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Abstract

We study a model of pairwise communication in a finite population of Bayesian

agents. We show that, in contrast with claims to the contrary in the existing

literature, communication under a fair protocol may not lead to common knowledge

of signals. We prove that commonly known signals are achieved if the individuals

convey, in addition to their own message, the information about every individual’s

most recent signal they are aware of. If the signal is a posterior probability about

some event, common knowledge implies consensus.
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1. Introduction

Aumann (1976) showed in his seminal paper that if two people have the same priors, and

their posteriors for an event are common knowledge, then these posteriors are identical.

Milgrom (1981) presented an axiomatic characterization of common knowledge, while

Geanakoplos and Polemarchakis (1982) proved that if two people have common prior,

different posteriors, and they update their beliefs through communication, they will agree

on a common posterior after finitely many steps of communication. The main aim of this

literature is to study the problem of reaching a consensus in a group of people who hold

different subjective beliefs. This issue is rather central, not only in economics, but in the

vast majority of social sciences (Goldman, 1987).

Cave (1983), and Bacharach (1985), independently attempted to generalize Aumann’s

result to arbitrary signal functions, in place of posterior probabilities. Their setting,

though conceptually flawed (Moses and Nachum, 1990), has been the stepping stone for

further development of models of communication in populations with Bayesian agents.

Parikh and Krasucki (1990) introduced a model of pairwise communication, claiming

that under some mild assumptions concerning the communication protocol, consensus

would be reached. Weyers (1992) challenged their view, by arguing that their updating

process was not sufficient to ensure common knowledge, and therefore even though their

result on consensus was correct, the proof was incomplete. Her argument is based on

the fact that individuals in their setting refine only their current information set, rather

than their whole partition. She proposed that by allowing for such a “rational” refining

process, all fair protocols would lead to common knowledge.

The present paper challenges this view, by showing that this condition does not suffice

either for common knowledge. A pair of simple counter-examples are used in order to

illustrate the validity of this argument. It is also shown that a commonly known signal

would be reached if the individuals informed their corresponding counterpart about, not

only their own signal, but also everybody’s most recent signal they are aware of. The

recipient takes the conveyed information into account if and only if she has not previously

received more recent information about the transmitted signals. Notice that though the

transmitted signal is not correct, if the individual it belongs to has already updated her
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information, common knowledge will eventually be achieved. In addition, if the signals

are of the form of posterior probabilities, consensus will be reached.

In general, the distinction between common knowledge and consensus has to be clear.

Though we do not go inside the conversation about the conceptual flaw that Moses and

Nachum (1990) discovered, we point out that reaching common knowledge does not de-

pend on the nature of the signals as it was claimed till now, but on the amount of

information being transmitted. More specifically, we show that it is not the sure thing

principle or any generalization of it that leads to common knowledge, but the transmis-

sion of the whole information possessed by the speaker. Of course for consensus to be

achieved, a number of additional requirements are needed, but this remains outside the

scope of the present paper (Aumann and Hart (2006), Samet (2006)).

The issue of common knowledge is rather central since not commonly known consensus

may not be robust against protocol perturbations. In other words, it may be the case that

a consensus is preserved ad infinitum under some fair protocol, but some slight change

in the communication pattern could lead to some totally different behavior. This could

never happen, had the signal been commonly known, implying that once the population

has agreed, the agreement will remain forever.

2. Not commonly known consensus

Consider a probability space (Ω,F , P), and a finite population N = {1, ..., n}. The mea-

sure P determines the (common) prior beliefs of the individuals in the population about

every event E ∈ F . Every individual is endowed with a finite, non-delusional, information

partition Ii ⊂ F . Let J = ∨n
i=1Ii, and M = ∧n

i=1Ii denote the join (coarsest common

refinement), and the meet (finest common coarsening) of the information partitions re-

spectively. Similarly to Geanakoplos and Polemarchakis (1982), we assume1 that P[J ] > 0

for every J ∈ J . We define knowledge as usual, ie. we say that i knows some E ∈ F
at ω, and we write ω ∈ Ki(E), whenever Ii(ω) ⊆ E, where Ii(ω) denotes the member

of Ii that contains ω . The event E is mutually known if ω ∈ Ki(E) for every i ∈ N ,

and commonly known if M(ω) ⊆ E, where M(ω) denotes the member of the meet that

1Nielsen (1984), and Brandenburger and Dekel (1987) relax this assumption.
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contains ω.

Let the function f : σ(J ) → A, map every possible information set to an action

(signal). For simplicity we assume that A = R, and we write f(Ii(ω)) = fi(ω). If the

signals are of the form of posterior beliefs about some event E, the function f can be

rewritten as fi(ω) = P[E|Ii(ω)].

The action of the i-th individual is commonly known at ω, if M(ω) ⊆ Ri, where

Ri = {ω′ ∈ Ω : fi(ω
′) = fi(ω)}. (1)

Aumann (1976) showed that, in populations with two people, if the signals are posterior

probabilities indeed, and R = R1∩R2 is commonly known, then P[E|I1(ω)] = P[E|I2(ω)].

Geanakoplos and Polemarchakis (1982) consequently proved that indirect communication

between two individuals leads to commonly known posterior beliefs.

Cave (1983), and Bacharach (1985) independently attempted to generalize these re-

sults to arbitrary signal functions which satisfy the sure thing principle2. However, Moses

and Nachum (1990) discovered a conceptual flaw in their reasoning. More specifically,

they showed that common knowledge, and the sure thing principle do not suffice for

agreement. Their argument is based on the fact that the union of two information sets

is not an information set in the same partition. A number of solutions to this problem

have been proposed ever since (Moses and Nachum (1990), Aumann and Hart (2005),

and Samet (2006)). All of them require additional assumptions regarding the signals.

However, this is outside the scope of the present paper.

Parikh and Krasucki (1990) extended the Cave-Bacharach framework, by introducing

a model of pairwise communication. They defined a protocol as a pair of sequences

({st}∞t=1, {rt}∞t=1), with st, rt ∈ N for every t > 0. At time t the receiver (rt) observes the

sender’s (st) signal, and refines her own information set according to I t+1
rt

(ω) = I t
rt
(ω) ∩

Rt
st
, where Rt

st
is defined by equation (1). Every individual j 6= rt does not revise her

information. We say that there is a directed edge between i and j if and only if there are

infinitely many t > 0 such that s(t) = i and r(t) = j.

2A function f satisfies the sure thing principle, if for every disjoint J1, J2 ∈ σ(J ), such that f(J1) =

f(J2) = f , then f(J1 ∪ J2) = f . Cave (1983) calls this property union consistency.
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Definition 1. [Parikh and Krasucki, 1990] A protocol is fair whenever the graph of

directed edges is strongly connected, ie. if there is a path of directed edges passing from

all vertexes (individuals), returning to its origin.

They generalized the union consistency property by introducing the concept of con-

vexity: f is convex if f(J1∪J2) = αf(J1)+ (1−α)f(J2), for every disjoint J1, J2 ∈ σ(J ),

where α ∈ (0, 1). Then they showed that if f is convex, and the protocol is fair, a con-

sensus is reached. However, as they pointed out, the agreed beliefs are not necessarily

commonly known.

Weyers (1992) challenged their view, by claiming that, though their conclusion is

correct, slightly different assumptions to the ones they impose, are needed. She attempted

to complete this result in a way to ensure common knowledge. The main point in her

model is that rational individuals refine their whole partition, rather than just their

current information set, ie. the recipient’s partition at t + 1 is given by It+1
rt

= It
rt
∨Rt

st
,

where Rt
i = {Rt

i, R
tc

i }. She argued that, under such a refining scheme, commonly known

consensus will be reached, if the function f is convex, and the protocol is fair. However,

as it is illustrated in the following example, this is not always the case.

Example 1. Consider a society with 3 individuals, and the corresponding information

partitions as shown in figure 1, and assume that the common prior assigns equal prob-

abilities to every state. Let the communication protocol be such that 1 informs 2, who

informs 3, who informs 1, and so on, about their posterior beliefs. Obviously, the signal

function is convex since it is the conditional probabilities that are being revealed, and

the protocol is fair. Let the actual state be ω2, and the individuals hold beliefs about

the event E = {ω2, ω3, ω6}. By definition, all posteriors are common knowledge at ω2

if and only if M(ω2) ⊆ R, where R = R1 ∩ R2 ∩ R3. Clearly this is not the case here,

since M(ω2) = Ω * {ω1, ..., ω4} = R. Therefore, the existing protocol does not lead to

commonly known posterior probabilities, even though the individuals refine their whole

information partitions. /

One might wonder why we consider common knowledge to be so important, even

though consensus has been reached. To see this consider the previous example. In the
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Figure 1: Rational refining does not always lead to common knowledge.

absence of common knowledge, the existing consensus is not robust to protocol perturba-

tions. To see this, suppose that 2 talks to 1 at some point. Then the population’s beliefs

will eventually converge to 1, which is different from the currently agreed probability.

Notice that in the previous example the posterior probabilities are pairwise commonly

known, ie. (Ii ∧ Ij)(ω2) ⊆ Ri ∩ Rj, for every i, j ∈ N . However this does not suffice for

common knowledge, and might eventually induce different consensus, as it does indeed in

this case.

A second example, which covers both the special cases (the channel, and the star

protocol) considered by Krasucki (1996) is presented below. In the channel protocol, 1

talks to 2, who talks to 3, ..., who talks to n, who talks to n− 1, ..., who talks to 2, who

talks to 1, and same process repeats itself ad infinitum. In the star protocol, there is a

main individual 1 talks to 2, who talks back to 1, who talks to 3, who talks back to 1, ...,

who talks to n, who talks back to 1, and so on.

Example 2. Consider a society with 3 individuals, and the corresponding information

partitions as shown in figure 2, and assume that the common prior assigns equal proba-

bilities to every state. Let the actual state be ω1, and the individuals transmit posterior

probabilities about E = {ω1, ω5, ω6, ω7, ω9, ω11}, according to the star protocol, with 2

being the distinguished central individual. Notice that since 2 informs 1, who informs 2,

who informs 3, who informs 1 about the conditional probabilities, this specific protocol

also satisfies the structural property of the channel protocol too. Clearly it does not in-

duce any refinement in the information partitions of any of the three individuals. This
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Figure 2: Neither the channel, nor the star protocol enforce common knowledge.

follows from the fact that R1 = {ω1, ω2, ω4, ω5} ∈ σ(I2), and R2 = Ω ∈ σ(I1)∩σ(I3), and

R3 = {ω1, ω4, ω7, ω10} ∈ σ(I2). However, similarly to example 1, the posterior probabili-

ties are not commonly known, since M(ω1) = Ω * R = {ω1, ω4}. /

Krasucki (1996) showed that in fair protocols with information exchange, consensus on

the value of a union-consistent function will be reached. Of course, since the proof is on

the same line with Cave (1983), and Bacharach (1985), it suffers from the same flaw that

Moses and Nachum (1990) pointed out. Though the proof of this result is incomplete,

due to the Moses-Nachum reasoning, a partial result can be established.

Definition 2. A protocol satisfies information exchange whenever for every directed edge

from i to j, there is another directed edge from j to i.

Notice that information exchange does not require i to talk to j, and then j talk back

to i instantaneously. This could happen later on, after j having received information from

someone else. Both the channel, and the star protocol satisfy information exchange. In

addition, it is straightforward that every connected protocol with information exchange is

fair, since there is a path of directed edges that returns to its origin by going backwards.

Though common knowledge is not enforced by information exchange (see example 2),

pairwise common knowledge between the connected individuals can be easily shown.

Proposition 1. Consider a protocol with information exchange. Then the signals of any

pair of connected individuals eventually become commonly known between them.
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Notice that the previous result does not impose any requirement on the signal function,

such as the sure thing principle, or convexity. It is rather straightforward then to show

that if the signals are probabilities, they will eventually become equal.

Corollary 1. Consider a connected protocol with information exchange, and let the indi-

viduals transmit posterior probabilities about an event E. Then the population eventually

reaches a consensus.

As we have already discussed this consensus may not be robust to protocol perturba-

tions, since the posterior probabilities are not commonly known. Consider for instance

example 2. If 3 talks to 1 at some point, 1 will refine her partition in such a way that

I1(ω1) = {ω1}, and the posterior probability will become equal to 1, which is different

than 1/2, which is agreed after the communication imposed by the protocol has taken

place. In the next section we discuss the conditions that enforce common knowledge for

every fair protocol.

3. Efficient communication, and common knowledge

One might naively suspect that the reason why both Parikh and Krasucki (1990), and

Weyers’ (1992) model fail to converge to common knowledge, could possibly be explained

by the flaws that arise when arbitrary signal functions are used (Moses and Nachum,

1990). However, both the previous examples use probabilities as signals, and therefore

such a reasoning can be ruled out. Indeed, the underlying reason for the absence of a

commonly known consensus is different.

The main result in Weyers (1992) is based on the following argument. If there is

T > 0 such that Rt
st
∈ σ(It

rt
) for every t > T , then the signals are commonly known. In

this case It
rt

will not be refined, since It+1
rt

= It
rt
∨ Rt

st
= It

rt
. However as the previous

example illustrates such a situation can occur even without common knowledge. It would

be interesting thus to explore the underlying reasons for such limiting behavior.

Though the information partitions are refined rationally, individuals do not transmit

the whole information they possess. They just reveal the value that the function f assigns

to their current information set. Thus, it is implicitly assumed that the whole information
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is embodied in the single signal which is transmitted. However, as it is shown in the

previous example, this is not always true. When 1 hears that 3 assigns probability 1/2 to

E, she does not learn anything about 2, since she does not even know that 2 and 3 have

talked. Not being able to embody this information in the transmitted signal, accounts for

the failure to reach common knowledge.

Consider some arbitrary t > 0, and let Ti(t) = {t′ ≤ t : rt′ = i} be the periods when

i has been assigned to receive information according to the protocol. If Ti(t) = ∅, then

i has not been a recipient until t. The individual who informed i at some t′ ≤ t had

already been assigned to be a recipient at some periods prior to t′, which are denoted by

Tst′
(t′) = {t′′ ≤ t′ : rt′′ = st′}. Then we define the set of periods when i’s informer was

informed by someone else by T 2
i (t) = ∪t′∈Ti(t)Tst′

(t′). By using this iterative process, we

determine when information is indirectly transmitted to i at time t, ie.

T∞
i (t) =

∞⋃
k=1

T k
i (t). (2)

Assume that the sender at time t informs rt, not only about the own signal, but also

about every individual’s latest signal she is aware of. Thus, if we consider j’s latest signal

that i could be aware of, this has occurred at τ j
i (t) = maxt′∈T∞i (t){t′ ≤ t : st′ = j}.

Definition 3. We say that the individuals communicate efficiently if st reports f t′
st′

(ω),

for every t′ ∈ τst(t) = {τ j
st
(t), j ∈ N}, ie. if st reports every individual’s latest signal she

is aware of.

When rt hears the sender’s most recent information about everybody, she updates her

own set τrt(t). Notice that τrt(t) 6= ∅, since at least τ st
rt

(t) = t belongs to it. In other

words, the recipient at time t, is aware of at least the sender’s signal at t. Notice also

that T∞
rt

(t) does not contain all t′ < t. That is, rt may not hear j’s last (and therefore,

current) signal from st, implying that rt may be misinformed about f t
j (ω). To see this,

consider the fair protocol depicted in figure 3, where k ≥ 0. When 3 speaks (at t = 4),

she transmits a wrong signal about 2 (which she received at t = 1). Given that in the

meantime (at t = 3) 2 has revealed her current signal, 1 neglects the information she

receives from 3 about 2 at t = 4, and the wrong piece of information is actually not taken

into account. On the other hand, when 2 speaks to 3 at time t = 6, she reveals a wrong
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signal about 4, ie. the one she received at t = 2. The difference is that in this case 3 has

not received more recent information about 4, and therefore takes into consideration the

wrong signal, being thus misinformed about 4’s signal. In general, when st talks to rt,

the later will take into account what she hears only if she does not already possess more

recent information.

Given efficient communication, the recipient rt infers that the set of possible states at

time t is

R̂t
rt

=
⋂

t′∈τrt (t)

Rt′

st′
. (3)

In other words, R̂t
rt

contains the states that can entail the signals that, according to the

most recent information which is available to her, are transmitted by the individuals in

the population. Then, she refines her information partition according to the rule

It+1
rt

= It
rt
∨ R̂t

rt
, (4)

with R̂t
i = {R̂t

i, R̂
tc

i }. Clearly, R̂t+1
j = R̂t

j whenever j 6= rt, and therefore It+1
j = It

j ,

implying that the only individual who refines her partition is the recipient at time t.

Theorem 1. Consider a fair protocol with efficient communication. Then the signals

eventually become commonly known in the population.

As we have already discussed above, efficient communication does not preclude misin-

formation. However, it is straightforward from the previous result, that wrong information

will eventually stop being transmitted after some T > 0.

Notice that the previous theorem does not require convex signal functions. This is

quite important since, reaching common knowledge, and achieving consensus are actually

different problems. In other words, different communication schemes affect the level of
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knowledge, while the nature of the signals determine whether the commonly known actions

ensure consensus or not.

Corollary 2. Consider a fair protocol, and let the individuals efficiently transmit posterior

probabilities about an event E. Then the population eventually reaches a commonly known

consensus.

In order to generalize the previous result to arbitrary signal functions we need to

introduce additional requirements (Moses and Nachum (1990), Aumann and Hart (2006),

Samet (2006)). It follows from the previous discussion that common knowledge and

consensus have to be analyzed separately. Common knowledge is achieved on the basis

of how much information is transmitted, whilst consensus is the result of the type of

information that is being communicated. Notice that both characteristics of the state

of knowledge are important in models of communication, since not commonly known

consensus may not be robust against perturbations in the protocol of communication (see

examples 1 and 2).

4. Concluding discussion

We have shown that in a model of pairwise communication, the signals eventually become

commonly known if the individuals transmit, not only their private signal, but also the

information they have conveyed from their past informers. In other words, for common

knowledge to be achieved, the individuals cannot presume that their recipients are able to

infer what they themselves have heard in the past. We show that common knowledge is a

quite important component of consensus, since otherwise agreements might not be robust

against protocol perturbations. That is, a slight change in the communication pattern

might lead to a totally different consensus.
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Appendix

Proof of Proposition 1. Since σ(J ) is finite, and It+1
i is finer than It

i for every i ∈ N and

every t > 0, there is T > 0 such that It
i = I∗i for every t > T , and every i ∈ N . Then

it follows that no information refinement occurs after T , and therefore Rt
i = R∗

i , for every

t > T , and every i ∈ N . Consider two arbitrary connected individuals i, j ∈ N . Then there

are t, t′ > 0 such that st = rt′ = i, and st′ = rt = j. Since no refinement occurs after T , it

follows that R∗
i ∈ σ(I∗j ). At the same time we know that R∗

i ∈ σ(I∗i ), for every i ∈ N . Hence,

R∗
i ∈ σ(I∗i ) ∩ σ(I∗j ) = σ(I∗i ∧ I∗j ). From non-delusion it follows that (I∗i ∧ I∗j )(ω) ⊆ R∗

i . The

same thing can be proven for R∗
j , which completes the proof.

Proof of Corollary 1. Since the protocol is connected, and satisfies information exchange, if

we sequentially apply proposition 1, it follows from Aumann (1976) that consensus is eventually

achieved.

Proof of Theorem 1. Since σ(J ) is finite, and It+1
i is finer than It

i for every i ∈ N and every

t > 0, there is T > 0 such that It
i = I∗i for every t > T , and every i ∈ N . Then it follows that

no information refinement occurs after T , and therefore Rt
i = R∗

i , for every t > T , and every

i ∈ N . By definition in a fair protocol there is a path of directed edges that passes from every

vertex, and ends up at the origin. Since a directed edge from i to j implies that i talks to j

infinitely often, it will be the case that the protocol ({r̃t}∞t=1, {s̃t}∞t=1), defined as r̃t = rT+t, and

s̃t = sT+t is also fair. Then, there is some Ti ≥ T , such that t ≥ T for every t ∈ τi(Ti), and

the cardinality of τi(T ) is equal to n, implying that i knows everybody’s correct signal. Hence,

13



R̂t
i = ∩j∈NR∗

j , for every t > T i, and every i ∈ N . Therefore, there is T ∗ > T such that R̂t
i = R∗,

for every i ∈ N . Since no refinement occurs it follows that R∗ ∈ σ(I∗i ), for every i ∈ N . Hence,

R∗ ∈ ∩i∈Nσ(I∗i ) = σ(∧i∈NI∗i ) = σ(M∗). From non-delusion it follows that M∗(ω) ⊆ R∗, which

proves the theorem.

Proof of Corollary 2. It follows directly from theorem 1 and Aumann (1976).
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