
Master of Science Thesis in Software Engineering and Management

Testing implementations of
Distributed Hash Tables

Vinh Trương
Göteborg, Sweden 2007

REPORT NO. 2007/41

Testing implementations of

Distributed Hash Tables

VINH TRƯƠNG

Department of Applied Information Technology

IT UNIVERSITY OF GÖTEBORG

 GÖTEBORG UNIVERSITY AND CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2007

Testing implementations of Distributed Hash Tables

VINH N. X. TRƯƠNG

© VINH N. X. TRƯƠNG 2007

Report no. 2007:41

ISSN: 1651-4769

Department of Applied Information Technology

IT University of Göteborg

Göteborg University and Chalmers University of Technology

P.O. Box 8718

SE – 40275 Göteborg

Sweden

Telephone +46 31 - 772 4895

Göteborg, Sweden 2007

ii

Testing implementations of Distributed Hash Tables

VINH N. X. TRƯƠNG

Department of Applied Information Technology

IT University of Göteborg

Göteborg University and Chalmers University of Technology

Supervisor: Thomas Arts

SUMMARY

A lot of research about peer-to-peer systems, today, has been focusing on designing better
structured peer-to-peer overlay networks or Distributed Hash Tables, which are simply called
DHTs. To our knowledge, not many papers, however, have been published about testing
implementations of them. This thesis presents an attempt to test an implementation of Chord,
one of the well known DHTs, with a property-based testing method. We propose an abstract
state machine as a way to model a DHT, and as a correctness property that its implementation is
supposed to satisfy. As a case study, we test the Chord implementation with a property-based
random testing tool, showing some faults in the implementation, and suggesting some
modifications in its original algorithm.

Keywords: Distributed Hash Table, property-based random testing, abstract state machine

iii

iv

Acknowledgments

I would like to thank my supervisor, Thomas Arts, for his enduring support and guidance. From
when I started learning the Erlang programming language in his Test and Verification course
until today, he has been a constant source of encouragement. He has inspired me with his
positive outlook and confidence in my research. In particular, this thesis benefits greatly from
his insights, suggestions and patient revisions.

I must thank all my classmates in the Software Engineering and Management Master program
for being good companies. They have persistently stimulated my research by posing useful
questions and suggestions. I wish them every success in their future.

I also thank all the program managers, teachers, supervisors and coordinators in this program,
who have been working hard to keep the program going and improving.

I am also grateful to Swedish Institute, not only for providing the funding which allows me to
pursue this education but also for giving me the opportunity to attend seminars, excursions and
meet so many interesting people.

And most of all, I would like to thank my family for their understanding, endless support and
encouragement; my parents, my wife and my daughter, who have always been there waiting for
me. I will soon be home.

Vinh Trương
Göteborg, April 2007

v

vi

Contents

Chapter 1. Introduction..1
1.1. Motivation..1
1.2. Objectives and contributions..1
1.3. Related works...2
1.4. Overview..2

Chapter 2. Background..5
2.1. Distributed Hash Tables...5
2.2. Erlang...8
2.3. QuickCheck..9

Chapter 3. Modeling...11
3.1. Registration..12
3.2. Logic...13

Chapter 4. Chord implementation..17
4.1. User registration...17
4.2. Data location..18
4.3. DHT logic...19

Chapter 5. Testing with QuickCheck..21
5.1. Simulation..21
5.2. Property..23
5.3. Test cases..24

Chapter 6. Results and analysis...25
6.1. Faults found..25
6.2. Modified algorithm..31

Chapter 7. Discussion...33
7.1. CAN, Tapestry and other DHTs...33
7.2. Tracing..34
7.3. Graph theory for structured peer-to-peer systems..35

Chapter 8. Conclusion..37

References..39
Normative references..39
Informative references...40

Appendices...42
Appendix A: Chord specification..42
Appendix B: New Chord implementation...49

vii

Figures
Figure 2.1a: A sample Chord network: 4 nodes and 23 IDs7
Figure 2.1b: Stabilization on arrival..7
Figure 2.2: Sample Erlang programs..8
Figure 2.3a: State machine of an electric lamp9
Figure 2.3b: A sample QuickCheck specification..9
Figure 2.3c: A sample QuickCheck output...10
Figure 3.1: Model of Chord registration12
Figure 3.2a: Model of Chord logic in the face of node joins and leaves................14
Figure 3.2b: Model of Chord logic without any node joins and leaves.........................14
Figure 3.2c: State with finger table record15
Figure 4.1: Implementation of join algorithm..18
Figure 4.2: Implementation of lookup algorithm...18
Figure 4.3a: Implementation of periodic operations19
Figure 4.3b: Illustration of stabilize..19
Figure 4.3c: Implementation of stabilization algorithm20
Figure 5.1a: Simulation of model21
Figure 5.1b: Simulation of environment...22
Figure 5.1c: Simulation of assumptions.. ..22
Figure 5.2a: Checking node registration 23
Figure 5.2b: Checking Chord logic... ..23
Figure 5.3: A sample test case.. .24
Figure 6.1a: Join via another joining node25
Figure 6.1b: Printout of fault: join via a joining node..26
Figure 6.1c: Joining when gate or its closest preceding finger fails.................................27
Figure 6.1d: Printout of fault: Joining when gate or immediate node fails27
Figure 6.1e: All successors and fingers simultaneously fail.. ..28
Figure 6.1f: Printout of fault: all successors and fingers simultaneously fail...................29
Figure 6.1g: Printout of fault: old messages come back30
Figure 6.2: Modified Chord algorithm.. ..32
Figure 7.1a: Model of 2-d CAN registration.. ...33
Figure 7.1b: Model of Tapestry registration ... 34
Figure 7.2: Messages and events of joining..35
Figure 7.3: Chord graphs...36

Tables
Table 2.1: DHT geometries... ...5
Table 2.2: DHT performance and flexibility complexities...6
Table 3: Chord actions..11

viii

Chapter 1. Introduction

This chapter presents an introduction to our thesis. We start with a motivation behind this research,
following a summary of its objectives and contributions. We then mention some related works and
outline the structure of this thesis document.

1.1. Motivation
The popularity of file-sharing and multimedia over IP services has recently motivated intensive
research into peer-to-peer systems, especially in the area of structured peer-to-peer overlay networks
or Distributed Hash Tables, which are simply called DHTs. In the literature that describes those
systems, the correctness proofs are usually stretched at a high level of abstraction, and tends to use
simulations to evaluate both the designs and their implementations.

Overall, that method means to test the correctness of the entire system viewed as a black-box.
Commonly, it leaves out the corner cases where bugs are typically hidden. And even when bugs are
detected, it is very difficult to trace out the actual causes.

With this thesis, we propose a new approach to test the implementations of DHTs by using a property-
based random testing method. Basically, our approach is a combination of three techniques:

● modeling a DHTs with an abstract state machine; defining a state as a collection of nodes and
their relationships;

● using a property-based random testing tool to generate random test cases from the model;
simulating its state machine and the dynamic environment that the DHT can operate in;

● executing the test cases on the DHT implementation; checking real states against its modeled
states, and real nodes' relationships against their modeled ones; automatically shrinking the
failing test cases.

As a case study, we apply this method to test a Chord [1] (one of the well known DHTs)
implementation using Erlang QuickCheck [7] [10] [11].

1.2. Objectives and contributions
Formally, the main question of our research is:

– How can the implementations of DHTs be effectively tested?

To answer this main question, we try answering these two immediate ones: (1) What to test and (2)
How to test. The first question is to find the appropriate cases to verify. In this research, it is to find
the properties that a DHT system is supposed to satisfy. The most challenging problem in this stage is
to find the appropriate properties, which together capture the main functionality of the DHT.

1

Chapter 1. Introduction

By doing so, instead of proving the correctness of the implementation itself, we can prove the
correctness of these specified properties instead. The second immediate question is to correctly set up
a simulation and carry out test cases on it. Two things that need to be considered are the programming
language we use to implement the system and the tool we use to test it.

These two questions are designed to achieve the main research objective:

– Developing a novel testing method for testing implementations of DHTs

Altogether, they result in a research contribution by means of a case study on how DHTs can
effectively been tested. It combines research from two areas; viz. DHT and property based testing.

Furthermore, as a result of testing the Chord implementation, we contribute with a new version of it
and a modified version of Chord algorithm.

1.3. Related works
The attempt to use a property-based testing method to test implementations of formally verified
algorithms and protocols should be seen as one among several similar projects. Arts et al. [8] [9]
presented a case study of testing a formally-verified leader election algorithm. The leader election
algorithm is an algorithm that helps elect a single node as a leader among many competing ones.
Although it is not a peer-to-peer algorithm, leader election is a solution for distributed networks,
which involves distributed nodes and concurrent processes. In their research, the leader election
algorithm has been tested with the same property-based random testing tool that we are using. The
research is related to ours in the sense that we share experience and findings of testing two different
formally verified algorithms. In [11], the same testing tool is used to develop and test an industrial
implementation of the Megaco (ITU-T H.248) protocol, a component interfacing to Ericsson's media
proxy.

An attempt to model a DHT at an abstract level could have been seen in [13]. The authors proposed an
abstract model for structured peer-to-peer network with ring topology. Different from ours, their
choice of modeling formalism is π-calculus. As a case study, they use the π-calculus to model both
the specification and the implementation of Chord system.

1.4. Overview
In Chapter 1, a motivation behind our research, a summary of its objectives and contributions together
with some related works have been presented.

Chapter 2 gives a short technical overview of Distributed Hash Tables, Erlang programming language
and QuickCheck.

In Chapter 3, we introduce our model of Chord protocol. There, we propose a way to separate DHT
registration from DHT logic, and explain how they are as individual and as together modeled with
finite state machines. We then specify what properties should be hold in those models.

Chapter 4 presents our first Chord implementation. The implementation is based on the original Chord
paper by Stoica et al. [1]. We explain how the algorithm presented in that paper is implemented in
Erlang, and how we fill the gap between the implementation and its original algorithm by replacing
the Remote Procedure Calls (RPCs) by the for Erlang more natural asynchronous message.

Chapter 5 is for a case study of testing the Chord implementation presented in Chapter 4 against the
model that we propose in Chapter 3, using the tool QuickCheck introduced in Chapter 2. In more
details, we present how to use QuickCheck as a scheduler to simulate a Chord system and how to
write properties, generate and execute test cases.

2

Chapter 1. Introduction

In Chapter 6, we show several serious faults in the Chord implementation. Together with an analysis,
we suggest some modifications in the original Chord algorithm.

Next, in Chapter 7, we discuss the results in a broader context, where we include the cases of other
popular DHTs. Some directions for future research are also mentioned.

We conclude this thesis with a summary of our works in Chapter 8.

3

4

Chapter 2. Background

This chapter presents the background of our research. That includes the basics of Distributed Hash
Tables, especially Chord, and a short overview of Erlang and QuickCheck, the programming language
and the testing tool we use.

More information about QuickCheck could be found in [7], [10] and [11]. For fuller treatment of
Erlang, the reader is referred to the Erlang book [14] and the Erlang website [34]. The formal
descriptions of DHTs are provided by various normative and informative references in the References
section.

2.1. Distributed Hash Tables
Peer-to-peer systems can be broadly classified into unstructured (such as Kazaa and Gnutella with no
structure of how the users store the data) and structured (such as those using DHTs). A DHT is a
distributed data structure that efficiently maps “keys” to “values”. Users of a DHT must use keys to
store and retrieve the corresponding values. In a DHT, nodes maintain information of a small number
of other nodes, forming an overlay network. To implement a DHT, the underlying algorithm must be
able to determine which user is responsible to the data associated with a given key. Different from
unstructured peer-to-peer networks, messages in DHT networks are routed in some special schema,
instead of flooding them expensively.

There have recently been many proposed networks that implements DHTs, including Chord, CAN [2],
Pastry [3], Tapestry [4], Viceroy [5] and Kademlia [6]. These DHTs differ to each other in the way
they implement the routing geometry. For instance, Chord routes messages along a ring, CAN routes
along a hypercube, while Pastry and Tapestry uses a ring-like geometry in addition to a tree. Each
DHT has its own advantages in terms of the way it handles the situations of concurrent arrivals and
departures. Table 2.1 summarizes these well-known DHTs and their routing geometries.

DHT Geometry Description

Chord Ring Nodes organize into a logical ring ordered by IDs

CAN Hyper-cube Nodes organized into a d-dimensional torus

eCAN Torus Messages are routed in d-dimensional paths

Pastry Hybrid Nodes organize into a tree, but leaves form a ring

Tapestry, TOPLUS Tree Pure tree

D2B,Koorde de Bruijn Nodes organize into a de Bruijn graph

Viceroy Butterfly Nodes organize into a butterfly graph

Table 2.1: DHT geometries

5

Chapter 2. Background

Table 2.2 (Source: Araujo and Rodrigues [15]) summarizes these DHTs with their performance and
flexibility complexities.

P2P Systems Node degrees Network diameter Node congestion Optimal path Neighbor
selection

Small-worlds O(1) O(log2 n) O((log2 n)/n)

Chord O(log n) O(log n) O((log n)/n) O(log n) nlogn/2

CAN O(d) O(dn1/d) O(dn1/d-1) O(log n) 1

Pastry O(log n) O(log n) O((log n)/n) 1 nlogn/2

Tapestry O(log n) O(log n) O((log n)/n) 1 nlogn/2

D2B O(1) O(log n) O((log n)/n) 1 nlogn/2

Viceroy O(1) O(log n) O((log n)/n) 1 1

Koorde cfg. 1 O(1) O(log n) O((log n)/n) 1 1

Koorde cfg. 2 O(log n) O((log n)/log log n) O((log n)/(n log
log n))

Table 2.2: DHT performance and flexibility complexities

Chord is one of those well-known DHTs. As other networks that implement DHTs, Chord uses keys to
store and retrieve data. In Chord, ID's are assigned to both data and nodes. The node responsible for
key k is called its successor, defined as the node whose ID most closely follows k.

Chord differs from other DHTs in the way that all of its entities are organized in a ring, and the
routing procedure is one-dimensional. During registration, a node is assigned a unique ID chosen by
hashing its address (e.g. IP address). Depending on IDs, nodes are logically located at the correct
positions.

During operation, a node needs to maintain a record of log N other nodes, where N is the total number
of them. That record is called the successor list. Those other nodes are called the node's successors
(the immediate successor is one of them). By keeping information of log N successive neighbors, a
node, with high probability, can be secure to have some successor to communicate to in case its
immediate successor fails.

A Chord node also maintains a finger table of log N entries as its routing table. The ith entry in the
finger table contains the node that succeeds by at least 2 i-1 other nodes on the ID ring. The role of the
finger tables is to reduce the average number of hops when routing messages. More specifically, it
helps reduce the lookup time from O(N) of sequential routing to O(logN).

Figure 2.1a shows a network with 4 nodes and an ID space of 23. Each node has 3 entries in its
successor list and the same number in its finger table.

6

Chapter 2. Background

Figure 2.1a: A sample Chord network: 4 nodes and 23 IDs

Chord deals with the issues of concurrent arrivals and voluntary departures by implementing an
algorithm called stabilization. Every node, during operation, periodically sends out requests to ask for
their successors' predecessor, giving a chance for a node to check and update its correct neighbors.
Since every node runs stabilization, they can detect new arrivals and departures, and reorganize
accordingly.

Figure 2.1b shows the use of stabilization on arrival when node 201 joins the network. First, it asks
the gate (12) to find its immediate successor. (b) Successor 328 is found. By that time, the rest of the
network has not been aware of the new node yet. (c) 165 runs stabilization and detects node 201 as its
successor. In turn, node 328 runs stabilization and detects 201 as its predecessor.

Figure 2.1b: Stabilization on arrival

7

Node ID: 201

ID: 328
Predecessor: 165
Successor: 12

Node ID: 165
Predecessor: 12
Successor: 328Node ID: 12

Predeecessor: 328
Successor: 165

Node ID: 12
Predecessor:328
Successor: 165

Node ID: 165
Predecessor: 12
Successor: 328

Node ID: 201
Successor: 328

Find successor

Node ID: 328
Predecessor: 165
Successor: 12

Chord ring with
4 nodes and

ID space of 23

Node ID:3
Successor: 5 Predecessor: 1
Successor list:
 [5,7,1]
Finger Table:
 First node after 3 + 20 = 4
 1st node after 3 + 21= 5
 1st node after 3 + 22 = 7

Node ID:5
Successor: 7 Predecessor: 3
Successor list:
 [7,1,3]
Finger Table:
 First node after 5 + 20 = 6
 1st node after 5 + 21 = 7
 1st node after 5 + 22 = 1

Node ID:1
Successor: 3 Predecessor: 7
Successor list:
 [3,5,7]
Finger Table:
 First node after 1 + 20 = 2
 1st node after 1 + 21 = 3
 1st node after 1 + 22 = 5

Node ID:7
Successor: 1 Predecessor: 5
Successor list:
 [1,3,5]
Finger Table:
 First node after 7 + 20 = 0
 1st node after 7 + 21 = 1
 1st node after 7 + 22 = 3

0

1

2

3

4

5

6

7

Node ID: 12
Predecessor: 328
Successor: 165

Node ID: 165
Predecessor: 12
Successor: 201

Node ID: 328
Predecessor: 201
Successor: 12

Node ID: 201
Predecessor: 165
Successor: 328

Stabilize

(a) (b) (c)

Chapter 2. Background

2.2. Erlang
Erlang is a high-level and declarative programming language with support for concurrent and
distributed programming. The language has been developed at Ericsson and is typically used to
implement concurrent, real-time distributed systems (e.g. telecommunications).

In Erlang terminology, a distributed system consists of nodes, which themselves contain multiple
processes. Each process has its own memory and an incoming mailbox. A process is created with an
Erlang primitive spawn. This function returns the process identifier of the new process. Processes
communicate with each other by sending messages. This is done by the send and receive primitives:
“!” and “receive...end” respectively.

Erlang deals with the issues of process failures by implementing reactive detection mechanisms:
process linking and monitoring. A process can obtain a bidirectional link or a unidirectional monitor
on another process. If another process fails, the monitored process receives a message informing
about the failure. In a dynamic and distributed environment, the reactive detection mechanisms help
the system actively and quickly recover from failures.

Figure 2.2 shows an example of starting two Erlang processes, one is monitored by another.

-module(left).

-import(erlang,[monitor/2]).
-export([left/0,init/0]).

left() ->
 register(left,spawn(?MODULE,init,[])).

init() ->
 process_flag(trap_exit,true),

 Right = monitor(process,right),
 loop(Right).

loop(Ref) ->
 receive
 {'DOWN',Ref,process,_,_} ->

do_some_action()
 end.

-module(right).

-import(erlang,[monitor/2]).
-export([right/0,init/0]).

right() ->
 register(right,spawn(?MODULE,init,[])).

init() ->
 process_flag(trap_exit,true),

 Left = monitor(process,left),
 loop(Left).

loop(Ref) ->
 receive
 {'DOWN',Ref,process,_,_} ->

do_some_action()
 end.

Figure 2.2: Sample Erlang programs

In the above example, the function left is used to spawn a process, and register that process with a
local name left. The function is exported, so that it can be called by another module. Similarly, right is
used to spawn and register another process: right. The built-in function monitor is imported and used
to monitor one process by another.

When left fails, a message {'DOWN',_,process,_,_} will be sent to right, initiating it to take a proper
action.

The flag of trap_exit is set to true to ensure that a process will never be automatically terminated
when receiving any exit signal from other processes.

8

Chapter 2. Background

2.3. QuickCheck
Erlang QuickCheck is a property-based tool for random testing. Users write properties of a system
based on its specification and let the tool generate and execute random test cases. An advantage of
QuickCheck is to reduce the number of test cases. Another advantage is that it covers corner cases.
Based on the earlier work of QuickCheck tool for Haskell [12], the Erlang adaptation version extends
with the feature to shrink failing test cases automatically. It helps to find the actual cause of a fault,
especially when the test cases are very large.

Regarding to large and complex systems, QuickCheck has been used in several protocol testing case
studies, including testing an implementation of leader election algorithm, and the Megaco protocol in
an Ericsson's media proxy. A new version of QuickCheck introduces the functions to test operations
with side-effects, which are specified by an abstract state machine. To simplify the test cases by
separating test generation from test execution, furthermore, the tool introduces the concepts of
symbolic calls and dynamic variables.

In this section, we explain some basic QuickCheck concepts and primitives by showing an example of
testing a simple system – an electric lamp. The state machine of this system can be drawn as in Figure
2.3a.

Figure 2.3a: State machine of an electric lamp

In QuickCheck, we use command to generate random sequences of press's and release's. When a
command press is called, it checks the precondition that the current state of the system is OFF, and
checks the postcondition that the new state of the system is ON.

-module(lamp).

-include("eqc.hrl").
-include("eqc_statem.hrl").

-export([command/1, next_state/3,
precondition/2, postcondition/3,
initial_state/0, prop_lamp/0,
press/0, release/0]).

-behaviour(eqc_statem).

prop_lamp() ->
 ?FORALL(Cmds,commands(lamp,initial_state()),
 begin

{_,_,R} = run_commands(?MODULE,Cmds),
 R == ok
 end
).

initial_state() -> on.

command(S) ->
 frequency(
 [{1,stop}] ++
 [{10,{call,?MODULE,press,[]}} || S == off] ++
 [{10,{call,?MODULE,release,[]}} || S == on]).

press() -> on.
release() -> off.

precondition(S,{call,_,press,_}) -> S == off;
precondition(S,{call,_,release,_}) -> S == on.

postcondition(_,{call,_,press,_},R) -> R == on;
postcondition(_,{call,_,release,_},R) -> R == off.

next_state(_,_,{call,_,press,_}) -> on;
next_state(_,_,{call,_,release,_}) -> off.

Figure 2.3b: A sample QuickCheck specification

9

off on

press

release

Chapter 2. Background

?FORALL is an Erlang macro, which binds the first argument to a value in the set.
?MODULE is another Erlang macro, which stands for the name of the program. The function
run_commands runs a list of commands, which are generated by command. The weight associated
with each command is the probability that that command is chosen in the frequency function. The
function next_state is used to change the state of the modeled state machine according to the
command executed.

1> eqc:quickcheck(lamp:prop_lamp()).
Starting eqc version 1.07
. .
.
OK, passed 100 tests
true

Figure 2.3c: A sample QuickCheck output

Figure 2.3c shows the output when we call to test the property prop_lamp. QuickCheck tests the
property in 100 random cases, equivalent to 100 sequences of press's and release's. The result is true,
as above, if all test cases succeeded.

10

Chapter 3. Modeling

In this chapter, we propose finite state machines (FSMs) to model DHTs. We first discuss the system-
level view of DHTs. We then introduce a simple model based on DHT registration. A more complete
model based DHT logic is next presented.

Peer-to-peer systems in general and DHTs in particular are inherently dynamic and have infinite-state
behavior. That is the main challenge to model them at a high level of abstraction. The underlying
philosophy of our model, therefore, is to view an infinite state machine as a collection of finite state
machines and view a multi-dimensional model as several two-dimensional ones.

Simply speaking, we suggest viewing peer-to-peer systems from their top level, where we take into
consideration the whole collection of nodes in addition to the whole collection of their relationships.
This view is different from the one-single-node view used for server-client architecture (also
distributed systems). In a server-client system, we typically construct a finite state machine of the
server, and observe the operation of the server-client system based on the finite state machine in that
server side only.

With a top-level view, as mentioned, we define a state of a state machine as a collection of nodes and
relationships. The relationships could be a node as the successor of another as in Chord or a node in
an adjacent zone as in CAN. The machine changes its state when the collection of nodes or the
collection of their relationships changes. In Chord, such actions could be an action when a new node
joins, or when a node performs its maintenance activities.

Action Description New State

start a new node starts A state with one node

join a new node joins A state with an additional node

stop a node leaves A state with one node less

stabilize a node runs its periodic
stabilization

The predecessor of the node's successor is
supposed to be updated

update_successors a node runs its periodic
update of successor list

An additional entry is inserted into the node's
successor list

update_fingers a node runs its periodic
update of finger table

An additional entry is inserted into the node's
finger table

Table 3: Chord actions

Table 3 summarizes all the actions that could change state of a Chord system. The actions consist of
two observable events, the first to trigger the action and the second to acknowledge that the action has
been performed. The actions, therefore, have to be observed as a pair of events. We also note that an
update_successors could be considered as a stabilize if we extend the stabilize so that it also
maintains successor lists.

11

Chapter 3. Modeling

3.1. Registration
Based on the summary of DHT actions, our first step to model a DHT is to separate the user
registration from its overlay logic. In other words, we separate the collection of nodes from the
collections of relationships. At this high level of abstraction, we leave out the relationships among
nodes, and assume that the recovery activities are continuously running in the background. The model
of Chord at this level, therefore, is concerned with three actions: start, join and stop. Those are the
functions used to register and unregister a user, and by themselves, change the collection of nodes.

Figure 3.1 shows a finite state machine of a Chord system with three nodes. These three are initially
all inactive. For simplicity purposes, we do not include that initial state in the figure. The reader,
however, should be aware that there are totally 23 states in this FSM.

Starting with a network of two nodes 1 and 2 active, an action join(3) will change the machine to a
state when all the nodes are active. Similarly, an action stop(2) will change the machine to a state
when node 2 is inactive.

Figure 3.1: Model of Chord registration

12

join(3)

st
op

(2
)

join(3)

join(3)

stop(1)

stop(1)

stop(1)

st
op

(2
)

st
op

(2
)

1

3 2

1

3 2

1

3 2

1

3 2

1

3 2

1

3 2

1

3 2

stop(3)

jo
in

(2
)

join(1)

jo
in

(2
)

join(1)

stop(3)

jo
in

(2
)

stop(3)

join(1)

1

2

Node 1 is active

Node 2 is inactive

Chapter 3. Modeling

As mentioned, this registration FSM is viewed from the top level, with the assumption that the
maintenance and recovery activities are continuously running in the background. It means the join that
we consider here is actually join + stabilize or join + time for stabilization if considered from a lower
level.

The registration FSM would be enough for black-box testing, as far as we add a proper stabilization
time to each interface function. We, ourselves, have tried this to test the Chord implementation in our
P2P SIP project [37]. The problem, however, was that it is difficult to troubleshoot errors, especially
when they are from maintenance and recovery algorithms. We could not observe what is really
happening during that stabilization time either. A more complete model, therefore, is needed to model
the system in more details by removing the assumption of stabilization time and background
activities.

3.2. Logic
The logic of Chord includes functions to maintain DHT peers information: predecessor, successor list
and finger table. Among six actions listed in Table 3, three of them are considered as maintenance and
recovery actions and are of the Chord logic. They are stabilize, update successor list and update
finger table actions.

In our model of Chord logic, we consider stabilize and update_successors as two separate actions.
The model, however, is still applicable to the case when stabilize is modified to also maintain
successor list.

Figure 3.2a shows a finite state machine of a network of three nodes. This corresponds to the dotted
rectangle portion of the finite state machine shown in Figure 3.1. The difference is that we now
include stabilize(2) after join(3) and update_successors(2) after stop(3); in addition to a hyper-state of
three active nodes. We further show that hyper-state portion in Figure 3.2b.

In this model, a state is defined as a collection of three nodes 1, 2 and 3. Each has a predecessor and a
successor list. For example,

1,2,{2,_}

means that node 1 has 2 as its predecessor and as the first entry in its successor list. If the ID space
size of this network is 22, the size of the successor list is 2. The second entry of the successor list is
currently undefined or unknown.

The action join(3,1) leads to a successor update at node 3. At the predecessor of 3, stabilize(2) will
then update the successor for that node.

At the other end, the action stop(3) leads the FSM to a state when 3 do not have any predecessor and
successors (inactive as defined in the previous registration model). Node 2 detects the failure of its
immediate successor, so it replaces that with the next entry in the successor list. Node 3 as the second
entry in the successor list of node 1 will act as the immediate successor when update_successors(1) is
called.

The model in Figure 3.2a, specified by a FSM, shows these transactions in more details.

13

Chapter 3. Modeling

Figure 3.2a: Model of Chord logic in the face of node joins and leaves

The FSM portion bordered by the dotted rectangle is further explained in Figure 3.2b. In Figure 3.2b,
for simplicity purposes, we only consider stabilize actions. We assume that they are the modified
stabilize which maintain successor lists. It means an action stabilize updates not only the immediate
successor but also all other entries in the successor lists.

Figure 3.2b: Model of Chord logic without any node join and leave

14

 1,2,{2,_}
 2,1,{1,_}
 3,_,{_,_}

 1,2,{2,_}
 2,1,{1,_}
 3,_,{1,_}

 1,2,{2,_}
 2,1,{3,_}
 3,_,{1,_}

 1,2,{2,3}
 2,1,{3,1}
 3,_,{1,_}

joi
n (

3,1
)

stabilize (2)

 1,2,{2,3}
 2,1,{3,1}
 3,_,{1,_}

up
da

te_

su
cc

es
so

rs(
2)

 1,2,{2,3}
 2,1,{1,_}
 3,_,{_,_}

stop(3)

update_

successors(1)

up
date_

successors(2)

update_

successors(1)

 1,2,{2,_}
 2,1,{1,_}
 3,_,{1,_}

 1,2,{2,3}
 2,1,{3,1}
 3,_,{1,_}

stabilize (2)

 1,2,{2,3}
 2,1,{3,1}
 3,2,{1,2}

 1,3,{2,3}
 2,1,{3,1}
 3,2,{1,2}

stabilize (2)

stabilize (3)

 1,3,{2,3}
 2,1,{1,_}
 3,_,{1,_}

sta
bil

ize
 (1

)

 1,2,{2,_}
 2,1,{1,_}
 3,2,{1,2}

stabilize (3)

 1,3,{2,3}
 2,1,{3,1}
 3,_,{1,_}

 1,3,{2,3}
 2,1,{1,_}
 3,2,{1,2}

sta
bil

ize
 (1

)

stabilize (2)

stabilize (3)

sta
bil

ize
 (1

)

stabilize (3) stabilize (2)

sta
bil

ize
 (1

)

Chapter 3. Modeling

In Figure 3.2b, there are finitely 8 states starting from the time when node 3 has just joined the system
until the time when the system becomes complete stable. Together, as a FSM, it complements to the
FSM shown in Figure 3.2a. Overall, we concatenate two FSMs (Figure 3.2a and Figure 3.2b) to form
one FSM and embed it into the top-system-level FSM shown in Figure 3.1. A complete model of
Chord, by that way, has been constructed.

The blue numbers in the model indicate the change of states, and are intended to be used for testing.
For example, stabilize(1) is tested by simply checking the predecessor '3' of node 1, leaving out other
unchanged information.

State could also be extended to include figure table records after successor lists as shown in Figure
3.2c.

Figure 3.2c: State with finger table record

15

 1,3,{2,3},{2,3}
 2,1,{3,1},{3,1}
 3,2,{1,2},{1,2}

16

Chapter 4. Chord implementation

In this chapter, we present the first version of our Chord implementation. The implementation is
loosely based on the Chord protocol described by Stoica et al. To ease the explanation, some
fragments of the code are pasted into here. The modified version of it could also be found in Appendix
B.

Overall, Chord is implemented as three separate modules. The user registration module is responsible
for registering nodes in the system. It includes functions to start the network and join new nodes into
it. The data location module is used to locate users. It includes functions to lookup responsible nodes.
The logic module contains overlay maintenance functions, including stabilize, update_successors and
update_fingers.

4.1. User registration
A new node is considered to be successfully registered if it is placed at a correct position in the
network. In Chord, that means correct immediate successor. As the first step, a joining node needs to
contact some node already in the network to find its immediate successor. When a node receives the
request, it will check whether the ID of the new node is between itself and its successor. If yes, the
current successor is set to be the successor of the new node. Otherwise, the request is passed to a
closest preceding finger.

Figure 4.1 shows our implementation of the join algorithm. In the implementation, we use a State
record to keep information of predecessor, successor list and finger table. successors denotes a
successor list and fingers is a finger table. Both are implemented with tuples (Erlang fixed-size arrays)
of log N entries.

The function is_element(X,A,B) is used to check whether X is on an arc (A,B). It is equivalent to the
mathematical operation ϵ in the pseudo code of the algorithm. The function
closest_preceding_finger(Table,ID) searches the local table for the highest predecessor of ID.

17

Chapter 4. Chord implementation

join(State,Gate) ->
 ID = State#peer.id,
 Gate ! {find_successor,ID},
 receive
 {find_successor,ID,Successor} ->
 New_State = State#peer{successors = setelement(1,State#peer.successors,Successor),

fingers = setelement(1,State#peer.fingers,Successor)},
 loop(New_State)
 end.

loop
 {find_successor,Another_Peer} ->

case is_element(Another_Peer,ID,Successor) of
 true ->
 New_Successor = Another_Peer,
 Another_Peer ! {find_successor,Another_Peer,Successor},
 New_State = State#peer{

successors = setelement(1,State#peer.successors, New_Successor),
fingers = setelement(1,State#peer.fingers, New_Successor)},

 loop(New_State);
 false ->

Finger = closest_preceding_finger(State,Another_Peer),
 Finger ! {find_successor,Another_Peer},
 loop(State)

end

Figure 4.1: Implementation of join algorithm

4.2. Data location
In a Chord system, data is stored on nodes and identified using unique numeric keys. To locate the
node which is responsible for a key, we implement one operation: lookup. This operation takes a key
as its argument and returns the identity of the node currently responsible for that key.

When a node receives a lookup request, it first checks whether the key is owned by itself, otherwise it
will pass the request to the closest preceding finger. The process is repeated until the owner is found.
The mechanism is similar to that of searching the successor of a joining node, except that the object of
searching is a key of data, not an ID of node.

Figure 4.2 shows our implementation of the lookup algorithm.

{lookup,Key} ->
 case ID == Successor of
 case is_element(Key,ID,Successor) of
 true ->
 loop(State);
 false ->

 Finger = closest_preceding_finger(State,Key),
 Finger ! {lookup,Key},
 loop(State)
 end
 end;

Figure 4.2: Implementation of lookup algorithm

18

Chapter 4. Chord implementation

4.3. DHT logic
This module is used for a node to maintain DHT peers information and perform DHT logic. The DHT
peers information includes predecessors, successor list and finger table. This module, thus, contains
the implementation of stabilization, update successor list and update finger table algorithms.

In Erlang, they are implemented as periodic operations using a built-in function called
timer:apply_after as shown in Figure 4.3a.

client(ID) ->
 start(ID),
 timer:apply_after(10,?MODULE,stabilize,[ID]),
 timer:apply_after(10,?MODULE,update_successors,[ID]),
 timer:apply_after(10,?MODULE,update_fingers,[ID]).

Figure 4.3a: Implementation of periodic operations

These three functions stabilize, update_successors and update_fingers are implemented as three
external functions, which could be called to test separately.

The two functions update_successors and update_fingers are used to refresh the successor list and
finger table. The function stabilize is used on concurrent node arrivals and departures.

Figure 4.3b shows in more details how the stabilization is implemented. When a node runs stabilize, it
checks with its successor about the predecessor. The successor's predecessor is supposed to be the
current node itself. If it is not the case, it means some node has just joined or left.

Figure 4.3b: Illustration of stabilization

Figure 4.3c shows our implementation of Chord stabilization algorithm, which includes request,
respond and notify messages. A node changes its state when it detects a new successor or predecessor.

19

A

Request
Predecessor

B

Respond
Predecessor

B'

N
otify Predecessor

New
successor

New
predecessor

Chapter 4. Chord implementation

{request_predecessor,Another_Peer} ->
 Another_Peer ! {respond_predecessor, Predecessor},
 loop(State);

{respond_predecessor,Another_Peer} ->
 case is_element(Another_Peer,ID,Successor) of

 true ->
 New_Successor = Another_Peer,
 New_State = State#peer{

successors = setelement(1,State#peer.successors,New_Successor),
fingers = setelement(1,State#peer.fingers,New_Successor)},

 Another_Peer ! {notify_predecessor,ID},
 loop(New_State);
 false ->
 Successor ! {notify_predecessor,ID},

loop(State)
 end;

{notify_predecessor,Another_Peer} ->
 case is_element(Another_Peer,Predecessor,ID) of
 true ->
 New_Predecessor = Another_Peer,
 case Successor == ID of
 true ->
 New_Successor = Another_Peer,
 Another_Peer ! {notify_predecessor,ID,Parent_ID},
 New_State = State#peer{predecessor = New_Predecessor,

successors = setelement(1,State#peer.successors,New_Successor),
fingers = setelement(1,State#peer.fingers,New_Successor)},

 loop(New_State);
 false ->

 New_State = State#peer{predecessor = New_Predecessor},
 loop(New_State)
 end;
 false ->
 loop(State)
 end;

Figure 4.3c: Implementation of stabilization algorithm

20

Chapter 5. Testing with QuickCheck

In this chapter, we present a case study of testing the Chord implementation presented in Chapter 4
against the model that we propose in Chapter 3, using the tool QuickCheck introduced in Chapter 2.
In more details, we present how to use QuickCheck as a scheduler to simulate a Chord system and
how to write properties, generate and execute test cases.

5.1. Simulation

Abstract model

We use QuickCheck to build the Chord model presented in Chapter 3. The model starts with an initial
state of 1 - 9 inactive nodes and changes state according to six commands: start, join, stop, stabilize,
update_successors and update_fingers. The feedbacks of these commands are then used to verify the
implementation against the simulated model.

Figure 5.1a shows this setup in more details. When stabilize(2) is called, it initiates the external
function stabilize of the implementation. We verify whether the feedback matches with the current
state of the model, by checking the post condition of the command stabilize.

Figure 5.1a: Simulation of model

21

 1,2,{2,_}
 2,1,{1,_}
 3,_,{1,_}

 1,2,{2,_}
 2,1,{3,_}
 3,_,{1,_}

System

stabilize (2)

Node: 2,
Predecessor: 1,

Successor List: {3,_}

 QuickCheck: Chord model

stabilize (2)

Command
initiated

Postcondition
checked

Chapter 5. Testing with QuickCheck

Note that all the relevant information in the model (nodes and relationships) are entirely calculated by
the model itself. A model with three nodes 1, 2 and 4 active yields: 4 is the immediate successor of 2,
2 is the immediate successor of 1, 4 is the second successor of 1, and so on. Since those are the
absolute positions, we can detect the cases of loopy networks (as warned in [24]).

Environment

DHTs function in a distributed and dynamic manner. Implementations of DHTs, therefore, have to be
tested in a dynamic environment. It is supposed that these following situations could to be simulated:

(a) A node fails after its predecessor has just stopped;

(b) A node fails and then restarts (churn);

(c) A lookup occurs before stabilization; etc.

QuickCheck with its randomization support can simulate these situations by generating different
sequences of events. Figure 5.1b shows the function to generate sequences of start, join, stop,
stabilize, update_successors and update_fingers. The function get_inactive returns a list of inactive
nodes, while not_standalone is true if there is more than one node currently active.

command(S) ->
 frequency(
 [{1,stop}] ++
 [{3,{call,?MODULE,start,[oneof(get_inactive(S#state.peers))]}}
 || all_inactive(S#state.peers)] ++

 [{5,{call,?MODULE,join,[oneof(get_inactive(S#state.peers)),oneof(get_active(S#state.peers))]}}
|| active_and_inactive(S#state.peers)] ++

 [{2,{call,?MODULE,stop,[oneof(get_active(S#state.peers))]}}
 || not all_inactive(S#state.peers)] ++
 [{10,{call,?MODULE,stabilize,[oneof(get_active(S#state.peers))]}}
 || not_standalone(S#state.peers)] ++
 [{10,{call,?MODULE,update_successors,[oneof(get_active(S#state.peers))]}}
 || not_standalone(S#state.peers)] ++
 [{10,{call,?MODULE,update_fingers,[oneof(get_active(S#state.peers))]}}

 || not_standalone(S#state.peers)]).

Figure 5.1b: Simulation of environment

With this setting, the situation (a) could be simulated with two consecutive stop commands. The
situation (b) could be simulated with a stop and a start of the same node in sequence. While the
situation (c) can be: “..., join(X), lookup(X), stabilize(X),...”.

Assumptions

We use precondition's to simulate the assumptions of Chord. An assumption like “a stop must not be
called if it causes successor list of some node empty” could be simulated as follows (by checking that
the node is not the last successor of any node).

precondition(S,{call,_,stop,[P,_]}) ->
 not empty_successor_list(S#state.peers,P).

 empty_successor_list(List,P) -> ...
 lists:any(fun({_,_,Successors,_}) -> element(1,Successors) == P end, List).

Figure 5.1c: Simulation of assumptions

22

Chapter 5. Testing with QuickCheck

5.2. Property
We use QuickCheck to verify the correctness of user registration, data location and DHT logic. That is
the property that we want the implementation to satisfy.

Nodes registered correctly

We verify that a command join(N) will lead to a correct registration of N. According to the model that
we presented in Chapter 3, it means a new state with an additional node, and the immediate successor
of that node must be correct. We verify that by checking the post-condition of that command.

Figure 5.2a shows how such a post condition is written in QuickCheck.

postcondition(S,{call,_,join,[P,_,_]},R) ->
 case R of
 {ok,P,_,Successor} ->
 Successor == successor(lists:sort(get_active(S#state.peers)++[P]),P);
 _ ->
 false
 end;

Figure 5.2a: Checking node registration

In this case, R is the response of join. This response message is sent from the running system to
QuickCheck, with the format {ok,P,_,Successor}. That Successor of P will be checked with the
successor of that P identified in the model side.

Data located correctly

We verify that a lookup correctly returns the node responsible for a given key. In Chord, key k is
assigned to the first node whose identifier is equal to or follows k in the identifier space. Similar to the
above case, this responsible node could be found from the model and checked with the response of the
lookup command.

Chord logic functions correctly

We verify that stabilize, update_successors and update_fingers all perform correctly by checking their
post-conditions.

Figure 5.2b shows how to verify the action update_successors, by checking the returning successor
list with the modeled successors. A function successors, therefore, is needed to find among the
currently active nodes, which are the entries of the successor list of P.

postcondition(S,{call,_,update_successors,[P,_]},R) ->
 R == successors(lists:sort(get_active(S#state.peers)),P);

Figure 5.2b: Checking Chord logic

23

Chapter 5. Testing with QuickCheck

5.3. Test cases
QuickCheck helps generate and execute random test cases of the correctness property. Each test case
is a list of commands. In test generation, the commands are symbolic, which map symbolic variables
to the results of symbolic calls. During test execution, these symbolic variables are replaced with their
run-time values.

Figure 5.3 shows a sample test case:

[{init,{state,[{'1',undefined,
 {undefined,undefined,undefined,undefined},

 {undefined,undefined,undefined,undefined}},

 {'2',undefined,

 {undefined,undefined,undefined,undefined},

 {undefined,undefined,undefined,undefined}},

 {'3',undefined,

 {undefined,undefined,undefined,undefined},

 {undefined,undefined,undefined,undefined}}]}},

 {set,{var,1},{call,chord_eqc,start,[1]}},

 {set,{var,2},{call,chord_eqc,join,[2,1]}},

 {set,{var,3},{call,chord_eqc,stabilize,[2]}},

 {set,{var,4},{call,chord_eqc,join,[3,2]}},

 {set,{var,5},{call,chord_eqc,update_successors,[3]}},

 {set,{var,6},{call,chord_eqc,stabilize,[3]}},

 {set,{var,7},{call,chord_eqc,lookup,[3,4]}},

 {set,{var,8},{call,chord_eqc,lookup,[3,4]}},

 {set,{var,9},{call,chord_eqc,stop,[1]}},

 {set,{var,10},{call,chord_eqc,update_successors,[3]}},

 {set,{var,11},{call,chord_eqc,update_successors,[2]}},

 {set,{var,12},{call,chord_eqc,update_fingers,[3]}},

 {set,{var,13},{call,chord_eqc,stabilize,[2]}},

 {set,{var,14},{call,chord_eqc,stabilize,[2]}},

Figure 5.3: A sample test case

This test case starts with three inactive nodes 1, 2 and 3. Their predecessors, successors and fingers
are all undefined initially. The first command starts node 1, and set the result to var 1. The second
command is then called to join node 2 via node 1 and set var 2 to the result. The third command is to
stabilize node 2 and so on. A sample test case like this could be printed out to check whether the
preconditions and other assumptions have been simulated correctly.

In the next chapter, we present the result when we apply such test cases to test our Chord
implementation.

24

Chapter 6. Results and analysis

In this chapter, we present and analyze the result of our testing. We show several serious bugs in the
current implementation. We also show in which situations (test cases), these bugs are detected. Based
on the analysis, we then suggest some modifications in the original Chord algorithm. As a result, we
introduce a modified version of it.

6.1. Faults found
The first implementation contains several bugs, four of which are quite serious.

Join via another joining node

This is a fault when a node tries to join the existing network via another joining node. Figure 6.1a
shows a scenario when node 3 tries to join the network via node 2, which by that time is still waiting
for feedback. This scenario leads to a creation of one more network with two nodes 2 and 3.

Figure 6.1a: Join via another joining node

The fault is serious but quite difficult to find out, since every request, in this case, has a reply as
supposed (4 for 1 and 3 for 2). The separation is also hard to observe if we consider one node in a
relation with just one or two other nodes relatively.

In this case, our system-level model has shown its advantages. We detect the separation by checking
the response from 2 to 3. The response says 2 is the successor of 3, while according to our model, the
successor of node 3 in a network of four active nodes 1, 2, 4 and 3 must be node 4 instead. We detect
the error by checking the post condition of join(3,2).

25

1

4

2

34 3

1 2

1- Node 2 is requesting its immediate
successor
2 - Node 3 requests its immediate successor
via node 2
3 - At that time, node 2 has no successor
yet, so it considers node 3 as its successor.
Node 3, in turn, considers node 2 as its
successor. Nodes 2 and 3 now forms a
separated network of their own.
4 - The existing network finds out the
immediate successor of 2. But it is too late
now.

Chapter 6. Results and analysis

Figure 6.1b shows the QuickCheck printout of the fault. In this case, we simulate a network of 200
nodes. The problem happens when node 120 joins via node 98, which itself is currently joining.

 Res: {postcondition,false}

Shrinking...............(15 times)

200

0

1

[{init,{state,[{1,

 undefined,

 {undefined,undefined,undefined,undefined},

 {undefined,undefined,undefined,undefined}},

 {200,

 undefined,

 {undefined,undefined,undefined,undefined},

 {undefined,undefined,undefined,undefined}}],

 '1',

 0}},

 {set,{var,1},{call,chord_eqc,start,[127]}},

 {set,{var,5},{call,chord_eqc,join,[98,127]}},

 {set,{var,8},{call,chord_eqc,join,[120,98]}}]

Figure 6.1b: Printout of fault: join via another joining node

To fix this error, we distinguish reply messages from request ones. It means instead of using
{find_successor,_} as in the algorithm presented by Bakhshi and Gurov and in our Chord
implementation, we use {request_successor,_} and {respond_successor,_}. By doing that, when node
2 (in Figure 6.1a) receives messages from 1 and 4, it can choose to ignore those from the latter.

Joining when gate or immediate node fails

This fault was detected after we had already fixed the first one. The problem is when the gate of a
joining node or some of its fingers fails unexpectedly. It leads to an infinite waiting time for the
joining node. The fault is detected when we set a time-out for joining, and receive a false message
instead of a correct immediate successor as modeled

Figure 6.1c shows the scenario in more details. Figure 6.1d shows the QuickCheck printout of the
fault.

26

Chapter 6. Results and analysis

Figure 6.1c: Joining when gate or its closest preceding finger fails

 {set,{var,37},{call,chord_eqc,update_successors,[104]}},

 {set,{var,38},{call,chord_eqc,stop,[139]}},

 {set,{var,39},{call,chord_eqc,update_successors,[145]}},

 {set,{var,40},{call,chord_eqc,stop,[10]}},

 {set,{var,41},{call,chord_eqc,update_successors,[145]}},

 {set,{var,42},{call,chord_eqc,join,[57,145]}},

 {set,{var,43},{call,chord_eqc,stabilize,[57]}},

 {set,{var,44},{call,chord_eqc,update_successors,[145]}},

 {set,{var,45},{call,chord_eqc,stabilize,[104]}},

...

 Res: {postcondition,false}

Shrinking...............(15 times)

200

0

1

[{init,{state,[{1,

 undefined,

 {undefined,undefined,undefined,undefined},

 {undefined,undefined,undefined,undefined}},

 {200,

 undefined,

 {undefined,undefined,undefined,undefined},

 {undefined,undefined,undefined,undefined}}],

 '1',

 0}},

 {set,{var,1},{call,chord_eqc,start,[71]}},

 {set,{var,9},{call,chord_eqc,join,[10,71]}},

 {set,{var,19},{call,chord_eqc,join,[145,10]}},

 {set,{var,42},{call,chord_eqc,join,[57,145]}}]

Figure 6.1d: Printout of fault: Joining when gate or immediate node fails

27

1

31

4

3

2 2

1- Node 3 requests its immediate successor.

2 - Node 2 suddenly fails

3 - Node 1 still considers node 2 as the closest
preceding finger, so it forwards the request from
node 3 to a non-existing node 2. Node 3 will
never receive any reply to be able to join the
existing network

Chapter 6. Results and analysis

In this scenario, the post condition of “join 57 via 145” is false. The reason is because node 10 as the
closest preceding finger of 57 has stopped before that (at var 40).

The problem is quite easy to trace out but complicated to fix. The root of this problem lies in the way
we choose periodic recovery over reactive recovery. In DHT literature, e.g. [21], it is recommended to
choose the former method, since it is considered to be more efficient under high churn rates. In Erlang
environment, however, we tend to use the latter one thanks for the built-in reactive detection
mechanisms (process linking and monitoring). Back to the problem that we are facing here, we realize
that the use of reactive recovery can fix the problem, while the periodic recovery method cannot (the
gate has to wait until the next stabilization to realize the failure). We, therefore, tentatively propose a
solution to this problem by creating monitored links from a node to all its fingers and successors, so
that the monitored node can actively and quickly be informed about the failures and take actions
accordingly.

By doing so, after node 2 fails (in Figure 6.1c), node 1 will be informed and quickly choose node 4 as
a replacement to forward the request to. Node 3 can then join the network with node 4 as its
immediate successor.

All successors and fingers simultaneously fail

The problem is because each node stores just a limited number of other nodes as its successors in the
successor list and the same limited number of nodes as fingers in the finger table. There is a chance
that all of them simultaneously fail, that leads the node to be isolated completely from the existing
network. Although the chance for this to happen is quite small, it is worth noticing. We show that our
implementation also experiences this problem. We highlight that a simulated network with 2 - 8 nodes
has a better chance to come across this problem since the size of their successor lists and finger tables
are normally 2 or 3.

Figure 6.1e shows such a scenario in a network of 4 active nodes

Figure 6.1e: All successors and fingers simultaneously fail

The fault is detected when we set time-out for the maintenance commands, and a false message is
received instead of an informative message as expected.

We show how QuickCheck can detect this error in Figure 6.1f. It is a simulated network with three
nodes, two of which (nodes 1 and 2) are currently active and running. Suddenly, node 2 stops. That
causes the stabilization at node 1 fails.

28

1

2

4
0 - Node 1 has successor list = {2,3} and
finger table = {2,3}

1 - Nodes 2 and 3 simultaneously fail

2 - Node 1 is completely isolated from the
rest. If node 1 runs a periodic action, e.g.
stabilize, the action will never complete

3

Chapter 6. Results and analysis

[{init,{state,[{1,

 undefined,

 {undefined,undefined,undefined,undefined},

 {undefined,undefined,undefined,undefined}},

 {2,

 undefined,

 {undefined,undefined,undefined,undefined},

 {undefined,undefined,undefined,undefined}},

 {3,

 undefined,

 {undefined,undefined,undefined,undefined},

 {undefined,undefined,undefined,undefined}}],

 '1',

 0}},

 {set,{var,1},{call,chord_eqc,start,[1]}},

 {set,{var,2},{call,chord_eqc,stop,[1]}},

 {set,{var,3},{call,chord_eqc,start,[2]}},

 {set,{var,7},{call,chord_eqc,join,[1,2]}},

 {set,{var,16},{call,chord_eqc,stop,[2]}},

 {set,{var,17},{call,chord_eqc,stabilize,[1]}}]

State: {state,[{1,

 undefined,

 {2,undefined,undefined,undefined},

 {undefined,undefined,undefined,undefined}},

 {2,

 undefined,

 {undefined,undefined,undefined,undefined},

 {undefined,undefined,undefined,undefined}},

 {3,

 undefined,

 {undefined,undefined,undefined,undefined},

 {undefined,undefined,undefined,undefined}}],

 '1',

 0}

 Res: {postcondition,false}

false

Figure 6.1f: Printout of fault: all successors and fingers simultaneously fail

29

Chapter 6. Results and analysis

This fault cannot be fixed at the implementation level, since by design every DHT just maintains a
small list of neighbors. One thing that we could do, however, is to consider that as a specification
assumption. In other words, we set a precondition so that stop must not be called if it causes the
successor list of some node empty. Figure 5.1c has shown such a precondition.

Furthermore, as before, we tentatively propose a solution to this problem by using the reactive
recovery mechanism. Using that, the system can quickly detect and recover failures one by one,
instead of waiting until the next stabilization to realize that all the successors/ fingers have been failed
(is that what we call “simultaneous”?).

Old messages come back

The problem happens when a node sends out a request before leaving, and when it joins back, the
response message returns. And the information delivered by the response message, by that time, does
not match with the current situation of the network any more. That causes a wrong update for the
leave-and-rejoin node, leading it to function unexpectedly. In our testing, we observed the case when
a node stops and then re-joins, its immediate successor is correct but one or two entries in the
successor list are wrong, implying that the response of a previous update_successors command has
updated the list with old entries.

Figure 6.1g shows a failing test case when node 4 stops, restarts and runs update_successors. The post
condition of the update_successors is false.

 Res: {postcondition,false}

false

...

 {10,

 undefined,

 {undefined,undefined,undefined,undefined},

 {undefined,undefined,undefined,undefined}}],

 '1',

 0}},

 {set,{var,7},{call,chord_eqc,start,[4]}},

 {set,{var,19},{call,chord_eqc,join,[8,4]}},

 {set,{var,30},{call,chord_eqc,stop,[4]}},

 {set,{var,35},{call,chord_eqc,join,[4,8]}},

 {set,{var,37},{call,chord_eqc,update_successors,[4]}}]

Figure 6.1g: Printout of fault: old messages come back

30

Chapter 6. Results and analysis

6.2. Modified algorithm
We have shown four serious bugs in our first implementation. Different from other less serious ones,
which we have already fixed in the code at the implementation level, these four bugs require changes
in the original algorithm.

The changes that we introduce in Figure 6.2 are in comparison with the Chord algorithm proposed by
Stoica et al. [1]; especially the changes in join and stabilization are in comparison with those
presented by Bakhshi and Gurov [13].

Basically, we have made the following modifications:

● Separating request from respond messages and including the sender to all the request ones
● Creating monitored links between node and its predecessor (replacing check_predecessor() in

[1])
● Creating monitored links between node and its immediate successor
● Adding update_successors as another stabilization function (not formally defined by [1])
● Modifying join: a new node is informed of not only its immediate successor, but also its

predecessor and the successor list of its new immediate successor

All these modifications are aimed to

● Make the communication between a source and a destination clean and unambiguous
● Quickly detect and recover failures of closely neighboring nodes
● “Divide and conquer” simultaneous failures
● With the same number of messages, update a new node as much information as possible and

inform its existence to as many other nodes as possible

Our modified Chord algorithm is presented in the syntax of the Erlang programming language. In
Figure 6.2, Size is used to denote the size of the successor list and the finger table. It corresponds to an
identifier space of 2Size. Starts implies a list of numbers calculating as node id + 2 k-1, where k is in
between 1 and Size. Start is also used to denote the index of an entry in a tuple. X є (A,B) denotes
that X is on an arc (A,B). We use “+” to concatenate two tuples, and “-” to subtract one entry from a
tuple.

31

Chapter 6. Results and analysis

start(N) ->
 Predecessor = N,
 element(1,Successors) = N,
 element(1,Fingers) = N,
 process_flag(trap_exit,true),
 loop(N,Predecessor,Successors,Fingers);

join(N,Gate) ->
 Gate ! {request_neighbors,N},
 receive
 {respond_neighbors,N,P,Ss} ->
 Predecessor = P;
 Successors = Ss,

Successor = element(1,Successors),
monitor(process,Predecessor),
monitor(process,Successor),
process_flag(trap_exit,true),

 loop(N,Predecessor,Successors,Fingers)
 end.

closest_preceding_finger(Fingers,Id,N) ->
 Finger = element(N,Fingers),
 case finger є (N,Id] of
 true ->

Finger;
 false ->

closest_preceding_finger(Fingers,Id,N-1)
 end.

loop(N,Predecessor,Successors,Fingers) ->
 Successor = element(1,Successors),
 receive

 {request_neighbors,N'} ->
case N' є (N,Successor] ->
 true ->
 N' ! {respond_neighbors,N',N,Successors);
 false ->
 Finger = closest_preceding_finger

 (Fingers,N',Size),
 Finger ! {request_neighbors,N'}
end,
loop(N,Predecessor,Successors,Fingers);

 {request_predecessor,N'} ->
N' ! {respond_predecessor,Predecessor},
loop(N,Predecessor,Successors,Fingers);

 {respond_predecessor,N'} ->
case N' є (N,Successor) of
 true ->
 New_Successor = N',
 monitor(process,New_Successor),
 New_Successor ! {notify_predecessor,N},
 New_Successors =
 setelement(1,Successors,New_Successor),

 loop(N,Predecessor,New_Successors,Fingers);
 false ->

 Successor ! {notify_predecessor,N},
 loop(N,Predecessor,Successors,Fingers)

 end;

 {notify_predecessor,N'} ->
 case Predecessor == N or N' є(Predecessor,N) of

true ->
 New_Predecessor = N',

 monitor(process,New_Predecessor),
 loop(N,New_Predecessor,Successors,Fingers);
false ->
 loop(N,Predecessor,Successors,Fingers)
end;

 {request_successors,N'} ->
 N' ! {respond_successors,N,Successors},
 loop(N,Predecessor,Successors,Fingers);

 {respond_successors,N,Next_Successors} ->
 New_Successors = Successor +
 Next_Successors - element(last,Next_Successor),
 loop(Predecessor,New_Successors,Fingers);

 {request_finger,N',Start} ->
 case Start є (Id,Successor) of

 true ->
 N' ! {respond_finger,Start,Successor};

 false ->
 Finger = closest_preceding_finger

(Fingers,Start,Size),
 Finger ! {request_finger,N',Start}

 end,
 loop(N,Predecessor,Successors,Fingers);

 {respond_finger,Start,Successor} ->
 New_Fingers = setelement(Start,Fingers,Successor),
 loop(N,Predecessor,Successors,New_Fingers);

 {'DOWN',_,Successor,_} ->
 New_Successor = element(2,Successors),
 monitor(process,New_Successor),
 loop(N,Predecessor,Successors,Fingers);

 {'DOWN',_,Predecessor,_} ->
 New_Predecessor = N,
 loop(N,Predecessor,Successors,Fingers);

 after Time ->
 Successor ! {request_predecessor,N},
 Successor ! {request_successors,N},
 [closest_preceding_finger(Fingers,Start,Size) !

{request_finger,N} || Start <- Starts],
 loop(N,Predecessor,Successors,Fingers)

 end.

Figure 6.2: Modified Chord algorithm

32

Chapter 7. Discussion

In this chapter, we analyze the result in a broader context. We discuss about the applicability of the
proposed testing method to testing other DHTs, such as CAN and Tapestry. We then compare it with
the tracing method. A little graph-theoretic analysis of our model is next presented.

7.1. CAN, Tapestry and other DHTs
The finite state machine that we propose to model the Chord protocol could be used to model other
DHTs. By decomposing a DHT into user registration and DHT logic modules, we could model each
of them in the same way that we model the Chord protocol.

Testing the user registration is to ensure that all the arrivals and departures perform correctly. A
registration is called a success if the user is inserted in the correct position. In Chord, it means correct
immediate successor. In CAN, it implies correct zone. While in Tapestry, it includes correct branch
and leaves.

Figure 7.1a shows a model of CAN registration.

Figure 7.1a: Model of 2-d CAN registration

The state, in this case, is defined as a collection of many individual nodes, each of which stores chunk
(zone) of the entire space. When a new node arrives, an existing zone is split into two halves, one of
which is assigned to the new node. The split is done by following an order of dimensions, e.g.
horizontal – vertical – horizontal and so on. Using our testing method, one can write a postcondition
to check that zones are split correctly when a new node arrives. Similarly, we can check that the zones
are correctly merged when a node departs. This finite state machine could be extended to cover the
CAN recovery algorithm.

33

0 0 1

110Arrive (2) Arrive (3)

0

11

10
Depart(2)

Arrive (4)

0

10
Depart(3) Depart(4)

111

Chapter 7. Discussion

Similarly, Tapestry registration could be modeled with a finite state machine as shown in Figure 7.1b.

Figure 7.1b: Model of Tapestry registration

In this model, a continuous line denotes a relationship between a node and one of its level 1
neighbors; and a dotted line denotes a relationship between a node and one of its level 2 neighbors. A
node is considered as a level i neighbor of another one if their ith digits match.

By using this finite state machine, we can check whether an insert command leads to correct
relationships between a new node and its level 1 and 2 neighbors. Or we can check the post condition
of the delete command to verify that the total number of active nodes is reduced by one. A finite state
machine like this could be extended to include the internal logic of Tapestry, helping troubleshoot
sophisticated problems.

7.2. Tracing
The finite state machine that we have proposed is in the top system level. Our testing method,
therefore, is based on the observation about the changes in nodes and their relationships.

There is another way that we can test the system by observing the sequences of communication
messages. With this approach, we trace all the messages sent and received when the system is
running. We also trace all the events when nodes change their own states (e.g. starting, joining, joined,
etc.). All the trace data will then be analyzed to check whether these messages and events are sent,
received and happened in a correct (valid) sequence.

Figure 7.2 shows a valid sequence of messages and events of joining.

34

000 001

010

100

110

000 001

010

100

110

000 001

010

100

110

000 001

010

100

110

insert (4)

insert(6)

insert(6)

insert (4)

delete (4)

delete (4)

de
le

te
 (6

)

de
le

te
 (6

)

Chapter 7. Discussion

Figure 7.2: Messages and events of joining

When we receive a message “Reply Find Successor from C to X”, for example, we check in the trace
record, whether there has already been a message “Forward Find Successor from some node to C”. If
not, it means there was some error in this joining activity.

This testing technique seems to be efficient to test continually running and asynchronous message
passing systems, since it lets the system run freely and analyses the events in a backward direction.

The disadvantage of this approach, however, is that it views a message and an event in a relation with
another one, not with the whole network. So, as shown in the previous chapter, when a ring is
separated into two and the sequence of messages is still valid, this testing method does not consider
that as a fault. This “relative” problem also occurs if we test a peer-to-peer system based on a single-
peer model.

7.3. Graph theory for structured peer-to-peer systems
The underlying philosophy of our model is to view an infinite state machine as a collection of finite
state machines, and view a multi-dimensional model as several two-dimensional ones. This
philosophy still applies when we study graphs of structured peer-to-peer systems.

We understand that any DHT system could be drawn as a k-node-connected graph. We suggest
drawing it as k one-node-connected graphs. A graph theory for structured peer-to-peer systems,
therefore, could be a theory of combined graphs. In the algebra terminology, we need addition (or
multiplication) operations for graphs.

Some initial questions could be

(1) What is the average path length of a graph having by combining a star-like graph and a ring-
like graph? (knowing that a star has the average path length of 1 and that of a N-node ring is
N/2)

(2) How is a graph modeled as (a) set(s)?

(3) Which graph shape provides a uniform distribution of congestion/ node degree?

Such studies would be the new directions for future research.

Figure 7.3 shows how a mesh-like graph of Chord is drawn as four one-node-connected ones.

35

X
Joining

A
Gate

Join

C

Reply Find Successor

Successor
found

Forward Find Successor Forward Find Successor

B

Chapter 7. Discussion

Figure 7.3: Chord graphs: (a) node and the 1st successor, (b) node and predecessor,
(c) node and the 2nd successor, (d) node and the 3rd successor

36

a b

c d3(4)-node-connected
Chord graph

Chapter 8. Conclusion

This thesis has introduced a novel method for testing implementations of DHTs. As a contribution, we
have proposed abstract state machines as the ways to model DHT-based peer-to-peer systems, and use
them as the correctness properties to test implementations of DHTs. We have also proposed to
separate user registration and location services from DHT logic, and have shown that the separation
make it easier to troubleshoot problems.

As a case study, we have tested an implementation of Chord protocol, one of the well-known DHTs,
using QuickCheck, a property-based tool for random testing. Using this testing method, we have
detected several serious faults in the current implementation. We, furthermore, have demonstrated
how the faults have been found and troubleshot.

We suggested some changes in the original Chord algorithm. Significantly, we have introduced a
modified version of Chord algorithm, with a combination of reactive and periodic recovery
mechanisms. We argue that the use of reactive recovery could reduce the faults of simultaneous
failures. A new version of Chord implementation based on the modified algorithm has been produced
and included with this document as an appendix.

As future works, we would like to see the application of this method to testing implementations of
other DHTs. A study about its efficiency in comparison with other methods is also a need. Specially,
we are looking forward to a graph-theoretic analysis of the model in particular and of structured peer-
to-peer systems in general.

37

38

References

Normative references
[1] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek, F. Dabek, and H. Balakrishnan,
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications. Proceedings of the 2001
conference on applications, technologies, architectures, and protocols for computer communications,
pp 149-160, ACM Press, 2001.

[2] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Schenker, A scalable content addressable
network. Proceedings of the 2001 conference on applications, technologies, architectures, and
protocols for computer communications, ACM Press, 2001, pp. 161-172.

[3] A. Rowstron and P. Druschel, Pastry: Scalable, distributed object location and routing for large-
scale peer-to-peer systems. Lecture Notes in Computer Science, 2218: 329-250, 2001.

[4] B. Zhao, J. Kubiatowicz and A. Joseph, Tapestry: An infrastructure for fault-tolerant wide-area
location and routing, UC Berkeley, Tech. Rep. UCB/CSD-01-1141, April 2001.

[5] D. Malkhi, M. Naor, and D. Ratajczak, Viceroy: A Scalable Dynamic Emulation of the Butterfly.
21st ACM Symposium on Principles of Distributed Computing, California, 2002.

[6] P. Maymounkov and D. Mazieres, Kademlia: A peer-to-peer Information Systems based on the
XOR Metric. 1st International workshop on Peer-to-Peer Systems (IPTPS '02), 2002.

[7] T. Arts and J. Hughes, QuickCheck for Erlang. Proceedings of the 9th Erlang User Conference,
Stockholm, 2003.

[8] T. Arts, K. Claessen and H. Svensson, Semi-formal development of a fault-tolerant leader election
protocol in Erlang, Lecture Notes in Computer Science, 3395:140-154, January 2005.

[9] T. Arts and H. Svensson, A new leader election implementation, Proceedings of the 2005 ACM
SIGPLAN workshop on Erlang, ACM Press 2005.

[10] T. Arts, K. Claessen, J. Hughes and H. Svensson, Testing Implementations of Formally Verified
Algorithms, In Proceedings of the 5th Conference on Software Engineering Research and Practice in
Sweden, 2005.

[11] T. Arts, J. Hughes, U. Wiger and J. Johansson, Testing telecoms software with Quviq
QuickCheck. Proceedings of the 2006 ACM SIGPLAN workshop on Erlang.

[12] K. Claessen and J. Hughes, QuickCheck: a lightweight tool for random testing of Haskell
programs, ICFP, pp 268-279, 2000.

[13] R. Bakhshi and D. Gurov, Verification of Peer-to-Peer Algorithms: A Case Study, School of
Information and Communication Technology, Royal Institute of Technology, Kista, Sweden

[14] J. Armstrong, R. Virding, C. Wikstrom and M. Williams, Concurrent Programming in Erlang,
Prentice Hall, 2nd edition, 1996

[15] F. Araujo and L. Rodrigues, Survey on DHTs, University of Lisbon, 2006.

39

References

Informative references
[16] J. Armstrong, Making reliable distributed systems in the presence of software errors, PhD Thesis.
Swedish Institute of Computer Science, 2003.

[17] K. Singh and H. Schulzrinne, Peer-to-peer Internet Telephony using SIP, Proceedings of the 2005
Network and Operating Systems Support for Digital Audio and Video Workshop (NOSSDAV) '05 ,
June 2005

[18] G. Tretmans and A. Belinfante, Automatic Testing with Formal Methods. Technical Report TR-
CTIT-99-17 Center for Telematics and Information Technology, University of Twente, Enschede.
ISSN 1381-3625.

[19] G. Fink and M. Bishop, Property-Based Testing: A New Approach to Testing for Assurance,
ACM SIGSOFT Software Engineering Notes 22(4) pp. 74–80, July 1997.

[20] J. Li, J. Stribling, T. Gil, R. Morris and F. Kaashoek, Comparing the performance of distributed
hash tables under churn, Proceedings of the 3rd International Workshop on Peer-to-Peer Systems
(IPTPS04), San Diego, CA, February 2004.

[21] S. Rhea, D. Geels, T. Roscoe and J. Kubiatowicz, Handling churn in a DHT, University of
California at Berkeley, Tech. Rep., December 2003.

[22] C.G. Plaxton, R. Rajaraman and A.W. Richa, Accessing nearby copies of replicated objects in a
distributed environment, ACM Symposium on Parallel Algorithms and Architectures, 1997, pp. 311-
320

[23] L. Garces-Erice, K. Ross, E. Biersack, R. Felber and G. Urvoy-Keller, Topology-centric lookup
service, COST264/ACM Fifth International Workshop on Networked Group Communications (NGC),
Munich, Germany, 2003

[24] D. Liben-Nowell, H. Balakrishnan and D. Karger, Analysis of the evolution of peer-to-peer
systems, PODC: Proceedings of the 21st annual symposium on Principles of distributed computing.
NY, USA: ACM Press 2002, pp 233-242.

[25] P. Duchon, N. Hanusse, E. Lebhar and N. Schabanel, Could any graph be turned into a small-
world?, Special issue of the international journal Theoretical Computer Science on Complex
Networks, 2005.

[26] S. Saroiu, P. Gummadi and S. Gibble, A measurement study of peer-to-peer file sharing systems,
Scalability and Traffic Control in IP Networks II, ser. Proceedings of SPIE, vol. 4868, July 2002

[27] I. Gupta, K. Birman, P. Linga, A. Demers and R. van Renesse, Kelips: Building an Efficient and
Stable P2P DHT Through Increased Memory and Background Overhead, Proceedings of the 2nd

International Workshop on Peer-to-Peer Systems (IPTPS'03).

[28] C. Edwards, A. Harwood and E. Tanin, Network virtualisation for transparent testing and
experimentation of distributed applications, IEEE International Conference on Networks, volume 2,
pages 1089-1094, November 2005.
[29] L. Navslavsky, D. Richardson and H. Ziv, Scenario based and State Machine based Testing: An
Evaluation of Automated Approaches, ISR Technical Report #UCI-ISR-06-13, University of
California

[30] D. Loguinov, J. Casas and X. Wang, Graph-theoretic analysis of structured peer-to-peer systems:
routing distances and fault resilience, IEEE/ACM Transactions on Networking, pp 1107-1120, 2005.

40

References

[31] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker and I. Stoica, The impact of
DHT routing geometry on resilience and proximity, in SIGCOMM '03: Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols for computer communications,
New York, USA, ACM Press, 2003, pp.381 -394.

[32] U. Wieder, U. and M. Naor, A simple fault tolerance distributed hash table, in Proceedings of
IPTPS, February 2003.

[33] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, R. Panighahy, Consistent Hashing and
Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web, In
Proceedings of the 29th Annual ACM Symposium on Theory of Computing (El Paso, TX, May 1997),
pp. 654-663.

[34] Erlang http://www.erlang.org

[35] Eclipse http://www.eclipse.org

[36] Erlide: Eclipse plug in for Erlang http://erlide.sourceforge.net

[37] A P2P SIP implementation http://p2psipphone.sourceforge.net

41

http://www.erlang.org/
http://p2psipphone.sourceforge.net/
http://p2psipphone.sourceforge.net/
http://p2psipphone.sourceforge.net/
http://erlide.sourceforge.net/
http://erlide.sourceforge.net/
http://erlide.sourceforge.net/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.erlang.org/
http://www.erlang.org/

Appendices

Appendices

Appendix A: Chord specification

%---
% File : chord_eqc.erl
% Description : A QuickCheck specification of Chord
% Last modified : 30 March, 2007
%---

-module(chord_eqc).

%---
% Include files
%---

-include("eqc.hrl").
-include("eqc_statem.hrl").

%---
% Definitions
%---

-define(space_size,4).

%---
% Records
%---

-record(state,{peers = [],key,time}).

%---
% External exports
%---

-compile(export_all).

-export([command/1, next_state/3, precondition/2, postcondition/3,
 prop_chord/0, initial_state/0,initial_state/3,
 successor/2,predecessor/2,successors/2,finger/3,fingers/2
]).

%---
% Behaviour
%---

-behavior(eqc_statem).

%==
% QuickCheck functions
%==

%---
% Function: prop_chord/1
% Descrip.: Checking the correctness of registration service, lookup service and Chord logic
% Returns : bool()
%---

prop_chord() ->

42

Appendices

 ?FORALL(NrPeers,choose(1,9),
 ?FORALL(Time,choose(1,100),
 ?FORALL(Key,choose(1,9),

 ?FORALL(Cmds,commands(?MODULE,initial_state(NrPeers,Key,Time)),
 begin
 {_,S,R} = run_commands(?MODULE,Cmds),
 [stop(P,0) || P <- get_active(S#state.peers), not all_inactive(S#state.peers)],
 ?WHENFAIL(io:format("State: ~p\n Res: ~p\n",[S,R]),
 R == ok
)
 end)))).

initial_state() ->
 #state{peers = []}.

initial_state(N,Key,Time) ->
 lists:foldl(fun(X,S) ->
 ID = list_to_atom(integer_to_list(X)),
 Predecessor = undefined,
 Successors = erlang:make_tuple(?space_size,undefined),
 Fingers = erlang:make_tuple(?space_size,undefined),
 S#state{peers = S#state.peers ++ [{ID,Predecessor,Successors,Fingers}],

key = list_to_atom(integer_to_list(Key)), time = Time}
 end,#state{},lists:seq(1,N)).

command(S) ->
 frequency(

[{1,stop}] ++
 [{3,{call,?MODULE,start,[oneof(get_inactive(S#state.peers)),S#state.time]}}

|| all_inactive(S#state.peers)] ++
 [{5,{call,?MODULE,join,[oneof(get_inactive(S#state.peers)),oneof(get_active(S#state.peers)),

S#state.time]}} || active_and_inactive(S#state.peers)] ++
[{2,{call,?MODULE,stop,[oneof(get_open(S#state.peers)),S#state.time]}}

|| not all_inactive(S#state.peers)] ++
[{20,{call,?MODULE,stabilize,[oneof(get_active(S#state.peers)),S#state.time]}}

|| not_standalone(S#state.peers)] ++
[{20,{call,?MODULE,update_successors,[oneof(get_active(S#state.peers)),S#state.time]}}

|| not_standalone(S#state.peers)] ++
[{5,{call,?MODULE,update_fingers,[oneof(get_active(S#state.peers)),S#state.time]}}

|| not_standalone(S#state.peers)] ++
[{10,{call,?MODULE,lookup,[oneof(get_active(S#state.peers)),S#state.key,S#state.time]}}

|| not_standalone(S#state.peers)]
).

%---
% Command : start/2
% Description : Checking a node starts successfully
% Precondition : The node must be inactive
% Postcondition : The function must return true
%---

start(Peer,Time) ->
 wait(Time),
 chord:start(Peer).

%---
% Command : join/3
% Description : Checking a node joins successfully
% Precondition : The node must be inactive, and the node must be active
% Postcondition : The node must be registered in a correct position: correct predecessor and successor
%---

43

Appendices

join(Peer,Gate,Time) ->
 wait(Time),
 chord:start(Peer,Gate).

%---
% Command : stop/2
% Description : Checking a node stops successfully
% Precondition : The node must be active
% Postcondition : The function must return true
%---

stop(Peer,Time) ->
 wait(Time),
 chord:stop(Peer).

%---
% Command : stabilize/2
% Description : Checking a node and its neighbors are stablized successfully
% Precondition : The node must be active
% Postcondition : The predecessor of its successor must be the node itself
%---

stabilize(Peer,Time) ->
 wait(Time),
 chord:stabilize(Peer).

%---
% Command : update_successors/2
% Description : Checking a node refreshes its successor list successfully
% Precondition : The node must be active
% Postcondition : The first entries in the successor list must be correct
%---

update_successors(Peer,Time) ->
 wait(Time),
 chord:update_successors(Peer).

%---
% Command : lookup/3
% Description : Checking the lookup service
% Precondition : The node must be active
% Postcondition : Keys are found in the correct node
%---

update_fingers(Peer,Time) ->
 wait(Time),
 chord:update_fingers(Peer).

lookup(Peer,Key,Time) ->
 wait(Time),
 chord:lookup(Peer,Key).

precondition(S,{call,_,start,_}) ->
 all_inactive(S#state.peers);

precondition(S,{call,_,join,[P,G,_]}) ->
 lists:member(P,get_inactive(S#state.peers)) and lists:member(G,get_active(S#state.peers));

precondition(S,{call,_,stop,[P,_]}) ->
 lists:member(P,get_active(S#state.peers));

precondition(S,{call,_,stabilize,[P,_]}) ->

44

Appendices

 lists:member(P,get_active(S#state.peers));

precondition(S,{call,_,update_successors,[P,_]}) ->
 lists:member(P,get_active(S#state.peers));

precondition(S,{call,_,update_fingers,[P,_]}) ->
 lists:member(P,get_active(S#state.peers));

precondition(S,{call,_,lookup,[P,_,_]}) ->
 lists:member(P,get_active(S#state.peers)).

postcondition(_,{call,_,start,_},R) ->
 R == true;

postcondition(S,{call,_,join,[P,_,_]},R) ->
 case R of
 {ok,P,Predecessor,Successor} ->

Predecessor == predecessor(lists:sort(get_active(S#state.peers)++[P]),P) and
 (Successor == successor(lists:sort(get_active(S#state.peers)++[P]),P));

 _ ->
 false
 end;

postcondition(_,{call,_,stop,_},R) ->
 R == true;

postcondition(S,{call,_,stabilize,[_,_]},R) ->
 case R of
 {ID,Predecessor} ->
 Predecessor == predecessor(lists:sort(get_active(S#state.peers)),ID);
 _ ->
 false
 end;

postcondition(S,{call,_,update_successors,[P,_]},R) ->
 element(1,R) == element(1,successors(lists:sort(get_active(S#state.peers)),P));

postcondition(S,{call,_,update_fingers,_},R) ->
 case R of
 {_,Start,Finger} ->
 Finger == finger(get_active(S#state.peers),Start);
 false ->
 true;
 _ ->
 false
 end;

postcondition(S,{call,_,lookup,[_,K,_]},R) ->
 case R of
 {K,Peer} ->
 Peer == finger(get_active(S#state.peers),K);
 _ ->
 false
 end.

next_state(S,_,{call,_,start,[Id,_]}) ->
 {value,{Id,Predecessor,Successors,Fingers}} = lists:keysearch(Id,1,S#state.peers),
 NewPeers = lists:keyreplace(Id,1,S#state.peers,{Id,Predecessor,setelement(1,Successors,Id),Fingers}),
 S#state{peers = NewPeers};

next_state(S,_,{call,_,join,[Id,_,_]}) ->
 {value,{Id,Predecessor,Successors,Fingers}} = lists:keysearch(Id,1,S#state.peers),

45

Appendices

 NewSuccessor = successor(get_active(S#state.peers),Id),
 NewPeers = lists:keyreplace(Id,1,S#state.peers,{Id,Predecessor,

setelement(1,Successors,NewSuccessor),Fingers}),
 S#state{peers = NewPeers};

next_state(S,_,{call,_,stop,[Id,_]}) ->
 {value,{Id,Predecessor,Successors,Fingers}} = lists:keysearch(Id,1,S#state.peers),
 NewPeers = lists:keyreplace(Id,1,S#state.peers,{Id,Predecessor,

setelement(1,Successors,undefined),setelement(1,Fingers,undefined)}),
 S#state{peers = NewPeers};

next_state(S,_,{call,_,stabilize,[Id,_]}) ->
 {value,{Id,_,Successors,Fingers}} = lists:keysearch(Id,1,S#state.peers),
 NewPredecessor = predecessor(get_active(S#state.peers),Id),
 NewPeers = lists:keyreplace(Id,1,S#state.peers,{Id,NewPredecessor,Successors,Fingers}),
 S#state{peers = NewPeers};

next_state(S,_,{call,_,update_successors,[Id,_]}) ->
 {value,{Id,Predecessor,_,Fingers}} = lists:keysearch(Id,1,S#state.peers),
 NewSuccessors = successors(get_active(S#state.peers),Id),
 NewPeers = lists:keyreplace(Id,1,S#state.peers,{Id,Predecessor,NewSuccessors,Fingers}),
 S#state{peers = NewPeers};

next_state(S,_,{call,_,update_fingers,[Id,_]}) ->
 {value,{Id,Predecessor,Successors,_}} = lists:keysearch(Id,1,S#state.peers),
 NewFingers = fingers(get_active(S#state.peers),Id),
 NewPeers = lists:keyreplace(Id,1,S#state.peers,{Id,Predecessor,Successors,NewFingers}),
 S#state{peers = NewPeers};

next_state(S,_,{call,_,lookup,_}) ->
 S.

%==
% Internal functions
%==

get_inactive(List) ->
 [Id || {Id,_,Successors,_} <- List, element(1,Successors) == undefined].

get_active(List) ->
 [Id || {Id,_,Successors,_} <- List, element(1,Successors) /= undefined].

all_inactive(List) ->
 lists:all(fun({_,_,Successors,_}) -> element(1,Successors) == undefined end, List).

not_standalone(List) ->
 length(get_active(List)) > 1.

active_and_inactive(List) ->
 (get_active(List) /= []) and (get_inactive(List) /= []).

wait(T) -> receive after T -> ok end.

successor(L,P) ->
 case (P == lists:last(L)) or (length(L) == 1) of
 true ->
 hd(L);
 false ->
 successor(L,P,length(L))
 end.

successor(L,_,1) ->

46

Appendices

 lists:nth(2,L);

successor(L,P,N) ->
 case lists:nth(N-1,L) == P of
 true ->
 lists:nth(N,L);
 false ->
 successor(L,P,N-1)
 end.

predecessor(L,P) ->
 case (P == hd(L)) or (length(L) == 1) of
 true ->
 lists:last(L);
 false ->
 predecessor(L,P,length(L))
 end.

predecessor(L,_,2) ->
 lists:nth(1,L);

predecessor(L,P,N) ->
 case lists:nth(N,L) == P of
 true ->
 lists:nth(N-1,L);
 false ->
 predecessor(L,P,N-1)
 end.

successors(L,P) ->
 list_to_tuple(successors(L,P,?space_size)).

successors(L,P,1) ->
 [successor(L,P)];

successors(L,P,N) ->
 [successor(L,P)] ++ successors(L,successor(L,P),N-1).

fingers(L,P) ->
 list_to_tuple(fingers(L,P,?space_size)).

fingers(_,_,0) ->
 [];

fingers(L,P,N) ->
 Space = round(math:pow(2,?space_size)),
 Start = list_to_atom(integer_to_list((list_to_integer(atom_to_list(P)) +

round(math:pow(2,N-1))) rem Space)),
 Finger = finger(L,Start),
 fingers(L,P,N-1) ++ [Finger].

finger(L,P) ->
 case P > lists:last(L) of
 true ->
 hd(L);
 false ->
 finger(L,P,length(L))
 end.

finger(L,_,1) ->
 hd(L);

47

Appendices

finger(L,P,N) ->
 case (lists:nth(N-1,L) < P) and (P =< lists:nth(N,L)) of
 true ->
 lists:nth(N,L);
 false ->
 finger(L,P,N-1)
 end.

48

Appendices

Appendix B: New Chord implementation

%---
% File : chord.erl
% Description : Chord implementation
% Last modified : 30 March, 2007
%---

-module(chord).

%---
% External exports
%---

-export([start/1,start/2,init/1,init/3,stop/1,
 stabilize/1,update_successors/1,update_fingers/1,lookup/2,
 client/1,client/2,exit/1]).

-import(erlang,[monitor/2,demonitor/1]).

%---
% Definitions
%---

-define(space_size,4).

%---
% Records
%---

-record(peer,{id,predecessor,successors = erlang:make_tuple(?space_size,undefined),
fingers = erlang:make_tuple(?space_size,undefined),data = []}).

%==
% External functions
%==

client(ID) ->
 start(ID),
 timer:apply_after(10,?MODULE,stabilize,[ID]),
 timer:apply_after(10,?MODULE,update_successors,[ID]),
 timer:apply_after(10,?MODULE,update_fingers,[ID]).

client(ID,Gate) ->
 start(ID,Gate),
 timer:apply_after(10,?MODULE,stabilize,[ID]),
 timer:apply_after(10,?MODULE,update_successors,[ID]),
 timer:apply_after(10,?MODULE,update_fingers,[ID]).

exit(ID) ->
 stop(ID).

%---
% Function: start/1
% Descrip.: Start and register a Chord process
% Returns : bool()
%---

start(ID) ->
 register(ID,spawn(?MODULE,init,[ID])).

49

Appendices

%---
% Function: start/2
% Descrip.: Start and register a Chord process via a known process
% Returns : bool()
%---

start(ID,Gate) ->
 register(ID,spawn(?MODULE,init,[ID,Gate,self()])),
 receive
 {started,Predecessor,Successor} ->
 {ok,ID,Predecessor,Successor}
 end.

stop(Name) ->
 Pid = whereis(Name),
 exit(Pid,kill),
 unregister(Name).

init(ID) ->
 State = init_state(ID),
 process_flag(trap_exit,true),
 loop(State).

init(ID,Gate,ParentID) ->
 State = init_state(ID),
 process_flag(trap_exit,true),
 join(State,Gate,ParentID).

join(State,Gate,ParentID) ->
 ID = State#peer.id,
 Gate ! {request_neighbors,ID},
 receive
 {respond_neighbors,ID,Predecessor,Successor} ->
 monitor(process,Successor),
 monitor(process,Predecessor),
 ParentID ! {started,Predecessor,Successor},
 NewState = State#peer{predecessor = Predecessor,

successors = setelement(1,State#peer.successors,Successor),
fingers = setelement(1,State#peer.fingers,Successor)},

 loop(NewState)
 end.

%---
% Function: stabilize/1
% Descrip.: Fixing successor/predecessor pointers
% Returns : tuple()
%---

stabilize(Peer) ->
 Peer ! {stabilize,self()},
 receive
 {ID,Predecessor} ->
 {ID,Predecessor}
 end.

%---
% Function: update_successors/1
% Descrip.: Refresh successor list
% Returns : atom()
%---

update_successors(Peer) ->

50

Appendices

 Peer ! {update_successors,self()},
 receive
 Successors ->
 Successors
 end.

%---
% Function: update_fingers/1
% Descrip.: Refresh finger table
% Returns : false or tuple()
%---

update_fingers(Peer) ->
 Peer ! {update_fingers,self()},
 receive
 {ID,Start,Finger} ->
 {ID,Start,Finger}
 after 10 ->
 false
 end.

%---
% Function: lookup/2
% Descrip.: Find the node responsible for Key
% Returns : tuple(): {Key,Node}
%---

lookup(Gate,Key) ->
 Gate ! {lookup,Key,self()},
 receive
 {lookup,Peer} ->
 {Key,Peer}
 end.

loop(State) ->

 ID = State#peer.id,
 Predecessor = State#peer.predecessor,
 Successors = State#peer.successors,
 Successor = element(1,Successors),

 receive

 {request_neighbors,AnotherPeer} ->
 case ID == Successor of
 true ->
 NewSuccessor = AnotherPeer,
 monitor(process,NewSuccessor),

 AnotherPeer ! {respond_neighbors,AnotherPeer,ID,ID},
 NewState = State#peer{successors = setelement(1,State#peer.successors,NewSuccessor),

fingers = setelement(1,State#peer.fingers,NewSuccessor)},
 loop(NewState);

 false ->
 case is_element3(AnotherPeer,ID,Successor) of

 true ->
 NewSuccessor = AnotherPeer,
 monitor(process,NewSuccessor),
 AnotherPeer ! {respond_neighbors,AnotherPeer,ID,Successor},
 NewState = State#peer{successors = setelement(1,State#peer.successors,NewSuccessor),

fingers = setelement(1,State#peer.fingers,NewSuccessor)},
 loop(NewState);
 false ->

51

Appendices

 Successor ! {request_neighbors,AnotherPeer},
 loop(State)
 end

end;

 {stabilize,ParentID} ->
 Successor ! {request_predecessor,ID,ParentID},
 loop(State);

 {request_predecessor,AnotherPeer,ParentID} ->
 AnotherPeer ! {respond_predecessor,Predecessor,ParentID},
 loop(State);

 {respond_predecessor,AnotherPeer,ParentID} ->
 case is_element(AnotherPeer,ID,Successor) and (whereis(AnotherPeer) /= undefined) of
 true ->
 NewSuccessor = AnotherPeer,
 monitor(process,NewSuccessor),
 NewState = State#peer{successors = setelement(1,State#peer.successors,NewSuccessor),

fingers = setelement(1,State#peer.fingers,NewSuccessor)},
 AnotherPeer ! {notify_predecessor,ID,ParentID},
 loop(NewState);
 false ->
 Successor ! {notify_predecessor,ID,ParentID},

 loop(State)
 end;

 {notify_predecessor,AnotherPeer,ParentID} ->
 case (Predecessor == ID) or is_element(AnotherPeer,Predecessor,ID) of
 true ->
 NewPredecessor = AnotherPeer,
 ParentID ! {ID, NewPredecessor},
 monitor(process,NewPredecessor),
 case Successor == ID of
 true ->
 NewSuccessor = AnotherPeer,
 monitor(process,NewSuccessor),
 AnotherPeer ! {notify_predecessor,ID,ParentID},
 NewState = State#peer{predecessor = NewPredecessor,

successors = setelement(1,State#peer.successors,NewSuccessor),
fingers = setelement(1,State#peer.fingers,NewSuccessor)},

 loop(NewState);
 false ->

 NewState = State#peer{predecessor = NewPredecessor},
 loop(NewState)
 end;
 false ->
 ParentID ! {ID, Predecessor},
 loop(State)
 end;

 {update_successors,ParentID} ->
 case Successor == ID of
 true ->
 ParentID ! Successors,
 loop(State);
 false ->
 Successor ! {request_successors,ID},
 receive

 {respond_successors,NextSuccessors} ->
 NewSuccessors = list_to_tuple([element(1,Successors)] ++
 tuple_to_list(NextSuccessors) -- [element(?space_size,NextSuccessors)]),

52

Appendices

 ParentID ! NewSuccessors,
 NewState = State#peer{successors = NewSuccessors},
 loop(NewState)
 end
 end;

 {request_successors,AnotherPeer} ->

AnotherPeer ! {respond_successors,State#peer.successors},
loop(State);

 {update_fingers,ParentID} ->
 Space = round(math:pow(2,?space_size)),
 Start = (list_to_integer(atom_to_list(State#peer.id)) +

round(math:pow(2,random:uniform(?space_size) - 1))) rem Space,
 {_,Finger} = closest_preceding_finger(State,Start),

cast(Finger,{request_finger,Start,ID,ParentID}),
loop(State);

 {request_finger,Start,AnotherPeer,ParentID} ->
 case Start == ID of
 true ->
 cast(AnotherPeer,{respond_finger,Start,ID,ParentID}),
 loop(State);
 false ->
 case is_element2(Start,ID,Successor) of
 true ->
 cast(AnotherPeer,{respond_finger,Start,Successor,ParentID}),
 loop(State);
 false ->
 {_,Finger} = closest_preceding_finger(State,Start),

 cast(Finger,{request_finger,Start,AnotherPeer,ParentID}),
 loop(State)
 end
 end;

 {respond_finger,Start,Finger,ParentID} ->
 Space = round(math:pow(2,?space_size)),
 Index = 1 + round(math:log((Start + Space - ID) rem Space)/math:log(2)),
 ParentID ! {ID,Start,Finger},
 NewState = State#peer{fingers = setelement(Index,State#peer.fingers,Finger)},
 loop(NewState);

 {'DOWN',_,process,{Successor,_},_} ->
 NewSuccessor = next_successor(ID,State#peer.successors),
 monitor(process,Successor),
 NewState = State#peer{successors = setelement(1,State#peer.successors,NewSuccessor)},
 monitor(process,NewSuccessor),
 loop(NewState);

 {'DOWN',_,process,{Predecessor,_},_} ->
 NewState = State#peer{predecessor = ID},
 loop(NewState);

 {'DOWN',_,process,{_,_},_} ->
 loop(State);

 {lookup,Key,ParentID} ->
 case ID == Successor of
 true ->
 ParentID ! {lookup,ID},
 loop(State);
 false ->

53

Appendices

 case is_element3(Key,ID,Successor) of
 true ->
 ParentID ! {lookup,Successor},
 loop(State);
 false ->
 Successor ! {lookup,Key,ParentID},
 loop(State)
 end
 end

end.

%==
% Internal functions
%==

init_state(Pid) ->
 State = #peer{id = Pid, predecessor = Pid},
 State#peer{successors = setelement(1,State#peer.successors,Pid),

fingers = setelement(1,State#peer.fingers,Pid)}.

closest_preceding_finger(State,ID) ->
 closest_preceding_finger(State,ID,?space_size).

closest_preceding_finger(State,_,1) ->
 {1,element(1,State#peer.fingers)};

closest_preceding_finger(State,ID,N) ->
 Finger = element(N,State#peer.fingers),
 if
 (State#peer.id < Finger) and (Finger =< ID) ->

{N,element(N,State#peer.fingers)};
 (State#peer.id > ID) and ((Finger > State#peer.id) or (Finger =< ID)) ->

{N,element(N,State#peer.fingers)};
 true ->
 closest_preceding_finger(State,ID,N-1)
 end.

is_element(Item,Head,Tail) ->
 if
 (Head < Item) and (Item < Tail) ->

 true;
 (Head > Tail) and ((Item > Head) or (Item < Tail)) ->

 true;
 true ->
 false
 end.

is_element2(Item,Head,Tail) ->
 if
 (Head =< Item) and (Item < Tail) ->

 true;
 (Head > Tail) and ((Item >= Head) or (Item < Tail)) ->

 true;
 true ->
 false
 end.

is_element3(Item,Head,Tail) ->
 if
 (Head < Item) and (Item =< Tail) ->

 true;

54

Appendices

 (Head > Tail) and ((Item > Head) or (Item =< Tail)) ->
 true;

 true ->
 false
 end.

cast(Name,Msg) ->
 catch Name ! Msg,
 ok.

next_successor(ID,Tuple) ->
 next_successor(ID,Tuple,2).

next_successor(ID,_,?space_size + 1) ->
 ID;

next_successor(ID,Tuple,N) ->
 Current = element(N,Tuple),
 case Current of
 undefined ->
 ID;
 _ ->

case whereis(Current) of
 undefined ->
 next_successor(ID,Tuple,N + 1);
 _ ->
 Current

end
 end.

55

	Chapter 1. Introduction
	1.1. Motivation
	1.2. Objectives and contributions
	1.3. Related works
	1.4. Overview

	Chapter 2. Background
	2.1. Distributed Hash Tables
	2.2. Erlang
	2.3. QuickCheck

	Chapter 3. Modeling
	3.1. Registration
	3.2. Logic

	Chapter 4. Chord implementation
	4.1. User registration
	4.2. Data location
	4.3. DHT logic

	Chapter 5. Testing with QuickCheck
	5.1. Simulation
	5.2. Property
	5.3. Test cases

	Chapter 6. Results and analysis
	6.1. Faults found
	6.2. Modified algorithm

	Chapter 7. Discussion
	7.1. CAN, Tapestry and other DHTs
	7.2. Tracing
	7.3. Graph theory for structured peer-to-peer systems

	Chapter 8. Conclusion
	References
	Normative references
	Informative references

	Appendices
	Appendix A: Chord specification
	Appendix B: New Chord implementation
	

