘 in (3.9) is seen from (2.8):
It denotes the negative of the change in the normal direction.

3.1 Permutability property
Finding solutions to (2.4) and (3.9) for a complicated second surface is how-
ever not easily done in a general setting. Luckily, there is a permutability
theorem, originally developed by Bianchi [Bia99], that relates two transfor-
mations of a surface with a transformation of the image surface.

More precisely, given transformations corresponding to some parameters
𝐹1, 𝐹2, the theorem states that there is a surface that is both achieved from
taking the transformation corresponding to the parameter 𝐹1 followed by
𝐹2 as well as the transformations in the opposite order. Moreover, this
combined transformation can be algebraically computed from the known
transformations.

In our general setting, we can use a theorem developed in [DT03]. We
shall not go in to the details at this time, but the main point is that when
two transformations has [𝛷1, 𝛷2] = 0, one can form a transformation from
the image surface solely from algebraic manipulations.

3.1. permutability property 13
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Chapter 4

Applications

In practice when one wants to find a minimality-preserving transformation,
one starts off by finding solutions to (2.7), or (3.11), from which it is straight
forward to eliminate one of the fields. From a general solution one can then
use (3.9) or (3.1) to find the minimality-preserving solutions.

4.1 Example
The application of corollaries 3.2 and 3.3 is under ongoing research, but as
a proof of concept we shall make the transformation on a relatively simple
surface.

Let 𝐸 = 𝑹3 with the usual metric and 𝑓(𝑟, 𝜃) = (𝜃, sinh 𝑟 cos 𝜃, sinh 𝑟 sin 𝜃)⊤

the helicoid parametrised with 𝑟, 𝜃 ∈ 𝑹. The metric and shape operators
are then

𝑔 = cosh2 𝑟 (1
1) , 𝐴𝑁 = − 1

cosh2 𝑟 ( 1
1 ) . (4.1)

In a hypersurface setting, (3.11) becomes

0 = d𝜔𝐴𝑁 + d𝛽. (4.2)

Taking derivatives and antisymmetrising gives the following equation for 𝛽:

𝜕𝑟(cosh2 𝑟𝛽,𝑟) = cosh2 𝑟𝛽,𝜃𝜃, (4.3)

and the ansatz 𝛽 ≐ 𝛾/ cosh 𝑟 yields the equation

𝛾,𝑟𝑟 − 𝛾,𝜃𝜃 = 𝛾. (4.4)

A one-parameter family of solutions to (4.4) is

𝛾 = exp(sinh 𝑎 𝜃 ± cosh 𝑎 𝑟), 𝑎 ∈ 𝑪, (4.5)

and it is easily checked that these solutions satisfy (4.2). The corresponding
𝜔 field is then

𝜔 = 1
sinh 𝑎(± cosh 𝑎 cosh 𝑟 − sinh 𝑟) exp(sinh 𝑎 𝜃 ± cosh 𝑎 𝑟), (4.6)
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and all these solutions does in fact satisfy the minimality condition (3.9)
with 𝑘 = 1/(sinh 𝑟 cosh 𝑟). To find the transformed surface, we use 𝐹 =
𝑁𝛽 + 𝑓∗𝜕𝜔 with

𝑁 = 1
cosh 𝑟

⎛⎜
⎝

sinh 𝑟
sin 𝜃

− cos 𝜃
⎞⎟
⎠

, 𝑓∗ = ⎛⎜
⎝

0 1
cosh 𝑟 cos 𝜃 − sinh 𝑟 sin 𝜃
cosh 𝑟 sin 𝜃 sinh 𝑟 cos 𝜃

⎞⎟
⎠

. (4.7)

The image surface is then

𝑓 − 𝑘
𝛽 𝐹 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜃 − 1
sinh 𝑎

cosh 𝑎 sinh 𝑟 ∓ cosh 𝑟
cosh 𝑎 sinh 𝑎 sin 𝜃 + cosh 𝑎 sinh 𝑎 sinh 𝑟 ∓ sinh 𝑎 cosh 𝑟

cosh 𝑎 sinh 𝑎 cos 𝜃

∓ sinh 𝑎 cosh 𝑟 + cosh 𝑎 sinh 𝑎 sinh 𝑟
cosh 𝑎 sinh 𝑎 sin 𝜃 − cosh 𝑎 sinh 𝑟 ∓ cosh 𝑟

cosh 𝑎 sinh 𝑎 cos 𝜃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

(4.8)

which in this particular case appears as merely a reparametrisation of the
helicoid. although this example does not show much of the merits of the
transformation, there are several other examples, e. g. [CFT03; CFT04],
that does.
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Appendix A

Computer algebra script

The following Maxima-script was used to verify surfaces and compute the
relevant equations.
/*
* Computes mean curvature for parametric hypersurfaces
* in a given (pseudo)-Riemannian ambient metric.
*/

load(”nchrpl”)$ /* Package needed for mattrace fn */
load(”eigen”)$

/*
* The generalised cross product
*/

cross_product(et, dX) := block(
[M,n,N,mino],
n : matrix_size(dX)[1],
M : addcol(dX, zeromatrix(n,1)),
N : zeromatrix(n,1),
for i:1 thru n do (
mino : minor(M, i, n),
N[i,1] : (-1)^(1+i)*determinant(mino)
),

return(N)
)

$

/*
* Minkowskij metric
*/

minkowskij_metric(p,n) :=
block(

[et],
et : ident(p + n),
for i : 1 thru n do et[p + i, p + i] : -1,

17



return(et)
)

$

/*
* Christoffel symbol component
*/

cfl_component(g, vars, dn1, up, dn2) :=
block(
[r : 0],
for nu:1 thru matrix_size(g)[1] do
r : r + invert(g)[nu, up]*(diff(g[dn2, nu], vars[dn1])
+ diff(g[dn1, nu], vars[dn2])
- diff(g[dn2, dn1], vars[nu])),

return(r/2)
)

$

/*
* Christoffel matrices
*/

cfl_matrices(g, vars) := block(
[cfl, n],
n : matrix_size(g)[1],
for dn1:1 thru n do (
cfl[dn1] : zeromatrix(n,n),
for dn2:1 thru n do
for up:1 thru n do cfl[dn1][up,dn2] : cfl_component(g, vars, \

dn1, up, dn2)
),

return(listarray(cfl))
);

/*
* Covariant derivatives
*/

cov_d_cov(g, vars, v, nu) := diff(v, vars[nu])
- v.cfl_matrices(g, vars)[nu]$

cov_d_v(g, vars, V, nu) := diff(V, vars[nu])
+ cfl_matrices(g, vars)[nu].V$

/*
* Hessians
*/

hess(g, vars, s) := block(
[
m, /* dim of metric */
v, /* differential covector */
M /* matrix */
],
m : length(vars),
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v : makelist(diff(s, vars[i]), i, m),
M : cov_d_cov(g, vars, matrix(v), 1),
for i:2 thru m do M : addrow(M, list_matrix_entries(

cov_d_cov(g, vars, matrix(v), i)
)),

return(M)

)$
Hess(g, vars, s) := invert(g).hess(g, vars, s)$

/*
* Metric, normal and mean curvature
* of a hypersurface
*
* et = metric of enveloping mfd
* X = coordinate of mfd
* vars = parametrisation vars of mfd
*
* Global options:
* normalise = (bool) if b and A should be normalised
* ribaucour = (bool) if we should compute ribaucour condition
*/

hypersurface_mc(et, X, vars) := block(
[
warnings : ””, /* warnings string */
m, /* dim of submfld */
n, /* dim of supmfld */
dX, /* tangent vector list/array */
norm2_dX, /* norm^2 of dX */
spacelike_normal : true, /* if the normal has positive square */
N, /* normal vector */
norm2_N, /* norm^2 of N */
g, /* metric of submfd */
ginv, /* metric inverse */
b, /* second fund. form */
A, /* shape operator */
A_eivals, /* principal curvatures */
H, /* mean curvature */
RC, /* Ribaucour--Combescure cond */
mc, /* minimality condition */
mc2, /* minimality condition */
be,ph,k, /* dummy vars */
a,M /* tmp array, mtx */
],

m : length(vars),
n : m + 1,
if n # matrix_size(et)[1] or n # matrix_size(et)[2]
then return(”ERROR: Dimension of fn and metric not equal.”),
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if normalise # true then normalise : false,
if ribaucour # true then ribaucour : false,

/* -- Display envel. metric and fn -- */
display(et, X, vars, normalise, ribaucour),

/* -- Tangent vectors -- */
dX : zeromatrix(n, m),
for row:1 thru n do for col:1 thru m do (
dX[row,col] : diff(X[row], vars[col])
),

display(dX),

/* -- Submanifold metric -- */
g : trigsimp(ratsimp(transpose(dX).et.dX)),
display(g),
if determinant(g) = 0 then return(”ERROR: Singular metric.”),
ginv : trigsimp(ratsimp(invert(g))),

/* -- Normal -- */
N : ratsimp(trigsimp(cross_product(et,dX))),
norm2_N : trigsimp(ratsimp(transpose(N).et.N)),
if 0 >= norm2_N then (
spacelike_normal : false,
warnings : concat(warnings, ”WARNING: Normal has nonpositive \

square. ”),
if normalise then warnings : concat(warnings, ”Not normalising \

b/A. ”)
),

display(N, norm2_N),

/* -- Second fund. form -- */
M : zeromatrix(m,n),
for row:1 thru m do for col:1 thru n do (
M[row,col] : diff(N[col,1], vars[row])
),

b : -trigsimp(ratsimp(M.et.dX)),
if normalise then b : b/sqrt(norm2_N),

/* -- Shape operator w/ eivals -- */
A : ratsimp(ginv.b),
display(A),

/* -- Mean curvature -- */
H : trigsimp(ratsimp(mattrace(A))),
display(H),

/* Rib-Cmb equation */
if ribaucour then (
if normalise # true then warnings : concat(warnings,
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”WARNING: RC-condition not correct w/o normalisation. ”),
depends([be,om],vars),
RC : [],
M : ratsimp(hess(g, vars, om).A - transpose(hess(g, vars, om).A\

)),
for i:1 thru m do for j:i+1 thru m do push(M[i,j], RC),
M : makelist(diff(om, vars[i]),i,m).A,
for i:1 thru m do push(ratsimp(diff(be,vars[i]) + M[1,i]), RC),
RC : transpose(map(num, RC)),
M : makelist(diff(om, vars[i]),i,m),
mc : num(ratsimp(M.ginv.M + be^2 - 2*be*om/k)),
mc2 : transpose(map(num,list_matrix_entries(ratsimp(

be*ident(m) + (k*be - om)*A - k*Hess(g,vars,om)
)))),

disp(”These should be zero: ”),
display(RC,mc,mc2)
),

/* -- Return values -- */
o_X : X,
o_vars : vars,
o_dX : dX,
o_norm2_dX : norm2_dX,
o_N : N,
o_norm2_N : norm2_N,
o_g : g,
o_b : b,
o_A : A,
o_A_eivals : A_eivals,
o_H : H,
o_RC : RC,
o_mc : mc,
o_mc2 : mc2,

return(concat(warnings, ”Variables saved with o_ prefix.”))
)

$
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